137 research outputs found

    Deep learning-powered vision-based energy management system for next-gen built environment

    Get PDF
    Heating, ventilation and air-conditioning (HVAC) systems provide thermally comfortable spaces for occupants, and their consumption is strongly related to how occupants utilise the building. The over- or under-utilisation of spaces and the increased adoption of flexible working hours lead to unnecessary energy usage in buildings with HVAC systems operated using static or fixed schedules during unoccupied periods. Demand-driven methods can enable HVAC systems to adapt and make timely responses to dynamic changes in occupancy. Approaches central to the implementation of a demand-driven approach are accurate in providing real-time information on occupancy, including the count, localisation and activity levels. While conventional occupancy sensors exist and can provide information on the number and location of occupants, their ability to detect and recognise occupancy activities is limited. This includes the operation of windows and appliances, which can impact the building’s performance. Artificial intelligence (AI) has recently become a critical tool in enhancing the energy performance of buildings and occupant satisfaction and health. Recent studies have shown the capabilities of AI methods, such as computer vision and deep learning in detecting and recognising human activities. The recent emergence of deep learning algorithms has propelled computer vision applications and performance. While several studies used deep learning and computer vision to recognise human motion or activity, there is limited work on integrating these methods with building energy systems. Such methods can be used to obtain accurate and real-time information about the occupants for assisting in the operation of HVAC systems. In this research, a demand-driven deep learning framework was proposed to detect and recognise occupancy behaviour for optimising the operation of building HVAC systems. The computer vision-based deep learning algorithm, convolutional neural network (CNN), was selected to develop the vision-based detector to recognise common occupancy activities such as sitting, standing, walking and opening and closing windows. A dataset consisting of images of occupants in buildings performing different activities was formed to perform the training the model. The trained model was deployed to an AI-powered camera to perform real-time detection within selected case study building spaces, which include university tutorial rooms and offices. Two main types of detectors were developed to show the capabilities of the proposed approach; this includes the occupancy activity detector and the window opening detector. Both detectors were based on the Faster R-CNN with Inception V2 model, which was trained and tested using the same approach. In addition, the influence of different parameters on the performance, such as the training data size, labelling method, and how real-time detection was conducted in different indoor spaces was evaluated. The results have shown that a single response 'people detector’ can accurately understand the number of people within a detected space. The ‘occupancy activity detector’ could provide data towards the prediction of the internal heat emissions of buildings. Furthermore, window detectors were formed to recognise the times when windows are opened, providing insights into the potential ventilation heat losses through this type of ventilation strategy employed in buildings. The information generated by the detector is then outputted as profiles, which are called Deep Learning Influence Profiles (DLIP). Building energy simulation (BES) was used to assess the potential impact of the use of detection and recognition methods on building performance, such as ventilation heat loss and energy demands. The generated DLIPs were inputted into the BES tool. Comparisons with static or scheduled occupancy profiles, currently used in conventional HVAC systems and building energy modelling were made. The results showed that the over- or under-estimation of the occupancy heat gains could lead to inaccurate heating and cooling energy predictions. The deep learning detection method showed that the occupancy heat gains could be represented more accurately compared to static office occupancy profiles. A difference of up to 55% was observed between occupancy DLIP and static heat gain profile. Similarly, the window detection method enabled accurate recognition of the opening and closing of windows and the prediction of ventilation heat losses. BES was conducted for various scenario-based cases that represented typical and/or extreme situations that would occur within selected case study buildings. Results showed that the detection methods could be useful for modulating heating and cooling systems to minimise building energy losses while providing adequate indoor air quality and thermal conditions. Based on the developed individual detectors, combined detectors were formed and also assessed during experimental tests and analysis using BES. The vision-based technique’s integration with the building control system was discussed. A heat gain prediction and optimisation strategy were proposed along with a hybrid controller that optimises energy use and thermal comfort. This should be further developed in future works and assessed in real building installations. This work also discussed the limitations and practical challenges of implementing the proposed technology. Initial results of survey-based questionnaires highlighted the importance of informing occupants about the framework approach and how DLIPs were formed. In all, preference is towards a less intrusive and effective approach that could meet the needs of optimising building energy loads for the next-gen built environment

