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Abstract
Jaeger, Vertigan, and Welsh [15] proved a dichotomy for the complexity of evaluating the Tutte
polynomial at fixed points: The evaluation is #P-hard almost everywhere, and the remaining
points admit polynomial-time algorithms. Dell, Husfeldt, and Wahlén [9] and Husfeldt and
Taslaman [12], in combination with the results of Curticapean [7], extended the #P-hardness
results to tight lower bounds under the counting exponential time hypothesis #ETH, with the
exception of the line y = 1, which was left open. We complete the dichotomy theorem for the
Tutte polynomial under #ETH by proving that the number of all acyclic subgraphs of a given
n-vertex graph cannot be determined in time exp

(
o(n)

)
unless #ETH fails.

Another dichotomy theorem we strengthen is the one of Creignou and Hermann [6] for count-
ing the number of satisfying assignments to a constraint satisfaction problem instance over the
Boolean domain. We prove that all #P-hard cases cannot be solved in time exp

(
o(n)

)
unless

#ETH fails. The main ingredient is to prove that the number of independent sets in bipartite
graphs with n vertices cannot be computed in time exp

(
o(n)

)
unless #ETH fails.

In order to prove our results, we use the block interpolation idea by Curticapean [7] and
transfer it to systems of linear equations that might not directly correspond to interpolation.
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1 Introduction

Counting combinatorial objects is at least as hard as detecting their existence, and often
it is harder. Valiant [20] introduced the complexity class #P to study the complexity of
counting problems and proved that counting the number of perfect matchings in a given
bipartite graph is #P-complete. By a theorem of Toda [19], we know that PH ⊆ P#P

holds; in particular, for every problem in the entire polynomial-time hierarchy, there is a

∗ This work was done while the authors were visiting the Simons Institute for the Theory of Computing.

© Cornelius Brand, Holger Dell, and Marc Roth;
licensed under Creative Commons License CC-BY

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 9; pp. 9:1–9:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/74507332?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


9:2 Fine-Grained Dichotomies for the Tutte Plane and Boolean #CSP

polynomial-time algorithm that is given access to an oracle for counting perfect matchings.
This theorem suggests that counting is much harder than decision.

When faced with a problem that is NP-hard or #P-hard, the area of exact algorithms
strives to find the fastest exponential-time algorithm for a problem, or find reasons why
faster algorithms might not exist. For example, the fastest known algorithm for counting
perfect matchings in n-vertex graphs [1] runs in time 2n/2 ·poly(n). It has been hypothesized
that no O

(
1.99n/2)-time algorithm for the problem exists, but we do not know whether such

an algorithm has implications for the strong exponential time hypothesis, which states that
for all ε > 0, there is some k such that the problem of deciding satisfiability of boolean
formulas in k-CNF on n variables does not have an algorithm running in time (2 − ε)n.
However, we know by [8] that the term O(n) in the exponent is asymptotically tight, in
the sense that a 2o(n)-time algorithm for counting perfect matchings would violate the
(randomized) exponential time hypothesis (ETH) by Impagliazzo and Paturi [13]. Using the
idea of block interpolation, Curticapean [7] strengthened the hardness by showing that a
2o(n)-time algorithm for counting perfect matchings would violate the (deterministic) counting
exponential time hypothesis (#ETH).

Our main results are hardness results under #ETH for 1) the problem of counting all
forests in a graph, that is, its acyclic subgraphs, and 2) the problem of counting the number
of independent sets in a bipartite graph. If #ETH holds, then neither of these problems has
an algorithm running in time exp(o(n)) even in simple n-vertex graphs of bounded maximum
degree. We use these results to lift two known “FP vs. #P-hard” dichotomy theorems to
their more refined and asymptotically tight “FP vs. #ETH-hard” variants. Here FP is the
class of functions computable in polynomial time. Note that #ETH is weaker than ETH, so
that our results could also be stated under ETH.

1.1 The Tutte polynomial under #ETH

The Tutte polynomial of a graph G with G = (V,E) is the bivariate polynomial T (G;x, y)
defined via

T (G;x, y) =
∑
A⊆E

(x− 1)k(A)−k(E)(y − 1)k(A)+|A|−|V |
, (1)

where k(A) is the number of connected components of the graph (V,A). The Tutte polynomial
captures many combinatorial properties of a graph in a common framework, such as the
number of spanning trees, forests, proper colorings, and certain flows and orientations, but
also less obvious connections to other fields, such as link polynomials from knot theory,
reliability polynomials from network theory, and (perhaps most importantly) the Ising and
Potts models from statistical physics. We make no attempt to survey the literature or the
different applications for the Tutte polynomial, and instead refer to the upcoming CRC
handbook on the Tutte polynomial [10].

