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This dissertation explores conic optimization techniques with applications in 
the fields of finance and approximation theory. One of the most general types of 
conic optimization problems is the so-called generalized moment problem (GMP), 
which plays a fundamental part in this work. While being a powerful modeling 
framework, the GMP is notoriously difficult to solve. Semidefinite programming 
problems (SDPs) can be used to define approximation hierarchies for the GMP. 
The thesis includes an analysis of an interior point algorithm for SDPs, as well as 
a convergence analysis of an approximation hierarchy for the GMP defined over 
special sets. Additionally, the dissertation investigates the problem of pricing 
options that depend on multiple underlyings, which can be modeled as a GMP. 
Finally, the dissertation applies tools from conic optimization to address a classical 
question in approximation theory.
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Set notation

	 the empty set
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A⊆ B A is a subset of B
A\ B Set difference, i.e., {a ∈ A : a /∈ B}
cl(A) the closure of A
int(A) the interior of A

Special sets

[n] the set of integers from 1 to n
� the natural numbers
�n the set of n-tupels of the natural numbers
� the integer number
� the real numbers
�+ the non-negative reals
�n the n-dimensional vectors of reals
�n
+ the n-dimensional vectors of non-negative reals
� the complex numbers
�n the set of n× n real symmetric matrices
�(n,k) the direct product of

�n
k

�
copies of �k

�n+ the set of n× n positive semidefinite matrices

�(n,k)
+ the direct product of

�n
k

�
copies of �k+

FWn(k) the set of n× n matrices of factor width ≤ k

xv
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xvi Conic Optimization in Finance and Approximation Theory

Δn−1 the standard probability simplex {x ∈ �n
+ : x1 + · · ·+ xn = 1}

Sn−1 the unit sphere {x ∈ �n : x2
1 + · · ·+ x2

n = 1}
C(K) the set of continuous functions over K
C(K)+ the cone of continuous functions non-negative over K
M(K) the set of finite Borel measures supported on K
M(K)+ the cone of positive finite Borel measures supported on K
L1

2π Lebesgue-integrable periodic functions over [−π,π]

Functions

δα,β Kronecka-δ function
Δ( f , x) Newton decrement of f at x

Inner Products, dualities, and Norms

〈·, ·〉X bilinear function for dual system (X , X ∗)
〈·, ·〉x local inner product at x
‖ · ‖x norm induced by 〈·, ·〉x
〈·, ·〉(n,k) trace inner product on �(n,k)

‖ · ‖(n,k) norm induced by 〈·, ·〉(n,k)

〈·, ·〉μ inner product induced by measure μ

Polynomials and moments

α exponent vector α= (α1, . . .αn) ∈ �n

|α| degree induced by α, i.e., α1 + . . .+αn

�n
r set of n-tuples α such that |α| ≤ r

xα the monomial xα1
1 · . . . · xαn

n

�[x] the polynomial ring in n variables
�[x]r the polynomial ring in n variables of degree less than r
Σ[x] the set of sums of squares of polynomials
Σ[x]r the set of sums of squares of polynomials up to degree 2r
[x]r monomial basis vector up to degree r
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Notation xvii

Ly Riesz linear functional
M(y) moment matrix with respect to y
Mr(y) truncated moment matrix with respect to y
Mr(g ∗ y) localizing matrix with respect to polynomial g and sequence y

Linear Algebra

I identity matrix (of fitting size)
In n× n identity matrix
J all-ones matrix (of fitting size)
Jn n× n all-ones matrix
e all-ones vector
ei i-th standard unit vector
Tr the trace operator
PL orthogonal projection operator onto subspace L
A◦ B Hadamard product
span(A) real span of elements of A
A∗ adjoint operator of A
v� transpose of vector v (or matrix)
A linear operator A(X ) = (〈A1, X 〉, . . . , 〈Am, X 〉)
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1
Introduction

In this thesis we study conic optimization problems and consider applications in
finance and approximation theory. An optimization problem consists of the task
of finding an element x in a set X , called the feasible set, such that x minimizes
a cost function f : X → �, i.e., such that f (x) ≤ f (y) for all elements y ∈ X .
Generic optimization problems do not provide enough structure to permit a useful
analysis. To get a grip on things we begin by making the assumption that the cost
function is linear, and the feasible set X is convex. A convex set X is characterized
by the fact that if x , y ∈ X , then all points on the line-segment joining x and y also
lie in X , i.e., λx + (1−λ)y ∈ X for all λ ∈ [0,1]. We call optimization problems
with convex feasible set and linear cost function convex optimization problems. We
will, however, consider a more general setting, called conic optimization, which
provides enough structure to leverage a useful tool called duality theory. Conic
optimization problems are defined over (convex) cones, whose definition we state
below.

Definition 1.1. Let X be a real topological vector space of arbitrary dimension.
A subset K ⊂ X is called a (convex) cone if

• for all x , y ∈ K and α,β ∈ �+ one has

αx + β y ∈ K,

1
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2 Conic Optimization in Finance and Approximation Theory

that is, K is closed under non-negative linear combinations.

If K additionally satisfies

• K∩ (−K) = {0}, that is, K is pointed;

• K = cl (K), that is, K is closed;

• int (K) �= 	, that is, K has a non-empty interior;

we refer to K as a proper convex cone.

1.1 Conic optimization

Let us now introduce the concept of conic programming and the associated duality
theory in a setting that allows for infinite dimensional cones. For a comprehensive
survey on the topic we refer to [Sha01] and [Bar02]. Let X be a vector space of
arbitrary dimension over � and let X ∗ be its algebraic dual space, i.e., the set of
all linear functionals on X . With the pair X , X ∗ we associate a bilinear functional

〈·, ·〉X : X × X ∗ → �
(x , x∗) �→ 〈x , x∗〉X = x∗(x).

(1.1)

When X is finite dimensional, X ∗ can be identified with X , since any finite di-
mensional space X is isomorphic to its algebraic dual space. In this case any non-
degenerate bilinear form 〈·, ·〉X will define an inner product on X . The infinite di-
mensional case is more subtle. If X is infinite dimensional its algebraic dual space
is too large to develop a useful notion of duality. In this case we endow X with a
topology and define the space X ∗ to be the subset of the algebraic dual space of X
that defines continuous linear functionals on X with respect to the chosen topol-
ogy. We want (X , X ∗, 〈·, ·〉X ) to be a dual system. For this we need the bilinear form
(1.1) to be non-degenerate, which we can achieve by requiring the chosen topol-
ogy to be Hausdorff and locally convex. We thereby ensure that there are enough
(continuous) linear functionals to separate points by the Hahn-Banach theorem
[Meg98, cf. §1.9.5]. Similarly, a topology on X ∗ shall be chosen such that the
set of continuous linear functionals on X ∗ is given by {〈·, x〉X : x ∈ X }. For more
information on these duality considerations we refer to [Bar02, Chapters II and
III]. Let K ⊆ X be a closed convex cone, denote by A : X → �m a (continuous)
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linear operator for some m ∈ �. Further, fix c ∈ X ∗ and b ∈ �m. We define a
primal conic optimization problem as

val(P) = inf 〈c, x〉X
subject to: A(x) = b

x ∈ K.

(P)

The set {x ∈ X : A(x) = b} is an affine subspace of X . Therefore, a conic optimiza-
tion problem consists of minimizing a linear cost function over the intersection of
an affine subspace with a convex cone. Let A∗ : �m → X ∗ be the adjoint mapping
of A so that for x ∈ X and y ∈ �m we have 〈y,A(x)〉 = 〈A∗(y), x〉X for some
reference inner product 〈·, ·〉 on �m.

1.1.1 Duality for conic programs

Duality theory is a useful tool in optimization. Every conic optimization problem
has an associated dual problem. To define it we need to introduce the concept of
the dual cone K∗ ⊆ X ∗ of a convex cone K ⊆ X , which is defined as

K∗ := {x∗ ∈ X ∗ : 〈x∗, x〉X ≥ 0∀x ∈ X } .

Clearly, K∗∗ := (K∗)∗ ⊇ K. If K is closed, then K∗∗ = K, see [Bar02, §IV.5.3]. We
call the following the dual problem of (P):

val(D) = sup 〈y, b〉
subject to: c −A∗(y) ∈ K∗

y ∈ �m.

(D)

The problems (P) and (D) share an intricate relationship. Any feasible solution to
the primal (resp. dual) problem provides an upper (resp. lower) bound for the
dual (resp. primal). This relation is referred to as weak duality.

Theorem 1.2 (Weak duality). Let x , y be feasible solutions to problems (P) and
(D), respectively. Then,

〈c, x〉X − 〈y, b〉= 〈c −A∗(y), x〉X ≥ 0.

Proof. Inequality follows directly from that fact that x ∈ K and c−A∗(y) ∈ K∗.

We call the difference val(P) − val(D) the duality gap. A pair of feasible so-
lutions (x , y) such that 〈c −A∗(y), x〉X = 0 provides a certificate for optimality.
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4 Conic Optimization in Finance and Approximation Theory

Corollary 1.3. The optimal values val(P) and val(D) coincide and both problems
have an optimal solution if and only if there exists a feasible pair (x , y) such that
the following complementarity condition is satisfied

〈c −A∗(y), x〉X = 0.

Often, we are interested in the cases in which strong duality holds, meaning
val(D) = val(P). Results that guarantee this equality are sometimes referred to
as zero duality gap theorems; we will refer to them as strong duality results. One
such theorem is stated below.

Theorem 1.4 (cf. Theorem 7.2 [Bar02]). Consider the primal dual pair (P), (D).
Suppose the cone

Â(K) = {(A(x), 〈c, x〉X ) : x ∈ K}
is closed in X ⊕� and that there exists a primal feasible solution x, i.e., x ∈ K and
A(x) = b. Then val(P) = val(D). Moreover, if val(P) > −∞, then there exists a
primal optimal solution.

There are also other sufficient conditions for strong duality. Conditions based
on strict feasibility, i.e., the existence of a feasible point in the interior of the
respective cones are known as Slater-type conditions.

Theorem 1.5 (Strong duality (cf. Theorem 2.8. [Sha01])). Suppose val(P) >
−∞, and there exists a strictly feasible solution x for the primal (P), i.e., x ∈ int(K)
and A(x) = b, then

• the dual optimal value is attained

• val(P) = val(D).

Similarly, if val(D) <∞, and there exists a strictly feasible solution y for the dual
(D), i.e., y ∈ �m such that c −A∗(y) ∈ int(K∗) then

• the primal optimal value is attained

• and val(P) = val(D).

1.1.2 Special cases of finite dimensional conic programming

We now present two special classes of finite dimensional conic optimization prob-
lem which will play an important part in this thesis.
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Linear Programming (LP)

The simplest and also most well-known case of conic programming is linear pro-
gramming (LP). To formulate LP in the terms presented above, we fix m, n ∈ �
and set X , X ∗ = �n. The bilinear form 〈·, ·〉X is given by the standard Euclidean
inner product, i.e., for x , y ∈ �n : 〈x , y〉=∑n

i=1 xi yi = x� y . The cone K is given
by the non-negative orthant �n

+. This cone is proper and self-dual, i.e.,

�n
+ =

�
�n
+

�∗
=
�
�n
+

�∗∗
.

A linear operator A : �n → �m in this setting can be interpreted as a matrix
A∈ �m×n and application of A to x is now standard matrix vector multiplication
A(x) = Ax .

A linear program in standard form can be formulated as follows. Let c ∈ �n,
A∈ �m×n and b ∈ �m be given. The linear program reads

inf 〈c, x〉= c�x

subject to: Ax = b

x ∈ �n
+,

(1.2)

with its corresponding dual given by

sup 〈y, b〉= y�b

subject to: c − y�A∈ �n
+

y ∈ �m.

(1.3)

In practice linear programming problem can be solved by state-of-the-art solvers
with millions of variables and constraints [LY15, §1.3]. Possible algorithms are
the simplex algorithm [Dan51] or interior point methods [Kar84, NN94, Ren01].

Semidefinite programming (SDP)

Let �n be the space of real symmetric matrices. An inner product on this space is
given by the trace inner product, i.e., for A, B ∈ �n we define

〈A, B〉 := Tr(AB) =
n∑

i, j=1

Ai, jBi, j .

A matrix X ∈ �n is called positive semidefinite, denoted by X � 0, if x�X x ≥
0 ∀x ∈ �n. The set of positive semidefinite matrices is a proper and self-dual cone.
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6 Conic Optimization in Finance and Approximation Theory

Let A : �n → �m be a linear operator defined via X �→ (〈A1, X 〉, . . . , 〈Am, X 〉), where
Ai ∈ �n for i ∈ [m]. A semidefinite program in standard form is for C ∈ �n and
b ∈ �m, given by

val(P) = inf 〈C , X 〉
subject to: A(X ) = b

X ∈ �n+,

(1.4)

with its dual defined as

val(D) = sup 〈y, b〉= y�b

subject to: C −
m∑

i=1

yiAi ∈ �n+
y ∈ �m.

(1.5)

If all matrices appearing in the input data are diagonal, the program is equiv-
alent to an LP. SDP can therefore be seen as a generalization of LP. For more back-
ground info, see [BV96, BV04].

Easy and difficult cones

Special cases of conic programming like LP and SDP can be solved up to a fixed
approximation error ε in polynomial time in the Turing model [dKV16] (under
some assumptions). What this means is that the number of elementary operations
needed to obtain an ε-optimal solution can be bounded by a function that depends
polynomially on the size of the encoding of the problem. An ε-optimal solution
is a feasible point with objective value at most ε worse than the true optimum.
The most common class of algorithms used to solve LPs and SDPs in practice are
interior point methods, see [Kar84, NN94] for historical references, [Ren01] for a
comprehensive introduction and [Gon12] for a survey. In recent years research
has been aimed at the analysis of interior point methods applied to problems
where some underlying structure present, see [ZL21, GS19, CN21, DSdSG+22,
JV22]. We will deal with interior point methods in greater detail in Chapter 2 and
give some background in the Appendix A.

However, not all conic programs can be solved in polynomial time. In fact,
conic programming can capture NP-hard problems. Consider a graph G = (V, E).
The stability number of G, denoted by α(G), asks for the size of the largest set
S ⊆ V such that for no two vertices in S share an edge. Computing the stability
number of a graph G is notoriously NP-hard problem and can be formulated as
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a conic optimization problem as was shown in [dKP02]. Consider the copositive
cone COPn defined as

COPn =
�
A∈ �n : x T Ax ≥ 0 for all x ∈ �n

+

�
.

Let AG be the adjacency matrix of G. Then the stability number of G is the solution
to the following problem:

α(G) =min {λ : λ(I + AG)− J ∈ CPn} ,

where n= |V |. So even though this problem is a convex conic optimization prob-
lem, it is difficult and there are no known polynomial-time algorithms for it. This
demonstrates that the complexity of non-convex problems can be transferred into
a (convex) cone constraint.

1.1.3 Special cases of infinite dimensional conic programming

A special class of infinite dimensional conic optimization problems, called gen-
eralized moment problems (GMPs) will play an integral part of this thesis. Let
K ⊂ �n be a compact set and denote by M(K) the (infinite dimensional) vector
space of signed finite Borel measure whose support is contained in K. We equip
this space with the norm of total variation, defined as

‖μ‖TV =

∫
K

dμ+ +

∫
K

dμ−,

where μ= μ+−μ− is the Jordan decomposition of μ (cf. [Bil86, Chapter 6 §32]).
Since K is compact, the (algebraic) dual space of M(K) is the space of continuous
functions on K, denoted by C(K), which we endow with the supremum norm ‖·‖∞,
defined for f ∈ C(K) as ‖ f ‖∞ := maxx∈K | f (x)|. These two spaces form a dual
system with the bilinear form 〈·, ·〉 : C(K)×M(K)→ � defined by

C(K)×M(K) � ( f ,μ) �→ 〈 f ,μ〉=
∫

K

f (x)dμ(x).

We are interested in optimizing over the convex cone of positive finite Borel mea-
sures supported on K, i.e., Radon measures, which we denote by M(K)+. The
dual cone of M(K)+ with respect to the bilinear form defined above is given by
the set

M(K)∗+ =
	

f ∈ C(K) :

∫
K

f (x)dμ(x)≥ 0 ∀μ ∈M(K)+



,
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8 Conic Optimization in Finance and Approximation Theory

which is the set of continuous functions that are non-negative on K. To see this,
note that since the Dirac-δx lies in M(K)+ for every x ∈ K it follows that all
f ∈ M(K)∗+ satisfy f (x) ≥ 0 for all x ∈ K. On the other hand, if f is a non-
negative continuous function on K, we find f ∗ = minx∈K f (x) ≥ 0 and hence∫

K f (x)dμ(x)≥ f ∗
∫

K dμ(x)≥ 0 for all μ ∈M(K)+. Hence, we denote by C(K)+ =
{ f ∈ C(K) : f (x) ≥ 0 ∀x ∈ K} the dual cone of M(K)+. We denote a GMP as
follows for input data f0, f1, . . . , fm ∈ C(K) and b ∈ �m

inf 〈 f ,μ〉
subject to: 〈 fi ,μ〉= bi , i ∈ [m]

μ ∈M(K)+.

(1.6)

This is a conic program in terms of Section 1.1 when setting X =M(K), X ∗ = C(K)
and K =M(K)+ as well as defining A via A(μ) := (〈 f1,μ〉, . . . , 〈 fm,μ〉). The dual
is given by

sup y�b

subject to: f0(x)−
m∑

i=1

yi fi(x) ∈ C(K)+

y ∈ �m.

(1.7)

Checking non-negativity of a function f on a set K is as difficult as minimizing
f over K:

f (x) ∈ C(K)+⇔min
x∈K

f (x)≥ 0.

Many NP-hard problems can be modeled as a minimization problem over a basic
semi-algebraic set K, see, e.g., [MK87]. Hence, checking membership to C(K)+
is difficult, in the sense that no polynomial-time membership oracle for this cone
exists, unless P = NP. Therefore, solving the GMP in general is numerically in-
tractable. Nevertheless, it is a powerful modeling tool, allowing us to find equiva-
lent convex formulations of non-convex problems. This convexification comes at
the price of increasing the dimension of the convex problem to infinity. However,
we will introduce finite dimensional approximation hierarchies for these kinds of
problems in Section 1.2. But before, we present a few applications of the GMP.

Polynomial and rational optimization

Consider the problem of finding the minimum of a rational polynomial over a
compact set K ∈ �n

p∗ =min
x∈K

p(x)
q(x)

, (1.8)
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where p, q ∈ �[x] are relatively prime and q(x) > 0 over K. In fact, if q changes
signs over K, one can show p∗ = −∞, see [JdK06]. Let us now show that (1.8)
is equivalent to the following GMP

val= inf
μ∈M(K)+

	∫
K

p(x)dμ(x) :

∫
K

q(x)dμ(x) = 1



. (1.9)

Let x∗ be such that p(x∗)
q(x∗) = p∗ and define μ∗ = 1

q(x∗)δx∗ . Then μ∗ is feasible for
(1.9) and leads to the objective value∫

K

p(x)dμ∗(x) = p(x∗)
q(x∗) = p∗.

Thus, val≤ p∗. To prove val≥ p∗ note that

p(x)
q(x)

≥ p∗ ⇒ p(x)≥ p∗q(x) ∀x ∈ K.

Therefore, for every positive finite Borel measure μ ∈M(K)+ feasible for problem
(1.9) we find ∫

K

p(x)dμ(x)≥ p∗
∫

K

q(x)dμ(x) = p∗.

Note that if one sets q ≡ 1 on K, problem (1.8) reduces to a polynomial op-
timization problem, i.e., finding the minimum of an n-variate polynomial over a
compact set.

We will discuss in greater detail in Chapter 3 the generalized moment problem
defined for K being the standard probability simplex Δn−1 = {x ∈ �n : x1 + · · ·+
xn = 1} and the n − 1 dimensional unit sphere Sn−1 = {x ∈ �n : x2

1 + . . . +
x2

n = 1}. We take a moment to discuss two important polynomial optimization
problems defined over these sets. For one, the problem of computing the stability
number α(G) of a graph G = (V, E) can be formulated as a quadratic polynomial
optimization problem over the simplex. Indeed, for a graph G with adjacency
matrix AG , Motzkin and Strauss [MS65] showed that

1
α(G)

= min
x∈Δn−1

x�(AG + I)x,

where I is the identity matrix, which is a quadratic polynomial optimization prob-
lem over the simplex.
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Similarly, deciding convexity of a homogeneous polynomial f of degree 4 or
higher is known to be NP-hard [AOPT13]. It can be modeled as polynomial opti-
mization problem over the sphere. A homogeneous polynomial f is convex if and
only if

min
(x,y)∈S2n−1

y�∇ f (x)y≥ 0,

which in turn be cast as a GMP over the sphere. For polynomials of degree less
than 4 the situation is much simpler. Linear functions are trivially convex. Homo-
geneous quadratic polynomials of the form x�Qx for Q ∈ �n×n are convex if and
only if Q � 0 and polynomials of degree 3 are never convex. Both these examples
illustrate why studying the GMP over simple sets like the simplex and the sphere
is of interest.

1.2 The moment-SOS hierarchy

Since solving the GMP in full generality is out of reach, so-called approximation
hierarchies are often used in practice, which provide approximate solutions. Con-
tinuing we will consider the following GMP

val∗D = sup y�b

subject to: f0(x)−
m∑

i=1

yi fi(x) ∈ C(K)+

y ∈ �m,

(1.10)

with polynomial data functions fi ∈ �[x], i = 0, 1, . . . , m and the set K will be
assumed to be a compact semi-algebraic set defined by polynomials g1, . . . , g	 ∈
�[x], i.e.,

K= {x ∈ �n : g1(x)≥ 0, . . . , g	(x)≥ 0} . (1.11)

A common tool to tackle intractable optimization problems is to relax (some of)
the constraints which make the problem difficult. Solving such a relaxation is
often much easier and leads to an approximation of the sought optimal value.
One way of achieving this in the conic optimization setting is to replace the cone
in question by a more tractable cone. The underlying idea of the approximation
hierarchies that we will consider is to construct a set of polynomials non-negative
on K over which we can optimize efficiently. The objects making this possible are
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the so-called sums-of-squares (SOS) polynomials, which we denote by

Σ[x] :=

� k∑
i=1

qi(x)
2 : k ∈ � , qi ∈ �[x]



.

The set Σ[x] is a proper convex cone. Trivially, every p ∈ Σ[x] is globally non-
negative. The converse, however is not true: Not all polynomials that are globally
non-negative can be expressed as a sum-of-squares as Hilbert proved in 1888, see
[Rez96] for a survey on this matter.

Theorem 1.6. Hilbert (1888) Every non-negative homogeneous polynomial is a
sum-of-squares if and only if

• n= 2 (univariate non-homogeneous case);

• 2r = 2 (quadratic forms);

• n= 3 and 2r = 4 (ternary quartics);

where n is the number of variables and 2r is the degree.

Even though SOS polynomials do not capture all non-negative polynomials,
they provide a powerful tool because of their relation to the cone of positive
semidefinite matrices.

Lemma 1.7. Every SOS polynomial p ∈ Σ[x] of degree 2r can be written as

p(x) = [x]�r A[x]r

for a positive semidefinite matrix A� 0, where

[x]r = [1, x1, . . . , xn, x2
1, x1 x2, . . . , x r

n] (1.12)

is the monomial basis vector.

This lemma implies that the question whether a polynomial can be expressed
as a sum-of-squares is equivalent to a semidefinite program. We call the following
convex cone the quadratic module generated by g1, . . . , g	:

Q(g) =Q(g1, . . . , g	) :=

�
σ0 +

	∑
i=1

σi(x)gi(x) : σi ∈ Σ[x] , i = 0,1, . . . ,	



.

(1.13)
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12 Conic Optimization in Finance and Approximation Theory

The crucial observation is that any y ∈ �m for which

f0(x)−
m∑

i=1

yi fi(x) ∈Q(g)

is a feasible solution to (1.10) and thereby provides a lower bound on the optimal
value. In order to formulate a finite dimensional semidefinite program over this
cone we need to consider a truncated version of it, restricting the degrees that the
involved SOS polynomials may have. We refer to this as the truncated quadratic
module

Qr(g) :=

�
σ0 +

	∑
i=1

σi(x)gi(x) : σi ∈ Σr[x] , i = 0, 1, . . . ,	



, (1.14)

where Σr[x] is the set of SOS polynomials of degree ≤ 2r. Clearly, Qr(g) ⊆
Qr+1(g) ⊆ C(K)+, leading to a hierarchy of optimization problems. We call the
following instance the r-th level of the SOS hierarchy

val(r)D = sup y�b

subject to: f0(x)−
m∑

i=1

yi fi(x) ∈Qr(x)

y ∈ �m,

(1.15)

which, for every r ∈ � is equivalent to a semidefinite program of size polyno-
mial in n. The hierarchy provides a non-decreasing sequence {val(r)D }r∈� upper
bounded by val∗D. This hierarchy was first proposed by Lasserre [Las01] and Par-
rilo [Par00] in the early 2000s with focus on polynomial optimization problems.
We also refer to [Las08] for a treatment of the GMP. A considerable amount of
research has been aimed at the analysis of these hierarchies. Using tools from al-
gebraic geometry like Putinar’s Positivstellensatz [Put93] it is possible under some
mild assumption on K to prove that the hierarchy converges to the optimal value
of (1.10), i.e.,

lim
r→∞val(r)D = val∗D.

Formulating problem (1.15) as an SDP and dualizing it gives little insight into
the objects, i.e., measures, that we are approximating in the primal. We will
approach the dual of (1.15) from another angle. Let y = {yα}α∈�n be an infinite
real sequence and let Ly : �[x]→ � be the Riesz linear functional defined by

f (x) =
∑
α∈�n

fαx
α �→ Ly( f ) =

∑
α∈�n

fα yα,
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where we define by abuse of notation xα := xα1
1 · . . . · xαn

n . Therefore, if y is the
moment sequence of a measure μ supported on a set K, i.e.,

yα =

∫
K

xαdμ(x) for α ∈ �n

then Ly coincides with the integration operator on polynomials with respect to μ,
i.e., for a polynomial f ∈ �[x] we find

Ly( f ) =
∑
α∈�n

fα yα =

∫
K

f (x)dμ(x).

Given a finite sequence y = {yα}α∈�n
2r

, we associate the so-called truncated mo-
ment matrix Mr(y) to y, defined as (Mr(y))α,β = yα+β for α,β ∈ �n

r . Such a
matrix has dimensions s(n, r)× s(n, r), where

s(n, r) =
�

n+ r
r

�
.

For y as above, given a polynomial g ∈ �[x] of degree d, we define the localizing
matrix Mr(g 
 y) associated to y and g as

(Mr(g 
 y))α,β =
∑
γ∈�n

d

gγ yα+β+γ , for α,β ∈ �n
r .

Define
rmin := max

i∈[m], j∈[	]{deg( f0), deg( fi), deg(g j), } .

For r ∈ �, with r ≥ rmin, the level r of moment-SOS relaxation of is defined as

inf
y∈�s(n,2r)

Ly( f0)

s.t. Ly( fi) = bi , for i ∈ [m]
Mr(y)� 0

Mr(gi 
 y)� 0 , for i ∈ [	].

(1.16)

For each r this is a semidefinite optimization problem (SDP) whose size depends
polynomially on n. The moment and localizing matrices depend linearly on y and
the objective is linear in y.

It is not difficult to see that the semidefinite programming formulation of
(1.16) is the dual of (1.15). This primal-dual pair sequence is referred to as the
moment-SOS hierarchy1 in the literature and will play an integral part of this the-
sis.

1It used to be called the Lasserre hierarchy, yet in recent years the name moment-SOS hierarchy
is used more frequently.
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14 Conic Optimization in Finance and Approximation Theory

1.3 Thesis overview

We continue to give a brief overview of the contents of this thesis, chapter by
chapter.

Chapter 2: A predictor corrector method for SDP using the factor
width cone

The moment-SOS hierarchy provides a sequence of finite dimensional semdefinite
programming approximations for the GMP. Even though the size of these SDPs de-
pends polynomially on n, it grows rather quickly. Hence, often only the first few
levels are actually computable. To address this problem we propose an interior
point algorithm in Chapter 2 which is more suitable for parallelization that the
ordinary interior point methods used to solve SDPs. The underlying idea of the
presented algorithm is to replace the cone of positive semidefinite matrices by a
more tractable cone, namely the cone of matrices of constant factor width which
is defined as FWn(k) =

�
Y ∈ �n : Y =

∑
i∈� xi x

�
i for xi ∈ �n, supp(xi)≤ k ,∀i

�
,

see [BCPT05]. More precisely, instead of performing the subroutines of the al-
gorithm in the cone �n+ they are performed in the cone product �k+ × · · · × �k+
consisting of

�n
k

�
cones for some n ≥ k ∈ �. Simply replacing the cone, however,

does of course only lead to a relaxation of the problem. The algorithm we de-
velop utilizes interim solutions to rescale the problem, an idea first proposed by
[AH17]. This iterative rescaling leads to a convergent algorithm. We are thereby
extending results from [RSS22].

Chapter 3: Convergence rates for RLT and Lasserre-type hierarchies

In Chapter 3 we consider the GMP over the standard probability simplexΔn−1 and
the n−1 dimensional unit sphere Sn−1. We propose a relaxation hierarchy based
on linear programming for the simplex case and conduct a convergence analysis
proving a rate of convergence of O(1/r), where r is the level of the hierarchy. The
foundation of the analysis is a quantitative version of Pólya’s Positivstellensatz due
to Powers and Reznick [Rez95]. Following up, we apply the moment-SOS hierar-
chy due to Lasserre [Las08] as introduced in Section 1.2 to the sphere case and
also analyze the convergence behavior of the hierarchy proving a rate of O(1/r2),
where r is the level of the hierarchy. The main result we rely on in the latter
analysis is a quantitative Positivstellensatz by Fang and Fawzi [FF21].
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Chapter 4: Computing bounds for option prices

A European call option is a financial contract that gives the holder the right, but
not the obligation, to buy an underlying asset (such as a stock, commodity, or
currency) at a specified price on a specified date. Under the assumption of the
absence of arbitrage opportunities the problem of finding upper and lower bounds
on the value of such financial products can be formulated as a GMP over the
non-negative orthant involving piecewise linear data functions. In Chapter 4, we
revisit a method previously employed by Bertsimas and Popescu [BP02], which
utilized semidefinite programming techniques to tackle this problem. We prove
that under the assumption of finite d-th order moments that the underlying set
can be compactified. We then apply the moment-SOS hierarchy due to Lasserre
[Las08] in this setting and provide several numerical examples.

Chapter 5: Construction of approximation kernels via SDP

Chapter 5 is dedicated to the problem of uniform approximation of non-
differentiable functions f : [−1, 1]n → �. It is well-known that a convergent
sequence of approximating polynomials can be obtained from a hierarchy of so-
called polynomial approximation kernels [WWAF06]. For a given level r of the
hierarchy such a kernel can be obtained by solving a semidefinite program. The
convolution of an optimal kernel with a non-differentiable function f results in
a degree r polynomial which serves as an approximation of f . The kernels we
look for ought to minimize oscillations such approximations often exhibit, and
are known as kernels of the Jackson-type, due to their similarity to the approxi-
mation kernels first studied by Dunham Jackson [Jac11, Jac12]. We construct a
hierarchy of semidefinite programs and prove the respective solutions constitute
a sequence of approximation kernels which lead to a uniform approximation of
f . The size of the involved SDPs grows quickly, and we use symmetry reduction
techniques as reviewed in Appendix B to limit this growth.

Societal and scientific relevance of the thesis topics

Large-scale SDP is important in engineering design projects like optimal power
flow in large electrical networks [ZJJ+20], in robotics [DT14], and the wing-
design of aircraft like the Airbus A380 [SKL09]. The current state-of-the-art SDP
software is often unable to solve these type of large-scale instances, and therefore
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16 Conic Optimization in Finance and Approximation Theory

there is a need for novel algorithmic approaches as the one described in Chapter 2.
The GMP finds many applications including options pricing in finance. In

Chapter 3 and Chapter 4 we consider LP and SDP-based approaches to solve such
problems. The novel aspect of the approach in Chapter 4 is that it is data driven:
optimal pricing without assuming some underlying model. This is desirable since
the underlying assumptions in pricing models are often unrealistic or difficult to
verify.

The use of positive kernels to approximate functions is ubiquitous in physics,
as reviewed in the survey [WWAF06]. Our approach presented in Chapter 5
should enhance such applications in the case of several variables.

1.4 Contributions to the Literature

This thesis is based on the following articles:

[KdK22] Felix Kirschner and Etienne de Klerk. Convergence rates of RLT and
Lasserre-type hierarchies for the generalized moment problem over
the simplex and the sphere. Optimization Letters, 16:2191–2208,
2022

[HKdK+23] Didier Henrion, Felix Kirschner, Etienne de Klerk, Milan Korda,
Jean B. Lasserre, and Victor Magron. Revisiting semidefinite pro-
gramming approaches to options pricing: complexity and computa-
tional perspectives. Informs Journal on Computing, 2023. Advance
online publication

[KdKng] Felix Kirschner and Etienne de Klerk. Construction of multivariate
approximation kernels via semidefinite programming. SIAM Journal
on Optimization, forthcoming

[KdK23] Felix Kirschner and Etienne de Klerk. A predictor-corrector algorithm
for semidefinite programming that uses the factor width cone. arXiv
preprint, arXiv:2301.06368 [math.OC], 2023.

These articles are used in the chapters of this thesis as follows:

Chapter 2 Based on [KdK23]
Chapter 3 Based on [KdK22]
Chapter 4 Based on [HKdK+23]
Chapter 5 Based on [KdKng].

https://math.oc/
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2
A predictor-corrector method for

semidefinite programming using the factor
width cone

2.1 Introduction

Semidefinite programming problems (SDPs) are a generalization of linear pro-
gramming problems (LPs). While capturing a much larger set of problems, SDPs
are still being solvable up to fixed precision in polynomial time in terms of the
input data [NN94]; see [dKV16] for the complexity in the Turing model of com-
putation. Solving large SDPs in practice is, however, more complicated. While
we are able to solve linear programs with millions of variables and constraints
routinely ([LY15, §1.3]), SDPs become intractable already for a few tens of thou-
sands of constraints and for n× n matrix variables of the order n ≈ 1,000. The
reason is that each iteration of a typical interior point algorithm for SDP requires
O(n3m+ n2m2 +m3) floating point operations, where n is the size of the matrix
variable and m is the number of equality constraints; see e.g., [AHO98]. How-
ever, solving large instances of SDPs is of growing interest, due to applications in
power flow problems on large power grids, SDP-based hierarchies for polynomial

17
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and combinatorial problems, etc. (see [Las01, ZL21, ZJJ+20]). In the following
we will revisit a relaxation of a given SDP, where the cone of positive semidefi-
nite matrices is replaced by a more tractable cone, namely the cone of matrices
of constant factor width [BCPT05]. The simplest examples of matrices of con-
stant factor width are non-negative diagonal matrices (corresponding to linear
programs), and scaled diagonally dominant matrices (corresponding to second
order cone programming) [AM14]. We then review how iteratively rotating the
cone and solving the given optimization problem over this new set leads to a
non-increasing sequence of values lower bounded by the optimum of the sought
SDP. This iterative procedure, due to [ADH17], does not lead to a convergent
algorithm. However, its essence can be used to construct a convergent predictor-
corrector interior point method, as was done in [RSS22]. This chapter is inspired
by ideas from [AM14, AH17, ADH17, AM19, RSS22]. In particular, we will ex-
tend the results in [RSS22], and give a more concise complexity analysis in our
extended setting. We refer those readers, who are not familiar with interior point
methods and the predictor-corrector method in particular to Appendix A for a
brief introduction and background results.

2.1.1 Iterative approximation scheme

Let a set {Ai ∈ �n : i ∈ [m]} of symmetric data matrices be given and define the
linear operator

A(X ) = (〈A1, X 〉, . . . , 〈Am, X 〉)� ∈ �m.

Further, define for b ∈ �m the affine subspace

L = {X ∈ �n : A(X ) = b}. (2.1)

Consider the following semidefinite program

v∗SDP = inf
�〈A0, X 〉 : A(X ) = b, X ∈ �n+

�
, (2.2)

which we assume to be strictly feasible. Replacing the cone of positive semidefinite
(psd) matrices in (2.2) by a cone K ⊆ �n+, which is more tractable, leads to the
following program

vK = inf
�〈A0, X 〉 : A(X ) = b, X ∈ K, where K ⊆ �n+

�
. (2.3)

Clearly, vK ≥ v∗SDP. The quality of the approximation depends on the chosen cone
K. In [AM14], while focusing on sums-of-squares optimization the authors con-
sider the cones of diagonally dominant and scaled diagonally dominant matrices.
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Chapter 2. A predictor-corrector method for SDP using the factor width cone 19

Ahmadi and Hall developed the idea of replacing the psd cone by a simpler cone
further in [ADH17], leveraging an optimal solution of the relaxation. Essentially,
the idea is as follows. Define the feasible set for (2.2) as

FSDP = {X � 0 : A(X ) = b} .

We will consider a sequence of strictly feasible points for (2.3), denoted by X	 for
	 = 0,1 . . .. Since X	 � 0, the matrix X 1/2

	
is well-defined. One can update the

data matrices in the following way

A(	)i = X 1/2
	

AiX
1/2
	

(i ∈ {0,1, . . . , m}, 	= 0,1, . . .),

giving rise to a new linear operator

A(	)(X ) = (〈A(	)1 , X 〉, . . . , 〈A(	)m , X 〉)� ∈ �m.

We may also refer to this operation as rescaling with respect to X	. Via this rescal-
ing one obtains the following sequence of reformulations of (2.2)

v∗SDP = inf
�〈A(	)0 , X 〉 : A(	)(X ) = b, X ∈ �n+

�
, (2.4)

whose feasible set we define as

FSDP	 =
�

X � 0 : A(	)(X ) = b
�

.

For each 	 the identity matrix is feasible, i.e., we have X = I ∈ FSDP	 . To see this,
note that for all i ∈ [m] we have

〈A(	)i , I〉= 〈(X	) 1
2 Ai (X	)

1
2 , I〉= 〈Ai , X	〉= bi .

Similarly, the identity leads to the same objective value in (2.4) as X	 in (2.3). Let
X0 be an optimal solution to (2.3). Rescaling with respect to X0 we find by the
same reasoning that v(0)K ≤ vK, where

v(	)K =min
�〈A(	)0 , X 〉 : A(	)(X ) = b, X ∈ K

�
. (2.5)

Reiterating this procedure leads to a non-increasing sequence of values�
v(	)K

�
	∈� lower bounded by v∗SDP. Unfortunately, this procedure does not con-

verge to the true optimum of (2.2) in general, as mentioned in [RSS22]. Indeed,
it can happen that lim inf	→∞ v(	)K > v∗SDP. The rest of this chapter is devoted to
the development and analysis of an algorithm, which converges to the optimal
value v∗SDP. We thereby generalize results from [RSS22].
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20 Conic Optimization in Finance and Approximation Theory

2.1.2 The factor width cone

Fix n ∈ �. The cone of n × n matrices of factor width k, denoted by FWn(k), is
defined as

FWn(k) =

�
Y ∈ �n : Y =

∑
i∈�

xi x
�
i for xi ∈ �n, supp(xi)≤ k ,∀i



.

The notion of factor width was first used in [BCPT05], where the authors proved
that FWn(2) is the cone of scaled diagonally dominant matrices. Trivially, FWn(1)
is the cone of non-negative n× n diagonal matrices. Clearly, we have that

FWn(k) ⊆ FWn(k+ 1) ⊆ �n+ ∀k ∈ [n− 1].

Moreover, FWn(n) = �n+. It is easy to see these cones are proper for k ≥ 2. As they
define an inner approximation of the cone �n+ we may use them in the aforemen-
tioned iterative scheme. Define

�(n,k) := �k × · · · × �k︸ ︷︷ ︸
(nk)-times

and �(n,k)
+ := �k+ × · · · × �k+︸ ︷︷ ︸

(nk)-times

.

An optimization problem over the cone FWn(k) may be formulated as an opti-
mization problem over the cone product �(n,k)

+ . To see this we need to consider
principal submatrices. For a matrix S ∈ �n×n we define the principal submatrix
SJ ,J for J ⊆ [n] to be the restriction of S to rows and columns whose indices ap-
pear in J . Further, for a set J = {i1, . . . , i|J |} ⊆ [n] and a matrix S ∈ �|J |×|J | we
define the n× n matrix S→n

J as follows for i, j ∈ [n]
�
S→n

J

�
i, j :=

�
Sk,l if i = ik, j = il
0 otherwise.

(2.6)

In other words, S→n
J has SJ as principal sub-matrix indexed by J , and zeros else-

where. Now, to write a program over FWn(k) as an SDP note the following lemma.

Lemma 2.1. For any X ∈ FWn(k) we have that

X =
∑
|J |=k

Y→n
J

for suitable YJ ∈ �k+ and J ⊆ [n], |J |= k.
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Proof. The proof is straight-forward, and omitted for the sake of brevity.

