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Abstract

The introduction of digital video to the personal computer has generated
interest in the integration of image sequences into the user interface. Tradi-
tional means of representing an image sequence lack the manipulability desired,
requiring that an alternative approach be taken. Previous work in the field of
computer graphics and videodisc applications suggest synthetic movies as the
solution. A synthetic movie is a movie which is composed as it is viewed, from
a description of the movie.

This thesis discusses synthetic movies and their application to the user in-
terface of the personal workstation. An example application, Video Finger, is
presented. Video Finger uses a synthetic movie to convey information about
other people sharing the computer workspace.

Thesis Supervisor: Andrew Lippman
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Chapter 1

Introduction

The field of communication has always availed itself of the latest technology to

enhance the message quality. This can be traced from the invention of the print-

ing press, through the early use of electronics by the telegraph industry, to the

development of film and later, video, for the transmission of visual information.

In the last few years, the ready availability and low cost of digital electronics has

sparked a wide interest in digital transmission of visual information. The flex-

ibility of the digital medium, shown by its ability to integrate text, audio, and

video, permits many new methods of obtaining and manipulating information.

The large amount of data required to represent an image sequence restricted

research into digital video until recent years. A typical motion image sequence,

such as standard broadcast TV, requires 8.2 MBytes/sec of data per second 1 .

'NTSC video uses three channels, transmitted with a bandwidth of 4.5 MHz (Luminance), 1.6
MHz (Chrominance I), and 0.6 MHz (Chrominance Q). The signal/noise levels desired require



Conventional image transmission and compression techniques utilize statistical

properties of the image sequence and psychophysical properties of the human

visual system to reduce the amount of data associated with the image sequence

[Netravali89] [Schreiber86] [Pratt78]. Use of these techniques allows image se-

quence transmission and display using a state of the art personal computer

[Watlington87] [Watlington88a].

Conventional compression techniques, although making digital video pos-

sible, do not utilize the semantic content of the image sequence. This thesis

proposes an alternative method of image sequence transmission: a synthetic

movie, where the sequence is synthesized at the receiver from a description of

the sequence's contents. An analogy may be drawn to digital text transmission,

where two methods are commonly used: facsimile and ASCII. Facsimile encodes

the text using a statistical model of the text image. ASCII provides a much

more efficient coding by transmitting only the semantic content of the text. The

text is reproduced at the receiver by using a local description of the characters

in the text (the font) and the transmitted ASCII information. Synthetic movies

attempt to separate the semantic content of a sequence from the description of

the objects in the scene, allowing separate transmittal of the two components.

digitization at 8 bits/channel for the luminance channel and 5 bits/channel for the chrominance
channels. Adjusting for the actual display area (70%) provides the bandwidth figure used.



1.1 What are Synthetic Movies ?

Synthetic movies are motion image sequences that are constructed as they are

being viewed. They are composed at the receiver, usually under the interactive

control of the user. The content of the components and the complexity of the

reconstruction vary. Examples of synthetic movies range from videodisc training

tools, to simple molecular modeling tools, interactive flight simulators and video

games.

Synthetic movies may be categorized by the type of synthesis allowed. In-

traframe synthesis permits the actual content of the images being displayed to

be manipulated, whereas interframe synthesis is restricted to controlling the

temporal evolution of the sequence.

Interframe synthesis has seen much attention over the past decade, due to the

introduction of a relatively cheap random-access image frame store in the form

of the videodisc. In interframe synthesis, the temporal content of a sequence is

synthesized by selecting one frame of several possible frames of video for display.

The manipulability of the interframe synthetic movie is rather limited, as every

frame conceivably required must be present in the object description. In some

videodisc applications this restriction is partially circumvented by the addition

of a simple computer graphic overlay, such as text or still images.

Intraframe synthesis refers to synthesizing the actual content of each frame

in the motion sequence. This synthesis has been addressed by the computer
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Figure 1.1: A Typical Synthetic Movie Player

graphics community, although due to the complexity normally associated with

realistic intraframe synthesis, rarely have the movies been generated in real-time

(ie. as they are viewed).

1.2 Reasons for Exploring Synthetic Movies

Synthetic movies are best suited to transmitting certain forms of visual infor-

mation. This is due to the fact that the image must be reconstructed at the

receiver. When the sequence being transmitted is very detailed, or is not being

manipulated, synthetic movies are not the medium of choice. An example of

this is artistic works, which are usually meant to be viewed in a single, unidirec-

tional sequence. If the interactive transmittal of visual information is desired,

however, synthetic movies are ideal.



Synthetic movies, because they are constructed at the receiver, are inherently

manipulable. One component of the sequence may be changed, or an alternative

one used. In the case of interframe synthesis, the sequence may branch among

a wide possibility of cases. In intraframe synthesis, an object/actor on the

screen may mimic the sensed motions of a real person[Ginsberg83][Maxwell83].

Implementation considerations usually restrict the manipulability, but it remains

as one of the main reasons for developing synthetic movies.

The manipulability of the synthetic movie is not necessary for some appli-

cations. There are, however, many uses of image sequences where interactivity

is very desirable, or even required. Here are three example uses for synthetic

movies:

1.2.1 Interactive Games

Electronic games have become increasingly popular as the cost of the required

electronics has plummeted. Games that produce a video display, in particular,

have been developed and produced in astounding numbers. The video display

generated by one of these electronic games must be viewed as a synthetic movie,

because it is an image sequence generated in real time to reflect some internal

environment. Object descriptions are usually stored locally in read-only memory,

and the movie description is generated by the game's state machine response to

user input.



The realism of even the best of these games is rather limited, due to the sim-

plicity of the object descriptions used, but this is changing. Some commercial

video games are already using traditional computer graphic techniques to gen-

erate the display. The computer processors used in video games are becoming

more and more powerful 2.

1.2.2 Low Bandwidth Communication

Synthetic movies may be used for very low bandwidth information transmit-

tal. The "message" of the image sequence is contained in the movie descrip-

tion, which is always transmitted. At the receiver, the movie description is

reconstructed using locally stored object descriptions. Once object descriptions

compact enough to be transmitted can be reconstructed in real-time, the object

descriptions may be transmitted along with the movie description.

The displayed image sequenced will be distorted due to several reasons. One

reason is the differences existing between the original object description and

the one used for reconstruction. Another reason is the omission of parts of the

original image sequence not incorporated into the movie description.

2 A recent commercial video game release, "Hard Drivin' " from Atari, uses a Motorola
68010 for user input and general processing, an Analog Devices ADSP-2100 floating point signal
processor for graphics computation, and a TMS34010 drawing engine from Texas Instruments
for rendering to the frame buffer. The performance obtained from this system is approximately
1000 polygons/frame [DSPatch].



