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Abstract: Tt is well known that the complexity of the Delaunay triangulation of n points
in R?, i.e. the number of its simplices, can be Q(n/?1). In particular, in R3, the number of
tetrahedra can be quadratic. Differently, if the points are uniformly distributed in a cube
or a ball, the expected complexity of the Delaunay triangulation is only linear. The case of
points distributed on a surface is of great practical importance in reverse engineering since
most surface reconstruction algorithms first construct the Delaunay triangulation of a set of
points measured on a surface.

In this paper, we bound the complexity of the Delaunay triangulation of points distrib-
uted on the boundary of a given polyhedron. Under a mild uniform sampling condition,
we provide deterministic asymptotic bounds on the complexity of the 3D Delaunay trian-
gulation of the points when the sampling density increases. More precisely, we show that
the complexity is O(n!-®) for general polyhedral surfaces and O(ny/n) for convex polyhedral
surfaces. Our proof uses a geometric result of independent interest that states that the me-
dial axis of a surface is well approximated by a subset of the Voronoi vertices of the sample
points. The proof extends easily to higher dimensions, leading to the first non trivial bounds
for the problem when d > 3.
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Complexité de la triangulation de Delaunay de points
distribués sur des surfaces polyédriques

Résumé : La complexité de la triangulation de Delaunay de n points de R?, c’est-a-dire
le nombre de ses faces, peut étre Q(Mg1 ). En particulier, dans R3, le nombre de tétraédres
peut étre quadratique. En revanche, si les points sont uniformément distribués dans un
cube ou une boule, la complexité moyenne de la triangulation de Delaunay est linéaire. Le
cas de points répartis sur une surface est d’un grand intérét car la plupart des méthodes de
reconstruction de surfaces utilisent la triangulation de Delaunay des points qui échantillonne
la surface.

Dans cet article, nous bornons la complexité de la triangulation de Delaunay de points
distribués sur le bord d’un polyédre. Sous une hypothése d’échantillonnage uniforme assez
faible, nous majorons asymptotiquement la complexité de la triangulation de Delaunay tridi-
mensionnelle quand la densité de ’échantillon augmente. Plus précisément, nous montrons
que la complexité est O(n'-®) pour des surfaces polyédriques générales et O(n/n) dans le
cas convexe.

Notre preuve utilise un résultat géométrique intéressant en lui-méme qui établit que le
squelette d’une surface est bien approximé par un sous-ensemble des sommets de Voronoi
du diagramme de Voronoi d’un échantillon de points sur la surface. La preuve s’étend sans
difficulté aux dimensions supérieures, conduisant aux premiéres bornes non triviales pour le
probléme quand d > 3.

Mots-clés : Géométrie algorithmique, triangulation de Delaunay, surfaces polyédriques,
complexité, reconstruction de surfaces
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1 Introduction

It is well known that the complexity of the Delaunay triangulation of n points in R?, i.e.
the number of its simplices, can be Q(nrg] ). In particular, in R?, the number of tetrahedra
can be quadratic. Differently, if the points are uniformly distributed in a cube or a ball, the
expected complexity of the Delaunay triangulation is only linear [8, 9].

The case of points distributed on a surface is of great practical importance in reverse en-
gineering since most surface reconstruction algorithms first construct the Delaunay trian-
gulation of a set of points measured on a surface, see e.g. [1, 4]. The time complexity of
those methods therefore crucially depends on the complexity of the triangulation of points
scattered over a surface in R®. Moreover, since output-sensitive algorithms are known for
computing Delaunay triangulations [6], better bounds on the complexity of the Delaunay tri-
angulation would immediately imply improved bounds on the time complexity of computing
the Delaunay triangulation.

A first result has been recently obtained by Golin and Na [11]. They proved that the
expected complexity of 3D Delaunay triangulations of random points on convex polytopes is
©(n). The case of points on a cylinder has been considered by J. Erickson who proved that,
even if the cylinder is well-sampled, the complexity of the Delaunay triangulation may be
Q(n+/n) [10]. Erickson’s paper contains also lower bounds for contrived surfaces with a non
bounded ratio between diameter and minimum local feature size, a case we exclude here.

