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Abstract 

 

Heating, ventilation and air-conditioning (HVAC) systems provide thermally comfortable spaces for 

occupants, and their consumption is strongly related to how occupants utilise the building. The over- or 

under-utilisation of spaces and the increased adoption of flexible working hours lead to unnecessary energy 

usage in buildings with HVAC systems operated using static or fixed schedules during unoccupied periods. 

Demand-driven methods can enable HVAC systems to adapt and make timely responses to dynamic 

changes in occupancy. Approaches central to the implementation of a demand-driven approach are accurate 

in providing real-time information on occupancy, including the count, localisation and activity levels. While 

conventional occupancy sensors exist and can provide information on the number and location of occupants, 

their ability to detect and recognise occupancy activities is limited. This includes the operation of windows 

and appliances, which can impact the building’s performance. 

 

Artificial intelligence (AI) has recently become a critical tool in enhancing the energy performance of 

buildings and occupant satisfaction and health. Recent studies have shown the capabilities of AI methods, 

such as computer vision and deep learning in detecting and recognising human activities. The recent 

emergence of deep learning algorithms has propelled computer vision applications and performance. While 

several studies used deep learning and computer vision to recognise human motion or activity, there is 

limited work on integrating these methods with building energy systems. Such methods can be used to 

obtain accurate and real-time information about the occupants for assisting in the operation of HVAC 

systems. 

 

In this research, a demand-driven deep learning framework was proposed to detect and recognise occupancy 

behaviour for optimising the operation of building HVAC systems. The computer vision-based deep 

learning algorithm, convolutional neural network (CNN), was selected to develop the vision-based detector 

to recognise common occupancy activities such as sitting, standing, walking and opening and closing 

windows. A dataset consisting of images of occupants in buildings performing different activities was 

formed to perform the training the model. The trained model was deployed to an AI-powered camera to 

perform real-time detection within selected case study building spaces, which include university tutorial 

rooms and offices. 

 

Two main types of detectors were developed to show the capabilities of the proposed approach; this includes 

the occupancy activity detector and the window opening detector. Both detectors were based on the Faster 

R-CNN with Inception V2 model, which was trained and tested using the same approach. In addition, the 

influence of different parameters on the performance, such as the training data size, labelling method, and 

how real-time detection was conducted in different indoor spaces was evaluated. The results have shown 

that a single response 'people detector’ can accurately understand the number of people within a detected 

space. The ‘occupancy activity detector’ could provide data towards the prediction of the internal heat 

emissions of buildings. Furthermore, window detectors were formed to recognise the times when windows 

are opened, providing insights into the potential ventilation heat losses through this type of ventilation 

strategy employed in buildings. The information generated by the detector is then outputted as profiles, 

which are called Deep Learning Influence Profiles (DLIP). 
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Building energy simulation (BES) was used to assess the potential impact of the use of detection and 

recognition methods on building performance, such as ventilation heat loss and energy demands. The 

generated DLIPs were inputted into the BES tool. Comparisons with static or scheduled occupancy profiles, 

currently used in conventional HVAC systems and building energy modelling were made. The results 

showed that the over- or under-estimation of the occupancy heat gains could lead to inaccurate heating and 

cooling energy predictions. The deep learning detection method showed that the occupancy heat gains could 

be represented more accurately compared to static office occupancy profiles. A difference of up to 55% 

was observed between occupancy DLIP and static heat gain profile. Similarly, the window detection 

method enabled accurate recognition of the opening and closing of windows and the prediction of 

ventilation heat losses.  

 

BES was conducted for various scenario-based cases that represented typical and/or extreme situations that 

would occur within selected case study buildings. Results showed that the detection methods could be 

useful for modulating heating and cooling systems to minimise building energy losses while providing 

adequate indoor air quality and thermal conditions. Based on the developed individual detectors, combined 

detectors were formed and also assessed during experimental tests and analysis using BES.  

 

The vision-based technique’s integration with the building control system was discussed. A heat gain 

prediction and optimisation strategy were proposed along with a hybrid controller that optimises energy 

use and thermal comfort. This should be further developed in future works and assessed in real building 

installations. This work also discussed the limitations and practical challenges of implementing the 

proposed technology. Initial results of survey-based questionnaires highlighted the importance of informing 

occupants about the framework approach and how DLIPs were formed. In all, preference is towards a less 

intrusive and effective approach that could meet the needs of optimising building energy loads for the next-

gen built environment.  
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Chapter 1 

 

1. Introduction 
 

1.1. Research Background 

 

According to the latest projections, the global climate is predicted to continue to change, and the frequency 

of extreme weather and climate events is expected to increase. This will significantly impact the built 

environment sector, and new building designs should be able to cope with climate change and meet future 

energy needs [1]. For instance, heating, ventilation and air-conditioning (HVAC) systems are responsible 

for over 40% of the energy consumed by buildings in the commercial sector [2]. Reducing the energy 

demand for HVAC is crucial for overall energy conservation and the reduction of greenhouse gases. Hence, 

developing technologies or solutions that can minimise its consumption can make a significant impact on 

achieving ambitious emission reduction targets [3,4]. However, thermal comfort is also a vital factor in the 

design of buildings and HVAC systems, and it should not be neglected when seeking solutions for reducing 

building energy consumption [5,6].  To reduce the energy demand as well as enhance occupant comfort, it 

is essential to use systems and techniques which can automatically control and optimise building operations 

[7] such as building energy management systems (BEMS) [8]. Many studies [9 - 11] have highlighted that 

the knowledge of occupancy patterns and activities can assist BEMS to achieve more intelligent, smart 

buildings through the enhancement of building energy efficiency. Currently, one of the most common types 

of techniques used to improve buildings is Artificial Intelligence (AI). AI has increasingly become an 

effective method to aid building and energy-related problems through the provision of smarter solutions for 

developing more intelligent buildings through a reduction of unnecessary energy loads while 

simultaneously providing an enhancement towards building thermal comfort. 

 

1.2. Problem Identification 

 

The work presented in this thesis focuses on the development of a novel vision-based deep learning 

approach for a demand-driven framework that can be integrated with BEMS to accurately predict 

occupancy behaviour based on common activities with its associated heat gains, along with occupancy 

actions towards opening and closing of windows that is linked with building ventilation losses. All 

framework is designed to apply within building spaces such as an office environment to aid the management 

of HVAC systems and operations, while effectively regulating the building energy performances through 

the minimisation of unnecessary energy loads while satisfying thermal comfort conditions for occupants.  

 

The current impact and applications of AI within the built environment were reviewed, whereby existing 

AI techniques applied to buildings aimed to assist the building performance in terms of the performance 

gap, design, management, and operation. Otherwise designed to enhance building energy efficiency through 

energy prediction and detection for HVAC systems, which ultimately aims to minimise demands while 

enhancing response quality and time. Further developments include the proposal in improving the overall 

building thermal comfort, air quality and occupancy satisfaction. Occupancy detectors based on traditional 

methods such as environmental and passive infrared sensors and solutions using wireless connectivity were 

explored. It was understood that they are commonly used to detect and recognise occupancy behaviour 
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within buildings. Within the explored AI techniques, deep learning was suggested as a highly beneficial 

technique for occupancy detection by integrating the framework onto a camera, forming a type of sensor 

with the provision of accurate results. The explored frameworks suggest that occupancy detection and 

recognition-based methods usually do not relate to building energy management and prediction techniques. 

However, to enable further development towards more intelligent buildings, consideration of framework 

developments with strategies that acknowledge multiple building applications to balance the several 

benefits of building design, HVAC systems, and occupancy satisfaction. This significance was developed 

from evaluating limited solutions covered by deep learning and none from the explored machine learning-

based frameworks. In addition, most of the frameworks did not consider the aspects of thermal comfort, 

which is important to buildings' intended purpose to provide a place of comfort and safety. This suggests 

the lack of attention towards occupant satisfaction and thermal comfort when proposing new AI-based 

building energy management techniques. It indicates that only current deep learning-based strategies can 

be incorporated into multiple aspects of this approach, which provides an enhanced solution to expectantly 

provide feasible solutions towards the enhancement of more intelligent buildings, giving better 

environments to fulfil the future needs within the built environment.  

 

The method adopted in this research is based on the application of AI deep learning techniques to form a 

camera-based detection and recognition system to inform building controls of the true occupancy behaviour 

based on the understanding of the heat gains and the ventilation heat losses within a building space. Testing 

of the developed models was performed via experimental tests in selected case study buildings. From 

conducting a survey, feedback from participants provides a better understanding for further development 

of the approach and data obtained from the tests were analysed to highlight the importance of the demand 

for an effective indoor detector. The work also combines the use of building energy simulation (BES) to 

evaluate the proposed approach under different scenarios of how the proposed framework can be applied 

to buildings and to also compare with existing system operations. Evaluation targeting the relationship of 

real-time understanding of occupancy behaviour impacting the HVAC system operations, which ultimately 

could be a valuable approach to be implemented in various types of building spaces to optimise building 

energy performances and thermal satisfaction. 

 

1.3. Aims and Objectives 

 

This research aims to develop a demand-driven deep learning-based framework that can be integrated with 

BEMS to accurately predict occupant behaviour within a building space to aid the optimisation and the 

management of HVAC systems and operations, while effectively regulating the building energy 

performances through the minimisation of unnecessary energy loads while satisfying occupancy thermal 

comfort conditions. 

 

To accomplish this aim, the following objectives were proposed.  

1. Comprehensive literature review of the current impact and usage of artificial intelligence-based 

techniques of deep learning within the built environment. Use existing frameworks to understand 

the application of various software platforms towards the development of a deep learning 

framework for occupancy behaviour detection and recognition.  

2. Develop a data-driven deep learning framework for the detection and recognition of various 

occupancy behaviour (napping, sitting, standing, walking and actions towards opening and closing 



 5 

of windows) within indoor building spaces and validate the deep learning models using various 

testing datasets based on their suitability for real-time detection. 

3. Refinement of the deep learning computer vision method with the evaluation of the impact of 

different parameters and configurations on the detection performance.  

4. Deployment of the developed deep learning model to an AI-powered camera and testing within 

different experimental tests on several case study buildings and scenarios. Application on several 

buildings will allow the formation of occupancy and window opening profiles. 

5. Assess the impact of the proposed approach on the overall building performance in terms of the 

building energy loads and occupant satisfaction using the BES tool. 

6. Further evaluation of the practical application and challenges of the developed approach such as 

integration with control systems, the impact of environmental conditions and ethical and privacy 

issues.  

 

1.4. Overview of the Research Methodology 

 

To address the following objectives given above, the following research methodology was applied. The six 

objectives stated above correlates to a main step within the research methodology. In all, conducting the 

steps would ensure the development of a deep Learning-powered vision-based energy management solution. 

 
Figure 1-1. Overview of the research methodology. 
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1.5. Thesis Structure 

 

Chapter 2 introduces the current concerns related to building energy demands and presents the importance 

of employing artificial intelligence-based techniques to provide better solutions within buildings and 

energy-related applications. A literature review on the associated topics related to building energy and AI 

applications was conducted, outlining the research gaps and giving directions for the proposed research 

framework and design.  

 

Chapter 3 further explores occupancy behaviour and its impact on building and system operations along 

with the establishment of the method, techniques and strategies used to form the vision-based approach for 

accurate detection and recognition. Furthermore, the description of the different steps of the framework 

approach with the workflow process for the model development and analysis with the selected case study 

buildings used as testbed are presented within this chapter. 

 

Chapter 4 adopts the methods described in Chapter 3 and presents the application of deep learning vision-

based methods to form detectors to recognise occupancy behaviour within buildings. A series of models 

were developed, trained, tested and evaluated using the process given in Chapter 3. 

 

Chapter 5 focuses on the development of window detection models to enable a vision-based solution to 

understand the conditions of windows within indoor spaces that allow the generation of data in form of 

DLIPs to suggest potential alterations to the operations of HVAC systems to ensure rooms would not be 

under/over ventilated and to achieve sufficient indoor air quality. 

 

Chapter 6 combines the individual detection approaches given in Chapters 4 and 5 to form combined 

detectors. These were tested and evaluated using the same methods as described in Chapter 3, seeking the 

potential in requiring a multi-objective combined detector to be used to acquire a real-time understanding 

of indoor spaces that were influenced by occupancy behaviour. Through detection and analysis, the factors 

that could lead to sufficient dynamic changes in terms of building energy and performance were explored.  

 

Based on the evaluation of the models developed in Chapters 4, 5 and 6, Chapter 7 proposes the techniques 

and methods used for the next stage of the framework approach. It describes how dynamic changes based 

on occupancy behaviour can lead to the formation of data from the vision-based detectors to provide specific 

modifications towards building controls and HVAC systems. Furthermore, the practical challenges 

impacting the proposed approach through the limitations identified in Chapters 4, 5 and 6 were identified. 

To enable the proposed approach to become valuable and become implemented on BEMS to achieve more 

intelligent, smart buildings, this chapter evaluates occupants’ feedback on various aspects of the framework 

from its design to the application, suggesting areas for improvements and to be considered within future 

developments.  

 

Chapter 8 provides the conclusion to the research study with recommendations for future work.  
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Chapter 2 

 

2. Review of the Literature and an Outline of the Research Gaps 
 

To address the first objective of this study, this chapter presents a comprehensive literature review of the 

current impact and usage of AI techniques within the built environment, leading to the outline of the 

research gaps and giving directions for the proposed research framework and design. Chapter 2.2 explores 

various building and occupancy-related aspects of the built environment in terms of the applications and 

use of AI strategies to enhance current building operational methods. Research-based AI strategies for 

buildings, occupancy detection and occupancy-based comfort were also examined. Further analysis of 

machine learning-based techniques was made in Chapters 2.3 and 3.4 for deep learning-based techniques. 

Evaluation of existing framework solutions enabled the identification of ideal processes for future 

development of AI-based systems. An overall summary of the assessed model framework's feasibility was 

provided to give an outline of the research gaps with a discussion of the criteria for future development of 

AI-based applications for the enhancement of buildings. 

 

2.1. Introduction 

 

Developing new technologies and solutions that can minimise its consumption can significantly reduce 

emissions from the built environment sector. However, thermal comfort and indoor air quality are also 

important factors that must be considered in the design of buildings and HVAC that should not be neglected 

when seeking solutions for reducing the building energy demand [12]. Example solutions include the 

integration of building energy management systems (BEMS) into existing HVAC systems. These are 

designed to automatically control building operations, including  HVAC systems, lighting and equipment 

[13-15]. According to the report by the American Council for an Energy-Efficient Economy [16], energy 

savings of 18% for offices and 14% for retail stores can be achieved by employing smart technologies and 

analytics. BEMS ensures building services, systems, and equipment operate optimally by reducing energy 

consumption, along with the reduction in operational costs and emissions while providing a better-quality 

environment for occupants. BEMS are more automated and limits the need for manual procedures in 

monitoring and controlling HVAC systems. They have a significant role in improving the efficiency of 

buildings and will be a crucial strategy for developing truly intelligent buildings.  

 

Due to computer and software technology advancements, different sectors are being taken over by 

automated machines and software, and the field of AI  is becoming more important [17]. This has led to 

smart solutions for buildings that optimise energy performances and reduce resource waste [18, 19] without 

compromising comfort, health or security [20]. The increasing adoption of the Internet of Things (IoT) and 

AI technologies for building monitoring and controls will drive the smart building market's growth. More 

and more academic researchers and building professionals are developing and utilising AI-based solutions 

for the design and construction [21], operation and maintenance [21, 22] of the built environment. An 

example is integrating AI algorithms and sensors into the indoor environment to optimise the process in 

real-time, such as monitoring and controlling the indoor climate. These systems can automatically analyse 

the data and provide future predictions of the building's behaviour and facilitate and assist decision-making 

[23, 24]. However, the study by the McKinsey Global Institute [25] presented a statistical comparison of 
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the use of AI within various sectors. It is acknowledged that AI within the building and construction sector 

has been slow to employ AI and digital tools in comparison to other sectors. Accordingly, there is a need 

to study AI techniques for enhancing building energy efficiency and solving building-related problems, 

identifying the reasons for its slow adoption and potential solutions. This stresses the urgency for an in-

depth review and exploration of the current use and how it can inform the development of AI solutions for 

future buildings. 

 

Figure 2-1 summarises the most common AI-based machine and deep learning techniques currently used 

within the built environment sector, particularly energy efficiency-related applications, which are reviewed 

in this chapter. In machine learning, data presented in numerical, categorical, time series and text are used 

as input [26] with the selection of an algorithm as a computational method to ‘learn’ information directly 

from data. Deep learning interprets data features and their relationships using neural networks to form a 

unique model based on a wider range of data, including images, videos, and sounds. To a greater extent, 

deep learning provides higher accuracy than other methods as the feature extraction process is performed 

automatically from raw data. However, deep learning would require more data points to improve its 

accuracy. Several studies have suggested that deep learning surpassed machine learning and other learning 

algorithms in various applications [27]. 



 9 

 
Figure 2-1. (a). AI-based machine learning and deep learning techniques reviewed in this study (b). 

Comparison of the typical machine learning and deep learning process. 

Figure 2-2 presents a summary of the applications of the machine and deep learning-based methods in the 

design of energy-efficient, comfortable, and healthy buildings evaluated in this chapter. The review focused 

on building and HVAC systems energy, indoor environment quality and occupancy behaviour, and three 

types of algorithms: supervised and unsupervised machine learning, and deep learning. The review of 

different machine learning techniques will help identify the specific techniques that are more suited for 

each area. This enabled the formation of the connections shown in Figure 2-2, detailed in Chapter 2.3. Each 

type of machine learning technique was explored based on its application within the built environment with 

supervised machine learning designed for classification and regression problems that consisted of 

algorithms that are trained using datasets that are fully labelled, i.e., features’ data, providing an answer key 
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that can be used to assess its accuracy. While in unsupervised machine learning, the algorithm attempts to 

make sense of the unlabeled data by extracting patterns and features on its own without clear instructions 

on what to do with them. This is useful when fully labelled datasets are not available and, in some cases 

when the desired outcome or answer is not known. Another subset of machine learning that uses a multi-

layered structure of algorithms to create an artificial neural network (ANN) is deep learning. Effectively, 

deep learning offers several advantages over traditional machine learning methods and, in some cases, 

outperforms them. It does not require human intervention and can learn from its own mistakes (Figure 

2-1b). However, it can be costly in terms of computational power and time. Deep learning is usually applied 

to problems that require complex and unstructured data such as images, videos, and sound to perform tasks. 

 

 

Figure 2-2. Summary of the AI-based methods employed in the design of energy-efficient, comfortable, 

and healthy buildings reviewed in this study. Connections made correspond to the studies evaluated in 

Chapter 2.3. 

An example is detecting occupants in indoor spaces and using the information to control the operation of 

HVAC. In recent years, there have been significant developments in deep learning due to the increased 

available computing power and graphical processing unit (GPU) computing. Compared to supervised and 

unsupervised machine learning, there is limited research on deep learning techniques for building and 
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energy-related applications; however, deep learning has recently gained more popularity. This stresses the 

need to review its development and applications in the built environment.  

 

The primary aim of this chapter is to provide a critical summary of the existing literature on machine 

learning and deep learning methods for the built environment over the past decade, with special reference 

to holistic approaches. Existing AI-based techniques focusing on the framework, methodology, and 

performance, including the data acquired, model formation process, accuracy, and speed were explored. 

The study also includes the different AI-based techniques employed to resolve interconnected problems 

related to HVAC systems and enhance building performances, including energy forecasting and 

management, indoor air quality and occupancy comfort/satisfaction prediction, and occupancy detection 

and recognition. 

 

An extensive literature search was performed to identify publications on existing studies on the application 

of machine and deep learning methods for the built environment. Peer-reviewed journals, conference 

papers, technical reports, and books from the last decade (with some exceptions made) were searched using 

the Scopus and ScienceDirect search engines. The search was carried out using keywords such as ‘artificial 

intelligence in buildings’, ‘machine learning in the built environment’, and ‘deep learning in the built 

environment’.  

 

2.2. Applications of Artificial Intelligence within the Built Environment 

 

Artificial intelligence is being adopted widely in various areas to perform tasks more efficiently while 

reducing the need for human effort. With the ever-increasing computational power and data availability in 

today’s digital society, significant progress has been made in AI in recent years [28]. Within the 

construction sector, building information modelling (BIM) is becoming the norm for developing new 

buildings and facilities. As an enabler of innovation and digitalisation in the sector, BIM provides a 

foundation for a digital world in which AI can help optimise design, construction, and operation/facility 

management [29]. For example, with the help of AI, BIM can utilise a large amount of data from previous 

construction projects and automatically suggest solutions to optimise the design.  

 

AI is driving the development of smart buildings, making them self-learning and adaptive rather than just 

automated. Smart buildings utilise advanced technologies to automatically control building operations, 

including HVAC systems, lighting, and security [30, 31]. Figure 2-3 shows the evolution of buildings from 

conventional to intelligent, along with the integrated systems and techniques such as AI and machine 

learning which equip buildings with an ability to learn and adapt [32, 33]. Much research has been dedicated 

to using AI technologies in smart buildings, focusing on improving energy efficiency, thermal comfort, 

health, and productivity in the built environment. This section explores existing AI-based techniques which 

aim to achieve energy-efficient, comfortable, and healthy buildings. 
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Figure 2-3. Development and evolution of smart and intelligent buildings. Figure adapted from [34]. 

2.2.1. Building Energy Demand Forecasting 

 

Building energy demand forecasting is vital for optimising building energy performance. It assists in energy 

planning, management, and conservation to inform strategies for reducing energy consumption and CO2 

emissions [35]. Energy forecasting is also used to evaluate building design alternatives and operational 

strategies to improve demand and supply management [36].  

 

Historical data must be collected to enable performance predictions in building energy usage using AI-

based methods, Currently, data are collected via energy meters and sensors. Ahmad et al. and Avancini et 

al. [37, 38] highlighted the technological advancements in building energy metering and environmental 

monitoring. Chammas et al. and Terroso-Saenz et al. [39, 40] presented the application of wireless 

networks, sensors and IoT-based techniques to enable energy monitoring solutions that are low-cost, highly 

accurate and easy to deploy. However, IoT (Internet of Things) devices can generate vast amounts of data; 

hence, integration with AI can help deal with such huge volumes [41]. Din et al. [42] identified that machine 

learning techniques are expected to pave the way for IoT networks, generating sophisticated visions and 

ideas for IoT systems. Wang and Srinivasan [43] highlighted that AI-based approaches had recently gained 

popularity due to the ease of use and adaptability to obtain optimal solutions rapidly while requiring less 

detailed physical parameters and information about the building.  

 

Several works highlighted the importance of different external and internal parameters on prediction 

performance. Zhao and Liu [44] developed a machine learning-based building energy load forecasting 

solution with the proposed model achieving a high accuracy prediction of energy loads with a MARE (Mean 

Average Relative Error) of 2.60% for cooling and 3.99% for heating 1-h (one hour) ahead [45]. The study 

highlighted the importance of sufficient training of the model and selecting the types of input data to achieve 

such accuracy. The weather forecast precision affected the proposed model. When an MAE (Mean Average 

Error) between the actual temperature and the forecasted temperature was 1°C, the MARE of the 24-h ahead 

loads raises to 2.01% for heating. Hence, dynamic load forecasting for different time horizons from 1 to 

24-h ahead could be advantageous to HVAC control system optimisation.  

 

While building engineers and architects commonly use BES to predict the energy consumption of buildings, 

several factors/issues can lead to low-energy design solutions or performance energy gaps. This includes 

skills and knowledge of the modeller, use of simplification methods, assumptions, and the tools' quality. 

Hence, more researchers are attempting to address this using data-driven AI and machine-learning 

approaches, which do not require detailed information about the building. Singaravel et al. [46] compared 



 13 

AI methods with BES in terms of accuracy and speed in predicting the building energy demand. Based on 

the results of 201 cases, the AI model predicted cooling energy with similar accuracy as BES, while it was 

slightly less accurate in terms of heating energy prediction. However, the AI model significantly reduced 

simulation time as compared to BES with a reduction in simulation time from 1145 seconds to 0.9 seconds. 

Finally, they also showed that the deep learning models performed slightly better than simple ANN models. 

The high-speed prediction compared to BES means more evaluation of design options and optimisation can 

be carried out or allow real-time predictions. 

 

Table 2-1 presents a summary of the previous works reviewed in this section. This explores the different 

AI-based techniques used for building energy forecasting and the different building types, energy systems, 

prediction interval and evaluation metrics used in previous work. The evaluated studies suggest that many 

methods are evaluated or tested in office and academic buildings. It can also be seen that many works used 

different types of evaluation metrics to assess and compare the performance of the models. The studies 

have shown the advantage of AI methods for predicting energy loads compared to conventional BES 

models. It requires fewer details and information about the building, which reduces the time of developing 

the model and, in addition, AI-based models are significantly faster. However, it is important to note that 

the AI-based model's accuracy and reliability rely on the input data, and users must select a suitable learning 

algorithm for their prediction model. Due to the reliance on historical building data, AI-based models’ 

applications in the design stage are limited. Furthermore, one cannot extrapolate the prediction results once 

changes are made to the design and operation of a building. 

 

Table 2-1. Summary of AI-based techniques for energy management and predictions in the built 

environment. 

Ref. 
Buildin

g Type 

Energy/

System 

Prediction 

Rate 

Evaluation 

Metrics 
Key finding/summary Performance/Accuracy 

[36] 

Fan et al. 

2019 

Researc

h 

Acade

mic 

Cooling 

Predictions 

for 24-h 

ahead 

MAE, CV- 

RMSE 

Recurrent models achieved 

the most accurate predictions 

without increasing 

computational load. 

RMSE was 30.8% for cooling load 

prediction 

[39] 

Chamma

s et al. 

2019 

Office 

Building 

energy 

Lighting 

Not 

specified 

R2, RMSE, 

MAE, 

MAPE 

Multilayer Perceptron 

(MLP) performed better 

against four classification 

models 

64% R2, RMSE 59.84%, MAE 

27.28%, MAPE 27.09%. 

[44] 

Zhao and 

Liu. 

2018 

Office 
Heating 

Cooling 

Predictions 

for 1-h, 2-h, 

2-h, 24-h 

ahead 

MARE, 

MAE 

Dynamic load forecasting 

for different time horizons to 

optimise controls of HVAC 

systems. 

1-h ahead: Cooling MARE 2.60%, 

Heating 3.99%, 

24-h ahead MARE increases by 

2.01%. 

[46] 

Singarav

el at al. 

2018 

Researc

h 

Acade

mic 

Heating 

Cooling 

 

Monthly 

prediction 
R2 

Cooling energy prediction 

using the AI method was 

significantly faster than BES 

while providing accurate 

results. 

Building energy simulation 

required 1145s to simulate while 

only 0.9s for the AI model. 

[47] 

Pham et 

al. 2020 

Office HVAC 

Predictions 

for 1 step, 

12 steps and 

24 steps 

ahead 

MAE, 

RMSE, 

MAPE 

Random Forest (RF) model 

was superior to the M5P 

(M5 Model Tree) and 

Random Tree (RT) models. 

1-step-ahead prediction of RF was 

49.21% better in MAE and 

46.93% in MAPE than RT. 

12 and 24-step-ahead predictions 

of RF were 49.95% better in MAE 

and 29.29% in MAPE than M5P. 

[48] 

Kwok 

and Lee. 

Office Cooling 24h RMSPE 

Occupancy significantly 

affects cooling load 

predictions. Understanding 

RMSPE 40.376 – 52.047 not 

employing occupancy factors, 

https://www.sciencedirect.com/topics/engineering/building-performance-simulation
https://www.sciencedirect.com/topics/computer-science/multilayer-perceptron
https://www.sciencedirect.com/topics/computer-science/classification-models
https://www.sciencedirect.com/topics/computer-science/classification-models
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2011 occupancy behaviour 

improves the predictive 

accuracy of the models. 

RMSPE 14.836 -30.090 not 

employing occupancy factors 

[49] 

Ding et 

al. 

2011 

Office Heating 

Real-time 

prediction 

24-h 

MRE 

R2 

The prediction of the heating 

load is influenced by 

exterior variables and 

interior variables, including 

occupancy level and 

lighting/equipment use. 

Prediction of heat load with only 

exterior variable: 84% R2 

Prediction of heat load with 

exterior and interior variable: 94% 

R2 

[50] 

Kumar et 

al. 

2018 

- 
Heating 

Cooling 

Real-time 

prediction 
MAE 

The extreme learning 

machine (ELM) models 

learned better and 

outperformed other popular 

machine learning 

approaches. 

MAE (kW) 0.0348 and 0.0389 for 

both cooling and heating, along 

with the lowest heating load 

prediction time of 0.06s. 

[51] 

Xu et al. 

2019 

Multi-

buildin

g 

 

Building 

Energy 

Use 

Monthly, 

Annual 

MAPE, 

RMSE 

SNA-ANN model predicted 

the multi-building energy 

use with satisfactory 

accuracy providing an 

empirical approach to urban 

building energy use 

prediction. 

MAPE 10.72% RMSE 14.52%, 

Accuracy of 90.28% for the 

predicted energy use for all 

building groups. 

[52] 

Chou and 

Bui 

2014 

Residen

tial 

Heating 

Cooling 

Not 

specified 

MAPE, 

RMSE 

The ensemble approach and 

support vector regression 

(SVR) were the best models 

for predicting heating and 

cooling load. 

Ensemble approach: MAPE below 

4%, 39.0%-65.9% lower RMSE 

compared to previous works. 

[53] 

Tsanas 

and 

Xifara. 

2012 

Residen

tial 

Heating 

Cooling 

Not 

specified 

MAE, 

MSE, 

MRE 

The heating load can be 

more accurately estimated 

than the cooling load. 

Heat load estimation with 0.5 

points deviation from ground truth, 

cooling load with 1.5 points 

deviation from the ground truth. 

 

[54] 

Zhou and 

Zheng 

2020 

Residen

tial, 

High-

rise 

buildin

g 

HVAC 
Real-time 

prediction 

NMBE, 

RMSE 

Energy peak power 

reduction of up to 21.9% 

was achieved using ML for 

building demand prediction, 

integrated with a hybrid 

controller. 

NMBE <10% CV-RMSE<30%. 

 

2.2.2. Thermal Comfort, Indoor Air Quality and Environmental Conditions 

 

Building energy forecasting is ultimately dependent upon heating and cooling requirements for a building. 

As people spend most of their time indoors, comfortable, and healthy spaces must be provided. Thermal 

comfort can be defined as a condition of mind that expresses satisfaction with the thermal environment (BS 

EN ISO 7730). Thermal comfort is traditionally evaluated using the predicted mean vote (PMV) method, 

which considers environmental and personal factors. It is vital in the design of buildings and HVAC systems 

to strike a balance between providing adequate thermal comfort and reducing the energy consumed [55]. 

Like in the previous sections which showed the emerging of the developments and adoption of AI methods 

in energy forecasting and occupancy prediction, recent research has focused on AI methods for predicting 

and enhancing thermal comfort in buildings. 

 

To address the limitations of the PMV method for thermal comfort assessment in buildings with natural 

ventilation, Chai et al. [56] employed machine learning algorithms to predict the occupant's thermal comfort 

and sensation in a naturally ventilated building. The machine learning algorithm used a combination of 
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indoor and outdoor environmental parameters and personal factors as input. The study highlighted the quick 

ability of machine learning to analyse the input and output parameters relationships. They concluded that 

the machine learning method performed better than conventional and established models such as PMV. 

Similarly, Hu et al. [57] used machine learning techniques to develop a learning-based approach for thermal 

comfort evaluation. The results showed that all the machine learning methods achieved better performance 

than PMV. Specifically, the proposed method outperformed the PMV by up to 17.8%. While Chaudhuri et 

al. [58] also employed several classification algorithms for developing a thermal comfort prediction model 

and showed that the machine learning method outperformed the traditional and modified PMV models, 

achieving prediction accuracy of up to 81.2%. 

 

Machine learning methods can be integrated with control systems to adjust indoor thermal conditions 

according to the occupant's thermal preference or comfort requirements while enhancing energy efficiency. 

Peng et al. [59] used machine learning to develop a framework consisting of multi-learning processes with 

specified rules for a demand-driven control strategy, which can automatically adapt to occupancy behaviour. 

The control technique uses the learned occupancy information to operate the cooling system by adjusting 

the setpoints in real-time. An energy saving of up to 52% was achieved by the proposed control as compared 

to a conventional method. Yang et al. [60] proposed an optimisation method, which uses model predictive 

control (MPC) integrated with a machine learning technique to maintain thermal comfort while consuming 

the least amount of energy. A reduction of up to 58.5% in cooling energy was achieved in an office 

compared to conventional controls.  

 

Some of the works combined AI-based thermal comfort prediction and management methods. Such studies 

use thermal comfort prediction as feedback for HVAC control. Lu et al. [61] used a combination of a 

thermal comfort prediction model based on machine learning algorithms and a reinforcement learning-

based temperature set-point control system to develop a data-driven comfort-based controller for HVAC. 

They concluded that the machine-learning thermal comfort model outperformed that of PMV. While some 

studies also looked at optimising other parameters such as indoor air quality. Vallaadares et al. [62] 

developed an HVAC controller based on deep reinforcement learning to reduce energy consumption while 

maintaining good thermal comfort and air quality in a university building. The results showed that the PMV 

was maintained within the range of −0.1 to +0.07 while having a 10% lower CO2 level and reducing the 

energy by up to 4 - 5% compared to a conventional controller.  

 

The study of Gao et al. [63] also employed deep reinforcement learning to optimise the HVAC energy 

demand and thermal comfort of occupants. The deep neural network method was used to predict the thermal 

comfort, and the results are then used as input for the controller, which adopts a deep reinforcement learning 

method. The results showed that the proposed method achieved higher thermal comfort prediction accuracy 

as compared to other methods such as linear regression and SVM. The study showed the impact on the 

cooling load of adjusting the thermal comfort threshold and weighting of energy cost, which can be set 

depending on the priority. 

 

The applications of machine learning and deep learning in thermal comfort studies have been growing, such 

as in thermal comfort prediction and management [64]. Studies have shown that machine learning 

outperformed conventional and modified PMV models. However, studies have also suggested the 

importance of the input parameters and the data size. Machine learning prediction's higher accuracy and 

https://www.sciencedirect.com/science/article/pii/S0378778821010550#b0245
https://www.sciencedirect.com/science/article/pii/S0378778821010550#b0175
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speed make it suitable for integration with demand-driven or occupancy-responsive HVAC controls, 

providing real-time feedback. Several machine learning and deep learning methods were used to develop 

control strategies to ensure a trade-off between energy efficiency and thermal comfort. Based on the 

reviewed studies [56-64], a flow chart which summarises the procedure for developing thermal comfort 

prediction and management models is shown in Figure 2-4. Table 2-2 summarises the AI strategies 

developed for thermal comfort management and predictions related to the above review. 

 

 
Figure 2-4. Example of a framework strategy for building indoor thermal comfort and air quality 

prediction. 

Table 2-2. Summary of the studies reviewed that used AI for thermal comfort and IAQ prediction and 

management. 

Ref. Application 
Building 

Type 

Techniqu

e 

System 

Type 

Evaluatio

n Metrics 

Used 

Key Findings 

Model 

Performance 

/Accuracy 

[56] Chai et 

al. 2020 

Thermal 

comfort 

prediction 

Residentia

l 
ML 

Natural 

ventilation 

 

R2 

ML method 

performed better 

than conventional 

PMV. 

 

Thermal comfort 

model R2 0.4872 

[57 Hu et 

al. 2018 

Thermal 

comfort 

prediction and 

management 

Office ML 
Airconditi

oning 

Prediction 

accuracy 

% 

ML method 

outperformed the 

PMV model 

The black-box 

neural network 

outperformed PMV 

by up to 17.8% 

[58] 

Chaudhuri 

et al. 2017 

 

Thermal 

comfort 

prediction 

Various ML 

Cooling/ 

Free 

running 

Prediction 

accuracy 

% 

ML method 

outperformed 

traditional and 

ML achieved a 

prediction accuracy 

of up to 81.2%. 
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modified PMV 

models 

[59] Peng 

et al. 

2018 

Thermal 

comfort 

prediction and 

management 

Office ML Cooling 
Not 

specified 

Energy-saving of 

up to 7–52%. 
- 

[60] Yang 

et al. 

2020 

Cooling and 

thermal 

comfort 

management 

Office ML 

Cooling 

and 

Ventilatio

n 

R2 

Energy-saving of 

up to 58.6% 

while 

maintaining 

thermal comfort 

level. 

Thermal comfort 

model R2 0.998 

[61] Lu et 

al. 2017 

Thermal 

comfort 

prediction and 

management 

Office ML 
Airconditi

oning 
Recall 

The recall of the 

model with the 

tree algorithms 

has increased to 

6.3%. 

ML methods 

outperformed the 

PMV model by up 

to 6.3% 

[62] 

Valladares 

et al. 

Thermal 

comfort 

management 

University DL 
Airconditi

oning 

Not 

specified 

PMV values 

between −0.1 to 

+0.07, 4–5% 

better power 

usage and 10% 

lower CO2. 

- 

[63] Gao et 

al. 

2019 

Energy and 

thermal 

comfort 

management 

Laborator

y building 
DL Cooling MSE 

The deep neural 

network method 

outperformed 

other AI 

methods. 

MSE 1.16 

 

[65] Cho 

and Moon 

et al. 2022 

IAQ prediction 
School 

building 
DL 

Electric 

Heat 

Pump with 

Ventilator 

RMSE, R2 

Prediction model 

sufficiently 

accurate for 

integration with a 

control system in 

school buildings. 

RMSE 0.8816 for 

CO2, 0.4645 for 

PM10, 0.6646 for 

PM2.5. R
2 1, 0.9991, 

0.9979 

[66] 

Kim et al. 

2021 

IAQ prediction 
Not 

specified 
ML 

Ventilatio

n 
MAE 

The Decision 

Tree was found 

to be almost as 

accurate as the 

computationally 

heavier Random 

Forest model. 

MAE 1.8-14.8 for 

all the evaluated 

models 

[67] Yu et 

al. 2021 

IAQ prediction 

and 

management 

University DL 

Airconditi

oning and 

exhaust 

fan 

Not 

specified 

Energy saving of 

up to 43% while 

reducing the CO2 

level by 24% 

- 

 

In addition to ensuring good thermal comfort in buildings, the provision of good indoor air quality (IAQ) 

is equally important. A good IAQ is essential to ensure the health and well-being of occupants [68]. Like 

comfort-based systems, various building ventilation systems and control strategies aim to optimise IAQ 

with the aid of AI techniques such as predicting concentrations of pollutants and managing the indoor 

environment. Cho and Moon [65] developed an ANN model to predict indoor pollutant concentrations such 

as carbon dioxide (CO2), PM10 and PM2.5. They developed a prediction model sufficiently accurate for 

integrating control systems in school buildings. The results showed that the model achieved high accuracy 

with RMSE (Root mean square error) of 0.8816 for CO2, 0.4645 for PM10, and 0.6646 for PM2.5. The study 

only used simulation results, and field experiments are required to test the approach further. Similarly, Kim 

et al. [66] predicted the indoor CO2 concentration for the demand-drive and proactive control of ventilation 
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systems. The study employed machine learning models, including ridge regression, decision trees, random 

forest, and multilayer perceptron. The study found that the random forest model was the most accurate, and 

the decision tree was almost as accurate but less computationally resource intensive. Hence it is more 

suitable for lightweight applications. 

 

Several works, such as Valladares et al. [62] and Yu et al. [67] employed AI algorithms to optimise the 

operation of HVAC in terms of comfort, air quality and energy. In Yu et al. study [67], a control algorithm 

based on deep reinforcement learning was employed to balance the IAQ, thermal comfort and energy 

demand of air conditioning and exhaust fan systems. The results showed that the proposed approach 

achieved an energy saving of up to 43% while reducing the CO2 level by 24%, as compared to an air 

conditioning system with a fixed temperature schedule. A demand-controlled ventilation system can benefit 

from using the two AI-based methods here; accurate pollutant prediction and control optimisation models. 

This would benefit buildings with irregular occupancy by utilising the forecasted pollutant concentration to 

control the ventilation to minimise or prevent the rapid increase of CO2 levels and operating ventilation 

systems at max capacity.  

 

While the studies covered are mainly for mechanical systems, AI methods can also be applied in naturally 

ventilated spaces. For example, camera-based AI techniques can be used to detect occupancy information 

such as presence, location, activities, and interaction with natural ventilation strategies.  Although not as 

developed as AI methods for thermal comfort optimisation, the applications of machine learning and deep 

learning in IAQ studies have been recently growing, such as for IAQ prediction and management. This is 

probably driven by the COVID-19 pandemic and increased awareness of IAQ. Similar to the reviewed 

thermal comfort prediction and management models, the flowchart in Figure 2-4 gives a typical procedure 

for the development of AI-based IAQ solutions. 

 

2.3. Machine Learning Approaches for Building-Related Applications 

 

Machine learning is a subset of artificial intelligence. It performs tasks using computer systems that can 

automatically learn from previous data and improve from experience without following specific instructions 

[69]. It uses algorithms and statistical models to complete tasks such as modelling, prediction and control 

[70]. Machine learning has already received much attention in the past decade, but it is expected to continue 

driving the next big wave of innovations, services, and products in many sectors [25]. As established in 

Chapter 2.2, machine learning is one of the most common AI techniques adopted to help solve HVAC and 

building-related problems. Machine learning can answer the demand of the built environment sector for 

accurate and quick prediction models, necessary for optimising the design and operation of buildings and 

energy systems which can lower costs and carbon emissions. At the same time, providing an optimum 

balance between energy demand, comfort and air quality. This section aims to review the studies that 

employed machine learning techniques for the built environment. 

 

Machine learning consists of three main types of learning; supervised, unsupervised and reinforcement. It 

can determine non-linear relationships, such as the relation between the cooling load and related factors 

such as outdoor temperature and occupancy activity, through mapping functions from a dataset. In 

supervised learning, a pattern is learned from a labelled dataset (input and output data), and the correct 

output is expected to be predicted when a different input is entered into the model based on this pattern. 

https://www.sciencedirect.com/topics/engineering/perceptron
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Supervised learning algorithms deal with two types of problems: classification and regression problems. 

Classification algorithms predict a discrete or distinct value, such as when the output is a category, while 

regression algorithms are used to determine continuous values or quantities. In energy demand forecasting, 

regression models can be used to understand the factors that drive energy consumption, such as building 

shape, material, and orientation [70]. Figure 2-5 presents an example workflow diagram for training and 

deploying supervised machine learning models, influenced by reviewed works in Chapter 2.2, incorporating 

all the main steps, including data preparation, model selection and development, and the trained model's 

application.  

 

 
Figure 2-5. An example machine learning framework process. 

On the other hand, unsupervised learning is used to identify patterns in unlabelled datasets and predict the 

output. Unsupervised learning algorithms are typically utilised for tasks including clustering, association, 

and dimensionality reduction. Clustering, which can find a structure in a collection of unlabelled data, is 

the most common algorithm for unsupervised learning techniques [70]. It is the most common unsupervised 

learning method applied to categorising building performance data [71. Supervised and unsupervised 

learning models are different in how they are trained and in terms of the conditions of the required training 

data. In some cases, such as [72], a strategy which uses a combination of both learning techniques, also 

called semi-supervised learning, was used to characterise the energy consumption in smart buildings. This 
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type of algorithm learns from datasets simultaneously containing labelled and unlabelled data. For example, 

a large quantity of unlabelled data is used to enhance the prediction for the labelled data. It can also work 

independently, performing classification or clustering tasks separately. 

 

Reinforcement learning [73] algorithms learn to react to an environment independently. It has an agent that 

learns how to map situations to actions, aiming to maximise a numerical reward (gained from a correct 

output) signal by trial and error. This way, the algorithm improves over time. Over the years, reinforcement 

learning methods have been applied to the building sector, particularly in HVAC control systems. It has 

been applied to find the optimal strategies to help decrease building energy demand. For example, a 

reinforcement learning-based HVAC control will continuously adapt to the controlled indoor environment 

using real-time data. This presents advantages compared to conventional approaches such as rule-based and 

model-predictive controls. 

 

Different machine learning algorithms are suitable for different types of datasets or problems in the field of 

the built environment and building performance. Also, different models have different impacts on various 

problems [74]. Hence it is important for modellers to analyse the available data and application when 

choosing a machine learning model and to determine the data pattern that should be learned. In addition, it 

is important to assess the necessity of implementing machine learning to           solve a specific problem 

and whether it will be better and more practical than conventional and simpler approaches, considering the 

modelling effort. The steps required to build, train, and deploy a machine learning model will vary 

depending on these factors. In general, a typical workflow in built environment studies that use machine 

learning models consists of three phases; generating data, training the model and deploying the model 

[75,76]. 

 

Data generation involves acquiring input data, which are parameters that impact or correlate with the output 

data. Methods such as stepwise regression and statistical analysis can be employed to help select useful 

variables for the prediction. For building performance-related models, inputs could include the climate, 

building form, occupancy, and material properties, while the outputs are parameters which represent 

building performance. Depending on the prediction time scale required, the sampling period can be from 

minutes to years. Then the collected data is pre-processed into a format that is suitable for the training 

process. This involves techniques which improve the quality of the input data. In the training process, 

appropriate prediction targets and predicting parameters are selected for the model. The input variables, 

size of the training data, and performance indicators should be considered when selecting the parameters. 

Once trained, the model is tested to evaluate its prediction performance and determine its suitability for 

deployment. As detailed in Table 2-1 and Table 2-2, various performance indicators can be used for 

evaluation. The following section will further explore the types of machine learning approaches and models 

applied to buildings to meet one or more of the objectives detailed in Chapter 2.2. 

 

2.3.1. Enhancing Building Performances 

 

Different machine learning models are suitable for several applications related to optimising building 

performance. The review of the literature showed that it could be challenging to select the most suitable 

model for solving a problem [77]. The explosive growth experienced by the machine learning research area 

in the last 10 years has led to hundreds of machine learning algorithms being applied to building 
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performance-related studies. This makes it difficult to find an optimal algorithm for a specific task or case. 

Hence, several researchers in the field have developed guidelines to encourage best practices in the 

evaluation and selection of machine learning models [78,79]. However, further developments and more 

specific guidelines are required for the built environment field [80].  

 

Many studies have employed different machine learning algorithms, with many achieving significantly 

better performance than conventional methods, such as in building energy forecasting [46] and thermal 

comfort prediction [61]. Supervised learning models are useful for applications such as building energy 

demand and IAQ forecasting [70]. While unsupervised learning models are helpful for applications such as 

load profiling, detection and diagnostics of problems occurring in buildings and occupancy detection [71]. 

In some cases, a combination of both learning techniques, also called semi-supervised learning, is employed 

[72] to take advantage of the benefits of both methods. It is useful when learning from large datasets 

containing labelled and unlabelled samples, performing classification and clustering tasks simultaneously. 

Although advantageous, it would increase the difficulty of the learning process.  

 

Table 2-3 and Table 2-4 highlighted the unsupervised and supervised machine learning-based algorithms 

applied to solve building performance-related problems. The literature review shows that current uses of 

unsupervised machine learning are in enhancing building performance mainly including, HVAC system 

management, fault detection and diagnosis, and occupancy detection. The most popular among the domain 

are clustering algorithms, notably the k-means algorithm. Clustering methods can provide information on 

the underlying data structures that is initially hard to detect [80]. Several works have used unsupervised 

clustering data methods to enhance the performance of their models. In the study [81, unsupervised learning 

clustering algorithms are integrated with supervised learning algorithms to enhance the prediction of indoor 

temperature. 

 

Table 2-3. Examples of unsupervised learning models for enhancing building performance. 

Ref. Model Type Evaluation Eval. Metric Application Key findings 

[81] 

Mateo et al. 

2013 

K-means, Fuzzy c-

means, Cumulative 

Hierarchical Tree, 

DBSCAN, K-medoids 

Simulation MAE 

Improving building indoor 

temperature prediction of 

linear and non-linear 

methods. 

Clustering techniques did not 

show significant improvement for 

linear or non-linear methods. 

[82] 

Carreira et 

al. 2018 

K-Means algorithm Simulation CV, STDV 

Enables automatic 

configuration of an HVAC 

system. 

The k-means algorithm helped 

optimise the HVAC system to 

minimise energy consumption 

while maintaining user comfort. 

[83] 

Li et al. 

2010 

Fuzzy C-mean 

clustering algorithm 

Historical 

data 
MAPE, RMSE 

Short-term cooling load 

forecasting 

The clustering technique helped 

reduce the number of training 

samples and avoid noise samples. 

[84] Liu et 

al. 

2021 

Two single-step 

clustering based on K-

Means and DBSCAN 

Electricity 

consumption 

dataset 

Visual 

comparison, 

Dunn index 

Anomaly detection in 

building electricity 

consumption data 

The proposed two single-step 

clustering methods outperformed 

the k-means and gaussian mixture 

models in terms of detecting 

outliers and discovering typical 

electricity usage characteristics. 

[85] 

Habib et al. 

2016 

K-Means, Bag of 

words representation 

Building 

operational 

data 

Cluster 

evaluation 

Detects various operational 

patterns in a building energy 

system 

The method can automatically 

find various patterns using as 



 22 

with hierarchical 

clustering 

little configuration or field 

knowledge as possible. 