1.2.3 The Movie Director

One of the possible future uses of synthetic movies is separating the artistic

content of a movie from the limitations imposed by physical filming. A motion

picture maker could be freed from the requirement of having the exact lighting

required, or the camera' in proper location, during the filming. In the editing

phase, the movie would be synthesized from the database generated from the

filming using any combination of lighting, lens characteristics, and camera posi-

tion desired. New objects could be added or existing objects removed from the

scene. When the desired effect is produced, the movie description for that scene

is stored for inclusion into the movie.

The movie distribution could entail transmitting both the movie description

and the object descriptions to the receiver, using a digital transmission medium.

Alternatively, the movie could be rendered once and recorded for publication and

distribution along more conventional channels.

1.3 Synthetic Movies at the User Interface

The earliest computers had no user interface. Batch mode processing limited

interaction with the computer to punching programs onto paper cards or tape,

then loading them into the computer. Output usually consisted of printing

3 This is assuming that a camera capable of recording more than just luminance information
is available. See Section 6.4 [Bove89].



to a line printer. When the teletype appeared, and simple operating systems

were designed to use them; it was a great improvement. Teletypes were later

replaced by terminals using cathode ray tubes as their display, although the high

cost of memory limited the versatility of these displays to that of an electronic

teletype ( the DEC VT-100, for example ) Due to the relatively low cost of

memory today, the modern personal computer/workstation is usually equipped

with a bit-mapped display, usually capable of displaying multiple colors. The

user interface, however, usually still consists of little more than a window system

which allows the user the convenience of having multiple virtual "teletypes".

An exception to this are the object oriented user interfaces descending from

the original Smalltalk project at Xerox PARC[Kay77] [XEROX Star], such as

the Apple Macintosh Desktop. These systems use the graphic capabilities of

modern bit-mapped displays to provide the user with a graphically oriented

operating system. Files and a hiearchical file system are described using images

of applications, documents and filing folders. Common system services (such as

the printer, or the routine to destroy a file) are also given icons. If, in addition

to being capable of displaying still images, the computer system is capable of

supporting moving pictures, how may they be integrated into the user interface?

Perhaps the answer may be found by discussing the applications of still images

at the user interface.

Still images are commonly used to represent a virtual object which conveys



information between the user and the computer. Control bars, buttons, dials,

etc., are simple examples of this. Icons are small still images used to represent

different elements and functions of the system, such as files and trash cans.

The simplest application of motion sequences in the user interface is an

extension of the still image applications. Using interframe synthesis, icons that

are themselves image sequences can be made. Although these are interesting,

they are limited in the information that can be conveyed.

More interesting applications of motion sequences in the user interface can

be found when the content of the image sequence can convey more than one

variable of visual information. Intraframe synthesis allows the contents of the

frames to reflect the state of many different variables, in a form that is easily

interpreted by human users.



Chapter 2

Previous Examples of Synthetic

Movies

Synthetic movies have been explored previously many times. Early examples

of synthetic movies, with a very limited message, were interactive video games.

The graphical output of these video games tended to be of poor quality, with low

spatial and color resolution due to the high cost of memory. The next attempts

at creating synthetic movies were prompted by the availability of the videodisc,

which provided a large, random access frame store. As mentioned earlier, this

allows interframe synthetic movies to be generated. Newer videodisc systems

include graphic overlays and simple digital effects to allow increased manipula-

bility of the displayed image sequence. The generation of interframe synthetic

movies has received a large amount of attention from the field of computer



graphics.

2.1 Computer Graphics

Intraframe synthetic movies have been given much attention by the field of

Interactive Computer Graphics. Foley and Van Dam, in their classic treatise

upon the subject[Foley83], define interactive computer graphics to be when the

"user dynamically controls the picture's content, format, size, or color.. .by means

of an interaction device". Computer graphic animations are very similar to

synthetic movies. The difference between them is the amount of time required

to generate the image sequence. A synthetic movie is composed at it is viewed,

whereas computer graphic animations are not normally generated in real time.

This, however, is a restriction imposed only by the capabilities of the synthesizing

hardware. Very expensive flight simulators are capable of rendering images of

moderate complexity in real time (ie. as they are viewed). The cost of high-

powered graphics engines is decreasing, however, as their ability to generate

more complicated real time animations is increasing '.

Generating a computer animation presents several problems to the animator.

The objects in the scene should look real, as well as act real. The realistic

synthesizing (rendering) of images is not simple, requiring that a 2D view be

'Examples of these are the Stellar Graphics Supercomputer [Apgar88], the Silicon Graphics
Workstations[Akeley88], AT+T's Pixel Machine, and UNC's Pixel Planes-4[Goldfeather89]



made from a 3D database, incorporating the effects of lighting, lens effects and

occlusions. Much work has been done in the field of rendering, resulting in the

development of techniques that allow realistic generation of synthetic images.

It is the acting real that presents a more serious problem in computer anima-

tion. Modeling the physics involved in natural motion, such as a tree waving in

the wind, or a dog running down a street, is a difficult task. Once the motion has

been modeled, a method of controlling and synchronizing the motion of objects

in the scene must be found.

The control of the objects in an animation has three basic approaches. These

are the guiding mode, the animator level, and the task level. In the guiding mode

of control, the positions of the animated objects are explicitly controlled by the

animator. In the animator level of control, the motion/behavior of objects is

described algorithmically, usually in some sort of programming notation. The

task level of control stipulates the motion in the scene in terms of events and

relationships between the objects [Zeltzer85].

Unfortunately, the synthesis of realistic images is currently possible only by

the use of rendering techniques, such as ray tracing, which are not very amenable

to rapid computation. It is for this reason that alternative means of generating

synthetic movies merit research and development. At some point in the future,

advances both in computer technology and graphic rendering algorithms will

likely make computer graphic techniques the medium of choice.



2.2 Bolio

A system for the development of interactive simulation, the Integrated Graphical

Simulation Platform (IGSP) developed at the MIT Media Laboratory, provides

for simple synthetic movies in response to user input, present constraints and

task level animation. The IGSP includes an object editor, and behavior mod-

eling tools for the objects in the microworld. A hand position input device,

the VPL Dataglove, is provided for the user to interact in real time (actually

handle!) with the objects in the microworld. Another input device is a 6 degree

of freedom joystick, the Spaceball. Objects in the microworld may be fairly

complex: a roach which is capable of walking around under its own control, for

example. Another of the objects developed for the microworld is a robot arm

that can "play catch", with a user using the Dataglove, using inverse kinematics

techniques. [Brett87] [Sturman89] [Zeltzer88].

2.3 Interactive Video Games

The introduction of direct computer/user interaction with the appearance of the

MIT TX-02 was soon followed by the introduction of the first interactive video

games. Spacewar, a game developed at MIT in 1961 for the DEC PDP-1, for

the first time presented a user with a virtual world with which he could interact

2Although previous computers were not devoid of user interface, (they had switches and
paper tape for input) the TX-0 was one of the first computers to use a teletype as the user
interface.



in real time. The graphics display of Spacewar was very limited, using simple

line graphics to present the users with two miniature spaceships that could be

manipulated in front of a astronomically correct background of stars[Levy84].