In this paper, we consider the case of points distributed on the boundary of a given poly-
hedron. Under a mild uniform sampling condition, we provide deterministic asymptotic
bounds on the complexity of the 3D Delaunay triangulation of the points when the sam-
pling density increases. More precisely, we show that the complexity is O(n!-®) for general
polyhedral surfaces and O(n+/n) for convex polyhedral surfaces. The intuition behind our
result is the following. When a surface S is well-sampled, the circumcenters of the Delaunay
simplices with a long edge are close to the medial axis M of S (see Figure 1b). It follows
that the Delaunay neighbours of a point X that are sufficiently far away from X lie in a
small region R between two spheres centered at a point I of M (see Figure 1¢). In the case
of a polyhedral surface, the intersection of R and S is contained in a bounded number of
small disks and therefore X can only have a small number of Delaunay neighbours.

Our proof technique extends easily to higher dimensions, leading to the first non trivial
bounds for the problem when d > 3.

2 Medial axis approximation

Our combinatorial bound on the complexity of the Delaunay triangulation of a light uniform
sample A is based on a geometric result (Proposition 10 below) that states that the medial
axis of the surface is well approximated by a subset of the Voronoi vertices of .A. Before
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4 Attali & Boissonnat

maximal ball

(a) (b) (c)

Figure 1: Overview of the proof in R?. (a) A curve S and its medial axis M. (b) Voronoi
graph of sample points. (c) The inner Delaunay neighbours of X that are far away from X
lie in a small region R.

stating and proving this result, we recall the definition of the medial axis of a surface and
define uniform samples.

2.1 Definitions

The medial axis is a global description of objects, also called the skeleton. It has first been
introduced by Blum in the field of image analysis as a tool for shape description. Since
then, the medial axis has been intensively studied. In this section, we recall definitions and
properties related to the medial axis. Other results on the medial axis can be found in
[13, 7, 12, 14, 3].

The medial axis of a subset F of R® can be defined using the concept of a maximal ball.

Definition 1 (Maximal ball) Let F C R3. A ball B is said to be maximal in F if and
only if for any ball B', BC B'C ¥ — B = B'.

Definition 2 (Medial axis of an object) Let F C R®. The medial axis of F is the locus
of the centers of the maximal balls of F.

This definition can be extended to surfaces as follows.

Definition 3 (Medial axis of a surface) Let S be an embedded two-manifold. We call
medial azis of S the medial azis of R — S.

At any point X € S, we associate the local feature size. The concept of local feature size
has first been introduced in the context of surface reconstruction by Amenta and Bern [1].

Definition 4 (Local feature size) The local feature size 1fs(X) at a point X € S is the
distance from X to the medial azis of S.

In the most general case, there can be an infinite number of maximal balls through a given
point X € S. Let R be the radius of any maximal ball through X:

Ifs(X) < R

However, if the normal to & at X is defined, there are exactly two maximal balls through
X, on both sides of the tangent plane to S at X.

We distinguish two types of points on S, singular and regular points:

INRIA
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Definition 5 (Singular and regular points) A point X € S is said to be regular iff 1.
the normal to S at X is defined, 2. the two mazimal balls through X touches S, at least, at
two distinct points X and Y # X. A point is said to be singular iff it is not regular.

2.2 Uniform samples

Let A € S be a set of sample points of S. We impose on A to be a uniform e-sampling of
S. In addition, we enforce the sample not to become arbitrarily dense locally and introduce
the notion of a light sample.

Definition 6 (Uniform e-sample) A set of points A € S is called a uniform e-sample of
S iff for every point X € S, the ball B(X,¢) encloses at least one point of A.

Definition 7 (Light uniform e-sample) A uniform c-sample is said to be light iff for
every point X € S, the ball B(X,r) encloses O(Z—z) points of A.

In particular, if the surface is bounded, the number of points n is bounded and n = O (E%) .

In this paper, we consider the surface to be fixed and provide asymptotic results when the
sampling density increases, i.e. when e tends to 0. In particular, we assume that quantities
like the area or the diameter of S are fixed and do not depend on . Notice that our
definition of a light uniform e-sample does not impose any lower bound on the minimal
distance between two sample points.

Amenta and Bern have introduced a different definition of an e-sample [1]. The originality
of their definition is to force the sample to fit locally the surface shape. According to their
definition, point density is high where the surface has high curvature or where the object or
its complement is thin. However, if the local feature size vanishes, an e-sample, as defined
in [1], will have an infinite number of points, which is not satisfactory for our purpose.