[86] 

Hong et al. 

2015 

Gaussian mixture 

model with partitional 

clustering 

Building 

sensor 

information 

Classification 

Accuracy % 

Differentiate sensors in 

buildings by type 

The approach can achieve more 

than 92% accuracy for type 

classification. 

[87] 

Guo et al. 

2013 

Hidden Markov Model 

and a clustering 

algorithm 

Experiment Not specified 
HVAC system fault 

detection and diagnosis 

The method not only identified 

system faults that were modelled 

within the training process but 

also can be applied for diagnosis. 

[88] 

Trabelsi et 

al. 2013 

Hidden Markov 

Model, Expectation - 

Maximization (EM) 

algorithm 

Experiment 

Classification, 

Precision, 

Recall 

Recognise human activities 

from wearables 

The proposed method achieved a 

high classification rate of 91.4% 

and competitive with a well-

known supervised approach. 

 

In the last decade, many works have used supervised learning techniques to conduct various types of 

building energy use forecasting, including heating and cooling load, thermal comfort prediction and 

occupancy prediction. Table 2-4 lists some of the typical supervised learning studies in the literature. Most 

of the studies focused on heating and cooling energy demand, which accounts for a significant portion of 

the total energy use in buildings and, at the same time, impacts indoor environmental quality. Focusing 

solely on the studies of energy prediction, it was observed that existing studies have a wide range of 

prediction time scales from minute to year basis. Ciulla and D'Amico’s study [89] employed a multiple 

linear regression model to conduct an immediate assessment of annual (long-term) heating and cooling 

building energy requirements, which can be used as a decision support tool for the preliminary evaluation 

of a building. While it predicted the energy requirements of a building with a high degree of reliability, 

however, they did not identify that it was not intended to replace a dynamic simulation model. While some 

of the studies showed the capabilities of supervised learning techniques in short-term predictions. Bilous et 

al. [90] used a multivariate regression model to predict the hourly indoor air temperature. They used a 

multivariate regression model which considered various external environmental factors affecting the 

thermal performance of the building. The results indicated that the model provided high-accuracy 

predictions with an R-squared (R2) value of 0.981.  

 

Occupancy detection and prediction is a popular application of supervised machine learning. Such methods 

can estimate occupancy using data from building sensors, energy meters, Bluetooth and Wi-Fi signals. Ryu 

and Moon [91] used a decision tree model to detect the occupancy at the current state based on energy 

consumption and environmental data. Based on the result, the decision tree model could estimate the 

occupancy at the current state. Depending on the number of predictors used, the RMSE (Root mean squared 

error) ranged between 0.3673 and 0.2202. While Wang et al. [92] used environmental data, Wi-Fi and fused 

data combined with machine learning to develop an occupancy prediction. Examined with an on-site 

experiment, the results suggest that the ANN-based model with fused data has the best performance, while 

the SVM model is more suitable with Wi-Fi data.  
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Table 2-4. Examples of supervised learning models for enhancing building performance. 

Ref. Model Type Evaluation Eval. Metric Application Key findings 

[52] 

Chou and 

Bui. 

2014 

Support vector 

regression (SVR), 

Ensemble, General 

linear regression, 

Classification and 

regression tree, ANN 

Simulation 

R2, MSE, 

RMSE, 

MAE, 

MAPE 

Heating and cooling load 

predictions 

The ensemble approach (SVR 

+ ANN) and SVR were the best 

models for predicting heating 

and cooling load. 

[89] Ciulla 

and 

D'Amico 

2019 

Multiple linear 

regression 
Simulation 

R2, MSE, 

RMSE, 

MAE, 

MAPE 

Prediction of annual heating 

and cooling energy demand 

Predicted heating, cooling, and 

comprehensive energy 

requirements of a building with 

a high degree of reliability. R2 

of 0.9 and 

the MAE and RMSE are lower 

than 10 kWh/m2 per year. 

[90] 

Bilous et al. 

2018 

Multivariate 

regression model 
Simulation 

R2, Fisher's 

criterion 

Prediction of hourly 

internal air temperature 

The model provided high-

accuracy predictions with R2 of 

0.981. 

[91] 

Ryu et al. 

2016 

Decision tree Experiment RMSE 

Indoor environmental data-

driven model for occupancy 

prediction 

The decision tree model could 

estimate the occupancy state. 

Depending on the number of 

predictors used, the RMSE 

ranged between 0.3673 and 

0.2202. 

[92] 

Wang et al. 

2018 

Combined ANN with 

an ensemble approach 
Simulation R2 

A novel dynamic forecasting 

model for building cooling 

loads that combine ANN 

with an ensemble approach 

The proposed ensemble model 

greatly improved the 

forecasting accuracy. 

[93] Zhang 

et al. 

2018 

Nonlinear ML 

algorithms, SVR with 

nonlinear radial basis 

function (RBF) kernel 

and neural networks 

Experiment 
MAE, R2, 

Time 

Different ML techniques for 

modelling thermal comfort 

levels 

The nonlinear 

models performed significantly 

better than the linear models. 

The neural network had the 

best performance. 

[95] 

Wu et al. 

2018 

Ensemble method 

 
Experiment 

R2, RMSE, 

MAE, r 

An intelligent ensemble ELM 

method was developed for 

thermal perception prediction 

The proposed ensemble model 

performed better than ANN and 

SVM. 

[96] 

Johannesen 

et al. 

2019 

Random Forest 

Regressor, k-nearest 

neighbour regressor 

and linear regressor 

Energy load 

dataset 
MAPE 

Urban area electrical energy 

demand forecasting 

Random Forest Regressor 

provides better short-term load 

prediction, and kNN offers 

relatively better long-term load 

prediction. 

[97] 

Song et al. 

2017 

K-means for building 

energy prediction. 

ANN for end-user 

group prediction. 

Energy and 

occupancy 

dataset 

CV-RMSE 

Hourly energy prediction 

considering occupancy 

characteristics 

The prediction accuracy is 

improved when considering 

diverse occupancy and its 

correlation with energy use. 

[98] 

Peng et al. 

2017 

K-nearest neighbour 
Experiment, 

Application 
Not specified 

Occupancy information 

prediction is employed for 

the control of the cooling 

system 

 

Average control accuracy of 

88.1%. Energy saving of up to 

20.3% is achieved with the use 

of demand-driven control. 

[99] Xiong 

and Yao, 

2021 

K-nearest neighbour Experiment Accuracy % 
Thermal comfort model to 

establish a personalised 

The KNN-based thermal 

comfort model with 1000 sets 

https://www.sciencedirect.com/topics/engineering/mean-absolute-error
https://www.sciencedirect.com/topics/engineering/root-mean-square-error
https://www.sciencedirect.com/topics/engineering/nonlinear-model
https://www.sciencedirect.com/topics/engineering/nonlinear-model
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adaptive thermal comfort 

environment. 

of training data can have an 

accuracy of 88.31%. 

[100] 

Qiong et al. 

2017 

Support vector 

machine 

Energy load 

dataset 
RMSE, MRE 

Prediction model of annual 

energy consumption of 

residential buildings 

The support vector machine 

achieved better accuracy and 

generalisation than evaluated 

neural network techniques. 

[101] Liu et 

al. 2021 

 

Random forest Simulation R2, RMSE 

Prediction model of energy 

consumption of university 

buildings 

The Random Forest model 

exhibits notable advantages in 

building energy consumption 

prediction compared to SVM 

 

As observed, each machine learning algorithm has its advantages and limitations, and several factors such 

as the task, data availability, practicability and computational cost must be considered when selecting a 

suitable model for a project [102,103]. With regards to building performance-related projects, although 

knowledge of artificial intelligence/machine learning is key, it is also paramount for model developers to 

know about building engineering/energy systems [80]. This is important when selecting an appropriate 

prediction target and predicting parameters for the machine learning model. 

 

This section highlighted examples of unsupervised and supervised machine learning-based algorithms 

applied in building and energy efficiency research. Many studies combined several machine learning 

methods, with some using a combination of supervised and unsupervised algorithms (also called semi-

supervised) to take advantage of the benefits of both approaches. This can be seen in the reviewed works 

which developed machine learning methods with multiple stages. Furthermore, most of the studies are still 

at the experimental or testing stage, and there are limited studies which implemented machine learning 

strategies in actual buildings and conducted the post-occupancy evaluation. Finally, most of the studies are 

focused on individual buildings or a few building spaces, while there are limited large-scale applications 

and implementation in other types of buildings such as industrial and retail buildings. This is probably due 

to the constraints and challenges of data acquisition. 

 

2.3.2. Assessment of the Model Evaluation Methods 

 

As shown in Figure 2-5, the next stage following the training of the machine learning model is the 

evaluation or experimental stage. At the experimental stage, the performance of the selected machine 

learning method is evaluated based on how well it performs on new or unseen data. Typically, the 

development of machine learning methods involves several experiments, including testing of several types 

of algorithms and optimisation or tuning of the hyperparameters [78, 79]. As detailed in Table 2-1, Table 

2-2Table 2-3Table 2-4, various performance metrics or indicators related to model accuracy, sensitivity and 

robustness are used for model evaluation. These metrics are used to evaluate a model's performance and 

provide feedback to allow improvements until a desirable performance is achieved [103]. Based on the 

reviewed literature, the typical evaluation metrics employed [104] include accuracy, mean squared error 

(MSE), root mean square error (RMSE), mean absolute error (MAE), R squared (R2), and mean absolute 

percentage error (MAPE) [45]. The evaluations are carried out using data from simulations, historical data 

and experiments. It should be noted that the information presented about the evaluation metrics is not meant 

to assess which is the best evaluation metric, but rather to show that existing studies are using different 

evaluation methods. This inconsistency makes it challenging to assess or compare the different algorithms 

and select an optimal method. While most of the studies covered in the review showed that the proposed 
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machine learning methods are suitable and achieved good performance for various building-related 

applications, it also adds to the challenge of finding an optimal machine learning algorithm. A common 

approach practised in the literature is the testing of different models on the same data to evaluate the best-

performing method. Hence, guidelines on the standardisation of the evaluation methods are required to 

promote the optimal algorithms selection. 

 

At the application stage, once the model is trained and validated, the machine learning method is then 

applied to an actual building, for example, its energy management or HVAC control system [98] or used to 

support the decision-making during the building design process. While this stage is important for further 

validating the performance of the machine learning method in real implementations, previous works have 

not paid much attention to this. The review by Wang et al. [80] highlighted that many of the building 

performance-related machine learning studies are at the experimental stage. This can be observed in Table 

2-3 and Table 2-4 indicating most of the studies were either evaluated using simulation results, previously 

collected datasets, and experiments. Many thermal comfort and occupancy detection studies used 

experiments to validate the model, while energy prediction studies used historical datasets and simulation 

results. The use of commercial BES tools such as EnergyPlus and IES VE is commonly compromised to 

generate training data and prove the theoretical feasibility of the model, which may not be sufficient to put 

the machine learning model into practice.  

 

Furthermore, Wang et al. [80] also highlighted that most studies did not validate their machine-learning 

models using real post-building-completion energy or post-occupancy data. Among the rebn  viewed 

studies, the work by Peng et al. [98] implemented the proposed demand-driven strategy for the controls of 

a cooling system of several offices in a commercial building in Singapore. The two monthly field 

experiments showed that the proposed strategy could result in energy savings of up to 20.3%. While this 

study showed the capabilities of the K-nearest neighbour model in occupancy prediction strategy in real 

offices, the authors did acknowledge the limitations of the experiment. The limited experimental time and 

a small number of case study offices may restrain the universality of their results. 

 

While modellers aim to develop machine learning models that provide good performances, it does not 

necessarily mean that it will lead to successful real-world implementations. Future works should consider 

implementing their proposed machine learning-based strategies in real buildings and systems. More studies 

should be carried out on the integration of existing machine learning strategies with building management 

systems and control strategies. 

 

2.4. Deep Learning Approaches for Building-Related Applications 

 

While deep learning is a subset of machine learning, this section focuses on some of the latest advancements 

and applications of deep learning techniques in the built environment energy prediction and occupancy 

detection. As defined by LeCun et al. [105], deep learning allows computational models comprised of 

multiple processing layers to learn data representations with multiple levels of abstraction, imitating the 

human brain. While it can be considered as a machine learning concept based on artificial neural networks 

(ANN), deep learning typically contains advanced neurons, which allows deep neural networks to be fed 

with data in raw form and automatically discover a representation required for the corresponding learning 

tasks [69]. Such functionalities are not provided by simple ANNs and machine learning algorithms. 
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Hence, deep learning can address some of the limitations of conventional machine learning methods, 

including machine learning’s inability to process natural data in their raw form, as discussed in the earlier 

sections. It eliminates some of the data pre-processing tasks typically required in developing machine 

learning methods, reducing the reliance on expert knowledge (see Table 2-1b). Besides numerical and text 

data forms, deep learning can also process other forms of data such as images, videos, and sounds. Like 

machine learning, deep learning can be supervised, unsupervised or reinforcement learning, depending on 

how the neural network is utilised. For instance, when both input and output are known, such as when 

performing classification or object detection tasks, supervised learning is used to carry out the prediction 

task. While unsupervised learning can be used to cluster images based on their similarities. 

 

While machine learning has shown good performance in various applications such as energy forecasting, 

thermal comfort, and occupancy prediction. The literature has shown that these applications are increasingly 

making use of deep learning techniques [106, 107]. According to Janiesch et al. [69], deep learning 

outperforms conventional shallow machine learning algorithms and traditional data analysis methods in 

numerous applications that require text, images, audio, and video to be processed, such as in natural 

language processing, image classification, speech recognition and computer vision [105]. It is particularly 

useful in applications which require handling large and high-dimensional data [108]. The increasing amount 

of data generated from many sources, the advances in computational power, and the developments of 

algorithms have led to the increasing popularity of deep learning. However, it also means that deep learning 

would require high-end machines and could take a long time to train a model. While in applications which 

deal with low dimensional and small datasets, conventional machine learning is still preferable as it could 

produce superior and more interpretable results [109]. 

 

Deep learning applications have revolutionised many sectors and will continue to do so. While this 

disruptive technology is becoming more common across a wide range of industries, researchers and 

practitioners in the built environment sector are striving to keep up with the pace of applying deep learning. 

Table 2-5 highlights some deep learning-based algorithms applied to solve building performance-related 

problems. The literature review shows that current uses in enhancing building performance, mainly include 

energy demand and thermal comfort prediction, and occupancy recognition. 

 

Table 2-5. Examples of deep learning-based methods for enhancing building performance. 

Ref. Model Type Evaluation Eval. Metric Application Key findings 

[36] 

Fan et al. 

2019 

Recurrent neural 

network (RNN) 

Building 

operational 

data 

RMSE, MAE, 

CV- RMSE 

Short-term building energy 

predictions 

Recurrent models achieved the 

most accurate predictions without 

increasing computational load. 

RMSE was 30.8% for cooling 

load prediction 

[106] Kim 

et al. 2019 

Recurrent neural 

network (RNN), 

recurrent inception 

convolution neural 

network (RICNN) 

Smart meter 

dataset 
RMSE, MAPE 

A multi-short-term load 

forecasting model 

RICNN model outperforms the 

benchmarked multi-layer 

perception, RNN, and 1-D CNN 

[107] Cai et 

al. 2019 
Gated RNN, CNN 

Electricity 

dataset 

CV, MAPE, 

Computational 

efficiency 

Day-ahead building-level 

load forecasts 

24-h gated CNN model 

performed better than 
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conventional deep learning 

models. 

[110] Somu 

et al. 2019 
CNN-LSTM 

Energy 

consumption 

data 

RMSE, MAPE, 

MAE, MSE 

Building energy 

consumption forecast 

CNN-LSTM captured the spatio-

temporal network characteristics 

in building energy consumption 

data 

[111] 

Suryanaraya

na et al. 

2018 

Deep neural networks 
Heat load 

dataset 

MAPE, F1 

score, F2 

Thermal load forecasting in 

district heating 

Deep neural networks performed 

better than all linear models 

although more computationally 

intensive. 

[112] 

Marino et 

al. 2016 

Long short-term 

memory (LSTM) 

Electricity 

dataset 
RMSE 

Building energy load 

forecasting  

LSTM performed well for the 

one-hour resolution dataset but 

not for the one-minute resolution 

data.  

[113] Somu 

et al. 2021 
CNN-LSTM 

Thermal 

comfort 

dataset 

Precision, 

Accuracy, F1 

score 

Thermal comfort modelling 

with a limited dataset 

The model proposed provided 

reasonably accurate predictions 

and overcome the challenges 

related to the inadequacy of 

modelling data. 

[114] Gao 

et al. 2021 

Transfer learning-

based multilayer 

perceptron (TL-MLP) 

Thermal 

comfort 

dataset 

Accuracy, F1 

score 

Thermal comfort prediction 

in multiple cities 

The Tl-MLP model from the 

same climate zone exceeded the 

performance of state-of-the-art 

methods in accuracy and F1-

score. 

[115] 

Deng and 

Chen 2018 

Artificial neural 

networks (ANN) 

Thermal 

sensation 

data, 

behaviour 

data 

MAE, R2 

Thermal comfort prediction 

in single-occupant and 

multi-occupant offices 

The Comfort zone obtained by 

the ANN model using thermal 

sensations was narrower than the 

comfort zone in ASHRAE 

Standard 55, while the ANN 

model using behaviours was 

wider than the ASHRAE comfort 

zone. 

[116] Anh 

et al. 2017 

Long short-term 

memory (LSTM), 

Gated recurrent units 

(GRU) 

Air quality 

dataset 
Accuracy 

Indoor air quality prediction 

using sensors and DL 

The GRU model outperformed 

the LSTM model. The GRU 

model achieved an accuracy of up 

to 84.5% 

[117] Mutis 

et al. 2020 
Deep neural network 

Human action 

dataset 
Accuracy 

Indoor air quality control 

using occupancy 

information 

The model achieved 84% 

accuracy on the human action 

dataset using a multi-stream 

fusion network for recognising 

activities. 

[118] Taheri 

et al. 2022 

Deep recurrent neural 

networks (DRNN) 

HVAC 

dataset 

F1 score, 

Precision, 

Accuracy, 

Recall 

Fault detection and 

diagnostic for variable flow 

refrigerant system 

The DRNN model outperformed 

random forest and gradient-

boosting regression. 

[119] Guo 

et al. 2018 
Deep belief network  

HVAC 

dataset 

Correct rate 

(CR), Hit rate 

(HR) 

Fault detection and 

diagnostic for variable flow 

refrigerant system 

The fault diagnosis correct rate of 

the optimized model was 97.7%, 

[120] Fan et 

al. 2018 
Autoencoder 

Building 

operational 

data 

Accuracy % 
Anomaly detection in 

building energy data 

The proposed autoencoder 

method successfully identified 

anomalies in building energy 

data. 

 

While deep learning algorithms can be applied to a range of prediction or classification tasks, like machine 

learning, modellers should consider several factors when selecting a deep learning model for a project, such 

https://www.sciencedirect.com/topics/engineering/recurrent-neural-network
https://www.sciencedirect.com/topics/engineering/recurrent-neural-network
https://www.sciencedirect.com/topics/engineering/classification-task
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as the type of tasks, learning method, data availability, practicability and computational cost. The literature 

showed that deep learning techniques had been successfully applied in various types of building energy use 

forecasting. For example, recurrent neural network (RNN) models have shown favourable performance in 

electric load forecasting [106]. RNN is one of the neural network architectures best suited to tackle datasets 

with sequential correlations and has demonstrated good performance in processing time-series data such as 

text and speech. The time series nature of operational data of buildings makes RNN a suitable technique 

for energy consumption prediction tasks. However, traditional RNN models are not effective in capturing 

long-term temporal dependencies. Models such as long short-term memory (LSTM) and gated recurrent 

units (GRU) are used to overcome some of the shortcomings of RNN models. Hence Fan et al. [120] 

proposed several techniques to enhance the performance of recurrent models in building cooling energy 

predictions. 

 

Cai et al. [107] compared the performance of RNN and CNN-based algorithms for energy forecasting in 

commercial buildings. The study developed the gated RNN and CNN specifically for day-ahead building-

level load forecasting. The results showed that the gated CNN model outperformed the gated RNN in terms 

of accuracy and computational efficiency. While CNN is well known for object/image recognition and 

classification due to their optimal performance, it has also been successfully used in various applications 

such as building energy prediction tasks which involve time series data [107]. 

 

Although most deep learning architectures apply to a range of prediction or classification tasks, some 

studies have combined deep learning techniques for better performance. In the study by Kim et al. [106], 

an RNN model was combined with one-dimensional CNN to enhance the performance of a forecast model 

for short-term loads. The study showed that the proposed model outperformed other models, including 

multi-layer perception and RNN. In another study by Almalaq and Zhang [108], CNN is combined with 

LSTM to predict residential energy consumption. The CNN layer extracts the features between multivariate 

variables affecting energy consumption, while the LSTM models the temporal information and maps time 

series into separable spaces to generate predictions. The proposed hybrid model accurately predicted the 

electric energy consumption of residential houses and performed better than other deep learning models 

such as LSTM and GRU. In some cases, traditional machine learning techniques are combined with deep 

learning techniques. For example, the study by Somu et al.  [110] combined CNN and LSTM with k−means 

clustering for building energy consumption forecasts. The unsupervised learning clustering method was 

used to understand the energy consumption trend before data modelling. The results showed the efficiency 

of the proposed model over the existing building energy consumption forecast models, such as MLP, CNN 

and LSTM. Furthermore, it showed the capability of the combined CNN and LSTM in capturing the spatio-

temporal characteristics in building energy consumption data. 

 

While many of the works in the literature predicted the electricity consumption of buildings, the study by 

Suryanarayana et al. [111] extended deep learning methods to the field of heat load forecasting. They 

compared the performance of the deep learning architecture, a deep neural network with linear models in 

forecasting thermal loads in district heating networks. A deep neural network is a standard neural network 

with multiple hidden layers (at least 2 hidden layers) between the input and output layers. It extracts 

uniquely abstract features to model complex non-linear relationships. The results showed that although 

more computationally intensive, the deep neural network provided the best accuracy among the tested 

techniques. 

https://www.sciencedirect.com/topics/engineering/classification-task
https://www.sciencedirect.com/topics/engineering/convolutional-neural-network
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Another important application of deep learning is thermal comfort prediction [110, 114] and management 

[62, 63]. As mentioned earlier, data-driven techniques have shown their advantage over traditional PMV 

models; however, their application can be hindered by the unavailability or lack of labelled thermal comfort 

data from occupants. The works by Somu et al. [113] address this issue by implementing a transfer learning-

based CNN-LSTM model for predicting thermal comfort in buildings with limited data. Transfer learning 

takes relevant parts of a pre-trained model and applies them to a new but similar problem. This allows the 

training of a model using a smaller dataset while using a large amount of relevant data from a previous task. 

The hybrid model achieved reasonably accurate predictions and overcame the challenges related to the 

inadequacy of modelling data. It performed better than other methods such as LSTM, CNN, SVM, KNN 

and traditional PMV.  

 

Gao et al. [114] proposed a transfer learning MLP model for thermal comfort predictions for any building 

in a similar climate with limited labelled data. Transfer learning allowed the transfer of knowledge from a 

building in a similar thermal environment or climate to another building for thermal comfort prediction. 

The proposed model exceeded the performance of state-of-the-art methods in terms of accuracy and F1 

score. While transfer learning has been successfully utilised in many real-world applications, it can be a 

promising technique to scale up the implementation of machine learning and deep learning models in the 

built environment sector. 

 

As mentioned previously, CNN is one of the most popular deep learning techniques and has shown optimal 

performance when it comes to object and image recognition tasks. Its advancement has benefitted many 

areas, including computer vision which is typically used in applications such as image detection and 

recognition, image and video analysis and natural language processing. While computer vision is not new, 

it has advanced significantly in the last 10 years since the development of the AlexNet model, which uses 

CNN. Furthermore, the availability and increase in GPU power have accelerated the development of 

computer vision solutions. Today, CNN is used in numerous computer vision applications such as facial 

recognition, augmented reality, pedestrian detection, and autonomous vehicles. The advancement in 

computer vision has gained the interest of many researchers in several fields, including the built 

environment.  

 

Deep learning algorithms have recently become the focus of increased attention due to their performance 

and capabilities. Its popularity has been fuelled by the increasing amount of data generated from many 

sources, advances in computational power, and the development of algorithms. Deep learning methods have 

been promising for the development of building energy prediction models due to their powerful learning 

and prediction abilities. Many of the reviewed studies showed that the methods outperform conventional 

shallow machine learning algorithms and traditional data analysis methods. Although most deep learning 

architectures apply to a range of prediction or classification tasks, some studies have combined deep 

learning techniques for better performance. Such an integrated method typically works in stages, with each 

stage taking advantage of the abilities of the deep learning/ machine learning method. For example, one 

method will carry out clustering tasks, and the other will perform prediction tasks. The literature showed 

that while machine learning has been extensively applied to thermal comfort, indoor air quality prediction, 

and fault detection and diagnosis, the applications of deep learning in these areas are only starting to pick 

up steam. 

https://www.sciencedirect.com/topics/engineering/classification-task
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With CNN as one of the most important developments in the field of deep learning, it has shown optimal 

performance when it comes to object and image recognition tasks. The literature showed that CNN had 

been successfully used in numerous computer vision applications in the built environment, such as 

occupancy counting, occupancy activity detection/recognition, equipment usage detection, window 

detection and fire/smoke detection. The information generated by such methods can be used to 

automatically adjust the operation of building systems and manage spaces, which can enhance building 

performance. The literature also highlighted some of the issues that should be resolved before computer 

vision-based methods can be widely adopted, such as security/privacy issues and the influence of various 

indoor parameters on performance. 

 

Like in machine learning, each deep learning algorithm has its advantages and limitations, and several 

factors such as the task, data availability, practicability and computational cost must be considered when 

selecting a suitable model for a project. As detailed in Table 2-5, various performance metrics or indicators 

related to model accuracy, sensitivity and robustness are used for model evaluation. However, other 

performance indicators such as computational efficiency, data requirements and complexity have not been 

assessed or discussed in many of the reviewed studies. Similar to the review of machine learning methods, 

most of the studies covered in the review showed that the proposed deep learning methods achieved good 

performance for various building-related applications. This adds to the challenge of finding an optimal 

deep-learning algorithm. Some studies have carried out a comparative analysis with an established machine 

or deep learning algorithms to identify the best-performing model. 

 

The literature also showed that most of the studies are at the experimental stage. This can be observed in 

Table 2-5 with most of the studies are either evaluated using simulations, previously collected datasets, and 

experiments. While there is a lack of validation of deep learning models using real post-building-completion 

energy or post-occupancy data. Future works should consider implementing their proposed deep learning-

based strategies in real buildings and systems. 

 

2.5. Summary 

 

The literature review showed that machine learning and deep learning techniques had been successfully 

applied in various building environment applications, focusing on the improvement of building 

performance, such as energy-comfort-air quality prediction, and occupancy prediction and detection. Table 

2-6 presents a graphical/visual summary of some of the studies covered in the literature review, which 

categorised them into ‘what type of building system’, ‘which method/solution’, and ‘who benefits’.  

 

While the table does not include all the reviewed studies, it gives an overview of the ideas in the areas 

where the existing studies are focused. At the same time, it also highlights that most of the studies were 

focused on optimising the energy efficiency and thermal comfort in a building while less attention was paid 

to air quality. Although energy use, thermal comfort and IAQ are interrelated, there are limited studies 

which investigated or considered them all simultaneously. While machine learning and deep learning 

techniques have important roles in aiding the design and operation of buildings to provide energy-efficient, 

comfortable, and healthy indoor environments - it requires a holistic approach. For example, while a certain 

method could minimise energy use and enhance thermal comfort in a building, it may have an adverse 
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effect on other factors such as the IAQ. Future works should consider energy efficiency, thermal comfort, 

and IAQ aspects and their interactions when developing machine or deep learning-based building strategies.  

 

It can be observed that many of the deep learning and machine learning methods were employed for energy 

prediction, with most focusing on cooling and/or heating loads while some considered ventilation loads. 

This demonstrates a gap in the literature on some topics, such as forecasting of lighting energy, plug loads 

and dehumidification, where more attention should be paid. In addition, most of the studies focused on 

mechanical HVAC systems while there is less focus on natural ventilation and other passive cooling/heating 

strategies.  

 

Several studies have coupled different methods to enhance building performance, for example, a detection 

model is used to obtain occupancy information from a building space, and then the data is fed into a 

prediction model to estimate the IAQ and thermal comfort in the future. While IAQ and thermal comfort 

are important indicators of the quality of conditions inside a building, there are also other factors which 

might influence the indoor environment quality. This includes daylighting, visual comfort, and acoustic 

conditions – less attention has been paid to these factors in the literature. 

 

Table 2-6. A visual summary of some of the machine learning and deep learning-based studies covered in 

the literature review. 
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2.6. Research Gap 

 

Existing AI-based techniques focused on the framework, methodology, and performance of different 

aspects designed to resolve interconnected problems related to HVAC systems and enhance building 

performances. Machine and deep learning methods have been successfully applied to building energy 

prediction. Many studies have shown the advantage of AI methods for predicting energy loads compared 

to conventional building energy simulation models. It requires fewer details and information about the 

building, which reduces the time of developing the model and, at the same time, AI-based models are 

significantly faster. However previous works stressed the importance of selecting suitable input data and 

learning algorithms. Many studies recommended the integration of occupancy behaviour pattern 

recognition with the energy load forecasting model to enhance prediction performance. Due to the reliance 

on historical building data, AI-based models’ applications in the design stage are limited. One cannot 

extrapolate the prediction results once changes are made to the design and operation of a building.   

 

While machine learning has shown good performance in various applications such as energy forecasting, 

thermal comfort prediction and occupancy detection. The literature has shown that these applications are 

increasingly making use of deep learning techniques. The increasing amount of data generated from 

buildings, the advances in computational power, and the developments of algorithms have led to the 

increased popularity of deep learning. Although most deep learning architectures apply to a range of 

prediction or classification tasks, some studies have combined deep learning techniques for better 

performance. In some cases, traditional machine learning techniques are combined with deep learning 

techniques. 

 

As observed, each machine and deep learning algorithm has its advantages and limitations, and several 

factors such as the task, data availability, practicability and computational cost should be considered when 

selecting a suitable model for a project. With regards to building performance-related projects, although 

knowledge of artificial intelligence/machine learning is key, it is also paramount for model developers to 

know about building engineering/energy systems. This is important when selecting an appropriate 

prediction target and predicting parameters for the machine learning model. 

 

Effectively, no work provides a critical summary of the existing literature on the machine and deep learning 

methods for the built environment over the past decade, with special reference to holistic approaches. The 

review given in this section indicated the different AI-based techniques employed to resolve interconnected 

problems related to HVAC systems and enhance building performances, including (1) energy forecasting 

and management, (2) building design and facilities operations, and (3) indoor air quality and occupancy 

comfort/satisfaction. However, the frameworks that utilise AI techniques typically only address one of the 

three objectives. Neural networks were indicated to be incorporated into all categories, which was suggested 

to be the ideal technique for a range of building-related applications. However, more researchers are 

adopting deep learning. It was identified to have immense potential for future applications due to its high 

adaptability in providing solutions that cover multiple aspects including the management of buildings, 

occupancy detection and thermal comfort prediction. Yet, there are limited studies in the development of 

deep learning approaches applied to indoor building spaces to resolve energy-related issues in buildings. 
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Hence, a data-driven deep learning framework for the detection and recognition of occupants as a strategy 

to enhance more intelligent buildings and provide better solutions to fulfil future needs is desired.  
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Chapter 3 

 

3. Review of the Literature and an Outline of the Research Gaps on an 

Innovative Deep Learning-Based Approach for Occupancy Behaviour 

Detection and Recognition Towards the Enhancement of Building System 

Operations 
 

This chapter presents a review towards the understanding of occupancy behaviour in buildings. To address 

the objective of understanding the application of various software platforms towards the development of a 

deep learning framework for occupancy behaviour detection and recognition, techniques, designs, and 

solutions for applications within indoor building environments were investigated. The benefits and 

limitations of traditional sensor-based techniques and the development of deep learning-based solutions are 

discussed, leading to the identification of the various types of common occupant actions to be recognised 

by the developed deep learning-based detector. 

 

3.1. Introduction 

 

Building occupancy patterns are rapidly changing, with many occupants in offices adopting flexible 

working hours which results in variations of the scheduled operating time of conventional HVAC and 

lighting systems. It leads to unnecessary loads and an increase in building energy usage [122]. Recent 

studies [10, 11] have shown the benefits of demand-driven control strategies which enable HVAC systems 

to adapt and make a timely response to the dynamic changes of occupancy instead of using ‘static’ or ‘fixed’ 

occupancy operation schedules, historical load and time factor. For example, when the air-conditioning 

system for a room is operational, but the room is unoccupied for long periods [123, 124]. This would lead 

to a significant amount of energy wastage. 

 

Current standards and guidelines such as the ASHRAE 90.1 [125] and ASHRAE 55 [126] suggest a 

generalised set point range and schedule for room heating and cooling during occupied and unoccupied 

hours. For example, during occupied hours, it suggests 22 – 27°C for cooling and 17 – 22°C for heating, 

while during unoccupied hours, it suggests 27 – 30°C for cooling and 14 – 17°C for heating. However, 

according to Papadopoulos [127], these HVAC setpoint configurations must be revised when applied to 

commercial buildings. The use of fixed or scheduled set points combined with varying occupancy patterns 

could lead to rooms frequently being over or under-conditioned. This may lead to significant waste in 

energy consumption [128] which can also impact thermal comfort and satisfaction [48]. Delzendeh et al. 

[129] suggested that the impact of occupancy behaviour has been overlooked in current building energy 

performance analysis tools. This is due to the challenges in modelling the complex and dynamic nature of 

occupants' patterns, influenced by various internal and external, individual, and contextual factors. Peng et 

al. [98] collected occupancy data from various offices and commercial buildings and have identified that 

occupancy patterns vary between different office types. Multi-person office spaces regularly achieve 

occupancy rates of over 90%. However, private, single-person offices rarely achieve an occupancy rate of 

over 60%. While equipment or appliances in offices can be kept in operation during the entire working day, 

irrespective of the occupancy patterns [130]. The study by Chen et al. [131] highlighted that occupancy 
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behaviour is a major contributing factor to discrepancies between the simulated and actual building 

performance. In current BES programs, the occupancy information inputs are also static and lack diversity 

which contributes to discrepancies between the predicted and actual building energy performances. 

 

Effectively, seeking a potential solution to overcome such limitations is even more important when COVID-

19 restrictions are applied. Many offices follow a staggered shift to reduce workplace congestion [132]. 

Studies [133] have shown that the daily occupancy rate on average can be below 60% in single-person 

offices. Hence, accurate identification of occupancy patterns is important for improving the performance 

of demand-driven control of HVAC systems [134]. Occupancy information sensing can be classified into 

occupancy counting (number of people), localization (distribution in space) and activity detection. The 

occupancy information could also be used for controlling other components such as window opening and 

shading.  

 

3.1.1. Occupancy Activities 

 

The amount of energy consumed by buildings is influenced by various factors, from thermo-physical 

properties of the building elements to the location, occupancy behaviour and the HVAC systems [135]. 

Although outdoor environmental conditions significantly impact building energy consumption, the 

variations in occupancy rates and their behaviour are equally important. The number of occupants, their 

activity level and how they use the equipment can impact the internal heat gains, indoor environment, and 

energy demand. Occupants also interact with the building and make personal adjustments such as the 

thermostat or opening the windows. In practice, conventional HVAC is typically controlled, leading to 

unnecessary energy usage, such as when spaces are left unoccupied. Similarly, traditional building energy 

models use ‘static’ and deterministic occupancy inputs, leading to prediction errors. This can result in 

uncertainties in the building energy prediction, difficulty in sizing and controlling HVAC systems [136], 

and not meeting the desired indoor conditions and comfort requirements [137]. Hence, occupancy 

behaviour and its impact on the energy performance of buildings have gained significant interest within the 

scientific community [138]. This led to the development of advanced occupancy detection techniques and 

occupancy simulators [139]. The occupancy data can help determine the effects of occupant presence and 

their activities within buildings, which can be used to optimise HVAC and lighting control [140]. 

 

One of the most common methods for occupancy detection is motion or passive infrared (PIR) sensors. 

They are designed to detect the electromagnetic radiations emitted by occupants within a space [141]. 

However, it has limitations such as not enabling the identification of the number of occupants and static 

occupants. It is also sensitive to environmental parameters such as airflow and solar radiation. 

Comparatively, technologies like radio frequency identification (RFID), wearables, and embedded mobile 

and Wi-Fi sensors were also proposed by researchers [142] for monitoring the activities of the occupants. 

However, the main drawback of these technologies is the requirement for occupants to wear or carry a 

device which could be inconvenient and intrusive. The limitations of these sensing technologies impede the 

development of demand-driven control solutions for energy and comfort management in buildings. Since 

many previous works focused on sensing occupancy information through the count of occupants and 

localization (distribution in space), there is limited research on sensing the actual activities performed by 

occupants. This is necessary to allow HVACs to dynamically adjust the indoor-outdoor environment 

changes [143, 144]. It highlights the importance of the exploration and development of strategies such as 
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computer vision and AI that can be implemented into building HVAC systems for higher accuracy 

monitoring and control [145, 146] and to provide a solution to enhance energy‐related applications within 

the building sector [146]. 

 

The use of video or vision-based methods to detect the number and locations of occupants and recognises 

their activities/ behaviour is promising [59, 142]. It processes images from videos and recognises the 

person's activity in the video by detecting the person's shape, characteristic or motion. However, it can also 

encounter issues such as difficulty in identifying a person in complex indoor environments such as open-

plan offices where there are many obstacles, including office furniture and equipment. In addition, the 

activity of occupants may vary significantly in each time frame. Many works [147] have already 

implemented vision-based deep learning methods to identify human activities and have shown to be capable 

of learning features from new sensor data and predicting the associated movement. Most of the studies 

attempted to improve the performance and accuracy of the deep learning model for human presence and 

detection activity classification rather than using the data to seek solutions toward the minimisation of 

unnecessary energy loads associated with buildings [148, 149]. 

 

3.1.2. Opening and Closing of Windows 

 

The most common methods for window detection are window sensors. It is operated based on a magnet 

and reed switch with motion or passive infrared (PIR) sensors located on every window of a building. Most 

of these sensors are used for security and alarm purposes. They have limitations in terms of their sensitivity 

to environmental parameters including temperature and sound which can result in up to 25.5% of false-

positive results [150]. The study by Surantha and Wicaksono [151] improved a traditional home security 

system by incorporating AI techniques. Initial detection was performed by a PIR sensor, and further 

recognition was performed using machine learning techniques to provide detection of intruders with up to 

89% accuracy. While there are many window detection methods available, there is limited research on the 

use of window detection to aid demand-driven control solutions for energy and comfort management in 

buildings. This is necessary to allow building control systems for HVAC systems to adjust to the indoor-

outdoor environment changes [143] dynamically. Strategies such as computer vision and AI techniques can 

be implemented into building controls for higher accuracy monitoring and control [164]. This can also 

provide solutions to effectively employ natural ventilation in buildings while minimising the associated 

heat loss [152]. 

 

The use of video or vision-based methods to detect occupancy behaviour within a building space is 

promising [142]. Compared to other shallow learning methods, the use of deep learning techniques can lead 

to a better performance of detection and recognition through acquiring videos and recognising by detecting 

the required shape, characteristic or motion [153]. The present work aims to address this by using a vision-

based convolutional neural network-based deep learning method. Many works have already implemented 

vision-based deep learning methods to identify human presence [148] and object classification with high 

performance and detection accuracies [154]. However, the application of detection and recognition-based 

techniques for the building sector, especially towards the improvement of building system controls and 

energy management is limited. Based on the review of previous works on detection methods and the impact 

of unusual occupancy behaviour on building energy demands, it was observed that there is a necessity for 

the development of a control and management solution where data is collected and analysed to understand 
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better window operations for enhancing the building operation and energy efficiency. No work has 

attempted to use computer vision-based window detection and recognition method to provide data that 

could provide real-time information on the window state or condition for building occupants and building 

control systems.  

 

3.2. Methodology of the Detection Technique and Strategy 

 

Without monitoring and the exploration of a technique to predict actions or activity performed by 

occupants, it can cause a domino effect on the associated impact of the temperature and humidity levels of 

internal space. Effectively, real-time and accurate predictions of the heat emitted by the occupants with 

various activity levels can be used to estimate better the actual heating or cooling requirements of a space. 

For example, when the number of people or the overall activity level of the occupants in the space is 

detected to be increasing, the set point of the heating system can be adjusted to counteract the increase in 

indoor temperature to reduce the heating energy consumption during the winter while achieving satisfactory 

comfort levels for occupants. Furthermore, limited studies conducted tests of vision-based deep learning 

methods in an actual office environment and assessed its performance in terms of energy savings and indoor 

environment quality. It is important not only to predict occupancy activities but also to quantify the 

influence on buildings’ energy performance. Another drawback of vision-based methods is it interferes 

with privacy concerns. The approach will address this by developing a system which only outputs heat 

emission profiles instead of actual occupancy information which can then be inputted into a control system. 

Finally, the heat emission profiles generated can also be used as input for building energy simulation (BES) 

tools which can increase the reliability of results since the unpredictability of occupant behaviour is one of 

the parameters which creates difficulties in BES. 

 

However, there are other occupancy behaviours which also affect building operations. For example, 

windows are a common natural ventilation strategy employed within most buildings in the UK. Windows 

can provide significant cooling and ventilation energy savings when used effectively. However, windows 

can be easily left open and cause unnecessary energy demand. This results in greater amounts of ventilation 

losses which would lead to greater amounts of energy wastage.  

 

Hence, to develop such computer vision-based detectors for the proposed approach, several defined 

conditions and techniques must be defined. The following section presents the method used to determine 

such techniques, strategies and conditions used to establish the framework.  

 

3.2.1. Occupancy Behaviour with Detection Strategies 

 

Conventional occupancy detection methods such as motion sensors can estimate the number of people 

within the desired space. While recently, more advanced methods such as WiFi-enabled IoT devices are 

used to identify occupants’ activities [155, 156] automatically. This is made feasible by the wide availability 

of Wi-Fi infrastructure and the occupant’s mobile Wi-Fi connected devices [157].  

 

The activity recognition solution proposed by Zou et al. [155] called the ‘Deep Hare’ was integrated with 

a deep learning technique to enhance occupancy activity recognition. The approach can distinguish between 

the different activities performed over time with an accuracy of up to 97.6%. Wang et al. [158] proposed a 
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Wi-Fi probe-based occupancy detection method, which uses a Markov-based feedback recurrent neural 

network algorithm. The study showed that it could predict occupancy with accuracies between 80.9% - 

93.9%. In a recent study, Wang et al. [124] employed the Wi-Fi probe-based occupancy detection method 

and showed that it could save up to 26.4% of energy demand, based on experiment and simulation results.  

 

Other methods used more conventional sensors such as radio frequency identification (RFID) and 

environmental sensors. Carreira et al. [82] used RFID to estimate the occupancy number in a room. Like 

the previous works, machine learning was incorporated and automatically enabled HVAC management to 

reduce energy demand while maintaining comfort levels. Jiang et al. [159] estimated the number of indoor 

occupants in real-time based on the CO2 levels and an extreme machine learning model. The results showed 

that the proposed method could accurately estimate the occupant number up to 94% based on field tests. 

 

Some researchers employed cameras integrated with AI for sensing occupancy. Zou et al. [148] used 

existing surveillance video data and a deep-learning approach to measure occupancy for building energy 

conservation. The experimental results showed an accuracy of up to 95.3% achieved using the approach 

with low computational requirements. While Diraco et al. [160] used 3D depth sensors to count and localise 

occupants in buildings while assuring the occupant's privacy as the depth information. Table 3-1 

summarises the different occupancy detection techniques developed and used in current research, mainly 

for building applications. The benefits varied between each type of sensor depending on the desired 

applications.  

Table 3-1. Comparative analysis of existing traditional sensors. 

Sensor 

Types 

Specific 

Sensor Type 
Features 

Example 

Applications 
Advantages Limitations Ref. 

Environme

ntal 

 

Temperature Detect change 

in the 

environment 

due to the 

presence and 

activities of 

occupants 

Enclosed spaces  
Low cost 

Commercially 

available 

Non-intrusive 

Requires regular 

calibration 

[121, 161] 

Humidity 

CO2 

Enclosed spaces 

Small volume 

spaces 

Affected by 

ventilation 

Slow response 

Dual-

Technology  

PIR & 

Ultrasonic 

 

Combined PIR 

and ultrasonic 

technology 

minimise false 

alarm 

Classrooms 

Conference rooms 

spaces require 

high detection 

levels 

Self-adaptive to 

adjust the 

sensitivity 

Eliminates false 

alarm. 

Low sensitivity and 

less coverage 

compared to 

microwave-based 

sensors 

A limited line of 

sight of up to 35° 

[162] 

Passive Infrared (PIR) 

 

Use IR to detect 

a difference in 

heat emitted by 

moving people 

and background 

heat 

Enclosed spaces 

High-ceiling 

Private offices 

Computer Room 

Conference rooms 

Outdoor spaces 

Low cost 

Commercially 

available. 

Non-intrusive 

Easy detection 

Limited to 

movements 

Requires direct line 

of sight 

Can give false 

results 

[163] 

Electromag

netic (EM) 

Ultrasonic 

 

Doppler shift 

effect 

Observe 

frequencies 

caused by 

people 

Partitioned spaces 

Restrooms 

Open offices 

Enclosed hallways 

& stairways 

Detects minor 

motion 

Does not require 

an unobstructed 

line of slight 

Restricted detection 

range 

High levels of 

vibration or airflow 

[164] 

Microwave 

  

Doppler shift 

effect 

Sends 

microwaves to 

observe the 

motion 

Large spaces 

Awkward shaped 

spaces 

Spaces requiring 

fine motion 

detection 

Suitable for 

various 

environments, 

including high 

heat 

Low initial cost 

Maximum detection 

range 

Nuisance switching 

High operation cost 

Continuous power 

draw 

[165] 

https://www.sciencedirect.com/topics/engineering/recurrent-neural-network
https://www.sciencedirect.com/topics/engineering/recurrent-neural-network
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Acoustic 

and 

Vibrations  

Audio 

 

Changes in the 

acoustic wave, 

propagation 

path, wave 

velocity or 

amplitude 

Ambient sensor 

combination 

Low cost readily 

available 

Less intrusive 

Requires other 

sensors 
[166, 167] 

Object 

Activation  

Key 

cardholder 

(Energy-saving 

switch) 

 

Activates 

lighting and 

thermostat 

controls. 

Hotels 

Apartments 

(When the room is 

occupied) 

Energy saving 

Automatic 

optimisation 

Must require a card 

for activation 

High installation 

cost 

[168] 

Door  

Beam Counter 

 

IR-based 

electronic 

device to 

measure footfall 

Retailers 

Queue 

management 

More accurate 

than people 

counting clickers 

Non-intrusive 

It becomes skewed 

when several were 

people detected 

[169] 

Pressure 

Pressure Pads 

 

Monitors 

occupancy 

Automatically 

alarm when 

detected 

unexpected 

activity 

Increasing 

monitoring and 

protection in 

homes 

Car seats 

Beds 

Can only be 

applied to a 

specific location 

Privacy concerns [170] 

Air Pressure 

Change 

 

Detect change 

in pressure 

within the 

environment 

due to the 

presence of 

occupants 

Low occupancy 

spaces 

Residential 

Non-intrusive 

Senses movement 

between spaces 

Relationship to 

occupancy can be 

indirect 

[171] 

Smart Meters 

 

Detect change 

in energy 

consumption 

patterns 

Integrate to 

infer occupancy 

HVAC systems 

Gas, electricity 

meters 

Accurate 

non-intrusive 

It can give false 

results when some 

HVAC system is not 

in use 

[172] 

Wireless 

Bluetooth 

 

Collects and 

monitors in 

real-time 

Transmit data to 

the sensor or 

IoT-based 

infrastructure 

Energy saving 

Increase building 

comfort and 

convenience 

Maintenance-free 

Flexible 

Easy to install 

Support 

intelligent system 

Requires integration 

with other 

technologies, such 

as PIR 

[173] 

Door Operated 

Switch 

  

Wireless IoT 

Based 

Ambient sensor 

combination 
Non-intrusive 

Requires other 

sensors 
[174] 

Smart Device 

Tracking 

 

Use of IoT-

based GPS for 

asset 

management 

and tracking 

Workplace 

Residential 

High detection 

level 

Privacy concerns 

Requires a device to 

be carried by the 

occupant 

[170] 

Wireless 

Sensor 

Network 

(WSN) 

To monitor and 

record the 

physical 

conditions of 

the environment 

Measures 

environmental 

conditions like 

temperature, 

sound, pollution 

Easy-to-use 

Cross-layer 

design 

Adapt to harsh 

environmental 

conditions 

Must be connected 

through a specific 

infrastructure or a 

central device 

[175] 
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levels, humidity, 

wind 

Sensor Belief 

Network 

 

AI-based 

network of PIR 

for occupancy 

sensors 

Office 

Enclosed spaces 

High accuracy 

Missing data 

entries can be 

handled 

successfully 

Complex neural 

network-based 

model 

[176] 

Camera 

Optical 

Camera 

 

Same as the 

human eye 

light rays are 

reflected 

through the 

object, through 

the lens onto the 

image sensor 

Indoor spaces 

High level 

Exact actions are 

traced and 

identified 

Heavy processing 

with a complex 

framework 

No use when the 

line of sight is 

blocked 

Privacy concerns 

[177] 

Thermal 

Camera 

 

Infrared lens 

filter sensor for 

detection 

Surveillance 

activities 

Safety 

Safe 

Quiet 

Minimum risk 

Doesn't create 

disruption 

High costs 

High training 

Applications 

affected by weather 

Lack of regulations 

[178, 179] 

AI algorithm-

based cameras 

 

Use of AI 

algorithm-based 

model 

integrated with 

camera devices 

for detection 

Occupancy 

detection type 

depends on the 

selected model 

design 

High detection 

level and 

accuracy 

Deploy-ability 

Cost issues 

(Privacy concerns 

can be eliminated) 

High training due to 

complex AI models 

[180] 

 

Newer techniques such as Wi-Fi, wireless sensors and cameras are increasingly being employed in research 

studies for occupancy studies and, at the same time, integrated with AI techniques. The camera is one of 

the most popular sensing techniques for indoor environments and human recognition. Similar problems 

arise from using a camera for detection; however, significant effort has been carried out in recent research 

to enhance the ability to use the camera through AI adaptation [181].  