Thus, we can write

inf {〈A0, X 〉 : A(X ) = b, X ∈ FWn(k) } (2.7)

as

inf

�∑
|J |=k

〈(A0)J ,J , YJ 〉 :
∑
|J |=k

〈(Ai)J ,J , YJ 〉= bi , YJ ∈ �k+, ∀|J |= k

�
. (2.8)

It is straightforward to show that the dual cone of FWn(k) is given by

FWn(k)
∗ = {S ∈ �n : SJ ,J � 0 for J ⊆ [n], |J |= k}.

The dual cone has been studied in the context of semidefinite optimization in
[BDMS22], where it was shown that the distance of FWn(k)∗ and �n+ in the Frobe-
nius norm can be upper bounded by n−k

n+k−2 for matrices of trace 1. For k ≥ 3n/4
and n≥ 97 this bound can be improved to O(n−3/2) (see [BDMS22]).

2.1.3 A predictor-corrector method

In this subsection we propose our algorithm which makes use of the rescaling
introduced in Section 2.1.1. Our aim is to provide a comprehensible exposition,
while the details are postponed to the second part of the chapter, beginning with
Section 2.2.

Algorithm 2.1 is an adaption of the predictor-corrector method as described in
[Ren01, § 2.2.4], see also Appendix A. Before describing the algorithm in detail,
we fix some notation. Let

Y =
�

YJ ∈ �k : J ⊂ [n], |J |= k
�

be a collection of
�n

k

�
matrices of size k× k. We define the operator Ψ as

Ψ(Y) =
∑
|J |=k

Y→n
J ,

where we make use of the notation defined in (2.6). Hence, if Y is a collection of
positive semidefinite k× k matrices, then Ψ(Y) ∈ FWn(k). Furthermore, let

Y0 = {YJ =
�
1/Cn−1

k−1

�
Ik×k : J ⊂ [n], |J |= k}, (2.9)



597922-L-bw-Kirschner597922-L-bw-Kirschner597922-L-bw-Kirschner597922-L-bw-Kirschner
Processed on: 24-5-2023Processed on: 24-5-2023Processed on: 24-5-2023Processed on: 24-5-2023 PDF page: 40PDF page: 40PDF page: 40PDF page: 40

22 Conic Optimization in Finance and Approximation Theory

where we denote for n, k ∈ � the binomial coefficient as
�n

k

�
=: Cn

k , so that
Ψ(Y0) = I . Now let X	 be a strictly feasible solution to a problem of form (2.2)
and rescale the data matrices with respect to X	. Recall the feasible set of the
resulting SDP is given by

L	 = {X ∈ �n : A(	)(X ) = b}. (2.10)

Likewise, the feasible set of the factor width relaxation written over �(n,k)
+ (cf.

(2.8)) can be written as

LΨ	 = {Y ∈ �(n,k) : (A(	) ◦Ψ)(Y) = b}. (2.11)

Note that I ∈ L	 and Y0 ∈ LΨ
	

. We emphasize that, by definition, for any element
Y ∈ LΨ

	
we have Ψ(Y) ∈ L	.

Main method

The algorithm requires a striclty feasible starting point X0 close to the central
path, which is used in the first rescaling step. We also require an ε > 0, i.e., our
desired accuracy as well as a parameter σ ∈ (0, 1) used in the predictor step. In
the following let f FW(k) be a self-concordant barrier function for �(n,k)

+ (we post-
pone its derivation to Section 2.2, for now we assume it exists and is efficiently
computable). In the algorithm we denote the restriction of f FW(k) to the subspace
null(LΨ

	
) by f FW(k)

|null(LΨ
	
)
. The algorithm initializes 	 = 0. The outer while loop re-

peats until an ε-optimal solution is found. If after rescaling with respect to X	 the
Newton decrement (cf. Definition A.8) at Y0 satisfies

Δ

�
f FW(k)
|null(LΨ

	
)
,Y0

�
≤ 1/14,

the predictor subroutine is called. Here, the affine-scaling direction is projected
onto the null space of LΨ

	
, call it Z. Clearly, Y0 + sZ ∈ LΨ

	
for all s ∈ �. Then the

subroutine computes

s∗ = sup
�

s : Y0 − sZ ∈ �(n,k)
+

�
,

which provides the necessary notion of distance to the boundary in terms of Y0

and Z. The returned point Y	 := Y0+σs∗Z is feasible and decreases the objective
value, as shown in Section 2.4. If the Newton decrement is not small enough, the
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Chapter 2. A predictor-corrector method for SDP using the factor width cone 23

corrector subroutine is called. Let v	 = 〈A0, X	〉, i.e., the objective value of the
previous iteration, and define

LΨ	 (v	) = {Y ∈ �(n,k)
+ : 〈A0,Ψ(Y)〉= v	,A(	)(Ψ(Y)) = b}.

Let x0 := Y0. Denote by n|LΨ
	
(v	)(xi) the Newton step of f FW(k)

|LΨ
	
(v	)

at a point xi . The
corrector step now computes

xi+1 = argmint f FW(k)
�

xi + tn|LΨ
	
(v	)(xi)

�
until xi+1 is close enough to the central path of the rescaled problem over �(n,k)

+
and returns Y	 := xi+1. We will prove in Section 2.3 how this leads to a decrease
in distance to the central path of the original SDP. Note that multiple calls of the
corrector step may be necessary as after rescaling the Newton decrement might
not be small enough anymore. However, as we prove in Section 2.4, the maximum
number of corrector steps can be bounded in terms of the problem data. Let Y	
be the point returned by one of the subroutines. We set

X	+1 = X 1/2
	
Ψ(Y	)X

1/2
	

.

Then

〈A(	+1)
i , I〉= 〈A(	)i ,Ψ(Y	)〉= 〈Ai , X	+1〉

for all i = 0,1, . . . , m.

Termination criterion

In the predictor as well as in the corrector subroutine we solve a linear system for
y ∈ �m. The solution of this linear system may be interpreted as a dual feasible so-
lution provided the current iterate is sufficiently close to the central path. Hence,
we can approximate the duality gap of our problem by calculating the difference

〈A0, X	〉 − y�b ≥ 0,

where y is calculated in every subroutine call. We may use this as a termination
criterion. Once the duality gap falls below the required ε > 0 chosen beforehand,
we terminate with an ε-optimal solution.
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Algorithm 2.1 Predictor-Corrector SDP algorithm using FWn(k)

Require: ε > 0, σ ∈ (0,1), X0 strictly feasible
	← 0
while Duality gap > ε do

A(	)i ← (X	)1/2 Ai (X	)
1/2, for i = 0, 1, ..., m

if Δ
�

f FW(k)
|null(LΨ

	
)
,Y0

�
≤ 1

14 then

Y	← Predictor_Step(A(	), A(	)0 ,σ)
else

Y	← Corrector_Step(A(	)0 ◦Ψ, f FW(k),Y0)

X	+1 ← (X	)1/2Ψ(Y	) (X	)1/2
	← 	+ 1

return X	

Algorithm 2.2 Subroutine Predictor_Step(A, A0,σ)

Require: A, A0,σ ∈ (0, 1)
Solve for y: AA0 = AA∗ y
Z = Ψ†(A∗ y − A0)
s∗ ← sup{s : Y0 − sZ ∈ FWn(k)}
Y ← Y0 −σs∗Z
return Y

Algorithm 2.3 Subroutine Corrector_Step(A, f , x (0))

Require: A, f , x (0) :Δ
�

f |L , x (0)
�
> 1

14 , (L = null(A))
j ← 0
while Δ

�
f|L , x ( j)

�
> 1

14 do
Solve for y: AH(x ( j))−1A∗ y = AH(x ( j))−1 g(x ( j))
n|L (x ( j))← H(x ( j))−1

�
A∗ y − g(x ( j))

�
x ( j+1)← argmint f

�
x ( j) + tn|L (x ( j))

�
j ← j + 1

return x ( j−1)
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2.2 Barrier functionals for �n
+ and FWn(k)

In this section we derive the self-concordant barrier functional for the cone �(n,k)
+

which is used in the algorithm. Note that the ordinary self-concordant barrier for
�n+ is given by f SDP(X ) = − log(det(X )). We will emphasize parallels to the work
of Roig-Solvas and Sznaier [RSS22].

In order to construct a self-concordant barrier function for our underlying set,
we introduce the notions of hypergraphs and edge colorings as well as a well-
known result about these objects.

Definition 2.2. A hypergraph H = (V, E) consists of a set V = {1, . . . , n} of vertices
and a set of hyperedges E ⊆ {J ⊆ V : |J | ≥ 2}, which are subsets of the vertex
set V . If all elements in E contain exactly k vertices, we call the corresponding
hypergraph k-uniform. If H is k-uniform and E consists of all subsets of V of size
k, it is referred to as the complete k-uniform hypergraph.

Definition 2.3. Let H = (V, E) be a hypergraph. A proper hyperedge coloring with
m colors is a partition of the hyperedge set E into m disjoint sets, say E = ∪i∈[m]Si

such that Si ∩ Sj = 	 if i �= j, i.e., two hyperedges that share a vertex are not in
the same set. In other words, a proper hyperedge coloring assigns a color to every
hyperedge such that, if a vertex appears in two different hyperedges, they have
different colors.

Theorem 2.4 (Baranyai’s theorem [Bar75]). Let k, n ∈ � such that k|n and let
Kn

k the complete k-uniform hypergraph on n vertices. Then there exists a proper
hyperedge coloring using Cn−1

k−1 colors.

Remark 2.5. For the case k = 2 the above theorem reduces to the statement that the
complete graph has a proper edge coloring using n− 1 colors. This fact was used by
Roig-Solvas and Sznaier in their analysis [RSS22] as they only considered the case
k ≤ 2.

In (2.8) we wrote a program over FWn(k) as an equivalent program over the
cone product �(n,k)

+ . The algorithm uses a self-concordant barrier function over
said cone product. The mapping Ψ from �(n,k)

+ to FWn(k) is surjective, but not
bijective, since multiple elements in the former may give rise to the same element
in the latter set.

Assumption 2.6. Throughout we will assume k|n for some n ∈ � and 2≤ k ∈ �.
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26 Conic Optimization in Finance and Approximation Theory

In the following we will let J = {J ⊂ [n] : |J |= k} and

Y = {YJ : J ∈ J }
be a collection of

�n
k

�
matrices of size k× k. We recall the operator Ψ is defined as

Ψ(Y) =
∑
J∈J

Y→n
J .

The following generalizes Lemma 4.4 in [RSS22], where a similar result is proved
for k = 2. It will be crucial in our analysis as it allows us to compare the values
taken by the barrier functionals on �(n,k)

+ and �n+ at Y and Ψ(Y), respectively.

Lemma 2.7. Let

f FW(k)(Y) = −∑
J∈J

log(det(YJ )) , Y ∈ int
�
�(n,k)
+

�
.

The barrier f FW(k)(Y) is self-concordant on int
�
�(n,k)
+

�
. Furthermore, if X = Ψ(Y)

then

f FW(k)(Y)≥ −Cn−1
k−1 log(det(X )) + nCn−1

k−1 log
�
Cn−1

k−1

�
=: Cn−1

k−1 f SDP(X ) + nCn−1
k−1 log

�
Cn−1

k−1

�
.

Let us emphasize here that f FW(k) is a self-concordant barrier for �(n,k)
+ not

FWn(k). Before proving Lemma 2.7, we need an auxiliary result which extends
Lemma A.1 from [RSS22] to general values of k such that k|n. To prove it we will
make use of Theorem 2.4.

Lemma 2.8. Consider the set Y = {YJ : J ∈ J } consisting of positive definite k × k
matrices and let X = Ψ(Y) ∈ FWn(k). Then there exists a set of Cn−1

k−1 matrices Zi # 0

of size n× n such that X =
∑Cn−1

k−1
i=1 Zi and f FW(k)(Y) = −∑Cn−1

k−1
i=1 log(det(Zi)).

Proof. Let Kn
k be the complete k-uniform hypergraph on n vertices. We can iden-

tify each hyperedge {i1, i2, . . . , ik} ⊂ [n] in Kn
k with exactly one element YJ ∈ Y,

namely the one where {i1, i2, . . . , ik}= J . Let {S1, . . . , SCn−1
k−1
} be a hyperedge color-

ing of Kn
k . Define Yi := {YJ : J ∈ Si} and set Zi := Ψ(Yi). Then X =

∑Cn−1
k−1

i=1 Zi since
Si∩Sj = 	 for i �= j and ∪iSi = J . Clearly, Zi # 0. Moreover, since each Si induces
a perfect matching, there exists a permutation matrix Pi for every i = 1, . . . , Cn−1

k−1
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such that Pi Zi P
�
i is a block-diagonal matrix with blocks YJ on the diagonal for

J ∈ Si . From this we find

log(det(Zi)) = log(det(Pi Zi P
�
i )) =

∑
J∈Si

log(det(YJ )).

Hence,

Cn−1
k−1∑

i=1

log(det(Zi)) =
Cn−1

k−1∑
i=1

∑
J∈Si

log(det(YJ ))

=
∑
J∈J

log(det(YJ )) = − f FW(k)(Y),

completing the proof.

We continue to prove Lemma 2.7.

Proof. (Lemma 2.7) The self-concordance of f FW(k) on int
�
�(n,k)
+

�
follows im-

mediately from the self-concordance of − logdet(X ) on int (�n). By assumption

X = Ψ(Y) =
∑Cn−1

k−1
i=1 Zi ∈ FWn(k). Therefore,

− log (det(X )) = − log

⎛
⎝det

⎛
⎝ 1

Cn−1
k−1

Cn−1
k−1∑

i=1

Cn−1
k−1 Zi

⎞
⎠
⎞
⎠

≤ −
Cn−1

k−1∑
i=1

1

Cn−1
k−1

log
�
det

�
Cn−1

k−1 Zi

��

= −
Cn−1

k−1∑
i=1

1

Cn−1
k−1

log
�
Cn−1

k−1
n

det (Zi)
�

,

where the inequality follows by convexity. Hence, we find

−Cn−1
k−1 log (det (X ))≤ −

Cn−1
k−1∑

i=1

�
n log

�
Cn−1

k−1

�
+ log (det (Zi))

�

= −
Cn−1

k−1∑
i=1

log (det (Zi))− Cn−1
k−1 n log

�
Cn−1

k−1

�
,

and the claim follows.

The following corollary is analogous to Corollary 4.5 from [RSS22].
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Corollary 2.9. If

Y0 = {YJ = 1/Cn−1
k−1 Ik×k : J ⊂ [n], |J |= k}

then X = Ψ(Y0) = I and

f FW(k)(Y0) = Cn−1
k−1 f SDP(X ) + nCn−1

k−1 log
�
Cn−1

k−1

�
= nCn−1

k−1 log
�
Cn−1

k−1

�
.

Proof. The first statement follows when noting that each i ∈ [n] lies in exactly�n−1
k−1

�
subsets of [n] of size k. The reason is that, when fixing i, there are n − 1

elements left out of which we want to choose k− 1 more elements to make a set
of size k. For the second statement note that

log

�
det

�
1

Cn−1
k−1

Ik×k

��
= log

��
Cn−1

k−1

�−k�
= −k log

�
Cn−1

k−1

�
.

The result follows when noting that k
�n

k

�
= nCn−1

k−1 .

2.3 Relations of the barrier functions

To prove convergence of our algorithm we need two essential ingredients. First,
we need to prove that the predictor step reduces the current objective value suffi-
ciently, and secondly, we must prove that the corrector step converges to a point
close to the central path. Moreover, we have to show that our criterion to decide
which subroutine to call is valid. The issue here is that we compute the New-
ton decrement of f FW(k) at Y0, but we need to be able to assert that the Newton
decrement of f SDP at X	 is small enough.

The next result we present will allow us to lower bound the progress made by
the corrector step. For this we need to be able to compare the barrier functions for
�n+ and �(n,k)

+ . We assume we have a given feasible solution X	 such that 〈A(	)0 , I〉=
v. Define the vector b(v) := (v, b1, . . . , bm)�. For further reference, consider

min
�

f SDP(X ) : 〈A(	)i , X 〉= b(v)i ∀i = 0, 1, . . . , m, X ∈ �n+
�

, (2.12)

which we would like to compare to

min
�

f FW(k)(Y) : Y ∈ LΨ	 (v)∩ �(n,k)
+

�
. (2.13)
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Suppose Y∗ is an approximate solution to (2.13). Defining

X	+1 = X 1/2
	
Ψ(Y∗)X 1/2

	
,

we find that X	 ∈ FSDP for all 	. In other words, the points X	 we obtain via
this procedure are all feasible for the original SDP (2.2). The following lemma
allows us to lower bound the decrease achieved by one corrector step in terms of
an element in �(n,k)

+ .

Lemma 2.10. Let Y∗ be a feasible solution to (2.13) and Y0 as in (2.9). Further,
let X	+1 = X 1/2

	
Ψ(Y∗)X 1/2

	
for X	 a feasible solution to (2.13). Then

Cn−1
k−1

�
f SDP(X	)− f SDP(X	+1)

�≥ f FW(k)(Y0)− f FW(k)(Y∗).

Proof. The proof follows immediately when noting that

Cn−1
k−1

�
f SDP(X	)− f SDP(X	+1))

�
= Cn−1

k−1

�
f SDP(X	)− f SDP(X 1/2

	
Ψ(Y∗)X 1/2

	

�
= nCn−1

k−1 log(Cn−1
k−1 )︸ ︷︷ ︸

= f FW(k)(Y0) by Cor. 2.9

− f SDP(Ψ(Y∗))− nCn−1
k−1 log Cn−1

k−1︸ ︷︷ ︸
≥− f FW(k)(Y∗) by Lemma 2.7

.

2.3.1 Relation of the Newton decrements

If f|L is a self-concordant function restricted to a (translated) linear subspace L
we have

Δ
�

f|L , x
�≥ 〈d, n(x)〉x

||d||x for all d ∈ L \ {0}, (2.14)

see Appendix A.2 for details. We will continue to prove that we can upper bound
the Newton decrement of f SDP at the identity in terms of the Newton decrement
of f FW(k) at Y0. To this end, define the following operator

Ψ† : �n → �(n,k)

via

�
Ψ†(X )

�
J =

�
1

Cn−1
k−1

I +
1

Cn−2
k−2

(ee� − I)

�
◦ XJ ,J for J ⊂ [n], |J |= k,

where ◦ denotes the Hadamard product.
This operator satisfies
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Y Ψ(Y)

Ψ
†(X)

Ψ
†

〈·, ·〉(n,k) 〈·, ·〉

S
(n,k) = S

k × . . .× S
k

︸ ︷︷ ︸

(nk)−times

S
n

Y Ψ(Y)

Ψ
†(X)

X = Ψ(Ψ†(X))

S
(n,k)
+

FWn(k)

Ψ

Figure 2.1: Visualization of the surjection from �(n,k)
+ to FWn(k)

Ψ(Ψ†(X )) = X for all X ∈ �n.

In other words, Ψ† is a right-inverse of the linear operator Ψ. See Figure 2.1 for
a visualization of the surjection from �(n,k)

+ to FWn(k).
An inner product on �(n,k) is given by

〈X ,Y〉(n,k) :=
∑
|J |=k

〈XJ , YJ 〉,

and it is well-defined for X = {XJ ∈ �k : |J |= k},Y = {YJ ∈ �k : |J |= k}.
Lemma 2.11. For any X ∈ �n we have

||Ψ†(X )||(n,k) ≤ ||X ||.
Proof. Let X ∈ �n. For a matrix Y ∈ �n we define diag(Y ) ∈ �n to be the vector
consisting of the diagonal entries of Y , and we further define a diagonal matrix
Diag(Y ) ∈ �n as

Diag(Y )i, j =

�
Yi,i if i = j

0 otherwise.
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Then,

||Ψ†(X )||2(n,k) =
∑
|J |=k

〈
�

1

Cn−1
k−1

I +
1

Cn−2
k−2

(ee� − I)

�
◦ XJ ,

�
1

Cn−1
k−1

I +
1

Cn−2
k−2

(ee� − I)

�
◦ XJ 〉

=
∑
|J |=k

〈
��

1

Cn−1
k−1

− 1

Cn−2
k−2

�
I +

ee�
Cn−2

k−2

�
◦ XJ ,

��
1

Cn−1
k−1

− 1

Cn−2
k−2

�
I +

ee�
Cn−2

k−2

�
◦ XJ 〉

=
∑
|J |=k

1

(Cn−2
k−2 )

2
〈XJ , XJ 〉+

�
1

Cn−1
k−1

− 1

Cn−2
k−2

�
〈Diag(XJ ), Diag(XJ )〉+

2

�
1

Cn−1
k−1

− 1

Cn−2
k−2

�
1

Cn−2
k−2

〈XJ ,Diag(XJ )〉

=
∑
|J |=k

1

(Cn−2
k−2 )

2
〈XJ , XJ 〉+�

1

Cn−1
k−1

− 1

Cn−2
k−2

��
1

Cn−1
k−1

+
1

Cn−2
k−2

�
diag(XJ )

�diag(XJ )

≤ ∑
|J |=k

1

Cn−2
k−2

〈XJ , XJ 〉+
�

1

Cn−1
k−1

− 1

Cn−2
k−2

�
diag(XJ )

�diag(XJ )

= 〈X , X 〉= ||X ||2,

where the inequality follows from

1

(Cn−2
k−2 )

2
≤ 1

Cn−2
k−2

and

�
1

Cn−1
k−1

+
1

Cn−2
k−2

�
≤ 1.

Suppose now X	 is a feasible solution to (2.5) such that 〈A0, X	〉 = v. We
define the vector b(v) := (v, b1, . . . , bm)� as well as the two subspaces

LΨ	 = {Y ∈ �(n,k) : (A(	) ◦Ψ)(Y) = b}
and

L	 = {X ∈ �n : A(	)(X ) = b}.
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Note that we may also want to keep track of the objective, in which case we will
refer to the following operator

A(	)0 (X ) = (〈A(	)0 , X 〉, 〈A(	)1 , X 〉, . . . , 〈A(	)m , X 〉) ∈ �m+1.

The respective subspaces will be denoted as follows

LΨ	 (v) = {Y ∈ �(n,k) : (A(	)0 ◦Ψ)(Y) = b(v)} (2.15)

and
L	(v) = {X ∈ �n : A(	)0 (X ) = b(v)}. (2.16)

When we consider the subspaces defined via the operator with respect to the initial
data matrices, we omit the subscript 	, e.g.,

LΨ = {Y ∈ �(n,k) : 〈Ai ,Ψ(Y)〉= bi , ∀i ∈ [m]}.
The following lemma corresponds to Lemma A.2 in [RSS22], and allows us to

bound the Newton decrement of f SDP|L in terms of f FW(k)
|L .

Lemma 2.12. Assume Y0 ∈ LΨ and I ∈ L. At Y0 one has

Δ
 

f FW(k)
|LΨ ,Y0

!
≥ Δ

�
Cn−1

k−1 f SDP|L , I
�

"
Cn−1

k−1

=
#

Cn−1
k−1Δ

�
f SDP|L , I

�
.

Proof. Following (2.14) we have

Δ
 

f FW(k)
|LΨ ,Y

!
≥ 〈d, nFW(Y)〉(n,k),Y

||d||(n,k),Y
for all d ∈ L \ {0}.

Choosing d = Ψ†(nSDP
L (X )) ∈ L leads to

Δ
 

f FW(k)
|LΨ ,Y

!
≥ 〈Ψ

†(nSDP
L (X )), nFW(Y)〉(n,k),Y

||Ψ†(nSDP
L (X ))||(n,k),Y

,

and evaluating the expression at Y0 we find

Δ
 

f FW(k)
|LΨ ,Y0

!
≥ 〈Ψ

†(nSDP
L (X )), nFW(Y0)〉(n,k),Y
||Ψ†(nSDP

L (X ))||(n,k),Y

=
〈Ψ†(nSDP

L (X )),−gFW(Y0)〉(n,k)

Cn−1
k−1 ||Ψ†(nSDP

L (X ))||(n,k)

≥ 〈Ψ
†(nSDP

L (X )), (I , I , . . . , I)〉(n,k)

||nSDP
L (X )||

=
Tr(nSDP

L (X ))

||nSDP
L (X )|| ,
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where the second inequality follows from Lemma 2.11. Setting X = I and noting

Tr(nSDP
L (I)) = 〈I , nSDP

L (I)〉= 1

Cn−1
k−1

〈gSDP(I),−nSDP
L (I)〉

=
1

Cn−1
k−1

�
Δ
�
Cn−1

k−1 f SDP|L , I
��2

we conclude

Δ
 

f FW(k)
|LΨ ,Y0

!
≥ 1

Cn−1
k−1

Δ
�
Cn−1

k−1 f SDP|L , I
�2

||nSDP
L (I)|| =

Δ
�
Cn−1

k−1 f SDP|L , I
�

"
Cn−1

k−1

,

because

||nSDP
L (I)||= Δ

�
Cn−1

k−1 f SDP|L , I
�

"
Cn−1

k−1

=
#

Cn−1
k−1Δ

�
f SDP|L , I

�
.

2.4 Complexity analysis

We begin the complexity analysis with the following lemma, which helps us to
check whether the current point is close enough to the central path of the SDP.

Lemma 2.13. Let X	 be a feasible iterate for the SDP (2.12) and let the objective
value at X	 be v. Define the two subspaces LΨ

	
(v), L	 as in (2.15), (2.10) respectively.

Then, if

Δ

�
f FW(k)
|LΨ
	
(v)

,Y0

�
≤ 1

14
,

one has

Δ
 

f SDP
ηv |L	 , I

!
≤ 1

9
,

where

f SDP
ηv
(X ) = ηv〈A0, X 〉 − log det(X ),

and ηv is such that

v = min
X∈L	

f SDP
ηv
(X ).

Proof. By Lemma 2.12 we know that

1
14
≥Δ

�
f FW(k)
|LΨ
	
(v)

,Y0

�
≥Δ�

f SDP|L	(v), I
�

.
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Let now z(v) be the point on the central path of the rotated SDP with objec-
tive value v and let the corresponding parameter be ηv . By Theorem 2.2.5 from
[Ren01] we have

||z(v)− I ||I ≤Δ
�

f SDP|L	(v), I
�
+

3Δ
�

f SDP|L	(v), I
�2

�
1−Δ�

f SDP|L	(v), I
��3 ≤

1
11

. (2.17)

Let X+ be the point returned by taking a Newton step at X = I with respect to the
function f SDP

ηv
restricted to L	. By Theorem 2.2.3 in [Ren01] we have

||z(v)− I ||2I
1− ||z(v)− I ||I ≥ ||X+ − z(v)||I

and hence

Δ
 

f SDP
ηv |L	 , I

!
= ||X+ − I ||I ≤ ||X+ − z(v)||I + ||z(v)− I ||I

≤ ||z(v)− I ||2I
1− ||z(v)− I ||I + ||z(v)− I ||I ≤ 1

9
.

The Newton decrement of the rotated SDP being smaller than 1/9 means we
can safely perform the next predictor step. If the current point is too far away
from the central path and one were to perform the predictor step the direction
may not be approximately tangential to the central path. Hence, once the New-
ton decrement of the factor width program is small enough, so is the one of the
SDP, and we can perform the next predictor step, knowing the direction will be
approximately tangential to the central path. After each predictor step we may
have to take several corrector steps, to get back close to the central path.

Corrector step

We will now find an upper bound on the number of corrector steps needed to
get close to the central path. We know from Lemma 2.10 that a decrease in the
barrier for the factor width cone will lead to a decrease in the barrier function
for our original SDP, meaning we made progress towards its central path. The
following lemma asserts that if we are too far away from the central path we can
attain at least a constant reduction in the barrier of the factor width cone. Thereby
a constant reduction in the SDP barrier is obtained as well.
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Lemma 2.14. Let X	 be a feasible iterate for the SDP (2.12) and let the objective
value at X	 be v. Define the subspace LΨ

	
(v) as in (2.15). If

Δ

�
f FW(k)
|LΨ
	
(v)

,Y0

�
>

1
14

then
f FW(k)
|LΨ
	
(v)
(Y0)− f FW(k)

|LΨ
	
(v)
(Y∗)≥ 1

2688
.

Proof. If Δ
�

f FW(k)
|LΨ
	
(v)

,Y0

�
> 1

14 the corrector step will employ a line search to find

Y∗, i.e., the point in LΨ
	
(v) that minimizes f FW(k). Let nLΨ

	
(v)(Y0) be the Newton

step taken from Y0 and let t = 1
8‖nLΨ

	
(v)(Y0)‖(n,k),Y0

, where the norm in the denomi-

nator is the local norm at Y0 induced by 〈·, ·〉(n.k). Then, for

Ỹ = Y0 + t nLΨ
	
(v)(Y0)

we find by Theorem 2.2.2 in [Ren01] (see also (A.11) in Appendix A)

f FW(k)(Ỹ)≤ f FW(k)(Y0)− 1
14

1
8
+

1
2

�
1
8

�2

+
(1/8)3

3(1− 1/8)

≤ f FW(k)(Y0)− 1
2688

.

Note that this implies together with Lemma 2.10 that

1
2688

≤ f FW(k)(Y0)− f FW(k)(Ỹ)≤ f FW(k)(Y0)− f FW(k)(Y∗)

≤ Cn−1
k−1

�
f SDP(X	)− f SDP(X	+1)

�
.

(2.18)

With each line search we obtain a point, which reduces the function value of f SDP

by a constant amount compared to its predecessor. This fact will allow us to bound

the number of line searches needed to find a point for which Δ
�

f FW(k)
|LΨ
	
(v)

,Y0

�
≤

1/14. Another ingredient needed for this is an upper bound on the difference of
function value of f SDP at the result of the predictor step and the corresponding
point on the central path with the same objective value.

Lemma 2.15. Let X1 be close to a point z(v1) on the central path of the SDP in the
sense that Δ

�
f SDP
L	(v1)

, X1

� ≤ 1
9 . Further, let X2 be the result of the predictor step and

z(v2) be the point on the central path with the same objective value as X2. Then

f SDP(X2)− f SDP(z(v2))≤ n
�

log
1

1−σ
�
+

1
154

.
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36 Conic Optimization in Finance and Approximation Theory

Proof. A proof of this statement for generic self-concordant barriers may be found
on page 54 of [Ren01]. We have used that the barrier parameter as introduced in
(A.1) for the barrier of the psd cone is given by ϑ f SDP = n.

Lemma 2.16. Let v2 be the objective value of the result X2 of the predictor step.
The maximum number K of line searches needed to find a point XK+2 which is close
enough to z(v2) in the sense that Δ

�
f SDP|L	(v2)

, XK+2

�≤ 1
9 is

K =
$
2688Cn−1

k−1

�
n log

�
1

1−σ
�
+

1
154

�%
,

where z(v2) is the point on the central path with objective value v2.

Proof. We know that the distance between the result of the predictor phase and
the targeted point on the central path is at most n

�
log 1

1−σ
�
+ 1

154 by Lemma 2.15.
Moreover, using Lemma 2.14 we find that in each corrector step we reduce this
distance by at least 1

2688Cn−1
k−1

, unless the SDP Newton decrement at I is already

small enough to perform the next predictor step. If after rescaling the Newton
decrement of the factor width program satisfies

Δ

�
f FW(k)
|LΨ
	
(v)

,Y0

�
>

1
14

,

thereby implying by Lemma 2.13 that I is not close to the central path of the SDP
we can perform another corrector step yielding at least a constant decrease of

1
2688Cn−1

k−1
of the distance to the central path, and rescale again. This process can be

continued until we do not get such a constant decrease anymore at which point we
know we must be close enough to the central path, in the sense of Lemma 2.13.
Because if the decrease is not greater than 1

2688Cn−1
k−1

we know that the Newton

decrement cannot satisfy

Δ

�
f FW(k)
|LΨ
	
(v)

,Y0

�
>

1
14

,

from which follows by Lemma 2.13 that

Δ
�

f SDP
L	(v)

, I
�≤ 1

9
.

This implies we are close enough to the central path to perform the next predictor
step. Hence, after at most

K =
$
2688Cn−1

k−1

�
n log

�
1

1−σ
�
+

1
154

�%
corrector steps we are close enough to the central path so that we can perform
the next predictor step.
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Chapter 2. A predictor-corrector method for SDP using the factor width cone 37

Predictor step

We will make use of the analysis of the short step interior point method discussed
in Section 2.4.2 in [Ren01]; see also Appendix A.3. We will show that each predic-
tor step reduces the objective value by an amount at least as large as the objective
decrease by the short-step interior point method. This will allow us to conclude
the maximum number of predictor steps needed to obtain an ε-optimal solution of
the given SDP. Note that the decrease in objective value obtained by our predictor
method is as follows. Let X be the point from where the predictor method starts
and −(A0)X := −H(X )A0 be the direction. Then for σ ≥ 1

4 we find

〈A0, X − s∗σ (A0)X 〉= 〈(A0)X , X 〉 − s∗σ〈A0, (A0)X 〉
≤ 〈A0, X 〉 − 1

4
‖(A0)X‖X .

This implies the decrease is at least as large the one obtained in one iteration of
the short-step method, as discussed in [Ren01, § 2.4.2]; see also Appendix A.3.
Renegar’s analysis shows that short-step method leads to an ε-optimal solution in
at most

K = 10
"
ϑ f log(ϑ f /(ε η0))

steps, where η0 is such that our starting point X0 is close to zη0
, in the sense that

Δ( f SDP, X0)< 1/9 and ϑ f is the barrier parameter as introduced in (A.1).

Predictor and corrector steps combined

Combining the complexity analysis of predictor and corrector steps we arrive at
the following theorem.

Theorem 2.17. Let X0 be a feasible solution of the SDP (2.2) and assume it is close

to some point zη0
on the corresponding central path in the sense thatΔ

 
f SDP|L(v) , X0

!
<

1/14, where L is as in (2.16) for v = 〈A0, X0〉. Algorithm 2.1 converges to an ε-
optimal solution in at most

K =
$
2688Cn−1

k−1

�
n log

�
1

1−σ
�
+

1
154

�%
10
$

n log(n/(ε η0))

= O
��

n− 1
k− 1

�
n3/2 log

�
1

1−σ
�

log
�

n
εη0

��
steps.
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38 Conic Optimization in Finance and Approximation Theory

The assumption of a starting point “close to the central path“ may be satisfied
by the self-dual embedding strategy [dKRT97]. Alternatively, one may first solve
an auxiliary SDP problem, as in [Ren01, § 2.4.2], by using the algorithm we have
presented. The solution of this auxiliary problem then yields a point close to the
central path of the original SDP problem.

2.5 Discussion and future prospects

We finish with a brief discussion on the prospects of efficient implementation of
Algorithm 2.1.

Parallelization

Essentially, the contribution of the present chapter lies in providing an algorithm
for solving SDPs which is much more suitable for parallelization than the ordinary
interior point method working over �n+. Given common memory access, the com-
putation of the necessary data for the respective cone factors �k+ is local, meaning
these tasks can be distributed among processor cores leading to a runtime decrease
since each corrector step involves

�n
k

�
parallel computations of O(k3m+k2m2+m3)

flops. This offers the potential to perform the centering steps much more quickly
than for SDP interior point methods through parallel computation. For more in-
formation about parallel implementation of IPMs for semidefinite optimization
we refer the reader to [Iva08].

Replacing the predictor step

In their paper [RSS22], the authors propose to perform a fixed number of decrease
steps, where a decrease step consists of solving (2.7) and rescaling with respect
to the optimal solution. In our algorithm we considered a different method to de-
crease the objective value, i.e., the predictor method, where we use the traditional
SDP affine scaling direction.

Tractability of factor width cones

The entire approach described in this chapter relies on the premise that one may
optimize more efficiently over FWn(k) than over �n+. In practice this has not yet
been demonstrated convincingly for k > 2, although the consensus is that it should
be possible. Some recent ideas that could be useful in this regard are:
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Chapter 2. A predictor-corrector method for SDP using the factor width cone 39

• the idea to optimize over the dual cone of FWn(k) by utilizing clique trees
[ZL21]

• a variation on the factor width cone involving fewer blocks [ZSP22].

In addition, it would be very helpful to know a computable self-concordant barrier
functional for the cone FWn(k), as well as its complexity parameter.
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3
Convergence rates of RLT and

Lasserre-type hierarchies

3.1 Introduction

In this chapter we consider GMP’s of the following form:

val := inf
μ∈M(K)+

∫
K

f0(x)dμ(x)

s.t.

∫
K

fi(x)dμ(x) = bi ∀i ∈ [m]∫
K

dμ(x)≤ 1,

(3.1)

where m ∈ �, bi ∈ � for all i ∈ [m]. Recall that M(K)+ is the convex cone of pos-
itive finite Borel measures supported on K ⊂ �n, and f0, f1, . . . , fm are continuous
on K. We will always assume the GMP (3.1) has a feasible solution, which implies
that it has an optimal solution as well (see Theorem 3.1).

The constraint
∫

K dμ(x) ≤ 1 essentially means that we know an upper bound
on the measure of K for the optimal solution, since in this case we may scale the
functions fi a priori to satisfy this condition.

41
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42 Conic Optimization in Finance and Approximation Theory

We will consider the case where K is the standard (probability) simplex

Δn−1 =
�
x ∈ �n

+ : x1 + · · ·+ xn = 1
�

,

or the Euclidean sphere

Sn−1 =
�
x ∈ �n : ‖x‖2

2 = x2
1 + · · ·+ x2

n = 1
�

.

Our main result is to establish a rate of convergence for the Lasserre hierarchy
[Las08] for the GMP with polynomial data on the sphere, and for a related,
RLT (reformulation-linearization technique)-type linear programming hierarchy
for the GMP with polynomial data on the simplex. This RLT hierarchy is in fact
a generalization of LP hierarchies for polynomial optimization on the simplex,
as introduced by Bomze and de Klerk [BdK01], and de Klerk, Laurent and Parrilo
[dKLP06], and is closely related to the original work on RLT hierarchies by Sherali
and Adams [AS10].

Outline of the chapter

In Section 3.1 we review the duality theory of the GMP (3.1). For K the simplex we
introduce a linear relaxation hierarchy in this setting in Section 3.2 and prove a
convergence rate of O(1/r). Section 3.3 contains the new convergence analysis of
the Lasserre [Las09] SDP hierarchies of the GMP on the sphere. In Section 3.4 we
take a mathematical view of how the optimal measure is obtained in the limit as
the level of the hierarchies approaches infinity. In Section 3.5 we explain how our
LP hierarchy is a generalization of an approximation hierarchy for the problem of
minimizing a form of degree d over the simplex introduced by de Klerk, Laurent
and Parrilo [dKLP06] based on earlier results obtained by Bomze and de Klerk
[BdK01].

Duality of the GMP (3.1)

The dual of (3.1) is given by

val′ = sup
(y,t)∈�m×�+

m∑
i=1

yi bi − t

s.t. f0(x)−
m∑

i=1

yi fi(x) + t ≥ 0 ∀ x ∈ K.

(3.2)
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Note that the dual problem (3.2) is always strictly feasible, due to the constraint∫
K dμ≤ 1 in the primal GMP (3.1).

Weak duality holds for this pair of problems, meaning val′ ≤ val. In fact, the
duality gap is always zero, as the next theorem shows. Note that a zero duality
gap does not imply the existence of a dual optimal solution.

Theorem 3.1. (see, e.g., [Las09, Theorem 1.3]) Assume problem (3.1) is feasible.
Then it has an optimal solution (the inf is attained), and val= val′.

Theorem 3.1 is a direct consequence of Theorem 1.5. We continue by recalling
a sufficient condition for a dual optimal solution to exist.

Theorem 3.2. (see, e.g., [Sha01, Proposition 2.8]) Suppose problem (3.1) is feasi-
ble. If

b ∈ int((〈 f1,μ〉, . . . , 〈 fm,μ〉) : μ ∈M(K)+) (3.3)

then the set of optimal solutions of (3.2) is nonempty and bounded.

As discussed in Lasserre [Las08], it is customary in the literature to assume
that condition (3.3) holds, but in practice it may be a non-trivial task to check
whether it does. We do stress, however, that condition (3.3) does hold for the
applications discussed in Section 1.1.3 for K the simplex or the sphere.

Another result worth mentioning is that if the GMP (3.1) has an optimal so-
lution, it has one which is finite atomic.

Theorem 3.3. (Tchakaloff ’s theorem, cf. [Tch57]) If the GMP (3.1) has an optimal
solution, then it has one which is finite atomic with at most m atoms, i.e., of the
form μ∗ =

∑m
	=1ω	δx(	) where ω	 ≥ 0,x(	) ∈ K and δx(	) denotes the Dirac measure

supported at x(	) for 	 ∈ [m].

3.2 A linear relaxation hierarchy over the simplex

In the remainder of the chapter we will only deal with the GMP (3.1) with
polynomial data, i.e., we assume in what follows that all fi ’s are polynomials
(i ∈ {0, . . . , m}).

