9,932 research outputs found

    Complexity dichotomies for approximations of counting problems

    Get PDF
    Αυτή η διπλωματική αποτελεί μια επισκόπηση θεωρημάτων διχοτομίας για υπολογιστικά προβλήματα, και ειδικότερα προβλήματα μέτρησης. Θεώρημα διχοτομίας στην υπολογιστική πολυπλοκότητα είναι ένας πλήρης χαρασκτηρισμός των μελών μιας κλάσης προβλημάτων, σε υπολογιστικά δύσκολα και υπολογιστικά εύκολα, χωρίς να υπάρχουν προβλήματα ενδιάμεσης πολυπλοκότητας στην κλάση αυτή. Λόγω του θεωρήματος του Ladner, δεν μπορούμε να έχουμε διχοτομία για ολόκληρες τις κλάσεις NP και #P, παρόλα αυτά υπάρχουν μεγάλες υποκλάσεις της NP (#P) για τις οποίες ισχύουν θεωρήματα διχοτομίας. Συνεχίζουμε με την εκδοχή απόφασης του προβλήματος ικανοποίησης περιορισμών (CSP), μία κλάση προβλήμάτων της NP στην οποία δεν εφαρμόζεται το θεώρημα του Ladner. Δείχνουμε τα θεωρήματα διχοτομίας που υπάρχουν για ειδικές περιπτώσεις του CSP. Στη συνέχεια επικεντρωνόμαστε στα προβλήματα μέτρησης παρουσιάζοντας τα παρακάτω μοντέλα: Ομομορφισμοί γράφων, μετρητικό πρόβλημα ικανοποίησης περιορισμών (#CSP), και προβλήματα Holant. Αναφέρουμε τα θεωρήματα διχοτομίας που γνωρίζουμε γι' αυτά. Στο τελευταίο και κύριο κεφάλαιο, χαλαρώνουμε την απαίτηση ακριβών υπολογισμών, και αρκούμαστε στην προσέγγιση των προβλημάτων. Παρουσιάζουμε τα μέχρι σήμερα γνωστά θεωρήματα κατάταξης για το #CSP. Πολλά ερωτήματα στην περιοχή παραμένουν ανοιχτά. Το παράρτημα είναι μια εισαγωγή στους ολογραφικούς αλγορίθμους, μία πρόσφατη αλγοριθμική τεχνική για την εύρεση πολυωνυμικών αλγορίθμων (ακριβείς υπολογισμοί) σε προβλήματα μέτρησης.This thesis is a survey of dichotomy theorems for computational problems, focusing in counting problems. A dichotomy theorem in computational complexity, is a complete classification of the members of a class of problems, in computationally easy and computationally hard, with the set of problems of intermediate complexity being empty. Due to Ladner's theorem we cannot find a dichotomy theorem for the whole classes NP and #P, however there are large subclasses of NP (#P), that model many "natural" problems, for which dichotomy theorems exist. We continue with the decision version of constraint satisfaction problems (CSP), a class of problems in NP, for which Ladner's theorem doesn't apply. We obtain a dichotomy theorem for some special cases of CSP. We then focus on counting problems presenting the following frameworks: graph homomorphisms, counting constraint satisfaction (#CSP) and Holant problems; we provide the known dichotomies for these frameworks. In the last and main chapter of this thesis we relax the requirement of exact computation, and settle in approximating the problems. We present the known cassification theorems for cases of #CSP. Many questions in terms of approximate counting problems remain open. The appendix introduces a recent technique for obtaining exact polynomial-time algorithms for counting problems, namely the holographic algorithms