 

The utilisation of camera-based techniques for occupancy detection has been increasing recently due to the 

advancement of deep learning-based techniques [182], such as convolutional neural network (CNN). Deep 

learning interprets data features and relationships solely using neural networks to form a unique model 

designed for the desired application, ultimately providing greater flexibility, performance, and accuracy.  

 

The proposed framework process that Ijjina and Chalavadi [181] used for human action recognition 

emphasises motion in different temporal regions to achieve better discrimination among actions. It suggests 

the use of video input into a CNN model enables features to be extracted. Within the model, a classifier is 

trained to recognise human actions to predict recognised activity. The strategy Castro et al. [183] developed 

to predict occupants’ daily activities using egocentric images is similar to [181]; corresponding stages 

incorporated within the framework were used to develop a workflow to enable activity prediction. Several 

stages of training were performed to enable in-depth feature extraction refinement before producing the 

final output classifications. Overall, applying the CNN model alone gave an accuracy of 78.56%, and 

maximum accuracy of 83.07% could be reached when an ensemble approach was applied. Figure 3-1 

provides an example of a workflow process for the development of an AI-based technique for occupancy 

detection in an indoor environment. 
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Figure 3-1. Example workflow process of the development of AI-based technique used for occupancy 

activity detection within an indoor environment. 

Based on the review of the literature, different sensors and solutions have different merits and limitations. 

Through evaluation, camera detection with AI techniques based on the application of deep learning-based 

methods seems to be a promising approach for indoor occupancy detection. As identified, existing methods 

mostly utilise the camera for detection and recognition purposes. Most studies have not attempted to 

integrate the vision-based approach with the HVAC control systems. Furthermore, the impact of the 

application of such approaches on energy demand and thermal comfort has not been well studied. 

 

3.2.2. Deep Learning Techniques 

 

As explored in Chapter 2.4, deep learning has become an effective tool to help solve building design-related 

problems and to help improve building HVAC system performance by enhancing building energy 

predictions [36, 47]. It has been an emerging tool used to develop models that help resolve energy and built 

environment problems that focus on providing techniques of identification through classification, 

recognition and predictions [110]. As suggested in Chapter 2, neural network algorithms were explored in 

machine learning, which indicates that considerations within the neural network architecture are vital to 

form the basis for deep learning. The term ‘deep’ refers to the number of layers within the layer, indicating 

that more layers suggest a deeper network with higher complexity [74]. Neural networks or artificial neural 

networks (ANN) are computational models inspired by biological neural networks, forming multiple 

nonlinear interconnected processing layers that process information with dynamic state responses to 

external inputs [184]. There are many types of neural networks, all designed with unique strengths for their 
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desired purposes.  Bacciu et al. [184] suggest the difficulty in selecting the best type to solve the desired 

problem.  

 

Since the approach is to apply deep learning through a vision-based approach to obtain data upon real-time 

occupancy behaviour, many studies [185, 186] showed that deep learning models with a CNN-based 

architecture could perform computer vision tasks with high accuracy. CNN is a class of deep learning 

networks which is extensively used for image-based classification and recognition applications and was 

selected as the main technique used in this study. In general, the CNN architecture consists of a feedforward 

network with the input data such as an image processed through the network. The feature of the data from 

input images is first extracted within the convolutional layers, and then the spatial volume of the input data 

is reduced in the pooling layer. Then, the fully connected (FC) layer is used to classify images between 

different categories by training. A fully connected layer involves weights, biases, and neurons. The output 

layer then delivers the outcome of the calculations and extractions. For these layers, the configuration is 

presented in the form of groups, indicated as stacked modules to present the structure of a deep learning 

model. The rectified linear unit (ReLU) layer consists of advantages due to its simple function and sparse 

features which can provide benefits towards minimising the training duration. Furthermore, the SoftMax 

layer provides further constraints to aid the training of the model. Both the ReLU and softmax layers are 

essential to building CNN architectures for various applications. This includes vision-based applications 

such as object detection [187] and face recognition [188] and also data analysis and other programmatic 

marketing solutions [189].  

 

As detailed in [190, 191], the convolutional layers are the first layer to exact features from the input data. It 

plays a central role in the architecture by utilising techniques to convolve the input data (image). This performs 

the stages of learning the feature representations while extracting without manual work. Neurons located within 

each of the convolutional layers are arranged into feature maps. This enables convolution to preserve the 

relationship between pixels by learning image features using small squares of input data through a mathematical 

operation. It takes the image matrix and a filter or kernel and passes the result to the next layer through 

convolutional kernels stride over the whole image, pixel by pixel, to create 3-direction volumes (height, width 

and depth) of the feature maps. Then, the ReLU layer introduces nonlinearity into the output neuron. An 

activation function is defined as a piecewise linear function that is used to enable direct output when the input 

was positive or otherwise as a zero output when a negative input is received. According to LeCun, [105], ReLU 

has become a default activation function for many types of neural networks because a model that uses it is 

easier to train and often achieves better performance. Through this, the volume size will not be affected while 

the nonlinear properties of the decision function will be enhanced during this process which results in an 

enrichment of the expressions of an image. Subsequently, the pooling layers enable the reduction in the spatial 

dimensions of the data (width, height) of the feature maps when the images are too large. For this, the most 

common spatial pooling type of Max Pooling was selected as it outperforms processing image datasets [192]. 

It effectively selects the largest element within each receptive field from left to right, so the spatial size of the 

output is reduced.  

 

Since several convolutional and pooling layers are formed in stacks to enable greater amounts of feature 

extraction, the FC layers follow on from these layers and interpret the feature representations and perform the 

function of high-level reasoning to flatten the matrix into a vector form. Combining the features, the FC layers 

connect every neuron from one layer to every neuron in another layer. This forms the model, and along with 



 44 

the activation function of SoftMax, it enables the classification of the input images, which generates the 

classified output results of one of the following occupancy activities.  

 

The exceptional image classification performance of CNN [192], along with its flexibility [193] and 

popularity within the industry [43] influenced the selection of CNN over other neural network techniques 

when developing the vision-based occupancy detection and recognition solution. Derived from the 

understanding of the CNN, Figure 3-2 presents the general CNN architecture used for training the vision-

based model for detection and the recognition-based deep learning model configured for the training of the 

model for occupancy behaviour detection and recognition. Further discussion of model configuration is 

outlined within Chapter 3.3.2. 

 

 
Figure 3-2. General CNN architecture used for the training of a vision-based model for detection and 

recognition in indoor settings of a building. 

In summary, occupancy behaviour in terms of their activities, actions towards window opening and the use 

of electrical equipment are important towards the impact on building energy demands and system 

operations. The application of vision-based methods through AI techniques of a CNN-based network 

enables the development of a detector to provide real-time understanding leading to the proposal of the 

following framework approach. 

 

3.3. Overview of the Detection, Recognition and Optimisation Framework 

 

This section presents an overview of the research framework. It highlights the overall concept design with 

a discussion of each part of the framework respectively. This includes the selection of certain techniques 

and methods applied to establish the proposed approach.  

 

3.3.1. Proposed Approach 

 

Based on the review and the findings made in Chapter 2 and Chapter 3.2, the proposed approach is given 

in Figure 3-3. By adopting the techniques of deep learning with python and TensorFlow, images were 

collected and pre-processed to form the CNN models. These were trained and deployed to provide an AI-

powered detector whereby suitable responses, specifically the different types of occupancy behaviour 
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would be detected and recognised through the application of a camera-based device. As shown, individual 

detectors were established with certain ones designed to focus on the common occupancy activities 

including, napping, sitting, standing, and walking. Another detector focuses on window openings and 

further detectors for occupants’ usage of electrical equipment. Each established model was applied 

individually and or in various combinations to form multi-detectors which were applied to real-time 

experimental tests within indoor environments. For each of these, the detection and recognition process 

enabled the generation of a live feed of the data output results, which were directly used to form the Deep 

Learning Influenced Profile (DLIP). DLIPs are real-time generated profiles which indicate the output 

responses from the detection and recognition made through real-time detection.  Next, such results would 

enable the sensors to inform occupants within the selected room that such given occupancy behaviour was 

performed within the desired space and the profiles would feed into the control system of the HVAC system 

to inform the building energy management system and controls of the HVAC system to adjust based on the 

actual building conditions while minimising unnecessary loads. Further discussion of each of these 

individual processes of the workflow is given below (Chapter 3.3.1-5), with an in-depth investigation of 

the proposed process shown in the next chapters. 

 
Figure 3-3. General framework approach for occupancy behaviour detection and recognition for building 

energy systems optimisation. 

3.3.2. Model Development and Application Overview 

 

The classification-based algorithm, Convolutional Neural Networks (CNN) is employed to form the deep 

learning classification detection models (Figure 3-4). It is a form of deep, feed-forward artificial neural 

network which is most suited to perform modelling for computer vision-related tasks with image datasets 

[153]. Deep CNNs have been extensively used to form various types of object detection frameworks. It 

directly learns the automatically designated features to produce a state-of-the-art recognition result, which 

is ideal for the project’s purpose by enabling the actions of detection and recognition. Following a general 

deep learning workflow [194], this consists of data collection and processing, model training and 

deployment of the model. Part 1 consists of the process of data collection and model training. Images of 

various types of occupancy behaviour in indoor settings were collected and processed through pre-

processing stages whereby image augmentation occurred through manual labelling of the images. Through 

the analysis of various types of deep learning models, the most suitable type of CNN-based deep learning 

model was selected. This was configured specifically for this type of detection approach to provide the 

model outlined in Figure 3-4. Next, the model was formerly trained to provide the application of the model 

via the deployment of an AI-based camera to provide real-time detection and recognition of occupancy 

activities. Conclusively, this was indicated in Part 2 of the workflow. For the training of the models, the 

same computer with the graphics processing unit (GPU) NVIDIA GeForce GTX 1080 was used. 
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Figure 3-4. Typical deep learning model workflow procedure for the development and application of 

computer vision-based indoor detectors. 

 

3.3.3. Integration with the Building Control and HVAC System 

 

Using the developed models forming the vision-based detectors to capture the real-time occupancy 

behaviour, data were generated in form of heat emission profiles known as the Deep Learning Influenced 

Profiles (DLIP). This allows the output data made from the detection to be valuable for improving indoor 

thermal comfort, air quality, building energy performance and overall energy savings. Figure 3-5 presents the 

workflow process of the proposed integrated framework approach based on the application of the developed 

vision-based detector to provide building heat gain predictions with system optimisations. It consists of using 

the generated real-time DLIPs to go through the process of 1. Informing occupancy about the indoor conditions 

while 2. Also informing the BEMS which is implemented in the building to make suitable adjustments to the 

HVAC system controls. The strict procedure must be directed to the process and the concept given in Figure 

3-5 suggests a framework and software infrastructure should be developed for the proposed approach to be 

fully utilised within buildings. This system will connect the real-time vision-based detector and setpoint 

optimiser with the demand-driven controls for the HVAC system. The design of this proposed integrated 

framework is influenced by the detection of the type of occupancy behaviour received as data to determine 

the optimisation of the system for the variation in the room set point temperatures. Hence, the vision-based 

approach must be modelled and performed under a series of different building energy performance 

simulations before determining the associated steps for this integrated optimisation part of the framework.  
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Figure 3-5. The workflow process of the proposed integrated framework approach based on the 

application of the developed vision-based detector to provide building heat gain predictions with system 

optimisations. 

3.3.4. Model Development and Analysis – Part 1: Detection Performance Analysis 

 

For each of the trained vision-based detectors that were formed from implementing the steps in Figure 3-4, 

they must undergo a series of performance analyses to help determine their detection ability. First, an initial 

evaluation of the performance of the model with its detection on still images was conducted. Images 

assigned in the testing dataset were used to evaluate the detection performance to provide results in the 

form of a confusion matrix. Values for the terms of true positive (TP: representing the achievement of a 

correct detection), true negative (TN: representing correctly not providing detection when required), and 

false positive (FP: representing the number of instances that the prediction was not true, or another instance 

being wrongly identified as this response, and false negative (FN: representing the number of instances as 

predicted to be something else, but it wasn’t) were achieved. Furthermore, based on the created confusion 

matrix, common evaluation metrics used to determine the performance of classification results, precision 

and recall were used to evaluate the accuracy of the algorithm for object detection. This is defined by Eq. 

(2) and (3) respectively. Precision is the measure of exactness or quality, while recall is a measure of 

completeness or quantity. However, it is not sufficient to evaluate the detection performance when precision 

and recall were separately used. With the consideration of a balance between precision and recall, a measure 

called F1 Score is formed by combining these two measures and expressed as Eq. (4). 

 

Accuracy =
(TP + TN)

(P + N)
 (1) 

Precision =  
TP

TP + FP
 (2) 

Recall =  
TP

TP + FN
 (3) 

F1 Score = 2 ×
Precision × Recall

Precision + Recall
 (4) 

 

As the proposed vision-based approach is designed to be implemented in indoor environments of buildings, 

it was suggested to test the detectors in a series of experimental tests within different case study buildings, 

allowing the application of the vision-based detector in true indoor conditions and effective analysis of the 
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detection performance to be conducted. Based on the detections achieved during the experimental tests, 

Figure 3-6 suggests a four-stage performance analysis. Given that during the real-time detection using the 

trained models, values in terms of the IoU (Intersection over Union) were recorded. This is a value given 

that corresponds to the recognition ability based on the detection accuracy displayed across each of the 

bounding boxes that appeared at every instance in terms of the generated IoU values. It is a standard 

evaluation metric for convolutional neural network detectors used to evaluate how similar a predicted 

bounding box is to the ground truth box. For such a case, higher prediction accuracy (near 100%) would be 

achieved when there is a direct overlap between the target mask and the prediction output. Based on the 

detection performance during the experimental test, an average of the IoUs corresponding to each of the 

selected response outcomes were evaluated. In addition, the percentage of the time achieving correct, 

incorrect, and no/missed detections throughout the segments of the experimental tests was analysed. 

Furthermore, using a similar analysis approach for the model detection on still image detection, the same 

method of analysis was conducted within segments of the detection made during the given experimental 

tests. To give the evaluation of the detection performance and classification in form of a confusion matrix 

and the results for the different common evaluation metrics of precision, recall and the F1 score.  

 

Besides the in-depth analysis of the detection made during each time frame during the tests, the results 

gathered to form the DLIPs were also evaluated through the comparison against other profiles to give values 

for the percentage errors achieved in detection. This includes pre-defined static scheduled profiles that 

correspond to assumptions related to the understanding of the building operational hours and/ or fixed 

occupancy rates used within the design of buildings. Furthermore, the generated DLIP were also compared 

with the Actual Observation profile. This profile represented the ground truth or the actual number of 

occupants performing the selected activities during the test. Overall, these four performance analyses along 

with profile comparisons were performed on every set of detection periods during the desired experimental 

tests to enable verification and clarification of the performance of each of the trained models. 
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Figure 3-6. Framework process for the analysis of the detection performance during a selected 

experimental test. 

3.3.5. Model Development and Analysis: Part 2: Building Energy Performance 

Analysis 

To assess the impact of the proposed vision-based approach on the effect of the building energy demands 

and to compare it with the application of existing sensors and/or current buildings where occupancy 

behaviour is not monitored, the following building energy simulation (BES) workflow process given in 

Figure 3-7 was applied. Step one includes the data collection and preparation stages to perform such 

building simulation. The selected case study building correlated to the room that was used to perform the 

vision-based detection test, whereby sufficient data in terms of detection results were obtained. This was 

used to model the building geometry along with the creation of suitable building operational profiles for 

heating, cooling, ventilation, lighting and occupancy. Further details about the selected case study buildings 

are described in Chapter 3.4 along with specific details about the assigned conditions for building energy 

simulation are given in the relevant sections of Chapters 4.6 for occupancy activities, Chapters 5.8 and 5.9 

for occupancy behaviour towards window openings, Chapter 6.1 and 6.2 for combined detections. Step 2 

presents two types of analysis. Type 1 focused on the application with data fed from the conducted 

experimental tests to provide comparisons with typical pre-defined static scheduled profiles assigned to the 

given building. Whereas Type 2 was based on a series of common and extreme circumstances for the 

individually selected buildings along with occupancy behaviour. This type of analysis provides results for 

analysis in terms of how the system could provide effective responses that aim towards the achievement of 

a reduction in building energy through operative energy control and management solutions. In all, both 

types of analysis follow the workflow of requiring conditions defined before the simulation of the different 

cases. In step three, results were achieved in terms of the internal heat gains (occupancy and/or electrical), 

heating and cooling loads, ventilation heat losses, and the room CO2 concentration for evaluations in terms 

of building energy demands. 
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Figure 3-7. Workflow of the application of building energy simulation (BES) to analyse the impact of the 

application of the vision-based detector. 

 

3.4.  Case Study Buildings 

 

To test and evaluate the application of the vison-based approach using the trained models, four different 

indoor spaces shown in Figure 3-8 were used to support the design and testing of the framework through 

modelling and simulation using the BES tool Integrated Environment Solutions Virtual Environment (IES 

VE) [195]. The BES was based on the dynamic thermal simulation of the heat transfer processes between 

a modelled building and its microclimate. Heat transfer processes of conduction, convection and radiation 

between each building fabric were modelled and were included within the modelling of air exchange and 

heat gains, within and around the selected thermal space of the building. Validation of the tool and the 

theory are fully detailed in [196, 197]. 

 

All buildings are located within the Department of Architecture and Built Environment, University Park 

Campus, University of Nottingham, United Kingdom. The reasons for the choice of these buildings were 

that sufficient information about the building geometry design, materials and operational features were 

easily obtained to conduct an accurate model for BES. In addition, occupants were involved in each of the 

experimental tests. Students and researchers from the university department were invited to participate. 

Consent from each participant was obtained. They were also informed before the test about the experimental 

test and had to also complete a survey after participating in the test. Differences between each of these 

building types led to the possibility of conducting experimental tests in different types of buildings with 

variations in the number of occupants present.   
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Figure 3-8. The different case study buildings were used within experimental tests and building 

simulations to assist the evaluation of the proposed vision-based deep learning approach. 

Based on the evaluation of the different types of occupancy behaviour and the development of detectors to 

focus on specific occupancy actions, the observation of the different floor plans for each of these building 

spaces in Figure 3-9 suggests that specific rooms were more suited to perform experimental tests to evaluate 

the different detection models. (a) is a small open-plan office space located on the ground floor, Office 

space (b) is a larger office space compared to (a). Hence, both spaces were used to conduct tests to enable 

the evaluation of occupancy detection.  Due to (b) having a large open plan space; this was also used for 

multi-objective experimental tests with the detection of occupancy and equipment. Additionally, (c) is a 

postgraduate research/taught study space. Due to the layout of the room along with high occupant capacity, 

this was also used to test the developed occupancy detectors. Out of all four spaces, (d) had to largest area, 

with the largest windows in place. This suggested the use of this selected space for the assessment of the 

occupancy behaviour towards window openings through the window detection approach. Besides this, (d) 

is a lecture room/ tutorial space. Hence, it was also used to conduct the experimental test based on both 

occupancy and window detection. Below presents brief details for each of these buildings. 
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Figure 3-9. Floor plans of all case study buildings. 
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Mark Group House (office space) 

The office space within the Mark Group House (building A), consisted of a 28.5 m2 floor area and a floor-

to-ceiling height of 3.13 m. Each room of the building was represented as thermal zones in BES to set 

different operation profiles. For the air exchanges, the infiltration rate value was set to 0.1 ach. The U-value 

of the wall, roof, ground, and window glazing were 0.25, 0.18, 0.15 and 0.71 W/m2K. The window is triple-

glazed with argon filled, along with a solar heat gain coefficient of 0.64, while the visible transmittance 

was 0.76.  

 

Sustainable Research Building (office space) 

An open-plan office on the first floor of the Sustainable Research Building was selected to conduct 

experimental tests for the detection using the trained models. The building is constructed to a very high 

standard, achieving a BREEAM rating of Excellent. For this building, the geometry was modelled in the 

ModelIT tool and some simplifications we carried out such as not including internal features such as 

furniture and external features such as surrounding buildings and trees. The building was modelled into 

several zones to allow the setting up and evaluation of each zone. The U-value of the roof and floor were 

0.15 W/m2K, the wall was 0.17 W/m2K and the windows were 1.92 W/m2K.  

 

Paton House (PGR/PGT study space) 

This building is naturally ventilated with openable windows and a simple heating system to provide 

essential heating services. The experimental test was conducted in a classroom named the PDR/PGT study 

space with a floor area of 36.62 m2 and a floor-to-ceiling height of 3.52 m on the first floor of this building. 

There are six sliding sash windows which can be opened at the bottom for ventilation. The layout of the 

first floor is presented in Figure 3-9 and further details on the set-up for the experimental test were presented 

in the corresponding section. Due to the impact of COVID-19, there was a restriction on the capacity in the 

room to be set at 11 people at maximum. 

 

Marmont Centre (B5 lecture/ tutorial room) 

Furthermore, an architectural engineering lecture room located on the first floor of the Marmont Centre at 

the University of Nottingham was used. The building is naturally ventilated and integrated with a simple 

heating system. Like the other three buildings, this was also modelled using Building Energy Simulation (BES) 

tool IESVE. The selected room has a floor area of 96.9 m2 with dimensions of 12.75 m x 7.6 m and a floor-to-

ceiling height of 2.5 m. As given in Figure 3-9 (c and d), the room consists of four sets of windows with two 

different window configurations within the lecture room. The north-facing windows are in an arrangement of 

2 x 3 with a total of six 0.915 m x 0.416 m (0.38 m2) glazing panels. The two south-facing windows are in an 

arrangement of 4 x 4 with a total of 8, 0.835 m x 0.657 m (0.55 m2) glazing panels. The windows have a top-

hung opening strategy, and they are double-glazed with a U-value of 2.20 W/m2K. For the BES to represent a 

typical window opening size, an assignment of 50% of the maximum opening area was selected for an opened 

window, and 0% was assigned for a closed window. From architectural drawings, the building components of 

the wall, roof, ground, and doors consist of U-values of 0.33, 0.22, 0.32 and 3.00 W/m2K.  

 

Besides this, each of the experimental tests conducted in these buildings consists of a ‘detection camera’, 

which is a standard 1080p camera with a wide 90-degree field of view connected to a laptop that runs the 

trained deep learning model. A specific set-up for the experimental tests was also given and the details are 

given in the corresponding sections of Chapters 4, 5 and 6.  
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In addition to the experimental tests within these selected buildings, the BES tool IESVE was used to assess 

the building energy performances. For the modelling of these four buildings, the Nottingham, UK weather data 

file was used for all buildings. Overall, simplifications were made to the building and its surroundings. Most 

of these building operates between the hours of 08:00 to 18:00, with a setpoint temperature maintained at 21°C 

or 22°C [198]. However, through the input of response data as building profiles, this varied from case to case, 

which led to the variation in the exact values given in the corresponding simulation sections.  

 

3.5. Ethical Approval 

 

With the proposed approach designed to capture real-time occupancy behaviour within indoor spaces, the 

overview given in Chapter 3.3 suggests people are required throughout the development and testing stages 

of the framework.  Hence, this research study strongly involves human participants. Therefore, before the 

testing of the developed computer vision-based indoor detectors following the process shown in Figure 3-3, 

an ethics application was submitted and approved.  

 

The ethics application form was created to document the ethical issues and the steps taken to ensure 

participant well-being throughout the study. All associated documents are listed in the appendix section, 

Appendix B: Ethics Application Documents. The approved ethics application form consisted of the answers 

to the questions within the ethical issues checklist. Furthermore, the document explaining the description 

of the study highlighted the design of the study with the framework approach along with the description of 

the involvement of participants within the study, the equipment used, the procedure of the tests, and how 

the data was handled and stored. In addition, a poster was created to summarise the description of the study 

with the bulletin of recruiting participants. Prior to each of the experimental tests, each participant was 

given the ‘Participant Information Sheet’ and the ‘Participants Consent Form’ was completed. The 

application was reviewed by members of the Faculty of Engineering, University of Nottingham research 

integrity and research ethics committee, giving the approval as shown. 

 

3.6. Summary 

 

In summary, current sensor-based techniques are limited to the provision of an accurate understanding of 

occupancy behaviour within indoor spaces and that common occupancy activities and occupancy behaviour 

occupancy actions towards window openings are important in impacting building system operations. High 

potential with great interest in using AI vision-based techniques is conveyed. Hence, a three-part framework 

approach was proposed with the selection of specified model development techniques and conditions. 

Furthermore, four different indoor spaces were selected for experimental tests and were modelled using 

BES to support various stages of design, testing and analysis of the framework. The next chapter focuses 

on the development, testing and analysis of each of the developed vision-based models following the 

methods described. As indicated in the objectives, data-driven deep learning frameworks for the detection 

and recognition of various occupancy behaviour (napping, sitting, standing, walking and actions towards 

opening and closing of windows) within indoor building spaces were developed and validated using various 

testing datasets based on their suitability for real-time detection. Furthermore, the process given in Figure 

3-4 was applied to all developed models to address the objective of continuous refinement of the deep 
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learning computer vision method with the evaluation of the impact of different parameters and 

configurations on the detection performance. 
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Chapter 4 

 

4. Occupancy Activity Detection and Recognition 
 

As addressed in Chapter 3.1.1, information on real-time occupancy patterns is central to the development 

and implementation of a demand-driven control strategy for HVAC systems. Based on the evaluation of 

the different sensors and technologies used to measure and monitor real-time occupancy which was 

employed in buildings for automation and controls, temperature and ventilation control, fire detection, and 

also as part of the building security systems. To some extent, these sensor-based solutions provide accurate 

detection of occupancy patterns. Strategies based on sensing occupancy information through the count and 

location of occupants in spaces and aid demand-driven control systems are proposed. However, there is 

limited research on sensing the actual activities performed by occupants which can affect the indoor 

environment conditions. The activities of occupants can affect the internal heat gains (sensible and latent 

heat) in spaces directly and indirectly towards other types of internal heat gains. The real-time and accurate 

predictions of the heat emitted by the occupants with various activity levels can be used to estimate better 

the actual heating or cooling requirements of a space. A potential solution is the proposed AI computer 

vision and deep learning approach used to detect and recognise the activities of occupants. 

 

4.1. Framework for the Detection and Recognition of Occupancy Activity Towards the 

Optimisaton of Building HVAC Systems 

 

Based on the general framework given in Figure 3-3 and the steps discussed in Chapter 3, Figure 4-1 shows 

the framework designed to enable the detection and recognition of occupants’ activities and generate real-

time occupancy data in the form of occupancy heat emission profiles to effectively manage the building 

energy loads and indoor spaces. The objectives include the development of a suitable deep-learning 

algorithm using a CNN to train and test a model. The model was deployed to an AI-powered camera to 

perform real-time detection with the classification of occupant activities forming the DLIPs for each activity, 

informing adjustments to system controls.  
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Figure 4-1. Proposed framework for detection and recognition of occupancy activities towards the 

optimisation of building HVAC systems. 

Typical occupancy rates at which heat is given off by human beings vary between the different states of 

activity. CIBSE Guide A Table 6.3 [199] suggests the following rate of emissions (Table 4-1) for the most 

common activities performed by occupants within the building types given in Figure 3-9. This includes 

‘standing’, ‘sitting’, ‘walking’ and ‘napping’. Hence, these were the initial activities that were focused to 

enable the development of the initial deep learning occupancy activity model to provide prediction related 

to these output responses. The category of ‘none’ was also introduced. This enabled the indication of no 

occupants being present within the desired location of detection.  

 

Table 4-1. Selected heat emission rates of occupants performing activities within an office [199]. 

 Rate of Heat Emission 

Activity Total (W) Sensible (W) Latent (W) 

None 0 0 0 

Napping 105 70 35 

Sitting 115 75 45 

Standing 130 75 55 

Walking 145 75 70 

 

4.2. Initial Approach Using MATLAB 

 

This section presents the initial data-driven deep learning framework designed to provide the ability to 

detect and recognise occupants’ activities within buildings. The software and techniques of MATLAB [200] 

provide tools and functions designed for managing large datasets and specialised toolboxes for neural networks. 

Furthermore, several existing research [44] used MATLAB as the preferred tool for the main deep learning 

method. The three-part framework approach discussed in Chapter 3.3 was applied. 

 

4.2.1. Deep Learning Framework 

 

To develop the desired occupancy activity detector, the steps for model development given in Figure 3-4 

were followed. Image-based data for these activities were collected. An example of our input dataset images 
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for training purposes is shown in Figure 4-2. For a given short video sequence consisting of multiple frames, 

the network predicts output labels solely based on the selected response outputs. It should be noted that 

more responses and predictions would be added in future cases depending on complexity for example when 

detecting multiple people performing different activities at once.    

 
Figure 4-2. Example dataset images of several human activities. Images obtained via Google image 

search of the relevant keywords. 

The training data set consisted of images categorised with the following responses of ‘standing’, ‘sitting’, 

‘walking’, ‘napping’ and ‘none’. Table 4-2 shows the number of images that were used for both training 

and testing of the model. Since this was the initial development, a smaller number of images was used. 

However, the number of images within the dataset should follow the Pareto Principle with the suggestion 

given by Ng [201]. Based on existing methodologies for activity detection such as the method used by 

Castro [183], it is acknowledged that greater amounts of images would be required for the training of the 

model. However, this has influenced the use of imageDatastore to collate the training images. This provides 

a more convenient process to allow images to become easily pre-processed in the next step and also has the 

benefit of saving memory spaces as MATLAB will only read the images when you need them. 
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Table 4-2. Description of the image datasets used for the training of the initial occupancy activity detector 

using MATLAB. 

Activity 
Number of Images 

Training Testing Total 

None (No occupant present) 764 50 814 

Napping 330 50 380 

Sitting 1025 50 1075 

Standing 643 50 693 

Walking 460 50 510 

Total 3222 250 3472 

 

Pre-processing is a significant stage of the process. It consists of the preparation of the data for it to become 

ready for training. For this case, all images were resized to the same pixel size of 227 x 227 x 3 and were 

saved as the same image format within the imageDatastore which enabled the data to be fully prepared for 

utilisation within the training stages succeeding the selection of the deep learning model and the 

corresponding network architecture and training options within the use of the deep learning feature in 

MATLAB.   

 

With images as the desired input data along with the selection of CNN as the main type of model 

architecture used to develop the detector for detection, recognition and classification, the Deep Learning 

Toolbox within MATLAB presents a generic process to define the network architecture layers and training 

options. Specific features designed for performing deep learning such as ‘trainNetwork’, which enables 

direct training of a CNN network for deep learning classification and regression problems [200] were 

applied. Based on a feed-forward neural network, CNN utilises the principle of weight sharing. 

 

Figure 4-3 presents an overview of the designed CNN architecture training process. This influenced the use 

of stochastic gradient descent along with the momentum (SGDM) optimizer within the assigned training 

layer options and has established the conditions for each of the stages in the CNN architecture. Respectively, 

for each of the given input training image data, filters were applied within the desired most common layers 

of convolution, ReLu (Rectified Linear Units) and pooling to perform alterations for the intent of feature 

learning and to reduce the spatial complexity of the network. By performing analyzeNetwork(net) the 

following information for each of the desired layers is given in Table 4-3, indicating the description for 

each of the layers within the deep learning network. It consisted of a total of 15 layers which corresponds 

directly to the architecture given in Figure 4-3. Following feature learning, classification layers are present 

to enable the process of performing predictions and generating probabilities for each classification output. 

This completes the method for the training stages of the deep learning model. 
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Figure 4-3. CNN model training architecture and configurations applied. 

Table 4-3. Description of the CNN model training architecture and configuration. 

Image 

Representation 
Layer Layer Name Description Activations Learnable 

 
 

1 Image Input 

227x227x3 images 

with ‘zerocenter’ 

normalization 

227x227x3 - 

2 
Convolution 

2D 

8 3x3x3 convolutions 

with stride [1 1] and 

padding ‘same’ 

227x227x8 

Weights 

3x3x3x8 

Bias 1x1x8 

3 
Batch 

Normalization 

Batch normalization 

with 8 channels 
227x227x8 

Offset 1x1x8 

Scale 1x1x8 

4 ReLU ReLU 227x227x8 - 

5 
Max Pooling 

2D 

2x2 max pooling with 

stride [2 2] and padding 

[0 0 0 0] 

113x113x8 - 

6 
Convolution 

2D 

16 3x3x8 convolutions 

with stride [1 1] and 

padding ‘same’ 

113x113x16 

Weights 

3x3x316 

Bias 1x1x16 

7 
Batch 

Normalization 

Batch normalization 

with 16 channels 
113x113x16 

Offset 

1x1x16 

Scale 1x1x16 

8 ReLU ReLU 113x113x16 - 

9 
Max Pooling 

2D 

2x2 max pooling with 

stride [2 2] and padding 

[0 0 0 0] 

56x56x16 - 

10 
Convolution 

2D 

32 3x3x16 

convolutions with 

stride [1 1] and padding 

‘same’ 

56x56x32 

Weights 

3x3x316x32 

Bias 1x1x32 
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11 
Batch 

Normalization 

Batch normalization 

with 32 channels 
56x56x32 

Offset 

1x1x32 

Scale 1x1x32 

12 ReLU ReLU 56x56x32 - 

13 
Fully 

Connected 
5 fully connected layers 1x1x5 

Weights 

5x100352 

Bias 5x1 

14 Softmax Softmax 1x1x5 - 

15 
Classification 

Output 

Crossentropyex with 

‘Napping’ and 4 other 

classes 

- - 

 

4.2.2. Model Application and Experimental Test 

 

The next step given by Figure 3-4 and Figure 4-1 suggests testing the developed model detector based on live 

detection of all activities performed during an experimental time frame. For this, the office space within the 

Mark Group House (Figure 3-9a) was used. Figure 4-4a presents the set-up of the equipment. The detection 

camera’ was represented by a standard 1080p camera with a wide 90-degree field of view connected to a laptop 

that runs the trained deep learning model. 

 

An experimental schedule made for occupant detection whereby an example of the schedule for 

experimental purposes is given in Figure 4-4b. This enables verification of the results obtained for the DLIP. 

For the initial test, it was assumed that four occupants were present within the case study building office 

space and all occupants perform the following activities following the given schedule. Overall, 

simplifications to the profile were applied as one profile was applied to all occupants to provide an initial 

analysis of the potential effects of the method on the energy demand. Future cases used for analysis should 

comprise individual profiles that would be formed following each individual detected occupancy’s 

behaviour and actions. 
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Figure 4-4. (a). Experimental test setup. (b). The activity schedule performed during the three-hour 

experimental test period. 

For each time frame during the detection, generated results provide data in the form of the DLIPs whereby 

occupant detection results data were coupled with the heat emission data (Table 4-1) to form the profiles. 

Figure 4-5 provides an example process of the formation of the DLIP formation, showing several snapshots 

of the recorded frame. It indicates the detection made by the camera through the sample activities and the 

percentage of prediction accuracy. For each time frame, it should be noted that these sample of detection is 

presented for visualisation purposes. No images of such detection are stored within the device and only the 

DLIP is produced. 
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Figure 4-5. Deep Learning Influenced Profile (DLIP) formed from the detection responses from real-time 

activity detection. 

 

4.2.3. Model Training Results and the Detection Performance on Still Images 

 

This section presents the initial model development results. It includes the accuracy obtained during the 

training process of the model and the analysis of the experimental results from using the developed deep 

learning framework applied to the case study building, along with further analysis in terms of energy 

demands using BES.  

 

The established deep learning model configuration was trained using the graphics processing unit (GPU) 

NVIDIA GeForce GTX 1080. The training reached a maximum of 1600 iterations, with 80 iterations per 
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epoch. Figure 4-6 presents the graphical results of the training of the model, indicating the total losses 

reached their minimum level. It also indicates a learning rate of 0.00001 (1e-05) was achieved. Hence, the 

training options applied were feasible for the development of this type of classification model and an 

average accuracy of 100% was achieved for the training of this specific CNN activity detection deep 

learning model.  

 

 
Figure 4-6. Training progress of the initial occupancy activity detector using the MATLAB approach. 

Graph of the training accuracy curve and loss curve. 

To evaluate the feasibility of the model to perform occupant activity detection, validation was initially 

performed with static image results presented within a confusion matrix (Figure 4-7), indicating an average 

accuracy of 89.39% achieved from testing 250 images. Observations made for this proposed approach can 

be used to compare with different modifications applied. This includes inputting more test data and to apply 

variations in the CNN model’s architecture and layers to identify the best design to achieve better 

performance with the highest accuracy that would complement existing new proposed approaches for 

similar case problems of human action recognition where the accuracy of 93.37% was obtained [181]. 

Greater amounts of images will be implemented for testing purposes as the framework is developed further. 

However, using this evaluation based on static images for validation was not enough. A more substantial 

and rigorous analysis was made in the next section where an analysis of occupants’ behaviour within the 

office space based on the initial experimental test was made. 
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Figure 4-7. Confusion matrix validating the proposed model approach using the images located from the 

testing dataset that consisted of 250 images. 

4.2.4. Detection Performance Analysis Based on the Application of the Trained 

Occupancy Activity Detector 

 

As given in Figure 4-8 live detection and recognition of the activities by an occupant during the 

experimental test period between 14:00 – 17:00 at the office space was carried out following the schedule 

given in Figure 4-4b. It presents the results for each of the recognised activities with a continuous prediction 

of activity classification between the five response categories to display the predictions within a bar chart. 

The top prediction represents the detected and recognised activity, whereby a display of the corresponding 

detection accuracy was shown. It should be acknowledged that the images shown from the live detection 

are only to present the method of data collection. In practice, these images are not recorded and only the 

detected activity is outputted along with the accuracy.  

 



 66 

 
Figure 4-8. Examples of real-time detection and recognition results using the developed occupancy 

activity detector. 
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Based on the three-hour experimental test period of the occupant performing various activities, Table 4-4 

presents the detection accuracy from the use of the developed deep learning occupancy activity model. The 

results show the variation in the detection accuracies, with ‘none’ being the detection of no occupancy being 

present in the space which provided the highest accuracy with 86.35%. In comparison, standing and walking 

had the lowest accuracy with 76% and 78.91%. This may be due to the confusion in distinguishing the 

diversity between standing and walking due to similarities within the human poses. Also, these accuracies 

show a slight variation with the accuracy obtained based on static images (Figure 4-7) of 93.37%. Therefore, 

this suggests that slight changes in occupancy movements can affect detection accuracy. In addition, other 

factors such as the room lighting conditions, and the background environment would also affect it. Hence, 

further training would be made to improve the detection accuracies to enable more accurate detection of 

occupancy activities.  

 

Table 4-4. Average detection and recognition accuracy of the different occupancy activities using the 

trained occupancy detector during the selected experimental tests. 

Activity Deep Learning Detection and Recognition Accuracy 

None 86.35% 

Napping 81.40% 

Sitting 80.43% 

Standing 76.00% 

Walking 78.91% 

Average for all activities 80.62% 

 

For comparison, two typical or “static” office occupancy profiles were created using fixed values of 

occupant heat gains within the building spaces. Typical Office Profile 1 represents an activity of constant 

sitting with a standard heat gain of 115 W while Typical Office Profile 2 represents a constant activity of 

walking assumed in the space, giving a heat gain of 145 W. This condition enables the modelling and 

analysis of the situation when the maximum heat gain emitted by occupants was assumed. Both occupancy 

profiles were formed assuming that the occupant was always in the space. These typical occupancy profiles 

are currently used in HVAC systems operations and in building energy modelling and simulations to present 

the conditions of occupancy in buildings.  

 

Figure 4-9 presents the four profiles. The Actual Observation Profile corresponds directly to the real activity 

schedule given in Figure 4-4b. Deep Learning Influenced Profile (DLIP) shows the generated data from 

utilising the deep learning detection method. The initial results showed that the DLIP can enable the 

detection of various activities within a space and also provide the identification of times when there are an 

increase and decrease of activities performed resulting in variation of occupancy heat gains. It is envisioned 

that the use of DLIP in actual HVAC can ultimately lead to better control of the system, helping detect 

times requiring less heating for example when there are high occupancy and activity rate and vice versa. 

The Actual Observation Profile represents the ‘true’ activity performed by the occupants which was used 

to assess the accuracy of the DLIP. Based on the comparison between the occupancy profile results, the 

DLIP still alternates between several detected activities, indicating prediction error. A comparison of the 

DLIP and the actual observation profile shows a 3.40% difference. This suggests further improvements are 

required to enhance the accuracy and reliability of the detection model.  
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Figure 4-9. Generated occupancy profiles for one occupant between the experimental time frame against 

Actual Observation Profile and Typical Profiles. 

 

4.2.5. Impact of Occupancy Behaviour on Building Energy Performances 

 

Acknowledging the utilisation of deep learning to perform occupant detection, real-time data achieved 

would be fed into the creation of new operations for HVAC systems. As suggested BES tool was used to 

assess the building energy performance through the input of the occupancy response data as building occupancy 

profiles. The details for the Mark Group House (office space) given in Chapter 3.4 was applied to the 

modelling of the building.  

Table 4-5. Summary of building energy modelling profiles. 

Case 

Number 
Case Name 

Occupancy Internal Gains (W/Person) 

Max. Sensible Gain Max. Latent Gain 

1 Typical Office 1 70 45 

2 Typical Office 2 75 70 

3 Actual Observation 75 70 

4 Deep Learning Influenced 75 70 

 

To assess the trained model, the given data (Figure 4-9) obtained during the experimental test was applied 

to the BES. Essentially, an individual DLIP should be assigned to each occupant. However, for simplifications 

and the initial analysis of the approach, only one DLIP was generated for further analysis. The building model 

was simulated for the period between 13:30 - 17:30, which included the three-hour experimental test period. 

As given in Table 4-5, the different occupancy profiles from Figure 4-9 were assigned to the building model. 

For the simulation of Case Number 1, fixed values of sensible and latent occupancy gains of 70 W and 45 W 

were assigned. This follows the Typical Office 1 profile, assuming that the occupant was sitting most of the 

time during the selected period. For the other simulation cases, maximum sensible and latent occupancy gains 

of 75 and 70 W were assigned. This enabled the representation of all activities performed within the office 

space, with walking being the maximum at 100%, followed by standing at 79%, sitting at 64%, napping at 50% 

and 0% for times when no occupancy was present, (no activity) recorded. 
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Figure 4-10 presents the BES results of the occupancy sensible gains between 13:30 to 18:30. As observed, 

the patterns of the occupancy sensible gain for Typical Offices 1 and 2 correspond directly to the static 

profiles given in Figure 4-8. The results indicate that the typical method (scheduled occupancy profiles) did 

not effectively represent actual occupancy and building internal gains. An average difference of 29.36% 

and 32.73% between Typical Office 1 and 2 with Actual Observation was achieved. This was equivalent to 

a decrease of 0.079 kW and 0.096 kW in heat gains. The difference indicates only a small difference, but 

the impact would be more significant within larger office buildings and spaces where more occupants are 

present.  

 

Figure 4-10. Occupancy sensible heat gains for four occupants within the office space; based on typical 

scheduled profiles, deep learning influenced profile and actual observation. 

The results suggest a difference of 27.07% and 30.60% in comparison with the use of static profiles of 

Typical Office 1 and 2. This suggests that monitoring the occupant activity can help estimate heat gain 

values more accurately while the typical values or “static” profiles used in current building simulations and 

guidelines do not provide an accurate estimation of occupancy gains. The average difference between the 

Actual Observation and DLIP was 3.12%. Although this acknowledges the provision of a good estimation 

of the occupancy's internal gains.  However, further developments are still required to increase accuracy 

and ability to detect multiple occupants and activities which will show its full capabilities. This shows the 

ability of the deep learning occupancy activity detection method would be a more effective approach to 

provide more accurate predictions following real-time occupancy behaviour to provide a better 

understanding of occupancy gains within the building for effective operations of building energy systems. 
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In addition to the analysis in terms of sensible gains; latent gains were also analysed based on their 

significance for building HVAC systems. Figure 4-11 shows a comparison of the latent heat gains results 

based on the assignment of the different occupancy profiles. In comparison to Typical Office 2 in which a 

standard scheduled profile of constant maximum occupancy gain for ‘walking’ was set to display the 

maximum occupancy gains that would be achieved, the proposed method results suggest an average of 

30.60% decrease in latent gains. The variations in latent loads show the influence of the humidity levels of 

the office space which can ultimately affect the operations of the whole HVAC system for the building. 

Therefore, this strongly poses the importance of the recognition of occupancy behaviour in terms of the 

activities they perform in addition to just the number of occupancies in the room.  

 

 
Figure 4-11. Occupancy latent heat gains for four occupants within the office space; based on a typical 

scheduled profiles, deep learning-influenced profiles and actual observation. 

Figure 4-12 shows the effect of the different occupancy profiles on the heating demand for the office space 

with four occupants on a typical winter's day afternoon. As previously observed, due to changes in 

occupancy activities following the schedule given in Figure 4-4b, the occupancy gains for the Deep 

Learning Influenced and the Actual Observation were lower than the results shown by the two Typical 

Office Profiles. Following this schedule, the activity of sitting was mostly performed, and it was recognised 

by the deep learning which suggests the actual building heating load be higher. Therefore, more heating 

was required to enable occupant satisfaction. For the selected period of time, the Actual Observation and 

proposed method results provided a total heating load of 11.59 kW and 11.56 kW in comparison to Typical 

Office 2 with 11.24 kW. The indication of an increase in heating was effectively a response to the lower 

occupancy gains given in Figure 4-9. Therefore, this suggests the deep learning method used to detect 
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various occupancy activities can aid the provision of more accurate building responses in terms of heating 

and cooling requirements, through a better understanding of real-time occupancy behaviour. Also, if the 

heating system for larger multiple occupancy office spaces was to be controlled based on the occupancy 

data, the heating requirement would have to be increased to offset the lower heat gains and provide 

comfortable conditions in the space. During winter, assuming multiple occupants are emitting continuous 

and fixed amounts of heat levels in the space will lead to lower heat loads, which is not realistic. This would 

even be more significant if other heat gains are considered such as lighting and equipment.  

 
Figure 4-12. Heating load results for a winter day (8th January) within the office space with four 

occupants; based on the two Typical Office Profiles, DLIP and Actual Observation Profile. 

 

Precise detection of occupants and their activities can also be used to provide a more accurate estimation 

of building CO2 concentration. According to Pathirana et al., [202] CO2 concentration is an easily 

measurable parameter which defines the ventilation and air quality within an indoor environment such as a 

building office space. The information will be useful for modulating ventilation system capacities leading 

to better indoor environmental quality. Using BES simulation, Figure 4-13 shows the results of CO2 

concentration within the office space during the time period. All results suggest the CO2 concentration is 

below the recommended maximum level of 1000 ppm. This indicates the indoor air quality is satisfactory 

for the occupants. It also shows that the room CO2 concentration is directly dependent on the number of 

occupants and activities performed, which highlights the potential of the use of DLIP to provide an accurate 

estimate of the room CO2 concentrations.  

 

For the selected office space, Figure 4-13 presents the CO2 concentration level with four occupants. The 

results suggest that the predicted CO2 concentration difference between Typical Office 2 and DLIP could 
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be as high as 242.8 ppm. This shows that using solely the number of people in a space is not sufficient to 

estimate the CO2 levels. Besides, the movement or activities of occupants in buildings should be considered 

as this would have a larger impact on the provision of a more accurate estimation of the actual building 

CO2 concentration levels. This becomes significant especially when a greater number of occupants are in 

a building space performing a range of different activities. Hence, this suggests that using this deep learning 

occupancy detection method can inform building ventilation systems to provide the required amounts of 

fresh and recirculated air, with the ability to reduce unnecessary loads. This leads to the provision of 

ventilation losses that is only due to occupant’s behaviour from their activities performed. 