Since T (G;−2, 0) corresponds to the number of proper 3-colorings of G, we cannot hope
to compute all coefficients of T (G;x, y) in polynomial time. Instead, the literature and this
paper focus on the complexity of evaluating the Tutte polynomial at fixed evaluation points.
That is, for each (x, y) ∈ Q2, we consider the function Tx,y defined as G 7→ T (G;x, y). Jaeger,
Vertigan, and Welsh [15] proved that this function is either #P-hard to compute or has a
polynomial-time algorithm. In particular, if (x, y) satisfies (x − 1)(y − 1) = 1, then Tx,y
corresponds to the 1-state Potts model and has a polynomial-time algorithm, and if (x, y)
is one of the four points (1, 1), (−1,−1), (0,−1), or (−1, 0), it also has a polynomial-time
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algorithm; the most interesting point here is T (G; 1, 1), which corresponds to the number of
spanning trees in G and happens to admit a polynomial-time algorithm.

A trivial algorithm to compute the Tutte polynomial runs in time 2O(m), where m is
the number of edges. Björklund et al. [2] proved that there is an algorithm running in time
exp
(
O(n)

)
, where n is the number of vertices. Dell et al. [8] proved for all hard points, except

for points with y = 1, that an exp
(
o(n/ log3 n)

)
-time algorithm for Tx,y on simple graphs

would violate #ETH. Distressingly, this result not only left open one line, but also left a
gap in the running time. Curticapean [7] introduced the technique of block interpolation to
close the running time gap: Under #ETH, there does not exist an exp

(
o(n)

)
-time algorithm

for Tx,y on simple graphs at any hard point (x, y) with y 6= 1.1

Our contributions: We resolve the complexity of the missing line y = 1 under #ETH. On
this line, the Tutte polynomial counts forests weighted in some way, and the main result is
the following theorem.

I Theorem 1 (Forest counting is hard under #ETH). If #ETH holds, then there exist constants
ε, C > 0 such that no O(exp(εn))-time algorithm can compute the number of all forests in a
given simple n-vertex graph with at most C · n edges.

The fact that the problem remains hard even on simple sparse graphs makes the theorem
stronger. The previously best known lower bound under #ETH was that forests cannot
be counted in time O

(
exp(nδ)

)
where δ > 0 is some constant depending on the instance

blow-up caused by the known #P-hardness reductions for forest counting; the thesis of
Taslaman [18] shows a detailed proof for δ = 1

8 . Our approach yields a #P-hardness proof
for forest counting that is simpler than the proofs we found in the literature.2

Combined with all previous results [15, 8, 7], we can now formally state a complete #ETH
dichotomy theorem for the Tutte polynomial over the reals.

I Corollary 2 (Dichotomy for the real Tutte plane under #ETH). Let (x, y) ∈ Q2. If (x, y)
satisfies

(x− 1)(y − 1) = 1 or (x, y) ∈
{

(1, 1), (−1,−1), (0,−1), (−1, 0)
}
,

then Tx,y can be computed in polynomial time. Otherwise Tx,y is #P-hard and, if #ETH is
true, then there exists ε > 0 such that Tx,y cannot be computed in time exp(εn), even for
simple graphs.

The result also holds for sparse simple graphs. We stated the results only for rational numbers
in order to avoid discussions about how real numbers should be represented.

For the proof of Theorem 1, we establish a reduction chain that starts with the problem
of counting perfect matchings on sparse graphs, which is known to be hard under #ETH. As
an intermediate step, we find it convenient to work with the multivariate forest polynomial
as defined, for example, by Sokal [17]. After a simple transformation of the graph, we are
able to extract the number of perfect matchings of the original graph from the multivariate
forest polynomial of the transformed graph, even when only two different variables are used.
Subsequently, we use Curticapean’s idea of block interpolation [7] to reduce the problem of

1 The conference version of [7] does not handle the case y = 0, but the full version (to appear) does.
2 For the #P-hardness of forest counting, [15] refers to private communication with Mark Jerrum as well

as the PhD thesis of Vertigan [21]. A self-contained (but involved) proof appears in “Complexity of
Graph Polynomials” by Steven D. Noble, chapter 13 of [11].

IPEC 2016



9:4 Fine-Grained Dichotomies for the Tutte Plane and Boolean #CSP

computing all coefficients of the bivariate forest polynomial to the problem of evaluating the
univariate forest polynomial on multigraphs where all edge multiplicity are bounded by a
constant. Finally, we replace parallel edges with parallel paths of constant length to reduce
to the problem of evaluating the univariate forest polynomial on simple graphs.