Erickson has introduced a notion of uniform sample that is related to our notion of light
uniform sample but forbids points to be too close (which our definition allows) [10].

2.3 Medial axis approximation

The goal of this section is to prove that the circumcenters of the Delaunay tetrahedra with
long edges converge towards the medial axis (Proposition 10). Our result improves on related
results obtained by Amenta and Kolluri [2] and Boissonnat and Cazals [5].

Notations. In the rest of this section, X and A are sample points on the surface that are
adjacent in the Delaunay triangulation. X is assumed to be a regular point of S. I is the
center of one of the two maximal balls through X. R is its radius. V designates a vertex of
the Voronoi facet dual to the Delaunay edge [X A].

Note : In this section as well as in the rest of the paper, we will provide first order
approximations in € and ignore higher order terms.

We start with a technical lemma that bounds ||V ||, when the Delaunay edge [X 4] is long
enough:

Lemma 8 Let A, X, I and V' be four points satisfying the following conditions:

1L ||[VA| = |VX],

2 IXT| =R,

3. |AI|| = R(1 + p), for some small p >0,
— —

4. L(XI, XV) =80, for some small 0 > 0,

5. | X A|l =21 with I> > pR? and | > R9.

RR n° 4232



6 Attali & Boissonnat

Ignoring second and higher order terms, we have

OR?> R3p
I < —+ —-.
H
W e
\
\
\
\
\
\ C

R(1+ p)

A
21

Figure 2: For the proof of Lemma 8.

Proof. Refer to Figure 2. Assume the three points A, X and I are given. Let H be the
plane that bisects the points X and A. Let C be the right circular cone generated by the
lines passing through X and forming an angle 6 with the line (XI). Point V lies in plane
‘H and on the cone C. Therefore, V lies on the ellipsis H N C. Let W be the point on this
ellipsis which is the farthest from point 7. In addition, let O be the mid-point of segment
[AX] and FE be the intersection point of line (X I) with H. Let us bound ||WI||. By triangle
inequality:
W1l < [WE| +||EI]

Let ¢ be the angle between the two vectors XO and X1I. Since the lengths of the three
sides of triangle (AX ) are known, we have:

—p(2+p)R*+41* 1
41R R

cos ¢ = >0

Using the fact that cos¢ > 6, we can bound |WE||.

|[WE| =1(tan(¢ + 6) — tan ¢)
_ [sinf
~ cos(¢ + ) cos ¢
g
~ o d
_oR?
T

INRIA
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Let us now bound ||ET]|.

Finally, we get:

O

Let V denote a vertex of the Voronoi cell of X in the Voronoi diagram of ;4) B_y)slightly
adapting a result of Amenta and Bern [1, Lemma 5], we can bound § = Z( X1, XV).

Lemma 9 Let X be a regular point of S. Assume |[VX|| > ¢ and Us(X) > . Then, the
angle at X between the normal to S at X and the vector to V (oriented so that the angle is

acute) is at most arcsin (”VE—X”) + arcsin (m)

The next proposition states that the circumcenters of the Delaunay tetrahedra with long
edges converge towards the medial axis when ¢ tends to 0.

Proposition 10 (Medial axis approximation) Let A be a uniform e-sample of S and
X € A be a regular point of S. Let [X A] be a Delaunay edge and V' a vertez in the Voronoi
facet dual to the Delaunay edge [X A]. Let B(I, R) be the one mazimal ball through X such
that XV - XI>0. LetY be a point of O0B(I,R) N S distinct from X. Assume that:

1. e < Iifs(X),

2

2. ”{2{2” > m(x)
Lx Al

3. M P -

Then:

e 10R? ( 2R )2
VI| < R —— max 1+ 22 ).
IVII< R ) (||XY||2 1A

Proof. Since |[VX|| > 1| XA|, R > Ifs(X) and ﬁ < 1, we have:

€ 2e e [Us(X) €
< £ < 1 1
xS XAl SEV e SYmm < (1)

Therefore, we can apply Lemma 9. The angle 6 between the vectors X7 and XV is at
most :

6 < arcsin | ——— ) + arcsi ° N (2)
N2 PR s ) T v T ims(x)

Let £, and X, be two spheres passing through X. The first one, X,, is centered at V' and
is therefore empty. The second one, X, has radius R and is centered on the half-line going
from X to V. We denote by P the center of ¥,,.

