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Abstract. The World in Miniature (WIM) metaphor allows users to interact and 
travel efficiently in virtual environments. In addition to the first-person perspec-
tive offered by typical VR applications, the WIM offers a second dynamic 
viewpoint through a hand-held miniature copy of the virtual environment. In the 
original WIM paper the miniature was a scaled down replica of the whole envi-
ronment, thus limiting the technique to simple models being manipulated at a 
single level of scale. Several WIM extensions have been proposed where the 
replica shows only a part of the virtual environment. In this paper we present an 
improved visualization of WIM that supports arbitrarily-complex, densely-
occluded scenes. In particular, we discuss algorithms for selecting the region of 
the virtual environment which will be covered by the miniature copy and effi-
cient algorithms for handling 3D occlusion from an exocentric viewpoint. 

1 Introduction 

The World in Miniature (WIM) metaphor [16] complements the first-person per-
spective offered by typical VR applications with a second dynamic view of a minia-
ture copy of the virtual world. This second exocentric view of the world helps users to 
understand the spatial relationships of the objects and themselves inside the virtual 
world. Furthermore, because the WIM is hand-held, it can be quickly explored from 
different viewpoints without destroying the point of view established in the larger, 
immersive point of view.  

The WIM has been used as a unifying metaphor to accomplish many user tasks in-
cluding object selection and manipulation, navigation and path planning. Object se-
lection can be accomplished either by pointing directly at the object or by pointing at 
its proxy on the WIM. By rotating the hand-held replica, users can even view and pick 
objects that are obscured from the immersive camera viewpoint. Once selected, ob-
jects can be manipulated either at the scale offered by the WIM or at the one-to-one 
scale offered by the immersive environment. The WIM can also include an avatar of 
the user that can be moved to change the user location in the environment, providing 
camera control from an exocentric point of view. The WIM also supports path plan-
ning by selecting a sequence of 3D waypoints on the replica. Furthermore, since the 
WIM provides the user with an additional scale at which to operate, the user can 
choose the most appropriate scale for any given navigation or manipulation task. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Two examples of our improved WIM visualization. The miniature replica provides a 
cut-away view of the part of the model where the user is located 

 

Any WIM implementation has to address two key problems. On one hand, one 
must decide which region of the environment should be included in the miniature 
copy. Early implementations put a replica of the whole environment in the miniature, 
thus limiting its application to simple models like a single room. Some extensions of 
the WIM to handle more complex models have been proposed [3,13,18]. These ap-
proaches use a miniature copy which includes only those objects in the user’s region 
of interest, which can be scaled and moved either manually or automatically. These 
techniques allow the accomplishment of user tasks at different levels of scale. How-
ever, current approaches either provide ad-hoc solutions valid for a limited class of 
models, or assume the input scene already provides some information about its logical 
structure, such as the subdivision of a building into floors. 

On the other hand, WIM implementations have to provide some way to handle 3D 
occlusion. Regardless of the size and shape of the region included in the miniature 
copy, bounding geometry such as walls must be conveniently culled away to make in-
terior objects visible. Early implementations relied solely on backface culling tech-
niques [16], but these are suitable only for very simple models; general 3D models re-
quire the application of more sophisticated techniques for handling 3D occlusion such 
as cut-away views [5].  

In this paper we present an improved visualization of WIM that supports arbitrar-
ily-complex, densely-occluded scenes by addressing the two problems stated above. 
First, we propose to select the region to be included in the miniature copy using a se-
mantic subdivision of the scene into logical structures such as rooms, floors and 
buildings computed automatically from the input scene during preprocessing. The ra-
tionale here is that matching the miniature copies with logical entities of the environ-
ment will help the user to accomplish interaction tasks on the WIM. A logical decom-
position will provide additional cues to better understand the spatial relationships 
among parts of the scene, in addition to a more intuitive and clear view of the nearby 
environment suitable for precise object selection and manipulation. Second, we pro-



pose a simple algorithm to provide a cut-away view of the miniature copy, so that in-
terior geometry is not obscured by the enclosing geometry (Figure 1). 