1.2 #CSP over the Boolean domain under #ETH
In the second part of this paper, we consider constraint satisfaction problems (CSPs) over the
Boolean domain, which are a natural generalization of the satisfiability problem for k-CNF
formulas. A constraint is a relation R ⊆ {0, 1}k for some k ∈ N, and a set Γ of constraints is
a constraint language. CSP(Γ) is the constraint satisfaction problem where all constraints
occurring in the instances are of a type contained in Γ, and #CSP(Γ) is the corresponding
counting version, which wants to compute the number of satisfying assignments. If all
constraints happen to be affine, that is, they are linear equations over GF(2), then the
number of solutions can be determined in polynomial time by applying Gaussian elimination
and determining the size of the solution space. Creignou and Hermann [6] prove that, as
soon as you allow even just one constraint type that is not affine, the resulting CSP problem
is #P-hard.

Our contributions: We prove that all Boolean #CSPs that are #P-hard are also hard
under #ETH. The #P-hardness is established in [6] by reductions from counting independent
sets in bipartite graphs, which we prove to be hard in the following theorem.

I Theorem 3 (Counting bipartite independent sets is hard under #ETH). If #ETH holds, then
there exist constants ε > 0 and D ∈ N such that no O(exp(εn))-time algorithm can compute
the number of independent sets in bipartite n-vertex graphs of maximum degree at most D.

The fact that the problem is hard even on graphs of bounded degree makes the theorem
stronger. We remark that the number of independent sets in bipartite graphs has a prominent
role in counting complexity. Currently, the complexity of approximating this number is
unknown, and many problems in approximate counting turn out to be polynomial-time
equivalent to approximately counting independent sets in bipartite graphs. Theorem 3
shows that this mysterious situation does not occur for the exact counting problem in the
exponential-time setting: it is just as hard as counting satisfying assignments of 3-CNFs.

The #P-hardness of counting independent sets in bipartite graphs was established by
Provan and Ball [16]. The main ingredient in their proof is a system of linear equations that
does not seem to correspond to polynomial interpolation directly. We prove Theorem 3 by
transferring the block interpolation idea from [7] to this system of linear equations, which we
do using a Kronecker power of the original system.

Theorem 3 combined with existing reductions in [6] yields the fine-grained dichotomy.

I Corollary 4 (Creignou and Hermann under #ETH). Let Γ be a finite constraint language.
If every constraint in Γ is affine, then #CSP(Γ) has a polynomial-time algorithm. Otherwise
#CSP(Γ) is #P-complete, and if #ETH holds, it cannot be computed in time exp(o(n))
where n is the number of variables.

We consider Corollary 4 to be a first step towards understanding the fine-grained complexity
of technically much more challenging dichotomies, such as the ones for counting CSPs with
complex weights of Cai and Chen [3], or the dichotomy for Holant problems with symmetric
signatures over the Boolean domain of Cai, Lu and Cia [4].
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2 Preliminaries

Given a matrix A of size m1 × n1 and a matrix B of size m2 × n2 their Kronecker product
A⊗B is a matrix of size m1m2 × n1n2 given by

A⊗B =

a11B . . . a1nB
...

...
...

am1B . . . amnB

 .
Let A⊗n be the matrix defined by A⊗1 = A and A⊗n+1 = A ⊗ A⊗n. Furthermore, if A
and B are quadratic matrices of size na and nb, respectively, it is known that det(A⊗B) =
det(A)nb · det(B)na holds.

The exponential time hypothesis (ETH) by Impagliazzo and Paturi [13] is that satisfiability
of 3-CNF formulas cannot be computed substantially faster than by trying all possible
assignments. The counting version of this hypothesis [8], which is a weaker assumption
(clearly, counting the number of solutions entails deciding existence of a solution), reads as
follows:

(#ETH) There is a constant c > 0 such that no deterministic algorithm can compute
#3-SAT in time exp(c · n), where n is the number of variables.

A different way of formulating #ETH is to say no algorithm can compute #3-SAT in time
exp(o(n)). The latter statement is clearly implied by the formal statement, and it will be
more convenient for discussion to use this form.

The sparsification lemma by Impagliazzo, Paturi, and Zane [14] is that every k-CNF
formula ϕ can be written as the disjunction of 2εn formulas in k-CNF, each of which has
at most c(k, ε) · n clauses. Moreover, this disjunction of sparse formulas can be computed
from ϕ and ε in time 2εn ·poly(m). The density c = c(k, ε) is the sparsification constant, and
the best known bound is c(k, ε) = (k/ε)3k [5]. It was observed [8] that the disjunction can be
made so that every assignment satisfies at most one of the sparse formulas in the disjunction,
and so the sparsification lemma applies to #ETH as well. In particular, #ETH implies that
#3-SAT cannot be computed in time exp(o(m)), where m is the number of clauses.

We also make use of the following result, whose proof is based on block interpolation.

I Theorem 5 (Curticapean [7]). If #ETH holds, then there are constants ε,D > 0 such that
neither of the following problems have O(2εn)-time algorithms n-vertex graphs G, even if G
is simple and of maximum degree at most D:

Computing the number of perfect matchings of G.
Computing the number of independent sets of G.

