153 research outputs found

    Interior-point methods for P∗(κ)-linear complementarity problem based on generalized trigonometric barrier function

    Get PDF
    Recently, M.~Bouafoa, et al. investigated a new kernel function which differs from the self-regular kernel functions. The kernel function has a trigonometric Barrier Term. In this paper we generalize the analysis presented in the above paper for P(κ)P_{*}(\kappa) Linear Complementarity Problems (LCPs). It is shown that the iteration bound for primal-dual large-update and small-update interior-point methods based on this function is as good as the currently best known iteration bounds for these type methods. The analysis for LCPs deviates significantly from the analysis for linear optimization. Several new tools and techniques are derived in this paper.publishedVersio

    Extension of primal-dual interior point method based on a kernel function for linear fractional problem

    Get PDF
    Our aim in this work is to extend the primal-dual interior point method based on a kernel function for linear fractional problem. We apply the techniques of kernel function-based interior point methods to solve a standard linear fractional program. By relying on the method of Charnes and Cooper [3], we transform the standard linear fractional problem into a linear program. This transformation will allow us to define the associated linear program and solve it efficiently using an appropriate kernel function. To show the efficiency of our approach, we apply our algorithm on the standard linear fractional programming found in numerical tests in the paper of A. Bennani et al. [4], we introduce the linear programming associated with this problem. We give three interior point conditions on this example, which depend on the dimension of the problem. We give the optimal solution for each linear program and each linear fractional program. We also obtain, using the new algorithm, the optimal solutions for the previous two problems. Moreover, some numerical results are illustrated to show the effectiveness of the method

    Conic optimization with applications in finance and approximation theory

    Get PDF
    This dissertation explores conic optimization techniques with applications in the fields of finance and approximation theory. One of the most general types of conic optimization problems is the so-called generalized moment problem (GMP), which plays a fundamental part in this work. While being a powerful modeling framework, the GMP is notoriously difficult to solve. Semidefinite programming problems (SDPs) can be used to define approximation hierarchies for the GMP. The thesis includes an analysis of an interior point algorithm for SDPs, as well as a convergence analysis of an approximation hierarchy for the GMP defined over special sets. Additionally, the dissertation investigates the problem of pricing options that depend on multiple underlyings, which can be modeled as a GMP. Finally, the dissertation applies tools from conic optimization to address a classical question in approximation theory

    Linear convergence of accelerated conditional gradient algorithms in spaces of measures

    Full text link
    A class of generalized conditional gradient algorithms for the solution of optimization problem in spaces of Radon measures is presented. The method iteratively inserts additional Dirac-delta functions and optimizes the corresponding coefficients. Under general assumptions, a sub-linear O(1/k)\mathcal{O}(1/k) rate in the objective functional is obtained, which is sharp in most cases. To improve efficiency, one can fully resolve the finite-dimensional subproblems occurring in each iteration of the method. We provide an analysis for the resulting procedure: under a structural assumption on the optimal solution, a linear O(ζk)\mathcal{O}(\zeta^k) convergence rate is obtained locally.Comment: 30 pages, 7 figure

    Fast Solvers and Simulation Data Compression Algorithms for Granular Media and Complex Fluid Flows

