608 research outputs found

    Dynamic worlds in miniature

    Get PDF
    The World in Miniature (WIM) metaphor allows users to interact and travel efficiently in virtual environments. In addition to the first-person perspective offered by typical VR applications, the WIM offers a second dynamic viewpoint through a hand-held miniature copy of the virtual environment. In the original WIM paper the miniature was a scaled down replica of the whole environment, thus limiting the technique to simple models being manipulated at a single level of scale. Several WIM extensions have been proposed where the replica shows only a part of the virtual environment. In this paper we present an improved visualization of WIM that supports arbitrarily-complex, densely-occluded scenes. In particular, we discuss algorithms for selecting the region of the virtual environment which will be covered by the miniature copy and efficient algorithms for handling 3D occlusion from an exocentric viewpoint.Peer ReviewedPostprint (author’s final draft

    Integrating Multiple 3D Views through Frame-of-reference Interaction

    Get PDF
    Frame-of-reference interaction consists of a unified set of 3D interaction techniques for exploratory navigation of large virtual spaces in nonimmersive environments. It is based on a conceptual framework that considers navigation from a cognitive perspective, as a way of facilitating changes in user attention from one reference frame to another, rather than from the mechanical perspective of moving a camera between different points of interest. All of our techniques link multiple frames of reference in some meaningful way. Some techniques link multiple windows within a zooming environment while others allow seamless changes of user focus between static objects, moving objects, and groups of moving objects. We present our techniques as they are implemented in GeoZui3D, a geographic visualization system for ocean data

    Hemodynamic monitoring in the era of digital health

    Get PDF

    Reflecting on the Design and Implementation Issues of Virtual Environments

    Get PDF
    We present a candid reflection on the issues surrounding virtual environment design and implementation (VEDI) in order to: (1) motivate the topic as a research-worthy undertaking, and (2) attempt a comprehensive listing of impeding VEDI issues so they can be addressed. In order to structure this reflection, an idealized model of VEDI is presented. This model, investigated using mixed methods, resulted in 67 distinct issues along the model\u27s transitions and pathways. These were clustered into 11 themes and used to support five VEDI research challenges

    On Inter-referential Awareness in Collaborative Augmented Reality

    Get PDF
    For successful collaboration to occur, a workspace must support inter-referential awareness - or the ability for one participant to refer to a set of artifacts in the environment, and for that reference to be correctly interpreted by others. While referring to objects in our everyday environment is a straight-forward task, the non-tangible nature of digital artifacts presents us with new interaction challenges. Augmented reality (AR) is inextricably linked to the physical world, and it is natural to believe that the re-integration of physical artifacts into the workspace makes referencing tasks easier; however, we find that these environments combine the referencing challenges from several computing disciplines, which compound across scenarios. This dissertation presents our studies of this form of awareness in collaborative AR environments. It stems from our research in developing mixed reality environments for molecular modeling, where we explored spatial and multi-modal referencing techniques. To encapsulate the myriad of factors found in collaborative AR, we present a generic, theoretical framework and apply it to analyze this domain. Because referencing is a very human-centric activity, we present the results of an exploratory study which examines the behaviors of participants and how they generate references to physical and virtual content in co-located and remote scenarios; we found that participants refer to content using physical and virtual techniques, and that shared video is highly effective in disambiguating references in remote environments. By implementing user feedback from this study, a follow-up study explores how the environment can passively support referencing, where we discovered the role that virtual referencing plays during collaboration. A third study was conducted in order to better understand the effectiveness of giving and interpreting references using a virtual pointer; the results suggest the need for participants to be parallel with the arrow vector (strengthening the argument for shared viewpoints), as well as the importance of shadows in non-stereoscopic environments. Our contributions include a framework for analyzing the domain of inter-referential awareness, the development of novel referencing techniques, the presentation and analysis of our findings from multiple user studies, and a set of guidelines to help designers support this form of awareness

    Augmented reality device for first response scenarios

    Get PDF
    A prototype of a wearable computer system is proposed and implemented using commercial off-shelf components. The system is designed to allow the user to access location-specific information about an environment, and to provide capability for user tracking. Areas of applicability include primarily first response scenarios, with possible applications in maintenance or construction of buildings and other structures. Necessary preparation of the target environment prior to system\u27s deployment is limited to noninvasive labeling using optical fiducial markers. The system relies on computational vision methods for registration of labels and user position. With the system the user has access to on-demand information relevant to a particular real-world location. Team collaboration is assisted by user tracking and real-time visualizations of team member positions within the environment. The user interface and display methods are inspired by Augmented Reality1 (AR) techniques, incorporating a video-see-through Head Mounted Display (HMD) and fingerbending sensor glove.*. 1Augmented reality (AR) is a field of computer research which deals with the combination of real world and computer generated data. At present, most AR research is concerned with the use of live video imagery which is digitally processed and augmented by the addition of computer generated graphics. Advanced research includes the use of motion tracking data, fiducial marker recognition using machine vision, and the construction of controlled environments containing any number of sensors and actuators. (Source: Wikipedia) *This dissertation is a compound document (contains both a paper copy and a CD as part of the dissertation). The CD requires the following system requirements: Adobe Acrobat; Microsoft Office; Windows MediaPlayer or RealPlayer

    Interactive exploration of historic information via gesture recognition

    Get PDF
    Developers of interactive exhibits often struggle to �nd appropriate input devices that enable intuitive control, permitting the visitors to engage e�ectively with the content. Recently motion sensing input devices like the Microsoft Kinect or Panasonic D-Imager have become available enabling gesture based control of computer systems. These devices present an attractive input device for exhibits since the user can interact with their hands and they are not required to physically touch any part of the system. In this thesis we investigate techniques to enable the raw data coming from these types of devices to be used to control an interactive exhibit. Object recognition and tracking techniques are used to analyse the user's hand where movement and clicks are processed. To show the e�ectiveness of the techniques the gesture system is used to control an interactive system designed to inform the public about iconic buildings in the centre of Norwich, UK. We evaluate two methods of making selections in the test environment. At the time of experimentation the technologies were relatively new to the image processing environment. As a result of the research presented in this thesis, the techniques and methods used have been detailed and published [3] at the VSMM (Virtual Systems and Multimedia 2012) conference with the intention of further forwarding the area

    Synthetic movies

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Architecture, 1989.Includes bibliographical references (leaves 67-70).by John A. Watlington.M.S
    corecore