    Deep learning-powered vision-based energy management system for next-gen built environment

    Get PDF
    Heating, ventilation and air-conditioning (HVAC) systems provide thermally comfortable spaces for occupants, and their consumption is strongly related to how occupants utilise the building. The over- or under-utilisation of spaces and the increased adoption of flexible working hours lead to unnecessary energy usage in buildings with HVAC systems operated using static or fixed schedules during unoccupied periods. Demand-driven methods can enable HVAC systems to adapt and make timely responses to dynamic changes in occupancy. Approaches central to the implementation of a demand-driven approach are accurate in providing real-time information on occupancy, including the count, localisation and activity levels. While conventional occupancy sensors exist and can provide information on the number and location of occupants, their ability to detect and recognise occupancy activities is limited. This includes the operation of windows and appliances, which can impact the building’s performance. Artificial intelligence (AI) has recently become a critical tool in enhancing the energy performance of buildings and occupant satisfaction and health. Recent studies have shown the capabilities of AI methods, such as computer vision and deep learning in detecting and recognising human activities. The recent emergence of deep learning algorithms has propelled computer vision applications and performance. While several studies used deep learning and computer vision to recognise human motion or activity, there is limited work on integrating these methods with building energy systems. Such methods can be used to obtain accurate and real-time information about the occupants for assisting in the operation of HVAC systems. In this research, a demand-driven deep learning framework was proposed to detect and recognise occupancy behaviour for optimising the operation of building HVAC systems. The computer vision-based deep learning algorithm, convolutional neural network (CNN), was selected to develop the vision-based detector to recognise common occupancy activities such as sitting, standing, walking and opening and closing windows. A dataset consisting of images of occupants in buildings performing different activities was formed to perform the training the model. The trained model was deployed to an AI-powered camera to perform real-time detection within selected case study building spaces, which include university tutorial rooms and offices. Two main types of detectors were developed to show the capabilities of the proposed approach; this includes the occupancy activity detector and the window opening detector. Both detectors were based on the Faster R-CNN with Inception V2 model, which was trained and tested using the same approach. In addition, the influence of different parameters on the performance, such as the training data size, labelling method, and how real-time detection was conducted in different indoor spaces was evaluated. The results have shown that a single response 'people detector’ can accurately understand the number of people within a detected space. The ‘occupancy activity detector’ could provide data towards the prediction of the internal heat emissions of buildings. Furthermore, window detectors were formed to recognise the times when windows are opened, providing insights into the potential ventilation heat losses through this type of ventilation strategy employed in buildings. The information generated by the detector is then outputted as profiles, which are called Deep Learning Influence Profiles (DLIP). Building energy simulation (BES) was used to assess the potential impact of the use of detection and recognition methods on building performance, such as ventilation heat loss and energy demands. The generated DLIPs were inputted into the BES tool. Comparisons with static or scheduled occupancy profiles, currently used in conventional HVAC systems and building energy modelling were made. The results showed that the over- or under-estimation of the occupancy heat gains could lead to inaccurate heating and cooling energy predictions. The deep learning detection method showed that the occupancy heat gains could be represented more accurately compared to static office occupancy profiles. A difference of up to 55% was observed between occupancy DLIP and static heat gain profile. Similarly, the window detection method enabled accurate recognition of the opening and closing of windows and the prediction of ventilation heat losses. BES was conducted for various scenario-based cases that represented typical and/or extreme situations that would occur within selected case study buildings. Results showed that the detection methods could be useful for modulating heating and cooling systems to minimise building energy losses while providing adequate indoor air quality and thermal conditions. Based on the developed individual detectors, combined detectors were formed and also assessed during experimental tests and analysis using BES. The vision-based technique’s integration with the building control system was discussed. A heat gain prediction and optimisation strategy were proposed along with a hybrid controller that optimises energy use and thermal comfort. This should be further developed in future works and assessed in real building installations. This work also discussed the limitations and practical challenges of implementing the proposed technology. Initial results of survey-based questionnaires highlighted the importance of informing occupants about the framework approach and how DLIPs were formed. In all, preference is towards a less intrusive and effective approach that could meet the needs of optimising building energy loads for the next-gen built environment