In the proof, we recover a univariate graph polynomial of high degree, and a classical
approach to do so is polynomial interpolation. Interpolation works by evaluating a polynomial
at different points and then solving some linear equations. In our case, however, we can
evaluate the univariate polynomial only at certain discrete points, which involves constructing
graphs with a number of edges that grows roughly as the square of the number of evaluation
points. Since we need roughly as many points as the (large) degree of the polynomial, the
conditional lower bounds we can achieve are not optimal.

While univariate interpolation appears to be insufficient for obtaining tight bounds
under ETH, the univariate polynomials we consider have natural multilinear variants. The
univariate polynomial can be reconstructed from the multilinear one, but since the multilinear
polynomial has linearly many variables, we would need exponentially many evaluation

IPEC 2016
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points to reconstruct all coefficients of the multilinear polynomial. This is not feasible in a
subexponential-time reduction.

Block interpolation is able to find a sweet spot between univariate interpolation, where
the constructed graphs would grow super-linearly, and multilinear interpolation, where
the number of evaluation points would be exponential. For this, we arbitrarily partition
the variables of the multilinear polynomial into (almost) equal-size parts (or blocks) and
identify any variables in the same part. By choosing large but constant-sized parts, the
individual degree of each variable is constant, but their number is sub-linear, which allows a
subexponential-time reduction to work. At the same time, the graphs that we need to query
are larger by at most by a constant factor. After the block interpolation, we can recover the
univariate polynomial as desired.

3 Counting forests is #ETH-hard

Let F(G) be the set of all forests of G, that is, edge subsets A ⊆ E(G) such that the graph
(V (G), A) is acyclic. For y = 1, only the terms with k(A) + |A| − |V | = 0 survive, and we get
the following:

T (G;x, 1) =
∑

A∈F(G)

(x− 1)k(A)−k(E)
. (2)

We want to prove that, for every fixed x 6= 1, computing the value T (G;x, 1) for a given
graph G is hard under #ETH. In particular, this is true for T (G; 2, 1), which is the number
of forests in G. The goal of this section is to prove the following theorem.

I Theorem 6. Let x ∈ R \ {1}. If #ETH holds, then there exist ε, C > 0 such that the
function that maps simple n-vertex graphs G with at most C · n edges to the value T (G;x, 1)
cannot be computed in time 2εn.

Theorem 6 yields Theorem 1 as its special case with x = 2.

3.1 The multivariate forest polynomial
A weighted graph is a graph G in which every edge e ∈ E(G) is endowed with a weight we,
which is an element of some ring. We use the multivariate forest polynomial, defined e.g. by
Sokal [17, (2.14)] as follows:

F (G;w) =
∑

A∈F(G)

∏
e∈A

we .

Projecting all weights we onto a single variable x yields the univariate forest polynomial:

F (G;x) =
∑

A∈F(G)

x|A| =
|E(G)|∑
k=0

ak(G)xk ,

where ak(G) is the number of forests with k edges in G. For all x ∈ R \ {1}, the formal
relation between T (G;x, 1) and the univariate forest polynomial is given by the identity

T (G;x, 1) = (x− 1)|V |−k(E)
∑

A∈F(G)

(x− 1)−|A| = (x− 1)|V |−k(E) · F
(
G; 1

x− 1

)
. (3)



C. Brand, H. Dell, and M. Roth 9:7

The first equality follows from (2) and the fact that k(A) + |A| − |V | = 0 holds if and only if
A is a forest.

In particular, evaluating the forest polynomial and evaluating the Tutte polynomial for
y = 1 are polynomial-time equivalent.

For a forest A ∈ F(G), let C(A) be the family of all sets U ⊆ V (G) such that U 6= ∅ and
U is a maximal connected component in A; clearly, each such U is the vertex set of a tree in
the forest, where we also allow trees with |U | = 1.

I Lemma 7 (Adding an apex). Let G be a weighted graph, and let G′ be obtained from G

by adding a new vertex a and joining it with each vertex v ∈ V (G) using edges of weight zv.
Then

F (G′) =
∑

A∈F(G)

∏
e∈A

we ·
∏

U∈C(A)

(
1 +

∑
u∈U

zu

)
. (4)

Moreover, when we set zv = −1 for all v ∈ V (G) and we = w for all e ∈ E(G), we have
that the coefficient of wn/2 in F (G′) is equal to the number of perfect matchings in G.

Proof. We first define a projection φ that maps a forest A′ in the graph G′ to the forest
A = φ(A′) in the original graph G. In particular, φ simply removes all edges added in the
construction of G′, that is, we define φ(A′) = E(G) ∩A′ for all A′ ∈ F(G′). Now φ(A′) is a
forest in G.