The moment sequence (yα)α∈�n ⊂ � of a measure μ ∈ M(K) is the infinite
sequence given by

yα =

∫
K

xαdμ(x) ∀α ∈ �n.
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Let L : �[x]→ � be a linear operator

p(x) =
∑
α∈�n

pαx
α �→ L(p) =

∑
α∈�n

pα yα

that maps monomials to their respective moments. Thus, to an optimal solution
μ∗ of a GMP of the form (3.1) there is an associated linear functional L∗ such that
L∗( f0) = val and L∗( fi) = bi for all i ∈ [m] as well as L∗(1) ≤ 1. The idea of the
relaxation we are about to introduce is to approximate the optimal solution by a
sequence (hierarchy) of linear functionals L(r) that depend on r = 1, 2, . . . . Let
K =Δn−1. For i = 0, 1, . . . , m let w.l.o.g. fi be a real homogeneous polynomial of
degree d and let r ≥ d. Let L(r) be the optimal solution of the following RLT-type
relaxation of (3.1):

f (r)
LP
= min

L:�[x]r→�
L linear

L( f0)

s.t. L( fi) = bi ∀ i ∈ [m]
L(1)≤ 1

L(xα)≥ 0 ∀ |α| ≤ r

L(xα) = L

�
xα

n∑
i=1

xi

�
∀ |α| ≤ r − 1.

(3.4)

Note that when considering the case where K = Δn−1, we may, without loss
of generality, assume the fi to be homogeneous of the same degree for all
i = 0, 1, . . . , m. Indeed, let f (x) =

∑d
j=0 f j(x), where deg( f j) = j. Then,

g(x) :=
∑d

j=0 f j(x)
�∑n

i=1 xi

�d− j
is homogeneous of degree d and f (x) = g(x)

for all x ∈ Δn−1. Every feasible solution μ′ to (3.1) provides an upper bound
for (3.4) by setting L(xα) = 〈xα,μ′〉. Hence, f (r)

LP
≤ val. The third constraint is

reflecting the necessary condition for a positive measure μ over the simplex:

〈xα,μ〉=
∫
Δn−1

xαdμ≥ 0 ∀α ∈ �n.

The last constraint in (3.4) arises from the fact that

L(p) = L(q) if p(x) = q(x) ∀x ∈Δn−1.

Equivalently, defining the ideal I = {p �1−∑n
i=1

�
: p ∈ �[x]} we require

L(p) = L(q)⇔ p = q mod I,
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where p = q mod I means p(x) = q(x) + (1−∑n
i=1 xi)h(x) for some h ∈ �[x].

Formulation (3.4) is closely related to the RLT approach by Sherali and Adams
[AS10], that was originally introduced for 0-1 mixed integer linear programming
problems and subsequently extended for more general problems. In fact, for the
special case of polynomial optimization, problem (3.4) is essentially a Sherali-
Adams RLT approach. To see this, note that our linearization operator L corre-
sponds to the approximation L(xα)≈ 〈xα,μ∗〉, where μ∗ again denotes an optimal
solution to the GMP (3.1). For the special case of polynomial optimization, we
may assume that μ∗ is a Dirac delta centered at an optimal solution, say x∗. In
this case, L(xα) ≈ 〈xα,μ∗〉 = x∗α, i.e., L corresponds to the type of linearization
operator introduced by Sherali and Adams [AS10].

We now state two lemmas that will come in handy in our later analysis.

Lemma 3.4. Let r, k ∈ � with k ≤ r and let L be a feasible solution to the linear
relaxation (3.4) for some f0, f1, . . . , fm. Then for all xγ with γ ∈ �n and |γ| ≤ r − k
we have

L (xγ) = L

&
xγ

� n∑
i=1

xi

�k'
.

Proof. The last equality constraint in the relaxation forces

L(xα) = L

�
xα

n∑
i=1

xi

�
∀ |α| ≤ r − 1.

Therefore, noting that xej = x j we have

L(xβxej ) = L

�
xβxej

n∑
i=1

xi

�
∀ |β | ≤ r − 2

⇒
n∑

j=1

L(xβxej ) =
n∑

j=1

L

�
xβxej

n∑
i=1

xi

�
∀ |β | ≤ r − 2

⇔ L

&
xβ

n∑
j=1

xej

'
= L

&
xβ

n∑
j=1

xej

n∑
i=1

xi

'
∀ |β | ≤ r − 2

= L

&
xβ

� n∑
i=1

xi

�2'
∀ |β | ≤ r − 2.

Hence,

L(xβ ) = L

�
xβ

n∑
i=1

xi

�
= L

&
xβ

� n∑
i=1

xi

�2'
∀ |β | ≤ r − 2.



597922-L-bw-Kirschner597922-L-bw-Kirschner597922-L-bw-Kirschner597922-L-bw-Kirschner
Processed on: 24-5-2023Processed on: 24-5-2023Processed on: 24-5-2023Processed on: 24-5-2023 PDF page: 64PDF page: 64PDF page: 64PDF page: 64

46 Conic Optimization in Finance and Approximation Theory

Repeating this procedure leads us to the desired outcome.

Lemma 3.5. Consider the GMP given in (3.1) and let (y, t) ∈ �m ×�+ be feasible
solution for the dual (3.2). Then the pair (y, t) is dual optimal only if

0=min
x∈K

�
f0(x)−

m∑
i=1

yi fi(x) + t

�
.

Proof. The minimization problem

min
x∈K

�
f0(x)−

m∑
i=1

yi fi(x) + t

�

is equivalent to

inf
μ∈M(K)+

�∫
K

�
f0(x)−

m∑
i=1

yi fi(x) + t

�
dμ(x) :

∫
K

dμ= 1



. (3.5)

By Theorem 3.1 there is no duality gap and there exists a primal optimal so-
lution μ∗ to the GMP (3.1). Set ν = μ∗/μ∗(K). Hence, ν is a probability measure
and therefore a feasible solution to (3.5). We deduce

0≤min
x∈K

f0(x)−
m∑

i=1

yi fi(x) + t

≤
∫

K

f0(x)−
m∑

i=1

yi fi(x) + tdν(x)

=
1

μ∗(K)

�∫
K

f0(x)dμ
∗(x)−

m∑
i=1

yi

∫
K

fi(x)dμ
∗(x) + t

∫
K

dμ∗(x)
�

=
1

μ∗(K)
�
val− y�b+ tμ∗(K)

�
≤ 1
μ∗(K)

�
val− y�b+ t

�
=

1
μ∗(K)

�
val− val′

�
= 0,

where the first inequality follows from the definition of the dual (3.2) of the GMP,
the third inequality from the fact that μ∗(K)≤ 1 and the last equality from strong
duality.
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3.2.1 Convergence analysis

The following theorem is a refinement of a result by Powers and Reznick [PR01],
obtained by de Klerk, Laurent and Parrilo [dKLP06, Theorem 1.1]. It is a quanti-
tative version of Pólya’s Positivstellensatz (see, e.g., [Rez96] for a survey), and it
will be crucial in our analysis of the simplex case.

Theorem 3.6. Suppose f ∈ �[x] is a homogeneous polynomial of degree d of the
form f (x) =

∑
|α|=d fαx

α. Assume ε =minΔn−1
f (x)> 0 and define

B( f ) = max|α|=d

α1! . . .αn!
d!

fα. (3.6)

Then the polynomial (x1 + · · ·+ xn)k f (x) has only positive coefficients if

k >
d(d − 1)

2
B( f )
ε
− d. (3.7)

We continue by stating and proving one of the main results of this chapter.

Theorem 3.7. Let val be the optimal value of the GMP (3.1) for input data K =
Δn−1, f0, f1, . . . , fm ∈ �[x] homogeneous of degree d and b1, . . . , bm ∈ �. Assume
there exists a dual optimal solution ( ȳ , t) for (3.2). Then, setting y0 = 1 and yi =
− ȳi for i ∈ [m] we have

0≤ val− f (r)
LP
≤

�∑m
i=0 B(yi fi) + t

�
d(d − 1)

2(r − 1)− d(d − 1)
, (3.8)

for B(·) as in (3.6) and r > d(d − 1)/2+ 1.

Proof. By Theorem 3.1 there is no duality gap. Let r > d(d−1)/2+1 and let L(r)

be an optimal solution to (3.4) whose existence is ensured by Theorem 1.5. Fix
some ε > 0. Then,
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0≤ val− f (r)
LP
= val− L(r)

� m∑
i=1

ȳi fi − t + f0 −
m∑

i=1

ȳi fi + t

�

= val−
m∑

i=1

ȳi L
(r)( fi) + t L(r)(1)− L(r)

�
f0 −

m∑
i=1

ȳi fi + t

�

≤ val−
m∑

i=1

ȳi bi + t − L(r)
�

f0 −
m∑

i=1

ȳi fi + t

�

= −L(r)
�

f0 −
m∑

i=1

ȳi fi + t

�

= −L(r)
�

f0 −
m∑

i=1

ȳi fi + t + ε

�
+ εL(r)(1)

≤ −L(r)
�

f0 −
m∑

i=1

ȳi fi + t + ε

�
+ ε,

where both inequalities follow from the fact that L(r)(1) ≤ 1. Set fm+1 =�∑n
i=1 xi

�d
and ȳm+1 = −t. By Lemma 3.5 we have minx∈Δn−1

f0(x) −∑m+1
i=1 ȳi fi(x)+ε = ε. The goal is now to show that−L(r)

�
f0 −∑m+1

i=1 ȳi fi + ε
�≤ 0

if

r ≥
(

d(d − 1)
2

∑m+1
i=0 B(yi fi) + ε

ε

)
.

Define

f := f0 −
m+1∑
i=1

ȳi fi + ε

� n∑
i=1

xi

�d

,

which is homogeneous and its minimum over the simplex is ε. We continue to
show that L(r)( f ) ≥ 0 for the appropriate choice of r and then bound r in terms
of ε. By Theorem 3.6 for k as in (3.7) we have

f (x)

� n∑
i=1

xi

�k

=
∑
β∈�n

d+k

cβ xβ (3.9)

with cβ > 0 for all β ∈ �n
d+k. To determine the smallest integer k for which the

theorem holds we will first bound B( f ). For this, set y0 = 1 and yi = − ȳi . We
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may rewrite f as

f =
m+1∑
i=0

yi fi + ε

� n∑
i=1

xi

�d

=
m+1∑
i=0

yi fi + ε

&∑
|α|=d

�
d

α1 . . .αn

�
xα
'

=
∑
|α|=d

�m+1∑
i=0

yi fi,α + ε
�

d
α1 . . .αn

��
xα.

Then,

B( f ) =max
α

*�m+1∑
i=0

yi fi,α +
d!

α1! . . .αn!
ε

�
α1! . . .αn!

d!

+

=

�
max
α

�m+1∑
i=0

yi fi,α

�
α1! . . .αn!

d!

�
+ ε

≤
m+1∑
i=0

�
max
α

yi fi,α
α1! . . .αn!

d!

�
+ ε

=
m+1∑
i=0

B(yi fi) + ε.

With this bound on B( f ) we find that if r is large enough, i.e.,

r ≥
(

d(d − 1)
2

∑m+1
i=0 B(yi fi) + ε

ε

)
≥
$

d(d − 1)
2

B( f )
ε

%
,

it follows from Lemma 3.4 that

−L(r)
�

f0 −
m+1∑
i=1

ȳi fi + ε

�
+ ε = ε − L(r)( f )

= ε − L(r)
&

f

� n∑
i=1

xi

�k'

= ε − L(r)

⎛
⎝ ∑
β∈�n

k+d

cβ xβ

⎞
⎠ ≤ ε,
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where the last equality follows from (3.9) and the inequality follows from the fact
that L(r)(xα)≥ 0 for all |α| ≤ r and cβ ≥ 0 for all |β | ≤ k+ d. To find a bound on
r in terms of ε we set

r =

(
d(d − 1)

2

∑m+1
i=0 B(yi fi) + ε

ε

)
.

Then, one may bound r as follows

r − 1≤ d(d − 1)
2

�∑m+1
i=0 B(yi fi)

ε
+ 1

�

⇔ ε ≤
∑m+1

i=0 B(yi fi)d(d − 1)

2(r − 1)− d(d − 1)
,

concluding the proof.

Remark 3.8. The bound we give in Theorem 3.7 depends on the dual optimal solu-
tion ( ȳ , t). We cannot bound the dual variables in terms of the problem data a priori
in general, as they may become arbitrarily large. There are, however, cases in which
one can bound the variables in terms of the problem data. An example of this case
can be found in Section 3.5.

3.3 Moment-SOS hierarchy over the sphere

We now consider the GMP (3.1) over the sphere, i.e., the case K = Sn−1. Ad-
ditionally, we assume the f0, f1, . . . , fm in (3.1) are homogeneous polynomials of
even degree 2d.

The moment-SOS hierarchy [Las01] of semidefinite relaxations of the GMP
(3.1) over the sphere is given by

f (2r)
SDP
= min

L:�[x]2r→�
L linear

L( f0)

s.t. L( fi) = bi ∀i ∈ [m]
L(1)≤ 1

L
�
[x]r[x]

�
r

�� 0

L(xα) = L
�
xα‖x‖2

2

� ∀ |α| ≤ 2r − 2,

(3.10)

where the L operator is now applied entry-wise to matrix-valued functions, where
needed, and the optimal solution is denoted by L(2r).
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The following lemma enables us to use a quantitative Positivstellensatz by
Fang and Fawzi [FF21] for positive polynomials on the sphere, to obtain a rate of
convergence of the Lasserre hierarchy. It is a basic but crucial result and certainly
known to be true, however we did not find a suitable reference. Hence, we give
a short proof for completeness.

Lemma 3.9. Let L : �[x]2k → � be a linear operator and suppose L
�
[x]k[x]�k

�� 0,
where the operator is applied entrywise to the matrix [x]k[x]�k . Then, L(σ) ≥ 0 for
all σ ∈ Σ[x]k.

Proof. Let σ ∈ Σ[x]k be a sum of squares of degree 2k. Then there exists A � 0
such that σ = [x]�k A[x]k. Let 〈·, ·〉 denote the trace inner product. We have

L(σ) = L
�
[x]�k A[x]k

�
=
∑
i, j

Ai, j L
�
([x]k)i([x]k) j

�
= 〈A, L

�
[x]k[x]

�
k

�〉 ≥ 0,

since both A and L
�
[x]k[x]�k

�
are psd.

The quantitative Positivstellensatz by Fang and Fawzi [FF21] is as follows.

Theorem 3.10. [FF21, Theorem 3.8] Assume f is a homogeneous polynomial of
degree 2d such that 0 ≤ f (x) ≤ 1 for all x ∈ Sn−1 and d ≤ n. There are constants
Cd , C ′d that depend only on d such that if r ≥ Cd n then

f + C ′d(d/r)2 = σ(x) + (1− ‖x‖2
2)h(x)

for σ(x) ∈ Σ[x]r and h ∈ �[x]2r−2.

We may now use the theorem by Fang and Fawzi [FF21] and Lemma 3.9 to
derive a rate of convergence for the Lasserre hierarchy [Las09] of the GMP on the
sphere as follows.

Theorem 3.11. Let val be the optimal value of the GMP (3.1) for input data K =
Sn−1, f0, f1, . . . , fm ∈ �[x] homogeneous of even degree 2d, b1, . . . , bm ∈ � and
d ≤ n. Let ( ȳ , t) be a dual optimal solution and let fm+1(x) := 1 for every x ∈ Sn−1,
set ȳm+1 = −t and set y0 = 1 and y = − ȳ . Further, let f i,yi

max = maxx∈Sn−1 yi fi(x).
There exist constants Cd , C ′d , only dependent on d, such that if r ≥ Cd n we have

0≤ val− f (2r)
SDP
≤ C ′d d2

∑m+1
i=0 f i,yi

max

r2
.
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Proof. As in the proof of Theorem 3.7, Theorem 3.1 gives us strong duality. Let
r ≥ Cd n and let L(2r) be an optimal solution to (3.10). Then by the same reasoning
as in Theorem 3.7,

0≤ val− f (2r)
SDP
≤ −L(2r)

�
f0 −

m+1∑
i=1

ȳi fi

�
.

Set f := f0−∑m+1
i=1 yi fi and fmax =maxx∈Sn−1 f (x). Then f̃ = f / fmax satisfies

f̃max = 1 and by Lemma 3.5 we have f̃min = 0. We find for any δ ≥ 0

−L(2r)

�
f0 −

m+1∑
i=1

ȳi fi

�
= − fmax L(2r)

�
f̃
�

≤ − fmax L(2r)
�

f̃ +δ
�
+δ fmax.

Choosing δ = C ′d
d2

r2 and applying Theorem 3.10 we see that f̃ +δ = σ+ (1−
‖x‖2

2)h for σ ∈ Σ[x]r and h ∈ �[x]2r−2.
Thus, since L(2r)(xα) = L(2r)(xα‖x‖2

2) we have

− fmax L(2r)

,
f̃ +

C ′d d2

r2

-
+

C ′d d2

r2
fmax = − fmax L(2r)

�
σ+ (1− ‖x‖2

2)h
�
+

C ′d d2

r2
fmax

= − fmax L(2r) (σ) +
C ′d d2

r2
fmax

≤ C ′d d2

r2
fmax,

where the last inequality follows from Lemma 3.9. Noting that

fmax = max
x∈Sn−1

�
f0(x)−

m+1∑
i=1

ȳi fi(x)

�
≤

m+1∑
i=0

max
x∈Sn−1

yi fi(x) =
m+1∑
i=0

f i,yi
max

we arrive at the result.

3.4 Limiting behavior of the hierarchies of linear opera-
tors

The purpose of this section is to show that the limit functionals of the introduced
hierarchies correspond to measures, in the sense that they are the Riesz functional
of an optimal solution of the corresponding GMP. In the following we will define
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the limit of the optimal solutions L(r) of the introduced hierarchies in a meaningful
way and prove that the corresponding moment sequences have a representing
measure.

3.4.1 The simplex case

Consider the case when K = Δn−1. When looking at the linear operators in the
relaxation hierarchies (3.4) one would expect that in the limit, i.e., for r →∞,
the operators L(r)(·) behave like 〈·,μ〉 for some positive measure μ. In the rest of
this section we prove that this is in fact the case, and we will define the limit in
a meaningful way. Consider again the ideal I = {p �1−∑n

i=1 xi

�
: p ∈ �[x]} and

let L̄ : �[x]/I → � be a linear operator such that

1. L̄(xα)≥ 0 for all α ∈ �n

2. L̄(1)≤ 1

and let

L= { L̄ : �[x]/I → � : L̄ fulfills conditions 1. and 2.}
be the class of all linear operators that satisfy the conditions above. Note that for
every L̄ ∈ L the relation

L̄

��
1−

n∑
i=1

xi

�
xα
�
= 0 for all α ∈ �n

trivially holds. Defining ‖ f ‖= ‖ f ‖∞,Δn−1
:= supx∈Δn−1

| f (x)| we obtain a normed
vector space given by (�[x]/I,‖·‖).
Theorem 3.12. (see, e.g. [Meg98, Theorem 1.4.2]) Suppose F : X → Y is a linear
operator between two normed vector spaces (X ,‖·‖X ) and (Y,‖·‖Y ), then the follow-
ing are equivalent

1. F is continuous

2. ‖F x‖Y ≤ M‖x‖X for some M ∈ �.

Using Theorem 3.12 we can prove that the operators we consider are contin-
uous in the limit.

Lemma 3.13. Every L̄ ∈ L is continuous.
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Proof. Invoking Theorem 3.12 for M = 1 it suffices to show that every L̄ ∈ L
satisfies

| L̄( f )| ≤ ‖ f ‖= sup
x∈Δn−1

| f (x)|
for all f ∈ �[x]/I. We begin by showing that for any f ∈ �[x]/I and L̄ ∈ L we
have L̄( f )≥ −‖ f ‖. Consider the GMP given by

val= inf
μ∈M(Δn−1)+

∫
Δn−1

f (x)dμ(x)

s.t.

∫
Δn−1

dμ(x)≤ 1.

(3.11)

Set
fmin = min

x∈Δn−1

f (x)≥ −‖ f ‖ and fmax = max
x∈Δn−1

f (x)≤ ‖ f ‖.
Letμ∗ be an optimal solution to (3.11) whose existence is ensured by Theorem 1.5.
Note that if fmin ≥ 0 then

val=

∫
Δn−1

f (x)dμ∗(x)≥ fmin

∫
Δn−1

dμ∗(x)≥ 0≥ −‖ f ‖.

If fmin < 0 then

val=

∫
Δn−1

f (x)dμ∗(x)≥ | fmin|
�
−
∫
Δn−1

dμ∗(x)
�
≥ fmin ≥ −‖ f ‖,

where we used −∫
Δn−1

dμ∗(x) ≥ −1. It follows that val ≥ −‖ f ‖. Every L̄ ∈ L
is feasible for the LP relaxation (3.4) of (3.11). Hence, L̄( f ) ≥ f (r)

LP
for all r ≥

deg( f ). Thus, L̄( f ) ≥ limr→∞ f (r)
LP
= val ≥ −‖ f ‖ by Theorem 3.7. To show that

L̄( f )≤ ‖ f ‖ consider the following GMP

val= sup
μ∈M(Δn−1)+

∫
Δn−1

f (x)dμ(x)

s.t.

∫
Δn−1

dμ(x)≤ 1.

(3.12)

Let again μ∗ be an optimal solution to (3.12). Then, if fmax ≥ 0 we find

val=

∫
Δn−1

f (x)dμ∗(x)≤ fmax

∫
Δn−1

dμ∗(x)≤ fmax ≤ ‖ f ‖.
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If fmax < 0 then

val=

∫
Δn−1

f (x)dμ∗(x)≤ fmax

∫
Δn−1

dμ∗(x)≤ 0≤ ‖ f ‖.

Replacing the min operator in (3.4) by the max operator leads to a relaxation of

(3.12) whose optimal values f
(r)
LP form a non-increasing sequence lower bounded

by val and limr→∞ f
(r)
LP = val. Moreover, any L̄ ∈ L is feasible for that relaxation,

hence L̄( f ) ≤ f
(r)
LP for all r ≥ deg( f ). Thus, L̄( f ) ≤ limr→∞ f

(r)
LP = val ≤ ‖ f ‖.

Therefore,

| L̄( f )| ≤ ‖ f ‖,
for all f ∈ �[x]/I, L̄ ∈ L.

The set �[x]/I is dense in C(Δn−1). This means we can employ the following
theorem in the next step.

Theorem 3.14. (see, e.g. [Meg98, Theorem 1.9.1]) Suppose that M is a dense
subspace of a normed space X , that Y is a Banach space, and that T0 : M → Y is a
bounded linear operator. Then there is a unique continuous function T : X → Y that
agrees with T0 on M. This function T, called a continuous linear extension of T0, is
a bounded linear operator and ‖T‖= ‖T0‖.

Now let

T =
�

T : C(Δn−1)→ � : T is the continuous linear extension of some L̄ ∈ L
�

.

Proposition 3.15. Let T ∈ T and f ∈ C(Δn−1). Then

T ( f ) =

∫
Δn−1

f (x)dμ(x)

for some positive measure μ supported on Δn−1, satisfying μ(Δn−1)≤ 1.

Proof. It is sufficient to show T ( f ) ≥ 0 for all f ∈ C(Δn−1)+ = { f ∈ C(Δn−1) :
f (x) ≥ 0 ∀x ∈ Δn−1}. To see this, note that the space C(Δn−1) can be ordered
by the convex cone C(Δn−1)+. Now T ( f ) ≥ 0 for all f ∈ C(Δn−1)+ implies that
T ∈ (C(Δn−1)+)

∗, i.e., the dual cone of C(Δn−1)+ which is known to be the set of
finite Borel measures on Δn−1. Let f be a homogeneous continuous function that
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is non-negative on the simplex and consider its Bernstein approximation of order
r given by

Br
f (x) =

∑
α∈�n

r|α|=r

f
 α

r

!�r
α

�
xα.

The approximation converges uniformly to f as r → ∞ since f is continuous.
Using Lemma 3.13 we see

T ( f ) = T
 

lim
r→∞Br

f

!
T cont.
= lim

r→∞ T
�
Br

f

�
= lim

r→∞
∑
α∈�n

r|α|=r

f
 α1

r
, . . . ,

αn

r

!
︸ ︷︷ ︸

≥0

�
r
α

�
︸︷︷︸
≥0

T (xα)︸ ︷︷ ︸
≥0

≥ 0.

Hence, it follows that T ( f ) = 〈 f ,μ〉 for some positive measure μ, such that
μ(Δn−1)≤ 1.

Remark 3.16. By the proof given above, it becomes clear that the continuous linear
extension can in fact be defined in terms of the limit of the Bernstein approximation,
i.e., define T ( f ) := limr→∞ L̄(Br

f ) for f ∈ C(Δn−1) and L̄ ∈ L.

3.4.2 The sphere case

For the sphere case, i.e., K= Sn−1 consider the following theorem.

Theorem 3.17. (see, e.g. [Las09, Theorem 3.8] or [Sch91] for the original refer-
ence) Let y= (yα)α∈�n ⊂ �∞ be a given infinite real sequence, L̄ : �[x]→ � be the
linear operator defined by

p(x) =
∑
α∈�n

pαx
α �→ L̄(p) =

∑
α∈�n

pα yα,

and let K = {x ∈ �n : g1(x) ≥ 0, . . . , gm(x) ≥ 0} be compact. The sequence y has a
finite Borel representing measure with support contained in K if and only if

L̄( f 2 gJ )≥ 0 ∀J ⊆ {1, . . . , m} and f ∈ �[x],
where gJ (x) =

∏
j∈J g j(x).

Now, let L̄ be a linear operator such that
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1. L̄(1)≤ 1

2. L̄([x]t[x]�t )� 0 ∀t ∈ �
3. L̄(xα) = L̄(xα‖x‖2

2) ∀α ∈ �n

and let L′ = { L̄ : �[x] → � : L̄ satisfies 1. — 3.}. Recall that as a semialgebraic
set the sphere can be written as Sn−1 = {x ∈ �n : g1(x) := 1− ‖x‖2

2 ≥ 0, g2(x) :=
‖x‖2

2−1≥ 0}. Then for K= Sn−1 every L̄ ∈ L′ satisfies all conditions of Theorem
3.17. To see this, note that the only possibilities for J are {	, {1}, {2}, {1,2}}.
Because of condition 3 we have that L̄(±(1−‖x‖2

2)p) = 0 for all p ∈ �[x] covering
all cases except J = 	. For J = 	 the condition reduces to L̄(p2) ≥ 0 which holds
for all p ∈ �[x] because of Lemma 3.9. Hence, every L̄ ∈ L′ has a representing
measure whose support is contained in Sn−1.

3.5 Concluding remarks

In this last section we conclude by outlining the connection of our results to pre-
vious work. We show that — in the special case of polynomial optimization on
the simplex — our RLT hierarchy reduces to one studied earlier by Bomze and de
Klerk [BdK01], and de Klerk, Laurent and Parrilo [dKLP06].

De Klerk, Laurent and Parrilo [dKLP06] introduced the following hierarchy for
minimizing a homogeneous polynomial p ∈ �[x] of degree d over the simplex.

p(r) =maxλ s.t. the polynomial

� n∑
i=1

xi

�r &
p(x)−λ

� n∑
i=1

xi

�d'

has only non-neg. coefficients.

(3.13)

It was proved that limr→∞ p(r) = pmin = minx∈Δn−1
p(x). The LP hierarchy

introduced in Section 3.2 of this chapter is a generalization of the hierarchy (3.13),
in the sense made precise in the following theorem.

Theorem 3.18. For some homogeneous polynomial p ∈ �[x] of degree d let f (r+d)
LP

be the solution to the LP relaxation of the problem

min
x∈Δn−1

p(x) = val= inf
μ∈M(Δn−1)+

�∫
Δn−1

p(x)dμ(x) :

∫
Δn−1

dμ(x) = 1



for some r ∈ �. Then,

p(r) = f (r+d)
LP

.
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Proof. ” ≤ ” : Let λ∗ = p(r) be optimal for (3.13). Then the polynomial given by�∑n
i=1 xi

�r �
p(x)−λ �∑n

i=1 xi

�d�
has only negative coefficients, and we find

0≤ L(r+d)

&� n∑
i=1

xi

�r &
p(x)−λ∗

� n∑
i=1

xi

�d''

= L(r+d)

�� n∑
i=1

xi

�r

p(x)

�
−λ∗L(r+d)

&� n∑
i=1

xi

�r+d'

= f (r+d)
LP

−λ∗

for L(r+d) being the optimal solution to the LP relaxation.
”≥ ” : For the multinomial coefficient�

k
α

�
=
�

k
α1, . . . ,αn

�
=

k!
α1! . . .αn!

we define
�k
α

�
= 0 if αi < 0 for some i ∈ [n].

Consider the expansion� n∑
i=1

xi

�r &
p(x)−λ

� n∑
i=1

xi

�d'
=

∑
|β |=r

�
r
β

�
xβ

∑
|α|=d

pαx
α −λ ∑

|β |=r+d

�
r + d
β

�
xβ

=
∑

|β |=r+d

&∑
|α|=d

�
r

β −α
�

pα −λ
�

r + d
β

�'
xβ .

Thus, the LP formulation of (3.13) reads

p(r) =max λ

s.t.
�

r + d
β

�
λ ≤ ∑

|α|=d

�
r

β −α
�

pα ∀|β |= r + d

with its dual

p(r) =min
∑

|β |=r+d

∑
|α|=d

yβ

�
r

β −α
�

pα

s.t. yβ ≥ 0 ∀|β |= r + d∑
|β |=d+r

�
r + d
β

�
yβ = 1.
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Let y be an optimal solution for the dual and define

L(r+d)(xβ ) = yβ ∀|β |= r + d.

Then for |α|= r + d − 1 we let

L(r+d)(xα) =
n∑

i=1

yα+ei

and proceed in this manner for all |γ| ≤ r + d − 2. The last constraint of the dual
then implies

1=
∑

|β |=d+r

�
r + d
β

�
yβ =

∑
|β |=d+r

�
r + d
β

�
L(r+d)(xβ ) = L(r+d)

&� n∑
i=1

xi

�r+d'
.

By construction, we have

1. L(r+d)(xα)≥ 0 for all |α| ≤ r + d

2. L(r+d)(xα) = L(r+d)
�
xα

∑n
i=1 xi

�
for all |α| ≤ r + d − 1

3. 1= L(r+d)
��∑n

i=1 xi

�r+d� 2.
= L(r+d)(1).

Hence, the constructed solution for the LP relaxation is feasible. Further,

p(r) =
∑

|β |=r+d

∑
|α|=d

yβ

�
r

β −α
�

pα

=
∑

|β |=r+d

∑
|α|=d

L(r+d)(xβ )
�

r
β −α

�
pα

= L(r+d)

& ∑
|β |=r+d

∑
|α|=d

�
r

β −α
�

pαx
β

'

= L(r+d)

�� n∑
i=1

xi

�r

p

�
= L(r+d)(p)≥ f (r+d)

LP
.

As has been noted before, the estimate of Theorem (3.7) depends on the dual
variables. While it is in general not possible to get rid of these variables in the
estimate, there are cases in which we can. In the following we present an example
of such a case.
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Example 3.19. Consider the case of polynomial optimization over the simplex. Let
f ∈ �[x] be of degree d and set

fmin = min
x∈Δn−1

f (x),

and analogously define fmax. We can cast this as a GMP of type (3.1)

fmin = inf
μ∈M(Δn−1)

�∫
Δn−1

f (x)dμ :

∫
Δn−1

dμ= 1,

∫
Δn−1

dμ≤ 1



.

A dual optimal solution is in this case given by (y∗, t∗) = ( fmin, 0). Noting that
in the estimate we set y0 = 1, our estimate (3.8) becomes

fmin − f (r+d)
LP

≤ d(d − 1)
2(r + d − 1)− d(d − 1)

(B( f )− fmin)

and applying the inequality

B( f )− fmin ≤
�

2d − 1
d

�
dd ( fmax − fmin) ,

shown in [dKLP06, Theorem 2.2], we find

fmin − f (r+d)
LP

≤ d(d − 1)
2(r + d − 1)− d(d − 1)

�
2d − 1

d

�
dd ( fmax − fmin) .

This is essentially the same result as was obtained in [dKLP06, Theorem 1.3]. The
presented example highlights the fact that results for convergence rate of the GMP may
not be as clean as for simpler problems like polynomial optimization, even though
the tools that are used to obtain these results are the same. This, of course, is due to
the fact that the GMP is much more complicated in general.

Moreover, we would like to emphasize that the conceptual tools of this chapter
are not limited to the cases that were treated. In fact, given a quantitative version
of a Positivstellensatz, it is possible to perform a convergence analysis of the kinds
we proposed in this chapter as long as the nature of the relaxation hierarchy,
i.e., linear or semidefinite, is coherent with the positivity certificate given by the
Positivstellensatz. For example, for more general sets K there is a (much weaker)
quantitative Positivstellensatz available found by Nie and Schweighofer [NS07]
as well as a recent improvement by Baldi and Mourrain [BM22]. This result can
be used to bound the rate of convergence of the GMP for more general sets. We
chose to discuss the simplex and the sphere as there are strong Positivstellensätze
available in these cases and to expose the fact that the relaxation must be in line
with the certificate. For the sphere case, one could also make use of the following
Positivstellensatz by Reznick.
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Theorem 3.20 (cf. Theorem 3.12 in [Rez95]). Assume f is a homogeneous poly-
nomial of degree 2d such that 0≤ f (x)≤ 1 for all x ∈ Sn−1. Then one has

f (x) +
d(d − 1)n

r log2
= σ(x) + (1− ‖x‖2)‖h(x)

for some σ ∈ Σ[x]r+d and h ∈ �[x]2(r+d)−2.

By using this theorem instead of Theorem 3.10, one obtains a convergence
result with fewer assumptions than the one presented in Theorem 3.11, but at the
cost of a worse convergence rate. In particular, one may avoid the assumption
n ≤ d in Theorem 3.10 by using the result by Reznick, leading to a convergence
rate of O(1/r) on the sphere (as opposed to the O(1/r2) in Theorem 3.11). Fi-
nally, we would like to mentioned that in a recent article [Slo22b] provided a
stronger quantitative Positivstellensatz for the simplex than Theorem 3.6 using
similar techniques as [FF21]. Using the results from [Slo22b] a convergence rate
of O(1/r2) can be obtained.
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4
Computing bounds for option prices

4.1 Introduction

Derivative securities have become an integral part in financial economics and con-
stitute attractive instruments for a wide variety of parties. Such products may be
used to hedge portfolios, ensure financial planning security in supply chains and
for investment purposes. The value of a derivative security relies on the value
of one or multiple assets, called underlyings, like stocks, currencies or commodi-
ties. The most commonly used derivative securities are futures, forwards, swaps
or options. A central question of financial economics is at what price to sell such
products. Important in this respect is to ensure the price put on the security creates
no possibility of arbitrage, i.e., there must not be a risk-free possibility to make
money. Two main approaches to finding bounds on such prices are used through-
out the literature. The first one assumes the prices of the underlying assets follow
a stochastic differential equation (SDE) and tools from the theory of SDEs are used
to solve the problem of finding a price. The most famous model in this regard is
the Black and Scholes model, which provides closed formula solutions to many
problems. However, this has the drawback that the assumed model is highly sus-
ceptible to model misspecifications and to parameter estimation errors. The other
approach, which is the one we will follow, has no underlying model or assump-

63
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tions on the price dynamics, but solely assumes the non-existence of arbitrage. It
is based on the idea of using observable data like prices of other options on the
same asset or prices of correlation-based derivatives and then using semidefinite
optimization techniques to obtain solutions.

In this chapter we will focus on the problem of deriving bounds on the price
of European call options. A European call option is a contract that gives the owner
the right, but no obligation, to buy an underlying asset at fixed price, referred to
as strike (or strike price) at a predetermined date in the future, called maturity.
Since the owner is not obliged to exercise the option, it has nonnegative value.
For example, consider a European call option with strike K on a stock, whose price
at time t is given by St . If at maturity T the price ST of the stock is greater than
the strike price K , a rational owner will exercise the option and make a profit
of ST − K . If, however, the price of the asset is less than the strike, the owner
will not exercise the option (since they could buy the stock cheaper at the stock
market) and therefore not make a profit. Thus, the payoff function of the option
is given by max(ST − K , 0). There are many different types of options and we
will introduce the ones that will be relevant in this chapter. A rainbow option
is an option on multiple underlyings S(1)T , . . . , S(n)T that pays on the level of one
option, for example a call on max with payoff function max(0, max(S(1)t , . . . , S(n)t )−
K). This is equivalent to a lookback option on one asset if S(i)t is the price of the
same asset at n points in time. A basket option also depends on multiple assets
and pays on the level of more than one. For example, it could be a weighted
linear combination of the prices of the assets at maturity with payoff function
max(0,

∑n
i=1αiS

(i)
t − K), where αi ≥ 0. Examples for options of this type are

index options or currency basket options. Because markets are incomplete in
general, it is not possible to compute exact prices of options. However, one can
compute bounds, such that, if the price of the option lies within the given range,
it is consistent with the given information and does not create the possibility of
arbitrage.

4.1.1 Prior work

The problem of computing bounds on option prices without assuming a specific
price dynamic of the underlying assets has been studied since the 1970s beginning
with the poineering work of Merton [Mer73]. Similar problems have already been
studied in the late 1950s, see [Sca57]. Cox and Ross [CR76] and Harrison and
Kreps [HK79] show that the assumption of no arbitrage possibilities is equivalent
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to the existence of a probability measure under which the option prices become
Martingales. Boyle and Lin [BL97] extended prior contributions of Lo [Lo87]
considering the problem of deriving upper bounds on basket options on multiple
assets given the means and the covariance matrix of the underlying assets by con-
structing a semidefinite program. In [BP02], Bertsimas and Popescu considered a
more general setting assuming observable options prices as well as moment infor-
mation of the underlying distribution of the assets like means and variances are
available. Using semidefinite programming techniques they solve the univariate
case and give closed form solutions to some cases. For the multivariate case, i.e.,
options depending on multiple assets they prove that the problem is NP-hard in
general and present a relaxation to the problem by enlarging the set of possible
values the assets can attain. They follow up by identifying the cases in which
their relaxation can be solved efficiently, which is the case if the objective and the
constraint functions are quadratic or linear over d disjoint polyhedra D1, . . . , Dd

which form a partition of �n, where n is the number of assets considered. Davis
and Hobson [DH07] study the structure of the underlying problem and give suffi-
cient and necessary conditions for the existence of measures specified in [CR76],
[HK79]. In a series of papers (see [LW05], [HLW05b], [HLW05a]) Hobson, Lau-
rence, and Wang consider the case of multivariate basket options and give sharp
upper and lower bounds when the constraints consist of observable vanilla options
prices. They do not employ semidefinite programming techniques, but approach
the problem by constructing primal and dual solutions with a zero duality gap.
Primbs [Pri06] constructs dynamic replicating portfolios using semidefinite pro-
gramming to get upper and lower bound on option prices, using knowledge of
piecewise polynomial data. In his dissertation [d’A04], d’Aspremont computes
bounds for basket options by constructing static replicating portfolios assuming
knowledge on prices of different basket options with the same maturity. Li et
al. [LSS05] extend the work of Bertsimas and Popescu using SOS relaxations to
obtain a hierarchy of bounds on option prices. Another approach was taken by
Peña and Zuluaga [ZP05]. They used tools from conic programming to refor-
mulate the considered problem and prove strong duality in many cases. To give
approximate solutions to the problem they propose to use increasingly tight outer
approximations of the cone of interest. For certain sets K they provide explicit
outer approximation sequences for the cone of measures supported on K , and use
these to compute upper bounds for option prices. We also point out the paper
by Peña, Vera and Zuluaga [PVZ12] where the authors consider the problem of
computing upper bound on European basket options under the no-arbitrage as-



597922-L-bw-Kirschner597922-L-bw-Kirschner597922-L-bw-Kirschner597922-L-bw-Kirschner
Processed on: 24-5-2023Processed on: 24-5-2023Processed on: 24-5-2023Processed on: 24-5-2023 PDF page: 84PDF page: 84PDF page: 84PDF page: 84

66 Conic Optimization in Finance and Approximation Theory

sumption taking into account the presence of bid-ask spreads. The problem is
recast as an LP linear in size with respect to the input data.

4.1.2 Contribution of this chapter

The work presented in this chapter builds on the work of Bertsimas and Popescu
[BP02]. We analyze and computationally explore cases which they determined to
be NP-hard. We consider a model similar to the one treated by Li et al. [LSS05],
which in itself is a generalization of the problem Boyle and Lin [BL97] considered.
While the authors in [LSS05] focus on a dual approach using inner (i.e., sum of
squares) approximations of the cone of positive polynomials, our main interest
lies in a primal method relying on an outer approximation of the moment cone.
In contrast to Li et al. we give a rigorous argument as to why we consider compact
underlying sets whenever we do so. To complement our primal method of outer
approximation we analyze an inner approximation of the moment cone as well.
Our inner approximation does not rely on any compactness assumption. In special
cases we give explicit bounds on the support of the optimal solution of the treated
problem. Our method of outer approximations takes the same approach as Peña
and Zuluaga in [ZP05]. Our analysis contributes additional insights into when
optimal solutions exist and the proposed hierarchies converge. Several numerical
examples are provided to illustrate the effectiveness of our methods.