    Full text link
    Granular and particulate flows are common forms of materials used in various physical and industrial applications. For instance, we model the soil as a collection of rigid particles with frictional contact in soil-vehicle simulations, and we simulate bacterial colonies as active rigid particles immersed in a viscous fluid. Due to the complex interactions in-between the particles and/or the particles and the fluid, numerical simulations are often the only way to study these systems apart from typically expensive physical experiments. A standard method for simulating these systems is to apply simple physical laws to each of the particles using the discrete element method (DEM) and evolve the resulting multibody system in time. However, due to the sheer number of particles in even a moderate-scale real-world system, it quickly becomes expensive to timestep these systems unless we exploit fast algorithms and high-performance computing techniques. For instance, a big challenge in granular media simulations is resolving contact between the constituent particles. We use a cone-complementarity formulation of frictional contact to resolve collisions; this approach leads to a quadratic optimization problem whose solution gives us the contact forces between particles at each timestep. In this thesis, we introduce strategies for solving these optimization problems on distributed memory machines. In particular, by imposing a locality-preserving partitioning of the rigid bodies among the computing nodes, we minimize the communication cost and construct a scalable framework for collision detecting and resolution that can be easily scaled to handle hundreds of millions of particles. For robust and efficient simulation of axisymmetric particles in viscous fluids, we introduce a fast method for solving Stokes boundary integral equations (BIEs) on surfaces of revolution. By first transforming the Stokes integral kernels into a rotationally invariant form and then decoupling the transformed kernels using the Fourier series, we reduce the dimensionality of the problem. This approach improves the time complexity of the BIE solvers by an order of magnitude; additionally we can use high-order one-dimensional singular quadrature schemes to construct highly accurate solvers. Finally, coupling our solver framework with the fast multipole method, we construct a fast solver for simulating Stokes flow past a system of axisymmetric bodies. Combining this with our complementarity collision resolution framework, we have the potential to simulate dense particulate suspensions. Physics-based simulations similar to those described above generate large amounts of output data, often in the hundreds of gigabytes range. We introduce data compression techniques based on the tensor-train decomposition for DEM simulation outputs and demonstrate the high compressibility of these large datasets. This allows us to keep a reduced representation of simulated data for post-processing or use in learning tasks. Finally, due to the high cost of physics-based models and limited computational budget, we can typically run only a limited number of simulations when exploring a high-dimensional parameter space. Formally, this can be posed as a matrix/tensor completion problem, and Bayesian inference coupled with a linear factorization model is often used in this setup. We use Markov chain Monte Carlo (MCMC) methods to sample from the unnormalized posteriors in these inference problems. In this thesis, we explore the properties of the posterior in a simple low-rank matrix factorization setup and develop strategies to break its symmetries. This leads to better quality MCMC samples and lowers the reconstruction errors with various synthetic and real-world datasets.PHDApplied and Interdisciplinary MathematicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169614/1/saibalde_1.pd

    Convex Identifcation of Stable Dynamical Systems

    Get PDF
    This thesis concerns the scalable application of convex optimization to data-driven modeling of dynamical systems, termed system identi cation in the control community. Two problems commonly arising in system identi cation are model instability (e.g. unreliability of long-term, open-loop predictions), and nonconvexity of quality-of- t criteria, such as simulation error (a.k.a. output error). To address these problems, this thesis presents convex parametrizations of stable dynamical systems, convex quality-of- t criteria, and e cient algorithms to optimize the latter over the former. In particular, this thesis makes extensive use of Lagrangian relaxation, a technique for generating convex approximations to nonconvex optimization problems. Recently, Lagrangian relaxation has been used to approximate simulation error and guarantee nonlinear model stability via semide nite programming (SDP), however, the resulting SDPs have large dimension, limiting their practical utility. The rst contribution of this thesis is a custom interior point algorithm that exploits structure in the problem to signi cantly reduce computational complexity. The new algorithm enables empirical comparisons to established methods including Nonlinear ARX, in which superior generalization to new data is demonstrated. Equipped with this algorithmic machinery, the second contribution of this thesis is the incorporation of model stability constraints into the maximum likelihood framework. Speci - cally, Lagrangian relaxation is combined with the expectation maximization (EM) algorithm to derive tight bounds on the likelihood function, that can be optimized over a convex parametrization of all stable linear dynamical systems. Two di erent formulations are presented, one of which gives higher delity bounds when disturbances (a.k.a. process noise) dominate measurement noise, and vice versa. Finally, identi cation of positive systems is considered. Such systems enjoy substantially simpler stability and performance analysis compared to the general linear time-invariant iv Abstract (LTI) case, and appear frequently in applications where physical constraints imply nonnegativity of the quantities of interest. Lagrangian relaxation is used to derive new convex parametrizations of stable positive systems and quality-of- t criteria, and substantial improvements in accuracy of the identi ed models, compared to existing approaches based on weighted equation error, are demonstrated. Furthermore, the convex parametrizations of stable systems based on linear Lyapunov functions are shown to be amenable to distributed optimization, which is useful for identi cation of large-scale networked dynamical systems

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo
    corecore