    Counting Subgraphs in Somewhere Dense Graphs

    Get PDF
    We study the problems of counting copies and induced copies of a small pattern graph H in a large host graph G. Recent work fully classified the complexity of those problems according to structural restrictions on the patterns H. In this work, we address the more challenging task of analysing the complexity for restricted patterns and restricted hosts. Specifically we ask which families of allowed patterns and hosts imply fixed-parameter tractability, i.e., the existence of an algorithm running in time f(H)?|G|^O(1) for some computable function f. Our main results present exhaustive and explicit complexity classifications for families that satisfy natural closure properties. Among others, we identify the problems of counting small matchings and independent sets in subgraph-closed graph classes ? as our central objects of study and establish the following crisp dichotomies as consequences of the Exponential Time Hypothesis: - Counting k-matchings in a graph G ? ? is fixed-parameter tractable if and only if ? is nowhere dense. - Counting k-independent sets in a graph G ? ? is fixed-parameter tractable if and only if ? is nowhere dense. Moreover, we obtain almost tight conditional lower bounds if ? is somewhere dense, i.e., not nowhere dense. These base cases of our classifications subsume a wide variety of previous results on the matching and independent set problem, such as counting k-matchings in bipartite graphs (Curticapean, Marx; FOCS 14), in F-colourable graphs (Roth, Wellnitz; SODA 20), and in degenerate graphs (Bressan, Roth; FOCS 21), as well as counting k-independent sets in bipartite graphs (Curticapean et al.; Algorithmica 19). At the same time our proofs are much simpler: using structural characterisations of somewhere dense graphs, we show that a colourful version of a recent breakthrough technique for analysing pattern counting problems (Curticapean, Dell, Marx; STOC 17) applies to any subgraph-closed somewhere dense class of graphs, yielding a unified view of our current understanding of the complexity of subgraph counting

    Counting Homomorphisms to Trees Modulo a Prime

    Get PDF
    Many important graph theoretic notions can be encoded as counting graph homomorphism problems, such as partition functions in statistical physics, in particular independent sets and colourings. In this article we study the complexity of #_pHomsToH, the problem of counting graph homomorphisms from an input graph to a graph H modulo a prime number p. Dyer and Greenhill proved a dichotomy stating that the tractability of non-modular counting graph homomorphisms depends on the structure of the target graph. Many intractable cases in non-modular counting become tractable in modular counting due to the common phenomenon of cancellation. In subsequent studies on counting modulo 2, however, the influence of the structure of H on the tractability was shown to persist, which yields similar dichotomies. Our main result states that for every tree H and every prime p the problem #_pHomsToH is either polynomial time computable or #_pP-complete. This relates to the conjecture of Faben and Jerrum stating that this dichotomy holds for every graph H when counting modulo 2. In contrast to previous results on modular counting, the tractable cases of #_pHomsToH are essentially the same for all values of the modulo when H is a tree. To prove this result, we study the structural properties of a homomorphism. As an important interim result, our study yields a dichotomy for the problem of counting weighted independent sets in a bipartite graph modulo some prime p. These results are the first suggesting that such dichotomies hold not only for the one-bit functions of the modulo 2 case but also for the modular counting functions of all primes p

    Counting Subgraphs in Somewhere Dense Graphs

    Get PDF
    We study the problems of counting copies and induced copies of a small pattern graph HH in a large host graph GG. Recent work fully classified the complexity of those problems according to structural restrictions on the patterns HH. In this work, we address the more challenging task of analysing the complexity for restricted patterns and restricted hosts. Specifically we ask which families of allowed patterns and hosts imply fixed-parameter tractability, i.e., the existence of an algorithm running in time f(H)GO(1)f(H)\cdot |G|^{O(1)} for some computable function ff. Our main results present exhaustive and explicit complexity classifications for families that satisfy natural closure properties. Among others, we identify the problems of counting small matchings and independent sets in subgraph-closed graph classes G\mathcal{G} as our central objects of study and establish the following crisp dichotomies as consequences of the Exponential Time Hypothesis: (1) Counting kk-matchings in a graph GGG\in\mathcal{G} is fixed-parameter tractable if and only if G\mathcal{G} is nowhere dense. (2) Counting kk-independent sets in a graph GGG\in\mathcal{G} is fixed-parameter tractable if and only if G\mathcal{G} is nowhere dense. Moreover, we obtain almost tight conditional lower bounds if G\mathcal{G} is somewhere dense, i.e., not nowhere dense. These base cases of our classifications subsume a wide variety of previous results on the matching and independent set problem, such as counting kk-matchings in bipartite graphs (Curticapean, Marx; FOCS 14), in FF-colourable graphs (Roth, Wellnitz; SODA 20), and in degenerate graphs (Bressan, Roth; FOCS 21), as well as counting kk-independent sets in bipartite graphs (Curticapean et al.; Algorithmica 19).Comment: 35 pages, 3 figures, 4 tables, abstract shortened due to ArXiv requirement