4.1.3 Outline of the chapter

In Section 4.2 we present the problem we intend to study in this chapter, which
is finding bounds on the prices of options depending on multiple assets without
assuming any underlying stochastic processes of the assets prices. This can be
modeled as a generalized moment problem over a non-compact set. We consider
a general model assuming the information given is in the form of observable prices
of vanilla options on the given assets, as well as priced moment information like
mean, variance and covariance of the underlying assets. Higher order moment
information like skewness and kurtosis can also be used in this model. Also in
Section 4.2 we prove the existence of an optimal solution of the problem formu-
lation we proposed. Equipped with this knowledge we continue in Section 4.3 to
demonstrate how to obtain a bound on the support of the optimal solution in the
univariate case. The reason for this is that this allows to consider a new problem
over a compact set with the same solution. This ensures that the moment-SOS hi-
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erarchy converges to the optimal solution in this case. Section 4.4 contains a few
examples of numerical computations for problems with real world data as well
as some explanation of the implementation techniques. In Section 4.5 we apply
a relaxation technique for the non-compact generalized moment problem to our
setting and conclude the section with a numerical example to show its effective-
ness. This procedure provides upper (resp. lower) bounds to the minimization
(resp. maximization) problem, and we refer to these bounds as the inner range.
The last section serves as a conclusion and gives direction for future work.

4.2 Bounds on options via the GMP formulation

In this section we will cast the problem of computing bounds on the price of Euro-
pean call options as a particular instance of the GMP. The option will be dependent
on n assets S1, . . . , Sn. We will denote the (piecewise polynomial) payoff function
by ϕ : �n

+ → �+, which may depend on the prices of the n different assets. We
assume the payoff is nonnegative, since we consider options, meaning there is no
obligation of the owner to exercise it, in which case the payoff is zero. The range
of possible prices for asset Si will be the nonnegative reals, i.e., xi ∈ �+. Note
that the payoff function is what defines the type of the option. As mentioned in
Section 4.1.1 the no-arbitrage assumption is equivalent to the existence of a proba-
bility measure μ such that asset prices become martingales under μ. This measure
is referred to as the equivalent martingale measure or the risk-neutral measure. The
price of the option is then given by the expectation of the payoff function with re-
spect to this measure. Here and throughout this chapter we assume for simplicity
an interest rate of 0.

4.2.1 Problem statement

Let for a finite index set I information pairs ( fi , qi) be given where i ∈ I, fi : �n
+→

� and qi ∈ �. These pairs might consist of (piecewise polynomial) payoff func-
tions fi of options on the assets S1, . . . , Sn with the observable prices qi at which
these options are traded, or prices of derivatives on moments of underlying asset,
such as mean, variance or correlation. In order to find bounds for the option at
hand we will look for a probability measure that is consistent with this given in-
formation. In other words, the feasible set of measures μ will consist of measures
such that
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∫
�n
+

fi(x)dμ(x)� qi , for all i ∈ I,

where ” � ” means either ” ≤ ” or ” = ”. We will also assume that the d-th order
moments of the corresponding distributions are finite for some d ∈ �. To fix ideas
we will consider the following problem adapted from [BP02]. Given n assets
S1, . . . , Sn whose prices are given by x1, . . . , xn, we want to find a lower bound
on a European call option whose payoff may depend on the assets Si for i ∈ [n].
The available information may come in the form of observable option prices in
which case the corresponding fi is a piecewise polynomial which we assume to be
continuous and qi is the respective price of the option or in the form of observable
moments in which case fi ∈ �[x]. For example, if γi is the observed mean of asset
i and the observed covariance of assets i and j is σi, j , one can add the constraint

∫
�n
+

(xi − γi)(x j − γ j)dμ(x) = σi, j .

Define the degree of a piecewise polynomial as the largest degree of its con-
stituents. We assume the d-th order moments under a risk-neutral pricing measure
are finite, where

d =max
i∈I {deg(ϕ), deg( fi)}+ 1.

What we mean by this is that

∫
�n
+

‖x‖d
2dμ(x)≤ M

for some M ∈ �+, where ‖x‖2 =
"

x2
1 + · · ·+ x2

n is the standard Euclidean 	2-
norm. A risk-neutral pricing measure is a measure such that the asset prices are
equal to the expectation under this measure discounted by the risk-free interest
rate. For convenience, we assume that d is even, otherwise we set d ← d+1. This
way we make sure that we are dealing with a GMP with (piecewise) polynomial
data. The optimal value of the optimization problem below will serve as bound
for the given option that is consistent with the available information.
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sup
μ∈M(�n

+)+
/ inf
μ∈M(�n

+)+

∫
�n
+

ϕ(x)dμ(x)

s.t.

∫
�n
+

fi(x)dμ(x)� qi , for i ∈ I∫
�n
+

dμ(x) = 1∫
�n
+

‖x‖d
2dμ(x)≤ M .

(4.1)

To obtain upper bounds we maximize and for lower bounds we minimize. In a
nutshell, one is looking for the probability distribution of the asset price, that is
consistent with the known information and minimizes (respectively maximizes)
the objective.

4.2.2 Existence of an optimal solution

Now we prove that the infimum in (4.1) is attained. In order to do so, we will
use the Prokhorov theorem [Pro56] asserting a weak sequential compactness of a
family of tight measures, as well as the monotone convergence theorem.

Definition 4.1 (Tightness). A sequence of measures (μk)∞k=1 defined on �n is
called tight if for every ε > 0 there exists a compact set K such that μk(Kc) < ε
for all k ∈ �.

Theorem 4.2 (Prokhorov). Let (μk)∞k=1 be a tight sequence of Borel probability
measures on �n. Then there exists a Borel probability measure μ and a subsequence
(μki
)∞i=1 converging weakly to μ, i.e.,

lim
i→∞

∫
g dμki

=

∫
g dμ (4.2)

for all bounded continuous functions g on �n.

Theorem 4.3 (Monotone Convergence Theorem). Let X be a measure space with
a positive measure μ and let {g	 : X → [0,∞)}∞

	=1 be a sequence of pointwise
non-decreasing μ-measurable functions, i.e., g1 ≤ g2 ≤ . . . . Further, let g be the
pointwise limit of (g	)∞	=1, i.e.,

g(x) = lim
	→∞ g	(x).
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Then, g is μ measurable and

lim
	→∞

∫
g	 dμ=

∫
g dμ .

Theorem 4.4. If Problem (4.1) is feasible, then its supremum/infimum is attained.

Proof. We begin by observing that if (4.1) is feasible, then the infimum in (4.1)
is finite since the objective function is nonnegative. Also, by the choice of d the
supremum is finite because of the last constraint

∫
�n
+
‖x‖d

2dμ(x)≤ M . Let (μk)∞k=1
be a sequence of feasible solutions for (4.1) converging to an optimal solution.
Denote by φk the measures defined by

dφk = (1+ ‖x‖d−1
2 )dμk .

Moving on, we show that the sequence (φk)∞k=1 is tight. Let ε > 0 be given and
let K be the closed ball of radius a. Then we have

φk(K
c) =

∫
�n

�{‖x‖2≥a}(1+ ‖x‖d−1
2 )dμk

≤ 1
a

∫
�n

‖x‖2(1+ ‖x‖d−1
2 )dμk ≤ M1/d +M

a
,

where we used Jensen’s inequality [Jen06] in the last step. By picking a suffi-
ciently large, we make φk(Kc) < ε, hence establishing tightness. By Theorem
4.2, there exists a weakly convergent subsequence (that we do not relabel) that
converges weakly to a measure φ. We set

dμ :=
dφ

1+ ‖x‖d−1
2

to be the candidate optimizer for (4.1). We first show that the equality constraints
for (4.1) are satisfied by μ. For a given pair ( fi , qi) corresponding to an equality
constraint we have

qi = lim
k→∞

∫
fi dμk = lim

k→∞

∫
fi

1+ ‖x‖d−1
2

dφk

=

∫
fi

1+ ‖x‖d−1
2

dφ =

∫
fi dμ ,

(4.3)

where in the third equality we used the fact that the function fi/(1+ ‖x‖d−1
2 ) is

continuous and bounded since deg( fi) ≤ d + 1. The same argument applies if
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( fi , qi) corresponds to an inequality constraint only the first equality in (4.3) is
replaced by a "≥". Moreover, (4.3) also shows that μ leads to the same objective
value as the optimizing sequence (μk)∞k=1. Finally, we establish that

∫ ‖x‖d
2 dμ <

M . We define g	(x) := min(‖x‖d
2,	). Note that g	 is a pointwise non-decreasing

function and its pointwise limit is ‖x‖d
2. Therefore, Theorem 4.3 applies and we

have ∫
‖x‖d

2 dμ
(i)
= lim
	→∞

∫
g	 dμ= lim

	→∞

∫
g	

1+ ‖x‖d−1
2

dφ

(ii)
= lim
	→∞ lim

k→∞

∫
g	

1+ ‖x‖d−1
2

dφk = lim
	→∞ lim

k→∞

∫
g	 dμk

(iii)≤ lim
	→∞ lim

k→∞

∫
‖x‖d

2 dμk ≤ M .

In (i) we used Theorem 4.3, the weak convergence of φk to φ in (ii) and the fact
that g	 ≤ ‖x‖d

2 in (iii).

Combining this result with the Richter theorem (see [Ric57, Satz 4] for an
original reference or [dS18, Theorem 19] for a modern statement and historical
remarks), we get the following immediate corollary.

Corollary 4.5. If Problem (4.1) is feasible, then the optimal value of (4.1) is attained
by an atomic measure with finitely many atoms.

We finish this section by showing that finite d-th order moments are necessary
for the existence of an optimal solution.

Proposition 4.6. The last constraint in (4.1) cannot be omitted in Theorem 4.4.

Proof. Consider the following problem

p∗ = inf

∫ ∞

0

max(0, x − k1)dμ

s.t.

∫ ∞

0

max(0, x − k2)dμ= a∫ ∞

0

dμ= 1 ,

(4.4)

where we assume k1 < k2 and a �= 0. Note that this implies that for the optimal
value we have p∗ ≥ a. We will show that there exists no measure for which the
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optimal value is attained. The following is a minimizing sequence for (4.4)

μn =
�

1− 1
n

�
δk1
+

1
n
δk2+na .

For every n ∈ � we see that μn is a probability measure as it is a convex combina-
tion of atomic measures and∫ ∞

0

max(0, x − k2)dμn =
1
n
(k2 + na− k2) = a .

So the sequence is indeed feasible. For the objective value we get

∫ ∞

0

max(0, x − k1)dμn =
�

1− 1
n

�
(k1 − k1) +

1
n
(k2 + na− k1)

= a+
1
n
(k2 − k1) .

So we have that μn is a minimizing sequence as it is feasible and converges to
a ≤ p∗. The limit limn→∞μn = δk1

, however, is not feasible. We now show that
there exists no probability measure μ ∈M(�+)+ that is optimal for (4.4). For this
we assume that μ is an optimizer of (4.4). Then we have∫

�+
max(0, x − k1)dμ(x) = a =

∫
�+

max(0, x − k2)dμ(x) .

Thus,

0=

∫
�+

max(0, x − k1)dμ(x)−
∫
�+

max(0, x − k2)dμ(x)

=

∫ k2

k1

(x − k1)︸ ︷︷ ︸
≥0

dμ(x) +

∫ ∞

k2

(k2 − k1)︸ ︷︷ ︸
>0

dμ(x) .

The latter integral must be zero which implies that supp(μ)∩ [k2,∞) = 	. But if
that is the case we have

a =

∫
�+

max(0, x − k2)dμ(x) =

∫ ∞

k2

(x − k2)dμ(x) = 0.

Therefore, μ cannot be feasible.

Example 4.4 illustrates that the support of a minimizing sequence may be
unbounded.
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4.3 Bounding the support

By Corollary 4.5 the optimal solution to (4.1) is a measure with finitely many
atoms. This section is devoted to the question whether it is possible to bound the
support of the optimal solution in terms of the problem data of (4.1). If this were
possible, i.e., if we knew the optimal solution is attained in a box [0, B]n for some
B ∈ �+, we could consider a compact version of (4.1), where �n

+ is replaced by
[0, B]n. This has the advantage that we know that the moment-SOS hierarchy
converges if the underlying sets are compact (recall Archimedian assumption in
connection with [Las09, Theorem 4.10]).

4.3.1 Atomic representation

We now present an approach to the problem of bounding the support. We
consider the univariate case for problem (4.1) and assume for all i ∈ I that
fi(x) = max(0, x − ki) is the payoff function of an observable European call op-
tion with associated price qi . By Corollary 4.5 there exists an atomic solution of
the form

∑N
j=1α jδx j

. Let 0 ≤ x1 ≤ x2 ≤ · · · ≤ xN . The following lemma shows
that we may assume w.l.o.g. that xN−1 ≤ km ≤ xN if ϕ(x) = max(0, x − k) with
k ≤maxi∈I{ki}.
Lemma 4.7. Consider (4.1) for n = 1, let ϕ(x) = max(0, x − kj) and fi(x) =
max(0, x − ki), qi > 0 for all i ∈ I = [m] \ { j} be the payoff functions of European
call options with strike ki such that k1 ≤ · · · ≤ kj−1 ≤ kj ≤ kj+1 · · · ≤ km with
associated prices qi. If there exists an optimal solution, then there exists one such
that exactly one atom xi lies in (km,∞). Moreover, there exists a solution such that
in each of the intervals

[0, k1), [k1, k2), . . . , [km−1, km), [km,∞)
there is at most one atom.

Proof. For the first claim asserting that there exists an optimal measure μ∗ such
that exactly one atom lies in [km,∞), let us assume that all atoms lie in [0, km).
Then

qm =

∫
�+

max(0, x − km)dμ
∗ =

∫ km

0

max(0, x − km)dμ
∗ = 0 ,
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which is a contradiction since qi > 0. Thus, at least one atom lies in [km,∞).
Suppose two atoms lie in [km,∞) and let the associated weighted Dirac measures
be αδx1

and βδx2
with α,β > 0 and x1, x2 > km. Now, since x1, x2 > km these

two Dirac measures influence every constraint of (4.1) as well as the objective
because all input functions are strictly positive at x1, x2. Their influence on the
i-th constraint is exactly

α(x1 − ki) + β(x2 − ki) = (α+ β)
�
α

α+ β
x1 +

β

α+ β
x2 − ki

�
.

It follows that these two Dirac measures can be combined to a single one with
weight ω = α + β > 0 and support x = α

α+β x1 +
β
α+β x2 > km and the corre-

sponding measure remains feasible. Also, because ‖ · ‖d is convex, the inequality
constraint is also satisfied. By similar reasoning one can prove the second claim
of the lemma.

Lemma 4.8. In the setting of Lemma 4.7 the support of an optimal measure is
contained in [0, B] for

B =
M +

/
M(M − 4qmkm)

2qm
.

Proof. By Lemma 4.7 we have for an optimal solution of the form
∑N

j=1α jδx j
that

αN (xN−kN ) = qm. We also know αN x2
N ≤ M ⇔ αN ≤ M/x2

N , from which follows
that qm ≤ (M/x2

N )(xN − km). Hence,

xN ≤ M +
/

M(M − 4qmkm)
2qm

=: B .

Hence, the support of an optimal solution lies in [0, B].

4.4 Examples for outer range

We will now present some examples of numerical computations of bounds on
option prices in the framework specified in the previous sections. The moment-
SOS hierarchy provides a lower bound to the minimization problem and an upper
bound to the maximization problem, which is why we call these outer bounds. For
the implementation was coded in Julia, and we used the MOSEK solver [MOS19]
version 9.1.9. The code is available online 1 and relies partly on the Julia package
MomentOpt.jl [WLC+19].

1https://github.com/FelixKirschner/boundingOptionPricesCode

https://github.com/FelixKirschner/boundingOptionPricesCode
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. . . . . .

0

[0, k1)

k1

[k1, k2)

k2

[k2, k3) . . . [k	−1, k	)

k	

[k	, k)

k

[k, k	+1)

k	+1

[k	+1, k	+2) . . . [km, B)

B

Figure 4.1: Visualization of the segmentation of the interval [0, B]

4.4.1 Univariate case

Let us describe our implementation strategy for the univariate case. Assume we
want to find bounds on the price of an option with strike k given strikes ki and
prices qi of other options on the same asset such that 0< k1 < k2 < · · ·< km. We
assume there exists an 	 ∈ [m− 1] such that k	 < k < k	+1.

sup
μ∈M(�+)+

/ inf
μ∈M(�+)+

∫
�+

max(0, x − k)dμ(x)

s.t.

∫
�+

max(0, x − ki)dμ(x) = qi , for i ∈ [m]∫
�+

dμ(x) = 1∫
�+

x2dμ(x)≤ M .

(4.5)

Since we know from Theorem 4.4 that feasibility implies the existence of an opti-
mal solution, we will assume the optimal solution will be attained in a box [0, B]
for some B ∈ �. A suitable B can be obtained via the procedure described in Sec-
tion 4.3.
To circumvent the problem of dealing with piecewise affine functions we split the
interval [0, B] into subintervals and define measures supported on each of the
subintervals. For this let 	 be the index such that k	 < k < k	+1. We define inter-
vals [0, k1], [ki , ki+1] for i = 1, . . . ,	− 1, as well as [k	, k), [k, k	+1) and [kj , kj+1)
for j = 	+1, . . . , m−1 and finally [km, B). The situation is visualized in Figure 4.1
Let S be the collection of these subsets. Elements in S are pairwise disjoint and
the union of all sets in S is [0, B]. The collection S contains m+2 intervals and to
each one a measure μi is assigned for i = 1, . . . , m+2. This way we can formulate
a problem equivalent to (4.5).
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sup/ inf
m+2∑

i=	+2

∫
(x − k)dμi(x)

s.t.
m+2∑

i= j+2

∫
(x − kj)dμi(x) = qj , for j = 	+ 1, . . . , m

m+2∑
i= j+1

∫
(x − kj)dμi(x) = qj , for j ∈ [	]

m+2∑
i=1

∫
x2dμi(x)≤ M

m+2∑
i=1

∫
dμi(x) = 1 .

supp(μi) ⊆ si ,

(4.6)

where si = [si1 , si2) for i = 1, . . . , m+ 2 are the elements of S. Introduce a linear
operator Lr

i : �[x]2r → � for every μi . The level r relaxation is then given by

sup/ inf
m+2∑

i=	+2

Lr
i (x − k)

s.t.
m+2∑

i= j+2

Lr
i (x − kj) = qj , for j = 	+ 1, . . . , m

m+2∑
i= j+1

Lr
i (x − kj) = qj , for j ∈ [	]

m+2∑
i=1

Lr
i (x

2)≤ M

m+2∑
i=1

Lr
i (1) = 1

Lr
i ([x]r[x]

T
r ) ∈ DNN , for i ∈ [m+ 2]

Lr
i ((si2 − x)(x − si1)[x]r−1[x]

T
r−1) ∈ DNN , for i ∈ [m+ 2] ,

(4.7)

where DNN is the doubly nonnegative cone, i.e., �n+ ∩�n×n
+ and the operator Lr

i
is applied entry-wise to the matrices [x]r[x]Tr . The decision variables here are the
linear operators Lr

i . By introducing a variable y(i)j = Lr
i (x

j), for i ∈ [m+ 2], j =
0,1, . . . , 2r + dmax problem (4.7) becomes a regular semidefinite program. For
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i 1 2 3 4 5
ki 95 100 110 115 120
qi 12.875 8.375 1.875 0.625 0.25

Table 4.1: Prices of European call options on the Microsoft stock from July ’98
with strikes ki

the actual calculation it is expedient to normalize everything, that is dividing the
given data by B. Consider problem (4.5) with the data displayed in Table 4.1 and
with m = 5, k = 105 and M = 200 000. Using the relaxation given in (4.7) we
can approximate the optimal solution and we find the first level is tight, meaning
we obtained the optimal bounds proposed by Bertsimas and Popescu in [BP02].
For the considered case we get a lower bound of 3.875 and an upper bound of
5.125 and the computation took 0.01 seconds.

The domain in this problem is partitioned into 7 parts. For each part we
define a measure for each of which we introduce moment variables y(i)j for
j = 0,1, . . . , 2r + dmax, where

dmax = max
i∈[n], j∈[Ni],	∈[m]

{deg(ϕ), deg( fi, j), deg( f	)}.

Thus, for this particular problem, we introduced 7×5= 35 variables. The number
of involved matrices was 7× 2= 14, each of size 2× 2. In total we had 14 linear
matrix inequality (LMI) constraints, 6 equality constraints as well as 1+ 35 = 36
inequality constraints, one to ensure finite d-th order moments and one for each
variable to ensure y(i)j ≥ 0.

4.4.2 Explicit examples with two assets

Consider the following artificial example where we want to compute bounds on
the price of a basket option on a basket with two assets whose prices are given by
x1 and x2, respectively. As a payoff function we choose max(0, 1/2x1+1/2x2−k).
We assume we can observe the prices of two single call options on each asset. The
corresponding optimization program is given in (4.8) below.
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sup
μ∈M(�2

+)+

/ inf
μ∈M(�2

+)+

∫
�2
+

max
�

0,
1
2

x1 +
1
2

x2 − k
�

dμ(x)

s.t.

∫
�2
+

max(0, xi − kxi , j)dμ(x) = axi , j , for i, j = 1,2∫
�2
+

‖x‖2
2dμ(x)≤ M∫

�2
+

dμ(x) = 1.

(4.8)

To solve this numerically we slice up the domain into an irregular grid along the
kinks of the max-functions, under the assumption that the support of the optimal
solution is contained in [0, B]2 for some B ∈ �. The domain then may look as
depicted in Figure 4.2, where the dotted lines indicate where the objective ascends
from 0, i.e., where 0.5x1 + 0.5x2 − k = 0. We index the tiles from bottom to top,
left to right. For each tile i in the grid we introduce a new measure μi . For example
for tile 12 in Figure 4.2 we get

supp(μ12) = {x ∈ �2 : (B − x1)(x1 − kx1,2)≥ 0 , x2(kx2,1 − x2)≥ 0 ,

1/2x1 + 1/2x2 − k ≥ 0} .

Consider the following (strike, price) pairs

• x1: (100, 12), (110,3)

• x2: (102, 10), (107,6)

and let M = 200 000, B = 400 and k = 105.
Applying the above described procedure to problem (4.8) with the data given

above results in problem (4.9). Note that (4.8) and (4.9) are equivalent. With
respect to Figure 4.2 the index sets Ji for i = 0,1, . . . , 4 correspond to the sets on
which the functions which define problem (4.8) are not identically zero, i.e.,

• max(0, 1
2 x1 +

1
2 x2 − k) = 1

2 x1 +
1
2 x2 − k on J0 = {4, 6,8, 10,12, 13,14}

• max(0, x1 − kx1,1) = x1 − kx1,1 on J1 = {5,6, . . . , 14}
• max(0, x1 − kx1,2) = x1 − kx1,2 on J2 = {11, . . . , 14}
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Figure 4.2: Example of how the support might be split
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• max(0, x2 − kx2,1) = x2 − kx2,1 on J3 = {2,3, 4,7, 8,9, 10,13, 14}
• max(0, x2 − kx2,2) = x2 − kx2,2 on J4 = {3,4, 9,10, 14}.

Thus, we obtain the following problem:

sup
μi

/ inf
μi

∑
i∈J0

∫ �
1
2

x1 +
1
2

x2 − k
�

dμi(x)

s.t.
∑
j∈J1

∫
(x1 − kx1,1)dμ j(x) = qx ,1

∑
j∈J2

∫
(x1 − kx1,2)dμ j(x) = qx1,2

∑
j∈J3

∫
(x2 − kx2,1)dμ j(x) = qx2,1

∑
j∈J4

∫
(x2 − kx2,2)dμ j(x) = qx2,2

14∑
i=1

∫
dμi(x) = 1

14∑
i=1

∫
x2

1 + x2
2 dμi(x)≤ M .

(4.9)

Applying the moment-SOS hierarchy to this problem and solving the first level
results in an upper bound of 7.4 and a lower bound of 2.387, which are in the
optimal values of (4.8). The SDP consisted of 14× 15 = 210 variables, 80 LMIs
involving matrices of size 3 × 3, 4 equality constraints and 211 inequality con-
straints.

Varying strikes

We are now going to give an example to see how changing the strike price affects
the optimal values of the optimization problems. Consider the data presented in
Table 4.2 and let the objective function be max(0,1/2x1 + 1/2x2 − k), B = 400
and M = 200 000. The optimal values are given in Table 4.3. All values stem
from the first level of the moment-SOS hierarchy and increasing the level up to
level 10 did not change the objective values. For each of the strike prices specified
in Table 4.2 the resulting programm for the first level of the hierarchy consisted
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i 1 2 3 4 5
kx1,i 90 95 100 110 120
qx1,i 20 15.5 12 5.5 1
kx2,i 90 96 102 107 115
qx2,i 20.5 15 10 6 0.75

Table 4.2: Strikes and corresponding prices for European call options

k 90 95 100 105 110 115

lower bound on price 16.875 12.792 8.708 4.625 1.675 0.0
computation time [s] 0.12 0.14 0.13 0.15 0.14 0.13

upper bound on price 20.25 15.7 11.55 8.016 4.75 2
computation time [s] 0.12 0.14 0.16 0.15 0.15 0.14

Table 4.3: Optimal lower and upper bounds w.r.t. the data given in Table 4.2

of 47× 15 = 705 variables, 257 LMIs, 11 equality constraints and 706 inequality
constraints. All moment and localizing matrices are of size 3× 3.

Currency Basket

A currency basket is simply a way to determine the value of a national currency by
calculating the weighted average of exchange rates of selected foreign currencies.
These objects became popular in 1971 after the abolition of the gold standard.
Options on currency baskets are attractive tools for multinational corporations to
manage exposure to multiple currencies. Consider the following currency bas-
ket option on Euro and British Pounds in US Dollars. For both EUR/USD and
GBP/USD two options are observable in the form (strike, price):

• EUR/USD: {(135.5,2.77), (138.5, 1.17)}
• GBP/USD: {(116,2.21), (119, 0.67)}

We choose the weights (2/3,1/3) for the objective function, i.e. ϕ(x) =
max(0,2/3x1 + 1/3x2 − k) and we compute bounds for different values of k. We
obtain an optimization problem similar to (4.8). The optimal values for the first
level of the hierarchy are shown in Table 4.4. In the corresponding optimization
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k 100 105 110 115 120

lower bound on price 1.4933 1.2599 1.0266 0.7933 0.56
computation time [s] 0.22 0.23 0.22 0.20 0.16

upper bound on price 31.5834 26.5833 21.5833 16.5833 11.5833
computation time [s] 0.15 0.16 0.18 0.18 0.16

Table 4.4: Optimal lower and upper bounds for a currency basket option with
different strikes for level r = 1

problem the domain is partitioned into 14 sets, for each of which 15 moment vari-
ables are introduced. In total there are 14 × 15 = 210 variables, 80 LMIs each
involving a matrix of size 3 × 3, 211 inequality constraints and 5 equality con-
straints. For this particular example, it is clear that the bounds are not very useful
in practice. This is, however, not due to our approach but to the number of data
points given. If more data is available, the bounds improve.

Example from Boyle and Lin [BL97]

In this example we compute bounds for a different type of option. We assume
we only have data like mean, variance and correlation of the assets under the
risk-neutral pricing measure is available, instead of observable option prices with
different strikes. The type of option is specified through the payoff function, which
will be given by max(0,max(x1, . . . , xn) − k) in this case. This type of option is
called call on max. It is based on n assets S1, . . . , Sn, and gives the owner the right
to buy the asset which at maturity is the most valuable for the predetermined
strike K .

The data in the following example is taken from Boyle and Lin [BL97], where
they introduced a different method to compute upper bounds. Consider three
assets with means (44.21,44.21, 44.21) and the covariance matrix given by

C =

⎡
⎣184.04 164.88 164.88

164.88 184.04 164.88
164.88 164.88 184.04

⎤
⎦ .

Then, in our setting, the smallest upper bound on the price on the call on max
option on these three assets is the optimal value of the following optimization
problem:
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sup
μ∈M(�3

+)+

∫
�3
+

max (0, max(x1, x2, x3)− k)dμ(x)

s.t.

∫
�3
+

xidμ(x) = 44.21 , for i = 1,2, 3∫
�3
+

(xi − 44.21)(x j − 44.21)dμ(x) = Ci, j , for i, j = 1, 2,3∫
�3
+

‖x‖2
2dμ(x)≤ M∫

�3
+

dμ(x) = 1.

(4.10)

The upper and lower bounds we obtain for different strikes

k ∈ {30,35, 40,45, 50}
are given in Table 4.5 as well as the bounds obtained by Boyle and Lin. Since all
constraint functions are polynomial the only function contributing to the partition
is the objective max{0,max(x1, x2, x3)− k}. The resulting partition consists of 4
sets. To solve the first level of the hierarchy we introduce 4× 35 = 140 moment
variables. The final problem has 13 equality constraints, 61 inequality constraints
and 22 LMIs, each involving a matrix of size 4×4. As in the previous example, the
weakness of the bound is due to the fact that not enough information is available
and is not inherent to the approach. Note that in their paper, Boyle and Lin only
give a procedure for upper bounds. Also, in the original reference Boyle and Lin
include a discount factor of exp(−0.1) to account for an assumed risk free interest
rate. This has no effect on the optimization problem, they simply multiply their
solution by the discount factor in the end.

Basket option on tech stocks

As a last example we consider four different tech stocks, namely Apple Inc.
(AAPL), Meta Platforms, Inc. (FB), Nvidia Corporation (NVDA), Qualcomm Incor-
porated (QCOM). Suppose one wants to price a basket option on these given the
data provided in Table 4.6 with payoff function max(0, 1

4(x1+ · · ·+ x4)−k), where
the xi are the prices of the stocks of the given companies. The bounds obtained
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k 30 35 40 45 50
Boyle & Lin [BL97] 21.51 17.17 13.2 9.84 7.3

upper bound on price 21.51 17.17 13.2 9.84 7.3
computation time [s] 0.02 0.01 0.01 0.02 0.02

lower bound on price 14.21 9.21 4.21 0 0
computation time [s] 0.02 0.02 0.01 0.01 0.01

Table 4.5: Revisiting an example from Boyle and Lin, computing bounds on prices
of a basket options given means and covariance of the underlying assets for dif-
ferent strikes.

Company AAPL FB NVDA QCOM
Option 1 (120,45.2) (155, 52.7) (175,57.9) (130,35.35)
Option 2 (130,35.7) (170, 38.5) (180,53.2) (145, 20.5)
Option 3 (145, 21.75) (180,29.85) (190,43.85) (157.5,8.8)
Option 4 (160, 9.1) (190, 22) (195,39.35) (167.5, 2.32)
Option 5 (170,3.35) (200,14.75) (227.5, 10.75) (175, 0.47)

Table 4.6: Strikes and corresponding prices for European call options observed
on March 1st 2022, all prices in USD.

by solving the first level of the hierarchy for different strike prices are shown in
Table 4.7. We set B = 400 and M = 200000. For this problem with k = 140, the
partition consisted of 1938 sets, for each of which we introduce 70 variables, mak-
ing 135 660 variables, 135 661 inequality constraints, 21 equality constriants and
18726 LMIs, each involving a 5×5 matrix. It is clear that the size of the partition
necessary to compute these bound grows exponentially in the number of assets
considered. Even though for low levels of the hierarchy the involved matrices are
very small, size of the partition is the limiting factor in the computations, since
for every subset we need to introduce moment variables and at least n LMIs. Note
that changing k may slightly change the number of partitions.

4.5 Relaxations of the non-compact case

We will consider another approach to approximate the solutions to problems like
(4.1), but without assuming the underlying set is compact.



597922-L-bw-Kirschner597922-L-bw-Kirschner597922-L-bw-Kirschner597922-L-bw-Kirschner
Processed on: 24-5-2023Processed on: 24-5-2023Processed on: 24-5-2023Processed on: 24-5-2023 PDF page: 103PDF page: 103PDF page: 103PDF page: 103

Chapter 4. Computing bounds for option prices 85

k 140 150 160 170 180 190 200
upper bound on price 52.79 42.89 33.48 24.53 15.68 8.51 6.99
computation time [s] 32.38 43.10 40.92 42.89 44.11 46.46 39.44

lower bound on price 46.26 36.26 26.27 16.28 6.28 0.0 0.0
computation time [s] 47.16 50.48 53.89 52.67 57.01 45.74 37.70

Table 4.7: Bounds for basket options on tech firms subject to observable data of
Table 4.6

4.5.1 Lasserre hierarchy of inner range

The one considered in this section, known as the Lasserre measure-based hierar-
chy of inner bounds introduced by Lasserre [Las11], consists of fixing a reference
measure ν on �n

+ such that ν(�n
+)<∞ and then approximating the density func-

tion of the optimal measure μ for (4.1) by SOS polynomials hr(x) ∈ Σ[x]r , such
that dμ(x) = hr(x)dν(x). This has the advantage that instead of searching for an
optimal measure in the infinite dimensional cone M(�n

+)+ we optimize over the
set of sums of squares of fixed degree, which can be done with SDP techniques.
For recent result on the convergence behavior of these measure-based hierarchies
in the compact case, see, e.g. [LS22b] and [LS21]. Opposed to before, the cone
of measures M(�n

+)+ is here approximated from inside, while before, we used an
outer approximation. A possible choice for the reference measure is

dν(x) = exp

�
−

n∑
i=1

xi

�
dx .

An important assumption on the reference measure is that its moments must be
available in closed form or efficiently computable. In the case above the moments
are given by

∫
�n
+

xαdν(x) = α!. The level r relaxation of problem (4.1) can be
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formulated as follows

inf
hr∈Σ[x]r

∫
�n
+

ϕ(x)hr(x)dν(x)

s.t.

∫
�n
+

fi, j(x)hr(x)dν(x) = qi, j , for i ∈ [n], j ∈ [Ni]∫
�n
+

f	(x)hr(x)dν(x) = p	 , for 	 ∈ [m]∫
�n
+

‖x‖2
2hr(x)dν(x)≤ M .

(4.11)

This problem can be cast as an SDP. It should be noted that the above SDP might be
infeasible even if the GMP has an optimal solution. As a simple example consider
the following constraint for some α ∈ �n

∫
�n
+

xαdμ(x) = 0 .

While the atomic Dirac delta measure δ0 at 0 certainly satisfies this equation,
there is no r ∈ � such that there is a degree r SOS polynomial density function
that does. One can, however, relax the constraints slightly, by searching for an
hr such that one lands in (increasingly) close proximity of the right-hand side.
Consider the following generalized moment problem

b0 = inf
ν∈P(K)+

�∫
K0

f0(x)dν(x) :

∫
Ki

fi(x)dν(x) = bi , i ∈ [m]



, (4.12)

where P(K)+ is the set of probability measures on K ⊂ �n, intK �= 	 and Ki ⊂ K
is closed for every i = 0, 1, . . . , m. De Klerk et al. proved the following result in
[dKKP20].

Theorem 4.9. Let μ be a reference measure with known (or efficiently computable)
moments such that the moments are finite and

∫
K x2k

i dμ(x) ≤ (2k)!M for some
M > 0 and all i ∈ [n], k ∈ �. If all fi for i = 0,1, . . . , m are polynomials, then, as
r →∞ we have

ε(r) := inf
h∈Σ[x]r

max
i=0,1,...,m

44444
∫

Ki

fi(x)h(x)dμ(x)− bi

44444
tends to zero (ε(r) = o(1)).
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This means that if we fix an ε > 0 and relax the equality constraints to an ε
neighborhood of the RHS, then we will eventually (for r large enough) find a fea-
sible solution for the relaxation such that the optimal value is at most ε away from
the true optimum. Theorem 4.9 promises convergence, but we cannot say any-
thing about the rate at which ε goes to zero. It shall be mentioned that adding the
ε(r) in the relaxation does not necessarily result in the inner range of the bounds
of the sought option prices, since this is basically an outer approximation of the
inner range. Another way to think of it is first relaxing the equality constraints of
problem (4.11) resulting in an increase of the possible range and then applying
the inner approximation to the obtained optimization problem. When adding the
εr -relaxation it is clear that we cannot expect monotonicity of the bounds, which
will become apparent in the numerical results of Section 4.5.2.

4.5.2 Univariate example

Consider the following example with data taken from [BP02]:

sup
hr∈Σ[x]r

/ inf
hr∈Σ[x]r

∫
�+

max(0, x − 105)hr(x)dν(x)

s.t.

∫
�+

max(0, x − 100)hr(x)dν(x) = 8.375∫
�+

max(0, x − 110)hr(x)dν(x) = 1.875∫
�+

hr(x)dν(x) = 1.

(4.13)

We know that the optimal lower and upper bounds for this data set are 3.375 and
5.125, respectively. To improve the numerical stability of SDP (4.13), one can use
a basis which is orthogonal on �+ w.r.t. the measure dν(x) = exp(−x)dx , namely
the Laguerre basis defined by

Ln(x) =
n∑

i=0

�
n
i

�
(−1)i

i!
x i .

These polynomials form an orthogonal system for the Hilbert space given by
L2(�+, w(x)dx) with w(x) = exp(−x), i.e.,∫ ∞

0

Ln(x)Lm(x)exp(−x)dx =

�
1, if m= n

0, otherwise.
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To implement the program we used the fact that∫ ∞

k
xndν(x) = exp(−k)

� n∑
	=0

n!
	!

k	
�

(4.14)

and relaxed it to

sup
hr∈Σ[x]r

/ inf
hr∈Σ[x]r

∫
�+

max
�

0, x − 105
110

�
hr(x)dν(x)

s.t.

44444
∫
�+

max
�

0, x − 100
110

�
hr(x)dν(x)− 8.375

110

44444≤ εr44444
∫
�+

max
�

0, x − 110
110

�
hr(x)dν(x)− 1.875

110

44444≤ εr44444
∫
�+

hr(x)dν(x)− 1
110

44444≤ εr .

(4.15)

As a normalization step, we divided the data by 110. We indicate in Table 4.8
how the optimal values change if for level r we choose εr to be the smallest value
such that the corresponding relaxation still has a feasible solution. In other words,
decreasing εr in this case results in infeasibility. Observe that no monotonicity ap-
pears, which is expected because the equality constraint is relaxed. We mention
that in Table 4.8 for r ∈ {6,7}MOSEK could not solve the maximization problem.
However, the upper bound approximations were already reasonably accurate at
the previous levels. It seems that the approach considered in Section 4.2 is su-
perior to the one presented in this section, since there we get the optimal values
of 5.125 and 3.375 for the first level of the hierarchy already. Especially, when
considering the fact that increasing r quickly results in numerical problems and
the problem is highly susceptible to small changes in εr . Additionally, it is dif-
ficult to estimate how much the ε relaxation perturbs the optimal value of the
optimization problem.

4.6 Conclusion and further research

In this section we reflect on our results. The model we considered has the advan-
tage that it combines different possibilities of using observable data. Option prices
with different strikes as well as moment information like mean, (co-)variance etc.
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r 2 3 4 5 6 7 ∞
εr 0.0273 0.02525 0.022125 0.01755 0.0161 0.0161 0

upper bound 5.1279 5.1366 5.1288 5.1264 - - 5.125
time in s 0.01 0.01 0.01 0.01 - - -

lower bound 5.122 5.1136 5.1221 5.1251 4.224 3.3522 3.375
time in s 0.01 0.01 0.01 0.01 0.02 0.03 -

Table 4.8: Optimal solutions for the level-r relaxation of the measure-based
Lasserre hierarchy applied to the εr relaxation given in (4.15) for Laguerre ba-
sis with varying εr for r = 2, . . . , 7. The εr are the smallest possible such that the
resulting SDP still has a feasible solution.

can be taken into account, which is very useful in practice. The moment-SOS hi-
erarchy, which was used to obtain the outer range delivers good approximations
for low hierarchy levels. The method for the inner range quickly fails but in the
considered cases still gave reasonable bounds. However, comparing the two, the
outer range clearly outperformed the inner range.

Regarding the compactness argument it should be noted that in practice it
might be prohibitive to carry out the core variety procedure in a setting with many
assets and constraints.
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5
Construction of approximation kernels via

semidefinite programming

A classical problem in approximation theory is the approximation of a function
by orthogonal polynomials. Orthogonality of polynomials may be defined in the
following way. Let μ be a positive finite Borel measure supported on a compact
semi-algebraic set

K=
�
x ∈ �n : g j(x)≥ 0 , j = 1, . . . , m

�
for g j ∈ �[x]. We say two functions f , g ∈ C(K) \ {h ∈ C(K) : h ≡ 0 on K} are
orthogonal (with respect to μ), whenever

〈 f , g〉μ :=

∫
K

f (x)g(x)dμ(x) = 0.

It is possible to define systems of pairwise orthogonal polynomials with respect to
the inner product 〈·, ·〉μ so that they form a basis of C(K).

Let {pα}α∈�n be a system of orthogonal polynomials with respect to a measure
μ with orthogonality relation

〈pα, pβ 〉μ = cαδα,β , (5.1)

91
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for some positive constants cα. Then, any μ-integrable function f =
∑
α∈�n fαx

α

can be approximated within that system in the following way

f (x)≈ ∑
α∈�n

aαpα(x), (5.2)

where

aα =
〈pα, f 〉μ

cα
. (5.3)

To obtain a degree r approximation of a function f one could simply truncate the
above sum leading to an approximation fr defined by

fr(x) =
∑
α∈�n

r

aαpα(x), (5.4)

with aα as in (5.3). For non-differentiable functions these approximations usu-
ally do not behave well in practice as reviewed in [WWAF06], because of a phe-
nomenon called Gibbs oscillations, see also Figure 5.1. This phenomenon occurs in
the vicinity of discontinuities of the function to be approximated, near the bound-
ary of the approximation domain, as well as close to points of non-differentiability
[Car25, HH79, GS97].