The first video games to be available to the public were commercial video

games such as "Pong" and "Space Invaders". These first games were very sim-

plistic, due to the level of computer hardware available at affordable costs. Many

other games of increasing complexity, however, soon followed.

The introduction of the video game into the consumer market followed soon

after the advent of the first monolithic microcomputer. The microprocessor also

fueled the personal computer revolution, providing many people with the means

of producing and playing interactive video games. These games tended to have

poor spatial and color resolution, due to both memory and system bandwidth

constraints. The programmers who created these video games were forced to

explore methods of providing real-time graphics performance with very simple

equipment. They almost universally used a 2D image representation for their

objects.

The ready availability of consumer videodisc players spurred the development

of electronic games making use of them. The videodisc games produced tended

to combine interframe synthesis with simple user input via the host computer.

The resultant motion sequence can diverge at any user query step, although due

to videodisc storage considerations the divergent sequences are usually reunited



at a later time. These games suffer from the need to have an external videodisc

player, which is often as large as the computer itself, nearby. Additionally, extra

video equipment is necessary to mix and display the resultant video images. In

order to display video while the videodisc is searching for a new sequence, it is

necessary to use two videodisc players or a frame storage device.

2.4 The Movie Manual

The "Movie Manual" was a prototype electronic book, incorporating text, sound,

images and image sequences. It used computer controlled videodiscs to provide a

large, random access frame and data store. This data was accessed and displayed

to the user by interactive software using a book metaphor. Central to the "Movie

Manual" was the concept that the displayed information was being constructed

from the stored information as it was viewed. The information base, and the

means of presenting it, could be altered by the reader. The receiver utilized

information about the contents of the electronic book in displaying (formatting)

it.

The hardware consisted of a host minicomputer, equipped with a medium

resolution framestore, two or more videodisc players, and video mixing equip-

ment to superimpose the computer graphics and video. The framestore was

used to provide still computer graphics images and text, but was not used in

generating image sequences. Although this limited the electronic book to inter-



frame synthesis, the "Movie Manual" is a good example of a synthetic movie

[Backer88].

2.5 The Oxyacetylene Welding Simulator

Another example of a synthetic movie is a training simulator designed by D.

Hon of Ixion Systems to teach oxyacetylene welding [Ixion] [Brush89]. This sim-

ulator uses a videodisc as a large framestore to store the images required for the

simulator. The student is coached in the technique of using a welding torch by

a personal computer controlling the videodisc player. An actual welding torch

(without real gases) is used as an input device. Its three dimensional position,

and the state of the two gas valves are used as input to the computer.

The student is first taught the procedure for lighting the torch. The computer

uses images from the disk to simulate the flame that would be produced were

the student using a real oxyacetylene welding torch. The desired flame is also

shown for comparison. Once the student has adjusted the gas flow valves to the

proper settings, the simulation continues.

On the horizontal monitor face, an image of two pieces of steel sheeting is

shown. The student uses his welding torch to "weld" the two sheets together.

As the weld progresses, the controlling personal computer displays its evaluation

of the student's work by selective retrieval of images from the videodisc frame

store. If the weld being made would be flawed, the computer will display a



flawed weld. If the weld is acceptable, a good weld is displayed. The interframe

synthetic movie generated reflects the internal model of the weld maintained by

the personal computer.

2.6 The Elastic Charles

A very recent example of an interframe synthetic movie, utilizing advances in

computer technology, is the "Elastic Charles" project [Brondmo89]. The "Elas-

tic Charles" is a hypermedia journal, a prototype electronic magazine. It con-

tains a collection of multimedia stories about the history, ecology, current news

and usage of the Charles River in Massachusetts. These stories are primarily vi-

sual, but are augmented with text, graphics and sound. Hypermedia references

(links) may be made between text, graphics and sound and video segments.

The hardware platform for "Elastic Charles" consists of a personal computer

equipped with a specialized frame buffer, and a videodisc player. The computer

used is an Apple Macintosh II. The ColorSpace II frame buffer allows the Mac

to generate. an overlay on the output of the videodisc, as well as permitting the

videodisc output to be digitized. The videodisc is used for storage of the video

sequences, limiting the magazine to interframe synthetic movies.

The traditional hypertext notion of a link is extended in "Elastic Charles" to

include references to motion image and sound sequences. Unlike text links, the

presence of links from a video sequence are presented in a separate window to



avoid disturbing the presentation of the video information. If a link references

another video sequence, the link is represented by a "micon", or moving icon.

This icon is a short, miniature sequence of video digitized from the referenced

video sequence. Micons are also used to navigate the video sequences, recording

the path taken by the user in a recent segments card.



Chapter 3

Basic Components of a Synthetic

Movie*

The basic components of a synthetic movie are the description of the movie and

the description of the objects in the movie. The semantic content of the movie

is transmitted in the movie description. This is not to say that the object view

generated from the object description does not convey information, but that the

presence of that particular view is dictated by the movie description.

The actual structure of the components depends on the implementation of

the synthetic movie. For example, a videodisc based synthetic movie uses a very

different movie description from a computer graphic animation. If interframe

synthesis is used, the movie description will not describe the contents of individ-

ual frames, but rather their sequencing. Alternatively, if intraframe synthesis is



used, the movie description must contain a description of the contents of each

frame.

The object descriptions, typically being relatively large, are usually stored

locally at the receiver. They may be pre-transmitted or provided on local mass

storage such as videodiscs, CD-ROMs, or hard disks. The movie description

may either be included on the mass storage device or transmitted separately.

3.1 The Object Description

The object descriptions contain representations of the objects used in the image

sequence. The complexity of the receiver is determined largely by the complexity

of the object descriptions. The desirable qualities of the object description

are low complexity, small size, and manipulability. Several classes of object

representation exist, each with advantages and disadvantages.

3.1.1 3D Representations

A common--class of object representations describe an object by specifying a

three dimensional surface and the reflectance at every point on the surface.

These representations differ in how the three dimensional shape is described.

Examples of these representations are polygonal patch descriptions and particle



representations'. Another common class of object representations attempt to

describe objects as combinations of primitive geometrical objects. Examples of

this class are constructive solid geometry (CSG) and superquadric representa-

tions.

These representations tend to be very manipulable. The two dimensional

view required for display by conventional display devices must be rendered from

the three dimensional object description. In this rendering step, any desired

object view, using any lighting and lens parameters, may be generated.

The description of the motion (including deformation) of realistic objects

presents a difficult problem. This is because most real objects (in particular live

objects) are non-rigid, or even more problematic: deformable. The representa-

tion typically used for representation of non-rigid objects is an articulated object

with links between rigid sub-parts. An acceptable representation of deformable

objects has been the subject of much recent research[Terzopoulos88] [Platt88].