    VERSUS: Heritage for Tomorrow

    Get PDF
    Vernacular architecture represents a great resource that has considerable potential to define principles for sustainable design and contemporary architecture. This publication is the result of an overall aim to produce a valuable tool for analysis regarding vernacular heritage through different assessments, in order to define principles to consider for sustainable development. This was possible through a comprehensive reflection on the principles established and the strategies to recognise in different world contexts. The present publication was the result of an in-depth approach by 46 authors from 12 countries, concerned with the analysis and critical assessment of vernacular heritage and its sustainable perspective. The book presents 8 chapters addressing operational definitions and synopses advances, regarding the main areas of vernacular heritage contribution to sustainable architecture. It also presents 15 chapters and 53 case studies of vernacular and contemporary approaches in all the 5 continents, regarding urban, architectural, technical and constructive strategies and solutions. VERSUS, HERITAGE FOR TOMORROW: Vernacular Knowledge for Sustainable Architecture is the result of a common effort undertaken by the partners ESG | Escola Superior Gallaecia, Portugal, as Project leader; CRAterre | École Nationale SupĂ©rieure d’Architecture de Grenoble, France; DIDA | UniversitĂ  degli Studi di Firenze, Italy; DICAAR | UniversitĂ  degli Studi di Cagliari, Italy; and UPV | Universitat PolitĂšcnica de ValĂšncia, Spain. This is the final outcome of VerSus, an European project developed from 2012 to 2014, in the framework of the Culture 2007-2013 programme

    Advanced techniques for personalized, interactive question answering

    Get PDF
    Using a computer to answer questions has been a human dream since the beginning of the digital era. A first step towards the achievement of such an ambitious goal is to deal with naturallangilage to enable the computer to understand what its user asks. The discipline that studies the conD:ection between natural language and the represen~ tation of its meaning via computational models is computational linguistics. According to such discipline, Question Answering can be defined as the task that, given a question formulated in natural language, aims at finding one or more concise answers in the form of sentences or phrases. Question Answering can be interpreted as a sub-discipline of information retrieval with the added challenge of applying sophisticated techniques to identify the complex syntactic and semantic relationships present in text. Although it is widely accepted that Question Answering represents a step beyond standard infomiation retrieval, allowing a more sophisticated and satisfactory response to the user's information needs, it still shares a series of unsolved issues with the latter. First, in most state-of-the-art Question Answering systems, the results are created independently of the questioner's characteristics, goals and needs. This is a serious limitation in several cases: for instance, a primary school child and a History student may need different answers to the questlon: When did, the Middle Ages begin? Moreover, users often issue queries not as standalone but in the context of a wider information need, for instance when researching a specific topic. Although it has recently been proposed that providing Question Answering systems with dialogue interfaces would encourage and accommodate the submission of multiple related questions and handle the user's requests for clarification, interactive Question Answering is still at its early stages: Furthermore, an i~sue which still remains open in current Question Answering is that of efficiently answering complex questions, such as those invoking definitions and descriptions (e.g. What is a metaphor?). Indeed, it is difficult to design criteria to assess the correctness of answers to such complex questions. .. These are the central research problems addressed by this thesis, and are solved as follows. An in-depth study on complex Question Answering led to the development of classifiers for complex answers. These exploit a variety of lexical, syntactic and shallow semantic features to perform textual classification using tree-~ernel functions for Support Vector Machines. The issue of personalization is solved by the integration of a User Modelling corn': ponent within the the Question Answering model. The User Model is able to filter and fe-rank results based on the user's reading level and interests. The issue ofinteractivity is approached by the development of a dialogue model and a dialogue manager suitable for open-domain interactive Question Answering. The utility of such model is corroborated by the integration of an interactive interface to allow reference resolution and follow-up conversation into the core Question Answerin,g system and by its evaluation. Finally, the models of personalized and interactive Question Answering are integrated in a comprehensive framework forming a unified model for future Question Answering research