Our goal in this chapter is to find a polynomial of degree r to approximate f
while mitigating this effect. Another way to frame this question is as follows. We
are looking for a mapping that sends f to an approximation fr , i.e.,

f �→ ∑
α∈�n

r

bαpα =: fr ,

such that an error which measures the quality of the approximation is minimized.
Such a mapping can be constructed in the following way. Consider a kernel
Kr(x,y) : �n ×�n → � given by

Kr(x,y) :=
∑
α∈�n

r

gαpα(x)pα(y), (5.5)

for some constants gα,α ∈ �n
r . Then the integral (convolution) operator defined

as

K(r)( f )(x) :=

∫
K

f (y)Kr(x,y)dμ(y)

maps any function f =
∑
α∈�n fαx

α to a polynomial of degree at most r. More
accurately,

K(r)( f )(x) =
∑
α,β∈�n

r

aαgβ 〈pα, pβ 〉μ pβ (x) =
∑
α∈�n

r

bαpα(x) ,
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−1 −0.5 0.5 1 1.5

−1

−0.5

0.5

1

— Degree 64 approximation of f

— f (x) =

�
1 if x ∈ [−1,−0.025]−40x if x ∈ (−0.025,0.025)−1 if x ∈ [0.025, 1]1

Figure 5.1: Plot of a continuous function f and its approximation via the trunca-
tion of the series (5.2) at degree r = 64 visualizing Gibbs oscillations.

where

bα = 〈pα, f 〉μ gα.

The coefficients gα of the kernel Kr determine the approximation. For example,
setting gα = 1/cα results in the truncation of the expansion (5.2). In the univari-
ate case, where the orthogonal system is given by the Chebyshev polynomials of
the first kind this kernel is known as the Dirichlet kernel [Dir29], i.e., the approx-
imation operator used in Figure 5.1. In the multivariate case it is known as the
Christoffel-Darboux kernel (named after [Chr58, Dar78]). This approximation
works well for analytic functions, as reviewed in [Tre17]. Lasserre [Las21] draws
an interesting connection between the celebrated moment-SOS hierarchy [Las01]
and the Christoffel-Darboux kernel. In [MPW+21] the authors develop a method
for approximating possibly discontinuous functions using the Christoffel-Darboux
kernel, where the Gibbs phenomenon does not occur. Other approaches to get
rid of unwanted oscillations is to make use of non-negative kernels as has been
done in [WWAF06]. For this reason, positive approximation kernels are popular
in physics for the approximation of non-smooth functions in various settings. The
aim of our work is to generalize these kernels to several variables in a natural way,
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thus providing computational alternatives to using products of univariate kernels.

Outline and contributions

The aim of this chapter is to present a computational procedure, based on semidef-
inite programming (SDP) (cf. [Tod01, BV96]), to construct non-negative polyno-
mial kernels on K = [−1,1]n suitable for approximation. We show that these
kernels generalize a kernel which is called the Jackson kernel in [WWAF06], but
this is different from the original kernels introduced by Jackson in [Jac12]; we
give more details on this in Section 5.2.2. As the orthogonal basis we will use
products of univariate Chebyshev polynomials, as reviewed in Section 5.1, and
the fixed measure μ will be the corresponding product of measures so that the
Chebyshev polynomials are orthogonal. The resulting kernel polynomial method
is reviewed in Section 5.2 for the univariate case (n = 1), and extended to the
multivariate case in Section 5.2.4. In Section 5.3 we discuss how to form the
SDP problems that yield the optimal kernels, in the sense that their resolution
is minimal. In Section 5.4 we show how to exploit algebraic symmetry by using
techniques from [RTAL13, Val09] to reduce the size of these SDP problems. We
show in Section 5.5 that our constructions are superior to simply multiplying op-
timal univariate kernels in a well-defined sense. Finally, in Section 5.6 we give
further details of our numerical computations and show they are useful in practice
to approximate non-differentiable functions and related applications in physics.

5.1 Chebyshev polynomials

In this section we review properties of univariate Chebyshev polynomials for later
use. Our exposition closely follows the survey [WWAF06].

Let K= [−1, 1] and fix the measure μ on K defined by

dμ(x) =
1

π
$

1− x2
dx , x ∈ K.

The Chebyshev polynomials of the first kind form a system of orthogonal polyno-
mials. We will refer to the k-th Chebyshev polynomial of first kind as Tk(x). We
have for k ∈ �

Tk(x) = cos(k arccos(x)).
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The following recurrence relation is well known for m ∈ �
T0(x) = 1,

T−1(x) = T1(x) = x ,

Tm+1(x) = 2x Tm(x)− Tm−1(x)

Define for f , g : [−1, 1]→ �

〈 f , g〉μ =
∫ 1

−1

f (x)g(x)

π
$

1− x2
dx ,

to obtain the following orthogonality relations for the Chebyshev polynomials of
the first kind

〈Tk, Tm〉μ = 1+δk,0

2
δk,m.

Chebyshev polynomials exhibit nice stability and convergence properties in prac-
tice which is why they are the first choice in many applications. It is straight-
forward to generalize the Chebyshev polynomials to the multivariate case. Let
K= [−1, 1]n and define

dμ(x) :=
n∏

i=1

1

π
"

1− x2
i

dx.

Then, for α ∈ �n the corresponding multivariate Chebyshev polynomial of the
first kind is defined as

Tα(x) =
n∏

i=1

Tαi
(xi).

The orthogonality relations extend in the following way

〈Tα, Tβ 〉μ =
∫

K

Tα(x)Tβ (x)dμ(x) =
n∏

i=1

∫ 1

−1

Tαi
(xi)Tβi

(xi)

π
"

1− x2
i

dxi

=
n∏

i=1

1+δαi ,0

2
δαi ,βi

= cαδα,β ,

with cα =
�1

2

�H(α)
, where H(α) is the Hamming weight of α, i.e., the number

of non-zero entries.
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Convergence result

Our goal is to approximate a given continuous f defined on K = [−1, 1]n, by a
sequence of polynomials of increasing degree, such that the sequence converges
to f , uniformly on K. We further introduce a quantity

σr :=

,∫
K×K

‖x− y‖2Kr(x,y)dμ(x)dμ(y)

-1/2

,

called the resolution of the kernel Kr(x,y) in [WWAF06]. The resolution may be
interpreted as a measure of how much mass of the kernel is concentrated away
from the line where x = y. If all gα = 1/cα in expression (5.5) then K(r) is
the identity operator on the space of polynomials of degree at most r, and the
associated resolution is zero. This kernel will have all of its mass concentrated at
x = y. To ensure uniform convergence we want a kernel that has as much mass
as possible at the line x= y for every r ∈ �, while fulfilling some other properties
stated below:

P1. Kr(x,y) =
∑
α∈�n

r
gαTα(x)Tα(y);

P2. Kr(x,y)≥ 0 for all (x,y) ∈ K×K and all r;

P3.
∫

K Kr(x,y)dμ(y) = 1 for all x ∈ K for all r;

P4. limr→∞σr = 0.

In the statement of the result, recall that the modulus of continuity of f ∈ C(K) is
defined as

ω f (δ) := max
x,y∈K‖x−y‖≤δ

| f (x)− f (y)|.

Proposition 5.1. Let K= [−1,1]n and f : K→ � be continuous on K with modulus
of continuityω f . Under the above conditions P1-P4 on Kr(x,y), one hasK(r)( f )→ f
as r →∞, uniformly on K. Moreover,

‖K(r)( f )− f ‖∞,K ≤ 2
�

1+
π$
2

�
ω f (σr). (5.6)

Our main result is the construction of kernels whose resolutions satisfy σr =
O(1/r) using semidefinite programming techniques (see Proposition 5.9). This
proves that our kernels yield the best possible rate of convergence for continuous
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f that are not differentiable, due to Bernstein’s theorem (see [Ber12]). The proof
of Proposition 5.1 will be postponed to later, until we have given all necessary
definitions and auxiliary results. Let us mention at this point that Proposition 5.1
is a known result in approximation theory. Indeed, the argument is essentially
as given in the PhD thesis of Jackson [Jac11]. We give a proof in our specific
setting for completeness, since we could not find a statement of Proposition 5.1
in a suitable form in the literature.

5.2 The kernel polynomial method

We begin by considering kernels to approximate univariate functions. Let Kr be a
kernel of the following form

Kr(x , y) = g0 + 2
r∑

k=1

gkTk(x)Tk(y). (5.7)

Kernels of this kind clearly satisfy property P1. If we set g0 = 1, the resulting
kernel also satisfies P3. In the following, we will explore how to find kernels that of
this form that additionally satisfy P2 and are therefore suitable for approximation.
For this we will first introduce trigonometric polynomials.

5.2.1 Trigonometric polynomials

A trigonometric polynomial p(t) of degree r is defined as

p(t) = p0 +
r∑

k=1

pk cos(kt) + p−k sin(kt),

for pk ∈ � for k = −r,−r + 1, . . . , r − 1, r. The following lemma is proved in
[LP04], but it is a classical result.

Lemma 5.2. If p(t) is a non-negative trigonometric polynomial of degree r, then
there exists a positive semidefinite matrix Q ∈ �r+1

+ such that p(t) = v�Qv where

v� = [1, cos(t), sin(t) . . . , cos(kt), sin(kt)]

if r = 2k is even and

v� = [cos (t/2) , sin (t/2) , cos (t + t/2) , . . . , cos (kt + t/2) , sin (kt + t/2)]

if r = 2k+ 1 is odd.
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Remark 5.3. Let us mention that there are stronger results of the kind of Lemma
5.2. For example Corollary 2 in [FP16]. We state this weaker result for the ease of
exposition.

Note that every trigonometric polynomial of the form

p(t) = g0 + 2
r∑

k=1

gk cos(kt) (5.8)

gives rise to a kernel of the form

Kr(x , y) = g0 + 2
r∑

k=1

gkTk(x)Tk(y).

To see this, consider the following substitution

1
2
[p(arccos(x) + arccos(y)) + p(arccos(x)− arccos(y))]

= g0 + 2
r∑

k=1

gk
1
2
[cos(k(arccos(x) + arccos(y)))

+ cos(k(arccos(x)− arccos(y)))]

= g0 + 2
r∑

k=1

gk cos(k arccos(x)) cos(k arccos(y))

= g0 + 2
r∑

k=1

gkTk(x)Tk(y).

(5.9)

If p(t) is non-negative on [−π,π], then Kr(x , y) is non-negative on [−1,1]2.

Theorem 5.4. (Fejér (1915)) Every non-negative trigonometric polynomial of de-
gree r of the form

p(t) = λ0 +λ1 cos(t) +μ1 sin(t) + · · ·+λr cos(r t) +μr sin(r t)

can be written as

p(t) =

44444
r∑

m=0

cmeımt

44444
2

for cm ∈ �.
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In other words, there is a one-to-one correspondence between trigonometric
polynomials of the form

t �→ λ0 +λ1 cos(t) +μ1 sin(t) + · · ·+λr cos(r t) +μr sin(r t)

that are non-negative for every t and functions of the form

t �→
44444

r∑
m=0

cmeımt

44444
2

.

This correspondence may be leveraged to obtain kernels with minimum resolu-
tion, which is done in the next section.

5.2.2 Constructing optimal kernels

In this subsection we will revisit the approach described in [WWAF06], showing
the kernel they obtain has minimum resolution among all non-negative kernels
on [−1, 1]2. To avoid ambiguity, note the following. The authors in [WWAF06]
refer to their kernel as the Jackson kernel, even though in the literature there
is another object which is referred to in that name. Therefore, we will refer to
the kernel from [WWAF06] as the minimum resolution kernel, reserving the term
“Jackson kernel” for the object Jackson used in [Jac12] to prove his theorems. We
explain the different notions of the term Jackson kernel in Appendix C.1. We are
interested in non-negative trigonometric polynomials with cosine terms only, as
these are the ones giving rise to kernels of the form that we want as we have seen
in (5.8), (5.9). It is easy to see that if all sine-terms are zero, then the cm terms
are real. Thus, this gives us a way to characterize kernels of the form (5.7) that
are non-negative. Consider a function of the form

p(t) =

44444
r∑

m=0

ameımt

44444
2

,

for am ∈ �. Rewriting this expression we find

p(t) =
r∑

m,	=0

ama	 cos([	−m]t)

=
r∑

m=0

a2
m + 2

r∑
k=1

r−k∑
m=0

amam+k cos(kt)

= g0 + 2
r∑

k=1

gk cos(kt),
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for

gk =
r−k∑
m=0

amam+k. (5.10)

Therefore, every set of real numbers a0, a1, . . . , ar satisfying
∑r

k=0 a2
k = 1 gives

rise to a kernel of the form (5.7) satisfying P1, P2, P3 when the gk are set as in
(5.10). A first idea to construct such a kernel would be to set all ak =

1$
r+1

, to

ensure that g0 = 1. Then we find gF
k = 1 − k

r+1 . The resulting object is known
as the Fejér kernel [Fej04]. However, this kernel is not optimal in the sense that
is does not have minimum resolution. We next take a look at kernels satisfying
P1-P3, with minimal resolution σr . A simple calculation using the orthogonality
of the polynomials defining Kr shows that

σ2
r =

∫
K

(x − y)2Kr(x , y)dμ(x)dμ(y) = g0 − g1.

We can formulate an optimization problem to minimize resolution with respect to
ak.

min g0 − g1 ⇔ min
r∑

k=0

a2
k −

r−1∑
k=0

akak+1

s.t. g0 = 1 s.t.
r∑

k=0

a2
k = 1.

(5.11)

Solving this problem results in the minimum resolution kernel mentioned earlier
which is called the Jackson kernel in [WWAF06], whose coefficients are given by

gKPM
k,r =

(r − k+ 2) cos
�
πk
r+2

�
+ sin

�
πk
r+2

�
cot

�
π

r+2

�
r + 2

. (5.12)

Thus, we see that σ2
r = gKPM

0,r − gKPM
1,r = 1 − cos

�
π

r+2

�
= O(1/r2). We refer to

Figure 5.2 as an illustration of the absence of Gibbs’ phenomenon when approxi-
mating a function using the minimum resolution kernel.

5.2.3 Uniform convergence in terms of σr in the multivariate case

In this subsection we prove we may also bound the rate of convergence in terms of
σr in the multivariate case. Note that a simple calculation using the orthogonality
of the chosen polynomial basis shows that σr can be expressed in terms of the
coefficients gα:

σ2
r =

n∑
i=1

(1− gei
). (5.13)
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1 if x ∈ [−1,−0.025]−40x if x ∈ (−0.025,0.025)−1 if x ∈ [0.025, 1]

Figure 5.2: Plot of a continuous function f and its approximation via the minimum
resolution kernel defined via (5.12) for degree r = 64 visualizing absence of Gibbs
oscillations.

We first prove the result for uniformly continuous periodic functions on [−π,π]n

and then extend the results for the case of uniformly continuous functions on
[−1, 1]n. Recall that the modulus of continuity for a uniformly continuous func-
tion f is defined as

ω f (δ) := max
x,y∈K‖x−y‖≤δ

| f (x)− f (y)|.

Further, note the following properties of the modulus of continuity

1. For λ,δ > 0 :ω f (λδ)≤ (1+λ)ω f (δ) (Lemma 1.3 in [Riv69])

2. For continuous f and δ > 0 one has | f (x−y)− f (x)| ≤ �
1+ 1

δ2 ||y||2�ω f (δ)
(by proof of Proposition 5.1.5 in [AC11]).

Let f be uniformly continuous and periodic on B := [−π,π]n and let the degree
r trigonometric kernel

Lr(x) = 1+
∑

α∈�n
r \{0}

2H(α)gα

n∏
i=1

cos (αi xi) (5.14)

be non-negative on B for some set of coefficients gα,α ∈ �n
r \ {0}. Define

L(r)( f )(x) = 1
(2π)n

∫
B

f (x− y)Lr(y)dy.
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Further, note that

|L(r)( f )(x)− f (x)| ≤ 1
(2π)n

∫
B

| f (x− y)− f (x)|Lr(y)dy

≤ 1
(2π)n

∫
B

�
1+

1
δ2
‖y‖2

�
ω f (δ)Lr(y)dy

=ω f (δ) +
ω f (δ)

δ2

1
(2π)n

∫
B

‖y‖2 Lr(y)dy,

(5.15)

where the second inequality follows from the second property of the modulus of
continuity. Note that since −π≤ yi ≤ π one can check that

||y||2 =
n∑

i=1

y2
i ≤ π

2

2

n∑
i=1

(1− cos(yi)) .

A simple calculation then shows

∫
B

‖y‖2 Lr(y)dy≤ π2

2

&
n∑

i=1

(2π)n − ∑
α∈�n

r

2H(α)gα

∫
B

cos(yi)
n∏

i=1

cos(αi yi)dy

'

= (2π)n
π2

2

n∑
i=1

�
1− gei

�
,

where we used the fact that

cos(x) cos(kx) =
1
2
(cos((k− 1)x) + cos((k+ 1)x)) .

Recalling identity (5.13) and choosing

δ =

√√√π2

2

n∑
i=1

(1− gei
) = π/

$
2σr

we find by (5.15) and the first property of the modulus of continuity:

|L(r)( f )(x)− f (x)| ≤ 2ω f (π/
$

2σr)≤ 2(1+π/
$

2)ω f (σr).

We next deal with the case where f is a continuous function on [−1,1]n. Define
g(θ ) = f (cos(θ )) = f (cos(θ1), . . . , cos(θn)) for θ ∈ [0,π]n. Further, let g(θ ) =
g(θ1, . . . ,−θi , . . . ,θn) for θi ∈ [−π, 0]. Similarly, we may define g(θ ) for all θ ∈
[−π,π]n. We see g(θ ) is even and periodic on [−π,π]n. Since it is even, the
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Chapter 5. Construction of approximation kernels via SDP 103

convolution with a trigonometric kernel of the form (5.14) will have only cosine
terms. The argument is as follows:

(2π)nL(r)(g)(θ ) =
∫

B

g(θ −ϕ)Lr(ϕ)dϕ

=

∫
B

g(ϕ)Lr(θ −ϕ)dϕ

=

∫
B

g(ϕ)

⎛
⎝1+

∑
α∈�n

r \{0}
2H(α)gα

n∏
i=1

cos (αi(θi −ϕi))

⎞
⎠dϕ.

=

∫
B

g(ϕ)dϕ+

∑
α∈�n

r \{0}
2H(α)gα

∫
B

g(ϕ)
n∏

i=1

(cos(αiθi) cos(αiϕi) + sin(αiθi) sin(αiϕi))dϕ.

The integrand in the last integral is the function g times the sum of products of
sine and cosine functions. The domain B = [−π,π]n is symmetric and g is even
by construction. Hence, every integral containing a sine function will evaluate to
zero, since the sine function is odd. We may therefore assume the approximation
will take the following form

qr(θ ) = L(r)(g)(θ ) = a0 +
∑

α∈�n
r \{0}

2H(α)gαaα

n∏
i=1

cos (αiθi) . (5.16)

Substituting θi = arccos(xi) results in a polynomial

pr(x) = a0 +
∑
α∈ �n

r

2H(α)gαaαTα(x). (5.17)

This polynomial will serve as an approximation for f , and we will bound the
absolute error in terms of σr . For this we will need the following lemma.

Lemma 5.5. For f , g as defined above we have

ωg(δ)≤ω f (δ).
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Proof. Note that

ωg(δ) = sup
θ1,θ2∈[−π,π]n‖θ1−θ2‖≤δ

|g(θ1)− g(θ2)|

= sup
θ1,θ2∈[0,π]n‖θ1−θ2‖≤δ

| f (cosθ1)− f (cosθ2)|

= sup
x,y∈[−1,1]n‖arccosx−arccosy‖≤δ

| f (x)− f (y)|

≤ sup
x,y∈[−1,1]n‖x−y‖≤δ

| f (x)− f (y)|=ω f (δ),

where we set arccosx= (arccos(x1), . . . , arccos(xn)) to shorten the notation. Note
that we used | cos(x)− cos(y)| ≤ |x − y|.

We have gathered everything required to prove Proposition 5.1.

Proof of Proposition 5.1. First, note that

sup
x∈[−1,1]n

| f (x)− pr(x)| ≤ sup
θ∈[−π,π]n

|g(θ )− qr(θ )|
≤ 2(1+π/

$
2)ωg(σr)

≤ 2(1+π/
$

2)ω f (σr),

where the last inequality follows by Lemma 5.5. Above we have obtained a poly-
nomial pr of degree less than r which approximates f ∈ C(K). We did so by using
the convolution with a trigonometric kernel of the form (5.14). Using the substi-
tution given in (5.9) we may transform the trigonometric kernel into a positive
polynomial kernel of the form

Kr(x,y) = 1+
∑
α∈�n

r

2H(α)gαTα(x)Tα(y). (5.18)

It is left to show that both approaches are equivalent, i.e., lead to the same ap-
proximation of the function f . For this note the following. The polynomial we
obtain via the approximation process defined as per (5.18) is

K(r)( f )(x) =
∫

K

f (y)dμ(y) +
∑
α∈�n

r

2H(α)gα

,∫
K

f (y)Tα(y)dμ(y)

-
Tα(x)

= c0 +
∑
α∈�n

r

2H(α)gαcαTα(x),
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Chapter 5. Construction of approximation kernels via SDP 105

where

cα = 〈 f , Tα〉μ =
∫

K

f (y)Tα(y)dμ(y).

We need to check whether we get the same coefficients from both approaches.
Recall the approximation from (5.17):

pr(x) = a0 +
∑
α∈�n

r

2H(α)gαaαTα(x),

where

aα =
1

(2π)n

∫
B

g(ϕ)
n∏

i=1

cos(αiϕi)dϕ.

We would like to show that aα = cα, i.e.,∫
K

f (y)
n∏

i=1

cos(αi arccos(yi))"
1− y2

i

dy=
1
2n

∫
B

g(ϕ)
n∏

i=1

cos(αiϕi)dϕ.

For this note that

aα =
1
2n

∫
B

g(ϕ)
n∏

i=1

cos(αiϕi)dϕ =

∫
[0,π]n

f (cos(ϕ))
n∏

i=1

cos(αiϕi)dϕ. (5.19)

Next we can make use of the following substitution

ϕi = arccos(xi)⇒ dϕi = − 1"
1− x2

i

dxi .

Finally, using (5.19) we find

aα =

∫
[0,π]n

f (cos(ϕ))
n∏

i=1

cos(αiϕi)dϕ =

∫
K

f (x)
n∏

i=1

cos(αi arccos(xi))"
1− x2

i

dx= cα.

This proves we indeed have that both approaches are equivalent, i.e., they lead
to the same approximation. This completes the proof of Proposition 5.1.

5.2.4 Positivstellensatz for the multivariate case

In this subsection we present a classical Positivstellensatz for multivariate trigono-
metric polynomials. This result allows for the construction of semidefinite pro-
grams whose solutions provide optimal kernels with respect to σr . To this end,
recall the identities: if pk(φ) = cos(kφ), then, for x , y ∈ [−1,1],

pk(arccos(x)) = Tk(x)
1
2
(pk(arccos(x) + arccos(y)) + pk(arccos(x)− arccos(y))) = Tk(x)Tk(y).
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As a consequence, if we start with a non-negative multivariate trigonometric poly-
nomial of the form

(φ1, . . . ,φn) �→ 1+
∑

α∈�n
r \{0}

2H(α)gα
∏
i∈[n]

cos(αiφi),

then replacing each pαi
(φi) := cos(αiφi) by

1
2

�
pαi
(arccos(xi) + arccos(yi)) + pαi

(arccos(xi)− arccos(yi))
�

as above (this operation preserves non-negativity), one obtains the non-negative
kernel

K(x,y) = 1+
∑

α∈�n
r \{0}

2H(α)gα
∏
i∈[n]

Tαi
(xi)Tαi

(yi) x,y ∈ [−1,1]n.

In contrast to the polynomial case, each multivariate, positive, trigonometric poly-
nomial is a sum of squares of trigonometric polynomials. (The degrees appearing
in the sums-of-squares may be arbitrarily large, though.)

Theorem 5.6 (e.g. Theorem 3.5 in [Dum07]). If p is a positive trigonometric poly-
nomial, then there exists an k ∈ � and a hermitian p.s.d. matrix M of order

�n+k
k

�
such that

p(φ) =
9
exp(ıα�φ)

:∗
α∈�n

k
M
9
exp(ıα�φ)

:
α∈�n

k
.

Again, the value k in the theorem may be arbitrarily large, but for fixed k ≥ r,
one may consider the kernel given by solving the SDP:

σ2
r =min

n∑
i=1

1− gei
(5.20)

subject to

1+
∑

α∈�n
r \{0}

2H(α)gα
∏
i∈[n]

cosαiφi =
9
exp(ıα�φ)

:∗
α∈�n

k
M
9
exp(ıα�φ)

:
α∈�n

k

M � 0.

In what follows we will focus on the first level of the hierarchy, that is, r = k. We
discuss the case where k > r in Section 5.6.1.
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5.3 Reformulations of the SDP

In this section we present two ways to find numerical solutions to problem (5.20).
But first we show that the optimal solution to the problem maybe assumed w.l.o.g.
to be real.

5.3.1 Existence of a real solution

Let M = P + ıQ, for P ∈ �s(n,r) and Q being skew-symmetric of the same size.
Then,9

exp(ıα�φ)
:∗
α∈�n

r
(P + ıQ)

9
exp(ıα�φ)

:
α∈�n

r
=

∑
α,β∈�n

r

cos
9
(α− β)�φ: Pα,β

− ∑
α,β∈�n

r

sin
9
(α− β)�φ:Qα,β ,

because of the identities

cos(α�φ) cos(β�φ) + sin(α�φ) sin(β�φ) = cos
9
(α− β)�φ:

and
cos(α�φ) sin(β�φ)− sin(α�φ) cos(β�φ) = sin

9
(α− β)�φ: .

We continue to show we may without loss of generality assume there exists
an optimal solution which is real symmetric, i.e., Q = 0. Let P + ıQ be an optimal
solution to (5.20) and define

G(φ1, . . . ,φn) =
∑
γ∈�n

r

2H(γ)gγ
∏
i∈[n]

cos(γiφi)

=
∑
α,β∈�n

r

cos
9
(α− β)�φ: Pα,β −

∑
α,β∈�n

r

sin
9
(α− β)�φ:Qα,β .

Now, since the cosine is even we find G(φ1, . . . ,φn) = G(−φ1, . . . ,−φn). So

G(φ1, . . . ,φn) =
1
2
(G(φ1, . . . ,φn) + G(−φ1, . . . ,−φn))

=
1
2

� ∑
α,β∈�n

r

cos
9
(α− β)�φ: Pα,β −

∑
α,β∈�n

r

sin
9
(α− β)�φ:Qα,β

+
∑
α,β∈�n

r

cos
9
(β −α)�φ: Pα,β −

∑
α,β∈�n

r

sin
9
(β −α)�φ:Qα,β

�
=

∑
α,β∈�n

r

cos
9
(α− β)�φ: Pα,β .
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Therefore, we may subsequently assume that in (5.20) the matrix M is real
symmetric.

5.3.2 Sampling based formulation

The first strategy for the implementation is based on sampling, a concept intro-
duced by Löfberg and Parrilo in [LP04]. Instead of equating coefficients, the idea
is to equate evaluations of two representations of a (trigonometric) polynomial
on a finite number of discrete sampling points. In our problem at hand we are
looking for a real symmetric psd matrix M such that

1+
∑

α∈�n
r \{0}

2H(α)gα
∏
i∈[n]

cos(αiφi) =
∑
α,β∈�n

r

cos
9
(α− β)�φ:Mα,β , (5.21)

for all φ ∈ [0,2π]n. We discretize the set of values for φ ∈ [0, 2π]n and en-
force equality after evaluating the cosine terms for these sample points. Consider
the set

Φ =
;
ϕ ∈ [0, 2π]n : ϕi =

kiπ

(r + 2)
for (k1, . . . , kn) ∈ {0, 1, . . . , 2(r + 2)}n

<
,

which has (2(r+2)+1)n elements. This set may be seen as uniformly distributed
points on the unit sphere of dimension n− 1. Then we can formulate an SDP as
follows

σ2
r =min

n∑
i=1

1− gei
(5.22)

subject to∑
γ∈�n

r

2H(γ)gγ
∏
i∈[n]

cos(γiϕi) =
∑
α,β∈�n

r

cos
9
(α− β)�ϕ:Mα,β ∀ϕ ∈ Φ

gγ = 1 for γ= (0, . . . , 0)

M � 0.

Note that the number of sample points is large enough, so that the optimal
value of the above program is equal to σ2

r . In practice this approach works well
for small instances, i.e., for n= 2, r ≤ 8. For larger r the solver we used (MOSEK
[MOS19]) terminated because of slow progress. It did, however, return solutions
that were close to being optimal. Using other solvers resulted in a significant
increase in running time.
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5.3.3 Equating coefficients via trigonometric identities

The other approach is using the standard idea of SOS-optimization, i.e., equating
coefficients. The following lemma is essential for this step.

Lemma 5.7. Let for I ⊆ [n] the function ωI : �n → �n be defined as follows

ωI (x)i =

�−xi , if i ∈ I

xi , otherwise.

The following trigonometric identity holds for all n ∈ �

2H(x)
n∏

i=1

cos(xi) =
∑

I⊆[n]
cos

� n∑
i=1

ωI (x)i

�
. (5.23)

Proof. Note that in other words, ωI flips the sign of xi for all i ∈ I . We will prove
the statement by induction on n. Let x ∈ �n and assume without loss of generality
that the support of x is n. For n = 0, 1 the identity is obvious. For the induction
step consider the identity for n← n+1. Let x̃= (x, xn+1) ∈ �n+1 with full support.
Then,

2n+1
n+1∏
i=1

cos(xi) = 2 cos(xn+1)

�
2n

n∏
i=1

cos(xi)

�
(i)
=

∑
I⊂[n]

cos

� n∑
i=1

ωI (x)i

�
(cos(xn+1) + cos(−xn+1))

(ii)
=

∑
I⊂[n]

cos

�∑
i=1

ωI (x)i + xn+1

�
+

∑
I⊂[n]

cos

�∑
i=1

ωI (x)i − xn+1

�

=
∑

I⊂[n+1]

cos

�n+1∑
i=1

ωI (x̃)i

�
,

where in (i)we used the induction assumption and in (ii)we used the well-known
identity

cos(x + y) = cos(x) cos(y)− sin(x) sin(y),

and the fact that sin(−x) = − sin(x).

For convenience, we restate the optimization problem below. Recall that it is
enough to consider real symmetric matrices.
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σ2
r =min

n∑
i=1

1− gei
(5.24)

subject to

1+
∑

γ∈�n
r \{0}

2H(γ)gγ
∏
i∈[n]

cos(γiφi) =
∑
α,β∈�n

r

cos[(α− β)�φ]Mα,β (5.25)

M � 0.

The identity (5.23) will allow us to compare coefficients of trigonometric polyno-
mials in (5.24). On the right-hand side in (5.25) we will find all ζ ∈ �n for which
there exist α,β ∈ �n

r , such that ζ = α− β . The identity (5.23) now tells us that
we have to make sure that for a given γ ∈ �n

r the following holds∑
α,β∈�n

r
α−β=γ

Mα,β =
∑
α,β∈�n

r
α−β=ωI (γ)

Mα,β for all I ⊂ [n],

since then we can factor out the same sum for each ωI (γ) and apply identity
(5.23). Noting that α − β = −(β − α) we can construct symmetric constraint
matrices. For each γ ∈ �n

r let C (γ,I) ∈ {0, 1}s(n,r)×s(n,r)

C (γ,I)
α,β =

�
1, if α− β =ωI (γ)∨ωI c (γ)

0, otherwise.

These matrices will always be symmetric since if α − β = ωI (γ) then β − α =
ωI c (γ). We define I as a set of subsets of [n] such that no complement I c of a set
I ∈ I lies in I and ∪I∈I{I , I c}= {I : I ⊆ [n]}. With this we can formulate the first
set of constraints, i.e.,

〈M , C (γ,	)〉= 〈M , C (γ,I)〉 ∀I ∈ I,∀γ ∈ �n
r .

Then gγ =
1
2〈M , C (γ,I)〉 for any I ∈ I. Additionally, we need the following. Let

Γ(n,r) =

�
ζ ∈ �n : ∃α,β ∈ �n

r ,α− β = ζ ∧
n∑

i=1

|ζi |> r



,

which leads us to the next set of constraints

〈M , C (ζ,I)〉= 0 ∀I ∈ I,∀ζ ∈ Γ(n,r).
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This way we ensure that there will not appear any unwanted terms in the resulting
polynomial. Any ζ ∈ Γ(n,r) will not find the necessary pairs to use identity (5.23).
Therefore, we force all such terms to be zero. We can equivalently formulate the
SDP now as

σ2
r =min

n∑
i=1

1− 1
2
〈M , C (ei ,	)〉 (5.26)

subject to

〈M , C (α,	) − C (α,I)〉 = 0 ∀I ∈ I,∀α ∈ �n
r \ {0}

〈M , C (ζ,I)〉 = 0 ∀I ∈ I,∀ζ ∈ Γ(n,r)

Tr(M) = 1

M � 0.

Note that Tr(M) = 1 ensures gα = 1 for α = (0, . . . , 0). This implementation
works better in practice than the previous one (5.22), especially for larger values
of r.

5.4 Symmetry reduction

In this section we will present an approach that exploits existing symmetries in
semidefinite programs in order to improve numerical tractability. There has been
done research on the exploitation of symmetries in semidefinite programming,
see, e.g., [Val09]. There are also results available focusing on symmetry exploita-
tion for semidefinite relaxations of polynomial optimization problems for which
we refer the reader to [GP04], [RTAL13]. The name readily implies that we will
use some symmetry to reduce the size of the SDP. The goal is to set up an equiva-
lent SDP, where we can impose a block diagonal structure on the matrix variable.
This is helpful because we then only have to enforce the positive semidefiniteness
for the individual blocks instead of the whole matrix. We present the necessary
background information in Appendix B.

5.4.1 Symmetry adapted basis

Let Sn be the symmetric group acting on the variables xi for i ∈ [n] by permuting
the elements, i.e.,

σ(xi) = xσ(i) for i ∈ [n],σ ∈ Sn.
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The action of Sn may be defined on functions as well in the following way. Let
f : �n → �, then

σ( f ) = f (σ(x)),

where, if an element σ ∈ Sn is applied to an n-tupel we define for x ∈ �n

σ(x) = (σ(x1),σ(x2) . . . ,σ(xn)) = (xσ(1), xσ(2), . . . , xσ(n)),

i.e., elementwise application. We will call a function f invariant under Sn if
σ( f ) = f (x) for all σ ∈ Sn. Note that our kernel is defined over the set [−π,π]n,
which is invariant under the action of Sn. We can also assume without loss of gen-
erality that the optimal kernel Kr will be invariant under the action of Sn, meaning
that for all coefficients we will have

gα = gσ(α) for all σ ∈ Sn,α ∈ �n
r ,

To see that the optimal kernel will be invariant under Sn, note that all con-
straints in problem (5.24) are invariant under Sn. Thus, any optimal solution to
(5.24) can be “symmetrized” using the Reynolds-operator, which is defined as

RSn( f ) :=
1
|Sn|

∑
σ∈Sn

σ( f ).

Let Kr =
∑
α∈�n

r
g̃α

∏
i∈[n] cosαiϕi be a feasible solution to (5.24), then

RSn(Kr) =
1
|Sn|

∑
σ∈Sn

∑
α∈�n

r

g̃ασ

&∏
i∈[n]

cosαiϕi

'

is also feasible and will lead to the same objective value. Let 	[ϕ]r =
	[ϕ1, . . . ,ϕn]r be the set of trigonometric polynomials of degree less that r. We
will define 	[ϕ]Sn

r to be the set of trigonometric polynomials of degree at most
r which are invariant under the action of Sn. A basis for 	[ϕ]r is given by
{exp(ıα�φ)}α∈�n

r
. To exploit the symmetry we will construct a new basis B, which

we call the symmetry adapted basis, see Appendix B. The set B may be seen as a
collection of k(n, r) ∈ � sub-bases Bi = {bij

∈ 	[ϕ]r : for j ∈ [ki]}, for some
ki ∈ � in the sense that B = {Bi : i ∈ [k(n, r)]}. In general there are no closed
form expressions for k(n, r) and ki available as functions of n and r, but to give
some impression of these numbers we provide Table C.2 in Appendix C.2. We call
B a basis because

span
�
RSn(bil b

∗
im
), i ∈ [k(n, r)], l, m ∈ [ki]

�
= 	[ϕ]Sn

r .



597922-L-bw-Kirschner597922-L-bw-Kirschner597922-L-bw-Kirschner597922-L-bw-Kirschner
Processed on: 24-5-2023Processed on: 24-5-2023Processed on: 24-5-2023Processed on: 24-5-2023 PDF page: 131PDF page: 131PDF page: 131PDF page: 131

Chapter 5. Construction of approximation kernels via SDP 113

The basis B has the property that its elements are pairwise orthogonal in the sense
that for bil ∈ Bi , bjm ∈ B j with i �= j the symmetrized product is zero, i.e.,

RSn(bil b
∗
jm
) = 0.

Before, we were interested in suitable kernels that could be written as

Kr =
9
exp(ıα�φ)

:∗
α∈�n

r
M
9
exp(ıα�φ)

:
α∈�n

r
,

where M ∈ �s(n,r)
�0 . Knowing that the optimal Kr is invariant under Sn, we can

write

Kr =
k(n,r)∑
i=1

[b∗i j
] j∈[ki]M

(i)[bij
] j∈[ki]

for M (i) � 0 for all i ∈ [k(n, r)]. The pairwise orthogonality of B means that we
can consider a block diagonal matrix⎡

⎢⎢⎢⎢⎢⎢⎣

M (1) 0 0 . . . 0
0 M (2) 0 . . . 0

0 0
.. . . . .

...
...

...
. . . . . . 0

0 0 . . . 0 M (k(n,r))

⎤
⎥⎥⎥⎥⎥⎥⎦

with M (i) ∈ �ki�0 in our SDP. The computational advantage is that we only have to
ensure the positive semidefiniteness of the individual blocks, instead of the much
larger matrix M .

Example 5.8. Consider the following example for a symmetry adapted basis with
n = 2, r = 2. In this case k(n, r) = k(2, 2) = 2 and k1 = 4, k2 = 2. For a
corresponding SDP we would have to consider two psd blocks of sizes 4 and 2 instead
of one psd matrix of size 6× 6. For B1,B2 we find

B1 =
�

exp(ı (0ϕ1 + 0ϕ2)) = 1,

exp(ı (ϕ1 +ϕ2)),

exp(ıϕ1) + exp(ıϕ2),

exp(ı 2ϕ1) + exp(ı 2ϕ2)
�

B2 =
�

exp(ıϕ1)− exp(ıϕ2),

exp(ı 2ϕ1)− exp(ı 2ϕ2)
�
.
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5.4.2 Construction of the symmetry adapted SDP

For α ∈ �n
r we define the corresponding orbit as Oα = {σ(α) : σ ∈ Sn}. For each

orbit we choose a representative α which is sorted, i.e., α1 ≤ α2 ≤ · · · ≤ αn and
index the orbit by that α. We define S(�n

r ) = {α ∈ �n
r : α1 ≤ α2 ≤ · · · ≤ αn} to

be the set of representatives for the set of orbits. The set �n
r can be written as the

union of orbits, i.e.,

�n
r =

⋃
α∈S(�n

r )

Oα.

The invariance of Kr means that gα = gβ for every β ∈ Oα. We are now equipped
to reformulate (5.24) as an equivalent optimization problem which is easier to
solve. We first note that for the invariant kernel we have

∑
α∈�n

r

2H(α)gα

n∏
i=1

cosαiϕi =
∑

α∈S(�n
r )

2H(α)gα

& ∑
β∈Oα

n∏
i=1

cosβiϕi

'
.

For every Bi ∈ B we define a matrix M (i) of size ki × ki with ki = |Bi |. Then
the program may be written as follows.

σ2
r =min n

�
1− gen

�
(5.27)

subject to

∑
α∈S(�n

r )

2H(α)gα

& ∑
β∈Oα

n∏
i=1

cosβiφi

'
=

k(n,r)∑
i=1

ki∑
j,	=1

RSn(bij
b∗i	)M

(i)
j,	

M (i) � 0, i ∈ [k].

Let us take a closer look at the terms RSn(bil b
∗
im
). Assume that the elements

bij
∈ Bi are given in the following form

bij
=

ki j∑
m=1

b(m)i j
exp

�
ı
�
α(m)

��
φ
�

.
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Then,

RSn(bij
b∗i	) =

1
|Sn|

∑
σ∈Sn

σ(bij
b∗i	)

=
1
|Sn|

∑
σ∈Sn

ki j∑
m=1

ki	∑
p=1

b(m)i j
b(p)i	

exp
�
ı
�
α(m)

��
σ(φ)

�
exp

�
ı
�
β (p)

��
σ(φ)

�∗
=

1
|Sn|

∑
σ∈Sn

ki j∑
m=1

ki	∑
p=1

b(m)i j
b(p)i	

cos[σ(α(m) − β (p))�φ].