Next we characterize the forests A′ that map to the same A under φ. Let A be a fixed
forest in G. Then a forest A′ in G′ maps to A under φ if and only if set X := A′ \A satisfies
the following property:
(P) For all trees U ∈ C(A), at most one edge of X is incident to a vertex of U .
The forward direction of this claim follows from the fact that A′ is a forest, and so in addition
to any tree U ∈ C(A) it can contain at most one edge connecting U to a; otherwise the tree
and the two edges to a would contain a cycle in A′. For the backward direction of the claim,
observe that adding a set X with the property (P) to A cannot introduce a cycle.

Finally, we calculate the weight contribution of all A′ that map to the same A. Let A′ be
a forest in G, let A = φ(A′) and X = A′ \A. The weight contribution of A′ in the definition
of F (G′) is

∏
e∈A′ w′e. For all e ∈ A, we have w′e = we. For each e ∈ X, we let ve ∈ V (G) be

the vertex with e = {a, ve}, and we have w′e = zve
. Thus the overall weight contribution of

all A′ with φ(A) = A′ is

∑
A′∈F(G′)
φ(A′)=A

∏
e∈A

w′e =
∏
e∈A

we ·
∑
X

∏
e∈X

zve
=
∏
e∈A

we ·
∏

U∈C(A)

(
1 +

∑
u∈U

zu

)
. (5)

The sum in the middle is over all X with the property (P), and the first equality follows from
the bijection between forests A′ and sets X with property (P). For the second equality, we
use property (P) and the distributive law. We obtain (4) by taking the sum of equations (5)
over all A ∈ F(G).

For the moreover part of the lemma, note that the stated settings of the edge weights
for G′ yields

F (G′) =
∑

A∈F(G)

w|A|
∏

U∈C(A)

(1− |U |) .

IPEC 2016
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The coefficient of wn/2 in F (G′) satisfies

[wn/2]F (G′) =
∑

A∈F(G)
|A|=n/2

∏
U∈C(A)

(1− |U |) . (6)

Since (V (G), A) is an acyclic graph with exactly n/2 edges, it is either a perfect matching or
it contains an isolated vertex. If it contains an isolated vertex v, then we have {v} ∈ C(A)
and thus the product in (6) is equal to zero. It follows that A does not contribute to the
sum if it is not a perfect matching. On the other hand, if A is a perfect matching, then we
have |U | = 2 for all U ∈ C(A), so the product in (6) is equal to 1 or −1, depending on the
parity of n/2. Overall, we obtain that [wn/2]F (G′) is equal in absolute value to the number
of perfect matchings of G. J

Lemma 7 shows that computing the multivariate forest polynomial is at least as hard as
counting perfect matchings; moreover, this is true even if at most two different edge weights
are used. Next we argue how to reduce from the multivariate forest polynomial with at most
two distinct weights to the problem of evaluating the univariate polynomial in multigraphs.
We do so via an oracle serf-reduction, whose queries are sparse multigraphs in which each
edge has at most a constant number of parallel edges.

I Lemma 8 (From two weights to small weights using block interpolation). Let x and y be
two variables, and let z ∈ R \ {0} be fixed. There is an algorithm as follows:
1. Its input is a weighted graph (G,w) with we ∈ {x, y} for all e ∈ E(G), and a real ε > 0.
2. It outputs all coefficients of the bivariate polynomial F (G;w).
3. It runs in time 2ε|E(G)| · poly(|G|).
4. It has access to an oracle that computes F (G; z ·w′), where w′ can be any weight function

that assigns integer weights w′e satisfying 0 ≤ w′e ≤ Cε for some constant Cε that only
depends on ε.

We remark that non-negative integer multiples of z, say z · w′e, can be thought of as w′e
parallel edges of weight z in a multigraph. The quantity F (G′; z) for this multigraph G′

is then equal to the value F (G; z · w′) of the weighted forest polynomial of G at z · w′. In
particular, F (G′; 1) is the number of forests in G′.

Proof. Let (G,w) with we ∈ {x, y} for all e ∈ E and ε > 0 be given as input, and let
m := |E(G)|. We define Cε ∈ N as a large enough constant to be determined later. The
algorithm assigns a new weight z ·w′e to each edge e, where each w′e is chosen from the set of
indeterminates X ∪ Y with X = {x1, . . . , xm/Cε

} and Y = {y1, . . . , ym/Cε
} in the following

way: If we = x, choose w′e ∈ X, and if we = y, choose w′e ∈ Y . We further demand that the
number of edges sharing the same weight is at most Cε for each weight in X ∪ Y . Among all
such assignments z ·w′, we pick an arbitrary one. We now consider the polynomial F (G; z ·w′).
It has at most 2m/Cε variables and the maximum degree of each variable is at most Cε,
so F (G; z · w′) has at most (C + 1)2m/Cε monomials. The coefficients of this polynomial
can be reconstructed when its values are given for all evaluation points in z · [0, Cε]2m/Cε ,
which is an 2m/Cε-dimensional grid dilated by a factor z (that is, for any two grid points,
the distance between any two entries in the same coordinate is z).