Two cases must be considered. First, assume V is farther from X than P (see Figure 3 left).
In this case, the ball bounded by X, is contained in the ball bounded by X, and therefore
does not contain any point of A in its interior. Let A, be one of the sample points in the
neighbourhood of Y at distance at most € from Y, and 3. the sphere tangent to ¥, at X
and passing through A,. We denote by C' the center of ¥.. Since V lies between C' and

RR n° 4232



8 Attali & Boissonnat

Figure 3: The two cases for the proof of Proposition 10

P, |VI|| < ||CI||. We apply Lemma 8 with A,, X, I and C. The five items of Lemma 8
are fulfilled. Indeed, since ||[VX| > ||PX|| = R > Uis(X), Equation (2) implies 6 < Hsz(—i();
as noticed above, p < § < @; and 2] = [|[ X A,|| > || XY|| —e. Let us first remark that

| XY > e. Indeed, using again the inequality R > lfs(X), we have:

I XY £
—— >R > Is(X
5 > H(X) = s(X)e>e (3)
We now use our assumption ”i{;;”z > lfs(EX) to prove that [ > R and 12 > pR?. Indeed:
|1 XY 5 2e
> — — >
12 == >R /igm > B 2 79
XY| 2 e €
d > XY R? >— >
an —( 2 ¢ iR SR’

Since 0 XRY” > %, Lemma & then implies:

R?9 R3p 4R? € R € 10R?
VI|<|CI|| < — 4+ — < 1 4
VI <jier < l + 212 = || XY Us(X) ( + 2||XY||) - Ms(X) | XY? )

Consider now the second case and assume that V is closer to X than P. Let H be the
plane that bisects X and A. Since H contains V', P lies in the half-space limited by H that
contains A. Since I lies in the other half-space, the circle arc TP (centered at X and of
radius R) must intersect H at some point K. We now apply Lemma 8 to A, X, K and V.

—_—
Notice that p = 0 and ' = Z(XK, XV). Let I = £||XA||. Since p =0, I* > pR?. By
Inequality 1, W <, /@ and thus:

o< £ + € < € + e €
=7 =V T s(X) s(X) * Ms(X)  \ Ms(X)

2
We now use our assumption % > lfs(EX) to prove that [ > R6':

1 €
= — — > /
[=31X4] > R, /lfs(X) > RY

IN

INRIA
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Lemma 8 then gives:

R%9’
Wil <
Therefore:
VI <[IVK| + [|KT]|
2
< RTH + RO
1 1 2R
SRE(—+ ) (1+—)
VX~ Us(X) [| XAl
€ 2R \?
<R—— (14—
<Rigr (1 )
O

Remark that the proposition above makes no assumption on the contact point Y of the
maximal ball through X. Y may or may not be regular. It does not matter either that the
local feature size vanishes at Y.

We can also remark that the result depends on the ratio m In fact, if r = @, we get
an equivalent approximation theorem for r-samples, as defined by Amenta and Bern in [1].

3 Polyhedral surfaces

3.1 Definition and properties

A polyhedral surface is the boundary of a bounded polyhedron. The medial axis of a
polyhedral surface is composed of pieces of planes and quadrics (see Figure 4b). The singular
points of a polyhedral surface are its edges and vertices. Polyhedral surfaces have two
interesting properties:

Property 11 Let S be a polyhedral surface. For any point X € S and for any positive
r <Us(X), SNB(X,r) is o disk.

Property 12 Let S be a polyhedral surface and B a mazimal ball centered on the medial
azis of S. If B touches S at two distinct points X and Y, || XY || > 21s(X).

(a) (b)

Figure 4: A polyhedral surface and its I-singular zone on the left. Its medial axis on the
right.

Definition 13 (Bounded polyhedral surfaces) We say that a polyhedral surface is bounded
if 1. it has a bounded number of faces, 2. the sum of the lengths of its edges is bounded.

In the sequel, we restrict ourselves to bounded polyhedral surfaces. S will designate a bounded
polyhedral surface and A a light uniform e-sample of S.

RR n° 4232



10 Attali & Boissonnat

3.2 Counting Delaunay edges

In this section, we count the Delaunay edges incident to X € A. we enclose S in a sufficiently
large bounding box B. Therefore, the radius of any maximal ball remains bounded. We
denote by Rp.x the radius of the greatest maximal ball. Moreover we add points on B
so that the union of these additional points and the sample points on S constitute a light
uniform e-sample of BU S. Observe that the total number of points remains O(n).