One new deformable object representation, which is promising due to its low

computing requirements, describes the deformations using a modal analysis

[Pentland89].

The rendering stage that gives these representations much of their manip-

ulability is computationally expensive, and well beyond the limited computing

power available presently in personal computers. Other representations are cur-

'Although some particle systems model the entire volume of the object (voxels), for
the purposes of synthetic movies only describing the particles along the surface (surfels) is
sufficient [Bove89].



rently implementable, and have their own advantages.

3.1.2 A 2D Image Representation

A simpler representation is a limited view representation, where a set of 2D

views of the object from a limited number of viewing angles are stored. This

representation allows for simple, realistic images and it is very fast as little to

no computation is required.

The control of this representation is very limited. The manipulations possible

are translation, scaling and simple 2D remappings of the object views. The

generation of an object view not explicitly contained in the object description

is not a simple problem. If a view similar to the one desired is present in the

object description, it could be used. Calculation of an error metric to arrive

upon the closest approximation may be impossible, given the large number of

possible deformations. Interpolation to obtain views not contained explicitly in

the object database may be possible.

The methods of encoding the views differs. Full color (either RGB or YIQ)

images may be used, or the images may color quantized to compress them.

Additionally, the object view data may be entropy or run-length encoded to

further lower the bandwidth. The redundancy present between adjacent views

should allow a large amount of compression if more advanced techniques of

image compression were used, such as Multiscale VQ, or other multi-channel



techniques [Netravali89]. Multiscale (Pyramid) encoding would allow superb

overlaying and would simplify the adjustment of the image scale and focus,

but would require an extremely powerful computer.

3.2 The Movie Description

The Movie Description describes the position of objects in the scene over time.

This description may be generated or modified locally in response to user input

or input received from external devices. The movie description is the "essence"

of the image sequence. It is what needs to be transmitted to recreate the original

image sequence at the receiver. If an image detail (such as which flag is flying

over the fort) is not included in the movie description, it will not be present in

the synthesized movie. The receiver, of course, must have the required object

descriptions.

3.2.1 Intraframe Movie Descriptions

Intraframe -descriptions specify the sequence of images to be displayed. The

images must be one of a large set of images present in the object descriptions.

Typically a sequence of images are associated together for display, with the

ability to enter and leave the sequence at any particular frame. The movie

description describes the order in which the sequences are viewed.

In many intraframe synthetic movies, the movie description is actually a set



of constraints and procedures for manipulating the sequences. In Hypermedia,

for example, a set of procedures for browsing through information, with the abil-

ity to establish and examine links to related information, is provided[Brondmo89].

The course of the movie is determined by the user input received, possibly

prompted by additional visual or aural cues.

3.2.2 Interframe Movie Descriptions

Interframe descriptions describe the actual contents of the image sequence,

in a frame by frame manner. The computer graphics community has devel-

oped several synthetic movie scripting languages for describing their animations

[Reynolds82][Feiner82][Fortin83]. These languages differ in many respects, but

they share several details in common:

* The basic unit of time in the movie descriptions is the displayed frame.

* Support for parallel (and synchronized) execution of object motion de-
scriptions.

The movie description may not be explicitly defined in some interframe syn-

thetic movies. Instead, these movies are driven directly by software state ma-

chines or constraint systems. Indeed, examples of these may be more numerous

than explicitly defined movies. They include interactive video games, flight sim-

ulators, interactive graphical sniulators[Zeltzer88] and many applications at the

user interface.



Chapter 4

Video Finger: An Example

Synthetic Movie

This thesis presents an example implementation of a synthetic movie, Video

Finger. Video Finger is an application which uses a synthetic movie to convey

information about the state of the computer workplace. It interfaces with exist-

ing UNIX information servers over a local area network to obtain information

about users: their login state, and what they are currently doing. It was sug-

gested by, and named after, the UNIX finger utility1 . The main use of the finger

utility is to find out who is logged in to a computer system, and what they are

doing or how long since they did something.

'Actually, the process currently being executed by a user is only displayed by a variant of
the finger utility, the w utility.
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Figure 4.1: Typical UNIX finger text output

4.1 Video Finger Description

The traditional output of the finger utility is text in a chart format, listing

selected information. An example output is shown in Fig. 4.1. Alternatively,

visualize a video interface to the same program: A window on the user's display

shows a preselected scene, perhaps a local computer terminal room or set of

offices. In this scene are the people sharing that computer system2 . The people

being observed may actually be working at home, or in another country. The

task being performed by the people in the scene is indicative of their computer

usage. If, for example, they have been idle for longer than a preset threshold,

they appear to have fallen asleep. A typical Video Finger window is shown in

2I use the term computer system loosely. The widespread popularity and increasing power
of personal workstations imply that most systems are actually a number of computers shared
by a group, and connected over a local area network, such as Ethernet.
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Fig. 4.2.

If the window is allowed to remain, the scene within changes to reflect the

changing computer environment. When a person logs into the system, they

enter the scene. When they log out, they exit the scene. They stop doing

one task, say reading the news, put down the paper, and start doing another

task, such as writing. The user may select a person by clicking on them with

a mouse (or touching a touch-screen), and then ask the application for more

specific information than is being shown (such as the exact name of the task

being run by the person). The information being presented could be varied. A

voice-mail system where the user sending the mail actually reads the mail to

you is a simple extension. Or a "talk" utility where the person actually turns

around and does that, on your screen.

4.1.1 Video Finger as a Synthetic Movie

Video Finger synthesizes the image sequence displayed in response to changes

in remote user activity. The description of the sequence is generated by a rou-

tine that monitors the activity of the remote users. The descriptions of the

objects/persons in the sequence reside in local storage in the receiver, although

they could be obtained from a remote file server over the same local area network

used to monitor the remote user information.

The image sequence being synthesized by Video Finger can be visualized as



Figure 4.2: Video Finger Display

the output of a software camera being aimed at the computer system. Occa-

sionally, when the system is at rest, the output of the camera will be still and

nothing in the sequence will be changing. At other times, when the many users

are logging in or out, the camera will record the five o'clock rush and show much

action in the .sequence.

4.2 Basic Design Issues

The hardware platform chosen for Video Finger was the Apple Macintosh HIx

personal computer, equipped with the IranScan video card. The Mac II was



chosen because it is a personal computer, yet it supports a graphics oriented

user interface well suited to integration with image sequences. The IranScan

video card is the result of a joint effort by the Media Laboratory and Apple

Computer to develop a system capable of decoding and displaying compressed

image sequences. IranScan is designed to decode vector quantized images, but

may be used to display color quantized images with up to 4096 colors as well.