 
Figure 4-13. CO2 Concentration. CO2 Concentration for a winter day (8th January) at the open-plan 

office space with four occupants; based on the two Typical Office Profiles, DLIP and Actual Observation 

Profile. 

4.2.6. Summary 

 

The results highlighted the importance of the deep learning model for the formation of more accurate 

occupancy profiles for better management of the building energy systems. It indicated the potential of the 

approach to detect and acknowledge the exact number of occupants present in the desired building space 

along with the common activities performed by them. This framework ultimately enables real-time 

identification of the changes in heat gains within indoor spaces of a building through the detected occupancy 

activities. Therefore, this provides a better understanding of the building heating loads, the conditions 

within the indoor environment and the influence it has on the building design conditions. The proposed 

method provides an enhanced solution to typical building energy management solutions with the ability to 

also optimise the indoor thermal conditions to increase occupancy satisfaction.  

 

Based on the results in terms of detection performance shown, a detection accuracy of 80.62% was across 

all activities. Since only one occupancy response was detected at once in Figure 4-8, it suggests the 

development of the model towards multiple objects at once. Through a comprehensive literature review of 
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the platforms used for deep learning-based application in Chapter 3, other forms of the deep learning 

framework toolkits and training platforms can overcome such limitations and provide an alternative solution 

for the main platform used to construct the desired deep learning model. The following section presents the 

exploration, development, testing and analysis of an alternative method to form such a vision-based 

occupancy activity detector.  

 

4.3.  Development of the Deep Learning Framework Using TensorFlow Techniques 

 

Through the limitations shown by the results obtained from adopting the MATLAB process given in 

Chapter 4.2 where a single occupant was detected, an alternative method enabling multiple detections was 

required to enable further development of an effective detector. Hence, this section presents the 

development of occupancy activity detectors using Python-based TensorFlow techniques. Similarly, the 

steps given in Chapters 3.3 and 3.3.2 were followed to give the following workflow in Figure 4-14. 

 

 
Figure 4-14. The workflow for the development, application and analysis of deep learning vision-based 

occupancy detector using TensorFlow techniques. 

 

TensorFlow is an end-to-end open-source machine learning platform, it provides an efficient 

implementation of advanced machine learning algorithms along with the ability to test novel configurations 

of deep learning algorithms and to demonstrate their robustness.  According to previous works, many 

choose TensorFlow as the desired platform for the development of solutions for building-related 

applications. This includes [203, 204], where TensorFlow was used to train the desired deep learning model. 

Vázquez-Canteli et al. [145] fused the TensorFlow technique with building energy simulation (BES) to 

develop an intelligent energy management system for smart cities and Jo, and Yoon [205] indicated that 

TensorFlow was used to establish a smart home energy efficiency model. Specifically, the process indicated 

using TensorFlow was adopted for developing the model for detecting occupancy activities (Figure 4-15).  
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Figure 4-15. Proposed process for forming an occupancy detector. 

 

4.3.1. Model Development and Configurations 

 

Following the model development process in Figure 3-4, images of occupants were collected to form the 

datasets described in Table 4-6. This was a variation compared to the dataset used for the model presented 

in Chapter 4.2 as more than one type of model was proposed. This enabled a comparison between the 

models and help to address any limitations and identify the areas for improvement towards seeking the best 

solution for an effective vision-based occupancy detector. Model 1 dataset consisted of only one type of 

response category, ‘people’ to allow the detection and recognition of the number of people in the space. 

Whereas two types of datasets were created for occupancy activities, Model 2a and 2b. Dataset 2a consisted 

of 100 images for each of the activities used in the initial model previously. Whereas the dataset for Model 

2b consisted of the more common activities of only ‘sitting’, ‘standing’ and ‘walking’, along with 400 

images for each category. For this, the category of ‘none’ representing no occupants was removed, as it was 

assumed that if no occupants were present in the space, then no detection is required.  
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Table 4-6. Training and testing image datasets for the development of occupancy detection models. 

Model 

Name 
Category 

Dataset Size 

N° of Images N° of Labels 

Training Testing Total Training Testing Total 

Model 1 People 40 10 50 168 45 213 

Model 

2a 

None 100 20 120 108 25 133 

Napping 100 20 120 100 20 120 

Sitting 100 20 120 146 26 172 

Standing 100 20 120 131 26 157 

Walking 100 20 120 177 35 212 

Total 500 100 - 662 132 - 

Model 

2b 

Sitting 400 100 500 753 149 902 

Standing 400 100 500 701 134 835 

Walking 400 100 500 1000 177 1177 

Total 1200 300 - 2454 460 - 

 

To establish these image datasets, RBG images were gathered from Google Images. Pre-processing of the 

gathered images were performed with data augmentation for each image in both the training and testing 

dataset. This includes ensuring all images were non-identical, or at least with slight variation between each 

other. For applying the techniques based on the TensorFlow Object Detection API workflow process, 

images within the dataset did not require to have a restricted size. Therefore, to enable the model to learn 

all aspects related to the desired response categories, a diverse array of images with high variation in the 

image pixel densities was collected. The software, LabelImg [206] was used to label all the images located 

within all datasets manually. This is an open-source graphical image annotation tool which allows images 

to be labelled with bounding boxes to specifically identify the regions of best interest. A sample of the 

image gathering and preprocessing stages is shown in Figure 4-16. 
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Figure 4-16. Example images obtained from Google Images to form the datasets for the training of 

various occupancy detectors, Model 1 for people detection and Models 2a and b for occupancy activity 

detection. All images within the datasets were manually labelled as shown using the selected software 

labelImg [206]. 

The review of existing models with CNN-based model pipeline and configurations applied to the training 

of the occupancy detectors given in Chapter 3.2.4 influenced the development of the three occupancy 

models presented in Table 4-6. For these, the generic architecture of the models directly follows Figure 

4-17 along with the application based on the transfer learning approach with a pre-trained object detection 

model. With the selection of training these models with TensorFlow, the CNN TensorFlow object detection 

application programming interface (API) was applied to form the base configuration. Furthermore, with the 

substantial benefits of leveraging pre-trained models through a versatile transfer learning prediction and 

feature extraction approach, an R-CNN model from the TensorFlow detection model’s zoo directory [207] 

was selected. The TensorFlow detection model’s zoo consisted of various forms of networks pre-trained 

with the Common Objects in Context (COCO) dataset [208]. These pre-trained models are based on the 

most popular types of R-CNN frameworks used for object detection. Generally, R-CNN works by 

proposing bounding box object region of interest (ROI) within the input images and uses CNN to extract 

regions from the image as output classification. As compared with R-CNN, Fast R-CNN runs faster as the 

convolution operation is performed only once for each image rather than feeding several region proposals 

to the CNN every time. Both R-CNN and Fast R-CNN employ selective search to look for the region 

proposals. With regards to this, it commends an effect on the model training computational time and the 

performance of the network.  
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Figure 4-17. CNN-based model configuration used in the training of the different occupancy detection 

models. 

Faster R-CNN uses the region proposal network (RPN) module as the attention mechanism instead of using 

selective search to learn the region proposals [209]. Ren et al. [187] introduced the Faster R-CNN algorithm. 

This is similar to Fast R-CNN whereby, it enables input images to feed into the convolution layers and 

generate a convolutional feature map. Then, the region proposals are predicted by using an RPN layer and 

reshaped by an ROI pooling layer. The image within the proposed region is then detected by the pooling 

layer. Overall, all algorithms are suitable to enhance the performance of the network. However, according 

to the comparison of different CNN-based object detection algorithms [187], Faster R-CNN is much faster 

than other algorithms, which can be implemented for live object detection [210]. Furthermore, to improve 

such a Faster R-CNN model, the inception module can aid in the reduction of the required computational 

time [211] and improves the utilisation of the computing resources inside the network to achieve a higher 

accuracy [212]. The inception network is presented in many forms. This includes Inception V1 – V4 [211, 

213] and also Inception ResNet [214]. Each version is an iterative improvement of the architecture of the 

previous one.  

 

In this research, the COCO-trained model of Faster R-CNN (With Inception V2) was selected to develop 

the model for real-time detection and recognition. This was chosen due to the performance of Inception V2 
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and its widespread use for the development of object detection models such as [187, 214]. Alamsyah and 

Fachrurrozi [215] used the Faster R-CNN with Inception V2 for the detection of fingertips. Accurate 

detections of up to 90 – 94% were achieved across all results, including small variations between fingertips. 

Hence, this suggests the capabilities of Faster R-CNN with Inception V2 to be able to carry out detection 

tasks even with small changes. Furthermore, the Faster-R-CNN with Inception V2 trained under the COCO 

dataset achieved an average speed of 58 ms and a mean average precision (mAP) of 28 for detecting various 

objects from over 90 object categories [207]. Hence, the model summarised in Figure 4-17 with the 

configured architecture and pipeline of the selected CNN model was used for occupancy activity detection. 

Inputs from the CNN TensorFlow Object Detection API and the Faster R-CNN with Inception V2 model 

were also identified. 

 

4.3.2. Formation of the Deep Learning Influenced Profiles (DLIPs) Based on the 

Detection Results 

 

The proposed framework indicated in Figure 4-1 suggests that once the trained model is applied for 

detection and recognition within indoor spaces, the output data for each of the detected occupants were used 

to form the occupancy heat emission profiles (DLIP). Based on the profiles described in Figure 4-8, a similar 

process is applied to form such profiles from the detections made using the detectors trained using the 

TensorFlow methods. The process for the DLIP formation involves the output values corresponding with 

the number of recognised occupants performing each of the selected responses (including the different 

activities). It was recognised that if such procedures given in Figure 4-8 were applied, the results for the model 

could not output any sufficient data. Hence, count-based profiles were formed initially formed and they can 

be further processed to become coupled with the heat emission data-based value for an average adult 

performing the different activities within indoor spaces such as offices given in Table 4-1. Figure 4-18 presents 

the DLIP formation process for the three occupancy models.  
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Figure 4-18. Examples of the Deep Learning Influences Profiles (DLIPs) formation under the different 

time frames for all three occupancy detection models. 
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4.3.3. Description of the Experimental Test Used to Evaluate the Trained Occupancy 

Detectors 

 

To test the developed occupancy detection models within ‘real’ situations providing results for the analysis 

of the detection performance and impact of the framework approach towards building system operations, a 

selection of buildings was selected to perform various experimental tests. Table 4-7 presents a summary of 

the experimental tests, whereby descriptions for each of these buildings are given in Chapter 3.4.  

 

Table 4-7. Summary of the experimental tests for the evaluation of the different occupancy detection 

models. 

Experimental 

Test 
Model 

Case Study 

Building 

Room 

Type & 

Function 

Number of 

Participants 

Date/ 

Time 

of Test 

Purpose of 

Experimental 

Test 

1 1 Paton House 

PGR 

Study 

Space 

8 
May 

2021 

Testing of the 

initially 

developed 

people detector 

2 2a 

Sustainable 

Research 

Building 

(SRB) 

Open-plan 

office 

Space 

3 
March 

2020 

Testing of the 

initially 

developed 

occupancy 

activity detector 

3 2b 

Sustainable 

Research 

Building 

(SRB) 

Open-plan 

office 

space 

3 
March 

2020 

Testing of an 

enhanced 

occupancy 

activity model 

with results for 

scenarios-based 

analysis 

4 2b Paton House 

PGR 

Study 

Space 

8 
May 

2021 

Comparison of 

the model 

application with 

Model 1 

 

Experimental Test 1 was conducted in Paton House with a maximum of 8 occupants. Figure 4-19a presents 

the floor plan of the first floor of the building with the room configuration in b)., along with the setup for 

the experimental tests in c). and d). To enable the capture of the whole test room, cameras with a resolution 

of 1080p and a wide 90-degree field of view were fixed in the corner of the room and close to the ceiling. 

It should be noted that this case study building is not intended to evaluate the building itself or its facilities 

but rather for testing the detection methods in a small-size classroom with occupants performing activities 

common in this type of space. 
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Figure 4-19. Paton House at the University of Nottingham applied in Experimental Tests 1 and 4. a). 

Floor plan of the first floor of the building with the room configuration in (b). Setup for the experimental 

tests in (c), and (d). 

Before the test, a trial with occupants in the space along with two cameras positioned in the selected region 

of the room was performed. As highlighted in Figure 4-20, the field of vision from Camera A and B both 

provided the identification of people as ‘People 1 – 8’ for detection performance analysis. However, based 

on an observational comparison, the position of camera A was not ideal as it was placed behind the door. 

Hence, Camera B was selected as the desired camera position to be used in the experimental test. 
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Figure 4-20. Field of vision from Camera A and B with the identification of People as ‘People 1 – 8’ for 

detection performance analysis using Model 1 in Experimental Tests 1 and 4. 

Figure 4-21 presented the selected case study building used to conduct Experimental Tests 2 and 3 using 

the occupancy activities Models 2a and 2b. Given the room configuration layouts in Figure 4-21b and c for 

Experimental Tests 2 and 3, the selected office space was designed to accommodate eleven occupants as a 

total of eleven office workstations were present. However, for the selected experimental test days, only three 

occupants were present for the majority of the time. Variation occurs between the experimental test set up as 

Figure 4-21b for Experimental Test 2 was to provide a direct field of vision (shown by  Figure 4-21d) to 

the selected region whereby occupants were present; whereas Figure 4-21c for Experimental Test 3 

acquired a camera position near to the ceiling of the room, achieving a greater field of vision (Figure 4-21e). 

For easier analysis of the detection performances achieved during both experimental tests, names of 

Detection A-D and/or Person A-B was assigned to each person, or the region of detections made. Between 

Experimental Tests 2 and 3, similarity includes the experimental test location. Variations occur between 

the occupancy detection applied, the occupancy behaviour, the scheduled activity during the test, the 

indoor-outdoor environmental conditions and also the set-up with the camera position. Overall, this enables 

effective analysis of the performance of Models 2a and 2b, while also identifying the benefit and limitations 

of such factors towards the overall and specific aspects of the framework approach.  
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Figure 4-21. The Sustainable Research Building  (SRB) at the University of Nottingham used to conduct 

Experimental Tests 2 and 3. a). Photo of the building with the highlighted test room on the first floor. (b) 

and (c) presents the floor plan with the configuration of the setup for the experimental tests. (d) and (e) 

presents the field of vision from the camera located in the room during Experimental Tests 2 and 3. 

In addition, an experimental test named, Experimental Test 4 was also conducted in Paton House, following 

the setup and conditions given in  Figure 4-19. This experimental test was designed to assess the application 

of Model 2B which focused on occupancy activity detection towards the same building and set up as to 

Experimental Test 1 where occupancy detection was conducted. Such experimental tests provided results 

which gave a direct comparison with Experimental Test 1 with the identification of the importance of an 

occupancy detector and an occupancy activity detector. For all four experimental tests, the performance 

was analysed based on detection performances using the steps mentioned in Chapters 3.3.4 and 3.3.5 giving 

the results shown in Chapters 4.5 with the corresponding subsections for each experimental test.  

 

4.4.  Application of the Deep Learning Framework Using TensorFlow Techniques 

 

The following section presents the results of the training and testing of the different occupancy detectors 

based on the models defined in Chapter 4.3.1, Model 1 for people detection, and Models 2a and b for 

occupancy activity detection. The four-stage performance analysis framework given in Figure 3-6 was 

applied to provide the results shown in Chapter 4.4.2. This presents the formation of the DLIP for every 



 84 

detection response achieved during the field experimental tests conducted within the selected building 

following the cases given in Table 4-6. 

 

4.4.1. Occupancy Model Training Results 

 

A summary of the detection model training results is given in Table 4-8. Since Model 1 had a smaller image 

dataset and only one response assigned, it led to a shorter training duration and fewer training steps than 

Models 2a and b. As observed in Table 4-8, the total loss versus the training steps plot indicates the 

complexity of both Model 2 compared to Model 1. Greater fluctuations were seen during the model training. 

Effectively, based on the loss convergence, all models were sufficiently trained and should be able to carry 

out the detection tasks. 

 

Table 4-8. Training results for the three occupancy detection models, Model 1, Model 2a and 2b. 

Training 

Conditions 
Model 1 Model 2a Model 2b 

Pretrained 

Model 

Applied 

Faster RCNN with InceptionV2 

Total Steps 41,901 102,194 102,194 

Total 

Duration 
2 hours, 54 minutes 6 hours 45 minutes 10 hours, 30 minutes 

Average Loss 0.07607 0.141329877 0.13436 

Minimum 

Loss 
0.003567 0.01007 0.005654 

Total Loss 

Vs. Training 

Steps 

 

 

Classification 

Loss Vs. 

Training 

Steps 

 

To confirm the completion of the training of the models, initial detection was performed using the test 

images from the dataset. Results are presented in Table 4-9 with the confusion matrix and the common 

classification metrics. The confusion matrix presents the ability of the three classification models (Model 

1, 2a and 2b) based on their performance on a set of testing datasets whereby the true values are known. 
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Model 1 was designed to only recognise one type of response (people) via a binary classification problem, 

while both Model 2a and b had several detection responses. For all models, true positive results were 

achieved when the classifier correctly recognises the person present in the building space and true negative 

when it correctly recognises no people in the space. The confusion matrix also indicates the amount of false 

positive and false negative results achieved, referring to the number of detections that were incorrectly 

detected. Based on the confusion matrix given in Table 4-9, most categories were correctly detected with 

true positive detections of over 82.84% for all cases, and an average of 90.12%.  

 

The results for Model 1 suggest the ability of the model to identify occupants present within the building 

space, providing an effective occupancy count solution. For Model 2a, although the classification for ‘none’ 

(when the occupant is absent) achieved the highest performance and ‘standing’ achieved the lowest. This 

perhaps is due to the difficulty in recognising the occupancy body form and shape, as it may be confused 

with the activities of both standing and walking. Hence, when such response category of “none” was 

removed in Model 2b, the walking activity achieved a higher accuracy (92.66%) compared to the other 

activities of sitting (87.92%) and standing (82.84%). Effectively, this suggests that the accuracy for 

detection of both activities of standing and walking were quite similar and presents difficulties in identifying 

the true activity, leading to the occurrence of walking being incorrectly identified as standing (11.19%). 

Overall, the results showed the potential of becoming an effective occupancy detector. Further evaluation 

of the trained models in terms of their ability to classify occupancy and activities using common evaluation 

metrics, including accuracy, precision, recall and F1 score were used (defined in Chapter 3.3.4) which 

provided the results given in Table 4-9. 

 

Table 4-9. Performance of all occupancy models based on still images from the testing dataset presented 

in form of a confusion matrix and the results in terms of common evaluation metrics. 

Confusion Matrix 

 

Class Accuracy Precision Recall F1 Score 

Model 1: People 

People 84.48% 0.9796 0.8571 0.9143 

Model 2a: Occupancy Activities 

1 96.88% 0.9474 0.9000 0.9231 

2 98.94% 0.9524 1.000 0.9758 
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3 95.88% 0.8636 0.9500 0.9048 

4 95.88% 0.9444 0.8500 0.8947 

5 97.89% 0.9500 0.9500 0.9367 

Average 97.09% 0.9316 0.9300 0.9270 

Model 2b: Occupancy Activities 

Sitting 94.04% 0.925 0.8911 0.9077 

Standing 91.43% 0.9064 0.8284 0.8657 

Walking 92.70% 0.8643 0.9266 0.9047 

Average 92.72% 0.8986 0.8820 0.8927 

 

4.4.2. Analysis of the Deep Learning Influenced Profiles (DLIPs) Formed During the 

Experimental Tests 

 

When the trained model is operated via a camera-based device to form a detector that was placed within an 

indoor environment, real-time detection and recognition of occupants were made. To avoid privacy issues, 

this approach does not require the data to be collected and stored in the form of images or videos. Instead, 

DLIPs were generated and converted to form an occupancy heat emission-based profile which can be used 

to inform and assist the operations of building system controls and BES models. Figure 4-22 shows the 

generated DLIPs from using the three occupancy models conducted in all four experimental test cases stated 

in Table 4-7. 

 

With experimental Tests 1 and 4 based on the same location, setup, and video recording, with the only 

difference in the detection model used (Model 1 vs. Model 2b), this enabled the results in form of DLIP to 

provide a direct comparison towards the application of an occupancy detector, recognising the number of 

occupants in the space (Figure 4-22a) against the understanding of the activities performed by each 

occupant in Figure 4-22d. Furthermore, generated profiles from the application in Experimental Tests 2 and 

3 conducted within the Sustainable Research Building were shown in Figure 4-22b and c. As recordings 

were taken every one or two seconds during each of the test periods, substantial fluctuations occurred within 

the generated results indicating prediction error. In addition, the number of occupants performing each 

activity during different times is unpredictable. Hence, such profiles provide valuable real-time information 

that could assist the operations of building systems.  
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Figure 4-22. Count-based occupancy deep learning influenced profiles (DLIP) generated from the 

experimental tests performed with the four trained models. 

To represent the true occupancy actions/ number of occupants in the building space for the selected duration 

of the experimental tests, ground truth conditions for occupants were named to form the Actual Observation 

profile. This was used to further assess the detection performance of the methods. For all generated DLIPs, 

the comparison with the Actual Observation profiles suggests that the model still alternates between the 

different activities/ number of occupants recognised in the space due to the occurrence of prediction error, 

suggesting the opportunities for further improvements to enhance the accuracy, reliability, and stability of 

the detection model. 

 

As mentioned previously for the occupancy activity detection models, the generated count-based profiles 

were directly converted to heat-emission-based profiles via the acknowledgement of the standard heat 
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emissions values for each activity detection (stated in Table 4-1). This gives the results for the application 

of Models 2a, and 2b in Experimental Tests 2, 3, and 4.  

 

Furthermore, static pre-defined occupancy profiles are commonly used in HVAC system operations and in 

building energy simulations to assume a strict occupancy pattern assigned to people in various indoor spaces. 

Following the conditions in Table 4-1, Figure 4-23b, c and d presents the ‘typical profiles’ created to 

represent a common pre-defined profile. Typical 1 Profile assumes all occupants were constantly sitting (a 

heat gain of 115 W/person), while the Typical 2 Profile represented the maximum occupancy heat gain 

(assuming all occupants were constantly walking – 145 W/person) could be achieved. Converting the 

generated count-based DLIPs to heat emission-based profiles gives the following results shown. It 

significantly shows a large discrepancy between the profiles.  

 

Based on the detection period of Experimental Test 3, an achievement of up to 37.51% and 50.44% 

difference was observed between the Typical Profiles 1 and 2 and the actual occupancy heat emission 

profile. Hence, there was a high discrepancy between the true occupancy activities performed within the 

building spaces and the use of static profiles. Therefore, this shows the potential of the vision-based deep 

learning approach for activity recognition to provide a better understanding of the conditions within an 

indoor space for more effective system controls and operations. 
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Figure 4-23. Comparison of the generated DLIP Occupancy Profiles with static schedules (typical 

profiles) and the Actual Observation Profile. 
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Taking the case of Experimental Tests 1 and 4 which were applied to the same situation, the use of people 

detection (Model 1) with occupancy activity detection (Model 2b) suggested the results for Model 1 were 

closer to the Actual Observation (ground truth) due to the limited activities (mostly sitting) performed by 

the occupants during the experimental test. In addition, Figure 4-23b suggested a difference between the 

DLIP and the Actual Observation Profiles of only 4.14% for occupancy activities. While Figure 4-23c 

indicates that the DLIP predicted 29.09% and 10.60% lower occupancy heat gains as compared to Typical 

Profiles 1 and 2. However, the results also showed that the DLIP still has errors when compared with the 

Actual Observation Profile with an overall error of 4.14%.  

 

This highlights the importance of developing an accurate and stable occupancy activity detector for 

effective and valuable building control systems. Furthermore, a greater impact could potentially be 

observed when such a detection method is implemented within larger indoor spaces with more people 

performing various occupancy activities. In all, this suggests the importance of adopting such a vision-

based approach whereby DLIPs are considered advantageous in comparison to the Typical profiles as it 

avoided the majority of the high discrepancy indicating the potential of the deep learning-based approach 

to provide a more accurate understanding of the indoor conditions based on occupancy behaviour within an 

indoor space for building energy system operations and performances. 

 

4.5.  Performance Analysis of the Occupancy Detection Models Applied During Different 

Experimental Tests 

 

The observation of the results in terms of the formed DLIPs provided some understanding of the 

performance of each of the developed detectors. However, a detailed analysis of how different indoor 

conditions could influence the provision of such results cannot be made. Hence, this section provides an in-

depth analysis of each of the model’s performance during the selected experimental tests highlighted in 

Table 4-7, using the framework analysis shown in Figure 3-6 with Chapters 4.5.1. – 4.5.4 for Experimental 

Tests 1 – 4. This assessment enables the identification of the benefits and limitations of each of the 

configured detection models. 

 

4.5.1. Experimental Test 1 – PGR Study Space (Number of occupants) 

 

Figure 4-24 presents snapshots of the detection and recognition during the experimental test using the 

occupancy detection Model 1. For the majority of the time, it enabled the detection and recognition of most 

occupants within the building space. However, some no/false incorrect detections in identifying the 

occupancy activities occurred directly for the occupants furthest away from the camera and/or obstructed 

by objects in the room or by other people. Detected occupants were presented via the labelled bounding 

boxes along with the IoU accuracy shown above. IoU is a standard evaluation metric for CNN detectors 

used to evaluate how similar a predicted bounding box is to the ground truth box and was defined. 

 



 91 

 
Figure 4-24. Snapshots of occupancy detection and recognition during key stages of the experimental Test 

1 using Model 1 (people detector). 

Figure 4-25 suggests Model 1 achieved an average detection IoU of 98.85% for all occupants. Despite 

‘Occupancy 6’ within the direct view and angle of the camera, a slightly lower IoU of 93.60% was achieved. 

This may have resulted from the participant facing opposite the camera in most instances. Future works 

should take this into account when creating the training dataset. However, the results indicate the ability of 

the vision-based detection approach to enable real-time identification of the number of occupants present 

in a building space. 
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Figure 4-25. (a) Average IoU (%) of the occupants during Experimental Test 1 using occupancy detection 

Model 1 and (b). The detection performance in terms of the percentage of time achieving correct, 

incorrect, and no/missed detections. 

Table 4-10 presents a detailed summary of the results. It suggests that achieving correct/ incorrect and no 

detections would have been influenced by the model performance on recognising each occupant within the 

space. For this model, correct detection of up to 100% could be achieved along with minimal incorrect 

detections and no/ missed detections also occurred.  
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Table 4-10. The detection performance in terms of the percentage of time achieving correct, incorrect, and 

no/missed detections for occupancy Model 1. 

Percentage of Time Achieving: 

Model 1: People Detection 

Occupancy Correct Detections Incorrect Detections No/ Missed Detections 

1 89.70% 0.00% 10.30% 

2 76.41% 0.00% 23.59% 

3 99.67% 0.00% 0.33% 

4 97.34% 0.00% 2.66% 

5 99.67% 0.00% 0.33% 

6 99.67% 0.00% 0.33% 

7 99.34% 0.33% 0.33% 

8 100.00% 0.00% 0.00% 

Average 95.22% 0.04% 4.73% 

 

To further evaluate the performance of the detectors during the experimental tests, Figure 4-26 presents the 

results in the form of the confusion matrix. For Model 1, it verified the results presented in Table 4-10 with 

the lowest true positive values of 76.41%, and the highest number of false positives of up to 23.59% was 

for the detection of Occupant 2. In comparison to the detection of the other occupants, more consistent 

results were achieved, giving minimal false negatives, with no false positives. Overall, an average of 

95.23% were achieved for true positives in correctly detecting people within the space. Results given in 

form of the evaluation metrics were shown in Table 4-11. Model 1 provided an overall accuracy of 95.23% 

and an F1 score of 0.9756. This indicates the benefits of implementing Model 1 in buildings as an effective 

solution in predicting the CO2 concentration levels based on the occupancy count. Furthermore, since the 

category of ‘none’ representing times when no occupants are present within the space was not classed as 

one of the detection responses, therefore, no data was given for the times when true positives were active 

for this.  
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Figure 4-26. Detection performance in form of the confusion matrix for occupancy detection made during 

Experimental Test 1. 

Table 4-11. Detection performance results based on the common classification evaluation metrics from 

the application of occupancy Model 1 – people detector.  

Occupancy Class Accuracy Precision Recall F1 Score 

1 Person 89.70% 1.000 0.8970 0.9457 

2 Person 76.41% 1.000 0.7641 0.8663 

3 Person 99.67% 1.000 0.9967 0.9983 

4 Person 97.34% 1.000 0.9734 0.9865 

5 Person 99.67% 1.000 0.9967 0.9983 

6 Person 99.65% 1.000 0.9965 0.9982 

7 Person 99.67% 1.000 0.9967 0.9983 
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8 Person 100.00% 1.000 1.000 1.000 

Average Person 95.23% 1.000 0.9523 0.9756 

 

In summary, this experimental test focused on the application of a vision-based occupancy detector 

conducted within Paton House. Overall, it provided good detection of the number of occupants within the 

indoor space as results suggest close prediction with the Actual Observation (ground truth) due to the 

limited activities (mostly seating) performed by the occupants during the experimental test. This highlights 

the importance of developing an accurate and stable occupancy activity detector to be effective and valuable 

for building control systems. It is envisaged that the proposed detection approach could have a greater 

impact when applied in a larger indoor space and would be impacted when a greater range of different 

activities was performed by occupants, leading to the evaluation and discussion of the occupancy activity 

detector implemented in Experimental Tests 2, 3 and 4 shown in Chapters 4.5.2-4.5.4.  

 

4.5.2. Experimental Test 2 – Open-Plan Office Space (Occupancy activity) 

 

Figure 4-27 presents example snapshots at various times of the day from Experimental Test 2 with the 

detection and recognition of occupants within the selected office space. Based on the setup indicated in 

Figure 4-21 shows the ability of the proposed approach to detect and recognise occupants. A possibility of 

up to four output detection bounding boxes was present during this experimental detection, and the accuracy 

for each detection was also presented above the output bounding boxes. As given in Figure 4-27, these 

bounding boxes' size and shape varied between each detection interval. It depended on the size of the 

detected space, the distance of the camera to the detected person and also the occupant's activity. For this 

model, it included the identification of regions where occupancy could be present, and if no occupants were 

detected, a bounding box with the response of ‘none’ were achieved. 
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Figure 4-27. Example snapshots at various times of the day of the experimental test of the detection and 

recognition of occupants within an office space using the deep learning occupancy activity detection 

approach (Experimental Test 2 using Model 2a). 
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Figure 4-28a presents the detection performance based on the selected activities. Individual detection 

accuracies for each activity include walking at 95.83%, standing at 87.02%, sitting at 97.22% and none 

(when no occupant is present) achieving an accuracy of 88.13%. This shows the capabilities of the deep 

learning model to recognise the differences between the corresponding human poses for each specific 

activity. There is some similarity between the action of standing and walking than there is for sitting. 

Therefore, this suggests the reason to achieve higher accuracy for sitting as compared to standing and 

walking.  

 
Figure 4-28. Detection performance based on (a). the average IoU (%) across the bounding boxes within 

the camera detection frame of detections A, B, C and D on each of the selected response outcomes of the 

detected activities; walking, standing, sitting and none. (b). Overall detection performance during 

Experimental Test 2a; identifying the percentage of time achieving correct, incorrect and no detections. 
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This highlights the importance of achieving high accuracy for all activity detections to enable an effective 

detection approach for building HVAC system controls. Since the following accuracy achieved was only 

based on small sample size, further model training and testing should be performed to achieve higher 

detection accuracy for the given occupancy activities to enable further applications of multiple occupancy 

detection and recognition of a greater number of occupants within different types of office space 

environments. 

 

Figure 4-28b presents the overall detection performance of the proposed approach during the experimental 

test.  The results showed that the approach provided correct detections 97.32% of the time, 1.98% of the 

time to achieve incorrect detections and subsequently, 0.70% of the time with no detections. It should be 

noted that the occupants were asked to carry out their typical office tasks. Overall, this indicates that the 

selected model provides accurate detections within the desired office space.  

 

Figure 4-29 presents the results in terms of the confusion matrix. For detection A, continuous and accurate 

detection of ‘non’ was conducted. Both Detection B and D also achieved a rather stable prediction of the 

occupant performing the activity of sitting. While Detection C achieved the lowerest percentage in 

detections, identifying missed/ incorrect detection between the different activities performed. Effectively, 

this indicates that the results achieved could be influenced based on each of the individual detections and 

the type of activity performed by each occupant.  
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Figure 4-29. Evaluation of detection performance of occupancy activities during Experimental Test 2 

using Model 2a in the form of a confusion matrix. 
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4.5.3. Experimental Test 3 – Open-Plan Office Space (Occupancy activity) 

 

This section presents the detection performance and analysis of the results of occupancy activity detection 

and recognition made using Model 2b during Experimental Test 3. To enable accurate testing of the 

developed vision-based detector, a timeline indicating the test's key stages was formed. This allowed the 

indication of a series of different occupancy activities which were involved, enabling accurate testing of 

the developed vision-based detector. Examples of the detection images from various stages were presented 

in Figure 4-30. 
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Figure 4-30. Snapshots of various key stages during Experimental Test 3 with the application of 

occupancy Model 2b. 
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Figure 4-31a presents the average detection accuracy in terms of the achieved IoU values for each person 

and activity. It evaluates the detection performance based on the predicted bounding boxes that appeared at 

every instance. To indicate this, the values were presented above each generated bounding box shown in 

Figure 4-31a. Overall, it suggests that high confidence is presented for each of the predicted activities, as 

high percentages were given.  

 

Since the experimental test was conducted for 15 minutes, not all occupants performed all the different 

activities. However, it still provided enough data to analyse the detection performance. The detection results 

for Persons A, B and C showed up to 98.47%, 98.80% and 98.46% accuracy on average, respectively. The 

initial results suggest that the distance between the camera and the object had a negligible effect on the 

detection accuracy. However, due to the size of the office room, the influence of further distances cannot 

be evaluated and should be assessed in future works. Overall, the results showed good performance and 

demonstrated the model's capabilities to recognise the differences between the human poses for each 

specific activity within an office environment.  

 

While Figure 4-31b presents the results for the detection of occupancy activities classified as correct 

detection, no detection, or incorrect detection. The detection data was collected every second. It should be 

noted that the correct detection was achieved when the activity performed by the person was correctly 

identified and when detection was correctly not made when that activity was not performed. Based on the 

three activities detected, the best results were achieved for sitting. Due to the similarities between standing 

and walking poses, the standing activity had incorrect detections for 52.38% of the time, no or missed 

detections for 9.52% of the time and only correct detection for 38.10% of the time. 

 

Furthermore, to further evaluate the occupancy activity detection performance, the category ‘None’ was 

added. This indicated that the model was correct in not identifying that activity was performed when an 

occupant was absent. Correct detection was achieved 83.78% of the time for this category. 
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Figure 4-31. (a). Average detection accuracy based on the Intersection over Union (IoU accuracy) values 

that were generated for the different occupancy activities during Experimental Test 3 with Model 2b. (b). 

The percentage of time achieving correct, incorrect and no/missed detections. 

Figure 4-32 presents the generated confusion matrix for each occupant. This helps display how often the 

approach classifies one activity as another. The columns represent the predicted activities, and the rows 

represent the actual or correct activities. This table was then used to calculate the TP, TN, FP and FN, which 

can then be used to measure the precision, recall and F1 score as shown in Chapter 4.2.4. Based on the 
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results, the model performed well when detecting and recognising the sitting activity, with the occasional 

prediction of the category none or other. In addition, there were times when sitting activity was predicted, 

even when an occupant was not present. This was considered incorrect detection as it recognised some of 

the chairs within the detection space as occupants sitting. 

 

While the detection and recognition of standing activity were the poorest. As identified Figure 4-31b, 

suggests that there was an approximately equal split in achieving correct detection, with it being identified 

as sitting, and also identified as either walking or not being identified at all. However, the detection of the 

walking activity showed good performance. The distribution of the results attained for the different 

responses based on the different factors, including the angle, distance and position relating to the detection 

camera, shows the approach’s ability to achieve good detection performance. Therefore, such conditions 

reflected upon the associated results in terms of the common evaluation metrics given in Table 4-12. In 

addition, Person C only performed the activity of sitting, Hence, no data is provided for the other activities.  

 

 
 

Figure 4-32. Detection of occupancy activities evaluated in the form of the confusion matrix from the 

application of Model 2b in Experimental Test 3. 
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Table 4-12. Evaluation of the occupancy activity detection model performance based on common 

evaluation metrics. 

Class Activity Accuracy Precision Recall F1 Score 

Person A 

1 Sitting 89.02% 0.7715 0.9419 0.8482 

2 Standing 81.48% 1.0000 0.4445 0.6154 

3 Walking 81.64% 0.8287 0.9412 0.8814 

Person B 

1 Sitting 71.26% 0.5335 0.9268 0.6772 

2 Standing 66.67% - 0.0000 0.0000 

3 Walking 85.56% 0.7297 0.9000 0.8060 

Person C 

1 Sitting 99.00% 1.0000 0.9900 0.9950 

2 Standing N/A N/A N/A N/A 

3 Walking N/A N/A N/A N/A 

All Occupants 

1 Sitting 86.95% 0.7305 0.9549 0.8278 

2 Standing 79.37% 1.0000 0.3810 0.5518 

3 Walking 90.58% 0.8130 0.9318 0.8684 

Average for all activities 85.63% 0.8478 0.7559 0.7493 

 

4.5.4. Experimental Test 4 – PGR Study Space (Occupancy activity) 

 

The section presents the detection performance analysis of the application of Model 2b during Experimental 

Test 4 in the selected building space of the Paton House. Figure 4-33 presents snapshots of the detection 

and recognition during key stages of the experimental test. Overall, it suggests that some no/false incorrect 

detections occurred in identifying the occupancy activities. Many of these instances occurred directly for 

the occupants furthest away from the camera and/or obstructed by objects in the room or by other people.  
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Figure 4-33. Snapshots of occupancy detection and recognition during key stages of the experimental Test 

4 using Model 2b. 

Figure 4-34 suggests an overall IoU value of 93.60% was achieved. During the experimental test, the 

activity of sitting was performed by all occupants. For this activity, consistent IoU was achieved, with an 

average IoU accuracy of 92.80%. Only some of the occupants performed the standing and walking 

activities. Hence, further evaluation of other activities must be carried out in future works. The results 

showed IoU accuracies of 85.25% and 71.25% were achieved for standing and walking activities. Such a 

lower IoU accuracy was due to the difficulty in detecting and recognising these two types of activities with 

similar occupancy body forms and shapes. The results in Figure 4-34 also suggest that the IoU accuracy 

was not highly impacted by the different occupants in the space and their positions in relation to the camera, 

indicating the detection camera was positioned at a suitable place within the room to capture the activities 

of most of the occupants. 
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Figure 4-34. Average IoU (%) of the occupants during Experimental Test 4 using Model 2b. 

To further summarise the results shown above, results presented in Table 4-13 suggest the achievement of 

correct, incorrect and no detections would solely be dependent upon each of the individual occupancy 

behaviour. It should be noted that not all occupants performed all types of activities, hence, N/A was given 

to some of the categories in Table 4-13. Overall, for all three activities, the percentage of correct detections 

was the highest, achieving an average of 74.13%, compared to incorrect detections at 1.25% and no/missed 

detections at 24.63%. The highest no/missed detections were observed for occupant 1, with a no/missed 

detection rate of 64.12%. This may be due to occupant 1 being the one furthest from the camera, whereby 

recognition of the activities performed was incorrect or missed. 

 

Table 4-13. Detection performance in terms of the percentage of time achieving correct, incorrect, and no 

detections for occupancy activities in Experimental Test 3. 

Occupancy Activity Correct Detections Incorrect Detections No/ Missed Detections 

1 

Sitting 35.55% 0.33% 64.12% 

Standing N/A N/A N/A 

Walking N/A N/A N/A 

All Activities 35.55% 0.33% 64.12% 

2 

Sitting 56.04% 0.00% 43.96% 

Standing 33.33% 33.33% 33.33% 

Walking N/A N/A N/A 

All Activities 55.81% 0.33% 43.85% 

3 

Sitting 67.59% 1.03% 31.38% 

Standing 36.36% 63.64% 0.00% 

Walking N/A N/A N/A 

All Activities 66.45% 3.32% 30.23% 

4 

Sitting 65.12% 0.00% 34.88% 

Standing N/A N/A N/A 

Walking N/A N/A N/A 

All Activities 65.12% 0.00% 34.88% 
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5 

Sitting 98.01% 0.00% 1.99% 

Standing N/A N/A N/A 

Walking N/A N/A N/A 

All Activities 98.01% 0.00% 1.99% 

6 

Sitting 92.25% 0.00% 7.75% 

Standing 50.00% 41.67% 0.00% 

Walking 100.00% 0.00% 0.00% 

All Activities 91.03% 1.66% 7.31% 

7 

Sitting 81.88% 3.83% 14.29% 

Standing 92.31% 7.69% 0.00% 

Walking 100.00% 0.00% 0.00% 

All Activities 82.39% 3.99% 13.62% 

8 

Sitting 98.98% 0.00% 0.00% 

Standing 85.71% 14.29% 0.00% 

Walking N/A N/A N/A 

All Activities 98.67% 0.33% 1.00% 

Average 

Sitting 74.43% 0.65% 24.80% 

Standing 59.54% 32.12% 6.67% 

Walking 100.00% 0.00% 0.00% 

All Activities 74.13% 1.25% 24.63% 

 

Figure 4-35 provides the associated results in the form of the confusion matrix, with the indication of Model 

2b to adequately identify each of the different activities performed by the occupants. The results indicate 

that the walking activity achieved the greatest number of true positives, with a value of up to 100%. 

Secondly, it is followed by the sitting activity. This achieved an average of up to 74.18%. The confusion 

matrix for each occupant suggests that the lower percentage achieved for this activity was due to the 

occasion of no prediction when this activity was performed. Furthermore, the standing activity was 

sometimes predicted as sitting and/or no detection of such activity, giving the worst performance compared 

to the other responses. The overall performance shown in Figure 4-35i was used to calculate the common 

evaluation metrics, including the accuracy, precision, recall, and the associated F1 scores given in Table 

4-14.  
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Figure 4-35. Detection performance results for Model 2b (occupancy activity detector) in the form of a 

confusion matrix. 

The associated evaluation metrics results are shown in Table 4-14. This model provided an accuracy of 

89.37% with an F1 score of 0.8298. Since multiple responses were selected for this model, further 

development is required to ensure a consistent level of detection accuracy could be achieved across the 

different occupancy activities. Furthermore, compared with Model 1 applied in Experimental Test 1, both 

models were only tested on a single experimental test, further analysis is required to evaluate whether both 

models can effectively assist the operations of building HVAC systems and enhance the building energy 

performances through further testing on different indoor spaces and variation in variation occupancy 

conditions. Overall, Model 1 may be effective in predicting the CO2 concentration levels based on the 

occupancy count, while Model 2b would be more suitable for evaluating the heat gains from occupants or 

predicting the activity rate for thermal comfort calculations in real time. 
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Table 4-14. Detection performance results based on common classification evaluation metrics from the 

application of Model 2b in Experimental Test 4. 

Occupancy Class Accuracy Precision Recall F1 Score 

1 

Sitting 35.55% 1.0000 0.3556 0.5245 

Standing N/A N/A N/A N/A 

Walking N/A N/A N/A N/A 

All Activities 35.55% 1.0000 0.3556 0.5245 

2 

Sitting 61.35% 0.6270 0.5604 0.5918 

Standing 66.67% 1.0000 0.3334 0.5001 

Walking N/A N/A N/A N/A 

All Activities 64.01% 0.8135 0.4469 0.5460 

3 

Sitting 51.98% 0.5150 0.6759 0.5846 

Standing 67.67% 0.9725 0.3636 0.5293 

Walking N/A N/A N/A N/A 

All Activities 59.83% 0.7438 0.5198 0.5570 

4 

Sitting 64.65% 1.0000 0.6545 0.7912 

Standing N/A N/A N/A N/A 

Walking N/A N/A N/A N/A 

All Activities 64.65% 1.0000 0.6545 0.7912 

5 

Sitting 98.01% 1.0000 0.9801 0.9800 

Standing N/A N/A N/A N/A 

Walking N/A N/A N/A N/A 

All Activities 98.01% 1.0000 0.9801 0.9800 

6 

Sitting 83.53% 0.6888 0.9225 0.7887 

Standing 83.33% 1.0000 0.5000 0.6667 

Walking 100.00% 1.0000 1.0000 1.0000 

All Activities 88.95% 0.8963 0.8075 0.8185 

7 

Sitting 91.40% 0.9141 0.8188 0.8638 

Standing 96.16% 0.9602 0.9231 0.9413 

Walking 100.00% 1.0000 1.0000 1.0000 

All Activities 95.85% 0.9581 0.9140 0.9350 

8 

Sitting 92.35% 0.8738 0.9898 0.9282 

Standing 92.86% 1.0000 0.8571 0.9231 

Walking N/A N/A N/A N/A 

All Activities 92.61% 0.9369 0.9235 0.9257 

Average 

Sitting 80.64% 0.6975 0.7418 0.7190 

Standing 87.47% 0.9899 0.6304 0.7703 

Walking 100.00% 1.0000 1.0000 1.0000 

All Activities 89.37% 0.8958 0.7907 0.8298 

 

In summary, four experimental tests were conducted in two locations with detections using three different 

occupancy detection and recognition models. Results suggest Model 1 provided accurate detection with a 
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high possibility of determining the number of occupants present in a building space. Experimental Tests 2, 

3, and 4 indicated the ability of Models 2a and 2b to recognise occupancy performing different activities 

within a building space. A comparison between the application of Model 1 for people detection and Model 

2b for occupancy activity was given in Figure 4-36 and Video 1. The same video recording was applied 

during both Experimental Tests 1 and 4 in Paton House, the University of Nottingham to allow the 

identification of the benefits and limitations of both types of models applied to the same indoor setting. 

Based on the comparison shown and the detailed analysis given in Chapters 4.5.1. and 4.5.4, it suggests 

that the selection of the model to be applied is dependent upon the purpose required. However, overall to 

improve building energy performances, the generation of the DLIP, whereby constant data about the 

number of occupants performing each of the selected activities is envisioned to provide more valuable data 

about occupants within a building space regarding heat emission for more effective HVAC system 

operations. This highlights the importance of developing an accurate and stable occupancy activity detector 

to become effective and valuable for building control systems. It is envisaged that the proposed detection 

approach could have a greater impact when applied in a larger indoor space with more occupants and 

different types of activities. 

 

 
Figure 4-36. Comparison between the application of Model 1 for people detection and Model 2b for 

occupancy activity detection during experimental tests 1 and 4. Refer to Video 1 to see the example of 

detection and recognition conducted using the same video recorded during Experimental Tests 1 and 4 in 

Paton House, University of Nottingham. 

 

4.6.  Evaluation of the Proposed Approach Using Building Energy Simulation 

 

This chapter presents the evaluation of the proposed vision-based occupancy detection and recognition 

approach via assessments of the applications of the different trained models (Model 1, Model 2a and 2b) 

using building energy simulations. The methods presented in Chapter 4.2.5 with the workflow process 

shown in Figure 3-7 were applied. As mentioned, two types of BES were conducted. Chapter 4.6.1 focuses 

https://drive.google.com/file/d/1bfpodEQV1l8fjPT8K8pBCFE6FaB0SgM1/view?usp=share_link
https://drive.google.com/file/d/1bfpodEQV1l8fjPT8K8pBCFE6FaB0SgM1/view?usp=share_link
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on the ‘Type 1’ assessment based on the impact of the detection performance using the vision-based 

approach on building energy via comparisons of the generated DLIPs from the experimental tests with 

constant static predefined scheduled profiles. Whereas Chapter 4.6.2 presents the ‘Type 2’ analysis, 

focusing on scenario-based situations. Furthermore, Chapter 4.6.3 provides a further investigation of the 

impact on building system operations and strategies by seeking ways in which the vision-based occupancy 

detector could assist the operations of building HVAC systems to ensure that sufficient interior thermal 

conditions and air quality were attained while reducing unnecessary building energy loads to improve 

building energy performances. 

 

4.6.1. Impact of the Detection Performance using the Vision-based Approach on 

Building Energy 

 

The generated DLIP during Experimental Test 2 using Model 2a in Figure 4-22b and its comparison with 

constant static profiles in Figure 4-23b, suggested a 37.38% and 50.25% difference between the Typical 

Office Profiles 1 and 2 and the Actual Profile, indicating a large discrepancy between the true occupancy 

activities performed within the building spaces and the scheduled occupancy profiles. This highlights the 

importance of the vision-based detector. Hence, using these different profiles, the following section presents 

an analysis of the impact of the proposed deep learning activity detection approach on building energy 

consumption during a typical winter working day.  By applying the knowledge of the building geometry 

and conditions, along with the experimental test conditions given in Chapters 3.3.5, 3.4 and 4.5.2, the 

building space was modelled.  