(5.28)

Recalling the trigonometric identity (5.23) from before, we can now construct
the constraint matrices. Let γ ∈ S(�n

r ). For each i ∈ [k(n, r)], I ∈ I for I as in the
previous subsection we define

�
C (γ,I)i

�
j,	
=

�
c(γ, I , i, j,	), if ωI (γ) or ωI c (γ) occurs in RSn(bij

b∗i	)
0, otherwise,

where
c(γ, I , i, j,	) =

1
|Sn|

∑
m,p∈[ki ]

α(m)−β (p)=±ωI (γ)

b(m)i j
b(p)i	

.

As before, we must ensure that for all I ∈ I we have that the corresponding
coefficients in our resulting polynomial are equal. Therefore, we arrive at the set
of constraints

k(n,r)∑
i=1

〈M (i), C (γ,	)i − C (γ,I)i 〉= 0 , for every γ ∈ S(�n
r ), I ∈ I, I �= 	.

We will now define the set SΓ(n,r) = Γ(n,r)/Sn, which is the “symmetry adapted”
version of Γ(n,r) of the previous subsection, where we factored out all permutations
σ ∈ Sn of a reference element γ except the identity. This leads to the constraint
set

k(n,r)∑
i=1

〈M (i), C (γ,I)i 〉= 0 , for every γ ∈ SΓ(n,r), I ∈ I.

The resulting SDP reads as follows.

σ2
r =min n

&
1− 1

2

k(n,r)∑
i=1

〈M (i), C (en,	)
i 〉

'
(5.29)
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subject to

k(n,r)∑
i=1

〈M (i), C (γ,	)i − C (γ,I)i 〉 = 0 , for every γ ∈ S(�n
r )/{(0, . . . , 0)}, I ∈ I, I �= 	

k(n,r)∑
i=1

〈M (i), C (γ,I)i 〉 = 0 , for every γ ∈ SΓ(n,r), I ∈ I

k(n,r)∑
i=1

〈M (i), C ((0,...,0),	)
i 〉 = 1

M (i) � 0 for all i ∈ [k(n, r)].

The efficiency of using this symmetry reduction of course increases when n
grows, since the underlying group is Sn. Fixing n and increasing the degree r
the size of the underlying program still grows exponentially. It is also possible
to use software for the symmetry reduction, such as the Julia package SDPSym-
metryReduction.jl1 which is based on the paper [BdK22] by Brosch and de Klerk.
This software takes as input a semidefinite program and numerically performs a
symmetry reduction without any need to specify the underlying group. The ad-
vantage that comes with this is that there is no need for the construction of a
specific symmetry adapted basis. But even for small n, if r becomes too large the
resulting optimization problem becomes numerically unstable. It is still worth-
while to compare the two approaches. The block sizes which are returned by
the software are the same as the ones we obtained by our approach presented in
this section. This suggests that the symmetry is fully exhausted by the symmetric
group Sn. We present a plot of a non-differentiable function as well its degree
r = 50 approximation obtained via the convolution of the minimum resolution
kernel in Figure 5.3.

5.5 Comparison to products of univariate minimum res-
olution kernels

In the following we will have a look at what kernels we get when we take the
shortcut and multiply univariate kernels instead of solving the corresponding SDP.
The clear advantage is that some optimal univariate kernels are available in closed

1see https://github.com/DanielBrosch/SDPSymmetryReduction.jl

https://github.com/
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(a) Approximation level r = 50 (b) Plot of function

Figure 5.3: Comparison of plot of the function (x , y) �→ sin(2πx)|y | and its degree
r = 50 approximation via the minimum resolution kernel.

form. Generating kernels as products means solving the corresponding SDP is
unnecessary. Recall that in the univariate case kernels of the form

KKPM
r (x , y) = 1+ 2

r∑
k=1

gKPM
k,r Tk(x)Tk(y), (5.30)

for gKPM
k,r as in (5.12), have minimum resolution σr . The product of n univariate

degree r kernels of the form (5.30) results in an n-variate kernel of degree nr
that is feasible for the optimization problem (5.24). A natural question is to ask
how these kernels compare to the ones obtained by solving the SDP. Consider the
product of n degree r kernels

n∏
i=1

�
1+ 2

r∑
k=1

gKPM
k,r Tk(xi)Tk(yi)

�
=

∑
α∈�n

nr
αi≤r,i∈[n]

2H(α) g̃KPM
α Tα(x)Tα(y),

where

g̃KPM
α =

n∏
i=1

gKPM
αi ,r

We know the resolution is

σ2
r =

n∑
i=1

(1− gei
) = n(1− ge1

).
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Thus, we can generate a feasible n-variate kernel with a degree nr multiplying
n univariate degree r kernels with minimum resolution and the corresponding
resolution is

σ2
nr,KPM = n

�
1− gKPM

1,r

�≈ nπ2

2(r + 2)2
.

We would expect these to have a worse resolution than the kernels we obtain via
solving the SDP where σ2

r is minimized. The reason for this is that the product
kernels would be feasible to the same SDP with the additional set of constraints

gα = 0 for all α ∈ �n
nr with αi > r for some i ∈ [n].

In particular, we have the following result.

Proposition 5.9. Fix n ∈ �. For r ≥ n we have

σ2
r ≤ n

 
1− cos

 nπ
r + n

!!
∼ n3π2

2(r + n)2
if r ) 0.

Proof. Clearly, σ2
r ≤ σ2

r−1 for any r ≥ 1. Let now k ∈ � be such that kn ≤ r ≤
(k+ 1)n. Then we find

σ2
r ≤ σ2

nk ≤ σ2
nk,KPM = n

 
1− cos

 π

k+ 2

!!
≤ n

,
1− cos

,
π

r
n + 1

--
∼ n3π2

2(r + n)2
,

for r ) 0.

Looking at Table 5.1 we find that the values σr,KPM are larger than σr . There-
fore, our generalization of the minimum resolution kernels to the multivariate
case leads to better approximations than simply multiplying univariate kernels
together. Also, for large n, i.e., the case for which our symmetry reduction is ef-
ficient, multiplying identical univariate kernels together is not always a feasible
approach as the degree is always a multiple of n. In Figure 5.4 and Figure 5.5 we
compare the errors of the approximation via the products of Jackson kernels with
the approximation via minimum resolution for two different functions.

5.6 Numerical computations

In this section we discuss the numerical computations that were conducted. All
code was written in the Julia programming language and is available on GitHub2.

2see https://github.com/FelixKirschner/Approximation-Kernels

https://github.com/
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Figure 5.4: Comparison of uniform approximation errors of several approxima-
tions of the function q(x) := x2 sin(2πx1). We plotted the errors for the kernel
with minimal resolution σr and for the product of two univariate degree r/2 ker-
nels, i.e., KKPM

r/2 as in (5.30).
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Figure 5.5: Comparison of uniform approximation errors of several approxima-
tions of the peaks function p(x) := 3(1− x1)2 exp(−x2

1 − (x2 + 1)2)− 10(x1/5−
x3

1− x5
2)exp(−x2

1− x2
2)−(1/3)exp(−(x1+1)2− x2

2). We plotted the errors for the
kernel with minimal resolution σr and for the product of two univariate degree
r/2 kernels, i.e., KKPM

r/2 as in (5.30).
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At the same website we also list the coefficients of the minimum resolution kernels
for various values of n and r. We present some values of σ2

r for different values
of n and r in Table 5.1. We also compare them to the resolution of the product
of identical univariate minimum resolution kernels with the same degree. The
results show our method is superior to simple multiplication of identical univari-
ate minimum resolution kernels. In Figure 5.8 we plotted some values of σr for
different values of n.

For n = 2 we were able to compute the coefficients for up to r = 50 in a
reasonable amount of time (375.5 seconds for σ2

50 on an Apple M1 Pro with 32GB
of RAM). After the symmetry reduction, the corresponding program contains two
semidefinite matrix variables of order 676 and 650 and has 1277 constraints.
We used the CSDP solver version 6.2.03 (see [Bor99]) to compute these values.
Without the symmetry reduction the program would have one matrix variable of
order

�52
2

�
= 1326. We computed the values of σr for up to r = 22 for n = 3 and

r = 13 for n = 4. In the latter case, i.e., n = 4, r = 13, without the symmetry
reduction the program contains one matrix of size 2380. Using the symmetry
reduction we can reduce the size to five matrices of the orders 194, 370,192, 218
and 38. For values of n> 2 the limiting factor was time.

5.6.1 Decoupling the degrees

Taking a look at problem (5.20) it is clear the value of r on the right-hand-side
could be increased to obtain a kernel with potentially smaller resolution. Consider
the following problem for fixed r and r ′ such that r ′ ≥ r.

σ2
r,r ′ = min

gα :α∈�n
r

n∑
i=1

�
1− gei

�
(5.31)

subject to

1+
∑

α∈�n
r \{0}

2H(α)gα
∏
i∈[n]

cos(αiφi) =
9
exp(ıα�φ)

:∗
α∈�n

r′
M
9
exp(ıα�φ)

:
α∈�n

r′

M � 0.

For n = 2 (resp. n = 3) we show how the resolution evolves for r = 3, . . . , 10
(resp. r = 2, . . . , 10) and r ′ = r, r + 1, . . . , 20 in Figure 5.6 (resp. Figure 5.7). We
note that the optimal values in the case n= 2 seem to stabilize for r ′ ≥ r + * r−1

2 +,
whereas such a stabilization pattern may not be observed for n ≥ 3. We leave
further investigation in this direction for future research.

3available at https://github.com/coin-or/Csdp

https://github.com/
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Figure 5.6: Plot σ2
r,r ′ vs r ′ for r = 3, . . . , 10 and r ′ = r, r + 1, . . . , 20 and n= 2.
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Figure 5.7: Plot σ2
r,r ′ vs r ′ for r = 2, . . . , 10 and r ′ = r, r + 1, . . . , 20 and n= 3
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Figure 5.8: Plot σ2
r vs r for n= 1,2, 3,4 (⊗,�,�,� resp.)

5.7 Concluding remarks

We have shown how to construct polynomial approximation kernels with minimal
resolution on the hypercube. A major open question is if one may find closed form
solutions of the semidefinite programs that yield these kernels.

These type of results are also of independent interest in the study of SDP hi-
erarchies for polynomial optimization on the hypercube, as shown recently by
Laurent and Slot [LS22a]. In particular, our kernels may be useful to study hier-
archies of the Lasserre-type [Las01] on the hypercube (see also [dKHL17, dK10]).

The advantage of our approach over the multiplication of univariate minimum
resolution kernels is that it is more efficient (fewer coefficients needed for the
same quality approximation), while the clear disadvantage is that we have no
closed form solution for the coefficients. Having said that, the tables of coefficients
only have to computed once using SDP, and we provide a partial list online4, as
well as a smaller list in Appendix C. Moreover, our approach should become more
viable in practice as SDP solvers continue to improve, allowing to compute the
coefficients of the kernels in higher dimensions and for larger values of r.

4Available at https://github.com/FelixKirschner/Approximation-
Kernels/tree/master/SigmaKernels

https://github.com/
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n= 2 n= 3 n= 4
r σ2

r σ2
r,KPM σ2

r σ2
r,KPM σ2

r σ2
r,KPM

1 1.5 - 2.5 - 3.5 -
2 1 1 2 - 2.9310 -
3 0.7378 - 1.5 1.5 2.4561 -
4 0.5487 0.5858 1.1823 - 1.9948 2
5 0.4260 - 0.9451 - 1.6354 -
6 0.3395 0.3820 0.7764 0.8787 1.3605 -
7 0.2774 - 0.6474 - 1.1518 -
8 0.2299 0.2679 0.5461 - 0.9901 1.1716
9 0.1939 - 0.4692 0.5729 0.8584 -
10 0.1655 0.1981 0.4062 - 0.7524 -
11 0.1431 - 0.3556 - 0.6648 -
12 0.1248 0.1522 0.3136 0.4019 0.5917 0.7639
13 0.1099 - 0.2787 - 0.5299 -
14 0.0975 0.1206 0.2493 - - -
15 0.0871 - 0.2243 0.2971 - -
16 0.0782 0.0979 0.2028 - - 0.5359
17 0.0706 - 0.1843 - - -
18 0.0641 0.0810 0.1682 0.2284 - -
19 0.0585 - 0.1541 - - -
20 0.0535 0.0681 0.1417 - - 0.3961
21 0.0492 - 0.1307 0.1809 - -
22 0.0453 0.0581 0.1209 - - -
23 0.0419 - - - - -
24 0.0389 0.0501 - 0.1468 - 0.3045
25 0.0362 - - - - -
30 0.0261 0.0341 - 0.1022 - -
35 0.0197 - - - - -
40 0.0154 0.0204 - - - 0.1363
45 0.0123 - - 0.0511 - -
50 0.0101 0.01352 - - - -

Table 5.1: Computational results for σ2
r and σ2

r,KPM for different values of n and
r obtained by solving (5.29).
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6
Conclusion and outlook

To end this thesis let us give a brief conclusion to reflect on the contributions and
present an outlook for possible research directions. The overarching topic of the
thesis is conic programming, which is a general framework that allows us to for-
mulate a large variety of optimization problems using only a handful of cones.
It is emphasized that the generalized moment problem (GMP) is too difficult to
solve in full generality. Nevertheless, we are interested in finding approximate
solutions for it. The moment-SOS hierarchy for the GMP is defined over the cone
of positive semidefinite matrices, see (1.16). Conceivably, one would like to solve
instances of the moment-SOS hierarchies corresponding to levels as high as possi-
ble. However, the size of both the primal (1.16) and the dual (1.15) semidefinite
programming (SDP) relaxation grows rapidly with the level and the limit cases of
solvable problems involve n×n matrices of size n≈ 1,000 and a few tens of thou-
sands of constraints. The first contribution of this thesis is to address this particu-
lar problem by constructing an algorithm more suitable for large scale instances of
SDP in Chapter 2. The main advantage of the presented algorithm is its suitabil-
ity for parallelization. Since the average number of cores in modern processors
is constantly rising, we believe that this feature will prove advantageous in the
future. An efficient implementation of the algorithm and numerical experiments
are still needed to prove its superiority to existing software. The underlying idea
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of performing subroutines of the interior point method (IPM) in more tractable
cones and rescaling the problem is surely not bound the factor width cone alone.
Possible future research directions include the analysis of other tractable cones
which allow a similar scheme, like the cone of diagonally dominant matrices, see
[RSS22].

In Chapter 3 we consider two approximation hierarchies for the GMP over the
simplex Δn−1 and the sphere Sn−1. The contribution is of a theoretical nature by
providing a convergence rate analysis of the hierarchies. Convergence hierarchies
of this kind and their convergence analysis remain an active field of research, as
many questions regarding theoretical guarantees remain open. For general un-
derlying sets the quantitative Positivstellensatz from Baldi and Mourrain [BM22]
can be used to derive a bound on the rate of convergence similarly to the proce-
dure discussed in Chapter 3. However, the resulting convergence rate guarantees
are very weak. To obtain stronger results more information about the underlying
sets must be taken into account. The moment-SOS hierarchies of lower bounds
often exhibit so-called finite convergence, meaning the optimal value is achieved
for a finite level. In fact, Nie showed in [Nie14] that the moment-SOS hierarchy
for polynomial optimization problems exhibits finite convergence generically, that
is under some mild assumptions on the global minimizers of the problem. This
implies that in practice these hierarchies behave better than some of the theoret-
ical results might suggest. Getting a better understanding of the cases and the
orders at which the finite convergence takes place is a promising future research
direction.

Chapter 4 deals with the problem of pricing options when information about
observable data is available. It is known that this problem can be modeled as
a GMP over the non-negative orthant, i.e., �n

+ with (piecewise) polynomial data
functions. In practice option pricing problems are usually solved using numerical
techniques like Monte-Carlo simulations [SC23, JL11]. Our main goal is to pro-
vide a framework based on semidefinite programming which provably converges
to the optimal bounds. For this we prove that, under a mild assumption, the
optimal solution of our problem is attained, which allows us to consider an equiv-
alent GMP with compact underlying set. The moment-SOS hierarchy is known to
converge when the underlying set satisfies an assumption slightly stronger than
compactness. Our intention is to spark the interest in using hierarchies like the
one we proposed in practice. We believe there are cases in which the solution
obtained via solving moderately sized SDPs can be superior to using common
techniques such as Monte Carlo simulation based methods. This, however, is yet
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to be demonstrated. The relaxation of the non-compact case, which is treated
in Section 4.5 was rather numerically unstable. The relaxation is based on inner
approximations of the truncated moment cone. Convergence analyses for such
relaxations with several underlying sets were studied by Laurent and Slot, see
Lucas Slot’s dissertation [Slo22a] for a collection of results. Even though conver-
gence guarantees for hierarchies based on inner approximations of the moment
cone are often better than for outer approximations, the convergence behavior
and numerical stability in practice is much worse, which is certainly a topic we
would like to understand better in the future.

Finally, in Chapter 5 we use SDP techniques to compute multivariate polyno-
mial approximation kernels which lead to uniform approximation of continuous
but non-differentiable functions on the hypercube. To avoid unwanted oscilla-
tions we consider non-negative kernel functions of minimum resolution. In the
univariate case there is a closed form solution of the optimal kernels. These ob-
jects are frequently used by physicists in practice. For the multivariate case usually
products of univariate kernels are used. We provided a framework which allows
for the computation of multivariate minimum resolution kernels via SDP, which
we show to be superior to the product of univariate kernels. We hope to encour-
age physicists who tend to use products of univariate kernels in practice to make
use of the multivariate minimum resolution kernels we provide online, as they
are provable better than product kernels. It is not clear if there exists a closed
form solution of the kernel coefficients in the multivariate case. Here again the
scalability of SDP is the key to numerically obtain optimal kernels of higher orders
and more variables.
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A
Interior Point Methods

In this appendix we will review a class of algorithms called interior point methods
(IPMs), which can be used to solve (finite dimensional) conic optimization prob-
lems [NN94]. These algorithms gained widespread use in the past few decades for
multiple reasons. For one, they can solve large-scale linear optimization problems
efficiently with good accuracy, where other algorithms like the Simplex method
may fail to do so. Moreover, the increasing computational power of modern
computers made them suitable for solving medium-sized semidefinite programs,
which are known to provide good bounds on NP-hard problems [GW95].

Our exposition follows [Ren01] closely and may be skipped by readers familiar
with the topic. Throughout this section f : Df ⊆ �n → � will denote a twice
continuously differentiable function whose gradient and Hessian we denote by
g(x) and H(x), respectively. The domain Df of f is assumed to be an open,
convex set and f is such that H(x)# 0, i.e., the Hessian is positive definite for all
x ∈ Df . Note that this implies that f is a convex function. We associate a local
inner product 〈u, v〉x := 〈u, H(x)v〉 with f , where 〈·, ·〉 is some reference inner
product on �n. Even though 〈·, ·〉x depends on the Hessian of f at x , we indicate
the local inner product solely by x since f will remain fixed. Note that since we
will assume that H(x) is positive definite for all x ∈ Df the local inner product is
well-defined. In fact, all inner products in �n arise this way. With respect to the
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local inner product 〈·, ·〉x , the gradient of f at y becomes H(x)−1 g(y) and the
Hessian is given by H(x)−1H(y). The local inner product induces a local norm,
which we denote by || · ||x . With respect to this norm we define

Bx(y, r) := {z ∈ �n : ||z − y||x < r},
i.e., all points in �n whose distance to y measured by the local norm at x is less
than r > 0.

Definition A.1. A functional f is called (strongly non-degenerate) self-concordant
if for all x ∈ Df we have Bx(x , 1) ⊆ Df , and if whenever y ∈ Bx(x , 1) we have

1− ||y − x ||x ≤ ||v||y||v||x ≤
1

1− ||y − x ||x for all v �= 0.

We will denote the class of self-concordant functions by SC. The class of func-
tions defined this way play a crucial role in optimization as they exhibit many
useful properties. For instance, adding a linear functional to a self-concordant
function f does not affect its self-concordance, i.e., if f ∈ SC then the functional
x �→ 〈c, x〉+ f (x) ∈ SC for any c ∈ �n. Similarly, restricting f to an affine sub-
space L, which we denote by f|L leads to a self-concordant function, i.e., f|L ∈ SC.
Both these claims follow from the fact that the mentioned transformations leave
the Hessian of f unchanged. A functional f is called a self-concordant barrier
functional if f ∈ SC and

ϑ f := sup
x∈Df

||H(x)−1 g(x)||2x <∞. (A.1)

We refer to ϑ f as the complexity value of f . Let SCB denote the set of self-
concordant barrier functionals. Nesterov and Nemirovskii [NN94] proved that
ϑ f ≥ 1 for all f ∈ SCB. A crucial property of the functions in SCB is stated in the
next theorem.

Theorem A.2 (cf. Theorem 2.3.3. in [Ren01]). Let f ∈ SCB and x , y ∈ Df . Then,

〈g(x), y − x〉< ϑ f .

Self-concordant barrier functions can serve as penalty functions for convex
cones. If Df is the interior of a convex cone K and f ∈ SCB then for any x ∈
Df we find that f (x) <∞ and for x ∈ ∂K, i.e., on the boundary of the cone
we have f (x) =∞. This property can be exploited to avoid leaving the cone
when approaching its boundary, where we know every optimal solution to a conic
optimization problem will be attained.
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A.1 The central path

Let f ∈ SCB be a barrier function for a convex cone K and say our aim is to solve
a conic optimization problem of the following form

val= inf 〈c, x〉
s.t. 〈ai , x〉= bi , i ∈ [m]

x ∈ K.

(A.2)

Let L = {x ∈ �n : 〈ai , x〉 = bi , i ∈ [m]}. Consider now the following sequence of
optimization problems for η ∈ �+

zη = argminx∈L∩D̄f
fη(x) := η〈c, x〉+ f (x). (A.3)

The collection of minimizers for all η > 0 is called the central path and is an
analytic curve in L ∩ D̄f . Every point on the central path is feasible for (A.2) and
provides an upper bound on the optimal value val. At the end of this section we
will provide a proof that zη converges to a minimizer of (A.2) for η→∞. Given
some ε > 0 interior point methods approximate a sequence zη0

, zη1
, . . . of points

on the central path with η0 < η1 < . . . until a feasible point x ′ is found such that
〈c, x ′〉 ≤ val+ ε. There are many ways to achieve this, and we will present two in
the following. The first is conceptually easy to grasp, while the second one works
better in practice and builds the foundation to the algorithm we develop in the
Chapter 2. We close this section with a proof that zη converges to a minimizer
of (A.2) for η → ∞. Evaluating the gradient gL of f|L , i.e., f restricted to L
at a point zη on the central path we find for PL being the orthogonal projection
operator onto L with respect to the reference inner product 〈·, ·〉 that

gL(zη) = −ηPLc,

since zη is the minimizer of (A.3). Hence, for any y ∈ D̄f ∩ L it follows by Theo-
rem A.2 that

〈c, zη〉 − 〈c, y〉= 1
η
〈PL g(zη), y − zη〉

<
1
η
ϑ f|L ≤ 1

η
ϑ f ,

where we used the fact that we can write c = PLc + c′, with c′ ∈ L⊥. Finally, we
deduce

val≤ 〈c, zη〉 ≤ val+
1
η
ϑ f .

Since ϑ f is finite if f ∈ SCB, the claim follows.
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A.2 Newton’s method

In this section we introduce Newton’s method for minimizing functionals. Let f
be the function to be minimized and x (0) ∈ Df be given. Newton’s method works
by iteratively minimizing the quadratic approximation of f at x (i) for i = 0, 1 . . .
and defining x (i+1) as the minimizer. Let us define the quadratic approximation
qx of f at x as

qx(y) := f (x) + 〈g(x), y − x〉+ 1
2
〈y − x , H(x)(y − x)〉.

Given x (0) Newton’s method asks for the minimizer of qx (0) , i.e.,

x (1) := argminy∈Df
qx (0) (y)

and proceeds by using this point as the starting point for the following iteration.
Reiterating this process one obtains a sequence of points {x (i)}i∈�. It is well-
known that Newton’s method does not converge to the true optimum in general. It
can be shown, however, that if the given starting point is sufficiently close to a local
minimum, then the procedure converges to this minimum. Note the following
proposition about the gradient and Hessian of the quadratic approximation of f .

Proposition A.3 (cf. Proposition 1.6.1 in [Ren01]). The gradient of qx at y is
given by g(x) + H(x)(y − x) and its Hessian is H(x), with respect to the reference
inner product.

Since we are looking for an extreme point of qx , and we have a formula for
its gradient, we can enforce the necessary condition at the minimizer, call it x+.
We have

g(x+) = g(x) +H(x)(x+ − x) = 0.

Suppose f is such that its Hessian is positive definite for all x ∈ Df . It follows that

x+ := x − H(x)−1 g(x)

(this expression is independent of the reference inner product). For further refer-
ence we define the Newton step at x as

n(x) = x+ − x = −H(x)−1 g(x).

For generic optimization problems the gradient and Hessian are usually not
available in closed form or too difficult to compute. In special cases however, such
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as, e.g., LP and SDP, there exist self-concordant barrier functions for the underlying
cones whose gradients and Hessians can be computed efficiently. This implies that
interior point methods are suitable to tackle conic optimization problems of this
kind.

Let us continue by analyzing Newton’s method. For this note the following
theorem.

Theorem A.4 (cf. Theorem 1.6.2 in [Ren01]). If z minimizes f and H(x) is in-
vertible, then

||z − x+|| ≤ ||x − z|| ||H(x)−1||
∫ 1

0

||H(x + t(z − x))− H(x)||dt.

Essentially, this theorem implies that if a point x is close enough to the mini-
mizer z of f then the result x+ of an iteration of Newton’s methods lies closer to
z than x . The following results will be crucial to our analysis.

Theorem A.5 (cf. Theorem 2.2.2 in [Ren01]). If f ∈ SC, x ∈ Df and y ∈ Bx(x , 1),
then

| f (y)− qx(y)| ≤ ||y − x ||3x
3(1− ||y − x ||x) .

Theorem A.6 (cf. Theorem 2.2.3 in [Ren01]). Let f ∈ SC and x ∈ Df . If z
minimizes f and z ∈ Bx(x , 1), then

||x+ − z||x ≤ ||x − z||2x
1− ||x − z||x .

The following theorem will allow us to decide whether a given point x is close
to the minimizer of f in terms of the Newton step at x . The quantity ||n(x)||x is
also known as the Newton decrement at x; see Definition A.8 below.

Theorem A.7 (cf. Theorem 2.2.5 in [Ren01]). Assume f ∈ SC. If ||n(x)||x ≤ 1
4

for some x ∈ Df , then f has a minimizer z and

||z − x+||x ≤ 3||n(x)||2x
(1− ||n(x)||x)3 .

Thus,

||z − x ||x ≤ ||n(x)||x + 3||n(x)||2x
(1− ||n(x)||x)3 .
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Newton’s method on subspaces

Suppose we want to use Newton’s method to minimize a function f|L , i.e., a func-
tional f restricted to a subspace L ⊂ �n. Let PL be the orthogonal projection of
�n onto L with respect to the reference inner product 〈·, ·〉. The gradient and
the Hessian of f|L are given by PL g(x) and PLH(x), respectively. Therefore, the
Newton step at x ∈ L ∩ Df is given by nL(x) ∈ L such that

nL(x) = −(PLH(x))−1PL g(x) ⇔ PL (H(x)nL(x) + g(x)) = 0,

i.e., by a vector nL ∈ L such that H(x)nL(x)+g(x) is orthogonal to L. Suppose L is
the nullspace of a linear operator A : �n → �m, then we cast these two restrictions
as a linear system:

H(x)nL(x) + g(x) = A∗ y

AnL(x) = 0.

Newton decrements for functions restricted to subspaces

The convergence rate of interior point methods depends on the so-called Newton
decrement.

Definition A.8. If f : �n → � has a gradient g(x) and positive definite Hessian
H(x) # 0 at a point x in its domain, then the Newton decrement of f at x is
defined as

Δ( f , x) =
@〈g(x), gx(x)〉= ||gx(x)||x = ||n(x)||x ,

where we define gx(x) = H−1(x)g(x), i.e., gx(x) is the gradient of f at x with
respect to the 〈·, ·〉x inner product.

For self-concordant functions f , a sufficiently small value of Δ( f , x) implies
that x is close to the minimizer of f see Theorem A.7, where the estimates are
given in terms of the Newton decrement.

If a self-concordant function f is restricted to a (translated) linear subspace
L, and denoted by f|L , then the Newton decrement at x becomes

Δ
�

f|L , x
�
= ||PL,x H−1(x)g(x)||x ,

where ‖ · ‖x is the norm induced by the inner product 〈u, v〉x = 〈u, H(x)v〉, and
PL,x is the orthogonal projection onto L for the ‖ · ‖x norm; see [Ren01, § 1.6].
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Note that we have

Δ( f , x) = 〈g(x), H−1(x)g(x)〉1/2 = 〈g(x),−n(x)〉1/2
= 〈n(x), n(x)〉1/2x = ||n(x)||x = sup

||d||x=1
〈d, n(x)〉x ,

where n(x) is the Newton step at x , i.e., n(x) = −H(x)−1 g(x). Hence, restricting
the function f to a subspace L we find

Δ
�

f|L , x
�
= sup
||d||x=1

〈d, PL,x n(x)〉x = sup
||d||x=1
d∈L

〈d, n(x)〉x

= sup
0�=d∈L

〈d, n(x)〉x
||d||x ≥ 〈d, n(x)〉x

||d||x for all d ∈ L \ {0}.
(A.4)

A.3 Short-step method

Let now Df = {x ∈ K : 〈ai , x〉 = bi , i ∈ [m]}. In the following we assume a
point x (0) is given, which is close to a point zη0

on the central path in the sense
that Newton’s method started at x (0) converges to zη0

. The method produces a
sequence of points which all lie close to the central path, by taking short steps,
hence the name. Essentially, the algorithm works by increasing the parameter η
by a specified safe amount and using one iteration of Newton’s method to obtain
a new point near the central path corresponding to the increased η value. This
point will serve as a starting point for the next iteration, where η is increased
again by the safe amount. This procedure is repeated until a satisfactory solution
is found. In the following we will assume that only a single iteration of Newton’s
method is applied, i.e., starting with x (i) close to zηi

we set

x (i+1) = x (i) + nηi+1(x (i)),

where the Newton step with respect to η is defined as

nη(x) := −H(x)−1 (ηc + g(x)) .

Some caution is required when increasing η0 to η1. If we choose η1 too large with
respect to η0, then x (1) may fail to approximate zη1

. To avoid this situation, we
will derive an amount κ which is so that when η1 = κη0, then x (1) is close to zη1

.
Conceivably, the length of the Newton steps nη(x (i)) will decrease the closer x (i)

is to zηi
. This relation provides a tool of measuring distance to the central path.
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We say a point x is close to a point zη on the central path if the Newton decrement
Δ( fη, x) = ||nη(x)||x is small. For the time being, we will consider the concept of
smallness and defer quantification until later. Let x (0) be close to zη0

in the sense
that Δ( fη0

, x (0)) is given and small. Now increase η0 to κη0 =: η1. Our aim is
to come up with a suitable value for κ, such that Δ( fη1

, x (1)) is still small. The
Newton step taken from x (0) with respect to the increased η value will be given
by nη1(x (0)). We can relate the Newton steps for η0 and η1 in the following way

nη1(x) =
η1

η0
nη0(x) +

�
η1

η0
− 1

�
gx(x), (A.5)

where we set gx(x) := H(x)−1 g(x). This equality is easily verified. Using the
triangle inequality we obtain

Δ( fη1
, x) = ||nη1(x)||x ≤ η1

η0
Δ
�

fη0
, x
�
+

4444η1

η0
− 1

4444"ϑ f . (A.6)

We want to find a value of κ such that if ‖nκη0(x (0))‖x (0) is small, then
||nκη0(x (1))||x (1) is small. The following theorem lets us upper bound the latter
expression in terms of the former.

Theorem A.9. [see, e.g., Thm. 2.2.4 in [Ren01]] Let f ∈ SC. If Δ( f , x) =
||n(x)||x < 1, then

||n(x+)||x+ ≤
� ||n(x)||x

1− ||n(x)||x
�2

.

If ||nη1(x (0))||x (0) < 1

||nη1(x (1))||x (1) ≤
, ||nη1(x (0))||x (0)

1− ||nη1(x (0))||x (0)
-2

.

With these tools we can upper bound Δ( fη1
, x (1)) in terms of Δ( fη0

, x (0)). Let
Δ( fη0

, x (0))< α, for α to be determined. Then, by (A.6) we have

Δ( fη1
, x (0))≤ β := κα+ (κ− 1)

"
ϑ f .

Suppose we find values for α > 0 and κ > 1 such that β < 1 and�
β

1− β
�2

≤ α.
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Then, using Theorem A.9 we find

Δ( fη1
, x (1))≤

�
Δ( fη1

, x (0))

1−Δ( fη1
, x (0))

�2

≤
�
β

1− β
�2

≤ α.

Choosing

κ := 1+
1

8 max{1,
@
ϑ f }

= 1+
1

8
@
ϑ f

and α := 1/9 we find these relations satisfied.

Complexity

Recall from Section A.1 that 〈c, zη〉 ≤ val + 1
ηϑ f . Hence, to achieve a solution

x approximating zη such that 〈c, zη〉 ≤ val + ε one must increase η from η0 to
η ≥ ϑ f /ε. If at each step κ is chosen as exactly 1+ 1

8
$
ϑ f

we find that the number

K of steps required to increase η0 to some value η > η0 is

K =
log(η/η0)

log(1+ 1/8
@
ϑ f )

≤ 10
"
ϑ f log(η/η0) = O(

"
ϑ f log(η/η0)).

Thus, the number of increases needed to approximate an ε-optimal solution is

O

,"
ϑ f log

,
ϑ f

εη0

--
.

The question remains what is the quality of a solution x approximating zη. Let
x now be an arbitrary point in Df ∩ L. By the definition of self-concordance we
have that Bx(x , 1) ⊆ Df , and thus x − tcx ∈ Df for all t ∈ [0, ||cx ||−1

x ), where
cx := H(x)−1c. Plugging PL(x − tcx) into the objective function we find

val≤ 〈c, PL(x − tcx)〉 ⇒ ||PLcx ||x ≤ 〈c, x〉 − val. (A.7)

It follows for every y ∈ L that

〈c, y〉 − val
〈c, x〉 − val

= 1+
〈PLcx , y − x〉x
〈c, x〉 − val

≤ 1+
||PLcx ||x ||y − x ||x
〈c, x〉 − val

≤ 1+ ||y − x ||x .

Therefore, we find that

〈c, y〉 ≤ val+
1
η
ϑ f

�
1+ ||y − zη||zη

�
,



597922-L-bw-Kirschner597922-L-bw-Kirschner597922-L-bw-Kirschner597922-L-bw-Kirschner
Processed on: 24-5-2023Processed on: 24-5-2023Processed on: 24-5-2023Processed on: 24-5-2023 PDF page: 156PDF page: 156PDF page: 156PDF page: 156

138 Conic Optimization in Finance and Approximation Theory

meaning the objective value for any feasible point y is bounded in terms of its
distance to the central path. Now, suppose that x is returned by the algorithm for
given η. Then by the choice of α= 1/9 we know that ||nη(x)||x ≤ 1/9. Applying
the second part of Theorem A.7 we get ||x − zη||x ≤ 1/6. Recalling the definition
of self-concordance (and setting v = x − zη) note that zη ∈ Bx(x , 1) and thus

||x − zη||zη
||x − zη||x ≤

1
1− ||x − zη||x ⇔||x − zη||zη ≤ 1/5.

We will close this section with the following remark about the maximal de-
crease in objective value that can be achieved in on iteration of the presented
method. Let x ∈ Df be the current point and nη(x) the corresponding Newton
step. The decrease is then given by

〈c, x〉 − 〈c, x + nη(x)〉= 〈cx , nη(x)〉x ≤ ||cx ||x ||nη(x)||x ≤ 1
4
||cx ||x , (A.8)

where we used (A.5) to bound

||nη(x)||x =
44444
44444
�

1+
1

8
@
ϑ f

�
nη/κ(x) +

1

8
@
ϑ f

gx(x)

44444
44444
x

≤ 9
8

1
9
+

1
8
=

1
4

,

because ||nη/κ(x)||x ≤ 1/9 by construction and ||gx(x)||x ≤@
ϑ f by definition.

A.4 Predictor-Corrector method

In this section we present the predictor-corrector method, which will serve as the
foundation of the algorithm we introduce in Chapter 2. The method consists of
two phases. In the first phase, called the predictor phase, a feasible point is pro-
duced which reduces the current objective value. This point is not necessarily
close to the central path. In the second phase, called the corrector phase, a se-
quence of points with the same reduced objective value is generated such that
the distance to the central path of each point in the sequence is less that its pre-
decessor’s. Once a point is found which is close enough to the central path, the
algorithm terminates if it is an ε optimal solution, or switches to the predictor
phase to reduce the objective value again, see Figure A.1.

Predictor step

Taking a look at the Newton step at x , i.e., nη(x) = −ηcx − gx(x) we find that it
consists of two components. The first, i.e., −ηcx reduces the objective value and
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zη1

zη2

zη3

x
∗

x
(0)

Central path

〈c, x〉 = 〈c, zη2〉

zη4

〈c, x〉 = 〈c, zη3〉

〈c, x〉 = 〈c, zη4〉y0

y1

x
(1)

y0

y1

y2

x
(2)

x
(3)

x
(4)

Predictor step

Predictor step

Predictor step

Corrector steps

Corrector steps

Corrector step

Figure A.1: Visualization of predictor-corrector method. Initial feasible solution
close to central path (red) is given by x (0). Algorithm performs predictor step
returning y0. Corrector steps are taken until point close enough to central path
(x (1)) is found. Next predictor step returns new point y0. Corrector steps are
taken until x (2) is found, which is close enough to central path to perform next
predictor step. After one corrector step the final point x (4) is ε-close to x∗.
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is approximately tangential to the central path if x is close enough to the central
path. The second quantity gx(x) contains information about the curvature of the
central path at x . Given a point x (0) close to a point zη0

on the central path for
some η0 > 0 the predictor step moves a fixed fraction of the way towards the
boundary of the feasible region in the affine scaling direction, which is given by
cx (0) . Let σ ∈ (0, 1) be fixed. To perform the predictor step one computes

s∗ = sup
s∈�
{s : x (0) − scx (0) ∈ Df },

and returns y0 := x (0) − s∗σcx (0) . Let v0 = 〈c, x (0)〉. Then we find

v1 = 〈c, y0〉= 〈c, x (0) − s∗σcx (0)〉= v0 − s∗σ||cx (0) ||2x (0) .
By definition of self-concordance, we have that s∗ ≥ ||cx (0) ||−1

x (0)
. Hence, choosing

σ ≥ 1/4 the decrease in the objective value for the predictor step is at least as
large as the maximal decrease (A.8) that can be achieved by an iteration of the
short step method. Usually, σ is chosen to be much larger, e.g., σ = .99.

Corrector step

The corrector step takes as input a feasible point y0 which is not close to the central
path and returns a point x (1) with the same objective value as y0 which is close to
the central path. Let v1 = 〈c, y0〉 and define L(v1) = {x ∈ Df : 〈c, x〉= v1, 〈ai , x〉=
bi , i ∈ [m]}. The corrector step seeks to find the minimum of the barrier f|L(v1),
which clearly is the point zη1

on the central path such that 〈c, zη1
〉= v1. This can

be done by iteratively computing yk for k ≥ 1 as the minimizer of the univariate
functional

t �→ f
�

yk−1 + tnL(v1)(yk−1)
�

. (A.9)

Here, nL(v1)(yk) is the Newton step of the restricted functional f|L(v1) at yk and
the minimizer can be computed using (exact) line search. This is repeated until
a yk is found for which ||nL(v1)(yk)||yk

is small enough, implying yk is close to
the central path and one sets x (1) = yk. To prove this method converges we will
first provide an upper bound on the difference f (y0)− f (zη1

) and then show that
each yk for k ≥ 1 reduces this distance by at least a constant amount. For the
termination criterion we claim that if ||nL(v1)(yk)||yk

≤ 1/14 we can set x1 = yk.
To see this, assume ||nL(v1)(yk)||yk

≤ 1/14 and note that zη1
is the minimizer of

f|L(v1). Hence, applying Theorem A.7 we find ||zη1
− yk||yk

≤ 1/11. Theorem A.6
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applied to the functional fη1
implies

||nη1(yk)||yk
≤ ||zη1

− yk||yk
+

||zη1
− yk||2yk

1− ||zη1
− yk||yk

≤ 1/9,

which is exactly the threshold we obtained for the short step method.
Let us now prove an upper bound for the difference f(y0) − f(zη1

). For this
consider the following identity

f(y0)− f(zη1
) =

�
f(y0)− f(x (0))

�︸ ︷︷ ︸
=:ρ1

+
�

f(x (0))− f(zη0
)
�︸ ︷︷ ︸

=:ρ2

+
�

f(zη0
)− f(zη1

)
�︸ ︷︷ ︸

ρ3

.