4.2.1 Hardware Capabilities

The Macintosh IIx is a 32 bit microcomputer, with a 16 MHz Motorola 68030

and up to 8 MByte of RAM. It has a floating point coprocessor, the Motorola

68882. A SCSI mass storage interface allows the use of hard disks and CD-ROM

optical drives. An expansion bus, the NuBus, allows additional memory, pro-

cessors, and peripherals to be integrated into the system. Video display devices

are connected to the NuBus. System expansion normally includes separate, spe-

cialized processors connected to the NuBus to accelerate sound and graphics

synthesis and processing. Although the theoretical data transfer rate over the

NuBus is in excess of 35 MByte/sec., actual data rates obtained between the

Mac II processor and a peripheral on the NuBus are much lower, on the order

of 4 MBytes/sec [Baumwell88]. Due to the lack of a DMA controller, the Mac

IIx is not capable of sustaining this rate.

The IranScan frame buffer (shown in Fig. 4.3) consists of two frame buffers,



Figure 4.3: Block Diagram of the IranScan Frame Buffer

one of which may be superimposed over the second. The "top" frame buffer

(Ollie) is used by the Macintosh operating system to display the Desktop, and

supports pixels from 1 bit to 8 bits deep. The "bottom" frame buffer (ScanRam)

is used for display of image sequences. It supports pixels from 8 to 12 bits

deep. IranScan was designed as a tool for exploring vector quantization of

image sequences. In this application, however, I am using IranScan because

of flexibility that ScanRam provides for display of more conventional image

sequences. An image displayed in a ScanRam window may be double buffered

without redrawing the entire screen. This requires less screen memory, as well

as allowing faster screen updating. In addition, the pixel depth provided by

ScanRam allows the use of realistic color [Heckbert82]. The color lookup table

(CLUT) hardware also supports double buffering, allowing it to be updated

without disturbing the displayed image.



The display window generated by Video Finger has a content region of

320x240 pixels, which is one-quarter of the screen. This size reduces the drawing

requirements to allow real-time animation, yet is still capable of conveying much

information.

If a Macintosh IIx can draw 1 Mpixels per second to the screen, it should

be capable of displaying thirteen frames of video (320x240) per second. If it is

equipped with 8 MBytes of RAM, it can display around seven seconds of such

video. Actual applications introduce overhead, however, making this predicted

frame rate optimistic.

4.2.2 Object Representation

There are several possible representations for the object data, varying in com-

plexity and manipulability. Unfortunately, the Mac II is not powerful enough

to implement even a simple three dimensional rendering in real time, requir-

ing a larger, less complex representation 3. The object representation chosen for

Video Finger is the 2D image set representation. This representation, although

restrictive and memory intensive, is very simple to display. If desired, the data

for the object representations could be rendered from a more complete, com-

puter graphic database. This representation also allows a simple description of

3A commercial rendering package, Swivel v2.0, running on a Mac Ix, requires around 15
sec. to render a simple (8000 polygons) image with simple shading. If the image is rendered
anti-aliased, it requires over one minute.



motion.

4.2.3 Motion Description

The concept of using image views as a description of the object's appearance

suggests a similar approach to motion description, the one used by Video Finger.

Object motion/deformation is described by a series of views, called a "task".

Each object has associated with it a set of tasks, which represent a significant

motion/deformation for that object. An example of the views composing a

simple task is presented is Fig. 4.4.

The tasks are defined using a simple interpreted language which defines which

object view to use and any independent object motion. The use of a "task"

motion representation constrains the motion of objects to be simple translation,

existing tasks and unions of those tasks.

A "task" can only define the motion of one object. The Task Dispatcher,

along with a signaling mechanism incorporated into the language, provide for

the concurrent object motion necessary for intraframe synthetic movies.

Unfortunately, object descriptions must contain all the views and tasks de-

sired. In Video Finger, this is not a significant problem, as the required object

motion is limited. Only about a dozen object tasks were considered necessary

for Video Finger.

4To be more precise: standing, sitting, turning from side to side, falling asleep, waking up,
sleeping, starting to read, reading and stopping reading.



Figure 4.4: The Image Views comprising an example Task

4.2.4 Depth

Given the two dimensionality of the object representation being used, other

methods must be used to impose the perception of a projection of a three dimen-

sional image. Video Finger provides for simple occlusion, as well as perspective.

Each object may have one of 256 discrete depths. The depth indicates the order

of drawing: the objects with larger depth (distance into the screen) are drawn

first. This provides for simple occlusion, but complex occlusion 5 requires that

the object be divided into two parts, one in front of the occluding object and

the rest behind. This would be a simple extension to the existing software, but

'Complex occlusion is where an object is both occluding and occluded by another object.



it was not implemented.

In addition to occlusion, the size of an object is changed to correspond to

the depth. This simulates the lens parameters used in "recording" the scene.

The scaling value used is derived from the formula for a simple lens: MT = f /z,

where f is the focal length of the lens being simulated and z, is the depth of the

object [Hecht79]. The focal length used in drawing a frame is determined by the

background image being used. The focal length used is the same as that used

to record the background, so that objects superimposed over the background

appear normal with respect to the background.



Chapter 5

Video Finger: Software

Description

The software development environment used for the development of Video Fin-

ger was the Macintosh Programmer's Workshop (MPW). The majority of the

software was written in MPW C. Some hardware dependent or speed restrict-

ing parts of the drawing routines were written in 68020 assembly language. A

public domain library of routines, TransSkel [DuBois89], which abstracts out the

interface to the Macintosh operating system, was used to simplify program devel-

opment. The User Interface Toolbox of the Macintosh, along with the Operating

System Utilities, provided support for windowing, mouse actions, menus, and

user dialogs. This allowed the program to easily support those features, while

maintaining a user interface consistent with other Macintosh applications.



5.1 Basic Software Overview

The Video Finger software system is diagrammed in Fig. 5.1. The Task Dis-

patcher executes any tasks that are being performed, then calls each object to

redraw itself. One of the tasks being performed is the User Task, which polls

the state of the computer environment via the local area network, modifying

the movie generated to match. Each type of object has a software routine (an

object handler ) associated with it that is called to manipulate objects of that

type. A common nucleus of drawing and CLUT management routines are pro-

vided for use by all the objects. Parameters of the Video Finger display, such

as what background image is being used, or the update rate of the display, are

changeable from user menus.

5.1.1 Object Handlers

Every instance of a given type of object executes the same object handler rou-

tine. The handler routine is called with a pointer to the data structure defining

the object',-a command, and a pointer to optional arguments. All object han-

dlers recognize a small set of basic commands: open, close, and draw. The open

command opens an object, loading in necessary view and task information from

local storage if needed. The close command closes the object, freeing the associ-

ated memory, and the draw command calls the proper drawing routines to draw

'The data structure for each object contains a pointer to the appropriate object handler.
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Figure 5.1: Video Finger Software Overview



the current object view into the frame buffer.

Optional commands supported by most object handlers are: position, view,

and request-task. The position command allows objects to be positioned either

absolutely or relatively. The view command request a new view of the object,

specified using some characteristic of the view, at a certain scale. The request-

task command queries an object to obtain the description of a particular task

for that object.