Since each evaluation point only uses non-negative integer multiples of z between 0
and z · Cε, we can obtain the values at these evaluation points by querying the oracle
for F (G; z · w′) that we are given. The number of evaluation points in the grid is equal
to (Cε + 1)2m/Cε . The claim on the running time follows since the interpolation can be
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performed in time poly
(

(Cε + 1)2m/Cε

)
, which is at most Cε · 2εm when Cε is chosen large

enough depending on ε.
In order to obtain the coefficient of xiyj in F (G;w), we compute the image of F (G; z ·w′)

under the projection that maps all variables in X to x/z and all variables in Y to y/z. That
is, we sum up the coefficients of F (G; z · w′) corresponding to the same monomial xiyj , and
divide by the factor zi+j . J

The combination of Lemma 7 and Lemma 8 shows, for all fixed x 6= 0, that it is hard to
evaluate F (G;x) for multigraphs with at most a constant number of parallel edges. Next we
apply a stretch to make the graphs simple. To this end, we calculate the effect of a k-stretch
on the univariate forest polynomial of a graph.

I Lemma 9 (The forest polynomial under a k-stretch). Let G be a multigraph with m edges,
where every edge is weighted with w ∈ R and let k be a positive integer such that the number
gk(w) with

gk(w) = wk

(w + 1)k − wk

is well-defined. Let G′ be the simple graph obtained from G by replacing every edge by a path
of k edges. Then we have

F (G′;w) =
(
(w + 1)k − wk

)m · F (G; gk(w)
)
.

Proof. We define a mapping φ that maps forests in G′ to forests in G as follows: We add an
edge e ∈ E(G) to A = φ(A′) if and only if A′ contains all k edges of G′ that e got stretched
into. That is, subgraphs A′ that only differ by edges in “incomplete paths” are mapped to
the same multigraph A by φ.

Clearly, φ partitions F(G′) into sets of forests with the same image under φ. Let A be a
forest in G, and let us describe a way to generate all A′ with φ(A′) = A. First, for each e ∈ A,
we add its corresponding path in G′ of length k to A′. Moreover, for each edge e ∈ E(G) \A,
we can add to A′ any proper subset of edges from the k-path in G′ that corresponds to e.
Therefore, at each e ∈ E(G) \A independently, there are

(
k
i

)
ways to extend A′ by i edges

to a forest in G′. A forest A′ can be obtained in this fashion if and only if φ(A′) = A holds.
For a fixed A, let us consider all summands w|A′| in F (G′;w) with φ(A′) = A. By the above

considerations, the total weight contribution of these summands is wk·|A| ·
(∑k−1

i=0
(
k
i

)
wi
)m−|A|,

which equals wk·|A| ·
(
(w + 1)k − wk

)m−|A| by the binomial theorem. These remarks justify
the following calculation for the forest polynomial:

F (G′;w) =
∑

A∈F(G)

∑
A′∈F(G′)
φ(A′)=A

w|A
′| =

∑
A∈F(G)

wk·|A| ·
(

(w + 1)k − wk
)m−|A|

=
(

(w + 1)k − wk
)m
·
∑

A∈F(G)

(
wk

(w + 1)k − wk

)|A|
.

Since the sum in the last line is equal to F
(
G; gk(w)

)
, this concludes the proof. J

We are now in position to formally prove the main theorem of this section.

Proof of Theorem 6. Let x ∈ R \ {1}. Suppose that, for all ε > 0, there exists an algo-
rithm B to compute the mapping G 7→ T (G;x, 1) in time 2εn for given simple graphs G
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with at most C ′εn edges, where C ′ε will be chosen later. By (3), algorithm B can be used
to compute values F (G; (x − 1)−1) with no relevant overhead in the running time, so let
t = (x − 1)−1. Given such an algorithm (or family of algorithms), we devise a similar
algorithm for counting perfect matchings, which together with Theorem 5 implies that #ETH
is false.

Let G be a simple n-vertex graph with at most C ·n edges. Let G′ be the graph obtained
from G as in Lemma 7 by adding an apex, labeling the edges incident to the apex with the
indeterminate z, and all other edges with the indeterminate w. By Lemma 7, the coefficients
of the corresponding bivariate forest polynomial of G′ are sufficient to extract the number of
perfect matchings of G, so it remains to compute these coefficients.

To obtain the coefficients, we use Lemma 8. The reduction guaranteed by the lemma
produces 2εm multigraphs H, all with the same vertex set V (G′). Moreover, each H has at
most Cε|E(G′)| = Cε(|E(G)|+ n) ≤ O(Cεn) edges, and the multiplicity of each edge is at
most Cε. Finally, each edge of each H is assigned the same weight z, which we will choose
later.