 

Table 4-15 summarises the simulation cases and the associated occupancy and building profiles used for the 

simulation and analysis. The different variations in occupancy profiles were created to compare the DLIP and 

to evaluate the impact of the use of control strategies, informed by real-time multiple occupancy activity 

detections on building energy performance. Cases 1 and 2 follow the current building operational systems based 

on the use of static or fixed control setpoints. Typical office 1 assumes that the occupants are sitting most of 

the time during the selected period (sedentary activity), and Typical office 2 assumes that the occupants are 

walking most of the time during the selected period. For the simulation cases, maximum sensible and latent 

occupancy gains of 75 W and 70 W were assigned. This enabled the representation of all activities performed 

within the office space, with walking being the maximum at 100%, followed by standing at 79%, sitting at 

64%, napping at 50%, and no activities (none) would present at 0%. Furthermore, the occupancy density of 1 

was assigned to each of the DLIP and actual observation profiles. However, for the typical office profiles, it 

was acknowledged that the maximum number of occupants present within the room on the selected day would 

be three, so this was assigned as the maximum occupancy density for these cases. Furthermore, a description 

of the building's heating, cooling and ventilation conditions are also shown in the corresponding table. 
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Table 4-15. Summary of the occupancy and building energy modelling profiles used for the simulation of 

different conditions to identify the impact of the vision-based approach towards building energy. 

Name 
Profile 

Description 

Occupancy 
Heating Ventilation 

Internal Gains [Table 4-1] 

Max. 

Sensible Gain 

(W/Person) 

Max. Latent 

Gain 

(W/Person) 

Standard 

Constant 

Heating with 

the setpoint 

at 21°C 

 

Standard 

constant 

ventilation 

following a 

typical office 

schedule 

Typical 1 

Constant sitting 

between 09:00 – 

18:00 

(Typical 1 

Profile, Figure 

4-23b) 

70 45 

Typical 2 

Constant 

walking 

between 09:00 – 

18:00 

(Typical 2 

Profile, Figure 

4-23b) 

75 70 

Actual 

Observation 

Based on actual 

observation of 

Detection A, B, 

C, D 

(Actual 

Observation 

Profile, Figure 

4-23b) 

75 70 

Deep 

Learning 

Influenced 

Based on DLIP 

Detection A, B, 

C, D 

(DLIP, Figure 

4-23b) 

75 70 

 

The following provides an analysis of the impact of the proposed deep learning activity detection approach 

on building energy consumption during a typical winter working day. The generated DLIPs are compared 

with the static scheduled profiles. 

 

Figure 4-37 presents the building energy simulation (BES) results of the occupancy sensible and latent 

gains. Typical 1 and 2 results followed the assigned static scheduled occupancy profiles. Based on the 

simulated conditions, it can be observed that the typical office profiles over-predicted the occupancy heat 

gains within the room. The DLIP results provided a better estimation of the occupancy internal heat gains. 

The occupancy heat gains were high from 09:00 – 10:00 when there was an increase in activity movement 
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in the space. Lower occupancy heat gains were observed between 13:15 – 13:30 as most of the occupants 

had left the office space during this time. This shows the potential of the deep learning method in providing 

a more accurate estimation of the internal heat gains. Additionally, Figure 4-37b shows the predicted latent 

heat gains. The accurate prediction of the latent heat gains is important for the estimation of the required 

dehumidification load and can further reduce unnecessary energy usage. This is important for buildings 

located in tropical or humid climates as it can lead to heavy usage of air-conditioning systems. The method 

should be further evaluated by incorporating it into buildings with different climates. Furthermore, Figure 

4-37c summarises the total sensible and latent occupancy heat gains. Based on the simulated conditions, 

the occupancy heat gains predicted by using the Typical 1 and 2 profiles suggests an overestimation of 

22.9% and 54.9% as compared with the Actual Observations. This is equivalent to 83.2 kWh and 199.8 

kWh. In comparison, there was a 1.13% (4.1 kWh) difference between the DLIP method and Actual 

Observations.  
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Figure 4-37. Comparison of the (a). Sensible heat gains, (b). Latent heat gains and (c). Total occupancy 

gains were achieved when different occupancy profiles were assumed within the operations of the 

building's HVAC system. (Within the office space during the detection period of 09:00 – 18:00). 

Comparing the simulation results of the BES model with different occupancy profiles, Figure 4-38 shows 

the heating demand for office space during a typical cold period in the UK. Figure 4-38a presents the heating 

load across time, and Figure 4-38b compares the total heating loads for the selected day. The predicted heating 

load for the model with the DLIP profile was 375.5 kW and was very similar to the Actual Observation 

profile. While the model with Typical Office 1 and 2 profiles had a heating load of 372.0 kW and 371.8 

kW. As expected, the DLIP and actual heat gains in the space were lower than static profiles, which assumed 

constant activities in the space, and hence the heating requirement will be higher to provide comfortable 

indoor conditions. 



 116 

 

Figure 4-38. Comparison of the (a). Heating across time and, (b). The total heating load was achieved 

when different occupancy profiles were assumed within the operations of the building's HVAC system. 

Overall, such results suggest that the use of static or scheduled occupancy profiles currently used in most 

building HVAC systems operations and in building energy modelling and simulations presents an over or 

underestimation of the occupancy heat gains and could lead to substantial inaccurate heating and cooling 

energy predictions. Solely based on these initial BES results and set conditions, a difference of up to 55% 

was observed between DLIP and static occupancy heat gain profiles, this is equivalent to 8.33 kW.   

 

4.6.2. Scenario-Based Simulations and Analysis 

 

Since occupancy behaviour and actions are unpredictable, the results achieved in Chapter 4.6.1 cannot be 

entirely used to represent all buildings and office spaces, the following section presents the analysis of the 

approach on a series of different scenario-based cases, replicating situations that would typically occur 

within the same indoor environment.  
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Applying the same case study building, different scenario-based cases were created Figure 4-39, Table 

4-16). Each case (Deep Learning Scenario-based Case 1 – 4) represented a different variation in occupancy 

activity patterns within the office space. These were compared with Typical Office 1 and 2 static profiles, 

which represented the application of typical predefined, or fixed schedules. The two fixed occupancy 

profiles are presented in Figure 4-39 (a1 and a1’). Since it was assumed that there would normally consist 

of up to 8 people working within the office space, a constant number of 8 people was assumed during the 

working hours. Typical Office 1 assumed that the occupants are performing sedentary activities within the 

office space. While Typical Office 2 assumed a higher activity rate by the occupants. The scenario-based 

profiles assigned for the Deep Learning Scenario-Based 1, 2, 3, and 4 cases assumed more realistic 

occupancy patterns within the office space. The description of occupancy patterns for each of these 

scenarios is detailed under each of the given profiles in Figure 4-39a2-a5.  

 

Furthermore, heating and cooling profiles were assigned to maintain indoor temperatures within a suitable 

range to provide occupants with thermal comfort. As mentioned in Chapter 3.1, current standards and 

guidelines including ASHRAE 55 [125] and ASHRAE 90.1 [126] suggest a generalised setpoint 

temperature is currently applied within most buildings and rooms. This includes occupied hours with a 

temperature range of 22 – 27°C for cooling and 17 – 22°C for heating. For unoccupied hours, temperatures 

of 27 – 30°C for cooling and 14 – 17 °C for heating were also advised. Moreover, CIBSE Guide A Table 

1.5 [198] suggests office buildings maintained at an operative room temperature of 21 – 23°C during the 

winter and 22 – 25°C in the summer. Hence, all cases applied in this section were simulated with the room 

heating setpoint temperature of 21°C – 22°C during the building's operational hours. In addition, a 

temperature of 15°C was set for the unoccupied hours, and a cooling setpoint temperature of 25°C was 

assigned. For both the Typical Office 1 and 2 cases, building operational hours of 06:00 – 18:00 were 

assumed. However, for the Deep Learning Scenario-Based Cases, the HVAC systems' operation would be 

based on the detected occupancy level, as indicated in Figure 4-39b2-b5 and Figure 4-39c2-c5. The 

ventilation profiles (Figure 4-39d1-d5) were also based on the occupancy patterns. Table 4-16 summarises 

the occupancy and HVAC operation profiles for the simulation of the scenario-based cases. Each scenario 

was performed for a day during a typical office week during both heating and cooling seasons.   
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Figure 4-39. Occupancy and HVAC profiles for the scenario-based simulation cases. 
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Table 4-16. Summary of the occupancy and HVAC operation profiles for the simulation of the scenario-

based cases. 

 

Cases 

Typical Office 1 
Typical Office 

2 

Deep 

Learning 

Scenario 

1 

Deep 

Learning 

Scenario 

2 

Deep 

Learning 

Scenario 

3 

Deep 

Learning 

Scenario 

4 

Description 

The deep learning method is not 

applied. 

Static scheduled profiles assumed 

The deep learning occupancy detection model 

used. 

Heating, cooling and ventilation profiles are 

dependent on the assigned occupancy profile 

Occupancy 

Profile 

Figure 4-39 (a1): 

Typical Office 1 

(Constant Sitting) 

 

Figure 4-39 

(a1’): Typical 

Office 2 

(Constant 

Walking) 

 

Figure 

4-39 (a2) 

Deep 

Learning 

Scenario-

Based 

Profile 

Figure 

4-39 (a3) 

Deep 

Learning 

Scenario-

Based 

Profile 

Figure 

4-39 (a4) 

Deep 

Learning 

Scenario-

Based 

Profile 

Figure 

4-39 (a5) 

Deep 

Learning 

Scenario-

Based 

Profile 

Number of 

occupants 

present in 

the room 

8 8 

Varies according to the occupancy profile 

(achieved by the application of the deep 

learning detection approach) 

Occupancy 

Internal 

Gains 

For sitting: 

Maximum sensible 

gain: 70W/person 

Maximum latent 

gain:   

45 W/person 

Maximum sensible gain: 75 W/person 

Maximum latent gain:  70 W/person 

(To meet the maximum total of 145 W/person for the activity of 

walking) 

Heating 

Profile 

Simulation A: Heating setpoint temperature: 21°C during operational hours 

Figure 4-39 (b1) Figure 4-39 (b1) 
Figure 

4-39 (b2) 

Figure 

4-39 (b3) 

Figure 

4-39 (b4) 

Figure 

4-39 (b5) 

Simulation B: Heating setpoint temperature: 22°C during operational hours 

Figure 4-39 (b1’) 
Figure 4-39 

(b1’) 

Figure 

4-39 

(b2’) 

Figure 

4-39 

(b3’) 

Figure 

4-39 

(b4’) 

Figure 

4-39 

(b5’) 

Cooling 

Profile 
Figure 4-39 (c1) Figure 4-39 (c1) 

Figure 

4-39 (c2) 

Figure 

4-39 (c4) 

Figure 

4-39 (c4) 

Figure 

4-39 (c5) 

Ventilation 

Profile 
Figure 4-39 (d1) Figure 4-39 (d1) 

Figure 

4-39 (d2) 

Figure 

4-39 (d4) 

Figure 

4-39 (d4) 

Figure 

4-39 (d5) 

Ventilation 

Conditions 

Infiltration Rate: 0.5 ACH 

Maximum conditions: 10 L/s 
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The following presents the simulation results. Figure 4-40 provides the predicted daily occupancy sensible 

and latent heat gains. Typical Office 1 and 2 results showed the predicted occupancy heat gains when static 

or fixed occupancy profiles were set. This verified the findings made in Chapter 4.6.1 whereby the use of 

such profiles can lead to unrealistic and less diverse variation in occupancy heat gains. The four Deep 

Learning Scenario-Based cases suggest the occupancy gains were directly related to the number of 

occupants and the type of activities performed by each occupant during the day. For Case 4 when the room 

was unoccupied for the majority of the time and only a small number of occupants were present for a few 

hours, it led to the lowest occupancy heat gains (1.40 kWh). However, if such a situation happens and the 

building was operated based on the assumption corresponding to the occupancy profiles for Typical Office 

1 or 2, it can lead to an overestimation by up to 9.60 kWh and 12.50 kWh.  
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Figure 4-40. Comparison of the occupancy heat gain profiles generated using the proposed occupancy 

activity framework approach and the typically scheduled profiles. Variation of gains across time, (a). 

occupancy sensible heat gains, (b). occupancy latent heat gains and (c). the total occupancy gains. 
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The following results present the heating demand for the simulation cases for a typical winter day, 

Wednesday 8th January. Given that the simulations were performed with two different heating setpoint 

temperatures during the building operational hours, Figure 4-41a shows that the heating load for all cases 

would increase by an average of 2.62 kWh when the heating setpoint was set at 22°C as compared to 21°C. 

Therefore, changing the room set point temperature by 1°C can change the total heating demand by up to 

15.40%. Depending on the occupancy level, slight adjustments to the setpoint can be done to significantly 

affect the energy demand of the building.  

 

Figure 4-41b and c present the distribution of the predicted daily heating load. The results in Figure 4-41a 

indicated that the Deep Learning Scenario-based Cases had a higher heating load than the Typical Office 1 

and 2. It indicated that the use of the detection approach led to a reduction in occupancy heat gains, which 

impacted the heating load. Case 2 achieved the highest heating load with 18.90 kWh and 21.60 kWh for 

the two setpoint temperatures. This was due to the low number of occupants present and lower emission 

rate activities (mostly sitting), resulting in low occupancy heat gains. In comparison, Case 1 had the highest 

amount of occupancy heat gains and heating loads of 15.7 kWh and 18.4 kWh. While the lowest heating 

demand was observed for Case 4, which had no occupants in the morning and hence the heating setpoint 

was automatically lowered to 15°C when using the proposed control strategy. 
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Figure 4-41. (a). Comparison of the total heating load achieved under the different deep learning scenario-

based cases compared to the typical occupancy profiles, with room heating setpoint at 21°C and 22°C. 

(b). and (c). Variation of heating load across time for all simulated cases when a room heating setpoint 

temperature of 21°C and 22°C was assigned. 
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Figure 4-42 provides an estimation of the cooling loads for the various simulation cases during a typical 

day in the cooling season, Wednesday 14th May. Since the cooling setpoint temperature was maintained at 

25°C during building operational hours (Figure 4-39), Figure 4-42a suggests the changes in the heating 

setpoint of 21°C and 22°C presented minimal variations in the total cooling loads, with only an increase by 

an average of 0.05 kWh, which is equivalent to a change of 0.26%. As shown, the total cooling loads were 

20.90 kWh and 21.00 kWh for Typical Office 1 and 21.50 kWh for Typical Office 2. Overall, using typical 

profiles for occupancy would result in a higher cooling load than the deep learning approach-based cases. 

Higher amounts of cooling are required when there is a higher occupancy heat gain in the space. For 

example, Deep Learning Scenario 1 achieved the highest occupancy gains. This resulted in the highest 

cooling load with 18.80 kWh. 

 

Like the evaluation for heating, the lowest cooling loads were achieved by Case 4 as the deep learning 

detection approach assisted the cooling system's operations. Based on the response to the detections made, 

the cooling setpoint temperature becomes 25°C once occupants were present within the space. Hence, no 

cooling was required before noon, and only after this time, cooling up to a peak of 3.879 kW was required 

to provide a thermally comfortable environment for occupants. 
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Figure 4-42. (a). Comparison of the total cooling load achieved under the different deep learning 

scenario-based cases compared to typical occupancy profiles, with room heating setpoint at 21°C and 

22°C. (b). and (c). Variation of cooling load across time for all simulated cases when a room heating 

setpoint temperature of 21°C and 22°C was assigned. 
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Performing BES with various scenario-based cases enabled the assessment of the deep learning approach 

and provided insights into how the proposed detection method can enable HVAC systems to adapt and 

respond to occupancy's dynamic changes. Results indicate that the deep learning approach can reduce the 

under or over-estimation of occupancy heat gains. Compared with static profiles, when occupancy activities 

were monitored, it influences occupancy gains and ultimately results in a greater variation in the building 

energy demands. Results in terms of both heating and cooling loads were highly dependent on the 

occupancy profiles. Using the deep learning approach through the scenario-based cases suggests the 

heating, cooling, and ventilation profiles assigned would operate based on the response to the detections 

made to reduce unnecessary building energy loads effectively. 

 

Improvements to the current approach are required before the integration with controls of building HVAC 

systems. Future works include developing a streamlined framework-based solution to define the required 

HVAC control system conditions based on real-time detection data responses. This includes the most 

suitable indoor/ room setpoint temperature that should be assigned to HVAC systems to provide adequate 

thermal conditions based on the real-time understanding of the utilisation of the space by occupants. 

 

4.6.3. Impact Towards Building Systems Operations and Strategy 

 

Based on the findings made in Chapters 4.6.1. and 4.6.2, suggests the potential of the application of a real-

time occupancy detection approach to assist the operations of buildings. With occupancy behaviour being 

critical to the performance of buildings, indoor conditions are equally important. The achievement of good 

IAQ is directly and strongly related to the well-being, health, and comfort of occupants in indoor spaces. 

Poor indoor air quality could significantly increase health risks and reduce the productivity of occupants. 

This is a critical issue as people spend about 80–90% of their time in indoor spaces, either at home, in 

offices, or other types of buildings. Especially, children, the elderly, and people with pre-existing medical 

issues are among those who spend practically all of their time inside [216]. Moreover, one of the top five 

threats to public health is indoor air pollution [217]. According to the report produced by World Health 

Organization (WHO), it claimed over 3.8 million deaths in 2021 as being caused by indoor air pollution 

[218]. Additionally, according to the World Green Building Council (WGBC), better IAQ (lower CO2 and 

pollutant concentration) due to high ventilation rates can improve productivity by 8-11% [219]. 

Furthermore, enhancing IAQ could not only improve occupant health, well-being, and comfort but also 

contribute to significant economic benefits at a country level. 

 

In addition, this could also result in increased ventilation heat loss in cold climates and conditions or 

ventilation heat gain in hot climates [220] due to the great temperature difference between indoor and 

outdoor air. This causes unnecessary energy consumption and wastage and compromises the HVAC 

efficiency; therefore, minimising ventilation heat loss/gain in cold/hot climates can significantly reduce the 

heating and cooling demands. This is further exacerbated when the ventilation system is operated using 

fixed or static schedules and when spaces are partially occupied or unoccupied for significant periods, 

leading to unnecessary over-ventilation and -conditioning of spaces. During the pandemic, occupancy 

levels and patterns in buildings such as offices have varied greatly due to social distancing requirements, 

self-isolation, lockdown, and more employees getting accustomed to working remotely [221]. Although 

employees started to return to the office when restrictions were lifted, the pandemic has made businesses 

rethink their workplace strategies with many moving towards flexible workspace models after seeing its 
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benefits [222]. This also means that the design and operation of HVAC systems require rethinking to adapt 

to the change in occupancy. 

 

A potential solution is the use of demand-driven or occupant-centric control measures, such as demand-

controlled ventilation (DCV) which varies the ventilation of a space according to the pollution level or 

occupancy [223, 224]. There has been a rise in studies on occupant- or human-centred control strategies for 

HVAC systems [225]. Such strategies actively reflect real-time occupancy information and behaviour in 

the control of building systems. Bringing the concept of occupancy behaviour detection within indoor 

spaces as discussed in this chapter, this section aims to provide a scenario-based analysis that envisions the 

operations of DCV systems that could ensure that sufficient interior thermal conditions and air quality were 

attained to help reduce unnecessary building energy loads to improve building energy performance. 

 

Figure 4-43 presents the proposed vision-based approach framework for demand-based ventilation control. 

The occupancy detection model is implemented in a conditioned space to generate and collect real-time 

data on occupancy information with the use of an AI-enabled camera. Then a real-time occupancy profile 

will be generated based on the obtained information and inputted into the BEMS to adjust the HVAC system 

operations automatically to provide demand-based ventilation. This specific analysis focused on a 

classroom in a university building (Figure 3-8 Figure 3-93-9) as the case study room for the evaluation of 

the developed approach.  

 

 
Figure 4-43. Framework for the application of the vision-based occupancy detection approach towards 

demand-based ventilation controls. 

To evaluate the impact of using the proposed approach on indoor CO2 concentration and building energy 

performance, the case study building was modelled with the use of different ventilation scenarios by a BES 

tool and the details of the simulation and conditions are given in this section. Four ventilation scenarios 

were employed for the BES models to estimate the effectiveness of using the outcomes from this approach. 

For each scenario, four weekdays of a typical week (Monday – Thursday) in the heating and cooling season 

were chosen and simulated. Scenario A represented the situation where no ventilation occurred within the 

conditioned space, meaning all windows were always closed, and the mechanical ventilation was always 
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off. It was assumed as the worst case for IAQ. For Scenario B, as presented in Figure 4-44a, the windows 

in the space were maximally opened for natural ventilation during working hours (8:00 – 18:00). Since the 

windows installed in the room are sash windows, each window contains only one movable panel, 50% of 

the window area is the maximum open area for natural ventilation supply. Both Scenario C and Scenario D 

used mechanical ventilation to control indoor CO2 concentration. According to CIBSE Guide A [198], the 

fresh air ventilation rate required for each person was 10 L/s in this study to fit between medium and 

moderate IAQ standards. For Scenario C, as the room's maximum capacity is 11 people, the maximal 

ventilation rate of 110 L/s was constantly supplied to the room, as shown in Figure 4-43b, to provide the 

best air quality during working hours. While, for Scenario D, the ventilation rate was applied based on the 

scenario-based occupancy profile which illustrated the actual occupancy variation in the case study room 

given in Figure 4-45. In other words, the ventilation rate varied with the number of people present in the 

room for the whole day which could be predicted by the deep learning detection model. Figure 4-44c 

demonstrated the detection-based mechanical ventilation profile (Scenario D). 

 

Although it would lead to significant ventilation heat loss, Scenario B can be applied or occur during the 

heating season. For example, some buildings in the university will have openable windows which will be 

opened by the building users during the occupancy period. This is a result of the COVID-19 pandemic 

which has recently brought indoor air quality up front and increased awareness of the importance of 

ventilation to reduce the spread of COVID-19. At the same time, there are instances when building users 

have left windows open after leaving the space, during the winter which can then cause significant 

ventilation heat loss in the buildings. This scenario was considered as although it satisfied the fresh air 

requirements, it resulted in increased energy demands to heat the space to the desired comfort level. The 

air changes per hour (ACH) were estimated by the building energy simulation tools, which take a value of 

5 ach to model ventilation by window opening. In practice, this would vary throughout the day depending 

on several factors and could be evaluated later when the proposed approach is combined with a window 

detection model.  
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Figure 4-44. Scenario-based ventilation profiles applied to BES simulation. (a). Scenario B (natural 

ventilation), (b). Scenario C (static mechanical ventilation), and (c). Scenario D (detection-based 

mechanical ventilation) profiles. 
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Figure 4-45. A four-day scenario-based occupancy profile applied to the investigation of the proposed 

occupancy approach toward the impact on the operations of the demand-controlled ventilation (DCV) 

system. 

Similarly, building simulation using IESVE was employed. Simplifications to the selected case study 

building, Paton House were applied. Further details about the building and its surroundings were presented 

in Chapter 3.4 and some features were excluded such as vegetation, surrounding buildings, and interior 

furniture. For this simulation analysis, the people in the space were assumed to be constantly sitting during 

the occupied period. The heating and cooling temperatures during the building's operational period were 

set to be 21℃ and 25℃ according to ASHRAE standards [125, 126]. The details of each scenario and 

building simulation setups are provided in Table 4-17. 
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Table 4-17. Overview of the scenarios for the ventilation-based BES with the selected case study building 

for the analysis of the impact on DCV. 

 
Scenario A: 

No Ventilation 

Scenario B: 

Natural Ventilation 

(Window-opening) 

Scenario C: Static 

Mechanical 

Ventilation 

Scenario D: 

Detection-based 

Mechanical 

Ventilation 

Profile 

Windows were 

always closed, and 

mechanical 

ventilation was 

off. 

 

The windows were 

half-open during 

working hours. 

A maximum 

ventilation rate of 

110 L/s was applied 

during working 

hours. 

The ventilation rate 

was applied based on 

the number of 

occupants present 

Building 

Model 

 

Overall U-

value 

External wall (brick + gypsum plaster): 1.42 W/m2K 

External floor (cast concrete + air cavity + timber + carpet): 0.95 W/m2K 

External roof (clay tiles + timber frame + gypsum plaster): 1.46 W/m2K 

Door (timber): 2.33 W/m2K 

Window (single glazing): 5.20 W/m2K 

Infiltration 0.5 ACH 

Weather File Nottingham 

Occupancy 

Gains 

Max sensible gain: 75 W/person 

Max latent gain: 70 W/person 

Lighting 10 W/m2 

Heating 

Profile 
21°C during building operational hours (8:00 – 18:00) 

Cooling 

Profile 
25°C during building operational hours (8:00 – 18:00) 

 

The following presents the results of the proposed CNN-based occupancy detection on the impact on DCV 

with the discussions based on the IAQ and energy performances. The room IAQ can be assessed by the 

CO2 concentration. According to ASHRAE standard [226], a room with lower than 1000 ppm can be 

considered with fairly good air exchange. When the CO2 level is higher than 1000 ppm, it indicates that 

the room is polluted, indicating poor conditions for well-being, health, and productivity. While using 

different ventilation methods to maintain an adequate supply of fresh air could result in a remarkable 

difference in ventilation heat gain or loss depending on the indoor-outdoor conditions. This correspondingly 

affects the building energy consumption required to keep a good thermal comfort level for occupants. Thus, 

a balance between CO2 level and building energy demand should be achieved. The following shows the 
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analysis of the impact of the proposed approach on the CO2 level and building energy performance within 

the conditioned spaces based on the comparison with other commonly used ventilation scenarios. Building 

energy simulation was carried out to assess the CO2 concentration and ventilation heat gains within the 

selected case study room. 

 

Figure 4-46Figure 4-48 presented the simulation results in terms of CO2 concentration and ventilation gains 

from using different ventilation scenarios for four weekdays during the heating season (15-18th December) 

and the warm period (12-15th May) in the selected case study room. Scenario A-D represented the situations 

for no ventilation, natural ventilation, static mechanical ventilation, and detection-based mechanical 

ventilation, respectively. As shown in the figures, the CO2 concentration varied with the occupancy profile 

given in Figure 4-45. The ventilation heat losses changed in response to the ventilation profiles (Figure 

4-44) and the variation in external temperature. The losses were greater during the cold days and less on 

the warmer winter days. 

 

As illustrated in Figure 4-46 for the heating period, although Scenario A achieved a minimum ventilation 

heat loss, it caused a maximum CO2 level of over 3000 ppm within the test room. This suggests the 

necessity of ventilation to improve the IAQ. For Scenario B which provided natural ventilation by opening 

the windows, the lowest CO2 level was achieved during the occupied period. However, a remarkable 

ventilation heat loss was produced due to the large indoor-outdoor temperature difference in winter. The 

lower the outdoor temperature is, the higher the ventilation heat loss is within the space. This caused 

extreme discomfort and therefore an enormous increase in heating demand to maintain a comfortable indoor 

temperature. It indicates that during the cold period, in terms of thermal comfort and building energy 

efficiency, natural ventilation by opening windows is not a suitable ventilation strategy. For mechanical 

ventilation (Scenario C and D), both scenarios could provide low CO2 levels with less ventilation heat 

losses. However, in comparison to Scenario C which supplied a static airflow rate during the building 

operation period, Scenario D provided the dynamic airflow rate based on the variation of occupancy rate 

and led to a ventilation loss reduction of up to 54.56 % (32.89 kW). In comparison with Scenario B, up to 

90.96 % (266.98 kW) reduction of ventilation heat loss was achieved by Scenario D. It highlighted that 

using Scenario D could reduce the unnecessary energy demand for heating and system operation. It 

suggested that providing the real-time occupancy information collected from the proposed detection 

approach to the building ventilation system to achieve demand-driven controls could offer an opportunity 

to significantly improve the building’s energy efficiency while maintaining a good IAQ for occupants. 
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Figure 4-46. Results for the application of the different ventilation scenarios based on the potential 

application of the vision-based occupancy detection approach for DCV. (a). CO2 level, (b). Ventilation 

heat gains variation, and (c). Total ventilation heat gains during the heating season. Note that a negative 

result denotes ventilation heat loss. 
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The simulation results of using different ventilation scenarios for four days during the warm period (12-

15th May) in the case study room are shown in Figure 4-47. Similarly, Scenario A achieved the minimum 

ventilation heat loss while causing the highest CO2 concentration, which indicated that the indoor air was 

highly polluted. Scenario B resulted in the lowest CO2 level during most of the occupied period and the 

maximum ventilation heat gain of 13.93 kW due to the higher outdoor temperature in summer. For 

mechanical ventilation, both scenarios could provide low and similar CO2 levels. Scenario C generated a 

ventilation heat gain of 4.49 kW while Scenario D generated a ventilation heat loss of 1.32 kW during the 

four weekdays. Up to 5.81 kW difference of ventilation heat gain was created between Scenario C and D. 

It indicated that using Scenario D could provide real-time demand-driven controls for a good IAQ and also 

reduce the cooling energy demand in summer. However, because the UK has a temperate climate, the 

summer is generally warm and wet. The variations of the external air temperature and room air temperature 

using four scenarios for the four weekdays are presented in Figure 4-48. The peak outdoor air temperature 

was about 27 ℃ and during most of the days in summer was lower than 25 ℃. According to CIBSE Guide 

A [198] the general comfort temperature range is 20 - 26 ℃. It demonstrated that the cooling demand for 

the case study room was minor. In addition, room air temperatures using four scenarios during the occupied 

period were within the comfort temperature range. However, due to the use of natural ventilation, using 

Scenario B could reduce energy use while still maintaining a comfortable indoor environment. This 

highlighted the benefits of employing natural ventilation in the building's energy cost, greenhouse gas 

emissions, and air quality. 

 

Based on the simulation results in the selected case study room, Scenario B-D could maintain the CO2 level 

below 1000 ppm. In the cold period, up to 90.96% and 54.56% reduction of ventilation heat loss could be 

potentially achieved by the demand-driven mechanical ventilation using real-time occupancy detection 

(Scenario D) in comparison with natural ventilation (Scenario B) and mechanical ventilation with a static 

airflow rate (Scenario C). In the cooling season, using Scenario D could reduce the ventilation heat gain to 

minimize the building energy demand for cooling and system operation. It indicated that the proposed 

approach could provide demand-driven ventilation controls based on the real-time changes of occupancy 

to improve the IAQ and address the problem of under or over-estimation of the building energy 

consumption when using the static or fixed profiles. This highlighted the benefits of employing deep 

learning and computer vision techniques to monitor occupancy behaviour in real-time for the effective 

operation of the HVAC according to occupants’ actual needs. However, as the cooling demand was minor 

in the UK due to its mild weather, using natural ventilation is another beneficial option to further reduce 

the energy cost in buildings with windows or vents. Thus, an alert system which can inform people to open 

or close the windows will be integrated with the proposed approach to optimize building energy efficiency 

and keep the space well-ventilated. 
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Figure 4-47. Results for the application of the different ventilation scenarios based on the potential 

application of the vision-based occupancy detection approach for DCV. (a). CO2 level, (b). Ventilation 

heat gains variation, and (c). Total ventilation heat gains during the warm period. Note that a negative 

result denotes ventilation heat loss. 

 



 136 

 
Figure 4-48. Comparison of the external air temperature and room air temperature when using Scenario, 

A-D for the four weekdays during the warm period for identification of the potential use of the occupancy 

detection framework approach. 

In summary, scenario-based modelling of the case study building under four ventilation scenarios during 

heating and cooling seasons was carried out using BES provided results that demonstrated the proposed 

approach could provide DCV to improve the IAQ and address the problem of under- or over-estimation of 

the ventilation energy consumption when using the static or fixed profiles. It gave insights into the way that 

the proposed approach can enable the adjustment of HVACs based on occupants’ dynamic changes and 

also indicated the potential of this approach in the enhancement of indoor air quality and energy efficiency. 

This highlighted the benefits of employing deep learning and computer vision techniques to monitor 

occupancy behaviour in real-time for the effective operation of the HVAC according to occupants’ actual 

requirements. Furthermore, it leads to the next section focusing on the development of a vision-based 

detector enabling the recognition of window openings to assist the operations of naturally ventilated 

buildings.  

 

4.7. Summary 

 

To conclude and summarise the proposed occupancy detection approach toward the enhancement of 

building systems and operations, the findings in this section suggest the possibility of using selected deep 

learning vision-based approach to achieve a real-time understanding of occupancy actions within indoor 

building spaces. This includes the number of people within the space using the ‘people detector’ and the 

activities performed by occupants with an ‘occupancy activity detector’. Such variations are all dependent 

upon the input image data and the number of selected responses for the designed detector. Through the 

formation of the DLIPs with its comparison with constant static pre-scheduled profiles and the actual 

occupancy conditions, the BES results suggest the demand for such a real-time understanding of occupancy 

behaviour allows accurate adjustments on the HVAC operations. 
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Chapter 5 

 

5. Window Detection and Recognition 
 

Chapter 3.1.2 identified the actions of manual adjustments and opening of windows by occupants will lead 

to substantial building heat loss and consequent energy consumption. Hence, it resulted in the demand for 

the development of a possible control strategy that can detect and recognise the period and amount of 

window opening in real-time. In addition, it also enables adjustments in the operations of the building 

HVAC systems to minimise energy wastage and maintain indoor environment quality and thermal comfort. 

Chapter 4.6 introduced a proposed DCV approach via monitoring and understanding occupancy behaviour 

within indoor spaces. Hence, this chapter presents the initial exploration and development of a window 

detector following a similar method applied to the occupancy detector and framework approach in Chapter 

4. 

 

5.1.  Framework for the Detection and Recognition of Window Opening Towards the 

Optimisation of Building HVAC Systems 

 

Figure 5-1 presents the proposed framework approach for the detection and recognition of window openings 

towards the optimisation of building HVAC systems. This is designed to control the unnecessary or over-

ventilation of the space or times when the fresh air is more than what is required to ensure adequate indoor 

air quality. 

 
Figure 5-1. The proposed framework approach for the detection and recognition of window openings for 

the optimisation of building HVAC systems. 

5.2.  Deep Learning Method for Forming the Window Detector: Technique and Process 

 

Window detection model configurations were established using a similar approach following the steps 

shown in Chapter 3.3 as given in Figure 5-2. Different window detection models were individually trained 

using the classification-based algorithm Convolutional Neural Networks (CNN) and were evaluated based 

on real-time detection and recognition experiment tests (Chapters 5.5 and 5.6). Particular focus was given 

to the data set used and the labelling of the training data. For each detection model, a series of evaluation 

metrics were used to evaluate the performance of the trained models on the detection of the same window 

in the selected case study building. Using the deep learning influenced profiles (DLIP) generated from the 

real-time detection (Chapter 5.7), building energy simulation (BES) was also performed to predict the 



 138 

potential impact of the model framework performance on the ventilation heat loss and building energy 

demands (Chapter 5.8 and 5.9). 

 
Figure 5-2. The workflow process for the development, application and analysis of deep learning vision-

based window detector using TensorFlow techniques. 

5.2.1. Model Development and Configurations 

 

Four different window detection model configurations were established and compared in the present study. 

Table 5-1 summarises the specification of each model with varying types (opened and/or closed) and several 

datasets. Models 1 and 2 consisted of two response categories: ‘Open’ and ‘Closed’ windows, while Models 

3 and 4 consisted of only one detection response ‘Open’ windows. Model 1 represents the base model 

trained with the lowest number of images within the dataset. This will show the capabilities of the model 

to detect and recognise window openings with a limited amount of data. The number of images in Model 2 

is increased while having the same types of categories and images. This will allow the evaluation of the 

influence of the number of images in the training datasets on detection performance. Models 3 and 4, which 

only detect ‘open’ windows, will have a lower number of training and testing images. 

 

Table 5-1. Description of the training and testing image dataset for the different window detection 

models. 

Model Name Category 

Dataset Size 

No. of Images No. of Labels 

Training Testing Total Training Testing Total 

1 

Closed 100 25 125 164 36 200 

Open 100 25 125 108 27 135 

Total 200 50 - 272 63 - 
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2 

Closed 1000 250 1250 2185 576 2761 

Open 1000 250 1250 899 157 1056 

Total 2000 500 - 3084 733 - 

3 
Open 500 125 625 865 191 1056 

Total 500 125 - 865 191 - 

4 
Open 666 160 826 1398 318 1716 

Total 666 160 - 1398 318 - 

 

Pre-processing was conducted, which involved the preparation of the data for the model training. The main 

tasks include manual labelling of each of the images within the training and testing datasets using the 

software LabelImg [206]. Different methods of labelling were used for Models 1, 2, 3 and 4. Figure 

5-3presents example images indicating the types of images collected and how they were labelled. Bounding 

boxes were drawn manually around each image's selected region of interest. As shown in Figure 5-3,  

Models 1 and 2 labelling method consists of the selection of the regions around the full area of the windows 

for both open and closed windows. For Models 3 and 4, only open windows were considered for detection 

and recognition. Model 3 followed the same labelling method for open windows as Models 1 and 2. While 

for Model 4, bounding box regions were assigned around the opening gaps of the windows. In most cases, 

multiple numbers of labels were assigned to each image. The justification for only detecting open windows 

in Models 3 and 4 and opening gaps in Model 4 will be further discussed when evaluating the results. 
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Figure 5-3. Example images of windows obtained from Google Images that were used to form the 

different image datasets for the various window detection models. 

Figure 5-4 presents the CNN-based model configuration used to train the different models, following the 

model development and application workflow process given in Figure 3-4 and the generic CNN model 

shown in Figure 3-2. To assist in the development of the neural network for training, the TensorFlow Object 

Detection API was used. This framework platform provides pre-trained models to be used through a transfer 

learning approach that enables the development of an effective vision-based detector [207]. Existing models 

provided in the TensorFlow Detection Model were explored to establish the model configuration as 

highlighted in Figure 5-4. Through the assessment of the different models provided in terms of the model 

description, the speed and the COCO mAP given for the different SSD MobileNet and Faster R-CNN-based 

networks, the Faster R-CNN (With Inception V2) was selected. The time required for the training of the 

models would vary due to the differences in the input data and the desired detection output responses, and 

each of these trained detectors can be deployed to an AI-powered camera. Overall, the same model 

architecture and configuration as the ones used for the development of the occupancy detection models 

were applied.  
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Figure 5-4. CNN-based model configuration used to train the four window detection models. 

 

5.3.  Model Applications 

 

Once the model was trained to a sufficient level where losses did not decrease any further, the associated 

inference graph was exported. Directly, the model was prepared for real-time application via detection 

whereby the models were deployed to form vision-based detection cameras. The following section presents 

the details of the various experimental tests conducted within the selected case study building. Similar to 

occupancy detection, real-time detection of windows enables the recording of data in form of DLIPs. The 

following discusses how the DLIP for windows were formed.  

 

5.3.1. Experimental Tests and the Case Study Building 

 

To evaluate the performance of the different window detector configurations, a lecture room within a case 

study building was selected to perform experimental tests, which allowed real-time-based detection and 

recognition. This is the Marmont Centre at the University of Nottingham (University Park Campus, UK) 

(Figure 5-5a). Details about the building construction, materials and features are detailed in Chapter 3.4. 

This building is used mainly for teaching architecture and engineering students. It has several teaching 

spaces, a laboratory and a café. The teaching spaces include a lecture and seminar room, each with 30 - 40 

students. Students also use both rooms as workspaces during non-lecture hours and can have variable 

occupancy throughout the day. Both rooms have large openable windows and are often used by the students 

to ventilate the space. Some windows are left open in some cases, which leads to a significant waste of 

heating energy during cold periods. Like most buildings in the University, the windows are manually 

operated and do not have any sensors to detect and prevent such issues. Such a space could benefit from 

the installation of a window detector. Figure 5-5b presents the setup for the experimental tests. A 90-degree 

field of view camera was used for the detection, positioned towards the ‘South Facing Windows 1’ located 

near the room's ceiling. Figure 5-5c presents the floor plan of the first floor, along with the arrangement of 

the experimental setup. 
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Figure 5-5. (a). Marmont centre at the University of Nottingham, UK. (b). Set up for the experimental 

tests 1 - 5, with the floor plan of the first floor of the building in Figure (c). 

In summary, a total of six experimental tests were conducted within the building with the setup shown in 

Figure 5-5. Experimental Tests 1 – 4 were assumed to be the same, allowing a recorded video that enabled 

accurate detection performance analysis between each of the developed models (Models 1, 2, 3 and 4) via 

the techniques of ‘offline’ video feed tests. Corresponding results for such comparison are presented in 

Chapter 5.5. While Experimental Tests 5a and 5b adopted Model 4 and consisted of two separate 15-minute 

tests focusing on a scenario whereby an occupant is taking action towards changes in the window opening. 

Effectively, Experimental Tests 5a and 5b were conducted to provide BES analysis to show the significance 

and the impact of window openings through comparison with constant static and actual window profiles 

towards building energy performances and to also provide scenario-based analysis in terms of common/ 

extreme conditions to present possible adjustments towards system controls to enhance indoor air quality 

and ventilation conditions once the window status was acknowledged. 

 

5.3.2. Formation of the Window-based Deep Learning Influenced Profiles (DLIPs) 

 

For Experimental Tests 1 – 4 to assist in the performance evaluation of all the trained window detectors 

(Models 1 - 4), a scenario where an occupant would operate the windows within the selected building space 

was recorded. This ensured that the same scene or segment of occupancy actions towards the opening/ 

closing of the windows were used to evaluate each detection model configuration. Furthermore, it also 

ensured that other factors such as slight variation in the actions performed by the occupant, indoor lighting 

conditions and glare did not influence the results, providing a fair comparison between the model’s 

detection and recognition abilities.  
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The detection and recognition responses were obtained and recorded every two seconds, generating the 

Deep Learning Influenced Profile (DLIP). Figure 5-6 presents an example of the process of generating the 

DLIP using the different detection model configurations for the selected case study building and 

experimental test. Models 1 and 2 would generate 2 profiles based on two responses, open and closed 

windows, whereas Models 3 and 4 would only generate a profile for open windows only. The formed DLIPs 

would be assessed and compared with typical static profiles of ‘constant open and closed’ profiles, together 

with the true ‘actual observation’ of the window conditions to evaluate the overall performance of each 

window detector.  

 
Figure 5-6. Example of the process of real-time detection, recognition and formation of the deep learning 

influenced profiles (DLIP) using different window detectors (Models 1, 2, 3, and 4). 

 

5.4.  Window Model Training Results 

 

All models were trained until converged, as detailed in Table 5-2, and the duration varied across the 

different detection model configurations. This is due to the differences in the pre-processing approach and 

size of the model’s training datasets of the different window detectors.  
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Table 5-2. Training results for the different window detection models. 

Training 

Conditions and 

Results 

Model 

(a) 1 (b) 2 (c) 3 (d) 4 

Pre-trained 

Model Used 
Faster RCNN with InceptionV2 

Total Steps 91,842 104,396 86,523 199,630 

Training 

Duration 

6 hours, 1 

minute, 49 

seconds 

7 hours, 19 minutes, 

2 seconds 

5 hours, 29 

minutes, 49 

seconds 

11 hours, 29 

minutes, 46 

seconds 

Maximum Loss 2.876961 2.037059 1.821876 1.236806 

Minimum Loss 0.005654 0.000113 0.010038 0.01519 

Total loss 

versus the 

number of 

training steps 

 

 

With the same baseline CNN model configuration (Figure 5-4) applied to the training of all four models, 

the following presents an initial analysis of the trained model performances through the detection and 

recognition ability of the still images located in the test dataset (Table 5-1). To provide an effective analysis 

of the initial model performances, results were presented in form of a confusion matrix and the common 
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classification metrics. The same images were given in all the testing datasets, and these were similar to the 

images used for the training of the detection models.  

 

The variation in the labelling techniques and response selection before the training of the models was 

reflected in the results given in Table 5-3. With Models 1 and 2 consisting of the two response categories 

of ‘Open’ and ‘Closed’, it presented an overall F1 score of 0.7981 and 0.6878, indicating the occurrence of 

false positives and false negatives in detecting the window conditions was high, suggesting high possibility 

in incorrect detections when two response identification categories were required. Contrastingly, Model 3 

was trained to only recognise opened windows and had a higher F1 score of 0.8765. Furthermore, with 

Model 4 designed to recognise the opening gaps of windows, it achieved an overall F1 score of 0.9346 with 

the highest potential in recognising opened windows. To further evaluate the performance of each model, 

all models were applied under an experimental test in a selected case study building and analysis in terms 

of its detection and recognition ability and its impact on building energy was further explored in the 

following sections. 

 

Table 5-3. (a). Detection performance results are based on the still images from the test dataset, presented 

in the form of a confusion matrix and assessed in terms of common evaluation metrics. 

Confusion Matrix 

 

Classification Accuracy Precision Recall F1 Score 

(a) Model 1 

Open 80.95% 0.8572 0.9167 0.7500 

Closed 80.95% 0.7857 0.666 0.8461 

Average for both types 80.95% 0.8215 0.7914 0.7981 

(b) Model 2 

Open 73.67% 0.4401 0.7861 0.5643 

Closed 73.67% 0.9243 0.723 0.8113 

Average for both types 73.67% 0.6822 0.7546 0.6878 

(c) Model 3 

Open 78.01% 0.8142 0.9490 0.8765 

(d) Model 4 

Open 87.73% 0.9621 0.9088 0.9346 
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5.5.  Detection Performance of Models Based on Experimental Tests 1 – 4 

 

This section presents the analysis of the detection performance conducted using the developed window 

models 1 - 4 during Experimental Tests 1 – 4. It should be noted that these experimental tests were based 

on one recorded video obtained during a recording taken in the selected case study building to allow direct 

and accurate analysis, identifying the differences between the developed models and their performance in 

real indoor situations. These screenshots and video recordings captured are for visual purposes only. None 

of these forms of data is stored within the developed vision-based detectors. 

 

5.5.1. Real-Time Window Detection 

 

The real-time detection and recognition of the open windows in the case study lecture room/ tutorial room 

(Marmont Centre) with the comparison of the different window detection model configurations are 

presented in Figure 5-7, with Video 2. Figure 5-8 shows an example of the output of the detection and 

recognition performed on the video recorded. A clear variation can be observed between the different 

models’ recognition of the open windows. The differences between the methods of labelling and the 

selected response outcomes resulted in the different forms of the bounding boxes around the detected 

windows. It shows that the size and shape of these bounding boxes varied between each detection interval 

and the desired response associated with the model configuration applied. For most of the detection period, 

Model 1 recognised that all four windows were one standalone window, and only one detection response 

of either open or closed was given. Whereas Model 2, which was trained with a greater number of images, 

could recognise windows separately and had fewer false/incorrect detections; however, the model was not 

accurate and reliable in identifying all four windows and their actual conditions. This clearly shows the 

importance of the data set size when training the window detection model. 

 

https://drive.google.com/file/d/1MYkpeg_WxMI4x2Ij7fuR-B6BqlvlsR-2/view?usp=share_link


 147 

 
Figure 5-7. Comparison of the detection of open windows using the different models. (see Video 2). 

 

A different approach was taken when designing Models 3 and 4 window detectors. Both approaches only 

detected and recognised open windows. This simplified the detection method and reduced the training data 

preparation task, with only open windows required to be labelled. Although the detection of closing/closing 

of windows could potentially be useful in some applications, detecting open windows only could be 

adequate for notifying/alerting users or automatically adjusting the HVAC. For most instances, Model 3 

provided detection responses similar to Model 2 with correct identification of the four separate windows. 

However, the person and objects outside the window region were sometimes detected as open windows.  

 

Model 4 was able to detect open windows more accurately and reliably by focusing only on the openings 

or gaps of the windows. In some cases, two bounding boxes were assigned to a detected open window, 

increasing the chances of each window being detected and recognised. As observed, bounding boxes could 

be assigned to the vertical or the horizontal opening gaps. Since the size of the windows could be larger 

compared to objects such as occupancy body size and size of objects/furniture within a room, this approach 

could reduce the occurrence of obstruction impacting detection performance and leading to incorrect and 

no detection. This also raises the possibility of estimating the window opening size, which can be developed 

in future works. 

https://drive.google.com/file/d/1MYkpeg_WxMI4x2Ij7fuR-B6BqlvlsR-2/view?usp=share_link
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Figure 5-8. Snapshots of window detection and recognition during various key stages of the experimental 

test using the different window detectors. 

5.5.2. Window Detection Performance Analysis 

 

The following section analyses the detection and recognition performance and identifies the benefits and 

limitations of each of the window detection model configurations. Figure 5-9 compares the average IoU for 

each configuration. Overall, Model 1 had the lowest number of images within the dataset and achieved an 

average IoU of 97.68% for open windows and 82.90% for closed. Model 2 achieved an average IoU of 

86.2% for open, and 86.84% for closed. Although Model 1 had a higher IoU for the open window condition, 

which shows how accurate a detector is on a particular dataset, it did not reflect in the real-time detection 

and recognition observed in Video 2 and Figure 5-8.  