We consider two different types of zones on the surface (see Figure 4a), a Il-singular zone
surrounding singular points and a I-regular zone containing exclusively regular points.

Definition 14 (I-Regular and [-singular zones) Let! > 0. We call I-regular zone of S,
the set of points X € S such that 1fs(X) > . We call I-singular zone of S the set of points
that do not belong to the l-regular zone.

The 0-singular zone (resp. the O-regular zone) of a polyhedral surface consists of its singular
(resp. regular) points. In this section, we search for which value of I the complexity in the
two zones is counterbalanced.

In the [-regular zone, every point X has only two types of Delaunay neighbours: neighbours
that are “close” to X and neighbours that are “close” to the two maximal balls through X:

Proposition 15 Let I* > 4R2__e. Let X be a sample point in the l-regular zone of S
and A, a Delaunay neighbour of X. Let B(Iy, Ry) and B(I1,Ry) be the two mazimal balls
through X. Then :

A€ B(X,1fs(X))UB (Io,Ro + 18R} 133) UB (Il,Rl + 18R 133)

Proof. Let V be any vertex of the Voronoi facet dual to the Delaunay edge [X A]. Let I
— =

and R be the center and the radius of the maximal ball through X such that XV - XTI > 0.

We assume || X A|| > Ifs(X) and prove that A € B(I,R+8R® &).

2 2
In order to apply Proposition 10, we have to check that ”f;;” > lfs(EX) and ”f;;” > lfs(EX)‘

But, by Proposition 12, || XY|| > 21fs(X) and:

| XY)? S Ifs(X)?2 S 12 s e, €
4R? — R? T RZ.. I~ Uifs(X)
In a similar way:
| X A|? S Ifs(X)? S 12 N e, €
4R?> — 4R? T 4RZ . I~ Uis(X)

Therefore and using the inequality 1 < %:

£ 10R2 2R \? €
<R— < 3
IVII < B gy max <lfs(X)2’ (1 + lfs(X)) ) SR

An upper bound on ||IA|| follows immediately since, by triangle inequality:

ITAl < V]| + [IVA] = [TV + IV X]|
< 2V + (11 X]]

gR(1+18R2 133)

O

Proposition 16 (Counting edges in the [-regular zone) Let I> > 4R2__e. The num-
ber of Delaunay edges incident to a given sample point of the regular zone is O(E%) The

total number of edges incident to the l-reqular zone is 0(53175)

INRIA
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11

Figure 5: A plane tangent to the ball B(I, R) at Y intersects B(I, R + Rh) in a disk of
radius r = RvV/2h + h? = Rv/2h.

Proof. Let X be any point in the l-regular zone. Let B(Iy, Ry) and B(I1, R1) be the two
maximal balls through X. The Delaunay neighbours of X belong to:

B(X,1s(X))UB (IO,RO +18R? 133) UB (11,R1 +18 R} 133) :

First, we prove that the number of Delaunay neighbours in B(X, lfs(X)) is O(1). By Propo-
sition 11, the intersection of the surface and B(X,1fs(X)) is a disk D,. Let A be any
Delaunay neighbour of X lying on this disk and let ¥, be the empty sphere through X and
A. ¥, intersects D, along a circle. Let C' be the center of this circle and X. be the sphere
centered at C' and passing through X and A. ¥, is an empty sphere centered on S. Because
A is a uniform e-sample, the radius of this sphere cannot be greater than . Therefore,
| X A|| < 2e. By assumption, the number of sample points at distance 2¢ from X is O(1).

Secondly, we prove that the number of Delaunay neighboursin B (I, R+ 18 R® &) is O(Js),
where B(I, R) designates any of the two maximal balls through X. For the sake of simplicity,
let us call h = 18 R? 7 and B(I, R+ Rh) the enlarged maximal ball. Because the polyhedral
surface has a bounded number of faces, the intersection of the enlarged maximal ball with S is
included in a bounded number of disks. Each disk has radius at most r ~ Rv2h = 4R%, /&

(see Figure 5). Therefore, the number of sample points in the enlarged maximal ball is
2

0(%) =0(Z). O

Proposition 17 (Counting edges in the [-singular zone) Let | > 0. The number of
Delaunay edges joining two sample points in the l-singular zone is O(i—i)