The reduction makes one query for each H, where it asks for the value F (H; z). Our
assumed algorithm however only works for simple graphs, so we perform a 3-stretch to obtain
a simple graph H ′ with at most 3|E(H)| ≤ O(Cεn) edges. Lemma 9 allows us to efficiently
compute the value F (H; z) when we are given the value F (H ′; t) and z = g3(t) holds. Since
gk is a total function whenever k is a positive odd integer, and 3 is indeed odd, the value
g3(t) is well-defined, and we set z = g3(t).

We set C ′ε large enough so that E(H ′) ≤ C ′ε · n holds. Tracing back the reduction chain,
we can use algorithm B to compute T (H ′;x, 1) in time 2εn any ε > 0. Using (3), we get the
value of F (H ′; t) since x 6= 1. This, in turn, yields the value of F (H; z) since (z+1)k−zk 6= 0
and g3(t) = z. We do this for each of the 2εm queries H that the reduction in Lemma 8
makes. Finally, the latter reduction outputs the coefficients of the bivariate forest polynomial
of G′, which contains the information on the number of perfect matchings of G.

To conclude, assuming the existence of the algorithm family B, we are able to count
perfect matching in time poly(2εm) for all ε > 0, which implies via Theorem 5 that #ETH is
false. J

Note that the construction from the proof of Theorem 1 implies hardness of T (G;x, 1) for
tripartite G, and also in the bipartite case whenever x 6= −1.

4 Counting solutions to Boolean CSPs under #ETH

In this section, we prove that the #P-hard cases of the dichotomy theorem for Boolean
CSPs by Creignou and Hermann [6] are also hard under #ETH. The main difficulty is to
establish #ETH-hardness of counting independent sets in bipartite graphs. We do so first,
and afterwards observe that all other reductions in [6] can be used without modification.

4.1 Counting Independent Sets in Bipartite Graphs is #ETH-hard
We prove that the problem of counting independent sets in bipartite graphs admits no
subexponential algorithm under #ETH, even for sparse and simple graphs.

Proof of Theorem 3. We reduce from the problem of counting independent sets in graphs of
bounded degree; by Theorem 5, this problem does not have a subexponential-time algorithm.
First we note that a set is an independent set if and only its complement is a vertex cover.
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u v` copies

Figure 1 The gadget H` of Provan and Ball [16] as used in the proof of Theorem 3. It corresponds
to an `-fattening of the edge {u, v}, followed by a 4-stretch of each of the ` parallel edges.

Hence their numbers are equal. We devise a subexponential-time oracle reduction family to
reduce counting vertex covers in general to counting them in bipartite graphs.

Given a graph G with n vertices and m edges, and a running time parameter d ∈ N, the
reduction works as follows. We partition the edges into |E|d blocks of size at most d each.
We denote the blocks by B1, . . . , Bm

d
. Next, for each ~̀= (`1, . . . , `m

d
) ∈ Nm/d, we denote G~̀

as the graph obtained from G by replacing each edge e ∈ Bi with a copy of the gadget H`i

shown in Figure 1. Note that G~̀ is bipartite.

I Observation 10 (Provan and Ball). The number of vertex covers of H` containing neither
u nor v is 2`, the number of vertex covers containing a particular one of u or v is 3`, and
the number of vertex covers containing both u and v is 5`.

We follow the proof of Provan and Ball, but do so in a block-wise fashion. To this end,
let T be the set of all (m/d) × 3 matrices with entries from {0, . . . , d}. The type of a set
S ⊆ V (G) is the matrix t ∈ T such that, for all i = 1 . . . md ,
1. ti1 is equal to the number of edges e ∈ Bi with |e ∩ S| = 0,
2. ti2 is equal to the number of edges e ∈ Bi with |e ∩ S| = 1, and
3. ti3 is equal to the number of edges e ∈ Bi with |e ∩ S| = 2.
Every set S ⊆ V (G) has exactly one type. Let xt be the number of all sets S ⊆ V (G) that
have type t.

We classify vertex covers C ⊆ V (G~̀) of G~̀ by their intersection with V (G), so let
S = C ∩ V (G) and let t be the type of S. By Observation 10 and the fact that all inserted
gadgets act independently after conditioning on the intersection of the vertex covers of G~̀
with V (G), there are exactly

∏m/`
i=1 (2ti13ti25ti3)`i vertex covers C ′ whose intersection with

V (G) is S. Moreover, the number of sets S of type t is equal to xt. Hence the number N~̀ of
vertex covers of G~̀ satisfies

N~̀ =
∑
t∈T

xt ·
m/d∏
i=1

(
2ti13ti25ti3

)`i (7)

Since G~̀ is bipartite, our reduction can query the oracle to obtain the numbers N~̀ for all
~̀ ∈ [(d+ 1)3] n

d . This yields a system of linear equations of type (7), where the xt for t ∈ T
are the unknowns; note that we have exactly |T | equations and unknowns. Let M be the
corresponding |T | × |T | matrix, so that the system can be written as N = M · x.

