72 research outputs found

    Complex Block Floating-Point Format with Box Encoding For Wordlength Reduction in Communication Systems

    Full text link
    We propose a new complex block floating-point format to reduce implementation complexity. The new format achieves wordlength reduction by sharing an exponent across the block of samples, and uses box encoding for the shared exponent to reduce quantization error. Arithmetic operations are performed on blocks of samples at time, which can also reduce implementation complexity. For a case study of a baseband quadrature amplitude modulation (QAM) transmitter and receiver, we quantify the tradeoffs in signal quality vs. implementation complexity using the new approach to represent IQ samples. Signal quality is measured using error vector magnitude (EVM) in the receiver, and implementation complexity is measured in terms of arithmetic complexity as well as memory allocation and memory input/output rates. The primary contributions of this paper are (1) a complex block floating-point format with box encoding of the shared exponent to reduce quantization error, (2) arithmetic operations using the new complex block floating-point format, and (3) a QAM transceiver case study to quantify signal quality vs. implementation complexity tradeoffs using the new format and arithmetic operations.Comment: 6 pages, 9 figures, submitted to Asilomar Conference on Signals, Systems, and Computers 201

    High sample-rate Givens rotations for recursive least squares

    Get PDF
    The design of an application-specific integrated circuit of a parallel array processor is considered for recursive least squares by QR decomposition using Givens rotations, applicable in adaptive filtering and beamforming applications. Emphasis is on high sample-rate operation, which, for this recursive algorithm, means that the time to perform arithmetic operations is critical. The algorithm, architecture and arithmetic are considered in a single integrated design procedure to achieve optimum results. A realisation approach using standard arithmetic operators, add, multiply and divide is adopted. The design of high-throughput operators with low delay is addressed for fixed- and floating-point number formats, and the application of redundant arithmetic considered. New redundant multiplier architectures are presented enabling reductions in area of up to 25%, whilst maintaining low delay. A technique is presented enabling the use of a conventional tree multiplier in recursive applications, allowing savings in area and delay. Two new divider architectures are presented showing benefits compared with the radix-2 modified SRT algorithm. Givens rotation algorithms are examined to determine their suitability for VLSI implementation. A novel algorithm, based on the Squared Givens Rotation (SGR) algorithm, is developed enabling the sample-rate to be increased by a factor of approximately 6 and offering area reductions up to a factor of 2 over previous approaches. An estimated sample-rate of 136 MHz could be achieved using a standard cell approach and O.35pm CMOS technology. The enhanced SGR algorithm has been compared with a CORDIC approach and shown to benefit by a factor of 3 in area and over 11 in sample-rate. When compared with a recent implementation on a parallel array of general purpose (GP) DSP chips, it is estimated that a single application specific chip could offer up to 1,500 times the computation obtained from a single OP DSP chip

    NATURAL ALGORITHMS IN DIGITAL FILTER DESIGN

    Get PDF
    Digital filters are an important part of Digital Signal Processing (DSP), which plays vital roles within the modern world, but their design is a complex task requiring a great deal of specialised knowledge. An analysis of this design process is presented, which identifies opportunities for the application of optimisation. The Genetic Algorithm (GA) and Simulated Annealing are problem-independent and increasingly popular optimisation techniques. They do not require detailed prior knowledge of the nature of a problem, and are unaffected by a discontinuous search space, unlike traditional methods such as calculus and hill-climbing. Potential applications of these techniques to the filter design process are discussed, and presented with practical results. Investigations into the design of Frequency Sampling (FS) Finite Impulse Response (FIR) filters using a hybrid GA/hill-climber proved especially successful, improving on published results. An analysis of the search space for FS filters provided useful information on the performance of the optimisation technique. The ability of the GA to trade off a filter's performance with respect to several design criteria simultaneously, without intervention by the designer, is also investigated. Methods of simplifying the design process by using this technique are presented, together with an analysis of the difficulty of the non-linear FIR filter design problem from a GA perspective. This gave an insight into the fundamental nature of the optimisation problem, and also suggested future improvements. The results gained from these investigations allowed the framework for a potential 'intelligent' filter design system to be proposed, in which embedded expert knowledge, Artificial Intelligence techniques and traditional design methods work together. This could deliver a single tool capable of designing a wide range of filters with minimal human intervention, and of proposing solutions to incomplete problems. It could also provide the basis for the development of tools for other areas of DSP system design

    Energy efficient enabling technologies for semantic video processing on mobile devices