 

With the selected window configuration, it was assumed that the window on the top left was Window A, 

the top right was Window B, the bottom left was Window C and the window on the bottom right was 

Window D. As shown in Figure 5-9, Model 3 achieved a more consistent detection IoU between all the 

windows with an average IoU of 96.82%. The results also followed a similar trend to Model 1, with 

Windows A and B achieving higher IoU than Windows C and D. This is probably due to the occupant's 

presence obstructing the lower windows. Despite achieving the highest detection IoU, this model also 

identified other objects within the building space as the selected response, this is not included in the results 

shown. Such errors in detection were avoided through the labelling method used in Model 4, giving an 

https://drive.google.com/file/d/1MYkpeg_WxMI4x2Ij7fuR-B6BqlvlsR-2/view?usp=share_link
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overall IoU of 95.12%. Despite the lower IoU achieved for Window A with an IoU of 85.74%, consistent 

IoU were achieved for Windows B, C and D, indicating the labelling method can avoid problems related to 

obstruction. 

 



 150 

 
Figure 5-9. Average IoU (%) of the windows during the experimental test based on the application of 

Models 1 – 4. 
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Table 5-4Table 5-5Table 5-5 presents the detection performance for Models 1, 2, 3 and 4 regarding the 

percentage of time achieving correct, incorrect, and no detections. This will provide a greater understanding 

of the detection performances of the different model configurations. Based on Model 1 results, a 

consistently low percentage of time achieving correct detection across all four windows and for both 

window condition responses, an average of 28.73% of the time achieving correct detections. Both incorrect 

and missed detections were mainly due to the open windows being identified as closed. Model 1 had an 

average incorrect detection of 9.44%, with Window C receiving the highest number of incorrect detections. 

While the most no/missed detections were for opened Window A.  

 

Table 5-4. Comparison of Window Models 1 and 2 performances in terms of the percentage of time 

achieving correct, incorrect, and no detections. 

Percentage of 

Time Achieving 

(%) 

Open and Closed Windows 

Window A Window B Window C Window D All Windows  

Open Closed Open Closed Open Closed Open Closed Open Closed 
Combination 

of Both 

Model 1 

Correct 

Detections 
29.14% 28.48% 27.15% 29.14% 29.80% 28.48% 28.48% 29.14% 28.64% 28.81% 57.45% 

Incorrect 

Detections 
16.56% 0.00% 15.23% 3.97% 17.88% 0.00% 14.57% 3.97% 16.06% 1.99% 18.05% 

No/Missed 

Detections 
20.53% 5.30% 15.89% 8.61% 20.53% 3.31% 17.22% 6.62% 18.54% 5.96% 24.50% 

Model 2 

Correct 

Detections 
3.31% 1.99% 2.65% 2.65% 22.52% 15.89% 43.05% 39.07% 17.88% 14.90% 32.78% 

Incorrect 

Detections 
0.00% 0.00% 0.00% 0.00% 11.26% 0.00% 1.32% 0.66% 3.15% 0.17% 3.31% 

No/Missed 

Detections 
62.91% 31.79% 55.63% 39.07% 34.44% 15.89% 15.89% 0.00% 42.22% 21.69% 63.91% 

 

Table 5-5. Comparison of Window Models 3 and 4 performances in terms of the percentage of time 

achieving correct, incorrect, and no detections. 

Percentage of Time Achieving (%) 

Open Windows 

Window A Window B Window C Window D 
 

All windows  

Model 3 

Correct Detections 98.68% 62.25% 93.38% 68.21% 80.63% 

Incorrect Detections 1.32% 37.75% 6.62% 31.79% 19.37% 

No/Missed Detections 0.00% 0.00% 0.00% 0.00% 0.00% 

Model 4 

Correct Detections 82.12% 100.00% 63.58% 98.01% 85.93% 

Incorrect Detections 2.65% 0.00% 4.64% 0.00% 1.82% 

No/Missed Detections 15.23% 0.00% 31.79% 1.99% 12.25% 

 

Model 2 achieved a higher percentage in terms of the time it achieved correct detections, an average of 

32.78%, and a lower number of incorrect predictions. However, it led to a high number of no/missed 

detections up to 63.91% of the time. This shows that both model configurations will not be suitable for the 

required detection of the windows in the lecture room, as it will lead to many incorrect notifications/alerts 

and incorrectly adjust the heating of the room. Although the model could potentially be improved by using 
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a larger dataset for training, the detection method in Models 3 and 4 led to higher detection performance 

(Table 5-3), while using a small dataset for training. A significantly higher average of correct detections 

was achieved, 80.63% for Model 3 and 85.93% for Model 4. 

 

Figure 5-10 and 5-11 presents the case study test results in the form of a confusion matrix. As discussed 

previously, Model 1 was not able to adequately identify each of the individual windows, and as expected, 

it led to relatively low percentages for true positives compared to false positives and false negative results 

(shown in Figure 5-8a-e). For Model 2, similar results were achieved specifically for Windows A and B.  

 

Model 3 indicated good performance, in particular, the detection of Windows A and C with relatively high 

true positive results of up to 92.08%. However, it indicated lower performance for Windows B and D with 

false positive values of 41.3% and 34.53%, giving an overall percentage of 76.17% for true positives on all 

four windows. Model 4 presented the best performance with the highest number of true positives (up to 

100%), and only a lower value was achieved for Window C (50%), which may have been affected by the 

occupant obstructing the window openings. An overall value of 78.43% was achieved for true positives for 

Model 4. 
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Figure 5-10. Detection performance results for Window Models 1 and 2 in the form of a confusion 

matrix. 
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Figure 5-11. Detection performance results for Window Models 3 and 4 in form of a confusion matrix. 

 

Table 5-6 and 5-7 presents the results in terms of the common evaluation metrics, including the accuracy, 

precision, recall, and the associated F1 score that was based on the occurrence of the labelled instances for 

each of the windows. Overall, Model 4 provided the best performance with the highest accuracy of 78.43% 

and an F1 score of 0.8791. Model 1 had the poorest performance based on quantitative and qualitative 

results. It could not detect the four windows separately, whereby the windows were assumed as one in most 

instances. Unanticipated results were obtained with Model 2 as given by the results in terms of the IoU 
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(Figure 5-9), which was also seen in Table 5-3, the addition of more images to the training dataset did not 

lead to improved detection performance. Yet overall, it had a better performance compared to Model 1 in 

detecting and recognising the individual windows, but it did not perform well in terms of detecting all 

windows. As for Model 3, having only one selected response outcome enabled better identification of the 

separate windows. However, this model was limited and, in some cases, identified other objects as opened 

windows, such as the drawing board. Model 4 was able to detect open windows more accurately by focusing 

only on the openings or gaps of the windows.  

 

Table 5-6. Evaluation of Window Models 1 and 2 performances based on common classification 

evaluation metrics. 

Window Class Window Accuracy Precision Recall F1 Score 

Model 1 

A 

1 Open 62.91% 1.0000 0.4400 0.6111 

2 Closed 78.14% 0.6323 0.8431 0.7227 

Average for both types 70.53% 0.8162 0.6416 0.6669 

B 

1 Open 64.91% 0.8724 0.4659 0.6075 

2 Closed 72.19% 0.6568 0.6985 0.6770 

Average for both types 68.55% 0.7646 0.5822 0.6423 

C 

1 Open 61.59% 1.0000 0.4369 0.6081 

2 Closed 78.81% 0.6143 0.8959 0.7289 

Average for both types 70.20% 0.8072 0.6664 0.6685 

D 

1 Open 64.24% 0.8777 0.4725 0.6143 

2 Closed 74.84% 0.6667 0.7335 0.6985 

Average for both types 69.54% 0.7722 0.6030 0.6564 

Model 2 

A 

1 Open 36.43% 1.0000 0.0400 0.0770 

2 Closed 72.98% 0.9244 0.2353 0.3752 

Average for both types 54.71% 0.9622 0.13765 0.2261 

B 

1 Open 44.37% 1.0000 0.0455 0.0870 

2 Closed 60.93% 1.0000 0.0635 0.1195 

Average for both types 52.65% 1.0000 0.0545 0.1033 

C 

1 Open 54.30% 1.0000 0.3301 0.4964 

2 Closed 72.85% 0.5853 0.5 0.5393 

Average for both types 63.58% 0.7927 0.4151 0.5179 

D 

1 Open 82.81% 0.9849 0.7144 0.8281 

2 Closed 98.02% 0.9673 0.9834 0.9753 

Average for both types 90.42% 0.9761 0.8489 0.9017 
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Table 5-7. Evaluation of Window Models 3 and 4 performances based on common classification 

evaluation metrics. 

Window Class Window Accuracy Precision Recall F1 Score 

Model 3 

A 

1 Open 

98.02% 0.9802 1.0000 0.9900 

B 58.70% 0.5870 1.0000 0.7398 

C 91.15% 0.9115 1.0000 0.9537 

D 65.47% 0.6547 1.0000 0.6547 

Model 4 

A 

1 Open 

100.00% 1.0000 1.0000 1.0000 

B 100.00% 1.0000 1.0000 1.0000 

C 50.00% 0.8872 0.5340 0.5000 

D 96.74% 1.0000 0.9674 0.9834 

 

5.6.  Detection Performance of Models Based on Experimental Tests 5a and b 

 

Based on the results given in Chapter 5.5 for Experimental Tests 1 – 4, suggest the possibility of using 

Model 4 for the most accurate window detection and recognition. Hence, this led to further tests using this 

model in Experimental Tests 5a and 5b. Firstly, Figure 5-12 shows the real-time detection and recognition 

results for the different windows located in the room. Through the detection of the north-facing window, 

along with the south-facing window 1 from two different camera angles and lighting conditions, it was 

observed that windows that were opened were identified. Further training would be made to improve the 

detection accuracy and to reduce the possibility of achieving false detections. Effectively, further 

improvements towards the model's ability to detect other window types are required. Hence, both 

Experimental Test 5a and 5b still focused on the detection of the south-facing windows. 

 

 
Figure 5-12. Detection and recognition result on different windows in the selected Marmont Lecture 

Room. 

To show the capability of the proposed approach using Model 4, two real-time experimental detection tests, 

Experimental Test 5a and 5b were performed within the Marmont Lecture room. The test was based on the 

same set-up given in Figure 5-5 and each test was performed for 15 minutes following the scenario given 

in Figure 5-13 to highlight a typical scenario of the interaction of occupancy behaviour impacting the 

window conditions. Similarly, both experimental tests had the camera positioned at the height and angle 

replicating typical occupancy sensors, by locating the camera near the ceiling of the room. 
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Figure 5-13. Window detection experimental tests 5a and b scenarios. 

 

5.6.1. Real-Time Window Detection and Recognition 

 

Figure 5-14 and  5-15 both provide examples of window detection and recognition during Experimental 

Test 5a and 5b that were based on the key stages as highlighted by the timelines given in Figure 5-13. The 

results showed its capabilities in detecting opened windows during times when there is no one near/beside 

the window and the action of a person opening a window and times when a person is sitting near to the 

window. It also showed its capabilities when artificial lighting is switched off. As given by the snapshots, 

the size and shape of these bounding boxes varied between each detection interval. It was dependent on the 

size of the detected space, and the distance of the camera from the detected window, and it was also 

dependent upon the influence of the presence of a person which can be considered as an obstructing object.  

 

In addition, the method in the labelling of the gaps of opened windows within the images in the training 

dataset resulted in instances of windows achieving two bounding boxes assigned to one window. For 

example, this was presented in all the detections highlighted in Figure 5-14, with one horizontal and one 

vertical bounding box assigned. Otherwise, in instances such as the top left window shown in Figure 5-15, 

only one bounding box was present as the vertical gap within the window was not clearly shown.  

 

Hence, the proposed method of detecting window opening gaps potentially reduces the occurrence of issues 

such as obstruction as typically, the size of the windows will be larger in comparison to objects such as 

occupancy body size and size of general objects within a room. This suggests the full window would be 

unlikely to be always blocked. Furthermore, a window should not be blocked as this could lead to other 

issues such as daylighting and visual comfort within buildings. 
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Figure 5-14. Snapshots of various key point stages during the application of the window detection 

approach (Model 4) during Experimental Test 5a. 
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Figure 5-15. Snapshots of various key point stages during the application of the window detection 

approach (Model 4) during Experimental Test 5b. 
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5.6.2. Window Detection Performance Analysis 

 

Based on the detections shown in Chapter 5.6.1, the following shows the analysis of the model detection 

and recognition performance throughout different segments during the experimental tests conducted within 

the case study building.  

 

Figure 5-16 presents the average IoU detection accuracy for both experiments.  No results were obtained 

for parts 1 and 2 of both experiments, as all windows were identified as not being opened. For the other 

parts, it indicated an average detection accuracy of 98.19% was achieved for Experimental Test 5a, and 

96.67% for Experimental Test 5b. A threshold limit with a minimum detection accuracy of 60% was set to 

only enable the display of detections when the accuracy is above this value. This mitigates any form of 

uncertain predictions. Stable performance was achieved, as minimal variations were presented within the 

accuracies between parts 3, 4 and 5 in both experimental tests (the different parts correspond to the different 

segments of the timelines shown in Figure 5-13).  

 

The highest prediction accuracy was achieved in part 3. This was when the windows were opened, and 

minimal movement was performed by the person. Similar results were achieved in part 4, and only a slight 

decrease in accuracy values was achieved when the lights were switched off in part 5. Overall, the results 

suggest that the developed model can detect multiple numbers of windows under various room conditions. 

However, this is only based on the initial detection at the selected period of time. Hence, further model 

training and testing would be performed to achieve higher detection accuracies for various types of 

windows. 
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Figure 5-16. Average IoU detection accuracy based on the displayed bounding box during real-time 

predictions in (a). Experimental Test 5a and (b). Experimental Test 5b. 

Figure 5-17 presents the overall detection performance of the proposed approach during the two 

experimental tests. For Experimental Test 5a, Figure 5-17a suggests the approach provided correct 

detections for an average of 99.61% of the time, 0.28% of the time to achieve incorrect detections and 

subsequently, 0.11% of the time with no detections. Similarly, for Experimental Test 5b, Figure 5-17b 

suggests it achieved correct detection 97.56% of the time, 1.94% of the time to achieve incorrect detections 

and no detections occurred for 0.50% of the time. Obtaining a correct detection represents the instance 

when the opened windows were correctly identified as open, and for the times when detection was correctly 
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not made when windows were closed. Generally, the performance of the model was better in Experimental 

Test 5a than in Experimental Test 5b.  

 

Based on the breakdown of the detection performance for each of the five parts of each of the experimental 

tests, part 2 achieved the most amount of incorrect detection, 1.25% of the time. This could be because the 

person was within the detection frame and displaying false results in suggesting windows being identified 

as opened when they were not. Similarly, this may also cause the result of incorrect detection in part 3 of 

detection performance during Experimental Test 5b, with incorrect detections recorded for 3.13% of the 

time and no detection for 1.88% of the time. 

 

 
Figure 5-17. Detection performance during a). Experimental Test 5a and b). Experimental Test 5b. 

Identification of the percentage of time achieving correct, incorrect, and no detections during the whole 

duration of each test and for each of the sections. 

Figure 5-18 presents the results for the different parts of the experimental tests in the form of a confusion 

matrix based on the prediction response label of ‘open’ displayed on the detected windows. Since no 
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windows were opened in parts 1 and 2 of both tests, no results were given for the majority of the confusion 

matrix displayed. However, for part 2 in Experimental Test 5a, three labels were present in identifying 

windows as opened, when they were not. This resulted in the only value displayed in this matrix. Similar 

to the results shown in Figure 5-17 of the overall detection performance, the results shown in the confusion 

matrix for parts 3, 4, and 5 for both experimental tests, suggest that most labels were correctly assigned to 

the opened windows. Only the occasional instances when the opened windows were not identified, so no 

labels were assigned. Also, times when labels were assigned to windows that were closed. 

 

 

 
 

Figure 5-18. Experimental Test 5a and b detection performances evaluated in the form of the confusion 

matrix based on the labels identified. From clockwise, no person, a person sitting with windows closed, a 

person sitting with windows opened, no person, no person with lights off, entire duration. 
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The confusion matrix results displayed in Figure 5-18 for each part enabled the evaluation of the results in 

the form of the different classification evaluation metrics, as shown in Table 5-8. An accuracy of over 99% 

accuracy with an F1 score of 0.9951 was achieved for the performance during experimental test 5a and an 

accuracy of 96% with an F1 score of 0.9797 for experimental test 5b. 

 

Table 5-8. Evaluation of the model performance during Experimental Test 5a and b, based on common 

evaluation metrics. 

Section Accuracy Precision Recall F1 Score 

Experimental Test 5a 

Part 1: No person N/A N/A N/A N/A 

Part 2: Person sitting, 

the window closed 
N/A N/A N/A N/A 

Part 3: Person sitting, 

windows opened 
99.15% 1.0000 0.9915 0.9957 

Part 4: No person 99.45% 0.9945 1.0000 0.9972 

Part 5: No person, 

lights off 
99.67% 0.9967 1.0000 0.9983 

The whole duration of 

experimental test 1 
99.03% 0.9931 0.9972 0.9951 

Experimental Test 5b 

Part 1: No person N/A N/A N/A N/A 

Part 2: Person sitting, 

the window closed 
N/A N/A N/A N/A 

Part 3: Person sitting, 

windows opened 
93.28% 0.9569 0.9737 0.9652 

Part 4: No person 98.18% 0.9818 1.0000 0.9908 

Part 5: No person, 

lights off 
95.27% 0.9527 1.0000 0.9758 

The whole duration of 

experimental test 2 
96.01% 0.9680 0.9916 0.9797 
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5.7.  Comparison of the Deep Learning-Influenced Window Profiles with Actual 

Observation 

 

Based on the detection given in Video 2, Figure 5-19 presents the generated DLIP of the opening patterns 

for the selected windows in the Marmont Room during the experimental tests using the different models. 

The Actual Observation Profile defined the ‘actual’ window condition and was used to assess the 

performance of each model. The DLIP was based on a modulating number of detected opened windows, 

with the value of 1 representing the times when all four windows within the detection frame were identified 

as open. For all models, the generated DLIP still alternates between the values of the window profile 

schedule, indicating prediction error. Therefore, further improvements are required to enhance the detection 

model's accuracy, reliability, and stability. Comparing the results based on these four models applied to the 

experiment test indicates that Model 4 provides the least amount of variation in terms of errors in 

predictions, providing the most accurate results compared to the actual observation profile.  

 

https://drive.google.com/file/d/1MYkpeg_WxMI4x2Ij7fuR-B6BqlvlsR-2/view?usp=share_link
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Figure 5-19. Deep learning-influenced window profiles (DLIPs) were generated from the application of 

the different models during the experimental test plotted against the Actual Observation Profile. 

Correspondingly, Figure 5-20 presents the generated DLIPs of the opening patterns for the selected 

windows in the Marmont Room during a). Experimental tests 5a and b). Experimental test 5b. Similarly, 

the DLIP still alternates between the values of the window profile schedule, indicating a prediction error. 
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Therefore, further improvements are required to enhance the accuracy, reliability and stability of the 

detection model.  

 

 

Figure 5-20. Generated DLIPs based on the window detection results performed in Experimental Tests 5a 

and b, along with the corresponding actual window conditions. 

5.8.  Evaluation of the Window Detection Framework Approach Using Building Energy 

Simulation 

 

The comparison of the DLIP with the actual observation in Chapter 5.7 presented an initial analysis towards 

the effectiveness of each of the window models. To further assess the model performances and to suggest 

how the framework would be operated under various window conditions, the following section presents the 

use of building energy simulation to analyse the impact of the application of the different window profiles 

through various simulation cases. 

 

5.8.1. Impact of the Window Detection Performance on Building Energy and 

Ventilation Heat Losses 

 

Building energy simulation (BES) was used to predict the potential impact of the detection method on 

ventilation heat loss and building energy demands. The case study building model was set to operate 

between 09:00 – 17:00. The base building model employed an HVAC system operating with a conventional 
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control system, which used a fixed operation schedule (Figure 5-21d-e). Additionally, scheduled-based 

profiles for windows (fully opened and closed), occupancy, and lighting were set, as shown in Figure 5-21a, 

d and e. The occupancy was assumed to be 40 people, and the lighting was 10 W/m2 during the building 

operation period. Scenario-based simulations were carried out to evaluate the impact of the vision-based 

detector on the ventilation heat loss and heating energy demand. While it is ideal that the profiles are 

generated using the detection method (following the process shown in Figure 5-6). are directly inputted into 

the BES model, the minimum simulation time step in IESVE is 10 minutes. Hence, smaller time steps would 

be necessary for the direct input of these profiles. This is because the detection and recognition responses 

were obtained and recorded every two seconds. Future works should consider employing other methods 

which can capture the detail of the detection operation in simulations. However, for comparison, the 

generated profiles were extended to an entire class period. This means every detection is now equivalent to 

1 min in the simulation. While this does not directly correspond to the real-time detections, it would still 

allow us to evaluate the impact of detections (correct, incorrect and missed detections) on the predicted 

ventilation heat loss. While occupancy can also be detected using a similar approach as the window detector, 

this was not evaluated in this study.  

 

 

 

Table 5-9 summarises all the different combinations of assigned profiles used for all the simulation cases.   
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Figure 5-21. Predefined constant ‘static’ profiles for occupancy, windows, lighting, heating and cooling 

were used for the assessment of the results from window detection building energy performances. 
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Table 5-9. Summary of the profiles assigned to the different simulation cases to evaluate the impact of 

window detection on building energy. 

Simulation Cases 

Assigned Profiles 

Window 

(Figure 5-21a) 

Occupancy 

(Figure 5-21b) 

Lighting 

(Figure 

5-21c) 

Heating 

(Figure 

5-21d) 

Fixed Profiles 

1 Constant open Constant sitting 

during operational 

hours 

Standard typical 
2 Constant closed 

Deep Learning-

Influenced 

Profiles 

 

1, 

2, 

3, 4 

DLIP profiles 

(extended to full 

class period) 
Actual (extended to 

full class period) 

Actual (extended to full 

class period) 

Actual Observation 
Actual (extended to 

full class period) 

Actual (extended to full 

class period) 

 

The following section analyses the impact of the application of the window detection model on the building 

energy performance, specifically evaluating the heating load and the ventilation heat losses through the 

window openings. While Model 1 and, to some extent, Model 2 were highly inaccurate and not well suited 

for the required application, both models are still evaluated here to show their impact on energy 

performance. As mentioned previously, the generated profiles were extended to an entire class period in 

the simulation. This was due to the limitation of the BES tool. While this does not directly correspond to 

the real-time detections, it would still allow us to evaluate the impact of detections (correct, incorrect, and 

missed detections) on the predicted ventilation heat loss. Figure 5-22 presents the predicted hourly 

ventilation heat loss for all the simulated scenario cases during a typical winter/heating day in the selected 

case study building. The results were related to the simulated window opening profiles and the airflow 

conditions across the four windows during the selected time and day. The maximum and minimum 

ventilation heat losses were obtained in the simulations, which assumed the window to be either constantly 

open or closed. These were used for comparison purposes. Compared with the “actual” profile results, using 

fixed or static profiles to simulate the window conditions is insufficient and can lead to inaccurate prediction 

of ventilation heat loss. As observed in Figure 5-22, higher detection accuracy led to better prediction of 

the ventilation heat losses. The percentage differences between the results of Models 1, 2, 3 and 4 and the 

actual profile were 22.83%, 105.38%, 22.07% and 19.60%. While Model 1’s performance as a detector was 

poor, it could still provide a reasonable prediction of heat loss, particularly during the occupancy period. 

While Model 2, which had difficulties detecting all the open windows, did not perform as well as the others. 

 

Figure 5-23 shows the results of the heating energy load in the simulated space. To maintain the room 

within the setpoint temperature of 21°C during the occupancy period, a high amount of heating energy 

would be required at the start of the class during the heating period at 10:00. This immediately decreased 

once the occupants start to go into the room and generate the internal heat gains. Similar to the findings in 

Figure 5-23, Model 4 achieved the closest prediction of heating energy load (as compared to the actual 

profile), while Model 2 had the worst performance. As observed, Model 2 underpredicted the heating 

energy demand as it mostly recognises only one of the four windows open during the occupancy period. 
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Figure 5-22. Ventilation heat loss predictions based on the simulation of the predefined fixed profiles 

(Constant open and constant closed), along with the window detections using Models 1 – 4, and the 

Actual Observation profiles. 

 
Figure 5-23. Building heating load prediction based on the simulation of predefined fixed profiles, along 

with the window detection and Actua Observation profiles. 

Based on these results, the detection and recognition ability of the models ultimately influenced the 

prediction of the ventilation heat loss and heating demand. While the model configuration had a significant 

impact on the detection performance, other factors, such as the lighting conditions and obstructions, also 

affected the performance. This led to variations in the detection performance and predictions thought the 

detection period. The results highlighted the importance of the data set size and labelling method on the 

performance of the window detector. Model 4 provided the best detection performance, resulting in the 
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most accurate prediction of ventilation heat loss. However, further evaluation and validation of the detection 

method should be conducted. The model’s performance under different room settings and environmental 

conditions should be explored. Practical aspects, including people blocking the detector view and/or 

windows within the selected room, leading to inaccurate detection and recognition, should be addressed. 

For example, the device can provide alerts or sound notifications when the detector view is obstructed.  

 

5.9.  Scenario-Based Simulation and Analysis 

 

During the winter seasons in cold or temperate climate locations such as the UK, high amounts of energy 

would be wasted due to windows being left open while building heating systems would still be in operation. 

An example is the selected lecture room within the Marmont Centre, which was used to conduct all 

experimental tests, where it relies on conventional control systems for the HVAC. Typical ‘static’ or fixed 

operation schedules were used. However, this cannot adjust according to the actual requirements of the 

space.  

 

The following presents the set-up of test scenarios used to investigate the impact on building energy demand 

when the deep learning approach is applied. The scenario consists of the schedules indicated in Figure 5-24. 

The four-day period, Friday to Monday timeline provides a sample structure of how the room is occupied 

during a typical weekend during the winter months, between Friday 10th and Monday 13th of January. 

Specifically, the heating season was selected for analysis as parameters such as outdoor airflow and 

temperature must be considered when designing the control strategy i.e., night cooling and passive cooling.    

 

The room was timetabled to have a lecture session on Friday (day 1) from 14:00-16:00 and another session 

from 10:00–12:00 on Monday (day 4). At these times, it was assumed that the building had maximum 

occupancy with 40 students present. Furthermore, the room was assumed to be unoccupied for the rest of 

the time. These occupancy-based conditions were presented as the scenario-based occupancy profile in 

Figure 8c.  

 

For all scenarios (S1 – S3), it was assumed that only the highlighted south-facing windows in Figure 5-24 

were opened by occupants during the lecture session at 15:00 on Friday (Day 1). For Scenario 1, the window 

was left open until 10:00 am on Monday when a person who attended the session decided to close these 

windows. In scenario 2, the window detection strategy is employed which is assumed to have the ability to 

inform the occupants or building manager. This was highlighted in Figure 5-2 as the first response when 

windows are detected as opened when they are not intended to be in this state. For this scenario, the opened 

windows were detected, and it informed the occupants/building manager to close the windows at 17:00. 

Scenario 3 adopts an approach in which the opened windows were continuously detected after alerting the 

occupant/ building manager and hence adjustments were made to the setpoint temperature. 
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Figure 5-24. Description of the scenario schedules for the simulation and analysis. 

Figure 5-25 presents the window operation and heating setpoint profiles used within BES. The static 

profiles are presented in Figure 5-26a and are incorporated within the scenario-based building energy 

modelling. The comparison of the static profiles with the DLIP would provide an understanding of the 

difference between actual window conditions and the use of static profiles. Based on the scenarios described 

above, Figure 5-26b presents the corresponding window profiles. The set indoor room temperature was also 

based on ASHRAE guidelines [125, 126]. For occupied hours, it advised a temperature of 22 – 27°C for 

cooling and 17 – 22°C for heating, while during unoccupied hours it suggested 27 – 30°C for cooling and 

14 – 17°C for heating.  

 

Effectively, as given in Figure 5-25d, a generalised room setpoint temperature of 21°C was set during the 

typical occupied hours of 09:00 – 17:00 and 15°C during the unoccupied hours. It should be noted that 

occasionally students may occupy this room on both Saturdays and Sundays. Hence, the standard heating 

profile shows the same profiles for all four days. However, due to the approach given for Scenario 3, it, 

therefore, follows the heating profile indicated in Figure 5-25e. 
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Figure 5-25. Window and building energy modelling profiles applied to BES for analysis. 
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The modelling of the windows consisted of an exposed wall type exposure, with a top-hung window 

opening. Following Figure 3-9 the windows were assigned an openable area of 50% and a maximum 

openable angle of 45°. The degree of the opening was assigned with a modulating profile corresponding to 

the window profiles created (Figure 5-25a and b). Table 5-10 summarises the simulation cases and the 

associated window and heating profiles used.  

 

Table 5-10. Summary of the building energy performance simulation scenario cases. 

Simulation Case 
Assigned Profiles 

Window Heating Occupancy 

Constant Open 
Constant open 

(Figure 5-25a) 

Standard (Figure 5-25d) 
Scenario-based (Figure 5-25c) 

Constant Closed 
Constant closed 

(Figure 5-25a) 

Scenario 1 
Scenario-based 

(Figure 5-25b) 
Scenario 2 

Scenario 3 Scenario 3 (Figure 5-25e) 

 

Based on the proposed research method shown in Figure 5-2, this section presents the analysis of the 

framework performance based on different scenarios-based situations. BES was conducted to provide the 

following discussion in terms of heating demand and ventilation heat losses.  

 

Figure 5-26 presents the heating results for the four days under the different simulation cases. Based on the 

use of ‘static’ profiles for the window operation in the BES, the maximum (constant open) and minimum 

(constant closed) the heating load can be achieved depending on the window opening. When the windows 

were constantly closed, the high number of occupants present within the room led to high internal 

occupancy heat gains which led to the lower heating requirement for these periods of time.  

 

Figure 5-26b shows the results for the heating load for the three scenarios. For Scenario 1 the results suggest 

the heating load would be similar to constant opening as the windows were kept open from 15:00 on Friday 

(day 1) to 10:00 on Monday (day 4). The only differences occurred at the times before the window was 

opened on Friday (day 1) and after it was closed on Monday (day 2). The opened windows resulted in a 

high increase in heating loads due to the continuous heating of the room to reach the desired setpoint 

temperatures (Figure 5-25d). 

 

For Scenario 2, the deep learning method was used to assist in the detection of the opened windows and 

notification was given to either the occupants or the building manager. Prior to the closure of the window one 

hour after the lecture was finished (at 17:00), the same amount of heating load as Scenario 1 was required. 

However, once the windows were closed, it resulted in a significant decrease in the heating load. In this case, 

heating was not required for the rest of the day. Instead, heating was only required for the periods when the 

room had a set point temperature of 21°C.  

 

Scenario 3 was simulated using the same window profiles as Scenario 1 (Figure 5-25b) since the windows 

were kept open from Friday night to Monday morning. Instead of a standard heating profile based on the 
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typical room occupied hours, a different heating profile given in (Figure 5-25e) was used to model the 

situation where the deep learning detection method assisted the building controls through sensing the 

opened windows which therefore informed the operations of the building HVAC systems. Due to it being 

the end of the office day and no occupants present after 17:00, the second approach given in the deep 

learning framework shown in Figure 5-2 was followed. The sensors from the detection model informed the 

building energy management system controls and influenced the building HVAC system to reduce the 

heating setpoints until Monday.  

 

Figure 5-26 also presents the corresponding heating load results for Scenario 3. By comparing the results 

across all three scenarios, similar heating loads were achieved on day 1 and since the room setpoint 

temperature was changed to 10°C for the times when the window was detected as opened, it resulted in the 

requirement of no heating. Furthermore, a high peak in an increase of heating demand was presented a 10:00 

on Monday (day 4) as the room setpoint was then changed to 21°C. However, the requirement of a high 

heating load only occurred for a short period of time as occupants were present within the room.  

 

Figure 5-26c presents the total heating demand between the scenario simulation days. It suggested the room 

with windows assumed to be constantly opened required a heating load of 606.6 kWh. This is based on a 

worst-case scenario which indicates the maximum amount of heating that is essential to maintain the room 

at 21°C during occupied hours. In comparison, for constantly closed windows, heating of 91.4 kWh was 

needed. This was due to no ventilation heat losses through windows. It should be noted that the occupancy 

profile was assigned in the model and hence the occupancy heat gains led to the requirement for less heating.  

 

Furthermore, Scenarios 1, 2 and 3 achieved a total heating load of 238.5 kWh, 99.3 kWh and 68.0 kWh. 

Given scenario 2, heating after 17:00 was decreased by approximately 7 kW (during the next hour) as the 

occupancy/building manager was informed about the opened windows, which prevented the windows from 

being left open.  

 

Additionally, Scenario 3 consisted of the DLIP data to inform the HVAC system to provide lower indoor 

temperatures during unoccupied times. This was shown by the achievement of decreased heating loads to 

the minimum. With the setpoint temperature of the room being dependent on the window conditions, 

building demands can be effectively reduced.  
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Figure 5-26. Heating load results for a weekend (Friday 10th – Monday 13th January) achieved using 

building energy simulation cases of (a). The constantly scheduled window profiles and (b). the three 

different scenario-based cases. (c). A comparison between the total heating loads. 
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Figure 5-27a indicates the ventilation heat losses within the room throughout the four days. The losses are 

influenced by the outdoor air conditions on the selected day and also directly by the window profiles given. 

Given the constant open and constant closed results, generally shows the maximum and minimum possible 

losses.  

 

The results for scenarios 1, 2, and 3 were directly influenced by the window profiles given in Figure 5-25b 

which indicates the importance of knowing whether windows are either opened or closed, as it can 

significantly affect the ventilation conditions within an indoor environment. Therefore, this justifies the 

importance of the deep learning detection method. Figure 5-27b shows the total ventilation heat losses for 

each scenario. The ventilation heat loss achieved was solely based on the consideration of the window 

opening behaviour. However, other contributing factors such as the wind direction, and velocity, would 

also have a large impact on the indoor air quality, airflow performance and also the number of ventilation 

losses via the opened windows. These contributing factors would be considered within the future 

development of the approach towards the design of the response system that would be integrated with 

building controls to enable the achievement of effective operations of building HVAC systems. 

 

Effectively, the results show the assumption of windows being constantly opened can provide an over-

prediction of the heating load by up to 208% or that the assumption of windows being constantly closed 

can result in an under-prediction by up to 57%. The scenario-based analysis suggests situations such as 

Scenario 1 where windows were left during the entire period led to a total heating load of 239 kWh. In 

Scenario 2, the deep learning method was used to assist in the detection of the opened windows and 

notification was given to either the occupants or the building manager who closed the windows one hour after 

the lecture was finished. This resulted in the total heating load decreasing by up to 139 kWh. In Scenario 

3, adjusting the setpoints based on the detection data led to a much higher reduction in heating loads.  
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Figure 5-27. (a). Building ventilation heat loss (Friday 10th – Monday 13th January) predicted based on 

BES cases of assigning constantly scheduled window profiles and the three different scenario-based 

cases. (b). A comparison between the building ventilation losses. 

Following the workflow process of the proposed integrated framework approach for system optimisation 

in Figure 3-5, suggests the potential in considering the exploration of how the information of the window 

condition can also be used to provide users and/or controls towards the opening designs (for the case of 

automatically controlled windows) to optimise the indoor air quality and comfort during occupied periods. 

Further developments will be carried out in the proposed future works as the deep learning framework can 

be optimised by adding more training data to improve the detection accuracy with modifications to the deep 
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learning model architecture. Moreover, a streamlined transfer of the data obtained from the deep learning 

model to the building profile generator would be necessary. It would provide a direct and automated 

adjustment of setpoints for the HVAC system based on the detection results. Whereby, the framework 

would be enhanced to enable direct detection of windows that feeds data to an actual building control system. 

 

5.10. Summary 

 

Overall, the results for all four different window detection models (Models 1, 2, 3, and 4) suggest the 

possibility of using a detection approach to understand window conditions across time. The detection 

enables the prediction of the ventilation heat loss towards the overall building energy performance. Such 

variation in detection accuracy was based on the model configuration, the camera position, and the influence 

of environmental factors. This led to variation in the detection and prediction, with some instances 

achieving better results than other moments during the day. Furthermore, it also indicates the ability to 

provide a better understanding of indoor conditions (acknowledging the times when high amounts of heat 

gains/ losses occur through variation in occupancy behaviour) to assist the operations of building systems. 

Based on the comparison of the models, it suggests Model 4 achieves the best detection performance, 

resulting in the most accurate energy prediction. However, greater verification of the detection ability will 

be explored through further investigation of the model’s performance under different room settings and 

environmental conditions.  

 

It is envisioned that the generation of DLIPs with HVAC can ultimately lead to better control of the system, 

helping detect times requiring less heating and/or cooling for example when windows are intentionally left 

or closed. Therefore, the DLIP can aid the identification of times when such occupancy behaviour occurs 

to result in variation of occupancy heat gains based on the occupancy activity detection and to also notify 

occupants about the window conditions and inform the building control system to monitor the HVAC 

system thermal set-point conditions. 
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Chapter 6 

 

6. Multi-objective Combined Approach with Occupancy, Windows, and 

Equipment Detection 
 

The exploration, development and analysis of the potential individual occupancy and window detection 

framework approach led to the investigation of the combined approach to further enhance the effectiveness 

towards improving building energy system operations through optimisation. This chapter introduces two 

different multi-objective detection frameworks concentrating on the understanding and recognition of 

various occupancy behaviour and actions to assist the buildings. Chapter 6.1 focuses on an occupancy 

activity with electrical equipment detection to provide a better understanding of building internal heat gains, 

while Chapter 6.2 explores the occupancy activities with window openings. This was designed to acquire 

a real-time understanding of occupants’ behaviour towards the actions of opening/ closing windows for the 

control of building ventilation heat losses. 

 

6.1.  Combined Approach - Occupancy and Equipment  

 

Acknowledging that building occupants generate heat depending on the level of activity. This increases the 

internal heat gains and affects the energy consumption of heating or cooling systems, depending on indoor-

outdoor conditions [227]. Effectively, occupants can also affect the internal heat gains by using equipment 

and appliances in the building [128]. Like the occupancy levels, equipment usage in offices such as 

computers and laptops can also be varied, depending on several factors. For example, the occupants may 

leave their computers ‘on’ when taking breaks or leaving the office [48]. This could lead to uneven heat 

gain distribution and cause difficulties in the design and efficient operation of HVAC. Hence, the techniques 

for the development of the vision-based model for occupancy activity recognition were employed to form 

equipment detectors.  

 

6.1.1. Framework for Combining Occupancy and Equipment Detection 

 

An overview of the proposed method is summarised in Figure 6-1. Similar to previous framework 

approaches, an office building at the university was selected to test the coupled detection approach. 

Presented in this figure, the approach can be split into two parts; 1. implementation of the proposed deep 

learning framework and 2. framework performance analysis. In the first part (highlighted in green), an 

appropriate model was selected, and this was modified and used to develop the models for occupancy and 

equipment usage detection. The deep learning detection models were deployed to an AI-enabled camera 

and tested within the chosen office space. In this study, the two models were tested separately to perform a 

detailed evaluation of the performance of each method. It is envisioned that in future works, both methods 

will be combined and deployed to a single device to carry out both occupancy and equipment detection. 

The detection output will be used to generate heat gain profiles for occupancy and equipment, also called 

here deep learning-influenced profiles (DLIP). This information could then be used by the controller or 

control system to automatically adjust the HVAC operations. To assess its feasibility and analyse its 

potential impact on building energy use, Part 2.1 presents the analysis of detection performance and 

recognition accuracies, and Part 2.2 presents the use of scenarios and BES software. Hence, the same case 
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study office space of B12 in the Sustainable Research Building, University of Nottingham as previous 

individual detection models were tested under experimental tests in this selected location was performed. 

 

 
Figure 6-1. Approach to develop, test and analyse a combined occupancy activity and electrical 

equipment detection framework. 

6.1.2. Deep Learning Method 

 

To develop the deep learning model with the data collection and model training procedure, the same 

methods described in Chapter 3.3 were applied. Relevant input data with images selected to form the 

datasets for training and testing were collected. Images were labelled manually by using the software 

LabelImg whereby labelling of the objects via assigning bounding boxes in images and the creation of XML 

files that describe the objects in the images which assist the detector to recognise the objects. After labelling, 

the associated XML files to each of the images in the dataset were converted to form TFRecord files to 

provide a summary of the data which would be utilised for model training. Table 6-1 presents the summary 

of the image datasets and two experimental tests were highlighted. Specifically, the selection of the models 

used to form these combined detectors was solely based on the occupancy detection models developed form 

in Chapter 4, along with its previous evaluation of the detection performances. Effectively, Experimental 

Test 1 focused on the application of a smaller dataset and both models were trained separately. Both were 

tested separately using a camera for each type of detection, allowing the generation and recording of results 

for BES analysis based on the comparison of the application of static profiles of both equipment and 

occupancy versus the generation of real-time DLIPs. 

 

Furthermore, the experimental test consists of the application of the trained models to be separately trained 

but coupled together to allow combined detections during the tests. For this experiment, detection 

performances were also evaluated based on each of the detection responses achieved and further scenario-

based energy analysis under common situations within the selected building space was performed. This 
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enabled insights towards the understanding of how multi-objective combined detection could assist building 

system operations, influencing energy performances and occupancy satisfaction. Descriptions about each 

of the image datasets and the model architecture can be shown in the assigned sections of Chapter 4 for 

occupancy activity and the given reference for electrical equipment. 

 

Table 6-1. Summary of the image datasets used to train both the occupancy activity and equipment 

detectors. 

Type 
Model 

Name 

Response 

Categories 

Training Dataset 

Reference Number of 

images 

Total number 

images 

Experimental Test 1 

Occupancy 

Activity 

Model 2a 

 

None 100 

400 
Chapter 4.4.1, 

Table 4-6 

Sitting 100 

Standing 100 

Walking 100 

Equipment 1 PC Monitor 400 [228] 

Experimental Test 2 

Occupancy 

Activity 
Model 2b 

Sitting 400 

1200 
Chapter 4.4.1, 

Table 4-6 
Standing 400 

Walking 400 

Equipment 1 PC Monitor 400 [229] 

 

6.1.3. Scenarios and Experimental Test Setup 

 

Since the Sustainable Research Building (University of Nottingham, UK) was previously used to test the 

formed detection models, it was also chosen as the case study building used to support various stages of the 

analysis of this combined occupancy activity and equipment approach. Figure 6-2 presents the setup for the 

two experimental tests conducted to test the developed combined detectors. Slight variation occurred in the 

positioning of the camera between the two tests as Experimental Test 1 consisted of a more direct view 

towards the coverage of four desk areas, while the positioning in Experimental Test 2 replicated the location 

where typical sensors would be placed, nearer to the ceiling and corner of the room. For both experimental 

tests, each monitor was assumed to have a heart rate of approx. 50 W and each monitor was connected to a 

desktop computer with the assumption of a heat rate of approximately 200 W. Furthermore, according to 

Table 4-1, occupancy profiles were set with a sensible heat gain (70 W/person) and latent heat gain (45 

W/person). Further details about the building and the conditions set for the BES are given in Chapter 3.4. 
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Figure 6-2. (a). Sustainable Research Building at the University of Nottingham, UK. (b). Floor plan of the 

first floor of the building with (c). Set up for the Experimental Tests 1 and 2 in (d). 

Figure 6-3 presents the formation process of the DLIPs for a combined detector of both occupancy activity 

and equipment. It was assumed that such a process would be conducted when both models were deployed 

to form the vision-based AI cameras, allowing detection and recognition of the desired responses. Figure 

6-3a presents the set-up with the field of vision achieved via Experimental Test 1. For this test, separate 

cameras were used for each type of detection, while Figure 6-3b presents the combined detection of both 

sets of responses using one camera as a combined detection applied in Experimental Test 2. The DLIPs 

were generated based on real-time detections and count-based recordings for the number of activities and 

PC monitors were recognised.  
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Figure 6-3. Preview of the desired detection made in (a.) Experimental Test 1 and (b.) Experimental Test 

2 for combined occupancy activity and equipment detection, along with the DLIP formation. 
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6.1.4. Training Performances of the Equipment and Occupancy Detection Models 

 

Same occupancy detection models as the ones trained and presented in Chapter 4 were employed within 

this combined approach. Details for the model training are given in Chapter 4.4.1, while the following 

presents the training results for the equipment model as given by [229] in Table 6-2. Both models applied 

the Faster RCNN with the InceptionV2 model for training. Presented by the total loss versus the number of 

training step graphs suggests the convergence of the loss function implies that the model has been 

adequately trained. The results provide benchmark data for comparing the performance of future 

frameworks which would use more training and test data and different models. 

 

Table 6-2. Training results for the Equipment Model given by Wei et al. [229]. 

Training Conditions and Results Equipment Model 

Model Used Faster RCNN with InceptionV2 

Total Steps 85,422 

Training Duration 5 hours 3 minutes, 51 seconds 

Average Loss 0.0577 

Minimum Loss 0.003516 

Total loss versus the number of training steps 

 

 

 

Furthermore, following the same procedure applied to the training of the occupancy and window detection 

models, the detection performance of the application of the equipment model on still images was conducted. 

The equipment detection was trained to detect and provide recognition responses of PC monitors ON. Based 

on the images within the test dataset, a total of 150 prediction labels should be assigned to these images. 

The results suggest 125 labels (83.33% of the total number of labels) were correctly assigned to PC monitors 

ON. This influenced the provision of the overall model performance giving an average detection accuracy 

of 83.33%. Moreover, 12 labels were identified as “PC monitor on” when they were turned off and 13 labels 

were not identified as “PC monitor on” when they were in use. Based on these results, an overall F1 score 

of 0.9091 was achieved, suggesting the model can provide adequate detection and recognition of PC 

monitors [229]. 

 

6.1.5. Experimental Test 1 Detection Performance – Separate detections 

This section presents the detection performance achieved using the initially proposed combined vision-

based deep learning method during Experimental Test 1 which was conducted in the selected office space 

in the Sustainable Research Building. Given the example detection shown in Figure 6-4a and c, separate 
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detections of both equipment and occupancy were made using the two cameras. It also shows the ability to 

detect and recognise the equipment and occupants in the space. For both cases, output detection bounding 

boxes were present during the detection, and the accuracy for each detection was also presented above. 

 

During the experimental test, the occupancy and equipment detection models were operated while 

occupants were doing their daily work as usual. If the computers are in use, then the model will respond as 

‘pc monitor on’. The overall equipment detection performance is shown in Figure 6-4b. It shows that 

80.80% correct detection could be achieved by this approach during the initial experimental test. While the 

errors including incorrect detection and no detection were 15.24% and 3.94% of the detection period. 

Overall, the proposed model can perform the equipment detection task with good accuracy within the case 

study office building. For the performance of occupancy activity detection and recognition, Figure 6-4c 

indicates correct detections 97.32% of the time, incorrect detections 1.98% of the time and no detections 0.70% 

of the time. In detail, in terms of the selected detection response categories of individual activities, walking 

achieved an accuracy of 95.83%, standing with 87.02%, 97.22% for sitting, and none achieved an accuracy of 

88.13%. This shows the capabilities of the deep learning model to recognise the differences between the 

corresponding human poses for each specific activity. This further verifies the ability of the developed model 

as initially presented in Chapter 4. 

 

 
Figure 6-4. Example of the detection result with performance based on the occurrence of correct 

detection, incorrect detection and no detection during Experimental Test 1. (a). and (b). for equipment 

detection – PC monitors, (c). and (d)., for occupancy activity. 

Following the procedure of the framework approach given in Figure 6-1, Figure 6-5 shows the generated 

count-based DLIPs achieved during Experimental Test 1. Both DLIPs provided informative data showing 

the number of detected occupants performing each of the activities and the number of equipment in use 
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across the whole detection period. This contributes towards a better understanding of the occupants and the 

equipment usage within the office space in comparison to conventional sensors used within buildings. 

Furthermore, to enable the data to assist building system controls and building energy performance 

simulations, both the profiles for equipment and occupancy were converted to heat emissions-based DLIP. 

This is further discussed in Chapter 6.2.7. This will allow the evaluation of the impact of the application of 

such a combined, multi-objective deep-learning detection approach. 

 
Figure 6-5. Formed count-based DLIPs from the detection of (a). equipment, and (b). within the case 

study office during Experimental Test 1. 

Using the data presented in Figure 6-5, along with the typical values of heat gain of computers and 
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occupants performing different activities, the following heat emissions-based profiles were formed (Figure 

6-6). The typical equipment profile and equipment heat emissions-based DLIP were also plotted in Figure 

6-6. The comparison of the profiles suggests that the proposed approach could enable the detection of the 

usage of equipment and various activities and the identification of the times when the equipment usage or 

occupancy activities increased and decreased, which influence the internal heat gains. Based on the 

detection period, up to 65.75% difference between the typical equipment heat emission profile and the 

actual equipment heat emission profile was observed. While up to 37.51% and 50.44% difference was 

observed between the Typical Occupancy Profiles 1 and 2 and the actual occupancy heat emission profile. 

Hence, there was a high discrepancy between the true equipment usage and occupancy activities performed 

within the building spaces, and the use of static profiles. Therefore, this shows the potential of the vision-

based deep learning approach for both equipment and activity recognition for providing a better 

understanding of the conditions within an indoor space for more effective system controls and operations. 