The number of object types is quite small. Only one type is used to represent

all the human figures in Video Finger. The other types include background

objects, prop objects, and test objects.

5.1.2 Task Dispatcher

The task dispatcher is called whenever there are no system events that require

handling. These events are generated by user input, or operating system actions

(such as window refreshes). The dispatcher first traverses a linked list of tasks

currently being executed, executing each one in turn. Most of these tasks are

interpreted by the Basic Task Language (BTL) interpreter. Next, it traverses

an ordered linked list of objects in the scene, calling each object with the draw

command. The list is ordered such that the objects farther back in the scene are

drawn first, and overlayed by later (ie. closer) objects. After all the objects have

finished drawing, the task dispatcher sets a semaphore signaling that drawing



has finished on the new frame.

5.1.3 Drawing and Color Routines

Common drawing routines provide flicker free generation of the Video Finger

window. The window is maintained by the Macintosh Window Manager, which

interfaces with the drawing routines. The common drawing routines transpar-

ently provide double buffering, as well as decoding of the transparency run-

length encoded images as they are drawn. Since the IranScan video card ar-

chitecture includes a second frame buffer which may be re-positioned without

affecting the first frame buffer, double buffering is done in the actual frame

memory.

The color map is partitioned and maintained by the color manager. When-

ever an object is opened, the object handler requests the needed number of slots

from the color manager. The color manager allocates and reserves the requested

slots, returning the index of the first slot allocated. The object is then respon-

sible for calling the color manager to load the slots allocated when required. If

more than one CLUT is used by the object views, then the object handler is

responsible for calling the color manager to update the color map as needed.

The small size of the typical object CLUT allows sixteen objects to share the

IranScan color map. Since the amount of local memory available usually limits

the number of object displayed to less than sixteen, the color manager does not



currently degrade gracefully upon running out of free slots.

A routine is installed in the Vertical Blanking (VBL) Queue for the IranScan

card which refreshes the display buffers. When called, this routine checks to see

that a semaphore indicating the availability of a new frame has been set by

the Task Dispatcher. If it has, it repositions the display base address of the

ScanRam to display the drawing buffer and hide the previous display buffer.

Routines in the VBL Queue for a video card are called by the operating system

upon receiving a hardware interrupt from the video card signaling a vertical

blanking period. The number of video frames between calls to the VBL routine

may be controlled from one of the user menus. It functions as a Fast Play/Slow

Play control.

The internal representation of the object views is significant for several rea-

sons. Both the drawing time and the memory required for the view are depen-

dent upon the representation used. In addition, the time required to manipulate

the view is dependent upon the representation.

The statistics of the image view data (around 50% transparent pixels) imply

that run-length encoding the data would provide a significant gain. Due to the

large number of colors allowed each object, however, the non-transparent parts

of the image were not amenable to run-length encoding. The final compromise

was to run-length encode the transparent portions of the image, allowing the

drawing code to draw any length of transparency in a very small, constant time.



The non-transparent portions are simply packed into pixels, adjusted for the

actual location of the view's CLUT, and transferred to frame memory2 . The

data was actually stored in a non-encoded format on disk and encoded upon

being read into local memory. This allowed easy testing of different encoding

techniques.

5.2 Basic Task Language Interpreter

The basic unit of object motion, the "task", is defined using a very simple

interpreted language, the Basic Task Language (BTL). The task description is

obtained by calling the appropriate object handler, and then interpreted using

the BTL Interpreter. A command (btlFrame ) is provided to mark discrete

frame boundaries. Each frame, the BTL Interpreter sequentially executes the

commands in the task description until a frame marker is reached.

The Basic Task Language consists of a stream of commands with optional

arguments. In order to facilitate interpretation, commands are of fixed size (4

Bytes), as are the optional arguments. A list of the BTL commands with a brief

description of each is provided is Table 5.1.

The BTL commands are the minimum required to describe an object and

its motion in the 2 1/2 D world of Video Finger. The btlDepth command

2 The simple drawing routine was drawing 1 pixel/3.1 pSec (including transparent pixels).
The transparency run-length decoding algorithm can draw 1 pixel/1.8 pSec. It requires 5 pSec
to process a length of transparent pixels. For an average object, the drawing time was halved.



Command

btlFrame

btlView

btlPosition

btlDepth

btlSignal

Description

Signals the end of the commands for the
current frame.

Indicates which object view should be displayed.
Requires one argument indicating the resource
number of the object view.

Indicates a relative movement of the object.
Requires two arguments indicating the
horizontal and vertical offsets.

Indicates a relative depth movement.
Requires one argument indicating the depth offset.

Provides a mechanism for communicating
between tasks. When a task is executed, a signal
handler is specified. This signal handler is passed
the value of the one argument.

Table 5.1: Basic Task Language Commands

adjusts not only the depth, but the perceived scale of the object. The btlSignal

command provides a simple way of synchronizing the end of one task with the

start of another. When a task is executed, a pointer to a signal handling routine

is provided to the BTL Interpreter. If the task contains a btlSignal command,

the signal handler is called with the command's argument. In addition, the

end of a task is automatically signalled to the signal handling routine by the

interpreter.



5.3 View Scaling

One of the restrictions imposed by using object views as the object represen-

tation is that the views have a particular scale. One of the more useful object

manipulations that can be implemented is the scaling of these object views.

Each view in the object descriptions has a scale specified in an accompanying

header. When the object view is being drawn, the object handler compares the

scale with which the object is currently being drawn with the scale of the view

to be drawn. If they are different, an interpolated view is generated and used

for display.

A major obstacle to interpolating the image views is their internal represen-

tation. Currently the views are stored as transparency run-length encoded color

quantized images. The view image data being interpolated is reconstructed us-

ing the image's CLUT to RGB values. After interpolation, the resulting RGB

value is mapped back into the image's color table using an inverse color lookup

table.

The RGB value being mapped is first hashed by taking the most significant

5 bits from each channel and using them as an index into a 32 KByte inverse

color table. The number of bits per channel used in the hashing is important

in obtaining acceptable image quality. Anything smaller than 5 bits/channel

appears very quantized3 , yet larger inverse tables (6 or 7 bits/channels) consume

3 The degradation imposed by to small of an inverse CLUT is large enough that the benefits



too much memory (256 KBytes or 2 MBytes respectively).

The inverse color table is generated using a full search algorithm to find the

most accurate rendition of a particular region of color space among the colors

in the object view CLUT. The inverse tables are currently stored as part of the

object description to save time when initializing the object. Alternatively, they

could be generated from the object's color lookup table.

The interpolation algorithm used allows a rapid scaling of the image by an

arbitrary quantity. A depiction of the interpolation algorithm is found in Fig.

5.2. A set of intermediate values is first calculated, using a linear interpolation

between two adjacent scan lines of the original image:

Mi, = AOi,n + BOi,n+1 (5.1)

B = 1 - A (5.2)

In these equations M is the array of intermediate values, 0 is the array of

original pixels, and N is the output array of interpolated pixels.