The problem of computing a spatial decomposition of the scene into logical entities 
is closely related with the cell-and-portal graphs used for occlusion culling (see [4] for 
a recent survey). Cells correspond to regions with approximately constant visibility 
and thus often match with logical entities of the model such as rooms. Note that portal 
culling requires the computation of the geometry of each portal, which is a complex 
problem in general 3D scenes. Fortunately, our decomposition scheme only requires 
an approximate description of the cell’s boundary. Our algorithm for building a cell-
and-portal decomposition is based on a distance field computed on a grid [2]. 

The main contributions of the paper to the WIM metaphor are (a) an algorithm to 
automatically compute which region of the scene must be included in the miniature 
copy which takes into account a logical decomposition of the scene, and (b) an algo-
rithm for providing a cut-away view of the selected region so that interior geometry is 
revealed. These improvements expand the application of WIM to arbitrarily-complex, 
densely-occluded scenes, and allows for the accomplishment of interaction tasks at 
different levels of scales. 

The rest of this paper is organized as follows. Section 2 reviews related work on 
WIM extensions, cell decomposition and 3D occlusion. Section 3 provides an over-
view of the three main components of our extension to the WIM, which are detailed 
in Sections 4-6. Some preliminary results are discussed in Section 7. Finally, we pro-
vide concluding remarks and future work in Section 8. 

2 Previous Work 

In this section we briefly review previous work related with the problem being ad-
dressed (enhancements to the WIM metaphor) and to our adopted solutions (cell de-
compositions and 3D occlusion management). 

World in Miniature. The WIM was proposed originally by Stoakley, Conway and 
Pausch [16] who discussed their application to object selection, manipulation and tra-
velling. They found that users easily understood the mapping between virtual world 
objects and the proxy WIM objects. User orientation during WIM navigation was re-
duced by flying into the WIM [14]. Unfortunately, using a replica of the whole environ-
ment in the miniature limits its application to simple models like a single room, due to 
occlusion and level-of-scale problems. Several WIM extensions have been proposed 
to overcome this limitations. The STEP WIM proposed by La Viola et al. [13], puts 
the miniature replica on the floor screen so that it can be interacted with the feet. The 
main advantage is the freeing of the hands for other tasks. The method provides sev-
eral methods for panning and scaling the part of the scene covered by the miniature. 
This technique has been used in multiple projects although its effectiveness has not 
been evaluated formally. The Scaled and Scrolling WIM (SSWIM) [18] supports in-
teraction at multiple levels of scale trough scaling and scrolling functions. SSWIM 
adds functionally and hence complexity because the user has to scale the model 
manually. However, the scrolling is automatic when the user moves to a position out-



side of a dead zone. This dead zone is a box centered at the SSWIM, but no informa-
tion is given about how this box should be computed. Chittaro et al. [3] propose an 
extension of the WIM that supports user navigation in virtual buildings as a naviga-
tion aid, but also provides a means of examining any floor of a virtual building with-
out having necessary to navigate to it. The aid provides information about both the in-
ternal and external structure of a building, but it is necessary to identify manually all 
the polygons on the different floors, which can be a time-consuming task on complex 
models. Unlike previous WIM extensions, we select the region covered by the minia-
ture using an automatically-computed decomposition of the model into cells. 

Cell and portal decompositions. A cell-and-portal graph (CPG) is a structure that 
encodes the visibility of the scene, where nodes are cells, usually rooms, and edges 
are portals which represent the openings (doors or windows) that connect the cells. 
There are few papers that refer to the automatic determination of CPGs, and most of 
them work under important restrictions [4]. Teller and Séquin [17] have developed a 
visibility preprocessing suitable for axis-aligned architectural models. Hong et al. [10] 
take advantage of the tubular nature of the colon to automatically build a cell graph by 
using a simple subdivision method based on the center-line (or skeleton) of the colon. 
To determine the center-line, they use the distance field from the colonic surface. 
Very few works provide a solution for general, arbitrarily-oriented models with com-
plex, non-planar walls. Notable exceptions are those approaches based on a distance-
field representation of the scene [2,9]. Our approach for cell detection also relies on a 
distance field and it is based on the scene decomposition presented in [2]. 