    Get PDF
    Semantic object-based processing will play an increasingly important role in future multimedia systems due to the ubiquity of digital multimedia capture/playback technologies and increasing storage capacity. Although the object based paradigm has many undeniable benefits, numerous technical challenges remain before the applications becomes pervasive, particularly on computational constrained mobile devices. A fundamental issue is the ill-posed problem of semantic object segmentation. Furthermore, on battery powered mobile computing devices, the additional algorithmic complexity of semantic object based processing compared to conventional video processing is highly undesirable both from a real-time operation and battery life perspective. This thesis attempts to tackle these issues by firstly constraining the solution space and focusing on the human face as a primary semantic concept of use to users of mobile devices. A novel face detection algorithm is proposed, which from the outset was designed to be amenable to be offloaded from the host microprocessor to dedicated hardware, thereby providing real-time performance and reducing power consumption. The algorithm uses an Artificial Neural Network (ANN), whose topology and weights are evolved via a genetic algorithm (GA). The computational burden of the ANN evaluation is offloaded to a dedicated hardware accelerator, which is capable of processing any evolved network topology. Efficient arithmetic circuitry, which leverages modified Booth recoding, column compressors and carry save adders, is adopted throughout the design. To tackle the increased computational costs associated with object tracking or object based shape encoding, a novel energy efficient binary motion estimation architecture is proposed. Energy is reduced in the proposed motion estimation architecture by minimising the redundant operations inherent in the binary data. Both architectures are shown to compare favourable with the relevant prior art

    Efficient architectures for multidimensional discrete transforms in image and video processing applications

    Get PDF
    PhD ThesisThis thesis introduces new image compression algorithms, their related architectures and data transforms architectures. The proposed architectures consider the current hardware architectures concerns, such as power consumption, hardware usage, memory requirement, computation time and output accuracy. These concerns and problems are crucial in multidimensional image and video processing applications. This research is divided into three image and video processing related topics: low complexity non-transform-based image compression algorithms and their architectures, architectures for multidimensional Discrete Cosine Transform (DCT); and architectures for multidimensional Discrete Wavelet Transform (DWT). The proposed architectures are parameterised in terms of wordlength, pipelining and input data size. Taking such parameterisation into account, efficient non-transform based and low complexity image compression algorithms for better rate distortion performance are proposed. The proposed algorithms are based on the Adaptive Quantisation Coding (AQC) algorithm, and they achieve a controllable output bit rate and accuracy by considering the intensity variation of each image block. Their high speed, low hardware usage and low power consumption architectures are also introduced and implemented on Xilinx devices. Furthermore, efficient hardware architectures for multidimensional DCT based on the 1-D DCT Radix-2 and 3-D DCT Vector Radix (3-D DCT VR) fast algorithms have been proposed. These architectures attain fast and accurate 3-D DCT computation and provide high processing speed and power consumption reduction. In addition, this research also introduces two low hardware usage 3-D DCT VR architectures. Such architectures perform the computation of butterfly and post addition stages without using block memory for data transposition, which in turn reduces the hardware usage and improves the performance of the proposed architectures. Moreover, parallel and multiplierless lifting-based architectures for the 1-D, 2-D and 3-D Cohen-Daubechies-Feauveau 9/7 (CDF 9/7) DWT computation are also introduced. The presented architectures represent an efficient multiplierless and low memory requirement CDF 9/7 DWT computation scheme using the separable approach. Furthermore, the proposed architectures have been implemented and tested using Xilinx FPGA devices. The evaluation results have revealed that a speed of up to 315 MHz can be achieved in the proposed AQC-based architectures. Further, a speed of up to 330 MHz and low utilisation rate of 722 to 1235 can be achieved in the proposed 3-D DCT VR architectures. In addition, in the proposed 3-D DWT architecture, the computation time of 3-D DWT for data size of 144×176×8-pixel is less than 0.33 ms. Also, a power consumption of 102 mW at 50 MHz clock frequency using 256×256-pixel frame size is achieved. The accuracy tests for all architectures have revealed that a PSNR of infinite can be attained

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design

    Neuroverkon inferenssi digitaalisessa signaalikäsittelyssä kovien reaaliaikavaatimusten alaisuudessa