The final output is then calculated by linearly interpolating horizontally

between the. two closest intermediate values:

Ni, = CMm,j + DMm+1,j (5.3)

D = 1 - C (5.4)

A and C are computed incrementally, by accumulating the vertical and hor-

of using interpolation over pixel replication disappear. This is due to the regular mapping of the
inverse table not being fine enough to discern the low color gradients observed in real images.
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Figure 5.2: Pixel Interpolation

izontal spacing, respectively, of the new sampling grid N in the original image

0. Only the two intermediate values required for calculating the current pixel

are stored. All calculations are done in fixed point math, using 16 bits of integer

and 16 bits of fraction.

A special interpolation routine decodes the run length encoding of the im-

age's transparent portions while interpolating the view. In addition, the output

it produces is itself transparency run-length encoded. The interpolation is per-

formed independently on all three color components of the image: R, G, and

B. A typical pixel interpolation requires 12 multiplies and 14 additions per in-

terpolated pixel. If the scaling factor is less than 0.5, only 9 multiplies and 11

additions per interpolated pixel are required. Unfortunately, even using this

simple algorithm, the time required to interpolate a normally sized object view



using a Macintosh IIx is around 0.8 sec.

5.3.1 View Caching

Since the interpolation algorithm is processor intensive, the interpolated views

are cached. Every time an object handler decides that interpolation is necessary,

it first checks to see if the desired view (in the desired scale) is present in the

View Cache. If not, it caches the desired view in the cache after interpolating

it.

The View Cache is organized as a fully associative cache. It is typically 1

MByte in size, divided into 8 KByte pages. Both these values were obtained

by empirical methods. The cache replacement algorithm utilized is a Least

Recently Used algorithm. This is implemented by maintaining for each cache

entry a count of cache fetches since its last usage. When more pages are needed

in the cache, the entry with the largest count is removed.

Without the view cache, the time required for interpolation limits the use-

fulness of view scaling. In order to fully utilize the view cache, however, a

pre-fetching routine should be utilized. This routine would anticipate the use of

an object view that required scaling and utilize idle processor cycles to interpo-

late the view and store it in the View Cache before it is needed. Such a routine

could utilize the "task" structure of motion representation in Video Finger to

anticipate future need.



5.4 Network Interface

The network interface software allows Video Finger to communicate with other

machines sharing a common Local Area Network. The network interface cho-

sen was the Transfer Control Protocol/Internet Protocol (TCP/IP), due to its

prevalent use in the Media Laboratory's computing environment. In addition,

the UNIX finger utility is already a supported service of the TCP interface soft-

ware on many machines. The actual software package used was Kinetics TCPort

for MPW C v3.0. The physical network interface used was thin-line Ethernet.

Upon initialization, Video Finger starts the User Task, which is responsible

for maintaining the User State Tables. These tables record the remote state

of every user being monitored. The State Table entry for each user contains a

login flag and a state variable. The valid values for the state variable represent

the current actions of the user, such as editing, reading news, compiling, idle,

etc. The User Task polls the finger server on remote machines for information

necessary to maintain the User State Tables. The rate of this polling is limited

by the response time of the remote host. It usually requires fifteen to thirty

seconds for most hosts to generate a reply.



Chapter 6

Video Finger: Data Preparation

The object representation used for Video Finger requires a set of object views,

from which the desired task sequences can be assembled. This set of object views

may be generated from a computer graphic database or from actual image data

obtained using a real subject. Since one of the goals of Video Finger was to

incorporate real imagery into the graphic interface, the object descriptions used

were constructed from actual image data.

The object view must be separated from the background present in the orig-

inal object image. There are many ways of implementing this separation; the

most common of which is "blue-screening". In "blue-screening", the object to be

filmed is placed in front of a monochromatic matte background. The color of the

background is highly saturated, usually blue (hence the name). This allows the

background to be separated by post-processing, either by special analog circuitry



(a chroma-keyer) or by software. This technique was chosen due to the relatively

high resolution segmentation produced, and the ease of implementation. Other

techniques considered were not suitable for use with image sequences (laser range

camera) or currently provide results with too little resolution (depth-from-focus,

depth-from-shading, etc).

The subjects for the prototype Video Finger were asked to stand in front of

a blue background, and perform a number of tasks. In order to allow natural

motion, the subjects were recorded using a constantly running video camera

and video tape recorder. The tasks were each repeated at least twice in order to

assure that at least one sequence of each task would be acceptable1 . The tasks

that the subjects were asked to perform varied from subject to subject, but all

included a small subset of common tasks, namely twirling around in a chair,

standing up and leaving, entering and sitting down, and falling asleep. Other

tasks recorded included walking, reading, and writing.

6.1 Filming

The bluescreen consisted of 3/8" plywood, covered with several coats of chroma

key blue paint. The subjects were placed approx. 24" in front of the bluescreen,

and illuminated by light sources placed inline with (actually about 4" away

'Acceptable in terms of being representative of the task being recorded. This implied that
the tasks were neither performed to rapidly for acurate recording on an NTSC video system, or
not separable into single tasks.



from) the camera lens. This was done in order to reduce shadowing. The

camera used was an Ikegami NTSC camera. It was connected directly to an

Ampex 1" videotape recorder used for taping the subjects. Although recording

the images in NTSC was suboptimal, the fact that the images were band-limited

and decimated in later pre-processing lessened the artifacts.

6.2 Pre-Processing

The recorded images of the subjects were examined in order to determine which

frames would be selected to represent the subject. Once selected, the views

were decoded from the NTSC signal from the videotape recorder into RGB

components using a Faroudja NTSC Decoder. Each component was digitized

separately using a Datacube frame buffer mounted in a Sun workstation and

transferred to a microVax III for further processing. The resolution of the input

images was 768x480. The images were then cropped to 640x480, filtered using

a half-band lowpass 13-tap 2D Gaussian filter, and decimated by two in each

dimension to provide a 320x240 RGB original image set. This image set was

then color quantized to provide the actual images used in the object represen-

tation. The color lookup table was generated by applying Heckbert's median

cut algorithm[Heckbert82] to a histogram generated from a small number of

representative images from the image set.

Although the software supports objects having multiple CLUTs, the color



statistics of the object views are relatively constant, allowing most objects to be

reasonably encoded using one 256 entry color table. This is not to say that the

color statistics of a single view are representative of the entire sequence. Instead,

a small number (three or four) of representative views should be sampled in

generating the CLUT.

6.3 Segmentation

The RGB original image set contained images of the objects against a back-

ground. The background region of the image was identified using color seg-

mentation routines developed for this purpose [Watlington88b]. The particular

segmentation algorithm used was a region merge algorithm which attempted

to form clusters in a two dimensional color space. The color space used for

the segmentation was normalized red vs. normalized blue. The output of the

segmentation algorithm was an image showing the different regions that had

been identified. The background regions (the background was usually identi-

fied as three to five separate regions) were then combined to generate a mask

image. The mask image was used to set the background region of the color

quantized images to a zero pixel value. Zero was the pixel value used to denote

transparency.