Proof. Let p be the length of the 0-singular zone. The [-singular zone can be covered
by O(%) spheres of radius 2I. Therefore, the number of points in the [-singular zone is

O(% x 45%2) = O(Z%). The number of edges joining two points of the I-singular zone is
therefore O(i—4) O

In order to counterbalance the number of edges in the two zones, we have to choose [ such
2
that 2—4 = ﬁ, in other words | = /. We sum up our results in the following theorem :

Theorem 18 Let A be a light uniform e-sample of a bounded polyhedral surface S of R®.
The number of tetrahedra of the Delaunay triangulation of A is O(n%) = O0(n'?).

4 Convex polyhedral surfaces

For convex polyhedral surfaces, the ratio ﬁ is bounded from above by a certain constant
C. Therefore, using the same scheme as before, one can prove that the complexity of

RR n° 4232



12 Attali & Boissonnat

convex polyhedral surfaces is O(n+/n). Again, we consider two different zones on the convex
polyhedral surface.

Proposition 19 Let | > ¢. Let X be a sample point in the l-reqular zone of S and A, a
Delaunay neighbour of X. Let B(Iy, Ry) and B(I1, R1) be the two mazimal balls through X .
Let K = 2C(1+2C)%. Then :

A€ B(X,1is(X)) U B(Ip,Ry + Ke) U B(I1, Ry + K¢)

Proof. Let V be any vertex of the Voronoi facet dual to the Delaunay edge [X A]. Let I

and R be the center and the radius of the maximal ball through X such that XV- X1 >0
and assume || X A|| > lfs(X). Let us prove that A € B(I,R + Ke¢).

Using 1 > 7 and Property 12, we get :

| XY2 _ Us(X)?
>
4R? — R?

In a similar way:

|| X A2 S Ifs(X)? 1
4R? — 4R? T 4C?
Therefore, by Proposition 10:

€ 2R \? 9
<R— —_— <
”VI“_les(X) <1+lfs(X)> <eC(1+20C)
and

ITA| <R+ Ke

O

Proposition 20 (Counting edges in the /-regular zone) Let ! > . Let A be a light
uniform e-sample. The number of Delaunay edges incident to a given sample point of the
I-regular zone is O(y/n). The total number of edges incident to the l-reqular zone is O(n+/n).

Proof. We have already proven that the number of Delaunay neighbours in B(X, Ifs(X))
is O(1). Let us prove that the number of points in the enlarged maximal ball B(I, R+ K ¢)
is O(y/n). The intersection of the enlarged maximal ball with § is included in a bounded

number of disks. Each disk has radius at most r = vV2RKe (see Figure 5). Therefore, the

number of sample points in the enlarged maximal ball is O(Z—z) =0(1)=0(yn). O

The counting of edges in the [-singular zone is unchanged and is given by Proposition 17.
2
In order to find O(ny/n) = O(%) edges in the singular zone, we have to choose & = % in

other words [ = \/e. )

Theorem 21 Let A be a light uniform e-sample of a bounded convex polyhedral surface S
of R3. The number of tetrahedra of the Delaunay triangulation of A is O(n+/n).

5 Conclusion

Except Propositions 16, 17 and Theorem 18, all our results can easily be extended to
piecewise-linear (d — 1)-manifolds of R? for d > 3. In particular, for convex polytopes,
the O(n+/n) bound holds in any dimension. Propositions 16 and 17 can easily be adapted
so as to work in R?. We simply need to count points in a (d — 1)-ball. The volume of a

(d — 1)-ball with radius r is O(r?~') and therefore a (d — 1)-ball contains O(Z—Z:—i) sample

INRIA
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points. The complexity of the Delaunay triangulation of a light uniform sample on a general
6(2d—3)

piecewise linear manifold is O(n 74=11 ).

We have given a sub-quadratic bound for polyhedral surfaces. The case of smooth surfaces

seems to be harder, due to the presence of slivers, i.e. flat tetrahedra whose circumcenters

can be arbitrarily far from the medial axis. Observe that Proposition 10 indicates that these

tetrahedra are small.

An obvious open question is to extend our results to smooth surfaces. We also suspect that
our general bound is not tight and should be improved. In the convex case, the gap between
our deterministic bound and the probabilistic result of Golin and Na asks for further work.
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