    Get PDF
    The main objective of this thesis is to investigate how neural network inference can be efficiently implemented on a digital signal processor under hard real-time constraints from the execution speed point of view. Theories on digital signal processors and software optimization as well as neural networks are discussed. A neural network model for the specific use case is designed and a digital signal processor implementation is created based on the neural network model. A neural network model for the use case is created based on the data from the Matlab simulation model. The neural network model is trained and validated using the Python programming language with the Keras package. The neural network model is implemented on the CEVA-XC4500 digital signal processor. The digital signal processor implementation is written in C++ language with the processor specific vector-processing intrinsics. The neural network model is evaluated based on the model accuracy, precision, recall and f1-score. The model performance is compared to the conventional use case implementation by calculating 3GPP specified metrics of misdetection probability, false alarm rate and bit error rate. The execution speed of the digital signal processor implementation is evaluated with the CEVA integrated development environment profiling tool and also with the Lauterbach PowerTrace profiling module attached to the real base station product. Through this thesis, an optimized CEVA-XC4500 digital signal processor implementation was created for the specific neural network architecture. The optimized implementation showed to consume 88 percent less cycles than the conventional implementation. Also, the neural network model performance fulfills the 3GPP specification requirements.Tämän diplomityön tarkoituksena on tutkia miten neuroverkon inferenssi voidaan toteuttaa tehokkaasti digitaalisella signaaliprosessorilla suoritusnopeuden näkökulmasta, kun sovelluksella on kovat reaaliaikavaatimukset. Työssä käsitellään teoriaa digitaalisista signaaliprosessoreista, ohjelmistojen optimoinnista ja neuroverkoista. Työssä kehitetään neuroverkkomalli tiettyyn käyttötapaukseen, ja mallin pohjalta luodaan toteutus digitaaliselle signaaliprosessorille. Neuroverkkomalli luodaan Matlab-simulointimallin avulla kerätystä datasta. Neuroverkkomalli opetetaan ja varmennetaan Python-ohjelmointikiellellä ja Keras-paketilla. Neuroverkkomalli toteutetaan CEVA-XC4500 digitaaliselle signaaliprosessorille. Digitaalisen signaaliprosessorin toteutus kirjoitetaan C++-ohjelmointikielellä ja prosessorikohtaisilla vektorilaskentaoperaatioilla. Neuroverkkomalli varmennetaan mallin tarkkuuden, precision-arvon, recall-arvon ja f1-arvon perusteella. Mallin suorituskykyä verrataan käyttötapauksen tavanomaiseen toteutukseen laskemalla 3GPP-spesifikaation mukaiset mittarit virhehavaintotodennäköisyys, väärien hälytysten lukumäärä ja bittivirhemäärä. Suoritusnopeus määritetään sekä CEVA-ohjelmointiympäristön profilointityökalulla että tukiasematuotteeseen kytketyllä Lauterbach PowerTrace-yksiköllä. Työn tuloksena luotiin optimoitu CEVA-XC4500 digitaalinen signaaliprosessoritoteutus valitulle neuroverkkoarkkitehtuurille. Optimoitu toteutus kulutti 88% vähemmän laskentasyklejä kuin tavanomainen toteutus. Neuroverkkomalli täytti 3GPP-spesifikaation mukaiset vaatimukset

    Computational structures for application specific VLSI processors

    Get PDF

    KAVUAKA: a low-power application-specific processor architecture for digital hearing aids

    Get PDF
    The power consumption of digital hearing aids is very restricted due to their small physical size and the available hardware resources for signal processing are limited. However, there is a demand for more processing performance to make future hearing aids more useful and smarter. Future hearing aids should be able to detect, localize, and recognize target speakers in complex acoustic environments to further improve the speech intelligibility of the individual hearing aid user. Computationally intensive algorithms are required for this task. To maintain acceptable battery life, the hearing aid processing architecture must be highly optimized for extremely low-power consumption and high processing performance.The integration of application-specific instruction-set processors (ASIPs) into hearing aids enables a wide range of architectural customizations to meet the stringent power consumption and performance requirements. In this thesis, the application-specific hearing aid processor KAVUAKA is presented, which is customized and optimized with state-of-the-art hearing aid algorithms such as speaker localization, noise reduction, beamforming algorithms, and speech recognition. Specialized and application-specific instructions are designed and added to the baseline instruction set architecture (ISA). Among the major contributions are a multiply-accumulate (MAC) unit for real- and complex-valued numbers, architectures for power reduction during register accesses, co-processors and a low-latency audio interface. With the proposed MAC architecture, the KAVUAKA processor requires 16 % less cycles for the computation of a 128-point fast Fourier transform (FFT) compared to related programmable digital signal processors. The power consumption during register file accesses is decreased by 6 %to 17 % with isolation and by-pass techniques. The hardware-induced audio latency is 34 %lower compared to related audio interfaces for frame size of 64 samples.The final hearing aid system-on-chip (SoC) with four KAVUAKA processor cores and ten co-processors is integrated as an application-specific integrated circuit (ASIC) using a 40 nm low-power technology. The die size is 3.6 mm2. Each of the processors and co-processors contains individual customizations and hardware features with a varying datapath width between 24-bit to 64-bit. The core area of the 64-bit processor configuration is 0.134 mm2. The processors are organized in two clusters that share memory, an audio interface, co-processors and serial interfaces. The average power consumption at a clock speed of 10 MHz is 2.4 mW for SoC and 0.6 mW for the 64-bit processor.Case studies with four reference hearing aid algorithms are used to present and evaluate the proposed hardware architectures and optimizations. The program code for each processor and co-processor is generated and optimized with evolutionary algorithms for operation merging,instruction scheduling and register allocation. The KAVUAKA processor architecture is com-pared to related processor architectures in terms of processing performance, average power consumption, and silicon area requirements
    corecore