Management of 3D occlusion. Complex geometric models composed of many 
distinct parts and structures arise in many different applications such as architecture, 
engineering and industrial manufacturing. Three-dimensional occlusion management 
techniques are often essential for helping viewers understand the spatial relationships 
between the constituent parts that make up these datasets. Elmqvist and Tsigas [6] 
analyze a broad range of techniques for occlusion management and identify five main 
patterns: Multiple Viewports (using two or more separate views of the scene), Virtual 
X-Ray, Tour Planners (a precomputed viewpoint path reveals the otherwise occluded 
geometry), Interactive Exploders (adopted for the WIM in [3] through a floor sliding 
mechanism) and Projection Distorter (where nonlinear projections are used to inte-
grate two or more views into a single view). 

Virtual X-Ray techniques are particularly relevant to our approach. These tech-
niques make the targets visible through intervening distractors (occluders) by turning 
occluding surfaces invisible or semi-transparent. Several methods for distractor re-
moval have been proposed. Some techniques are view-dependent (break-away views) 
whereas others are static (cut-away views); some eliminate distractors (or parts of dis-
tractors) while others merely make distractors semi-transparent. 

We have adopted the cut-away approach to reveal the interior cell objects. Diep-
straten et al. [5] describe a number of algorithms for generating cut-away views. The 
proposed algorithms are both efficient and easy to implement, although two important 
assumptions are made: they assume that the classification of objects as interior or ex-
terior is provided by an outside mechanism, and that the cut-out geometry is convex. 
Fortunately, our decomposition of the scene into cells with approximately constant 
visibility allows the application of very simple algorithms to generate automatically 
cut-away views.  



3 Overview 

We aim at improving the WIM metaphor by addressing three problems:  

WIM selection: given the current viewpoint location, we compute which region of 
the scene must be included in the miniature copy and thus presented to the user as a 
hand-held miniature. We use a polyhedron to represent the region of the space to be 
included in the miniature.  

WIM clipping: once the region to be included has been computed, we must render 
only the scene geometry inside this region. 

WIM revealing: we provide a cut-away view of the selected region so that interior 
geometry is revealed. 

The algorithm for WIM selection proceeds through two main preprocessing steps 
(described in detail in Section 4): 

• Cell detection: the scene is discretized into a voxelization and then decom-
posed into a collection of cells corresponding to logical entities; each voxel 
is assigned a cell ID, adjacent cells are detected and their connectivity is 
stored in a cell-and-portal graph.  

• Region extraction: for each cell, we extract a polygonal surface which ap-
proximately encloses the cell. 

 
Since cells are detected during preprocessing, WIM clipping can be done either 

during preprocessing or at runtime. In the former case, we could clip the scene ge-
ometry to each cell and store the resulting geometry. However, this approach would 
add complexity to the integration with already existing applications using their own 
scene graph. Therefore, we have adopted a runtime approach for clipping the scene 
geometry to a polyhedral region. Our solution (described in Section 5) can be seen as 
a particular case of CSG rendering (we must render the intersection of the scene with 
the polygonal region) which can be implemented easily on a GPU [12].  

Finally, WIM revealing is based on cut-away views. An important benefit of using 
cells with approximately constant visibility is that they greatly simplify the WIM re-
vealing problem: removing the enclosing geometry will be enough to reveal interior 
objects. Note that the presence of interior walls inside the miniature would complicate 
significantly the algorithm for providing cut-away views. We describe a simple solu-
tion (Section 6) with no extra cost which gives good results on the class of cells pro-
duced by our decomposition algorithm. 