 



 190 

 
Figure 6-6. Heat emission-based deep learning profile, (a). equipment, and (b). occupancy. DLIP plotted 

against typical profiles for comparison. 

6.1.6. Experimental Test 2 Detection Performance – Combined Detections 

 

This section presents the performance achieved during Experimental Test 2. This experimental test was 

designed to test the performance when both models were integrated, giving combined detections at every 

time step. As highlighted by the timeline shown in Figure 6-7, the test consisted of occupants performing 

all the selected occupancy activities, and the PC monitors were presented as both on and off. Furthermore, 

as shown by the preview from the detection camera in Figure 6-7, the camera was located close to the 

space’s ceiling at the height and angle. 
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Figure 6-7. Timeline of Experimental Test 2 to focus on the real-time detection and recognition of 

equipment and occupancy activity. 

According to the experimental detection test carried out within the selected case study office space, Figure 

6-8 shows snapshot images from the various key stages highlighted by the timeline in Figure 6-7. As 

previously given by the evaluation of the model’s capability to detect through sources of still images in 

Chapter 6.2.4., Figure 6-8 presents further verification of the model’s capability to detect both occupants 

and equipment within an actual office space in real-time. Bounding boxes were presented as an output of 

the detection and recognition response. Above each of the boxes, it shows the detection accuracy. 

Furthermore, both the appearance and the bounding boxes' shapes and sizes varied between each of the 

detection intervals.  
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Figure 6-8. Example snapshots of various key point stages during the application of the combined deep 

learning detection approach during Experimental Test 2. 
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To evaluate the performance of detection and recognition ability of the PC monitors during Experimental 

Test 2, for analysis, the PC monitors that appeared in the detection camera screen from left to right were 

each given the names of PC Monitor A, B, C and D. Similarly, the occupants were also noted as Person A, 

B and C. Figure 6-9Figure 6-10 present the overall detection performance, with Figure 6-9 for equipment 

(PC monitor on) and Figure 6-10 for occupancy activity. The detection labelled assigned at every second 

during the experimental test was classified as a correct detection, no detection, or incorrect detection. 

Because the performance of PC monitors was influenced by the detection camera's distance from the PC 

monitors, Figure 6-9 was evaluated based on each PC monitor. The aspect for the achievement of a correct 

detection includes the times when the PC monitor was on and correctly identified, and the times when 

detection was not implemented when the monitors were off. However, as evaluated by the stable bounding 

box detection accuracy across all occupants and activities, the results given in Figure 6-10 are based on 

each activity and not each person. Additionally, for occupancy activity, correct detection was given when 

the device correctly recognised the activity performed by the occupant and when detection was not 

implemented as the occupant was not performing that activity. 

 

Figure 6-9 presents the breakdown of each of the monitors' detection performance and suggests the results 

partially succeed in the evaluation made about the bounding box detection accuracy. PC Monitor D 

achieved the lowest amount of correct detections due to its distance from the detection camera. PC Monitors 

A, B and C achieved correct detections 82.80%, 99.22% and 90.46% of the time. Since there was constant 

obstruction of Monitor A and C by Person A and B, it may have influenced Monitor B to achieve the highest 

value. Overall, it showed that correct detections for PC monitors were recorded for an average of 78.39% 

of the time, no detections for 21.59% of the time, and subsequently incorrect detections for 0.03% of the 

time.   

 

For occupancy activities, the results presented in Figure 6-10 suggest an overall achievement of correct 

detections for 93.60% of the time, no or missed detections for 4.22% of the time and incorrect detections 

for 2.18% of the time. Based on the three activities, the best results were achieved for the activity of sitting 

as this action is very different to the activities of standing and walking. Effectively, the body poses when 

people are standing and walking are similar, which influenced the activity of standing to achieve low correct 

detection. Furthermore, a category entitled ‘None’ was added for this evaluation of occupancy activity 

detection performances. This category demonstrated that no activity was identified by the model when 

occupants were not present. This was achieved 83.78% of the time. Accordingly, it was incorrect by 

displaying a detection of any form of activity when there was no activity conducted for 16.22% of the time. 

 



 194 

 
Figure 6-9. The performance of equipment (PC monitors on) during Experimental Test 2 for combined 

detections. 
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Figure 6-10. The detection performance of occupant activities during Experimental Test 2 for combined 

detections. 

Below provides a further evaluation of the detection performance during the test according to the analysis 

using the classification evaluation metrics. Figure 6-11 shows the different PC monitors' results based on 

the prediction response label of ‘PC monitor on’, and Figure 6-12 presents the results for the different 

occupants based on the selected activities. Given in the following confusion matrix, are displayed in the 

form of percentage values due to the unbalanced number of labels for each response as different activities 

were performed at various times during the experimental test.  

 

Alike, the results presented in Figure 6-9 of the overall detection performance for PC monitors, the 

confusion matrix results suggest that the best performance was achieved when detecting PC monitor B with 
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the highest percentage of true positives, succeeding by PC Monitor C, A and then D. The confusion matrix 

indicated by Figure 6-11e suggests that overall, there was some occurrence of false negatives, where the 

PC monitors were detected as off or other when the monitors were on. Additionally, the minimal occurrence 

of true negative results was achieved. 

 

 
Figure 6-11. The performance of equipment (PC monitor on) detection based on the percentages of labels 

identified during Experimental Test 2. 
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According to the confusion matrix results illustrated above, results based on different evaluation metrics 

were obtained (Table 6-3 and Table 6-4) to further evaluate the detection performance. The average 

accuracy of 76.21% with an F1 score of 0.8650 was achieved for PC monitors. The best performance was 

achieved by Monitor B with an accuracy of 99.12% and an F1 score of 0.9956 and the lowest performance 

was Monitor D with an accuracy of 41.07% and an F1 score of 0.5822. Hence, the results in Table 6-3 for 

the different PC monitors reinforce the evaluation made and indicate that most of the detection response 

labels were correctly assigned to the PC monitors.  

 

Table 6-3. Performance based on the evaluation metrics for the equipment model during Experimental 

Test 2. 

Class Equipment: PC monitor on Accuracy Precision Recall F1 Score 

1 

Monitor A 80.10% 1.0000 0.8010 0.8895 

Monitor B 99.12% 1.0000 0.9912 0.9956 

Monitor C 89.22% 0.9986 0.8934 0.9430 

Monitor D 41.07% 1.0000 0.4107 0.5822 

All PC Monitors 76.21% 1.0000 0.7621 0.8650 

 

The confusion matrix given in Figure 6-12 presents the detection performance of each of the activities 

performed by each person. It verifies that Person A and B performed all three activities during the 

experimental test, while Person C only performed the activity of sitting. Based on the detection and 

recognition of all occupants, high performance was achieved for the activity of sitting, with only the 

occasional no predictions made that was highlighted within the response category of none or other and 

times. Additionally, there were times when sitting predictions were made when actual occupants were not 

present. This was considered an incorrect detection since some of the chairs were identified as occupants 

performing the activity of sitting.  

 

Furthermore, the accuracy of the detection of the activity of standing was the lowest. Contrastingly, walking 

activity achieved a good performance. Therefore, solely based on this experimental detection test using the 

developed detection model, the results suggest the activity of standing can be confused with the 

identification of it as sitting or walking. However, both activities of sitting and walking were less likely to 

be incorrectly recognised. Hence, there are limitations to the current model and could be further enhanced 

to improve the detection performances. 
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Figure 6-12. Detection performances of occupancy activities based on the percentages of labels identified 

during Experimental Test 2 using the combined detector. 

Similar to Table 6-3, the results in Table 6-4 present the evaluation of the occupancy activity model 

performance with the use of the common evaluation metrics. The results reflect the evaluation made, 

presenting sitting and walking with higher accuracy and F1 scores than standing. Since Person C did not 

perform the activities of standing and walking. Hence, no data is presented in the table. 

Table 6-4. Performance evaluation based on the evaluation metrics for the occupancy activity model 

applied during Experimental Test 2. 

Class Activity Accuracy Precision Recall F1 Score 

Person A 

1 Sitting 89.02% 0.7715 0.9419 0.8482 

2 Standing 81.48% 1.0000 0.4445 0.6154 

3 Walking 81.64% 0.8287 0.9412 0.8814 
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Person B 

1 Sitting 71.26% 0.5335 0.9268 0.6772 

2 Standing 66.67% - 0.0000 0.0000 

3 Walking 85.56% 0.7297 0.9000 0.8060 

Person C 

1 Sitting 99.00% 1.0000 0.9900 0.9950 

2 Standing N/A N/A N/A N/A 

3 Walking N/A N/A N/A N/A 

All Occupants 

1 Sitting 86.95% 0.7305 0.9549 0.8278 

2 Standing 79.37% 1.0000 0.3810 0.5518 

3 Walking 90.58% 0.8130 0.9318 0.8684 

Average for all activities 85.63% 0.8478 0.7559 0.7493 

 

In summary, the real-time application of the deep learning-based models in the selected office during the 

desired Experimental Test 2 presents an overall performance accuracy of 76.21% for equipment and 

85.63% for occupancy activities. The distribution of the results was obtained from different responses 

according to the various factors of PC monitors and occupants, such as the angle and position relating to 

the camera. In comparison to the occupancy counting method developed in the study [224] which performed 

better for a smaller office with less than 5 occupants, the proposed method, which can recognize occupants’ 

activities and interaction with appliances and equipment, can be implemented in large-size offices 

accurately. While the detection accuracy of the proposed model was lower than the relevant studies [147, 

148 230, 231], which suggests that further improvements are required to achieve higher performance for 

the current approach. 

 

According to the real-time experimental detection using the deep learning models, detection and response 

achieved provided time-stamped data in the form of both equipment (PC monitor on) and occupancy 

activities, giving the generated count-based deep learning influenced profiles (DLIP) presented in Figure 

6-13 and Video 3, describing the provided video of the experimental test and profile generation. The 

formation of such profiles is based on the process described in Figure 6-3b. Profiles presented in Figure 

6-14a for equipment (PC monitor on) and Figure 6-14b for occupancy activities provide informative data 

about the amount of equipment in use and the occupants who were detected and performing each of the 

activities during the experimental test's detection period.  

 

https://drive.google.com/file/d/13wlb563M7PxoyN0trwSZIJetKks3mFlw/view?usp=share_link
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Figure 6-13. Preview of the video showing the application of the proposed combined detection model 

applied in Experimental Test 2 with the generation of the Deep Learning Influenced Profiles (DLIPs), see 

Video 3. 

 
Figure 6-14. Count-based deep learning profiles for the detected (a). equipment, and (b). occupancy 

obtained from Experimental Test 2. 

https://drive.google.com/file/d/13wlb563M7PxoyN0trwSZIJetKks3mFlw/view?usp=share_link
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To enable the real-time profile-based data to assist in building energy simulation and building energy 

system controls, the heat emission-based DLIPs were formed based on the equipment and occupancy profile 

indicated in Figure 6-3. The generated DLIPs were compared with the static profiles and the Actual 

Observation Profile corresponding to the ‘true’ operation of the occupants' PC monitor and activity.  

 

Compared with the use of the typical profiles, the DLIP predicted up to 54.4% lower equipment heat gains 

from the PC monitor detection and up to 29.1% lower occupancy heat gains. This indicates the advantage 

of using such a deep learning-based approach to better understand the occupants and the equipment used 

within the office space. It identifies the times when the equipment used is increased or decreased, or 

occupants’ activities are varied, which can affect the overall building HVAC system operations through the 

influence of the variations within the building's internal heat gains. However, since the generation of the 

data for these profiles is highly dependent on the detection performance, the DLIP still alternates between 

different responses as shown in Figure 6-14. This resulted in the differences between the DLIP and the 

Actual Observation Profiles with up to 24.6% for PC monitors and only 4.14% for occupancy activities. 

Although there were variations between the DLIP and the Actual Observation Profile, it still provided 

DLIPs which were considerably advantageous in comparison to the Typical profiles as it avoided the 

majority of the high discrepancy indicating the potential of the deep learning-based approach to provide a 

more accurate understanding of the conditions within the conditioned space for building energy system 

operations. 

 

6.1.7. Analysis of the Combined Approaches Towards Building Energy Using 

Building Energy Simulation (BES) 

 

To show the importance of requiring both types of detection, this section presents the use of BES to provide 

a comparison towards a better understanding of the performance of building energy. The indoor building 

conditions based on the selected case study building; Sustainable Research Building were described in 

Chapter 3.3.5. Table 6-5 summarises the test scenarios set up for each of the energy simulation cases. Based 

on the detections made in Experimental Test 1 detect mentioned in Chapter 6.2.5. with the generated 

profiles shown in Figure 6-6.  

 

Corresponding to the deep learning detection period, four different scenarios were generated following a 

typical office day profile with the building assumed to be operated during the hours of 09:00 – 17:00. 

Effectively, each scenario consists of different variations in equipment and occupancy profiles to enable 

the evaluation of the impact of the use of control strategies, informed by real-time multiple detections on 

building energy demand.  

 

Scenario 1 follows the conventional method using static or fixed control setpoints. Scenarios 2 and 3 present 

the use of a single deep learning model, either the equipment or the occupancy. Additionally, Scenario 4 

presents the application of both deep learning methods. For the simulation cases, maximum occupancy 

sensible and latent occupancy gains of 75 and 70W were assigned. This enables the representation of all 

activities performed within the office space, with walking being the maximum at 100%, followed by 

standing at 79% sitting at 64%, and no activities would present 0%. (This corresponds to the conditions 

applied in Chapter 4). 
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To ensure the achievement of adequate thermal comfort conditions within the building, a constant HVAC 

set point temperature was assigned to the building space. The set temperature values were based on 

ASHRAE [125, 126]. For occupied hours, it advised a temperature of 22 – 27°C for cooling and 17 – 22°C 

for heating. Effectively, a generalised room setpoint temperature of 22°C was set during the typical 

occupied office hours of 09:00 – 17:00, and no heating was assigned to the building during the unoccupied 

hours. Furthermore, maximum ventilation rates were assumed during the occupied hours. 

 

Table 6-5. Summary of the test scenario cases with the assigned building, equipment and occupancy 

building energy simulation modelling profiles and conditions. 

 
Scenario 1: 

Constant Typical 

Scenario 2: 

Equipment 

Detection Only 

Scenario 3: 

Occupancy 

Detection Only 

Scenario 4: 

Coupled 

Image 

Representation 

   

 

 

Scenario 

Description 

The deep learning 

method is not 

applied 

Deep learning 

equipment 

detection model 

used 

Deep learning 

occupancy 

detection model 

used 

Both equipment 

and occupancy 

detection models 

used 

Equipment 

Profile 

Typical Static 

Profile (Figure 

6-6a) 

 

Equipment Deep 

Learning Influence 

Profile 

Constant Typical 

(Figure 6-6a) 

Equipment Deep 

Learning Influence 

Profile 

Number of PC 

Monitor 

turned on 

(Equipment) 

8 

Varies according 

to the actual 

equipment usage 

8 

Varies according 

to the actual 

equipment usage 

and occupancy 

Occupancy 

Profile 

Constant Typical 

Occupancy 2 

(Figure 6-6b) 

 

Constant Typical 

Occupancy 2 

(Figure 6-6b) 

 

Occupancy Deep 

Learning Influence 

Profile 

Occupancy Deep 

Learning Influence 

Profile 

Number of 

occupants 

present in the 

room 

3 3 

Varies according 

to the actual 

occupancy 

Varies according 

to the actual 

occupancy 
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Occupancy 

Internal Gains 

The deep learning 

method is not 

applied 

Deep learning 

equipment 

detection model 

used 

Deep learning 

occupancy 

detection model 

used 

Both equipment 

and occupancy 

detection models 

used 

Heating 

Profile 
Constant Heating (Room set point temperature, 22°C during office hours) 

Cooling Profile Constant Cooling (Room set point temperature, 22°C during office hours) 

Ventilation 

Profile 
Constant Typical (Maximum ventilation conditions during office hours) 

 

The following presents the BES results with an analysis of the potential impact of the proposed deep 

learning detection approaches on building energy performance. The analysis was based on the comparison 

of the different Scenarios 1 - 4 (as described in Table 6-5).   

 

Both office equipment usage and occupancy activities can influence internal heat gains. This results in the 

variation of the indoor air temperature and humidity and hence can influence the indoor thermal 

environment and the requirement for heating, cooling and ventilation. Figure 6-15a and b present the 

comparison of the equipment and occupancy gains achieved for a typical day under the four different 

scenarios. Scenario 1 results suggest the benchmark values based on the assignment of typically scheduled 

or static profiles. The Scenario, 1 equipment gains, corresponded directly with the total heat gains for the 

typical or static profile (Figure 6-6), giving a total equipment heat gain of 96.0 kW. Additionally, the 

occupancy gains were directly related to the occupancy gains indicated by the Typical Occupancy 2 Profile, 

giving a total occupancy gain of 20.88 kW. These values were greater than the gains predicted using the 

deep learning approach. As observed, when both equipment and occupancy deep learning methods were 

used (Scenario 4), the total equipment heat gain was 32.88 kW, and total occupancy heat gain was 14.05 

kW, 65.76% and 32.74% lower as compared to Scenario 1. Hence, this shows that the typical or static 

profiles can overestimate or underestimate the heat gains. Therefore, this shows the benefits of using the 

deep learning approach for demand-driven HVAC control systems. 
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Figure 6-15. Predicted (a). equipment, and (b). occupancy (sensible and latent) gains within the case study 

building office space based on Scenarios 1 – 4. 

Figure 6-16 presents the sum of the equipment heat gains, occupancy sensible and latent heat gains 

predicted for the different scenarios. Due to the working environment being an office space with a greater 

number of office equipment emitting larger amounts of heat gains and with a low number of occupants 
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present in the room and mostly sitting for a majority of the time, it was observed that the equipment heat 

gains are more significant than occupancy heat gains.  

 

A total internal heat gain value of 116.88 kW was predicted for Scenario 1. Scenario 2, which employed 

equipment detection, showed a significant reduction (63.13%) as compared to Scenario 1. While Scenario 

3, which had occupancy activity detection, indicated a total internal heat gain of 110.05 kW. This shows 

that based on the conditions simulated and the selected case study, the detection of occupancy movement 

did not have a significant impact as compared to the application of equipment detection. However, its usage 

could be more advantageous in an indoor environment with lots of occupancy movement and heavy 

occupancies such as shopping malls or indoor gyms.  

 
Figure 6-16. Total internal heat gains achieved based on Scenarios 1 – 4 utilising both the occupancy and 

electrical equipment detection strategies. 

 

6.1.8. Further Scenario-Based Analysis for Combined Occupancy Activity and 

Equipment Detection Towards Building Performance and Operations 

 

With the identification of the importance of achieving accurate detection and recognition within indoor 

spaces can lead to effective estimations of the internal heat gains, this section provides further analysis of 

the impact on energy performance and system operations via the different scenario-based conditions and 

the application of the profiles generated in the Combined Experimental Test 2 in Chapter 6.1.6. 

 

The conditions applied to the model and setup are discussed in Chapter 3.4. For this, Table 6-6 provides a 

summary of the setup for building simulation cases. Each scenario simulated 4 days (Wednesday – 

Saturday) of a typical office week during the heating and cooling season.  
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Table 6-6. Overview of the scenarios for the BES model to further analyse the impact of combined 

occupancy and equipment detection towards building energy. 

 
Scenario 1: 

Constant Typical 

Scenario 2: 

Equipment 

Detection Only 

Scenario 3: 

Occupancy 

Detection Only 

Scenario 4: 

Coupled 

Image 

Representation 
    

PC Monitor on 

Profile 

Static Profile 

(Figure 6-17b) 

 

Equipment DLIP 

(Figure 6-17d) 

Static Profile 

(Figure 6-17b) 

Equipment DLIP 

(Figure 6-17b) 

Number of PC 

Monitor 

turned on 

(Equipment) 

8 during each 

weekday and 4 

during the 

weekend 

Varies according 

to the equipment 

usage 

8 during each 

weekday and 4 

during the 

weekend 

Varies according 

to the equipment 

usage and 

occupancy 

 
For each PC, it represents 2 PC monitor-on and 1 computer-on 

Maximum conditions: 4 PCs = (8 PC Monitors turned on, 4 Computers) 

Occupancy 

Profile 

Static Profile 

(Constant sitting) 

(Figure 6-17a) 

 

Static Profile 

(Constant sitting) 

(Figure 6-17a) 

 

Occupancy DLIP 

(Figure 6-17c) 

Occupancy DLIP 

(Figure 6-17c) 

Number of 

occupants 

present in the 

room 

8 during each 

weekday and 4 

during the 

weekend 

8 during each 

weekday and 4 

during the 

weekend 

Varies according 

to the actual 

occupancy 

Varies according 

to the actual 

occupancy 

Occupancy 

Internal Gains 

Max sensible gain: 75W/person 

Max latent gain: 70W/person 

Heating 

Profile 
22°C during building operational hours [125, 126] 

Cooling Profile 22°C during building operational hours [125, 126] 
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Figure 6-17. Profiles applied to the scenario-based BES simulations. Static (a). Occupancy and (b). 

equipment profiles. Scenario-based (c). occupancy, and (d). equipment profiles representing a typical 

office week (Wednesday – Saturday). 
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Scenario 1 represents the conventional method where static or fixed control setpoints are used. The typical 

occupancy and equipment profile for PC monitors given in Figure 6-17a and b were assigned to this 

simulation case. Effectively, during the operational hours of the building, the most common occupancy 

activity in an office space, ‘sitting’ was assumed to be performed by eight occupants during the weekday 

and four people performing this on the weekend. Correspondingly, for electrical equipment, eight PC 

monitors were assumed to be turned on throughout the operational hours during the three weekdays, and 

four PC monitors were on during the weekend.  

 

Scenarios 2 and 3 present the application of only one of the deep learning detection approaches with 

Scenario 2 for equipment only, Scenario 3 for occupancy activity only and scenario 4 when both detections 

were applied. For these scenarios, Figure 6-17c and d present the assigned occupancy and equipment 

profiles. To provide a more realistic scenario, different profiles were created for each of the days, and a 

brief description of each is given in Figure 6-17.  

The activity of occupants and the utilisation of equipment generate internal heat gains. The variations in 

occupants’ activities and equipment usage affect the amount of heat generated within a space and further 

influence the HVAC system operation strategy due to the change in heating, cooling and ventilation 

demands within the conditioned spaces.  

 

Figure 6-18 shows the distribution of occupancy and equipment gains over time for the four typical days 

under different scenarios. The results of employing Scenario 1 present the heat gains using fixed or static 

profiles that were typically used for building heating, cooling and ventilation design. With the comparison 

of Scenario 1, the other scenarios, which employed the deep learning method to assess real-time occupancy 

and/or equipment profiles, generated great differences in heat gains especially on the days with similar 

profiles as Weekday 2. It also suggests that the requirements of building services are varied to achieve a 

comfortable indoor environment. 

 

To present the heat gain difference under four scenarios, the total equipment gains, occupancy sensible 

gains, and occupancy latent gains for four days were plotted in Figure 6-19. Equipment gains are the major 

contributors to the total heat gains as there were only a few people whose main activity in the office space 

was sitting while a large amount of equipment was set up which caused more heat emission from equipment. 

As Scenario 1 results represent the benchmark values, it shows that the total heat gain using the fixed or 

static profiles for four days was 139.4 kW. This value was larger than the results of the other scenarios 

which were assisted by the deep learning method for an accurate estimation. As compared to Scenario 1, 

Scenario 2, 3, and 4 created remarkable differences of 38.74%, 15.21%, and 53.95% respectively. As can 

be seen, the lowest predicted total heat gains were when using the deep learning method for both equipment 

and occupancy gain estimations (Scenario 4). It indicated that an under or over-estimation of occupancy 

and equipment heat gains could occur when using scheduled or static profiles. Therefore, incorporating the 

deep learning method into an HVAC system can help it predict the real-time heat gains and achieve efficient 

controls while meeting the actual requirements. In addition, based on the simulation results, in comparison 

to Scenario 1, Scenario 2 which used equipment detection only generated a larger difference than Scenario 

3, which used occupancy detection only. It implies that the detection of usage of equipment has a greater 

influence on heat gain estimation in the office space in the selected case study building because of the 

relatively low number and less movement of occupants. 
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Figure 6-18. (a). Equipment, (b). occupancy sensible, and (c). occupancy latent heat gain distributions 

under Scenarios 1-4 for four days. 
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Figure 6-19. Total internal heat gains under Scenario 1-4 for combined occupancy and detection 

approaches. 

In this section, the energy consumption of the case study building under four different simulation cases 

(Scenarios 1-4) in heating and cooling seasons was analysed. Figure 6-20 shows the heating results for the 

four selected days in the heating season. The heating load variation across the simulation days was presented 

in Figure 6-20a. For Scenario 1 and 2, due to the use of a typical occupancy profile, the office was assumed 

to be occupied from 6:00 to 18:00. Hence, the heating was provided with a setpoint temperature of 22°C 

during the pre-scheduled period. For Scenarios 3 and 4, the heating was provided based on the actual 

occupied period because of the use of the deep learning detection method. It could mitigate the waste of 

energy for unnecessary heating during the unoccupied period, especially on weekends. Moreover, it is 

apparent that equipment and occupancy gains directly affect the heating demand over time. Lower heat 

gains were estimated, and higher heating was required to provide a comfortable indoor environment.  
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Figure 6-20. (a). Distribution of heating loads and (b). total heating loads for four days during the heating 

season under Scenario 1-4. 

Figure 6-20b presents the simulation result of total heating demand for the selected four days in the heating 

season under Scenario 1-4 giving a total heating load of 5.4 kWh, 37.1 kWh, 4 kWh, and 42 kWh. It 

indicated that under Scenario 4, which predicted the lowest heat gains, maximum heating was required 

among all simulation scenarios to achieve thermal comfort during the heating period. It should be noted 

that the heat gains predicted for Scenario 1 were higher than that for Scenario 3, while the heating loads for 

Scenario 1 were also greater. The reason is in Scenario 3 the heating was provided based on the actual 
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occupied period due to the use of a deep learning-generated occupancy profile, while in Scenario 1 the 

provision of heating followed the static profile. The unnecessary heating provided during the unoccupied 

time was reduced in Scenario 3. It highlighted that following the profiles generated by deep learning 

detection techniques could potentially mitigate the building energy use by making the HVAC system adapt 

to the actual demands while maintaining a better indoor environment. 

 

Figure 6-21 shows the cooling results for the four selected days in the cooling season. The cooling load 

distribution across the simulation days was presented in Figure 6-21a. For Scenario 1 and 2, due to the use 

of a typical occupancy profile, the cooling was provided with a setpoint temperature of 25°C from 6:00 to 

18:00 in the office. The cooling was provided based on the actual occupied period under Scenarios 3 and 

4. This method could avoid providing unnecessary cooling in the conditioned space and further reduce the 

building energy consumption. In addition, the cooling demands were influenced by the variations in internal 

heat gains. Lower heat gains caused lower cooling loads. Figure 6-21b presents the total cooling demand 

in the cooling season. As shown, the total heating loads for selected days based on four scenarios were 

132.7 kWh, 85 kWh, 117.3 kWh, and 72.5 kWh respectively. Scenario 4 which employed both detection 

profiles estimated the lowest cooling load among all the scenarios and was 45.37% lower than Scenario 1 

which employed fixed or static profiles. The results also indicated that deep learning techniques for 

occupancy and equipment detection could affect building energy consumption by providing accurate 

profiles to achieve demand-driven controls. 

 

According to the simulation results for selected four days within the case study building, up to 53.95% 

reduction of internal heat gains could be potentially achieved with the use of both occupancy and equipment 

detection profiles in comparison with the use of predefined typical or static schedules. This highlighted the 

importance of monitoring occupancy behaviour and electrical equipment usage and the benefits of using 

the deep learning detection method to monitor real-time occupants’ activities and equipment usage and 

effectively operate the HVAC system based on the actual requirements. It can create a large potential to 

reduce unnecessary building energy consumption while maintaining a comfortable indoor environment. 
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Figure 6-21. (a). Distribution of the cooling loads and (b). the total cooling loads for four days during the 

cooling season under Scenario 1-4. 

Effectively, using a combined occupancy activity and equipment usage detection approach based on 

computer vision and deep learning methods can provide efficient building energy controls. This approach 

can perform real-time detection and recognition tasks for multiple occupants’ activities and equipment 

conducted within an indoor space. Adopting the Faster R-CNN model along with image-based datasets 

enabled the detection and recognition using a camera. The performance of this model was assessed through 

the use of different evaluation metrics. The two experimental tests in Chapters 6.1.5 and 6.1.6 indicate the 
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proposed model can perform occupancy and equipment detection and recognition tasks with high accuracy.  

To investigate the impact of the proposed approach on building energy performance, the case study building 

was modelled and simulated in BES with the different scenarios in Chapters 6.1.7 and 6.1.8. These results 

highlighted the importance of monitoring real-time occupancy behaviour and electrical equipment usage 

and the benefits of using deep learning detection methods to provide profiles to HVAC systems to achieve 

demand-driven controls that can minimise unnecessary building energy consumption while maintaining a 

comfortable indoor environment.  

 

To optimise the proposed approach, further improvements needed to be carried out in future works. The 

deep learning model can be optimised by modifying the model's architecture and adding more data to 

minimise the error rate. A lower error rate can conduct a more accurate estimation of energy demand. 

Therefore, a better indoor environment condition will be provided for occupants. Moreover, it is necessary 

to develop a strategy which can streamline the real-time data from the deep learning model to the HVAC 

system to achieve demand-driven controls by automatically adjusting the setpoints. 

 

6.2.  Combined Approach – Window and Occupancy 

 

With the occupancy activity and window detection and recognition approaches individually explored in 

Chapters 4 and 5, this section presents the investigation of a combined framework design. This includes a 

real-time detection and recognition framework design focused on occupancy activities and conditions of 

windows being opened or closed by occupants within a building space. Similar to the concepts applied to 

the individual framework designs and the combined design for occupancy activity and equipment, the 

proposed approach is designed to provide a real-time prediction of the internal heat gains and detection of 

the status of windows (open/close) for building control systems. This can enable the adjustment of the 

operations of building HVAC systems to ensure that adequate indoor thermal conditions and air quality are 

achieved while minimising unnecessary building energy loads. A model based on a Faster R-CNN model 

was trained for the detection and recognition of occupancy activities and window status using a camera. 

Validation of the approach was conducted using a set of testing data, and the accuracy and suitability for 

live detection were evaluated. Similarly, field experiments were carried out within a case study university 

lecture room to test the capabilities of the proposed approach. Using building energy simulation (BES), the 

case study building was simulated with different scenario-based operation profiles to assess the indoor air 

quality and potential energy savings that can be achieved. 

 

6.2.1. Framework for Combining Occupancy Activity and Window Detection 

 

The proposed research approach is given in Figure 6-22. As highlighted, a case study lecture room within 

a university building was selected to assist in the testing and evaluation of the application of the approach. 

Furthermore, the key stages of the method were outlined. This includes the steps of developing and 

implementing the proposed vision-based deep learning framework in Part 1 and the analysis of the 

utilisation of the deep learning model for real-time detections from the experimental test and under scenario-

based situations using BES in Part 2. 
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Figure 6-22. The workflow process for the development, application and analysis of deep learning vision-

based window and occupancy detector using TensorFlow techniques. 

To test this framework approach, a case study building was selected and applied to support various stages 

of the model development. The same case study building along with the same experimental test setup as to 

the selected space used in Chapter 5 for individual window detection approaches was applied. This includes 

the setup shown in Figure 5-5b. 

 

6.2.2. Deep Learning Method 

 

Table 6-7 presents the description of the datasets in terms of the number of images and labels assigned. 

Overall, the same workflow process was applied. This consists of gathering the images to form the datasets 

and manually labelling images. Figure 6-23 presents an example of the types of images gathered and how 

they were manually labelled to highlight each image's specific region of interest. The number of labels 

assigned to each image was also solely based on the content of each image. For most cases, multiple labels 

were assigned by highlighting a bounding box around each occupant and on each of the gaps of the windows 

across all sides of the window.  
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Figure 6-23. Example images were gathered from Google Images to form the image datasets (training and 

testing) for both categories of occupancy activities and windows, along with examples of how images 

were manually labelled to highlight the specific region of interest. 

For the occupancy activity dataset, ‘sitting, standing and walking’ activities were selected as the desired 

model detection responses. The present model assumes that no occupant is present within the space when 

no detection is made. It should be noted that the image dataset and the trained model are identical to the 

reference model of Model 2b for Occupancy activity as developed in Chapter 4 and Model 4 in Chapter 5. 

To form this combined detector, these two separately trained models were combined. 

 

As shown by the example in Figure 6-23, the images within the dataset do not have to include the whole 

(full) window. Instead, it consisted of images that only presents ‘opened windows’ which presented opening 

types/designs of side-hung, top-hung and pivot (vertical, horizontal). The reason why only these types of 

open window images were selected was to demonstrate a different method of labelling. The labelling 

method assigned bounding boxes to regions where it showed window opening gaps. The change in the types 

of images for the window dataset and the labelling method increased the number of images used giving a 

total of 826 images given in Table 6-7.  

 

Table 6-7. Description of the training and testing image dataset for the window and occupancy detection 

models. 

Reference 

Model 
Category 

Number of Images Number of Labels 

Training Testing Total Training Testing Total 

Occupancy Activities 

Occupancy 

Activity 

Model 2b 

Sitting 400 100 500 753 149 902 

Standing 400 100 500 701 134 835 

Walking 400 100 500 1000 177 1177 

Total 1200 300 - 2454 460 - 

Windows 

Window 

Model 4 
Open 666 160 826 1398 318 1716 

 

Once the images were gathered and pre-processed, a suitable framework platform was selected to configure 
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and train the CNN-based model. Likewise, the TensorFlow Object Detection API [207] was used to develop 

the occupancy activity and window detector via a transfer learning approach. A model selected from the 

TensorFlow detection model zoo was used to assist the pipeline configuration of the model used to train 

the desired detector. The COCO-trained model of Faster R-CNN (With Inception V2) was selected. Two 

models were configured and trained separately, forming Model A for occupancy activity detection and 

Model B for window detection. Figure 6-24 presents the overall architecture and the pipeline configuration 

of the models used. Once these models were successfully trained, they were combined and deployed in an 

AI-powered camera. 

 

 
Figure 6-24. Architecture and configuration of the convolutional neural network (CNN) based models 

used to develop the occupancy activity and window multi-detector. 

As presented in Figure 6-22, along with the set-up shown in Figure 5-5, a 15-minute experimental test 

during a typical winter’s day afternoon (at 15:00) was performed within the selected room. The experiment 

is divided into 5 parts. The test started with Part 1 (1-minute duration), which consisted of all windows 

being closed and no occupants being present within the room. Next, Part 2 (15:01 – 15:03) consisted of a 

person entering the room and performing a series of activities that included sitting, standing, and walking. 

Within Part 3 (15:03 – 15:08), the person continued to perform the following activities and decided to open 

all 4 windows. Towards the end of Part 3, the person decided to leave the room, and all windows were left 

open. Hence, in Part 4 (15:08 – 15:11), the windows were all opened, and no occupant was present in the 

room. Furthermore, Part 5 consisted of the same situation as part 4; however, for this section, the lights 

were switched off. During the experimental test, continuous real-time detection provided response output, 

including sitting, standing, walking, and open window. It was assumed that when none of these responses 

was made, windows were closed, and no occupancy was present in the room.  

 

Figure 6-25 presents the formation process of the DLIP using the real-time detection data of both occupancy 

activities and windows. As shown in the snapshots of the recorded frame indicating the detection and 

recognition made, along with the IoU accuracy, a separate profile was generated for each category. Same 
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count-based profiles for occupancy activities were generated, which were then used to estimate the heat 

emission rates of occupants performing different activities. As described in Chapter 5.3.2, a modulating 

profile was generated for windows, which corresponds to the total number of open windows detected. As 

shown in Figure 6-25, the method of labelling the opened windows, resulted in instances when two 

overlapping bounding boxes were assigned to one window. Hence, a rule was set to ensure that a single 

window opening would only be detected once. 

 

 
Figure 6-25. Real-time detection and formation of the deep learning influenced profiles (DLIP) for the 

combined detection of occupancy activities and windows. 

6.2.3. Performance Analysis of the Combined Window and Occupancy Detection 

Model 

 

Individual training results of each of the models and the initial performance of each of these models (Model 

2b for occupancy activity and Model 4 for windows) were given in Chapters 5 and 6. This section presents 

the model performance under the selected experimental tests whereby the combined approach was tested 

and evaluated. Similar to the previous analysis as mentioned in Chapter 3.3.3, the detection performance 

analysis was evaluated based on the IoU, correct, incorrect and no detections, along with the presentation 

of the detection instances in form of the confusion matrix, giving values in terms of the common evaluation 

metrics. 

 

Video 4 indicated by Figure 6-26 presents a preview of the real-time detection and recognition using the 

integrated vision-based detection approach within the case study lecture room. Figure 6-27 presented a 

series of results for each of the key stages of the test, Part 1 – Part 5. The results showed the capabilities of 

the approach to provide a combined detection of occupancy activities and window conditions. 

 

https://drive.google.com/file/d/1rdlAZuuqaQvB-X1pSV5-WowavjmqOl_x/view?usp=share_link
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Figure 6-26. Preview of the video showing the application of the proposed combined occupancy activity 

and window detection model in the test with the DLIP generation, see Video 4. 

During the real-time detection, bounding boxes were assigned across the desired object that was recognised, 

and the detection accuracy based on the IoU value was presented. Since this is a vision-based approach that 

requires a camera to perform the following detections, limitations in terms of obstruction can ultimately 

affect the performance of such an approach. Furthermore, the labelling of the images of the gaps of opened 

windows in the training dataset resulted in instances of windows achieving two overlapping bounding boxes 

assigned to one window. This was shown in Figure 6-27, with overlapping horizontal and vertical bounding 

boxes.  

 

Figure 6-28 presents the generated DLIP for occupancy activities and window conditions during the 

experimental test. The profile details the activities perfo∂rmed by the detected occupant, which was utilised 

to predict the internal heat gains from occupancy and form a heat emission profile. In Figure 6-28b, it 

compares the DLIP against other profiles, including two static scheduled profiles assuming fixed occupancy 

rates and the Actual Observation profile, representing the ground truth or actual activities performed by the 

occupant during the test. Figure 6-28c presents the comparison between the predicted and actual conditions 

(open or close) of the windows. The results show that there were some errors when comparing the DLIP 

against the actual conditions. The error was 8.20% for occupancy activity detection and 20.98% for window 

detection. This suggests that further development is necessary to improve the detection performance. 

 

https://drive.google.com/file/d/1rdlAZuuqaQvB-X1pSV5-WowavjmqOl_x/view?usp=share_link
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Figure 6-27. Key stages of the occupancy activity and window detection during the experimental test. 
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Figure 6-28. Generated (a) count-based occupancy deep learning influenced profile (DLIP) during the 

experimental test. (b). Comparison between heat emissions DLIP and the static scheduled and the actual 

observation profiles. (c). Generated DLIP for windows during the experimental test plotted against the 

Actual Observation Profile. 

6.2.4. Scenario-Based Simulations and Analysis 

As detailed in Figure 6-22, the case study building was modelled, and BES was performed to evaluate the 

effect on the building energy demand of the proposed combined detection approach. The following section 
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presents the description and set up of scenario-based simulation cases.  

 

Figure 6-29 shows the selected lecture room in the Marmont Centre and the activity schedule during a 

typical four-day period (Friday to Monday) between Friday 10th and Monday 13th January. It was assumed 

that a timetabled lecture was held on day 1 (Friday between 14:00 – 16:00) with full occupancy (up to 40 

people), and another session was held on day 4 (Monday between 10:00 – 1200) with only half the number 

of occupants present (up to 20 people). The room was unoccupied during the other periods.  

 

 
Figure 6-29. Timeline of the activities performed by the occupants within the selected lecture room during 

a typical week. 

A total of five different cases were presented as described in Figure 6-30. This enabled the analysis of the 

different system responses that could assist the HVAC control system provide adequate indoor thermal 

comfort and air quality while improving the building energy performance. As mentioned previously, many 

HVAC systems are operated based on predefined or fixed schedules that are usually based on the building 

operational hours and recommended setpoint temperature [125, 126]. Hence, for the present study, heating 

setpoint temperatures of 21°C and 15°C for occupied and unoccupied hours were set. Additionally, for most 
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buildings, the number of occupants within the building and the window conditions are usually not known. 

Hence, to represent such situations, Case A was created with 6 different combinations of using constant 

‘static’ profiles for occupancy, windows, heating and cooling. For these cases, occupants were either; 1. 

Assumed to be not present in the room, 2. Present in the room and mainly performing sedentary activities 

during building operational hours and 3. Present in the room and mainly performing high-intensity activities 

to represent the maximum occupancy conditions. Additionally, it was assumed that windows were either 

constantly opened or closed during occupied hours. 

 

 
Figure 6-30. Description of the five simulation cases based on the different system responses. 
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The vision-based detection approach was implemented in scenario cases B, C, D and E. For the occupancy, 

the Scenario-based Deep Learning Influenced Occupancy Profile (Figure 6-31b) was set, and Figure 6-31c 

and d present a more detailed version of the profile with the number of occupants detected and the activities 

performed on both lecture days. Furthermore, only the south-facing windows were assumed to be left open 

by occupants during the lecture session at 15:00 on Friday (Day 1). 

 

Case B represented the situation when both occupants’ activities and window conditions were detected and 

recognised using the integrated vision-based approach. The detection of occupancy activities aided the 

adjustments of the operations of the building HVAC. The heating setpoint temperature of 21°C was only 

set when occupants were detected in the lecture room. The windows were detected to be opened at around 

15:00 on Day 1. However, no response-based adjustments were made. Hence, the windows were left open 

until 10:00 am on Monday, when a person who attended the session decided to close these windows.  

 

Similar to Case B, both occupants’ activities and window conditions were detected in Case C, and the 

building HVAC operation was adjusted based on the occupancy level. In addition, the building users were 

informed about the window condition. For this, the windows left open after the lecture on Day 1 (Friday) 

were detected, and the building manager was informed and closed the windows at 17:00 (1 hour after the 

end of the lecture). 

 

In Case D, the building users or manager did not respond to the notification made, and the building HVAC 

controls made a direct response by switching off the heating system when no people and opened windows 

were detected. This is indicated by the heating profile shown in Figure 6-33c. 

 

In Case E, the system response was further improved. In addition to the adjustment of the HVAC operation 

and informing building users about window conditions, the approach suggests the number of windows that 

should be opened depending on the number of occupants within the room and the indoor room temperature.    

 

Hence, for this case, the same scenario-based conditions as for Case C were assumed for occupants, 

windows, heating, and cooling windows during day 1 (Friday). However, on Monday (day 4), only half of 

the occupants were present in the room. The system suggested that only a certain number of windows be 

opened and was later closed just before all the occupants left the room at noon. For all cases, the 

corresponding profiles are highlighted in Figure 6-31, Figure 6-32 and Figure 6-33. A summary of the 

scenario cases is detailed in Table 6-8.  
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Figure 6-31. Occupancy profiles used within BES. (a). Typical, constant static occupancy profile that is 

based on building operational hours. (b). Scenario-based deep learning influenced the occupancy profile 

that corresponds to the timeline given in Figure 6-29. (c). and (d). A more detailed view of (b), with the 

description of occupancy behaviour during day 1 (Friday) and day 4 (Monday). 
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Figure 6-32. Window profiles used within BES. (a). Typical, constant open and closed window profiles. 

(b)., (c). and (d). Scenario-based deep learning influenced occupancy profile that corresponds to cases 

highlighted in Figure 6-30a and Table 6-8. 
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Figure 6-33. The heating and cooling profiles used in the scenario cases as highlighted in Table 6-8. 
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Table 6-8. Summary of the profiles assigned to the scenario cases as described in Figure 6-30. 

Simulation 

Case 

Assigned Profiles 

Occupancy Window Heating Cooling 

A: 

Typical 

A1 

None 

Constant closed 

(Figure 6-32a) 

Standard 

(Figure 6-33a) 

Standard 

(Figure 6-33d) 

A2 
Constant open 

(Figure 6-32a) 

A3 
Constant low activity 

level during building 

operational hours 

(Figure 6-31a) 

Constant closed 

(Figure 6-32a) 

A4 
Constant open 

(Figure 6-32a) 

A5 
Constant high activity 

level during building 

operational hours 

(Figure 6-31a) 

Constant closed 

(Figure 6-32a) 

A6 
Constant open 

(Figure 6-32a) 

B 

Scenario-based DL 

Influenced (Figure 

6-31b, c & d) 

Scenario-based DL 

Influenced 1 

(Figure 6-32b) 
Scenario-based DL 

Influenced 1 

(Figure 6-33b) 

Scenario-based 

DL Influenced 

(Figure 6-33e) 

C 

Scenario-based DL 

Influenced 2 

(Figure 6-32c) 

D 

Scenario-based DL 

Influenced 1 

(Figure 6-32b) 

Scenario-based DL 

Influenced 2 

(Figure 6-33c) 

E 

Scenario-based DL 

Influenced 3 

(Figure 6-32d) 

Scenario-based DL 

Influenced 1 

(Figure 6-33b) 

 

First, results in terms of occupancy gains (Figure 6-34) were generated. This verified the results presented 

from the similar BES made in Chapter 6.2.7. and suggests the results for Typical Office 1 and 2 provided 

benchmark values to represent static occupancy profiles employed in conventional control systems. Typical 

Office 1 assumed occupants to be carrying out sedentary activities, while Typical Office 2 assumed that the 

occupants were more active. For both cases, overall heat gains of 165.6 kWh and 208.8 kWh were predicted. 

Figure 6-34a presents the distribution of heat gains across the simulated period. With the lecture room 

unoccupied for most of the time and only a small number of occupants present for a few hours, hence a 

lower total occupancy heat gain (16.6 kWh) was predicted using the DLIP. This shows that if the HVAC 

was assumed to be operated using static occupancy profiles, it could lead to a significant overestimation of 

the indoor heat gains. This shows the importance of employing strategies which can recognise whether a 

room is occupied or unoccupied, along with the knowledge of the type of activities performed by occupants 

at a given time. 
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Figure 6-34. Comparison of the (a). occupancy heat gains across time and (b). the predicted total sensible 

and latent occupancy heat gains based on the scheduled profiles and scenario-based DLIP. 

Figure 6-35a presents the total ventilation heat loss, and Figure 6-35b shows the distribution of the 

ventilation heat loss for all cases during the 4 days. The ventilation heat loss was influenced by the indoor-

outdoor conditions and the number of opened windows. The constant open and closed results show the 

maximum and minimum heat loss. The results for Case B, C, D and E, were directly influenced by the 

window profiles given in Figure 6-32, which shows the advantage of knowing whether windows are either 

opened or closed, as it can significantly affect the conditions within an indoor environment.  

 

Case B and D had higher ventilation heat losses (90 kWh and 77.9 kWh) as the windows were left open 

after the lecture on Friday (day 1) afternoon. Using the proposed approach, the open windows were 

detected, and the building manager was alerted and managed to close the windows, which led to the lowest 

ventilation heat loss (6.8 kWh) during the 4 days. A slightly higher ventilation heat loss (10.4 kWh) was 

predicted for Case E as the windows were suggested to be opened by the system during the lecture on Day 

4 to improve indoor air quality. Although the windows were left open in Case D, unnecessary energy 

demand can be minimised by adjusting the setpoints or turning off the heating system after the system 

detected no response. 
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Figure 6-35. Total building ventilation heat loss prediction for all simulated cases (Case A, B, C, D and 

E), with (a). and (c). presenting total heat losses for all cases under the 4-day scenario. (b). and (d). 

indicating the variation in heat losses across time. 

The results of the heating energy demand based on the different scenario cases are presented in Figure 6-36. 

This presents the predicted results for Cases A1 – A6, which employed fixed scheduled profiles for 

occupancy and windows. For all cases, the building HVAC system was operated based on an indoor setpoint 

temperature of 21°C during operational hours. 
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Figure 6-36. Total building heating load prediction for Case A and the different scenario-based cases 

(Case B, C, D and E), with (a). and (c). presenting the variation in loads across time. (b). and (d). presents 

the total heating load for all cases under the 4-day scenario. 

The constant open and constant closed results generally show the maximum and minimum possible heating 

demand. When the windows were constantly closed, the number of occupants present within the room 

influenced the internal occupancy heat gains, affecting the heating requirement. However, the results show 

that its impact is not as significant as the ventilation heat loss from the windows.  Figure 6-36c and d present 

the results for Cases B, C, D, and E.  
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For Case B, the opened windows at 15:00 on day 1 were detected, but no adjustments to the building HVAC 

operations were made. As a result, on Monday (day 4), the room temperature reached below 15°C (the set 

temperature during unoccupied hours); hence constant heating occurred during Monday morning, and more 

heating occurred when the occupants were detected within the room on Monday (day 4) at 09:45. Case C 

employed the detection approach, which provided notifications or alerts to the building users or manager. 

For this case, heating was not required until Monday (day 4), when occupants were present in the room for 

the lecture. Hence a total heating load of 27.8 kWh was predicted.  