    Fine-grained dichotomies for the Tutte plane and Boolean #CSP

    Get PDF
    Jaeger, Vertigan, and Welsh [15] proved a dichotomy for the complexity of evaluating the Tutte polynomial at fixed points: The evaluation is #P-hard almost everywhere, and the remaining points admit polynomial-time algorithms. Dell, Husfeldt, and Wahl\'en [9] and Husfeldt and Taslaman [12], in combination with Curticapean [7], extended the #P-hardness results to tight lower bounds under the counting exponential time hypothesis #ETH, with the exception of the line y=1y=1, which was left open. We complete the dichotomy theorem for the Tutte polynomial under #ETH by proving that the number of all acyclic subgraphs of a given nn-vertex graph cannot be determined in time exp(o(n))exp(o(n)) unless #ETH fails. Another dichotomy theorem we strengthen is the one of Creignou and Hermann [6] for counting the number of satisfying assignments to a constraint satisfaction problem instance over the Boolean domain. We prove that all #P-hard cases are also hard under #ETH. The main ingredient is to prove that the number of independent sets in bipartite graphs with nn vertices cannot be computed in time exp(o(n))exp(o(n)) unless #ETH fails. In order to prove our results, we use the block interpolation idea by Curticapean [7] and transfer it to systems of linear equations that might not directly correspond to interpolation.Comment: 16 pages, 1 figur

    Answering Conjunctive Queries under Updates

    Full text link
    We consider the task of enumerating and counting answers to kk-ary conjunctive queries against relational databases that may be updated by inserting or deleting tuples. We exhibit a new notion of q-hierarchical conjunctive queries and show that these can be maintained efficiently in the following sense. During a linear time preprocessing phase, we can build a data structure that enables constant delay enumeration of the query results; and when the database is updated, we can update the data structure and restart the enumeration phase within constant time. For the special case of self-join free conjunctive queries we obtain a dichotomy: if a query is not q-hierarchical, then query enumeration with sublinear^\ast delay and sublinear update time (and arbitrary preprocessing time) is impossible. For answering Boolean conjunctive queries and for the more general problem of counting the number of solutions of k-ary queries we obtain complete dichotomies: if the query's homomorphic core is q-hierarchical, then size of the the query result can be computed in linear time and maintained with constant update time. Otherwise, the size of the query result cannot be maintained with sublinear update time. All our lower bounds rely on the OMv-conjecture, a conjecture on the hardness of online matrix-vector multiplication that has recently emerged in the field of fine-grained complexity to characterise the hardness of dynamic problems. The lower bound for the counting problem additionally relies on the orthogonal vectors conjecture, which in turn is implied by the strong exponential time hypothesis. )^\ast) By sublinear we mean O(n1ε)O(n^{1-\varepsilon}) for some ε>0\varepsilon>0, where nn is the size of the active domain of the current database

    Counting the learnable functions of structured data

    Get PDF
    Cover's function counting theorem is a milestone in the theory of artificial neural networks. It provides an answer to the fundamental question of determining how many binary assignments (dichotomies) of pp points in nn dimensions can be linearly realized. Regrettably, it has proved hard to extend the same approach to more advanced problems than the classification of points. In particular, an emerging necessity is to find methods to deal with structured data, and specifically with non-pointlike patterns. A prominent case is that of invariant recognition, whereby identification of a stimulus is insensitive to irrelevant transformations on the inputs (such as rotations or changes in perspective in an image). An object is therefore represented by an extended perceptual manifold, consisting of inputs that are classified similarly. Here, we develop a function counting theory for structured data of this kind, by extending Cover's combinatorial technique, and we derive analytical expressions for the average number of dichotomies of generically correlated sets of patterns. As an application, we obtain a closed formula for the capacity of a binary classifier trained to distinguish general polytopes of any dimension. These results may help extend our theoretical understanding of generalization, feature extraction, and invariant object recognition by neural networks

    A full dichotomy for Holant<sup>c</sup>, inspired by quantum computation

    Get PDF
    Holant problems are a family of counting problems parameterised by sets of algebraic-complex valued constraint functions, and defined on graphs. They arise from the theory of holographic algorithms, which was originally inspired by concepts from quantum computation. Here, we employ quantum information theory to explain existing results about holant problems in a concise way and to derive two new dichotomies: one for a new family of problems, which we call Holant+^+, and, building on this, a full dichotomy for Holantc^c. These two families of holant problems assume the availability of certain unary constraint functions -- the two pinning functions in the case of Holantc^c, and four functions in the case of Holant+^+ -- and allow arbitrary sets of algebraic-complex valued constraint functions otherwise. The dichotomy for Holant+^+ also applies when inputs are restricted to instances defined on planar graphs. In proving these complexity classifications, we derive an original result about entangled quantum states.Comment: 57 pages, combines edited versions of arXiv:1702.00767 and arXiv:1704.05798 with some new result
    corecore