4. WIM Selection 

4.1 Automatic cell detection 

Our approach for computing the cell-and-portal graph consists of first building a 
binary grid separating empty voxels from non-empty ones, next approximating the 
distance field using a matrix-based distance transform. Then we start an iterative con-
quering process starting from the voxel having the maximum distance among the re-
maining voxels. During this process, all conquered voxels are assigned to the same 
cell ID. Lastly, a final merge step eliminates small cells produced by geometric noise. 

4.1.1 Distance field computation 

The first step converts the input model into a voxel representation encoded as a 3D 
array of real values. Voxels traversed by the boundary of the scene objects are as-
signed a zero value whereas empty voxels are assigned a +1 value. This conversion 
can be achieved either by a GPU-based rasterization of the input model or by a simul-
taneous space subdivision and clipping process supported by an intermediate octree. 
The next step involves the computation of a distance field (Figure 2-middle). Distance 
fields have been used in generating cell-and-portal graph decompositions [2,9]. Dis-
tance fields can be computed in a variety of ways (for a survey see [11]). 

4.1.2 Cell generation 

The cell decomposition algorithm visits each voxel of the distance field and re-
places its unsigned distance value by a cell ID. We use negative values for cell ID’s to 
distinguish visited voxels from unvisited ones. The order in which voxels are visited 
is key as it completely determines the shape and location of the resulting cells. The 
order we propose for labeling cells relies on a conquering process starting from the 
voxel having the maximum distance among the remaining unvisited voxels. This local 
maximum initiates a new cell whose ID is propagated using a breadth-first traversal 
according to the propagation rule described in [2] (see Figure 2-right). 

Fig. 2.  Cell detection algorithm on a simple building 



4.2 Region extraction 

At this step, each cell is represented as a collection of voxels. We perform a dila-
tion operation by enlarging this set of voxels to include adjacent non-empty voxels. 
This step is required to include the geometry enclosing the cell (e.g. room walls). 
Then we extract a simplified surface enclosing the cell using the surface extraction al-
gorithm proposed in [1]. At the end of this step, the region associated with each cell is 
represented by a polygonal surface approximating it.  

5. WIM Clipping 

During runtime, the once the region to be included has been computed (the one 
containing the user location), we must render only the scene geometry inside this re-
gion. This can be seen as a particular case of CSG rendering, as we must render the 
intersection of the scene with the polygonal region. Of course, we can use a coarse-
level, CPU-based culling to the region’s bounding box to quickly discard geometry 
not to be included in the miniature. However, this coarse-level clipping must be com-
bined with a fine-level clipping to the polygonal region. Fortunately, there are effi-
cient algorithms for rendering CSG models using the GPU [8], whose implementation 
can be greatly simplified when the CSG tree consists of a single boolean operation.  

The algorithm we propose is based on building a Layered Depth Image [15] of the 
region’s boundary from the current WIM viewpoint. Layered Depth Images (LDIs) 
can be efficiently constructed using depth-peeling [7]. An OpenGL framebuffer  ob-
ject (FBO) can be used to render each layer directly into a depth texture. Since our 
WIM selection algorithm tends to produce regions with low depth complexity, these 
regions can be encoded with just a few LDI layers and one rendering pass for each 
layer (note that the LDI is build from a simplified polygonal description of the cell, 
which is geometrically much simpler than the part of the scene inside the cell). 

Once the LDI has been computed, the coarsely-culled scene is rendered using a 
fragment shader that checks the fragment’s depth against the LDI and discards outside 
fragments. Alternatively, OpenCSG [12], a freely available hardware-accelerated CSG 
library, can be used. When the cell is found to be convex or approximately convex, 
we adopt a faster solution. We compute the convex hull of the region and measure the 
approximation error using a vertex-to-plane metric. If the error is below a given 
threshold, we take the convex hull as a good approximation of the cell geometry. In 
this case, we simply use the convex hull planes as clipping planes. If the number of 
planes is above six (the OpenGL fixed-pipeline limit on additional clipping planes), 
then a straightforward fragment shader is used to perform the clipping. 