The edges of an object are usually a problem with a chroma based image

segmentation algorithm, due to object interreflectances, pixel averaging (lens
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Figure 6.1: Object View at several different stages during processing



blurring), and shadows. If the object edges are not properly identified, different

yet similar views will show different object edges where the edge should be the

same. When the images are animated (played), the resulting artifact is an object

with edges that appear to wiggle back and forth.

The color image segmentation algorithm used performed relatively well, yet

still required two steps of hand editing in producing the mask image. One step

was identifying which segmented regions actually belonged to the background,

the second was eliminating edge location errors around the object. An example

object view during several stages of processing is shown in Fig. 6.1. The images

are, in clockwise order from the upper left corner, the original image view, the

segmented regions, the mask generated from the segmentation information, and

the final object view, separated from the background.

These problems could both be alleviated if additional information about

the object view was utilized. If another segmentation algorithm is employed,

perhaps utilizing motion over time, or utilizing both range data and luminance

data, the first step of hand editing could be eliminated.

The images being processed were often highly similar. Due to the use of a

sequence of object images to represent motion, many of the images differed only

in the motion of one small section. Errors in segmentation could be reduced by

using the information about the object edges and areas of shadow gained by the

segmentation of the previous images in the sequence.



The segmentation routine was implemented on the Mac II, as part of PicTool,

an image processing utility. PicTool was vital in assembling the image sets, as

it allowed the images to be easily viewed, segmented, cropped, and retouched as

necessary. Additionally, PicTool provided a programming environment for the

quick testing of the view manipulation algorithms used in Video Finger.

6.4 Alternative Means of Data Preparation

The object description may be generated automatically, if additional informa-

tion is recorded by the camera(s) being used. One possibility is the model

building camera developed by V. Michael Bove[Bove89]. This camera records

range information derived using depth-from-focus methods as well as luminance

information for an image. A sequence of these images, or the images recorded

by multiple cameras viewing the same scene are used to generate a three dimen-

sional particle representation of the object [Linhardt88]. This database may be

converted into other forms for rendering.

Although the computing requirements of rendering a view directly from the

object database generated by the camera are too large to consider doing it on

the Mac II, the representation used by Video Finger could easily be generated.

Unfortunately, a color version of the camera required is not currently available.



Chapter 7

Results

Video Finger has been functioning as a Macintosh application for five months

now, in one form or another. The early versions were used to test the object

representation, both external and internal. The later versions have included the

ability to generate the movie description and animate the display. A small, but

representative, set of object descriptions has been prepared, including several

backgrounds. The final function to be added was the network interface. When

Video Finger first started working, I was startled more than once by the sight

of a person entering the window, informing me that a friend had logged in.

7.1 Improvements

There are several areas of the Video Finger implementation that need improve-

ment:



* Currently the object descriptions are maintained in memory, not on disk.

This was done due to the time required to transform the view data into

the internal representation used by Video Finger. Now that a suitable

internal representation has been found, the objects may be stored on disk,

and pre-fetched into main memory by the same mechanism proposed for

pre-loading the view cache. The memory usage by large (ie. useful) objects

is currently the limiting factor is determining the number of objects in the

movie.

* The use of a color quantized frame buffer should be re-evaluated. The

difficulties introduced when interpolating color values make the use of an

RGB frame buffer desirable. The psychophysical limits of the human visual

system suggest that a frame buffer using a YIQ representation for color

would be more appropriate [Zworykin54]. The peripheral bus bandwidth

would be doubled, however, if a "true" color frame buffer is used, requiring

a more powerful computer.

* The object edges should be anti-aliased. Unfortunately, anti-aliasing can

only be done as the view is being transferred into the display buffer. This

could be implemented, using the same technique to interpolate between

two color quantized images as is used in view scaling.

e The time required to interpolate the image views is restrictive. In the

current implementation, the first few frames of the sequences tend to be
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slow, until the required views have been cached. The use of a coprocessor

on the NuBus to perform the interpolations would accelerate the display,

but several very powerful coprocessors would be required to perform the

object interpolations in real time.

e The current object libraiies are quite sparse. The acquisition and pro-

cessing of the images required for a single object description is currently

a formidable task. The means for improving this have already been dis-

cussed, in Sections 6.3 and 6.4.

7.2 Future Work

A more intellegent means of monitoring the external user state is needed. I

propose adding a server at the monitored machines for providing the user status.

The server could be notified of the receiver's desire to monitor a particular user.

Thereafter, the receiver would be notified by the server upon a change in the

state of the monitored user. This would decrease the network traffic generated by

Video Fing'er (although this is already quite minimal, especially when compared

to a packet video movie !), and reduce the remote processor workload.

The background image is not restricted to still images; it can be a motion

image sequence itself. This yields the digital video equivalent of filming a movie

scene in front of a screen upon which is projected the scene background. Simi-

larly, the background may be used to convey additional information; perhaps a

63



window in the background, showing the current state of the weather, somewhere

in the world.

The addition of sound to synthetic movies is a necessity. Ideally, the sounds

associated with a synthetic movie must themselves be synthetic. Two different

types of synthetic sound are being investigated: video synchronized speech syn-

thesis and object associated sounds. The synchronization of a synthetic actor

with synthetic speech (usually generated by a dedicated speech synthesizer) is

not a new idea, it has been illustrated previously. The association of sounds in

the soundtrack with particular objects in the video sequence, however, requires

interframe synthesis. Video Finger provides a starting point for experimenting

with object associated sounds.

7.3 Future Hardware

Video Finger is a very simple example of a synthetic movie, due to the restric-

tive object representation chosen. A more complex object representation would

require a correspondingly more powerful hardware system.

Such systems exist now [Akeley88] [Apgar88] [Goldfeather89], but the special-

ized hardware required is very costly. This is changing, however, thanks to

advances in VLSI technology. As the chart in Fig. 7.11 shows, the personal

computers of the early 1990s will benefit from microprocessors that outperform

'The data in the chart was obtained from Morris & Dyer[Morris88]
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many large computers of the 1980s. The development of more realistic synthetic

movies on personal computers will be helped tremendously.



Chapter 8

Conclusion

This thesis was an exploration of synthetic movies. Synthetic movies are not

a new phenomenon, having been present in one form or another since the ap-

pearance of the first computers. Until recently, however, synthetic movies had

been limited to either entertainment (games) or to relatively expensive, ded-

icated systems. The entrance of the microprocessor, accompanied by cheap

high-density memory and optical storage media, marked the beginning of a new

era for synthetic movies.

The digital medium is ideal for the transmission of synthetic movies, allowing

a manipulability not found in analog media. Synthetic movies may now be

integrated into the user interface and applications of the personal computer.

The future is bright.
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