It remains to prove that M is invertible. For this, we observe that M can be decomposed
into a tensor product of smaller matrices as follows. Let A be the (d+1)3× (d+1)3 where the
row indices ` are from [(d+ 1)3], the column indices τ are from {0, . . . , d}3, and the entries
are defined via A`τ = (2τ13τ25τ3)`. Provan and Ball, as well as the reader, observe that A is
the transpose of a Vandermonde matrix. Due to the uniqueness of the prime factorization,
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the evaluation points 2τ13τ25τ3 are distinct for distinct τ , and thus det(A) 6= 0. Furthermore,
we observe that M = A⊗

n
d holds, which implies det(M) 6= 0 and that M is invertible.

Since M is invertible, we can solve the equation system N = M · x in time polynomial in
its size, and compute xt for all t ∈ T . Finally, we compute the sum of xt over all matrices t
whose first column contains only zeros. This yields the number of all sets S ⊆ V (G) that
intersect every edge of G at least once, that is, the number of vertex covers of G which equals,
as mentioned above, the number of independent sets of G.

Assume that #ETH holds, and let ε,D > 0 be the constants from Theorem 5, which are
such that no algorithm can count independent sets in general graphs of maximum degree D
in time 2εn. We apply our reduction to such a graph; it makes at most 2O(log d·m/d) queries to
the oracle. Since m ≤ Dn holds, and the running time for solving the linear equation system
is polynomial in the number of queries, we can choose d ∈ N to be a large enough constant
depending on ε > 0 to achieve an overall running time of O(2 1

2 εn) for the reduction. Also
note that the queries to the oracle for bipartite graphs have degree at most (d+ 1)3 ·D, which
is a constant that only depends on ε. If there was an algorithm for counting independent
sets in bipartite graphs that ran in time O(2 1

2 εn), we would get a combined algorithm for
counting independent sets in general graphs that would be faster than the choice of ε and D
would allow. Hence, under #ETH, there are constants ε′, D′ > 0 such that no O(2ε′n)-time
algorithm can count all independent sets on graphs of maximum degree at most D′. J

4.2 The Boolean CSP dichotomy
Instances of the constraint satisfaction problem #CSP(Γ) are conjunctions of relations in
Γ applied to variables over the Boolean domain and the goal is to compute the number
of satisfying assignments. A satisfying assignment is an assignment to the variables such
that the formula evaluates to true, that is, every relation in the conjunction evaluates to
true. A more detailed description of the problem can be found in the paper of Creignou and
Hermann [6].

Creignou and Hermann prove Theorem 4 by reducing either from #Pos2Sat, the problem
of counting satisfying assignments of a 2-CNF where every literal is positive, or from
#Imp2Sat, the problem of counting satisfying assignments of a 2-CNF where every clause
contains exactly one positive and one negative literal. A straightforward analysis of the
construction reveals that the reductions only lead to a linear overhead. More precisely:

I Observation 11. Given an instance of #Pos2Sat or #Imp2Sat with n variables and a set
Γ of logical relations such that at least one of the relations is not affine, the construction of
Creignou and Hermann results in an instance of #CSP(Γ) of size c · n where c only depends
on the size of the largest non-affine relation in Γ.

Therefore it suffices to establish that neither #Pos2Sat nor #Imp2Sat have a 2o(n)-time algo-
rithm. Since #Pos2Sat is identical to counting vertex covers in (general) graphs, Theorem 5
applies here. The #ETH-hardness of #Imp2Sat follows by a known reduction from counting
independent sets in bipartite graphs, which we include here for completeness.

I Lemma 12. Assuming #ETH, there is no algorithm that solves #Imp2Sat in time 2o(n)

where n is the number of variables.

Proof. Given a bipartite graph G = (V ∪̇U,E) with constant degree we construct a 2-CNF F
by adding a clause (v → u) for every edge {v, u} ∈ E. Now the number of independent sets
in G equals the number of satisfying assignments of F . Furthermore the existence of an
algorithm that solves #Imp2Sat in time 2o(n) would imply the existence of an algorithm that
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solves #BIS in time 2o(n). Applying Theorem 3 we obtain that such an algorithm would
refute #ETH. J

We sketch how to obtain the #ETH dichotomy theorem for Boolean CSPs.

Proof of Corollary 4. If every relation in Γ is affine then we can solve #CSP(Γ) in polynomial
time using Gaussian elimination as in [6]. Otherwise, the problem is #P-hard by [6]. If,
in addition, #ETH holds, #CSP(Γ) cannot be solved in time 2o(n) as a subexponential
algorithm could also be used to solve #Pos2Sat or #Imp2Sat (see Observation 11) in time
2o(n) which is not possible assuming #ETH (by Theorem 5 and Lemma 12). J
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