    Human experience in the natural and built environment : implications for research policy and practice

    Get PDF
    22nd IAPS conference. Edited book of abstracts. 427 pp. University of Strathclyde, Sheffield and West of Scotland Publication. ISBN: 978-0-94-764988-3

    Data-Driven Modeling, Control and Tools for Cyber-Physical Energy Systems

    Get PDF
    Energy systems are experiencing a gradual but substantial change in moving away from being non-interactive and manually-controlled systems to utilizing tight integration of both cyber (computation, communications, and control) and physical representations guided by first principles based models, at all scales and levels. Furthermore, peak power reduction programs like demand response (DR) are becoming increasingly important as the volatility on the grid continues to increase due to regulation, integration of renewables and extreme weather conditions. In order to shield themselves from the risk of price volatility, end-user electricity consumers must monitor electricity prices and be flexible in the ways they choose to use electricity. This requires the use of control-oriented predictive models of an energy system’s dynamics and energy consumption. Such models are needed for understanding and improving the overall energy efficiency and operating costs. However, learning dynamical models using grey/white box approaches is very cost and time prohibitive since it often requires significant financial investments in retrofitting the system with several sensors and hiring domain experts for building the model. We present the use of data-driven methods for making model capture easy and efficient for cyber-physical energy systems. We develop Model-IQ, a methodology for analysis of uncertainty propagation for building inverse modeling and controls. Given a grey-box model structure and real input data from a temporary set of sensors, Model-IQ evaluates the effect of the uncertainty propagation from sensor data to model accuracy and to closed-loop control performance. We also developed a statistical method to quantify the bias in the sensor measurement and to determine near optimal sensor placement and density for accurate data collection for model training and control. Using a real building test-bed, we show how performing an uncertainty analysis can reveal trends about inverse model accuracy and control performance, which can be used to make informed decisions about sensor requirements and data accuracy. We also present DR-Advisor, a data-driven demand response recommender system for the building\u27s facilities manager which provides suitable control actions to meet the desired load curtailment while maintaining operations and maximizing the economic reward. We develop a model based control with regression trees algorithm (mbCRT), which allows us to perform closed-loop control for DR strategy synthesis for large commercial buildings. Our data-driven control synthesis algorithm outperforms rule-based demand response methods for a large DoE commercial reference building and leads to a significant amount of load curtailment (of 380kW) and over $45,000 in savings which is 37.9% of the summer energy bill for the building. The performance of DR-Advisor is also evaluated for 8 buildings on Penn\u27s campus; where it achieves 92.8% to 98.9% prediction accuracy. We also compare DR-Advisor with other data driven methods and rank 2nd on ASHRAE\u27s benchmarking data-set for energy prediction

    The 45th Australasian Universities Building Education Association Conference: Global Challenges in a Disrupted World: Smart, Sustainable and Resilient Approaches in the Built Environment, Conference Proceedings, 23 - 25 November 2022, Western Sydney University, Kingswood Campus, Sydney, Australia

    Get PDF
    This is the proceedings of the 45th Australasian Universities Building Education Association (AUBEA) conference which will be hosted by Western Sydney University in November 2022. The conference is organised by the School of Engineering, Design, and Built Environment in collaboration with the Centre for Smart Modern Construction, Western Sydney University. This year’s conference theme is “Global Challenges in a Disrupted World: Smart, Sustainable and Resilient Approaches in the Built Environment”, and expects to publish over a hundred double-blind peer review papers under the proceedings
    • 

    corecore