We will bound these one at a time. For ρ1 we can use the following theorem.

Theorem A.10 (cf. Theorem 2.3.8 in [Ren01]). Assume f ∈ SCB and x ∈ Df . If
y ∈ D̄f , then for all 0< t ≤ 1,

f (y + t(x − y))≤ f (x)− ϑ f log(t).

Note that

y0 = x (1) −σs∗cx =
�
x (0) − s∗cx

�
+ (1−σ) �x (0) − (x (0) − s∗cx)

�
,

which after applying Theorem A.10 leads to f (y1) ≤ f (x (0)) − ϑ f log(1 − σ).
Hence, it follows that ρ1 ≤ −ϑ f log(1−σ). To bound ρ2 we will use the fact that
for a convex functional f and x , y ∈ Df we have

f (x)− f (y)≤ 〈g(x), x − y〉. (A.10)

Clearly,

ρ2 = f(x (0))− f(zη1
) = f|L(v0)(x

(0))− f|L(v0)(zη0
)

≤ ||nL(v0)(x
(0))||x (0) ||zη0

− x (0)||x (0) ≤ 1
14

1
11
=

1
154

.

Finally, for ρ3 we use (A.10) again to find

ρ3 = f(zη0
)− f(zη1

)≤ 〈−η0c, zη0
− zη1

〉= −η0(v0 − v1)≤ 0,

since g(zη0
) = −η0c. Putting it all together we obtain

fη1
(y0)− fη1

(zη1
)≤ ϑ f log

�
1

1−σ
�
+

1
154

.
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The remainder of the proof consists of providing a lower bound on the dif-
ferences f (yk) − f (yk+1), i.e., we will show that while ||n|L(v1)(yk)||yk

> 1/14
the decrease of the function value stepping from yk to yk+1 is at least a constant
amount, which is to be specified. Recall that by Theorem A.5 we have

| f (y)− qx(y)| ≤ ||y − x ||3x
3(1− ||y − x ||x) .

Let y = x + tn(x) for some x ∈ Df . Then,

| f (x + tn(x))− qx(x + tn(x))| ≤ t3||n(x)||3x
3(1− t||n(x)||x) .

Setting t = 1
8||n(x)||x the RHS becomes

t3||n(x)||3x
3(1− t||n(x)||x) =

(1/8)3

3(1− 1/8)
=

1
1344

.

Moreover, we find that

f (y) = f (x + tn(x))≤ qx(x + tn(x)) +
1

1344

= f (x) +
1

8||n(x)||x 〈g(x), n(x)〉

+
1
2

�
1

8||n(x)||x
�2

〈n(x), H(x)n(x)〉+ 1
1344

= f (x)− 1
8||n(x)||x 〈−H(x)−1 g(x), H(x)n(x)〉

+
1
2

�
1
8

�2

+
1

1344

= f (x)− 1
8
||n(x)||x + 1

2

�
1
8

�2

+
1

1344

≤ f (x)− 1
2688

,

(A.11)

where the last inequality follows from the fact that by assumption ||n(x)||x >
1/14. The line search returns a value of t which minimizes the functional (A.9).
Hence,

f (yk+1)− f (yk)≥ τ :=
1

2688
.

We conclude that the number K of line searches necessary to move from x (0)

to x (1) satisfies

K = O
�
ϑ f log

�
1

1−σ
��

.
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B
Symmetry reduction

In this chapter we present the theoretical foundation of a tool which can be used
to reduce the size of convex optimization problems which exhibit symmetries.

B.1 Groups and their representations

We begin by reviewing some concepts from representation theory. Recall that a
group (G,∗) is a set G together with a binary operation ∗ : G × G→ G such that

• there exists one unit element id such that id ∗ g = g = g ∗ id for all g ∈ G;

• for every g ∈ G there exists an inverse element g−1 ∈ G, i.e., g ∗ g−1 =
g−1 ∗ g = id;

• associativity holds, i.e., for g, h, k ∈ G we have

(g ∗ h) ∗ k = g ∗ (h ∗ k).

We will be particularly interested in the so-called symmetric group Sn, which con-
sists of all bijections from the set {1, . . . , n} to itself. For a comprehensive study
of the symmetric group we refer to [Sag01]. The elements π ∈ Sn are called

143
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permutations and the binary group action is composition. As the elements of Sn

permute elements of the set {1, . . . , n}, a group may be interpreted as acting on a
set. Define an action map a : G× X → X such that the map is compatible with the
group law, i.e., for g, h ∈ G, x ∈ X

a(h, a(g, x)) = a(hg, x)

and a(id, x) = x . For an element π ∈ Sn, which acts on the set {1, . . . , n}, we may
simply write a(π, i) = π(i) = j for the action of π on the element i.

B.1.1 Representation theory

Representation theory concerns itself with representing groups in a way that fa-
cilitates their study. Let GLd be the set of all invertible matrices in �d×d . Recall
that for two groups (G,∗), (H, ·) a group homomorphism h : G → H is a function
such that for all g1, g2 ∈ G we have

h(g1 ∗ g2) = h(g1) · h(g2).

A matrix representation of a group G is a group homomorphism X : G → GLd .
Equivalently, for each element g ∈ G there is an invertible matrix X (g) ∈ GLd

such that

• X (g1 g2) = X (g1)X (g2) for all g1, g2 ∈ G.

Clearly, this property implies X (id) = I .

Example B.1 (cf. Example 1.2.4 in [Sag01]). The following representation of Sn is
called the defining representation for Sn. Let π ∈ Sn and define the matrix X (π) ∈
{0,1}n×n by

X (π)i, j =

�
1 if π(i) = j,

0 otherwise.

It is easy to see that this is a matrix representation.

If a group G acts on a vector space V, then the action of g ∈ G on an element
v ∈ V can be represented by a matrix X (g), where X is a matrix representation of
G, i.e.,

g(v) = X (g)v, where ∀g ∈ G, v ∈ V.

We continue by defining G-modules. For this let V be a finite dimensional vec-
tor space over the complex numbers �. The general linear group of V , denoted
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by GL(V ), consists of all invertible linear transformations from V to itself. Let
dim(V ) = d. Choosing a basis for V , every linear transformation can be written
as a matrix and hence GL(V ) and GLd are isomorphic as groups.

Definition B.2. Let V be a vector space and G be a group. If there exists a group
homomorphism

ρ : G→ GL(V ),

then we call (V,ρ) a G-module.

Further, we call two G-modules (V1,ρ1), (V2,ρ2) equivalent, if there exists a
linear homomorphism φ : V1 → V2 such that ρ1(π) = φ ◦ ρ2(π) ◦ φ−1 for all
π ∈ G. We now aim to study how G-modules can be decomposed into simpler
objects.

Definition B.3. Let V be a G-module. We call a subspace W ⊂ V a proper G-
submodule, if W is a proper subspace of V and W is closed under the action of
G, i.e., for all w ∈W one has π(w) ∈W for all π ∈ G. We may also say that W is
G-invariant.

A G-module V is called reducible, if there exists a proper submodule W of V .
If V has as its only G-invariant subspaces the spaces V and {0}, then V is called
irreducible.

Maschke’s theorem states that any non-zero (finite dimensional) G-module
can be decomposed into a finite number of irreducible submodules.

Theorem B.4. (Maschke’s Theorem) Let G be a finite group. If V is a non-zero
G-module, then

V -
k⊕

i=1

W (i), (B.1)

where each W (i) is an irreducible submodule of V .

Having a decomposition as above, Schur’s Lemma gives insight about the re-
lationship of its constituents.

Lemma B.5. (Schur’s Lemma) Let V, W be two irreducible G-modules and let θ :
V →W be a G-homomorphism. Then either

• θ is a multiple of the identity, or

• θ is the zero map.
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What this lemma tells us is that the components of the Maschke decomposition
(B.1) are either isomorphic or inequivalent. Grouping the pairwise isomorphic
components together into V (i) we find that for a G-module there is a decomposi-
tion

V =
	⊕

i=1

V (i) =
	⊕

i=1

mi⊕
j=1

Vi, j ,

with finite mi . For fixed i, the Vi, j are pairwise isomorphic irreducible G-
submodules, and if i1 �= i2, then Vi1, j and Vi2,k are inequivalent. The decomposition
into the isotypic components V (i) is unique, while the decomposition into the Vi, j

is not unique in general.

B.2 Symmetric polynomials

Our interest lies in the case where the set on which the symmetric group acts is
the ring of polynomials in n variables, i.e., �[x]. We refer to [GP04] for more
information of symmetry reduction in polynomial optimization. An element π ∈
Sn acts on a polynomial p ∈ �[x] by permuting the (indices of the) variables, i.e.,
π(p) = p(π(x)) = p(xπ(1), . . . , xπ(n)). We call a polynomial invariant under Sn if
π(p) = p for all π ∈ Sn. Furthermore, we define the set of symmetric polynomials
as �[x]Sn . Given a polynomial p ∈ �[x] we can symmetrize it with respect to a
group G using the Reynolds operator

RG(p) :=
1
|G|

∑
π∈G
π(p).

If the group is clear from the context we may omit the superscript and simply
write R(p). The symmetry reduction for trigonometric polynomials, i.e., the case
we considered in Chapter 5 works the same as the one carried out in the follow-
ing. Essentially, our goal is to block-diagonalize a matrix M � 0 whose rows and
columns are indexed by α ∈ �n

r and is invariant under Sn, i.e., Mα,β = Mπ(α),π(β)
for all π ∈ Sn. Whether this matrix gives rise to a sum of squares in the ordinary
or the trigonometric framework makes no difference.

B.2.1 Block-diagonalization

Our aim from now on is to construct a basis which allows us to block-diagonalize
the SDP formulation of a symmetric polynomial optimization problem of the fol-
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lowing form
min 〈C , M〉
s.t. [x]�r M[x]r = p(x)

M � 0,

(B.2)

for a polynomial p ∈ �[x]Sn and given C ∈ �n. The idea is roughly as follows.
Sums of squares of degree less than 2r can be written as [x]�r A[x]r = 〈A, [x]r[x]�r 〉
for a positive semidefinite matrix A, where [x]r is a monomial basis vector,
e.g., as defined in (1.12). The idea of the block diagonalization is to find a
change-of-basis matrix B such that we can write symmetric sums of squares as
R
�
B�[x]�r AB[x]r

�
= 〈A,R

�
B[x]r[x]�r B�

�〉 for A � 0 where R
�
B[x]r[x]�r B�

�
is a block-diagonal matrix and the Reynolds operator is applied entry-wise. Let
B1, . . . , B	 be the blocks of R

�
B[x]r[x]�r B�

�
. Then we can write a symmetric sum

of squares p(x) as

p(x) = 〈A,R
�
B[x]r[x]

�
r B�

�〉= 	∑
i=1

〈Ai , Bi〉,

for A� 0 and the Ai are the blocks of A corresponding to Bi . In the final decom-
position we may find multiple copies of the same blocks Bi . By convexity, we can
assume that the corresponding Ai are identical as well, allowing us to delete all
but one of the copies. It is therefore enough to enforce the psd constraint on the
blocks Ai instead of the whole matrix A. This can result in a significant decrease
of the size of the underlying SDP. We will interpret �[x]r as an Sn- module. Then
we can use a structured decomposition as in (B.1) to obtain a so-called symme-
try adapted basis, which leads to a block-diagonal A. Let V be a G-module with
associated orthogonal representation ρ : G → GL(V ). We know there exists a
decomposition of V as follows:

V = m1V1 ⊕ · · · ⊕m	V	
=
�
V1,1 ⊕ · · · ⊕ V1,m1

�⊕ · · · ⊕ �
V	,1 ⊕ · · · ⊕ V	,m	

�
,

where for fixed i ∈ [	] the irreducible ni-dimensional modules Vi, j are equivalent
for all j ∈ [mi] and Vi,k1

, Vj,k2
are inequivalent for i �= j. Let a basis for Vi,k be

given by
Vi,k = span{si

j,k : j = 1, . . . , ni}.
This basis can be chosen to be orthonormal with respect to the standard inner
product (si

j,1)
�si
	,1 = δ j,	. For fixed i let ϕi : G → O(ni) be an orthogonal repre-

sentation of the irreducible module Vi .
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We call a basis of V given by

B = {si
j,k : i ∈ [	], j ∈ [ni], k ∈ [mi]}

a symmetry adapted basis if the bases of the pairwise equivalent copies Vi,k trans-
form according to the same orthogonal representation ϕi we are about to define.

In other words, B is a symmetry adapted basis, if for fixed i ∈ [	] and all
k ∈ [mi] the vector of basis elements (si

1,k, . . . , si
ni ,k
) satisfies for all g ∈ G

⎛
⎜⎜⎜⎝
ρ(g) si

1,k

ρ(g) si
2,k

...
ρ(g) si

ni ,k

⎞
⎟⎟⎟⎠ = ϕi(g)

⎛
⎜⎜⎜⎝

si
1,k

si
2,k
...

si
ni ,k

⎞
⎟⎟⎟⎠ .

On the left-hand-side we have a vector of images of elements of V under ρ. On the
right-hand-side we can interpret ϕi as a basis transformation, where the output
is a vector of linear combinations of basis elements of the submodule Vi,k. As ρ is
orthogonal by assumption, we can assume that the given basis B is orthonormal,
i.e.,

〈si1
j1,k1

, si2
j2,k2
〉= �

si1
j1,k1

��
si2

j2,k2
= δ{i1, j1,k1},{i2, j2,k2}

When dealing with polynomials up to a fixed degree r ∈ � that are symmetric
with respect to a group G, i.e., �[x]r , the situation is essentially the same. We
can view �[x]r as a vector space over � of dimension s(n, r), where we associate
to each polynomial its unique coefficient vector. Then �[x]r becomes a G-module
for suitable ρ : Sn → GL(�s(n,r)). The following theorem states that rewriting
a sum of squares problem in a symmetry adapted basis block-diagonalizes the
problem into

∑	
i=1 ni blocks, i.e, for each i ∈ [	] there are ni blocks of size mi×mi .

Moreover, there will be ni copies of the same block for every i ∈ [	]. It is therefore
enough to consider 	 blocks of size mi ×mi .

Theorem B.6. (see [Bro22, Theorem 7.8], cf. [GP04, §5]) Let f ∈ �[x]G be a G
invariant polynomial that can be written as a sum of squares, where each term has
degree at most r. Let {si

j,k ∈ �[x] : i ∈ [	], j ∈ [ni], k ∈ [mi]} be an orthonormal
symmetry adapted basis of �[x]r (as a G-module). Then,

f =
	∑

i=1

hi∑
t=1

R

&� mi∑
k=1

αi,t,ksi
1,k

�2'
,
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for hi ∈ �. Equivalently, we can write

f =
	∑

i=1

〈Ai , Si〉 ,

for Ai ∈ �mi
+ and

Si =
�
R(si

1,ksi
1,l)

�
k,l=1,...,mi

∈ �[x]mi×mi ,

where we define R(si
1,ksi

1,l) :=R
 �

si
1,k

��
[x]r[x]�r si

1,	

!
.

For a detailed proof of this statement we refer to [Bro22].

B.3 Specht modules

The ring of polynomials �[x]r under the action of the symmetric group becomes
an Sn-module. Our goal is to decompose this module into its irreducible compo-
nents and construct a symmetry adapted basis to block-diagonalize a given sym-
metric optimization problem. The motivation is that irreducible modules of a
group G correspond to the conjugacy classes of G. As we will see, the conjugacy
classes of Sn are given by the so-called cycle-types, which correspond to partitions
of n.

B.3.1 Partitions and cycle types

When characterizing elements of Sn, we will find that it is useful to associate an
element π ∈ Sn with its cycle type. Given π ∈ Sn we can represent its action by
fixing one element i ∈ [n] and considering the cycle

π(i),π2(i), . . . ,πk−1(i),

where k is such that πk(i) = i. Taking next an element j ∈ {1, . . . , n} \ {πm(i) :
m= 1, . . . , k−1} we can reiterate this process until we have captured all elements
as part of exactly one cycle.

Example B.7. Consider the permutation π ∈ S5 defined by

π(1) = 2,π(2) = 1,π(3) = 5,π(4) = 4,π(5) = 3.

The corresponding cycles are given by

(1, 2)(3, 5)(4).
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We define the cycle type of a permutation as

(1m1 , 2m2 , . . . , nmn)

where mi denotes the number of cycles of length i for the given permutation. For
the above example this would be (11, 22, 30, 40, 50). We continue by defining a
partition of n.

Definition B.8. A partition λ = (λ1, . . . ,λk) of an integer n ∈ � is defined as a
weakly decreasing sequence consisting of positive integers such that

k∑
i=1

λi = n.

We write λ . n if λ is a partition of n.

Cycle types correspond to partitions when they are sorted by the size of the
cycles. In the aforementioned example the corresponding partition would be λ =
(2, 2, 1). We call two elements a, b ∈ G of a group (G,∗) conjugate if there exists
g ∈ G such that a = g ∗ b ∗ g−1. Conjugacy is an equivalence relation. The
corresponding equivalence class is called conjugacy class. Two elements π,σ ∈ Sn

are in the same conjugacy class if and only if their cycle types are equal. This
means the conjugacy classes of Sn may be identified with the set of partitions of
n.

For a permutation π we can define its sign, denoted by sgn(π) in the follow-
ing way. Consider the conjugacy class of transpositions, i.e., elements of Sn of
cycle type (10,21, 30, . . . , n0). These are all permutations swapping exactly two
elements in {1, . . . , n}. Every permutation π ∈ Sn can be written as the composi-
tion of transpositions. Let π = τ1 . . .τk, where τi is a transposition for i ∈ [k].
Then

sgn(π) = (−1)k.

It can be shown that this is well-defined. We will make use of these concepts later
when we show how to block-diagonalize a symmetric optimization problem of the
form (B.2).

The whole point now is to decompose the Sn-module �[x] in its irreducible
submodules to achieve the block-diagonalization presented above in Theorem B.6.
For this we need to define Young tableaux.
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Definition B.9. Given a partition λ . n with λ = (λ1, . . . ,λk) a Young tableau
consists of k rows aligned to the left containing λi elements each. All numbers
{1, . . . , n} occur exactly once in a Young tableau. A Young tableau is called a
standard Young tableau if all rows and columns are increasing.

Example B.10. Let λ = (4, 2) with n= 6. Then a Young tableau is given by

t = 5 1 6 4
2 3

.

For the same λ a standard Young tableau is given by

t = 1 2 3 4
5 6 .

A permutation π ∈ Sn acts on Young tableaux by replacing the elements in
the cells by their images under π. We call two Young tableaux row equivalent,
if the elements in the respective rows are the same. For a given Young tableau t
the class of row equivalent Young tableaux is called a tabloid and denoted by {t}.
Tabloids are display with horizontal lines only. For example, consider the tableau

t =
1 3
2 5
4

,

then we write

{t}=
�

1 3
2 5
4

,
3 1
2 5
4

,
1 3
5 2
4

,
3 1
5 2
4

�
=

1 3
2 5
4

,

to indicate the order of the elements within each row does not matter. Note that
for any π ∈ Sn we have that π{t}= {πt}.

With these object we can define permutation modules.

Definition B.11. Let λ . n. The permutation module Mλ corresponding to λ is
the Sn-module defined by

Mλ := span{{t1}, . . . , {tk}},
where {t1}, . . . , {tk} is a complete list of λ-tabloids.

Since the {t1}, . . . , {tk} form a complete list of λ-tabloids, it is clear that the
resulting vector space Mλ is an Sn-module. Note that a permutation module is not
irreducible in general. It can be further decomposed into so-called Specht modules.
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These objects are pairwise inequivalent and constitute a full set of irreducible
submodules of the symmetric group. The next step is show how to decompose
permutation modules into Specht modules.

For λ . n consider a Young tableau t and let C1, . . . ,Ck denote the columns of
t. Then the group Ct = SC1

× · · · × SCk
is called the column stabilizer of t, where

SCi
is the symmetric group over the content of column i. The column stabilizer

allows us to define polytabloids.

Definition B.12. Let λ . n and t a Young tableau of shape λ. Then we define the
polytabloid et as

et :=
∑
π∈Ct

sgn(π){πt}.

It is clear that for a given t with corresponding λ that et ∈ Mλ.

Definition B.13. Let λ . n. The Specht module corresponding to λ is

Sλ := span {et : t is a tableau of shape λ} .

Clearly, for a partition λ the Specht module Sλ is contained in the permutation
module Mλ. To describe all Specht modules that are contained in a permutation
module Mλ we need to define the domination ordering of partitions.

Definition B.14. Let λ,μ . n. We say μ is dominating λ, writing μ
 λ, if

μ1 + · · ·+μi ≥ λ1 + · · ·+λi for all i ≥ 1,

where we set μi ,λi = 0 if i is not contained in their index set.

Consider now a generalized tableau t, i.e., a tableau where we allow for re-
petition of entries. Such a tableau is called semistandard if all entries along the
columns are strictly increasing and along the rows are weakly increasing. For a
given generalized tableau t we define the content of t to be the array μ where μi

is the number of occurrences of i in t. Take for example the generalized semis-
tandard tableau

1 1 3 4 4
3 4 4
5 5 6
6

.

The content is μ = (2, 0,2, 4,2, 2). Important for us are the semistandard
generalized Young-tableaux for which the content is a partition itself. Given a
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generalized semistandard tableau t of shape λ it is not difficult to see that if the
content μ of t is a partition, then λ 
 μ. The following theorem states how
permutation modules decompose into Specht modules.

Theorem B.15. The permutation module Mλ decomposes into the (irreducible)
Specht modules

Mλ =
⊕
μ
λ

KμλSμ,

where the multiplicities are given by the Kostka-numbers Kμλ, which is the number
of semistandard generalized Young-tableaux with shape μ and content λ.

Note that above the Sμ are pairwise inequivalent, and for m ∈ � we recall

mSμ = Sμ ⊕ · · · ⊕ Sμ︸ ︷︷ ︸
m times

.

We will now show how to construct a symmetry adapted basis when V = Mλ.
Let T be a generalized semistandard Young tableau of shape μ and with content
λ. This object defines an isomorphism ϑT : Mμ → Mλ in the following way. Let
t be a Young tableau of shape μ which we intend to send to a tableau of shape
λ. Define t(i, j) to be the entry in row i column j of t. Mapping t(i, j) of t to
the row given by the entry T (i, j) will result in a tabloid of shape λ. Moreover,
summing these up over all elements in {T} we get a function that is constant over
all elements of {t}. Given a Young tableau t of shape μ and T a generalized Young
tableau of shape μ and content μ we define t[T]1 as the tabloid of shape λ where
we find each entry t(i, j) in row T (i, j). We define

ϑT : Mμ→ Mλ

{t} �→ ∑
T ′∈{T}

{t[T ′]}.

Example B.16. Let μ = (3,2, 1) 
 (2,2, 2) = λ. Then there are two semistandard
generalized Young tableaux of shape μ and content λ, namely

T1 =
1 1 2
2 3
3

and T2 =
1 1 3
2 2
3

.

1This notation was introduced in [Bro22].
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Let us demonstrate what ϑT1
does. For this, let

t =
1 2 3
4 5
6

.

Then,

1 2 3
4 5
6

ϑT1→
1 2
3 4
5 6

+
1 3
2 4
5 6

+
2 3
1 4
5 6

+
1 2
3 5
4 6

+
1 3
2 5
4 6

+
2 3
1 5
4 6

.

For a given μ the image of the Specht module Sμ ⊆ Mμ under the homomor-
phisms defined by generalized semistandard tableaux of shape μ and content λ
decompose the permutation module Mλ fully into irreducible submodules. Note
that there will be many copies of the same Specht module in the final decompo-
sition.

“Recipe“:

Let us construct a symmetry adapted basis with respect to Sn for �[x]r .

Step 1: Decompose a given basis of �[x]r into orbits of Sn and identify which
partitions they correspond to. For a monomial xα the corresponding orbit is de-
fined as O(xα) = {xσ(α) : σ ∈ Sn}. For each orbit we can choose a representative
monomial xα such that α is sorted, i.e., α1 ≤ α2 ≤ · · · ≤ αn. We will denote the
corresponding orbit by Oα or O(xα). Clearly, we have that span{xβ ∈ Oα} is an
Sn-module. The next step is identify orbits with permutation modules. Let Oα be
an orbit. Now define the set I := { j : αi = j for some i ∈ n}, i.e., the set of all ap-
pearing exponents in the monomial xα. Further, let bj = |{k : αk = i j}| for i j ∈ I.
The vector b indicates how often an exponent i j ∈ I appears in the monomial xα.
Assume without loss of generality that b is sorted, i.e., b1 ≥ b2 ≥ · · · ≥ b|I|. By
construction b is a partition of n. Moreover, b is the partition of the permutation
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module corresponding to the given orbit. For example

span (O(1)) = span(1)- M (n)

span (O(x1)) = span (x1, . . . , xn)- M (n−1,1)

span
�
O(x2

1)
�
= span

�
x2

1, . . . , x2
n

�- M (n−1,1)

span (O(x1 x2)) = span
�
xi x j : i < j

�- M (n−2,2)

span
�
O(x3

1)
�
= span

�
x3

1, . . . , x3
n

�- M (n−1,1)

span
�
O(x2

1 x2)
�
= span

�
x2

i x j : i < j
�- M (n−2,1,1)

span (O(x1 x2 x3)) = span
�
xi x j xk : i < j < k

�- M (n−3,3)

...

span
�
O(x r

1)
�
= span

�
x r

1, . . . , x r
n

�- M (n−1,1).

Example B.17. Consider the monomial x3
1 x2

3 x3
4 x2

5 x3
6 x7 where we assume n = 7.

Sorting the exponent vector we find this is in the same orbit as x3
1 x3

2 x3
3 x2

4 x2
5 x6.

Therefore, the corresponding partition will be (3,2, 1,1), and we can associate it
to a tabloid:

x3
1 x3

2 x3
3 x2

4 x2
5 x6 ←→

1 2 3
4 5
6
7

∈ M (3,2,1,1).

Step 2: After identifying the appearing monomials with tabloids we can de-
compose the permutation modules above into Specht modules. For every orbit
Oα we do the following. Let Mλ be the permutation module corresponding to Oα
and let {μ(1), . . . ,μ(k)} be a complete list of partitions μ(i) . n such that μ(i) 
 λ.
Each μ(i) defines a Specht module

Sμ
(i)
= span{et : t is a Young tableau of shape μ(i)}.

By Theorem B.6 it is enough to consider a single element in the spanning set
of Sμ

(i)
. Hence, we will for any partition μ(i) only consider the tableau tμ

(i)
of

shape μ(i) with strictly increasing rows and columns where for each entry we have
tμ
(i)
(	, m+ 1) = tμ

(i)
(	, m) + 1 if m+ 1 ≤ μ(i)

	
. For every μ(i) let {T1, . . . , Tki

} be a
complete list of generalized semistandard tableaux with shape μ(i) and content λ.
Each Tj defines a homomorphism ϑTj

: Sμ
(i) → Mλ. The corresponding elements

of the symmetry adapted basis are given by ϑTj
(tμ

(i)
) interpreted in terms of the

orbit Oα.
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Example B.18. Let n = 3 and say we want to decompose the permutation module
M (2,1) corresponding to the orbit O(x1). We will interpret the images of the Specht
modules, which will be linear combinations of tabloids, in terms of this orbit. We
collect all λ such that λ 
 (2,1), i.e., λ(1) = (3),λ(2) = (2,1). Take λ(1) = (3).
How many generalized semistandard tableaux T with shape (3) and content (2,1)
do exist? Only one, namely

T1 = 1 1 2 .

How many generalized semistandard tableaux T with shape (2,1) and content (2,1)
exist? Also, only one:

T2 =
1 1
2 .

From this follows that the permutation module M (2,1) decomposes as

M (2,1) = S(3) ⊕ S(2,1).

We have yet to determine the corresponding map from the Specht module to elements
in �[x]. Let us compute the image of the Specht module S(3) under ϑT1

. Note that

S(3) = span{et : t is a Young tableau of shape (3)},
i.e.,

ϑT

�
1 2 3

�
= 1 2

3 + 1 3
2 + 2 3

1

- x3 + x2 + x1.

This polynomial x1 + x2 + x3 will be one basis element of the subbasis belonging to
the appearing S(3) modules. Consider the next Specht module S(2,1). We let

t = 1 2
3

and T2 is the only generalized semistandard tableau with shape (2,1) and content
(2, 1). We see that

et =
1 2
3 − 2 3

1 ,

and so

ϑT2
(et) =

1 2
3 − 2 3

1 - x3 − x1.

This polynomial will be an element of the basis belonging to S(2,1). Similarly, we can
go about decomposing the other permutation modules to obtain a complete symmetry
adapted basis.
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C
Additional notes on approximation kernels

C.1 A note on Jackson kernels

Our exposition here follows closely Section 5.4 of [AC11]. Our goal is to expose
the relations and differences between the Jackson kernel from [Jac11] and the
one from [WWAF06].

Dirichlet and Fejér kernels

The story begins with the approximation of trigonometric polynomials. We define
the space of functions f that are Lebesgue integrable over [−π,π] and satisfy
f (x) = f (x +2π) almost everywhere on � as L1

2π. We further define the 	1-norm
on L1

2π:

‖ f ‖ :=
1

2π

∫ π

−π
| f (x)|dx . (C.1)

Let us define periodic kernels and approximate identities. A sequence of functions
{χr}r∈� in L1

2π is called a (periodic) kernel if

lim
r→∞

1
2π

∫ π

−π
χr(x)dx = 1.

157
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The kernels that we consider are normalized for any r ∈ �, meaning∫ π
−π χr(x)dx = 2π for all r ∈ �. We say a kernel is non-negative if χr(x) ≥ 0

for all x ∈ [−π,π] and r ∈ �. We further refer to a periodic kernel as an approx-
imate identity if there exists N ∈ � such that the sequence {χr}r≥N is bounded in
L1

2π with respect to the norm defined in (C.1) and moreover,

lim
r→∞

�∫ −δ

−π
|χr(x)|dx +

∫ π

δ

|χr(x)|dx

�
= 0,

for every δ ∈ �, 0 < δ < π. For non-negative kernels, the approximate identity
property therefore implies that the χr approximate the Dirac-δ at zero as r →∞.
More precisely, {χr/2π}r∈� may be viewed as a series of probability density func-
tions, where the mass is increasingly concentrated around zero, and that converge
weakly to the Dirac-δ at zero. For a fixed kernel {χr}r∈� the convolution with a
function f ∈ L1

2π, i.e.,

f ∗χr(x) :=
1

2π

∫ π

−π
f (x − t)χr(t)dt =

1
2π

∫ π

−π
f (t)χr(x − t)dt, r ∈ �,

defines a sequence of linear operators Lr : L1
2π→ L1

2π for r ∈ � via Lr( f ) := f ∗χr .
If {χr}r∈� is non-negative and an approximate identity, then limr→∞ Lr( f ) = f ,
uniformly in L1

2π for every f ∈ L1
2π, (cf. [AC11, Theorem 5.4.1]). Let C2π be

the set of all 2π-periodic real functions that are continuous. A real trigonometric
polynomial of degree r is defined as

ur(x) = a0 + 2
r∑

k=1

(ak cos kx + bk sin kx) , x ∈ �,

for a0, a1, . . . , ar and b1, . . . , br are real numbers. A sequence of trigonometric
polynomials can only uniformly converge to a function in C2π. To approximate
a function f ∈ C2π by a trigonometric polynomial of degree r one can use the
Fourier coefficients. These are defined as

ak = ak( f ) =
1

2π

∫ π

−π
f (t) cos ktdt, k ≥ 0,

bk = bk( f ) =
1

2π

∫ π

−π
f (t) sin ktdt, k ≥ 1.

With these coefficients we can define a linear operator S∗r : C2π → C2π, which
returns the r-th partial sum of the Fourier series of f :

S∗r ( f )(x) := a0( f ) + 2
r∑

k=1

(ak( f ) cos kx + bk( f ) sin kx),
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which serves as an approximation of f . This approximation may also be inter-
preted as the orthogonal projection of f onto the subspace of trigonometric poly-
nomials spanned by (cos kx , sin kx) for k = 0, . . . , r, since this basis is orthogonal
w.r.t. the integral inner product. We can also write S∗r as

S∗r ( f )(x) =
1

2π

∫ π

−π
f (x − t)Dr(t)dt, r ∈ �,

i.e., S∗( f ) = f ∗ Dr , where Dr is known as the Dirichlet kernel (cf. [Dir29]). More
precisely, for r ∈ � define

Dr(t) := 1+ 2
r∑

k=1

cos kt.

To see this note that

1
2π

∫ π

−π
f (x − t)Dr(t)dt

=
1

2π

∫ π

−π
f (t)Dr(x − t)dt

=
1

2π

∫ π

−π
f (t)

�
1+ 2

r∑
i=1

cos k(x − t)

�
dt

=
1

2π

∫ π

−π
f (t)

�
1+ 2

r∑
i=1

cos kx cos kt + sin kx sin kt

�
dt

= a0( f ) + 2
r∑

k=1

(ak( f ) cos kx + bk( f ) sin kx) = S∗r ( f )(x),

where we used the well-known identity

cos(x − y) = cos x cos y + sin x sin y.

In fact, there is a simpler way to write the Dirichlet kernel, namely

Dr(t) =

� sin((2r+1) t
2 )

sin t
2

, if t is not a multiple of 2π,

2r + 1 otherwise.
(C.2)

This kernel is not an approximate identity, as it is not a bounded sequence in L1
2π.

In fact,

‖Dr‖= 4
π2

log(r) +O(1), for r ) 0 (asymptotically),



597922-L-bw-Kirschner597922-L-bw-Kirschner597922-L-bw-Kirschner597922-L-bw-Kirschner
Processed on: 24-5-2023Processed on: 24-5-2023Processed on: 24-5-2023Processed on: 24-5-2023 PDF page: 178PDF page: 178PDF page: 178PDF page: 178

160 Conic Optimization in Finance and Approximation Theory

which was shown in [BN71, Proposition 1.2.3]. From this follows that the Fourier
series does not converge uniformly for all functions f ∈ C2π (cf. [AC11, §5.4]).

An improvement is given by the following kernel. Consider for r ∈ � and
x ∈ � the arithmetic means of the partial sum of the Fourier series. We call the
following object the Fejér kernel:

ϕr(t) :=
1

r + 1

r∑
k=0

Dk(t),

with D0 := 1. A simple calculation shows that

ϕr(t) = 1+ 2
r∑

k=1

�
1− k

r + 1

�
cos kt ,

and this kernel can be rewritten as

ϕr(t) =

�
sin2((r+1)t/2)
(r+1) sin2 t/2

, if t is not a multiple of 2π

r + 1, otherwise.

As has been pointed out, one drawback of the Dirichlet kernel is that it is not
non-negative. Taking its square and norming it by dividing by

∫ π

−π
sin2((2r + 1) t

2)

sin2 t
2

dt = 2r + 1,

leads to an approximate identity. Consider the normalized non-negative kernel
ϕ̃k defined as

ϕ̃k(t) =
sin2((2k+ 1)t/2)
(2k+ 1) sin2 t/2

,

which is the Fejér kernel for even r = 2k. Clearly, the Fejér kernel is a generaliza-
tion of the normed square of a Dirichlet kernel. Note that for this kernel we have
for any r ∈ � that

sup
δ≤|x |≤π

|ϕr(x)| ≤ 1

(r + 1) sin2δ/2
,

which implies, in connection with the fact that the kernel is normed and positive,
that (ϕr)r∈� is an approximate identity.
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C.1.1 Jackson kernels

Let us consider now two kernels A and B. Let the kernel A be a sequence in L1
2π

defined as
Ar(x) := arϕr(x)

2,

where ar is chosen such that

1
ar
=

1
2π

∫ π

−π
ϕr(t)

2dt.

In that way it is ensured that the resulting function Ar is a normalized periodic
kernel. Now, in these terms the kernel Ar is fully determined. We can find a closed
form expression for ar

1
ar
=

1
(r + 1)2

,
1

2π

∫ π

−π
sin4((r + 1)t/2)

sin4 t/2
dt

-
=
(2(r + 1)2 + 1)

3(r + 1)
.

This means we can write out the kernel Ar explicitly as

Ar(t) =
3

(r + 1)(2(r + 1)2) + 1
sin4((r + 1)t/2)

sin4 t/2
.

This object is sometimes referred to as the Jackson kernel or Jackson Convolution
operator (see, e.g., [AC11]). However, it is not the same object which is called the
Jackson kernel in [WWAF06]. We will denote the kernel from [WWAF06] as

Br(t) = 1+ 2
r∑

k=1

gKPM
k,r cos kt, where gKPM

k,r as in (5.12).

These objects are not the same. To see this consider again the Dirichlet kernel
(C.2) for r = 1. Taking the fourth power leads to�

sin 3x/2
sin x/2

�4

= (1+ 2cos x)4

= 19+ 32 cos x + 20 cos2x + 8 cos3x + 2cos 4x ,

which after normalizing the coefficients by 19 = 1/(2π)
∫ π
−π(1 + 2 cos x)4dx re-

sults in a kernel of the form

A4(t) = 1+ 2
4∑

k=1

gk cos kt.

We compare the coefficients to those of kernel Br in Table C.1.
So the kernels Ar and Br are not the same. They are, however, strongly related,

which we will investigate further in the next section.
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k 0 1 2 3 4
gk 1 0.842 0.526 0.211 0.105

gKPM
k,4 1 0.866 0.583 0.289 0.083

Table C.1: Comparison of coefficients for A4(t) and B4(t).

C.1.2 Jackson’s original work

In the following we will look more closely at what Jackson did in his PhD thesis
[Jac11] and a publication [Jac12] in the following year. Let f be a real 2π periodic
function which is Lipschitz continuous, i.e.,

| f (x2)− f (x1)| ≤ λ|x2 − x1|,
for some constant λ ∈ �. Jackson defined the approximating function

Ir(x) = hr

∫ π/2

−π/2
f (x + 2u)

�
sin ru
r sin u

�4

du,

with
1
hr
=

∫ π/2

−π/2

�
sin ru
r sin u

�4

du.

He showed that the integrand in the former integral is a trigonometric poly-
nomial of order no more than 2(r − 1). From there it is not difficult to find that

Ir(x)− f (x) = hr

∫ π/2

−π/2
( f (x + 2u)− f (x))

�
sin ru
r sin u

�4

du.

Using the fact that the function f is Lipschitz continuous we see that

|Ir(x)− f (x)| ≤ 2λhr

∫ π/2

−π/2
|u|

�
sin ru
r sin u

�4

du. (C.3)

From here, there are two possible ways to proceed. Jackson continued by
arguing

|Ir(x)− f (x)| ≤ 2λ

∫ π/2
0 u

� sin ru
r sin u

�4
du∫ π/2

0

� sin ru
r sin u

�4
du

,

and then finding estimates for denominator and numerator achieving

|Ir(x)− f (x)| ≤ 2λ
1
r

 π
2

!4
∫∞

0
sin4 u

u3 du∫ π/2
0

� sin u
u

�4
du

.
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The fraction containing integrals on the right-hand-side is a finite constant:∫∞
0

sin4 u
u3 du∫ π/2

0

� sin u
u

�4
du
≤ 2 log(2).

With this he proved that his kernel achieved the best possible convergence rate of
O(1/r), which had been proved earlier by Bernstein [Ber12].

Another possibility

Going back to the fork (C.3) one can also go about this in the following way1

|Ir(x)− f (x)| ≤ 2λhr

∫ π/2

−π/2
|u|

�
sin ru
r sin u

�4

du

= 2λhr

∫ π/2

−π/2
|u|

,�
sin ru
r sin u

�2
-2

du

≤ 2λhr

�∫ π/2

−π/2
u2

�
sin ru
r sin u

�4

du

� 1
2
�∫ π/2

−π/2

�
sin ru
r sin u

�4

du

� 1
2

= 2λh
1
2
r

�∫ π/2

−π/2
u2

�
sin ru
r sin u

�4

du

� 1
2

,

where we used Schwarz’s inequality for integrals and the definition of hr . Since
−π/2≤ u≤ π/2 we can use u2 ≤ π2

2 (1− cos u). Continuing, we find

2λh
1
2
r

�∫ π/2

−π/2
u2

�
sin ru
r sin u

�4

du

� 1
2

≤$2πλh
1
2
r

,∫ π

−π
(1− cos u)

�
sin ru
r sin u

�4

du

- 1
2

.

