2,926 research outputs found

    A Survey on Continuous Time Computations

    Full text link
    We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature

    Algorithmic Verification of Continuous and Hybrid Systems

    Get PDF
    We provide a tutorial introduction to reachability computation, a class of computational techniques that exports verification technology toward continuous and hybrid systems. For open under-determined systems, this technique can sometimes replace an infinite number of simulations.Comment: In Proceedings INFINITY 2013, arXiv:1402.661

    Reachability problems for PAMs

    Get PDF
    Piecewise affine maps (PAMs) are frequently used as a reference model to show the openness of the reachability questions in other systems. The reachability problem for one-dimentional PAM is still open even if we define it with only two intervals. As the main contribution of this paper we introduce new techniques for solving reachability problems based on p-adic norms and weights as well as showing decidability for two classes of maps. Then we show the connections between topological properties for PAM's orbits, reachability problems and representation of numbers in a rational base system. Finally we show a particular instance where the uniform distribution of the original orbit may not remain uniform or even dense after making regular shifts and taking a fractional part in that sequence.Comment: 16 page

    Dichotomy Results for Fixed Point Counting in Boolean Dynamical Systems

    Full text link
    We present dichotomy theorems regarding the computational complexity of counting fixed points in boolean (discrete) dynamical systems, i.e., finite discrete dynamical systems over the domain {0,1}. For a class F of boolean functions and a class G of graphs, an (F,G)-system is a boolean dynamical system with local transitions functions lying in F and graphs in G. We show that, if local transition functions are given by lookup tables, then the following complexity classification holds: Let F be a class of boolean functions closed under superposition and let G be a graph class closed under taking minors. If F contains all min-functions, all max-functions, or all self-dual and monotone functions, and G contains all planar graphs, then it is #P-complete to compute the number of fixed points in an (F,G)-system; otherwise it is computable in polynomial time. We also prove a dichotomy theorem for the case that local transition functions are given by formulas (over logical bases). This theorem has a significantly more complicated structure than the theorem for lookup tables. A corresponding theorem for boolean circuits coincides with the theorem for formulas.Comment: 16 pages, extended abstract presented at 10th Italian Conference on Theoretical Computer Science (ICTCS'2007

    Robust Control of Uncertain Markov Decision Processes with Temporal Logic Specifications

    Get PDF
    We present a method for designing robust controllers for dynamical systems with linear temporal logic specifications. We abstract the original system by a finite Markov Decision Process (MDP) that has transition probabilities in a specified uncertainty set. A robust control policy for the MDP is generated that maximizes the worst-case probability of satisfying the specification over all transition probabilities in the uncertainty set. To do this, we use a procedure from probabilistic model checking to combine the system model with an automaton representing the specification. This new MDP is then transformed into an equivalent form that satisfies assumptions for stochastic shortest path dynamic programming. A robust version of dynamic programming allows us to solve for a ϵ\epsilon-suboptimal robust control policy with time complexity O(log1/ϵ)O(\log 1/\epsilon) times that for the non-robust case. We then implement this control policy on the original dynamical system

    Synthesis of Switching Protocols from Temporal Logic Specifications

    Get PDF
    We propose formal means for synthesizing switching protocols that determine the sequence in which the modes of a switched system are activated to satisfy certain high-level specifications in linear temporal logic. The synthesized protocols are robust against exogenous disturbances on the continuous dynamics. Two types of finite transition systems, namely under- and over-approximations, that abstract the behavior of the underlying continuous dynamics are defined. In particular, we show that the discrete synthesis problem for an under-approximation can be formulated as a model checking problem, whereas that for an over-approximation can be transformed into a two-player game. Both of these formulations are amenable to efficient, off-the-shelf software tools. By construction, existence of a discrete switching strategy for the discrete synthesis problem guarantees the existence of a continuous switching protocol for the continuous synthesis problem, which can be implemented at the continuous level to ensure the correctness of the nonlinear switched system. Moreover, the proposed framework can be straightforwardly extended to accommodate specifications that require reacting to possibly adversarial external events. Finally, these results are illustrated using three examples from different application domains

    An Iterative Abstraction Algorithm for Reactive Correct-by-Construction Controller Synthesis

    Get PDF
    In this paper, we consider the problem of synthesizing correct-by-construction controllers for discrete-time dynamical systems. A commonly adopted approach in the literature is to abstract the dynamical system into a Finite Transition System (FTS) and thus convert the problem into a two player game between the environment and the system on the FTS. The controller design problem can then be solved using synthesis tools for general linear temporal logic or generalized reactivity(1) specifications. In this article, we propose a new abstraction algorithm. Instead of generating a single FTS to represent the system, we generate two FTSs, which are under- and over-approximations of the original dynamical system. We further develop an iterative abstraction scheme by exploiting the concept of winning sets, i.e., the sets of states for which there exists a winning strategy for the system. Finally, the efficiency of the new abstraction algorithm is illustrated by numerical examples.Comment: A shorter version has been accepted for publication in the 54th IEEE Conference on Decision and Control (held Tuesday through Friday, December 15-18, 2015 at the Osaka International Convention Center, Osaka, Japan

    Dichotomy Results for Fixed-Point Existence Problems for Boolean Dynamical Systems

    Full text link
    A complete classification of the computational complexity of the fixed-point existence problem for boolean dynamical systems, i.e., finite discrete dynamical systems over the domain {0, 1}, is presented. For function classes F and graph classes G, an (F, G)-system is a boolean dynamical system such that all local transition functions lie in F and the underlying graph lies in G. Let F be a class of boolean functions which is closed under composition and let G be a class of graphs which is closed under taking minors. The following dichotomy theorems are shown: (1) If F contains the self-dual functions and G contains the planar graphs then the fixed-point existence problem for (F, G)-systems with local transition function given by truth-tables is NP-complete; otherwise, it is decidable in polynomial time. (2) If F contains the self-dual functions and G contains the graphs having vertex covers of size one then the fixed-point existence problem for (F, G)-systems with local transition function given by formulas or circuits is NP-complete; otherwise, it is decidable in polynomial time.Comment: 17 pages; this version corrects an error/typo in the 2008/01/24 versio
    corecore