 



 
Fig. 3.  Cell detection on the test building. Cut-away view of the original model 

(left), discrete distance field (middle) and cell decomposition (right). 

6. WIM Revealing 

Note that the WIM clipping strategy discussed above does not solve the occlusion 
problem due to enclosing geometry such as walls. Fortunately, the algorithms for 
WIM clipping described above can be trivially extended to keep enclosing geometry 
from occluding interior objects. The only modification required is to offset the front-
face planes/faces of the selected region, in the opposite direction of their normals (i.e. 
increasing the d coefficient of the implicit plane equation). The resulting effect is that 
the frontmost geometry will be culled away by the fragment shader. This idea applies 
both to convex cells (clipped through clipping planes) and concave cells (clipped 
through the LDI). In the later case, the LDI is build from biased frontfaces. Due to the 
simple nature of our cells, this simple approach yields good results (see Figures 1 and 
4-d). Note that this approach provides a cut-away view of the miniature copy at no ex-
tra cost. 

7. Results And Discussion 

We have implemented a prototype version of the algorithms described in this pa-
per. Figure 3 shows the results of the cell decomposition step on a three-story building 
with 150k triangles. Only one of the floors is shown for clarity. Note that resulting 
cells are quite simple and many of them are approximately convex. A 128x128x128 
voxelization was used. The running time of the cell decomposition was 8 seconds on a 
PentiumIV at 2.0GHz, including the voxelization, distance field computation and cell 
construction. 

Various WIM approximations can be seen in Figure 4. Figure 4-a shows the replica 
obtained using the original WIM paper (i.e. including the whole scene in the minia-
ture). Note that this WIM is not suitable for object selection and manipulation due to 
occlusion and scale problems. Rendering the WIM with alpha blending (Figure 4-b) 
does not provide a sufficiently clear view of the model and still provides a scale un-
suitable for object manipulation.  The result of our clipping algorithm (excluding the 
revealing step of our algorithm) is shown in Figure 4-c. Now the miniature includes 
only the geometry inside the automatically-detected cell, providing a scale suitable for 
most selection and manipulation tasks. Finally, Figure 4-d shows the final output of 
our algorithm, including now the revealing step. The quality of the results can also be 
observed in the accompanying videos [19].  



Note that we could replace our LDI-based revealing method by correct (sorted) 
transparency through depth-peeling, but this time the depth complexity (i.e. the num-
ber of layers and hence the number of rendering passes) would depend on the com-
plexity of the objects inside the room, not on the complexity of the geometry enclos-
ing the room, as in our case. Furthermore, note that the cut-away view provides a 
much more clear representation compared with the transparency-based option. In our 
current prototype implementation, the WIM is rendered by doing a coarse-level clip-
ping using the replica’s bounding volume and a fine-level clipping using the LDI. Al-
though precomputing the scene geometry inside each cell during preprocess might 
seem a better option, it can make more difficult the integration of our approach with 
existing applications. Furthermore, most 3D rendering engines provide view frustum 
culling functionalities which can be easily adapted to perform a conservative culling 
to the cell’s convex hull. Unlike other WIM extensions using continuous scrolling, in 
our approach the extents of the miniature copy is preserved while the user remains in 
the same room. The room center and not the current viewpoint position is used as pi-
vot point for hand-held manipulation and visualization of the miniature. We think this 
behaviour is less distracting to the user. 
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Fig. 4. Different strategies for WIM rendering. 



8. Conclusions 

In this paper an enhanced version of the WIM has been presented. Our approach 
supports arbitrarily-complex, densely-occluded scenes by selecting the region to be 
included in the miniature copy using a semantic subdivision of the scene into logical 
structures such as rooms. The rationale of our approach is that matching the miniature 
copies with logical entities of the environment would give the user additional cues to 
better understand the spatial relationships between the constituent parts that make up 
these environments. This would also facilitate accurate selection and manipulation of 
nearby objects through their WIM proxies. Our approach can be combined with clas-
sic WIM implementation when the miniature covers the whole scene, for way-finding 
tasks at large scale levels.  
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