 

In Case D, no changes were made even after the system provided notifications, and the windows were left 

open from Friday night to Monday morning. When the system detected that the windows were left open for 

some time, the heating was turned off until Monday morning, when occupants were detected in the space. 

 

In Case E, a balance between energy reduction and good indoor air quality was aimed to be provided; it 

informs the occupants and makes adjustments to the HVAC system operations to minimise unnecessary 

heating demand and maintain the indoor air quality. The heating load achieved across were identical to 

Case C. However, on Monday, when there is half occupancy in the room, it was suggested that the occupant 

open two of the windows to ensure that good IAQ is maintained (Figure 6-37), which then led to the 

increased heating energy demand of up to 31.8 kWh. 

 

The indoor air quality can be assessed in terms of the room CO2 concentration levels. Generally, CO2 

levels in rooms below 1,000 ppm were assumed to be fairly adequate, and anything above this level would 

indicate the room is highly polluted [226]. This can affect occupancy productivity and human health [232, 

233]. Figure 6-37b presents a comparison of the distribution of the CO2 concentration across the 4-day 

scenario for the three selected cases. Although a lower ventilation heat loss was achieved for Case C during 

the lecture period on Day 4, it also led to very high CO2 concentration levels peaking at 2,288 ppm when 

the occupants did not open the windows. In Case E, both the number of occupants and windows open were 

considered in the decision-making process of the control system. It assumed that 2 windows were opened 

during the lecture period as per the recommendation by the system. This resulted in the CO2 concentration 

reducing from 2,288 ppm to approximately 1,000 ppm. Although the air quality is still poor, it can be further 

reduced by suggesting to the users to have more windows to be opened. 
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Figure 6-37. Variation in (a). ventilation heat losses and (b). CO2 concentration across time during the 4 

days comparing Cases A6, C and E. 

6.3. Summary with the Proposal of a Demand Data-Driven Control Approach 

 

Effectively, the development and findings made in Chapter 6.2 about the combined occupancy activity and 

window detection and recognition approach suggest the potential of enabling real-time monitoring of the 

number of occupants, activity performed by the occupants and the number of opened/ closed windows. The 

provision of accurate prediction of the indoor internal heat gains and the levels of the room CO2 

concentration to inform the system and occupants to open/ close a specific number of windows and/ or to 

enable the demand-controlled heating system to provide the requirements when required.  
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Following the scenario-based BES conducted the findings suggest the demand for accurate HVAC systems 

to adapt and respond to occupancy's dynamic changes. The basis of the framework was presented, yet 

further development should be explored. A framework and software infrastructure [234] should be 

developed for the proposed approach to be fully utilised within buildings. This system will connect the real-

time vision-based detector and setpoint optimiser with the demand-driven controls for the HVAC system. 

This will ensure that the HVAC is operated according to the real-time building or space requirements. The 

potential of a co-simulation approach using BES [235, 236] should also be explored in future works. Using 

Case E as an example to demonstrate such a decision support system, this approach will combine the two 

vision-based approaches for detecting occupancy activity and windows to assist the alert and control system 

in determining the window and HVAC setpoint adjustments required to ensure adequate indoor air quality 

is achieved and minimise the unnecessary ventilation heat loss. Figure 6-38 shows a simple example of the 

decision-making process based on the application during the heating season. Depending on the selected 

building space, integrated with the vision-based occupancy and window detector, a set number of occupants 

will be defined to decide if the windows should be opened or closed and/or if adjustment to the HVAC 

setpoint is required. Noccupancy represents the number of occupants detected using the vision-based approach, 

and Nset represents a set number of occupants. It should be noted that the control flow process shown here 

is simplified and does not take into account the number of windows detected, which can be included in the 

decision-making process to maximise natural ventilation while minimising heat loss. Additional steps can 

be added to the control flow process, informing the building users about the optimum number of windows 

to open or close; this will be developed in future works. Furthermore, more scenario-based analysis is 

§buildings. 
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Figure 6-38. An example flow chart demonstrating the decision-making process of the proposed 

integrated control system. 

In summary, Figure 6-39 with Video 5 presents the potential workflow process of adapting the deep learning 

vision-based detection and recognition approach towards the formation of a demand data-driven process to 

enable effective management of building energy. Cameras are placed within indoor spaces and real-time 

detections and recognitions were made. Simultaneously, data are generated in for of DLIPs, providing 

information towards HVAC adjustments to ensure adequate indoor conditions are provided while 

minimising building energy. To ensure that this framework can be fully implemented and integrated with 

building energy management systems, further work is necessary. This includes exploring other types of 

https://drive.google.com/file/d/1ubBTYcc1cYGpONVeElmUPGn5Ei6-nHZx/view?usp=share_link
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model configurations and evaluating the influence of the training data on its detection performance. A 

setpoint optimiser will be integrated into the framework to automatically adjust the HVAC operation 

according to the detection data and requirements of the space. Further testing is required in different types 

of spaces and scenarios, for example, in spaces with high occupancy and movement. Such limitations and 

proposed future works are discussed in Chapter 7.  

 

 
Figure 6-39. Potential workflow process of a demand data-driven vision-based approach for management 

of building energy, see Video 5. 

  

https://drive.google.com/file/d/1ubBTYcc1cYGpONVeElmUPGn5Ei6-nHZx/view?usp=share_link
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Chapter 7 

 

7. Practical Challenges of the Integration of the Vision-based Technique with 

a Building System  
 

The integration of a vision-based technique with building control systems was first discussed in Chapter 3 

(detailed in Figure 3-5) as a framework and software infrastructure that should be developed for the 

proposed approach to be fully utilised within buildings. Through BES simulations performed with various 

scenario-based cases that were evaluated in Chapters 4, 5, and 6, it suggests the system to connect real-time 

vision-based detector with a setpoint optimiser from the building HVAC control system to enable effective 

controls forming an integrated optimisation part of the framework approach. 

 

Furthermore, to ensure such vision-based method and integrated control system-based approach becomes 

a viable solution that could be implemented in buildings, limitations identified during the development and 

experimental process must be addressed. To address this objective, this chapter presents the identification 

of the practical challenges impacting the proposed approach. This includes the conditions which led to poor 

performances and the aspects that could be improved through the proposal of different areas that require 

further development. In addition, it is important to acknowledge occupants’ opinions and their current 

intentions regarding how it would be a viable solution to become implemented within indoor spaces. Hence, 

a survey was created to gather occupants' points of view on all aspects of the framework design. Based on 

the feedback received, it outlines the areas to be further explored.  

 

7.1. Integration with Building Control System: The Proposed Approach 

 

Once data is obtained using the vision-based approach and the formation of the real-time DLIP, the next 

step of the workflow process for the framework approach is the integration of the vision-based technique 

with prediction and optimisation strategies to allow adjustment within the building control systems. The 

aim is to explore the possibility of employing the vision-based detection approach with the generated DLIP 

to give a real-time internal heat gains profile (IHGP) to select an optimal HVAC temperature setpoint 

(HVAC TSP) designed to reduce building HVAC energy consumption and occupants’ thermal 

dissatisfaction. Figure 3-5 outlines the proposed workflow process for heat gain prediction and optimisation 

of HVAC setpoint for BEMS control systems. 

 

7.1.1. Development Process of a Heat Gain Prediction and Optimisation Strategy 

 

Similar to the development of the vision-based detectors, case study buildings will be used to support the 

development and testing stages of forming the prediction and optimisation model for the application within 

BEMS control systems. Following a vision-based camera detection conducted within a selected case study 

building, such as the office space in the Sustainable Research Building, University of Nottingham, UK, 

count-based DLIPs would be generated, giving a real-time IHGP (internal heat gain prediction) based on 

the understanding of the number of activities performed by occupants in the building space. The generated 

IHGP would be used for two purposes. Firstly, it was used to verify the predictive room HVAC loads 

models and secondly, it would be used to predict room HVAC loads when optimising the TSP for the 
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HVAC system. Figure 7-1 shows how the data would be obtained from the simulations used to develop the 

predictive room HVAC loads and thermal comfort models. In these scenarios, fixed IHGP will be adopted. 

The data from scenarios 51-60 will be used to verify the developed predictive models. In scenarios 51-60, 

the generated IHGP from the vision-based cameras will be used in simulations. The simulated results will 

then be compared with the results from the predictive models that also used the real-time IHGP.  Based on 

simulation data from scenarios 1-50, two thermal comfort models would be developed.  

 

 

Figure 7-1. Process of developing the predictive models for the establishment of an optimisation approach 

for the building HVAC temperature setpoint value. 

Next, the HVAC TSP would be optimised via the optimisation rules applied. The first optimisation rule 

relates to the situation when the cameras detect and recognise that no occupants were within the conditioned 

space, which therefore leads to switching off the HVAC system to save energy. When occupants were 

present and were identified by the cameras, corresponding heating or cooling would be provided. Under 

such a situation, optimisation rule 2 would be applied. This is designed to lower the building HVAC energy 

consumption without sacrificing occupants’ thermal satisfaction. Ultimately, Figure 7-2 shows how the 

proposed integrated framework works. As shown, real-time online work was achieved by using vision-

based cameras and HVAC TSP optimiser, while prerequisite work included the development of predictive 

models.  
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Figure 7-2. A schematic diagram of the proposed integrated framework for the building HVAC system 

setpoint optimisation. 

Next, optimal heating and cooling HVAC TSPs would be generated as a result of linking HVAC 

temperature setpoints to internal heat gains, heating and cooling TSPs varied with time. The performance 

comparison between the application of the fixed HVAC TSPs and optimal HVAC TSPs would be 

expressed, identifying whether it satisfies occupants’ thermal demand most of the time. 

 

Furthermore, the performance of both the prediction and the optimisation models would be assessed. This 
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includes the comparison of the goodness of fitting between the predicted models of heating and cooling 

under the different scenarios. In addition, the utilisation of such a profile would reduce HVAC systems’ 

operation time and eliminate discomfort problems to indicate potential energy saving without 

compromising occupants’ thermal satisfaction.  

 

7.1.2. Further Development of the Integrated Approach Based on Window Detection 

 

With occupants having the flexibility in opening or closing windows based on their sense of thermal 

satisfaction in addition to requirements of indoor air quality, the demand in reducing HVAC energy 

consumption without sacrificing the thermal satisfaction offered by the HVAC system can hardly be met. 

Window opening behaviour and its impact on building ventilation heat losses are based on the proposed 

approach identified in Chapter 7.1. and 7.2 suggests the framework could be extended to include the 

detection of window openings. Especially, during winter times in the UK, opening windows can cause a 

rapid decline in indoor air temperature and increase building ventilation heat loss and HVAC energy 

consumption. As explored, the vision-based detection approach can directly identify the opening of 

windows, better than predicting the opening of windows. At the same time, it could identify occupants 

within the space and predict occupancy activities and heat gains. 

 

7.1.3. Proposal of a Hybrid Controller Based on Window Detection Responses for 

the Optimisation of Building Energy and Indoor Conditions 

 

Applying the vision-based technique in identifying the real-time window conditions, a controller for 

governing the opening of windows to reduce building ventilation heat losses and lower occupants’ thermal 

dissatisfaction should be developed. Effectively, all the proposed three controllers (vision-based occupancy, 

equipment and window detector (Chapter 6), the proposed combined heat gain controller (Chapter 7.1) 

along with a formed ventilation prediction model, to provide a hybrid controller that optimises energy use 

and thermal comfort. 

 

Figure 7-3 illustrates how the hybrid controller works. Firstly, a vision-based detection camera was 

developed and installed within a selected indoor space to test the performance in terms of detecting the 

windows (open/close). The vision-based detection approach can generate real-time profiles of heat gains 

from occupants and profiles of window openness ratio, respectively. Secondly, three predictive models 

would be developed based on simulation data to forecast real-time building ventilation heat loss, predicted 

mean vote (PMV) and predicted percentage of dissatisfaction (PPD), respectively. The occupancy-based 

on-off controller switched heating systems on when occupants were within the investigated room. The 

energy-comfort-based temperature setpoint controller determined an optimal temperature setpoint by 

balancing the trade-off relationship between building ventilation heat loss and occupants’ thermal 

satisfaction. When occupants are not within the room and windows are open, the window openness 

controller will close/suggest closing windows to lower unintended building ventilation heat loss. Thirdly, 

the hybrid controller was used to enhance occupants’ thermal satisfaction whilst reducing building 

ventilation heat loss. 
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Figure 7-3. Schematic of the proposed hybrid controller connecting the vision-based approach of window 

and occupancy detection and recognition with system optimisation. 

As shown, three data-driven predictive models were established. The first predictive model was used to 

forecast building ventilation heat loss. The second and third models were used to forecast the level of 
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occupants’ thermal satisfaction, quantified by using two indicators, which were PMV and PPD, 

respectively. These pre-defined scenarios consist of variations within the HVAC heating setpoint 

temperature, profiles of heat gains from occupants and profiles of window openness ratio. (For example, 

the profiles given in Figure 6-31- Figure 6-33). The data from the scenarios were used to train, validate and 

test the predictive models. 

 

7.1.4. Development Process of a Hybrid Controller 

 

The proposed hybrid controller composed of three sub-controllers with the optimisation rules defined in 

Table 7-1 along with the integration of these controllers with vision-based detection cameras is shown in 

Figure 7-4. 

 

Table 7-1. The proposed three optimisation rules applied to the developed hybrid controller. 

Controller 
Controlling 

Variable 
Control Aim Control Method 

1 HVAC on-off status 

Minimise thermal 

discomfort issues and 

reduce energy wastage. 

Turn on HVAC systems if 

occupants are present. 

2 
HVAC setpoint 

temperature 

Reduce ventilation heat 

loss and increase thermal 

comfort. 

Determine the optimal HVAC 

heating setpoint. 

3 
Window openness 

ratio 

Reduce unnecessary 

ventilation heat loss. 
Close windows. 

 

Controller 1 is designed to be applied when vision-based cameras identify the detected spaces to be 

occupied. Under such a situation, heating would be provided to improve the level of occupants’ thermal 

satisfaction. Controller 2 will be used when occupants were in the room and windows were detected as 

opened. Under such a situation, the HVAC setpoint temperature shall be optimised to reduce ventilation 

heat loss without sacrificing occupants’ thermal comfort. Effectively, the HVAC setpoint temperature will 

be optimised by using a performance indicator. Controller 3 was adopted when occupants were not in the 

room while the windows remained open, for example, when the occupants left the windows open after 

leaving the space. Under such a situation, windows shall be closed to reduce ventilation heat loss. 
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Figure 7-4. Coupling the proposed controllers with vision-based detection cameras to form an 

optimisation strategy using both window and occupancy detection and recognition. 
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7.2. Practical Challenges Impacting the Proposed Approach 

 

The developed deep learning vision-based models presented in Chapters 4, 5 and 6 were analysed via BES 

which outlined the possibility of it being a viable solution to provide real-time understanding of occupancy 

behaviour within indoor spaces. However, the analysis suggests various limitations within the initial 

development and outlines several areas whereby the approach could be improved. This chapter presents the 

identification of the practical challenges impacting the proposed approach. This includes the conditions 

which led to poor performances and the aspects that could be improved through the proposal of different 

areas that require further development. Furthermore, with the proposed approach aimed to improve indoor 

thermal conditions for occupants along with the optimisation of building energy, it is important to 

acknowledge occupants’ opinions and their current intentions regarding how it would be a viable solution 

to become implemented within indoor spaces. Hence, a survey was created to gather occupants' points of 

view on all aspects of the framework design. Based on the feedback received, it outlines the areas to be 

further explored.  

 

As presented in Figure 3-4, along with the series of different model developments and experimental tests 

conducted in Chapters 4, 5 and 6, it suggests the method used to develop the deep learning models are not 

restricted to training, testing and evaluating the model once. Instead, continuous development is required. 

Specifically, possible solutions seeking to enhance the model detection performance, the effective 

application within various indoor spaces, and the ability to develop towards the integration building control 

solution were required. However, the performance of the developed vision-based detectors was 

undoubtedly impacted by both controllable and uncontrollable factors. Assessment of all types are factors 

were required to provide an effective detector to be used within indoor spaces, giving an acceptable 

framework design for effective performances for the desired purposes. 

 

7.2.1.  The Impact of Various Conditions Within Selected Case Study Buildings 

 

Controllable factors which can be modified to enhance the performance includes the steps highlighted in 

Figure 3-4. Many of these have been applied within the process of development and testing of the different 

models given in the associated chapters of Chapters 4, 5, and 6. In terms of the model development, 

configuration and design, with variations that include the dataset size, selected images, labelling techniques 

employed, the training configuration and the selected model pipeline configuration.  

 

Collectively, the types of images selected for each type of image dataset used for the training of the models 

would largely impact the overall detection and recognition ability. Hence, through the development of the 

given models in Chapters 3, and 4, various models were tested out with different response categories. 

Furthermore, the number of images used to train the models would affect the model performances. 

Comparisons were shown within Table 4-6 between Model 2a and 2b for occupancy activities. Model 2b 

was an enhanced version of model 2a, whereby four times as many images were used within the dataset. 

Through the experimental test conducted and the evaluation of its detection performances, this was 

modified and was eliminated to the three main response categories (sitting, standing and walking), 

compared to (none, sitting, standing and walking). A similar development was applied to the window 

models in Chapter 5. Throughout the chapter, four different models were developed and compared. In 
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addition, changes in the labelling techniques and the response categories were made.  

 

As identified in Figure 3-4, another aspect which could be applied to the development includes 

modifications to the CNN model training configuration and model pipeline used. This consists of the 

exploration of the impact of variations within the model pipeline configurations and the evaluation of its 

corresponding detection performances. Acquiring a higher training and framework accuracy requires a 

sufficient balance between the amount of training data, the complexity of training layers along with model 

selection and configuration. Similar to the training used in this initial research framework, where a transfer 

learning approach could be further studied. A fine-tuning method could be used to analyse the effect of the 

various types of TensorFlow models applied for training the detection model [207]. This includes the most 

common TensorFlow object detection models of MobileNet, inception V2 and ResNet50. Using the 

different training models, training performance could be further compared, along with the analysis of the 

accuracy of each response to the detection element. 

 

Throughout Chapters 4 and 5 for the development of the different detection models, along with the 

combined integration forming combined detectors in Chapter 6, various case study buildings with different 

indoor environments were used to test the approach. Results suggested all models provided variations in 

performances when under the different building spaces due to the impact of various environmental 

conditions. Conducting these experimental tests observed that factors such as the position of cameras and 

the room environmental conditions, lighting conditions and obstruction would affect the detection accuracy.  

Since incorrect detection can lead to inaccurate estimation of parameters such as occupancy number and 

position, therefore, future works should consider the investigation towards the impact of environmental 

conditions towards the detection accuracy of the monitored spaces. The environmental conditions which 

could be explored include the impact of indoor-outdoor lighting conditions, any obstruction towards the 

desired detection element and variations in the detection within different environments. Real-time live 

detection would be performed under various environmental conditions, and the detection results would be 

used to form real-time DLIPs. Results would therefore aid the identification of how conditions such as low 

lighting levels and times with lots of glare through windows would have a significant effect as the detection 

of occupants as their actions would not have been identified accurately, presenting unreliable results. Figure 

7-5 presents the current detection performance without the exploration of the impacts of such environmental 

conditions. The images suggest the importance of the optimisation of the deep learning model and adapting 

to the ability to perform extensive detection under more infrequent conditions to enhance the desired 

approach further. 
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Figure 7-5. Example images suggest future studies focus on a series of different indoor-outdoor 

conditions towards the enhancement of the detection performance for window detection. 

In addition to the identification of the impact of environmental conditions on the model’s ability in detection 

and recognition, it was also identified that the experimental tests conducted so far were limited to indoor 

spaces of lecture rooms, university tutorial rooms and office spaces. Hence, to enable the vision-based 

strategy to work within various indoor spaces, it is suggested to further conduct field or pilot testing of the 

detection and recognition prototype along with the proposed system and framework application derived in 

Chapter 7 in different building spaces, specifically focusing on indoor spaces with more occupancy footfall 

such as warehouses and shopping centres.  

 

To confirm the demand for testing within other types of indoor spaces, the occupancy detection model 1 

developed in Chapter 4.3 was applied to perform detection and recognition on a pre-recorded video via a 

video feed test. A video capturing a scene whereby workers were working within a warehouse environment 

[237] was used. Figure 7-6 provides the associated results in terms of the key stages of the detection results 

and the corresponding DLIP for people detection and recognition were plotted in the graph shown in Figure 

7-7, compared with the ‘Actual Observation’, highlighting the ground truth results of the actual number of 

occupants present within the space over the video recording period. Based the given results, shows the 

ability to detect some of the people, however many were not detected and recognised. Unrecognition of the 

people may be impacted by the distance between the camera position and the detected sources. Hence, 

developing a sufficient model that could provide effective detections within any indoor environment, would 

require modifications to the model design along with further testing.  
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Figure 7-6. Key stages of occupancy detection using Model 1 during a video feed test of a warehouse 

building. 

 
Figure 7-7. Generated DLIP Vs. the Actual Observation Profile achieved using Occupancy Model 1 with 

the detection in a warehouse building. 
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7.2.2.  Survey and Evaluation of the Proposed Vision-Based Detection Approach 

 

To acknowledge occupants’ opinions and their points of view on all aspects of the proposed deep learning 

vision-based approach and on the current intentions of how it would be implemented within indoor spaces, 

a survey was created. Questions from the survey were asked during one of the experimental test days. The 

following section presents the information consisted within the survey, how it was conducted, along with 

the analysis of the feedback received.  

 

A four-part survey with seven questions was created. Figure 7-8 and 7-9 presents the questions consisted 

within the survey. This survey was conducted directly after a presentation was given to the participants 

before a selected experimental test. The participants were informed about the highlights of involving AI 

techniques within building system controls to assist towards building energy reductions while aiming to 

enhance comfort conditions. Hence, part 1 of the survey consisted of the participant’s consent. As this 

survey included their own opinions as feedback responses to the framework approach, survey responses 

with all participants' consent (all boxes ticked) were incorporated within the feedback analysis.  

 

Part 2 of the survey consisted of questions related to the aspects of privacy issues. With the application of 

computer vision techniques considered an invasive method due to the constant capturing of occupants 

within a building space, the detections and recognitions made will be filtered immediately towards 

generating data in form of the DLIP. Hence, no raw footage will be seen by anyone or stored and so no 

invasion of privacy is incurred. Examples of such processes were explored in Chapters 4, 5, and 6. 

Effectively, the corresponding explanation was given to the participants which led to requiring them to 

respond to the questions in part 2.  

 

Furthermore, to implement such a vision-based approach within indoor spaces of various types of buildings, 

the camera used for detection would be visually seen by occupants. Hence, Part 3 consists of questions 

related to the camera design. Four different existing camera designs were selected and presented in the 

survey to provide participants to express their preference towards their most preferred camera style. In 

addition, Part 4 of the survey presents questions related to the alert system. This is designed to achieve 

responses towards the design of the response and optimisation stage of the framework approach as 

expressed in Figure 3-5.  
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Figure 7-8. Survey on the application of a deep learning vision-based detector within the indoor built 

environment - Page 1. 
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Figure 7-9. Survey on the application of a deep learning vision-based detector within the indoor built 

environment - page 2. 

Feedback obtained from the completed surveys by the participants was gathered to present the results given 

in Figure 7-10. A neutral response was the majority selected as the result for question one on the concern 

of having a camera being placed within indoor spaces to monitor indoor spaces. This indicates that the 

occupants are neither concerned about the overall application of a camera for such an approach. Yet, more 
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percentage of responses selected were very unlikely (9.09%) and unlikely (25%) compared to highly likely 

(2.27%) and very likely (15.91%), indicating that based on the interviewed occupants that overall, it would 

not be a concern. Based on the response achieved for question 2 with 47.73% of the participants will not 

feel concerned when occupants are fully informed about the framework approach and how DLIPs is formed 

to eliminate the concerns related to data being stored in the forms of images/ recordings. 

 

For the camera design question (question 3), the most preferred type would be the sensor style. This is the 

style that the detection camera is implemented within other room sensor devices. The camera is hardly seen 

as is hidden within such a sensor device. Most participants' reasons for the choice are due to the design 

being more discrete, small design, and less noticeable, and so that they don’t feel like they are being 

watched. They also suggest that with the design not being CCTV alike, it could reassure that this is a device 

that is different to CCTVs and so that it could ensure them that they are not being watched. Yet, the second 

most popular choice is the CCTV style. This indicates that 22.73% of the participants would select this 

design instead. This suggests that they would rather select a more commonly seen, traditional style device, 

giving them a safer feeling as its design is similar to a normal CCTV camera most reasons were due to them 

wanting to see the camera, positioned in the room.  

 

Questions 4, 5, 6 and 7 were from part 4 of the survey focused on the alert system. As shown in Figure 7-9, 

a short description with an example was given to express the methods within the control system part of the 

framework approach based on the content given in Figure 3-5. Given the response to question 4, most of 

the participants suggest that they neither feel satisfied nor dissatisfied about having an alert system within 

the indoor space assigned to this framework, along with most of them would feel satisfied compared to 

dissatisfied. This gives initial reassurance towards the designing and development of the optimisation and 

response system based on an alert approach. Next, questions 5, 6 and 7 were designed to ask participants 

towards the design of the alert system that they would like to have from the vision-based device. Comparing 

the results from questions 5 and 6, many responses indicated that they would not mind a sound-based 

notification, while some chose the visual-based or overhead display notification from the alert system. The 

feedback received on both questions with their reasons for choice covered most of the benefits and 

limitations arising from both types of approaches. This includes the sound-based approach having the 

benefit of occupants from across the building space being able to hear the alert regardless of what they are 

doing.  

 

However, some response includes fearing of a sudden loud noise, which could be controlled, ensuring the 

sound would not be too loud. Furthermore, the occurrence rate of such notification can be disruptive and 

may cause an irritative nuisance if constant noise is given. For the vision-based display notification, it opted 

as many responses suggest that is their preferred option due to the design would be ideal when you’re at 

home or in office spaces whereby TV monitors or computer devices are used so that the notification can be 

visually seen on the screens. However, the greatest limitation of this type of response would be the 

notification could be easily misread and/or missed. Hence, through the response to question 7, most of the 

participants preferred a combined alert system, whereby it can give more information, and become more 

useful and noticeable as there would be less chance of the alert being missed. Furthermore, if combined 

have a choice between two types of alert notification applied, depending on room type/ situation. Effectively, 

it can directly inform occupants in certain areas of the building spaces. A response suggestion also includes 

the combination of the alert notification with a mobile device so that occupants would have both types of 
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notification via their mobile phones. Overall, the response acquired from the survey conducted suggests the 

design and the framework approach requires to be less intrusive giving the most effective approach and 

comfortable design that satisfies most of the occupants. Hence, results and feedback from this survey will 

be considered within the future works of the development of the desired framework approach. 

 

 
Figure 7-10. Survey responses. 

 

 

 



 253 

7.3.  Summary 

Effectively, this chapter presented the proposal of a building control system approach to integrate the deep 

learning vision-based technique to enable the optimisation of building HVAC systems. It was first explored 

to adapt prediction and optimisation strategies to allow adjustment within the building control systems 

based on the real-time internal heat gains profile (IHGP). Later, with the suggestion of the importance of 

ventilation heat losses through manual window openings, a predictive mode-based hybrid controller was 

formed. Its design compromises of an occupancy-based on-off controller, energy-comfort-based 

temperature setpoint controller and window openness controller coupled together designed to lower 

building ventilation heat loss and occupants’ thermal dissatisfaction, while giving fast response and low 

computation and time cost. Furthermore, it is now recommended to experimentally test the benefits of using 

the proposed controllers in real buildings in future works. 

 

The second part of this chapter addressed the objectives of identifying various practical challenges and 

factors impacting the proposed approach. The type and size of the image dataset used to train the model 

along with the model configuration significantly affected the detection ability. Hence, multiple variations 

to the model were formed giving, different detectors specifically for different purposes. Conducting 

detection tests within experimental tests within selected case study buildings, suggests an achievement of 

a poorer detection performance compared to the detections made on still images from the testing dataset. 

This suggests many environmental conditions including lighting and glare, along with the differentiation 

between the images of the selected response given in the training dataset with the actual shape/form of the 

selected object required to be recognised. Hence, this indicates the requirement for modifications to the 

model design along with further testing in a wider range of case study buildings.   

 

A survey was conducted to understand occupants’ opinions and suggestions on the proposed framework 

design with aspects related to the design, ethical and privacy issues. Overall, out of the 40 surveyed people, 

they suggest that the use of a camera for such an approach would not be a privacy concern. However, it 

should highly insist that occupants would be fully informed about the framework approach and how DLIPs 

is formed to eliminate the concerns related to data being stored in the forms of images/ recordings. In all, 

the feedback received would be considered within the future works of the development of the desired 

framework approach. 
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Chapter 8 

 

8. Conclusions and Future Works 
 

8.1.  Conclusions 

 

Based on the understanding of occupancy behaviour within indoor spaces, it suggests the demand for an 

effective approach to regulate building energy performances and minimise unnecessary energy loads while 

aiming to enhance indoor thermal comfort conditions for occupants. To meet the first objective on the 

understanding of the current impact and usage of AI within the built environment, a comprehensive 

literature review was conducted, and it led to the research work to provide a development of a demand-

driven deep learning vision-based framework for the optimisation and management of HVAC systems and 

operations. The thesis conclusions are presented thereafter, numerically linked to the defined objectives as 

presented in Chapters 1.3. 

 

Various AI-based machine learning and deep learning methodologies and techniques are applied to design 

framework solutions to enhance building operations and performances through different aspects of energy 

and occupancy-based related strategies. Each research-based framework follows a generic workflow 

procedure for both classification and predictions of building and energy-related parameters but with an 

independent approach towards its specific intention. Each research proposal focuses on one aspect of energy 

and building-related concerns. This is to either enhance building energy forecasting for HVAC systems, 

advance building performances, or improve overall building thermal comfort and occupancy satisfaction. 

Neural networks were indicated as a more flexible solution compared to machine learning techniques that 

employ traditional algorithms from categories of supervised learning and unsupervised learning.  

 

To provide a better understanding of how buildings are operated and how occupancy behaviour in buildings 

influences energy usage, current applications include the use of environmental and passive infrared sensors.  

More recently, AI-based solutions have become a popular technique as deep learning methods were 

indicated to have higher flexibility as they could be used for energy forecasting and to also apply CNN for 

occupancy detection, giving accurate recognition and classifications. Platforms designed to configure and 

train deep learning convolutional neural networks (CNN) models were explored and the application of such 

techniques were selected to form vision-based detectors through the integration of the framework onto a 

camera, providing a detection and recognition-based method for building energy management and 

prediction. Overall, deep learning was employed as the main technique used within the proposed framework 

approach aiming to enhance intelligent buildings to provide better environments that could fulfil future 

needs within the built environment. 

 

Occupants’ behaviour can significantly impact the operation of HVAC and building energy demand. 

HVAC, which uses conventional control strategies or fixed setpoint schedules could not adjust to the 

conditioned spaces' actual requirements. For the majority of the time, indoor spaces that are not fully 

occupied or completely unoccupied lead to the appearance of being over-conditioned and may lead to a 

substantial waste of energy. To understand the impact of occupancy behaviour towards building energy 

performances, the parameter of internal heat gains must be monitored. In addition, through the 
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understanding of ventilation heat losses can contribute towards over 40% of the building energy at times 

windows were left unintendedly opened within a naturally ventilated room, both factors were considered. 

Hence, the adaptation of deep learning techniques within the proposed framework approach enabled the 

‘capturing’ of the performed activity which then generates output data in form of the Deep Learning 

Influenced Profiles (DLIPs). The format of the formed DLIPs depended on the trained models based on the 

type and the number of selected detection responses. A series of detectors were formed and compared. This 

includes a ‘people’ detector to provide an accurate understanding of the impact of the number of occupants 

in a room. Occupancy activity detectors formed DLIPs that were directly related to the generic heat 

emissions suggested for each of the activities (sitting, standing, walking, and napping). Furthermore, based 

on a window detection approach, predictions were based on building ventilation heat losses.  

 

Based on Objective 2 on the development of the data-driven deep learning framework that allows the 

establishment of vision-based detectors, images were collected to form a series of different image training 

and testing datasets. For each image, the pre-processing stage was performed by manual labelling of the 

desired region of interest (ROI). To achieve high accuracy and eliminate the time needed to train the models 

from scratch, a transfer learning approach using pre-trained CNN given in by the TensorFlow detection 

model zoo was applied. For all models, the COCO-trained model of Faster R-CNN with Inception V2 was 

selected and fine-tuned. The training was performed using the same computer with the graphics processing 

unit (GPU) NVIDIA GeForce GTX 1080 applied. In all, a total of seven models were trained, tested, and 

evaluated.  

 

A workflow process was established and was followed by each of these trained models to assess the 

detection ability. It consisted of an initial evaluation of the performance of the model with its detection on 

still images located from the testing dataset to give results in form of a confusion matrix along with results 

in terms of the common evaluation metrics (accuracy, precision, recall and the F1 score). Next, experimental 

tests were conducted within selected case study buildings to test the models under real-life situations. 

During all tests, continuous detections were made, and results were recorded in form of DLIPs. The 

generated results were analysed based on the IoU (Intersection over Union) accuracy, the percentage of the 

time achieving correct, incorrect, and no/missed detections throughout specific timed segments. Similarly, 

a confusion matrix was also formed based on the detection results and evaluations given on the common 

evaluation metrics. Succeeding in an in-depth analysis for each experimental test conducted using these 

models gave suggestions for refinement to the model configuration, dataset size and features along with 

suggestions for further improvements. Hence, one ‘people’ detector, two ‘occupancy activity’ detectors and 

four ‘window’ detectors were developed and analysed. After evaluation of each of these individual 

detection models, the models that provided the most assuring occupancy activity detector and window 

detector were applied and further explored into the formation of combined detectors. Effectively, such work 

conducted towards the model development and testing applied addresses Objective 3 and 4. 

 

Training of a detector with one selected response of ‘people’ gave a count-based occupancy detector. The 

formed DLIP indicated the number of people present within the detected space. Based on the performance 

during Experimental Test 1, an average detection IoU of 98.85% was achieved for all occupants. 

Furthermore, given by 8 occupants within the test, correct detection was achieved over 76.41% of the time. 

The results in terms of the common evaluation metrics suggest an overall accuracy of 95.23% and an F1 

score of 0.9756. This indicates the development of an effective occupancy detector which can be used to 
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predict CO2 concentration levels based on the occupancy count. However, limitations occur. Such 

occupancy detectors cannot provide sufficient information for the optimisation of building systems. Hence, 

occupancy activity models were developed. Given that two models were developed, Model 2a and b had 

variations in the number of images within the training and testing datasets. Model 2b consisted of the more 

common activities of only ‘sitting’, ‘standing’ and ‘walking’. An experimental test within one case study 

office space (Experimental Tests 2 and 3) was applied to give a direct comparison of the performance of 

both models.  Since the experimental test conducted for Model 2b was conducted on a different day 

proceeded from the analysis made on Model 2a, hence there was a variation in the positioning of the 

detection camera. Overall, Model 2a achieved an average detection accuracy of 92.20% for all activities. 

Walking at 95.83%, standing at 87.02%, sitting at 97.22% and none (when no occupant is present) achieving 

an accuracy of 88.13%. The need to detect times when no occupant is present may have influenced the 

over-detection accuracy. Hence, this response category was removed in the formation of Model 2b. For 

this, if no occupants were present in the space, then no detection is required. Additionally, with the model 

selected to test within an office space, the response category of ‘napping’ was also removed as compared 

to the other selected activities, this is not a common activity that would be performed in the given building 

space. High percentages were presented for each of the predicted activities based on the application of 

Model 2b.  

 

Both models showed the capabilities of recognising the differences between the corresponding human poses 

for each specific activity. Although there is some similarity between the action of standing and walking 

than there is for sitting. Therefore, this suggests the reason to achieve higher accuracy for sitting as 

compared to standing and walking. An average IoU accuracy of 98.58% was achieved. The results suggest 

that the distance between the camera and the object had a negligible effect on the detection accuracy. 

However, due to the size of the office room, the influence of further distances cannot be evaluated and 

should be assessed in future works.  

 

The distribution of the results attained for the different responses based on the different factors, including 

the angle, distance and position relating to the detection camera, shows the approach’s ability to achieve 

good detection performances. Overall, the results showed good performance and demonstrated the model's 

capabilities to recognise the differences between the human poses for each specific activity. For both DLIPs 

in the same format were formed for both models. However, based on the analysis of the generated DLIPs 

in comparison to the ‘actual observation’ profile which represented the true activities performed by 

occupants during the tests, it suggests fluctuations occurred, indicating prediction error. 

 

With the modifications to Model 2b based on the evaluations made from the test conducted using Model 1, 

Model 2b outperformed Model 2a. To verify this, Model 2b was further tested using a different case study 

building under an experimental test with a greater number of people present in the space. Results suggest 

an overall IoU accuracy of 93.60%. Similar to the results for Model 2a in Experimental Test 2 and Model 

2b in Test 3, a lower IoU accuracy was achieved for the activity of standing and/or walking compared to 

the activity of sitting suggesting the difficulty in recognising the occupancy body form and shape, as it may 

be confused with the activities of both standing and walking. Model 2b provided an accuracy of 89.37% 

with an F1 score of 0.8298. Since multiple responses were selected for this model, further development is 

required to ensure a consistent level of detection accuracy could be achieved across all the different 

occupancy activities and become an effective tool to assist in the evaluation of the heat gains from occupants 
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or predicting the activity rate for thermal comfort calculations in real-time. 

 

The same deep learning method and techniques were applied for the forming of the window detectors. Four 

window detection models were developed. All were tested through the application via a video feed test of 

a selected case study building. Models 1 and 2 consisted of selecting two response categories of both ‘open’ 

and ‘closed’ windows, with Model 1 as the initial dataset and Model 2 as an enhanced version with a greater 

number of images consisted within the image datasets. Models 3 and 4 focused on one detection response 

of ‘Open’ with Model 3 compromising on the same labelling techniques as Models 1 and 2. While Model 

4 employed a different labelling process, with the bounding boxes explicitly assigned to the opening gaps 

of the windows. All models were trained using the same CNN-based model configuration and evaluated on 

the application of an experimental test performed within a selected case study building space.  

 

The detection performance evaluation suggests that Model 1 provided the lowest detection ability. For most 

instances, it could not detect each of the windows separately to distinguish the difference between opened 

and closed windows. Model 2 was able to detect the windows individually at times. Having only one 

selected-response outcome for Model 3 enabled better identification of the separate windows. This model 

had the limitation of identifying other objects as opened windows. Using a different labelling technique for 

Model 4 aided the improvement of the detection and recognition ability, giving the best performance for 

Model 4. Based on the application of Model 1, a consistently low percentage of time of up to 28.73% 

achieved correct detection. Most of the time, incorrect and missed detections were obtained. Model 2 

achieved a higher percentage in terms of the time it achieved correct detections (32.78%), and a lower 

number of incorrect predictions. However, it led to a high number of no/missed detections up to 63.91% of 

the time. This resulted in the development and testing of a detector with a single response for opened 

windows in Models 3 and 4. Model 3 achieved a more consistent detection IoU between all the windows 

with an average IoU of 96.82%. However, this model also identified other objects within the building space 

as the selected response. Hence, such errors in detection were avoided through the labelling method used 

in Model 4, giving an overall IoU of 95.12%. In comparison, a significantly higher amount of time 

achieving correct detections was obtained for Model 4 with 85.93% of the time. This suggests Model 4 

provides the most accurate window detection through the labelling adopted to enable a focus on the 

openings or gaps of the windows. 

 

DLIP for windows were formed during the experimental tests for all window detections. The profiles were 

based on a modulating number of detected opened windows. The results reflected upon the detection 

performance for each of the models as the generated DLIP still alternates between the values of the window 

profile schedule, indicating prediction error. Therefore, with the comparison to the actual observation of 

the true window conditions, Model 4 provided the most accurate result.  

 

Objective 5 was presented to ensure effective detectors that could provide accurate real-time understanding 

of how buildings are utilised and or impacted by occupancy behaviour. Hence, build energy simulation 

(BES) was used to predict the potential impact on ventilation heat loss and building energy demands. Based 

on the selected case study buildings and experimental tests used to conduct the detection performance 

analysis, these were further modelled to provide profiles for energy analysis. DLIPs for occupancy and 

windows were inputted into the BES. Comparison of the use of static or scheduled occupancy profiles 

currently used in most building HVAC systems operations and in building energy modelling and 
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simulations presents an over or underestimation of the occupancy heat gains and could lead to substantial 

inaccurate heating and cooling energy predictions. Solely based on these BES results and the set conditions, 

a difference of up to 55% was observed between occupancy DLIP and static heat gain profile. The higher 

difference in gains was achieved when a more accurate occupancy detector is employed, giving a lower 

difference between the DLIP method and Actual Observations. Similarly, window DLIPs enable a direct 

prediction of ventilation heat losses.  

 

BES was conducted for various scenario-based cases that represented typical and/or extreme situations that 

would occur within selected case study buildings. Scenarios based on variations in the number of occupants 

performing different activities in a given space can result towards HVAC systems adapting and responding 

to occupancy's dynamic changes. Results in terms of both heating and cooling loads were highly dependent 

on the occupancy profiles, leading to the indication of HVAC systems to vary indoor set point temperatures 

to ensure the ability to minimise building energy losses while providing adequate indoor air quality and 

thermal conditions.  

 

Based on the individual detectors, combined detectors were also formed. The same procedure was applied 

towards the development, training and testing of these. Detection performances reflected upon the 

performance given by the individual detectors. Proposing combined detectors through BES further indicates 

the importance of forming multi-detectors to acquire accurate real-time dynamic changes. 

For the proposed approach to be fully utilised within buildings, a framework infrastructure should be 

developed to integrate the vision-based technique with a building control system to ensure HVACs operate 

according to the real-time building or space requirements. A heat gain prediction and optimisation strategy 

were proposed. Using the vision-based camera detection, real-time IHGP (internal heat gain prediction) 

based on the understanding of the number of activities performed by occupants in the building space was 

used to verify the predictive room HVAC loads models and secondly, it would be used to predict room 

HVAC loads when optimising the TSP for the HVAC system. Next, the performance of both the prediction 

and the optimisation models would be assessed through a comparison of the goodness of fitting between 

the predicted models of heating and cooling under the different scenarios. In addition, the utilisation of such 

a profile would reduce HVAC systems’ operation time and eliminate discomfort problems to indicate 

potential energy savings without compromising occupants’ thermal satisfaction. Furthermore, the strategy 

was suggested to be further developed to propose a hybrid controller. The hybrid controller is proposed to 

include all the proposed vision-based controllers, along with the combined heat gain controller, along with 

the formed ventilation prediction model, to provide a hybrid controller that optimises energy use and 

thermal comfort. In all, the proposal of the given integration approach should be further explored in future 

works and assessed towards the formation of a streamlined framework approach that connects to a building 

control system to allow the developed vision-based approach to assist the defining of the required HVAC 

control system conditions to provide the correct requirements corresponding to the varied room conditions. 

 

The potential application of the development framework approach was assessed based on the described 

experimental tests conducted within selected case study buildings. As mentioned in Objective 6, the 

practical challenges impacting the proposed approach must identified. This includes the type and size of 

the image dataset used to train the model along with the model configuration significantly affecting the 

detection ability, which led to variations in the different trained models. Furthermore, the set up along with 

the indoor-outdoor environmental conditions such as lighting and glare impacting during the experimental 
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test would affect the performance. Since these are uncontrollable factors that would generally arise in all 

buildings, the detection models must be effectively trained to adapt to such situations.  

 

Since the framework approach is designed to be implemented within indoor spaces of buildings and to 

provide a continuous capturing of occupancy behaviour, occupants’ opinion and suggestion related to the 

design and application is important. A survey was conducted, and the feedback suggests they have no 

concern about having a camera implemented within the room. However, it should highly insist that 

occupants would be fully informed about the framework approach and how DLIPs is formed to eliminate 

the concerns related to data being stored in the forms of images/ recordings. Also, they preferred a design 

that is close to a more commonly seen, traditional style device, giving them a safer feeling as its design is 

similar to a normal CCTV camera. As for their opinions on the idea of the alert system used as a response 

to the optimisation system, some preferred sound-based systems and some preferred a visual-time system 

to provide notification to the occupants. Overall, key considerations include the need of forming a less 

intrusive effective approach and comfortable design that satisfies most of the occupants. All feedback 

received would be considered within the future works of the development of the desired framework. 

 

8.2.  Recommendations for Future Works 

 

Improvements to the current approach are required before the integration building HVAC system controls. 

Future works include further modification to the dataset, an attempt to try out different deep learning CNN-

based methods for training the models to form detectors, testing under a wider range of indoor environments 

and to also perform the proposed steps given in Chapter 7 to form a controller to enable the vision-based 

technique to integrate with building energy systems via the process of an optimisation strategy.  

 

Further improvements are required to enhance the detection model's accuracy, reliability, and stability. As 

shown by the development of different detection models in this present study suggests improvements are 

important to form a more stable detector, eliminating prediction errors to provide accurate information 

about the conditions within an indoor space. Furthermore, modifications include the exploration of different 

pre-trained CNN-based models to be applied to the training of the detectors. In this research, the Faster 

RCNN with Inception V2 model was selected. However, other object detection algorithms are suggested 

as popular forms of CNN models used to train detection models. For example, the R-FCN (Region-based 

fully convolutional networks), the SSDs (Single shot multibox detector), the FPN (Feature pyramid 

networks), and different variations of the YOLO region-based algorithms could be used towards the 

formation of accurate detectors.  

 

Testing of the trained models was performed under selected indoor spaces within case study buildings at 

the University of Nottingham, University Park Campus, United Kingdom. During these tests, a limited 

number of occupants as participants were involved and the building types selected were limited to office 

spaces and lecture rooms.  To fully test the performance of these models and to identify the model’s ability 

for accurate occupancy detection, larger spaces such as factories, shopping centres, and busier indoor spaces 

with high footfall should be selected as potential environments for model testing. 

 

Considering the practical challenges impacting the proposed approach whereby indoor-outdoor conditions 

linked to lighting and glare led to variations in each model’s performance. These uncontrollable factors 
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must be addressed by seeking solutions to acknowledge such conditions and incorporate them as a 

consideration within the improvement of the detectors. This may link to steps that have already been 

performed to improve models, which can be re-applied further. This includes the enhancement towards the 

image datasets used, and the methods of labelling applied during pre-processing stages.  

 

The exploration towards the formation of combined detectors suggests the importance of acquiring one 

multi-detector that provides a full understanding of the dynamic changes within the indoor space. Hence, 

the ability to combine individual detectors could be further explored with the potential exploration into 

developing models that focuses on the detection of other types of occupancy activity and or/ their behaviour 

towards various actions depending on the building type and location of where this system could be 

implemented.  

 

In addition, the process of integrating the vision-based technique with a building control system through 

BEMS is equally important. This is the stage in which the output data achieved from the detection becomes 

valuable for improving indoor thermal comfort, air quality, building energy performance and overall energy 

savings. Hence, the procedure with the approach suggesting a streamlined framework-based solution to define 

the required HVAC control system conditions based on real-time detection data responses should be further 

explored and developed from the initial proposal given in Chapter 7. This includes the most suitable indoor/ 

room setpoint temperature that should be assigned to HVAC systems to provide adequate thermal 

conditions based on the real-time understanding of the utilisation of the space by occupants.  
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Appendices 

 

Appendix A: Videos 

 

The following presents a list of all the videos discussed within the thesis. Please refer to the attached links 

to view the full video. 

 
Video 1 – Preview given in Figure 4-36. This video presents the comparison between the application of 

Model 1 for people detection and Model 2b for occupancy activity detection during experimental tests 1 

and 4. Video 1 consists of an example detection and recognition conducted using the same video recorded 

during Experimental Tests 1 and 4 in Paton House, University of Nottingham.  

 

 

https://drive.google.com/file/d/1bfpodEQV1l8fjPT8K8pBCFE6FaB0SgM1/view?usp=share_link
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Video 2 – Refers to Figure 5-7. The video consists of a comparison of the detection and recognition 

performance achieved with the application of the four window detectors.  

 

 
Video 3 – Links to Figure 6-13 showing the application of the proposed combined occupancy activity and 

equipment detection model in the test with the DLIP generation.  

 

 
Video 4 – Refer to Figure 6-26 presenting a preview of the video showing the application of the proposed 

combined occupancy activity and window detection model in the test with the DLIP generation.  

 

https://drive.google.com/file/d/1MYkpeg_WxMI4x2Ij7fuR-B6BqlvlsR-2/view?usp=share_link
https://drive.google.com/file/d/13wlb563M7PxoyN0trwSZIJetKks3mFlw/view?usp=sharing
https://drive.google.com/file/d/1rdlAZuuqaQvB-X1pSV5-WowavjmqOl_x/view?usp=sharing
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Video 5 - Figure 6-39 presents the potential workflow process of a demand Data-driven vision-based 

approach for the management of building energy. 

  

  

https://drive.google.com/file/d/1ubBTYcc1cYGpONVeElmUPGn5Ei6-nHZx/view?usp=share_link
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