Here we changed the domain of integration, but since the integrand is positive
the inequality works the right way. Now, it can be shown that

�
sin ru
r sin u

�4

= c0 + 2
2(r−1)∑

k=1

ck cos ku,

for some coefficients ck ∈ �. Using the identity

cos u cos ku=
1
2
(cos(k− 1)u+ cos(k+ 1)u)

1Idea from [Riv69] Chapter 1



597922-L-bw-Kirschner597922-L-bw-Kirschner597922-L-bw-Kirschner597922-L-bw-Kirschner
Processed on: 24-5-2023Processed on: 24-5-2023Processed on: 24-5-2023Processed on: 24-5-2023 PDF page: 182PDF page: 182PDF page: 182PDF page: 182

164 Conic Optimization in Finance and Approximation Theory

we see the only term remaining in the integral is c1, leading to

|Ir(x)− f (x)| ≤ $2λπ
/

1− c̄1,

where c̄1 is the coefficient of the normed kernel. This shows that the convergence
rate may be bounded in terms of

/
1− c̄1. This is where the “other” Jackson kernel

comes from. One can use a Jackson-type kernel of order r

1+ 2
r∑

k=1

ck cos kt

with coefficients ck that are yet to be determined. This kernel is normalized by
default. Then, looking for coefficients enforcing non-negativity while maximizing
c1 we find the kernel Br , which was called Jackson kernel in [WWAF06]. This
second construction uses a kernel whose structure is close to the kernel Jackson
used in his original work. However, Jackson did not explicitly construct a kernel
with coefficients gKPM

k,r . Our suggestion is to not refer to the kernel with coefficients
gKPM

k,r as the Jackson kernel. In the literature, especially in the approximation
community, the Jackson kernel is defined as the kernel Jackson used in his PhD
thesis [Jac11]:

Ar(t) =
3

(r + 1)(2(r + 1)2) + 1
sin4(r + 1)t/2

sin4 t/2
.

The kernel which was recovered in [WWAF06] should be given a name which
reflects that it has minimal resolution among all normed non-negative kernels,
e.g., minimum resolution kernel. In fact, the only references we were able to find
who referred to the minimum resolution kernel as the Jackson kernel were citing
[WWAF06].

C.2 Plots and tables

In this section we present some data relevant to Chapter 5. In Table C.2 we com-
pare the sizes of the SDPs (5.26) and (5.29) for different values of n and r. Tables
C.3 — C.12 contain the values of the (orbit) coefficients of the minimum resolu-
tion kernels, i.e., the solutions of (5.29) for a few values of n and r. In Figure C.1
we compare the approximations resulting from a minimal resolution kernel with
the function (x , y) �→ sin(2πx)y for different values of r. In Figure C.2 we com-
pare the approximations resulting from a minimal resolution kernel with the peaks
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function p(x , y) := 3(1− x)2 exp(−x2− (y +1)2)−10(x/5− x3− y5)exp(−x2−
y2)− (1/3)exp(−(x + 1)2 − y2) for different values of r. In Figure C.3 we show
the result of the convolution of the minimum resolution kernels with the Dirac-δ
measure at the origin, i.e., δ(0,0).
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n r k(n, r) k1, . . . , kk(n,r) s(n, r)

2 1 2 2, 1 3
2 2 2 4, 2 6
2 3 2 6, 4 10
2 4 2 9, 6 15
2 5 2 12, 9 21
2 6 2 16, 12 28
2 7 2 20, 16 36
2 8 2 25, 20 45
2 9 2 30, 25 55
2 10 2 36, 30 66

3 1 2 2, 1 4
3 2 2 4, 3 10
3 3 3 7, 6, 1 20
3 4 3 11, 11, 2 35
3 5 3 16, 18, 4 56
3 6 3 23, 27, 7 84
3 7 3 31, 39, 11 120
3 8 3 41, 54, 16 165
3 9 3 53, 72, 23 220
3 10 3 67, 94, 31 286

4 1 2 2, 1 5
4 2 3 4, 3, 1 15
4 3 4 7, 7, 2, 1 35
4 4 4 12, 13, 5, 3 70
4 5 4 18, 23, 9, 7 126
4 6 5 27, 37, 16, 13, 1 210
4 7 5 38, 57, 25, 23, 2 330
4 8 5 53, 83, 39, 37, 4 495
4 9 5 71, 118, 56, 57, 7 715
4 10 5 94, 162, 80, 83, 12 1001

5 1 2 2, 1, 6
5 2 3 4, 3, 1 21
5 3 4 7, 7, 3, 1 56
5 4 5 12, 14, 7, 3, 1 126
5 5 5 19, 25, 14, 8, 3 252
5 6 6 29, 42, 26, 16, 7, 1 462
5 7 6 42, 67, 44, 30, 14, 3 792
5 8 6 60, 102, 71, 51, 26, 7 1287
5 9 6 83, 150, 109, 83, 44, 14 2002
5 10 7 113, 214, 162, 128, 71, 25, 1 3003

Table C.2: Comparison for size of SDP (5.29) and (5.26) for different values of n
and r.
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α gα α gα α gα α gα
(0,0) 1.0 (0, 1) 0.78699 (1,1) 0.62968 (0, 2) 0.40199
(1,2) 0.31816 (2, 2) 0.14946 (0,3) 0.11188 (1, 3) 0.08431
(2,3) 0.02954 (0, 4) 0.00538 (1,4) 0.00384 (0, 5) 0.0

Table C.3: Coefficients of minimum resolution kernel for r = 5, n= 2.

α gα α gα α gα α gα
(0, 0) 1.0 (0, 1) 0.91725 (1,1) 0.8452 (0,2) 0.72312
(1, 2) 0.66675 (2, 2) 0.52709 (0,3) 0.48749 (1,3) 0.44866
(2, 3) 0.35198 (3, 3) 0.23167 (0,4) 0.27302 (1,4) 0.25031
(2, 4) 0.19314 (3, 4) 0.12244 (4,4) 0.06021 (0,5) 0.11905
(1, 5) 0.10857 (2, 5) 0.08168 (3,5) 0.04826 (4,5) 0.02028
(5, 5) 0.0047 (0, 6) 0.03512 (1,6) 0.03208 (2,6) 0.02324
(3, 6) 0.01204 (4, 6) 0.00337 (0,7) 0.00532 (1,7) 0.00496
(2, 7) 0.00352 (3, 7) 0.0013 (0,8) 0.00024 (1,8) 0.00026
(2, 8) 0.00013 (0, 9) 7.0e-5 (1,9) 5.0e-5 (0, 10) 0.0

Table C.4: Coefficients of minimum resolution kernel for r = 10, n= 2.

α gα α gα α gα α gα
(0, 0) 1.0 (0,1) 0.95647 (1, 1) 0.91655 (0,2) 0.84498
(1, 2) 0.81035 (2,2) 0.71818 (0, 3) 0.6908 (1,3) 0.66249
(2, 3) 0.58704 (3,3) 0.47975 (0, 4) 0.52059 (1,4) 0.49892
(2, 4) 0.44107 (3,4) 0.3589 (4, 4) 0.26675 (0,5) 0.35808
(1, 5) 0.34275 (2,5) 0.3017 (3, 5) 0.24347 (4,5) 0.17847
(5, 5) 0.11689 (0,6) 0.22081 (1, 6) 0.21103 (2,6) 0.18465
(3, 6) 0.14712 (4,6) 0.10543 (5, 6) 0.06653 (6,6) 0.03569
(0, 7) 0.1185 (1,7) 0.11309 (2, 7) 0.09822 (3,7) 0.07689
(4, 7) 0.05322 (5,7) 0.03158 (6, 7) 0.01525 (7,7) 0.0054
(0, 8) 0.05275 (1,8) 0.0503 (2, 8) 0.04337 (3,8) 0.03317
(4, 8) 0.02178 (5,8) 0.01164 (6, 8) 0.00461 (7,8) 0.00103
(0, 9) 0.01804 (1,9) 0.01726 (2, 9) 0.01486 (3,9) 0.01105
(4, 9) 0.00666 (5,9) 0.00296 (6, 9) 0.00073 (0, 10) 0.00416
(1,10) 0.00404 (2,10) 0.00353 (3, 10) 0.00253 (4, 10) 0.00132
(5,10) 0.00037 (0,11) 0.00052 (1, 11) 0.00052 (2, 11) 0.00047
(3,11) 0.00032 (4,11) 0.00011 (0, 12) 5.0e-5 (1, 12) 5.0e-5
(2,12) 4.0e-5 (3,12) 1.0e-5 (0, 13) 3.0e-5 (1, 13) 2.0e-5
(2,13) 1.0e-5 (0,14) 1.0e-5 (1, 14) 0.0 (0, 15) 0.0

Table C.5: Coefficients of minimum resolution kernel for r = 15, n= 2
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α gα α gα α gα α gα
(0,0) 1.0 (0,1) 0.97325 (1,1) 0.94811 (0,2) 0.90176
(1,2) 0.87892 (2,2) 0.81609 (0,3) 0.79699 (1,3) 0.77697
(2,3) 0.72182 (3,3) 0.63911 (0,4) 0.67169 (1,4) 0.65475
(2,4) 0.60811 (3,4) 0.53814 (4,4) 0.45283 (0,5) 0.53849
(1,5) 0.52475 (2,5) 0.48685 (3,5) 0.43002 (4,5) 0.36082
(5,5) 0.28643 (0,6) 0.40878 (1,6) 0.39813 (2,6) 0.36875
(3,6) 0.32468 (4,6) 0.27109 (5,6) 0.21366 (6,6) 0.15784
(0,7) 0.29168 (1,7) 0.2839 (2,7) 0.26235 (3,7) 0.22999
(4,7) 0.19066 (5,7) 0.14866 (6,7) 0.10812 (7,7) 0.07248
(0,8) 0.1935 (1,8) 0.18821 (2,8) 0.17347 (3,8) 0.15124
(4,8) 0.12418 (5,8) 0.09536 (6,8) 0.06779 (7,8) 0.04396
(8,8) 0.02543 (0,9) 0.11748 (1,9) 0.11421 (2,9) 0.10497
(3,9) 0.09093 (4,9) 0.07375 (5,9) 0.05547 (6,9) 0.03816
(7,9) 0.02356 (8,9) 0.01265 (9,9) 0.00562 (0,10) 0.06382
(1, 10) 0.06203 (2, 10) 0.05689 (3, 10) 0.04894 (4,10) 0.03908
(5, 10) 0.02857 (6, 10) 0.01876 (7, 10) 0.01074 (8,10) 0.00512
(9, 10) 0.00184 (10,10) 0.00039 (0, 11) 0.03006 (1,11) 0.02924
(2, 11) 0.02681 (3, 11) 0.02292 (4, 11) 0.01796 (5,11) 0.01263
(6, 11) 0.00772 (7, 11) 0.00392 (8, 11) 0.00151 (9,11) 0.00034
(0, 12) 0.01176 (1, 12) 0.01148 (2, 12) 0.01059 (3,12) 0.00902
(4, 12) 0.0069 (5, 12) 0.00458 (6, 12) 0.00251 (7,12) 0.00103
(8, 12) 0.00025 (0, 13) 0.00361 (1, 13) 0.00355 (2,13) 0.00332
(3, 13) 0.00284 (4, 13) 0.0021 (5, 13) 0.00128 (6,13) 0.00058
(7, 13) 0.00015 (0, 14) 0.00081 (1, 14) 0.00081 (2,14) 0.00078
(3, 14) 0.00066 (4, 14) 0.00047 (5, 14) 0.00025 (6,14) 7.0e-5
(0, 15) 0.00015 (1, 15) 0.00015 (2, 15) 0.00014 (3,15) 0.00011
(4, 15) 7.0e-5 (5, 15) 2.0e-5 (0, 16) 5.0e-5 (1,16) 5.0e-5
(2, 16) 4.0e-5 (3, 16) 2.0e-5 (4, 16) 1.0e-5 (0,17) 3.0e-5
(1, 17) 3.0e-5 (2, 17) 2.0e-5 (3, 17) 0.0 (0,18) 1.0e-5
(1, 18) 1.0e-5 (2, 18) 0.0 (0, 19) 0.0 (1,19) 0.0
(0, 20) 0.0 - - - - - -

Table C.6: Coefficients of minimum resolution kernel for r = 20, n= 2
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α gα α gα α gα α gα
(0, 0) 1.0 (0,1) 0.98191 (1, 1) 0.96467 (0,2) 0.93234
(1, 2) 0.91628 (2,2) 0.87123 (0, 3) 0.85734 (1,3) 0.84273
(2, 3) 0.80174 (3,3) 0.7385 (0, 4) 0.76377 (1,4) 0.7508
(2, 4) 0.71437 (3,4) 0.65817 (4, 4) 0.5868 (0,5) 0.65878
(1, 5) 0.64755 (2,5) 0.61599 (3, 5) 0.5673 (4,5) 0.50548
(5, 5) 0.43512 (0,6) 0.54933 (1, 6) 0.53987 (2,6) 0.51327
(3, 6) 0.47223 (4,6) 0.42015 (5, 6) 0.36095 (6,6) 0.29868
(0, 7) 0.44172 (1,7) 0.43399 (2, 7) 0.41225 (3,7) 0.37871
(4, 7) 0.33617 (5,7) 0.28787 (6, 7) 0.23718 (7,7) 0.18732
(0, 8) 0.34125 (1,8) 0.33516 (2, 8) 0.31802 (3,8) 0.29155
(4, 8) 0.25798 (5,8) 0.21992 (6, 8) 0.18008 (7,8) 0.14105
(8, 8) 0.10507 (0,9) 0.25198 (1, 9) 0.24739 (2,9) 0.23443
(3, 9) 0.21438 (4,9) 0.18895 (5, 9) 0.16012 (6,9) 0.13001
(7, 9) 0.10067 (8,9) 0.07385 (9, 9) 0.05086 (0, 10) 0.17659
(1, 10) 0.17331 (2, 10) 0.164 (3, 10) 0.14956 (4, 10) 0.13117
(5, 10) 0.11032 (6, 10) 0.0886 (7, 10) 0.06755 (8, 10) 0.04851
(9, 10) 0.03246 (10,10) 0.01994 (0, 11) 0.11635 (1, 11) 0.11416
(2, 11) 0.10789 (3, 11) 0.09808 (4, 11) 0.08555 (5, 11) 0.07128
(6, 11) 0.05644 (7, 11) 0.04215 (8, 11) 0.0294 (9, 11) 0.0189
(10,11) 0.01097 (11,11) 0.00557 (0, 12) 0.07119 (1, 12) 0.06984
(2, 12) 0.06593 (3, 12) 0.05976 (4, 12) 0.0518 (5, 12) 0.04268
(6, 12) 0.03318 (7, 12) 0.0241 (8, 12) 0.01615 (9, 12) 0.0098
(10,12) 0.00523 (11,12) 0.00233 (12, 12) 0.00079 (0, 13) 0.03979
(1, 13) 0.03905 (2, 13) 0.03686 (3, 13) 0.03334 (4, 13) 0.0287
(5, 13) 0.02333 (6, 13) 0.01771 (7, 13) 0.0124 (8, 13) 0.00785
(9, 13) 0.00437 (10,13) 0.00204 (11, 13) 0.00073 (12,13) 0.00015
(0, 14) 0.0199 (1, 14) 0.01956 (2, 14) 0.01849 (3, 14) 0.01672
(4, 14) 0.0143 (5, 14) 0.01144 (6, 14) 0.00842 (7, 14) 0.0056
(8, 14) 0.00327 (9, 14) 0.00159 (10, 14) 0.00059 (11,14) 0.00013
(0, 15) 0.00867 (1, 15) 0.00854 (2, 15) 0.00812 (3, 15) 0.00736
(4, 15) 0.00627 (5, 15) 0.00491 (6, 15) 0.00347 (7, 15) 0.00214
(8, 15) 0.0011 (9, 15) 0.00043 (10, 15) 9.0e-5 (0, 16) 0.00317
(1, 16) 0.00314 (2, 16) 0.00302 (3, 16) 0.00276 (4, 16) 0.00234
(5, 16) 0.00179 (6, 16) 0.00119 (7, 16) 0.00065 (8, 16) 0.00027
(9, 16) 6.0e-5 (0, 17) 0.00094 (1, 17) 0.00094 (2, 17) 0.00092
(3, 17) 0.00085 (4, 17) 0.00071 (5, 17) 0.00053 (6, 17) 0.00032
(7, 17) 0.00015 (8, 17) 4.0e-5 (0, 18) 0.00023 (1, 18) 0.00023
(2, 18) 0.00023 (3, 18) 0.00021 (4, 18) 0.00017 (5, 18) 0.00011
(6, 18) 6.0e-5 (7, 18) 2.0e-5 (0, 19) 7.0e-5 (1, 19) 7.0e-5
(2, 19) 6.0e-5 (3, 19) 5.0e-5 (4, 19) 3.0e-5 (5, 19) 2.0e-5
(6, 19) 1.0e-5 (0, 20) 4.0e-5 (1, 20) 4.0e-5 (2, 20) 3.0e-5
(3, 20) 2.0e-5 (4, 20) 1.0e-5 (5, 20) 0.0 (0, 21) 2.0e-5
(1, 21) 2.0e-5 (2, 21) 1.0e-5 (3, 21) 1.0e-5 (4, 21) 0.0
(0, 22) 1.0e-5 (1, 22) 1.0e-5 (2, 22) 0.0 (3, 22) 0.0
(0, 23) 0.0 (1, 23) 0.0 (2, 23) 0.0 (0, 24) 0.0
(1, 24) 0.0 (0, 25) 0.0 - - - -

Table C.7: Coefficients of minimum resolution kernel for r = 25, n= 2
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α gα α gα α gα α gα
(0,0, 0) 1.0 (0, 0,1) 0.68496 (0, 1,1) 0.48031 (1, 1,1) 0.33143
(0,0, 2) 0.23185 (0, 1,2) 0.15668 (1, 1,2) 0.10399 (0, 2,2) 0.04188
(1,2, 2) 0.02408 (0, 0,3) 0.02117 (0, 1,3) 0.01319 (1, 1,3) 0.00757
(0,2, 3) 0.00092 (0, 0,4) 7.0e-5 (0, 1,4) −5.0e-5 (0, 0,5) −1.0e-5

Table C.8: Coefficients of minimum resolution kernel for r = 5, n= 3.

α gα α gα α gα α gα
(0,0, 0) 1.0 (0, 0,1) 0.86461 (0,1, 1) 0.75281 (1,1, 1) 0.65401
(0,0, 2) 0.57852 (0, 1,2) 0.5036 (1,1, 2) 0.43793 (0,2, 2) 0.33561
(1,2, 2) 0.28996 (2, 2,2) 0.18874 (0,0, 3) 0.29062 (0,1, 3) 0.25169
(1,1, 3) 0.21767 (0, 2,3) 0.16346 (1,2, 3) 0.14054 (2,2, 3) 0.08819
(0,3, 3) 0.07549 (1, 3,3) 0.06385 (2,3, 3) 0.03779 (3,3, 3) 0.01388
(0,0, 4) 0.09872 (0, 1,4) 0.08484 (1,1, 4) 0.07271 (0,2, 4) 0.05252
(1,2, 4) 0.04453 (2, 2,4) 0.02619 (0,3, 4) 0.02154 (1,3, 4) 0.01782
(2,3, 4) 0.00935 (3, 3,4) 0.00238 (0,4, 4) 0.00478 (1,4, 4) 0.00372
(2,4, 4) 0.00146 (0, 0,5) 0.01757 (0,1, 5) 0.0151 (1,1, 5) 0.01284
(0,2, 5) 0.00872 (1, 2,5) 0.00718 (2,2, 5) 0.00361 (0,3, 5) 0.00277
(1,3, 5) 0.00212 (2, 3,5) 0.00081 (0,4, 5) 0.00028 (1,4, 5) 0.00016
(0,5, 5) 2.0e-5 (0, 0,6) 0.00108 (0,1, 6) 0.00095 (1,1, 6) 0.00079
(0,2, 6) 0.00051 (1, 2,6) 0.00039 (2,2, 6) 0.00014 (0,3, 6) 0.00011
(1,3, 6) 6.0e-5 (0, 4,6) 1.0e-5 (0,0, 7) 8.0e-5 (0,1, 7) 5.0e-5
(1,1, 7) 2.0e-5 (0, 2,7) 1.0e-5 (1,2, 7) 0.0 (0,3, 7) 0.0
(0,0, 8) 1.0e-5 (0, 1,8) 0.0 (1,1, 8) 0.0 (0,2, 8) 0.0
(0,0, 9) 0.0 (0, 1,9) 0.0 (0, 0,10) 0.0 - -

Table C.9: Coefficients of minimum resolution kernel for r = 10, n= 3.
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α gα α gα α gα α gα
(0, 0,0) 1.0 (0, 0, 1) 0.92525 (0,1, 1) 0.85868 (1, 1,1) 0.79631
(0, 0,2) 0.74623 (0, 1, 2) 0.6932 (1,1, 2) 0.64369 (0, 2,2) 0.56094
(1, 2,2) 0.5199 (2, 2, 2) 0.41863 (0,0, 3) 0.52376 (0, 1,3) 0.48624
(1, 1,3) 0.45127 (0, 2, 3) 0.39215 (1,2, 3) 0.36346 (2, 2,3) 0.29109
(0, 3,3) 0.27243 (1, 3, 3) 0.25169 (2,3, 3) 0.19998 (3, 3,3) 0.13526
(0, 0,4) 0.31461 (0, 1, 4) 0.29152 (1,1, 4) 0.27006 (0, 2,4) 0.23319
(1, 2,4) 0.21574 (2, 2, 4) 0.17145 (0,3, 4) 0.15935 (1, 3,4) 0.14698
(2, 3,4) 0.11543 (3, 3, 4) 0.07607 (0,4, 4) 0.09079 (1, 4,4) 0.08327
(2, 4,4) 0.06428 (3, 4, 4) 0.04086 (4,4, 4) 0.02055 (0, 0,5) 0.15601
(0, 1,5) 0.14422 (1, 1, 5) 0.13325 (0,2, 5) 0.11392 (1, 2,5) 0.10508
(2, 2,5) 0.08235 (0, 3, 5) 0.07573 (1,3, 5) 0.06961 (2, 3,5) 0.0538
(3, 3,5) 0.03407 (0, 4, 5) 0.04116 (1,4, 5) 0.03757 (2, 4,5) 0.0283
(3, 4,5) 0.01699 (4, 4, 5) 0.00763 (0,5, 5) 0.01731 (1, 5,5) 0.01561
(2, 5,5) 0.01131 (3, 5, 5) 0.0062 (4,5, 5) 0.00229 (5, 5,5) 0.00043
(0, 0,6) 0.05986 (0, 1, 6) 0.05526 (1,1, 6) 0.05095 (0, 2,6) 0.04299
(1, 2,6) 0.03951 (2, 2, 6) 0.03032 (0,3, 6) 0.02746 (1, 3,6) 0.02509
(2, 3,6) 0.01887 (3, 3, 6) 0.01123 (0,4, 6) 0.01382 (1, 4,6) 0.01249
(2, 4,6) 0.00905 (3, 4, 6) 0.00494 (4,4, 6) 0.00181 (0, 5,6) 0.00508
(1, 5,6) 0.00451 (2, 5, 6) 0.00306 (3,5, 6) 0.00142 (4, 5,6) 0.00034
(0, 6,6) 0.00119 (1, 6, 6) 0.00101 (2,6, 6) 0.0006 (3, 6,6) 0.00019
(0, 0,7) 0.01607 (0, 1, 7) 0.01487 (1,1, 7) 0.01372 (0, 2,7) 0.01142
(1, 2,7) 0.01046 (2, 2, 7) 0.0078 (0,3, 7) 0.00693 (1, 3,7) 0.00626
(2, 3,7) 0.00449 (3, 3, 7) 0.0024 (0,4, 7) 0.0031 (1, 4,7) 0.00274
(2, 4,7) 0.00183 (3, 4, 7) 0.00083 (4,4, 7) 0.00019 (0, 5,7) 0.00089
(1, 5,7) 0.00076 (2, 5, 7) 0.00044 (3,5, 7) 0.00013 (0, 6,7) 0.00014
(1, 6,7) 0.0001 (2, 6, 7) 4.0e-5 (0,7, 7) 1.0e-5 (1, 7,7) 0.0
(0, 0,8) 0.00273 (0, 1, 8) 0.00255 (1,1, 8) 0.00237 (0, 2,8) 0.00195
(1, 2,8) 0.00178 (2, 2, 8) 0.00128 (0,3, 8) 0.00113 (1, 3,8) 0.001
(2, 3,8) 0.00067 (3, 3, 8) 0.0003 (0,4, 8) 0.00044 (1, 4,8) 0.00037
(2, 4,8) 0.00021 (3, 4, 8) 6.0e-5 (0,5, 8) 0.0001 (1, 5,8) 7.0e-5
(2, 5,8) 3.0e-5 (0, 6, 8) 1.0e-5 (1,6, 8) 0.0 (0, 7,8) 0.0
(0, 0,9) 0.00026 (0, 1, 9) 0.00024 (1,1, 9) 0.00022 (0, 2,9) 0.00018
(1, 2,9) 0.00016 (2, 2, 9) 0.0001 (0,3, 9) 0.0001 (1, 3,9) 8.0e-5
(2, 3,9) 5.0e-5 (3, 3, 9) 1.0e-5 (0,4, 9) 4.0e-5 (1, 4,9) 3.0e-5
(2, 4,9) 1.0e-5 (0, 5, 9) 1.0e-5 (1,5, 9) 0.0 (0, 6,9) 0.0
(0,0, 10) 2.0e-5 (0, 1, 10) 2.0e-5 (1, 1,10) 1.0e-5 (0, 2,10) 1.0e-5
(1,2, 10) 0.0 (2, 2, 10) 0.0 (0, 3,10) 0.0 (1, 3,10) 0.0
(2,3, 10) 0.0 (0, 4, 10) 0.0 (1, 4,10) 0.0 (0, 5,10) 0.0
(0,0, 11) 0.0 (0, 1, 11) 0.0 (1, 1,11) 0.0 (0, 2,11) 0.0
(1,2, 11) 0.0 (2, 2, 11) 0.0 (0, 3,11) 0.0 (1, 3,11) 0.0
(0,4, 11) 0.0 (0, 0, 12) 0.0 (0, 1,12) 0.0 (1, 1,12) 0.0
(0,2, 12) 0.0 (1, 2, 12) 0.0 (0, 3,12) 0.0 (0, 0,13) 0.0
(0,1, 13) 0.0 (1, 1, 13) 0.0 (0, 2,13) 0.0 (0, 0,14) 0.0
(0,1, 14) 0.0 (0, 0, 15) 0.0 - - - -

Table C.10: Coefficients of minimum resolution kernel for r = 15, n= 3.
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α gα α gα α gα α gα
(0, 0,0, 0) 1.0 (0, 0,0, 1) 0.59115 (0, 0, 1, 1) 0.35488 (0, 1,1, 1) 0.20728
(1, 1,1, 1) 0.11764 (0, 0,0, 2) 0.12466 (0, 0,1, 2) 0.06911 (0, 1,1, 2) 0.03576
(1, 1,1, 2) 0.01705 (0, 0,2, 2) 0.00736 (0, 1,2, 2) 0.00225 (0, 0,0, 3) 0.00251
(0, 0,1, 3) 0.00147 (0, 1,1, 3) 0.00051 (0, 0,2, 3) 9.0e-5 (0, 0,0, 4) −3.0e-5
(0, 0,1, 4) 0.0 (0, 0,0, 5) 0.0 - - - -

Table C.11: Coefficients of minimum resolution kernel for r = 5, n= 4.

α gα α gα α gα α gα
(0, 0,0,0) 1.0 (0,0, 0,1) 0.81189 (0,0, 1,1) 0.66535 (0, 1,1,1) 0.54349
(1, 1,1,1) 0.44544 (0,0, 0,2) 0.45316 (0,0, 1,2) 0.37047 (0, 1,1,2) 0.3025
(1, 1,1,2) 0.24635 (0,0, 2,2) 0.20357 (0,1, 2,2) 0.16459 (1, 1,2,2) 0.13334
(0, 2,2,2) 0.08681 (1,2, 2,2) 0.06968 (2,2, 2,2) 0.03479 (0, 0,0,3) 0.15888
(0, 0,1,3) 0.12858 (0,1, 1,3) 0.10384 (1,1, 1,3) 0.08364 (0, 0,2,3) 0.06743
(0, 1,2,3) 0.05385 (1,1, 2,3) 0.04282 (0,2, 2,3) 0.02653 (1, 2,2,3) 0.02072
(2, 2,2,3) 0.00914 (0,0, 3,3) 0.02034 (0,1, 3,3) 0.01576 (1, 1,3,3) 0.01217
(0, 2,3,3) 0.00692 (1,2, 3,3) 0.0051 (2,2, 3,3) 0.00166 (0, 3,3,3) 0.00136
(1, 3,3,3) 0.0008 (0,0, 0,4) 0.02515 (0,0, 1,4) 0.02016 (0, 1,1,4) 0.01603
(1, 1,1,4) 0.01265 (0,0, 2,4) 0.00981 (0,1, 2,4) 0.00759 (1, 1,2,4) 0.00582
(0, 2,2,4) 0.00324 (1,2, 2,4) 0.00237 (2,2, 2,4) 0.00076 (0, 0,3,4) 0.00247
(0, 1,3,4) 0.00178 (1,1, 3,4) 0.00125 (0,2, 3,4) 0.00059 (1, 2,3,4) 0.00034
(0, 3,3,4) 2.0e-5 (0,0, 4,4) 0.00027 (0,1, 4,4) 0.00014 (1, 1,4,4) 7.0e-5
(0, 2,4,4) 0.0 (0,0, 0,5) 4.0e-5 (0,0, 1,5) 0.00016 (0, 1,1,5) 0.00017
(1, 1,1,5) 0.00017 (0,0, 2,5) 0.00015 (0,1, 2,5) 0.00012 (1, 1,2,5) 9.0e-5
(0, 2,2,5) 5.0e-5 (1,2, 2,5) 3.0e-5 (0,0, 3,5) 7.0e-5 (0, 1,3,5) 3.0e-5
(1, 1,3,5) 1.0e-5 (0,2, 3,5) 0.0 (0,0, 4,5) 1.0e-5 (0, 1,4,5) 0.0
(0, 0,5,5) 0.0 (0,0, 0,6) 0.00024 (0,0, 1,6) 0.00017 (0, 1,1,6) 0.0001
(1, 1,1,6) −7.0e-5 (0,0, 2,6) −3.0e-5 (0,1, 2,6) −2.0e-5 (1, 1,2,6) −1.0e-5
(0, 2,2,6) 0.0 (0,0, 3,6) 1.0e-5 (0,1, 3,6) 0.0 (0, 0,4,6) 0.0
(0, 0,0,7) −4.0e-5 (0,0, 1,7) −1.0e-5 (0,1, 1,7) −1.0e-5 (1, 1,1,7) 0.0
(0, 0,2,7) 0.0 (0,1, 2,7) 0.0 (0,0, 3,7) 0.0 (0, 0,0,8) 0.0
(0, 0,1,8) 0.0 (0,1, 1,8) 0.0 (0,0, 2,8) 0.0 (0, 0,0,9) 0.0
(0, 0,1,9) 0.0 (0, 0,0, 10) 0.0 - - - -

Table C.12: Coefficients of minimum resolution kernel for r = 10, n= 4.
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(a) Approximation level r = 10 (b) Approximation level r = 20

(c) Approximation level r = 30 (d) Approximation level r = 40

(e) Approximation level r = 50 (f) sin(2πx)y

Figure C.1: Approximation of the function (x , y) �→ sin(2πx)y via the kernel with
respect to σr for r = 10, 20, . . . , 50 as well as a plot of the function itself.



597922-L-bw-Kirschner597922-L-bw-Kirschner597922-L-bw-Kirschner597922-L-bw-Kirschner
Processed on: 24-5-2023Processed on: 24-5-2023Processed on: 24-5-2023Processed on: 24-5-2023 PDF page: 192PDF page: 192PDF page: 192PDF page: 192

174 Conic Optimization in Finance and Approximation Theory

(a) Approximation level r = 10 (b) Approximation level r = 20

(c) Approximation level r = 30 (d) Approximation level r = 40

(e) Approximation level r = 50 (f) Peaks function p(x , y)

Figure C.2: Approximation of the peaks function p(x , y) := 3(1− x)2 exp(−x2 −
(y + 1)2)− 10(x/5− x3 − y5)exp(−x2 − y2)− (1/3)exp(−(x + 1)2 − y2) via the
kernel with respect to σr for r = 10,20, . . . , 50 as well as a plot of the function
itself in graph C.2f.
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(a) r = 10 (b) r = 20

(c) r = 30 (d) r = 40

(e) r = 50

Figure C.3: Convolution of Dirac-δ at (0,0) with optimal kernel with respect to
σr for different values of r
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652 Hugo van Buggenum Banks and Financial Markets in 
Microfounded Models of Money 

978 90 
5668 653 6 

August 2021 

653 Arthur Beddock Asset Pricing with Heterogeneous Agents 
and Non-normal Return Distributions 

978 90 
5668 654 3 

September 
2021 

654 Mirron Adriana 
Boomsma 

 

On the transition to a sustainable 
economy: Field experimental evidence on 
behavioral interventions 

978 90 
5668 655 0 

September 
2021 

655 Roweno Heijmans On Environmental Externalities and 
Global Games 

978 90 
5668 656 7 

August 2021 

656 Lenka Fiala Essays in the economics of education 978 90 
5668 657 4 

September 
2021 

657 Yuexin Li Pricing Art: Returns, Trust, and Crises 978 90 
5668 658 1 

September 
2021 

658 Ernst Roos Robust Approaches for Optimization 
Problems with Convex Uncertainty 

978 90 
5668 659 8 

September 
2021 

659 Joren Koëter Essays on asset pricing, investor 
preferences and derivative markets 

978 90 
5668 660 4 

September 
2021 

660 Ricardo Barahona Investor Behavior and Financial Markets 978 90 
5668 661 1 

October 
2021 

660 Stefan ten Eikelder Biologically-based radiation therapy 
planning and adjustable robust 
optimization 

978 90 
5668 662 8 

October 
2021 

661  Three essays on Individual Behavior and 
New Technologies 

978 90 
5668 663 5 

October 
2021 

662 Hasan Apakan Essays on Two-Dimensional Signaling 
Games 

978 90 
5668 664 2 

October 
2021 

663 Ana Moura Essays in Health Economics 978 90 
5668 665 9 

November 
2021 

664 Frederik Verplancke Essays on Corporate Finance: Insights on 
Aspects of the General Business 
Environment  

978 90 
5668 666 6 

October 
2021 
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665 Zhaneta Tancheva Essays on Macro-Finance and Market 
Anomalies 

978 90 
5668 667 3 

November 
2021 

666 Claudio Baccianti Essays in Economic Growth and Climate 
Policy 

978 90 
5668 668 0 

November 
2021 

667 Hongwei Zhang Empirical Asset Pricing and Ensemble 
Machine Learning 

978 90 
5668 669 7 

November 
2021 

668 Bart van der Burgt Splitsing in de Wet op de 
vennootschapsbelasting 1969 Een 
evaluatie van de Nederlandse 
winstbelastingregels voor splitsingen ten 
aanzien van lichamen 

978 90 
5668 670 3 

December 
2021 

669 Martin Kapons Essays on Capital Markets Research in 
Accounting 

978 90 
5668 671 0 

December 
2021 

670 Xolani Nghona From one dominant growth mode to 
another: Switching between strategic 
expansion modes 

978 90 
5668 672 7 

December 
2021 

671 Yang Ding Antecedents and Implications of Legacy 
Divestitures 

978 90 
5668 673 4 

December 
2021 

672 Joobin Ordoobody The Interplay of Structural and Individual 
Characteristics 

978 90 
5668 674 1 

February 
2022 

673 Lucas Avezum Essays on Bank Regulation and 
Supervision 

978 90 
5668 675 8 

March 2022 

674 Oliver Wichert Unit-Root Tests in High-Dimensional 
Panels 

978 90 
5668 676 5 

April 2022 

675 Martijn de Vries Theoretical Asset Pricing under 
Behavioral Decision Making 

978 90 
5668 677 2 

June 2022 

676 Hanan Ahmed Extreme Value Statistics using Related 
Variables 

978 90 
5668 678 9 

June 2022 

677 Jan Paulick Financial Market Information 
Infrastructures: Essays on Liquidity, 
Participant Behavior, and Information 
Extraction 

978 90 
5668 679 6 

June 2022 

678 Freek van Gils Essays on Social Media and Democracy 978 90 
5668 680 2 

 

June 2022 
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679 Suzanne Bies Examining the Effectiveness of Activation 
Techniques on Consumer Behavior in 
Temporary Loyalty Programs 

978 90 
5668 681 9 

July 2022 

680 Qinnan Ruan Management Control Systems and Ethical 
Decision Making 

978 90 
5668 682 6 

June 2022 

681 Lingbo Shen Essays on Behavioral Finance and 
Corporate Finance 

978 90 
5668 683 3 

August 2022 

682 Joshua Eckblad Mind the Gales: An Attention-Based View 
of Startup Investment Arms 

978 90 
5668 684 0 

August 2022 

683 Rafael Greminger Essays on Consumer Search 978 90 
5668 685 7 

August 2022 

684 Suraj Upadhyay Essay on policies to curb rising healthcare 
expenditures  

978 90 
5668 686 4 

September 
2022 

685 Bert-Jan Butijn From Legal Contracts to Smart Contracts 
and Back Again: An Automated Approach 

978 90 
5668 687 1 

September 
2022 

686 Sytse Duiverman Four essays on the quality of auditing: 
Causes and consequences 

978 90 
5668 688 8 

October 
2022 

687 Lucas Slot Asymptotic Analysis of Semidefinite 
Bounds for Polynomial Optimization and 
Independent Sets in Geometric 
Hypergraphs 

978 90 
5668 689 5 

September 
2022 

688 Daniel Brosch Symmetry reduction in convex 
optimization with applications in 
combinatorics 

978 90 
5668 690 1 

October 
2022 

689 Emil Uduwalage Essays on Corporate Governance in Sri 
Lanka 

978 90 
5668 691 8 

October 
2022 

690 Mingjia Xie Essays on Education and Health 
Economics 

978 90 
5668 692 5 

October 
2022 

691 Peerawat Samranchit Competition in Digital Markets 978 90 
5668 693 2 

October 
2022 

692 Jop Schouten Cooperation, allocation and strategy in 
interactive decision-making 

978 90 
5668 694 9 

December 
2022 

693 Pepijn Wissing Spectral Characterizations of Complex 
Unit Gain Graphs 

978 90 
5668 695 6 

November  
2022 
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694 Joris Berns CEO attention, emotion, and 
communication in corporate financial 
distress 

978 90 
5668 696 3 

November  
2022 

695 Tom Aben The (long) road towards smart 
management and maintenance: 
Organising the digital transformation of 
critical infrastructures 

978 90 
5668 697 0 

December  
2022 

696  Essays in Economics of Crime Prevention 
and Behavior Under Uncertainty 

978 90 
5668 698 7 

February 
2023 

697 Suwei An Essays on incentive contracts, M&As, and 
firm risk 

978 90 
5668 699 4 

February 
2023 

698 Jorgo Goossens Non-standard Preferences in Asset 
Pricing and Household Finance 

978 90 
5668 700 7 

February 
2023 

699 Santiago Bohorquez 
Correa 

Risk and rewards of residential energy 
efficiency 

978 90 
5668 701 4 

April 2023 

700 Gleb Gertsman Behavioral Preferences and Beliefs in 
Asset Pricing 

978 90 
5668 702 1 

May 2023 

701 Gabriella Massenz On the Behavioral Effects of Tax Policy 978 90 
5668 703 8 

May 2023 

702 Yeqiu Zheng The Effect of Language and Temporal 
Focus on Cognition, Economic Behaviour, 
and Well-Being 

978 90 
5668 704 5 

May 2023 

 

703 Michela Bonani Essays on Innovation, Cooperation, and 
Competition Under Standardization 

978 90 
5668 705 2 

June 2023 

704 Fabien Ize Managing Middle Managers: How 
Management Control Design Choices Can 
Improve Managerial Decision-Making 

978 90 
5668 706 9 

June 2023 

705 Kristel de Nobrega Cyber Defensive Capacity and Capability: 
A Perspective from the Financial Sector of 
a Small State…Shield Up! 

978 90 
5668 707 6 

July 2023 

706 Christian Peters The Microfoundations of Audit Quality 978 90 
5668 708 3 

June 2023 

707 Felix Kirschner Conic Optimization with Applications in 
Finance and Approximation Theory 

978 90 
5668 709 0 

July 2023 

 





This dissertation explores conic optimization techniques with applications in 
the fields of finance and approximation theory. One of the most general types of 
conic optimization problems is the so-called generalized moment problem (GMP), 
which plays a fundamental part in this work. While being a powerful modeling 
framework, the GMP is notoriously difficult to solve. Semidefinite programming 
problems (SDPs) can be used to define approximation hierarchies for the GMP. 
The thesis includes an analysis of an interior point algorithm for SDPs, as well as 
a convergence analysis of an approximation hierarchy for the GMP defined over 
special sets. Additionally, the dissertation investigates the problem of pricing 
options that depend on multiple underlyings, which can be modeled as a GMP. 
Finally, the dissertation applies tools from conic optimization to address a classical 
question in approximation theory.

Felix Constantin Kirschner (Hof, Germany, 1993) received his bachelor’s 
and master’s degrees in “Wirtschaftsmathematik” (hybrid program in applied 
mathematics, computer science and economics) from the University of Cologne 
(2016 & 2019). In 2019 he joined the Department of Econometrics and Operations 
Research at Tilburg University as a PhD candidate as part of the Marie Skłodowska-
Curie Innovative Training Network POEMA. 
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