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Computational Structures for 
Application Specific VLSI Processors 

Abstract 

This thesis centres on the investigation of architectural forms that are able to exploit 

the inherent structure and regularity in algorithms to realise highly concurrent VLSI 
systems. High concurrency in computation may be achieved by directly mapping an 
algorithm into an architectural form embracing multiple processing elements with 
distributed memory, linked by efficient communication channels. Three distinct 
architectural forms will he presented, based on the granularity of the modular 
processing elements. These are based respectively on analogue current 

computational systems, bit-serial flow-graph networks and wavefront arrays. 

Fine grain analogue systems are typically composed of a few thousand nodes per 
chip. Such fine grain analogue processing may be required in the realisation of 
signal conditioning functions for an array of sensors. In these "smart" sensors, an 
analogue functional element is integrated onto the same site as the sensing element 
to form an individual node. A novel "receptor" cell will be presented to illustrate 
the application of fine grain analogue computation in "smart" vision sensors. The 

receptor cell may be tessellated to form an imager with built-in nonlinear automatic 
gain control (AGC) correction, thereby maintaining the operating range of the 
imager in register with ambient light conditions. 

Medium grain, bit-serial machines are typically characterised by nodes where 

memory and logic are extensively intermingled in tightly pipelined structures. 
Computational efficiency may be achieved through functional parallelism in which 

arrays of hard-wired processors are used to boost system throughput. A filter 

section based on wave digital filter theory will be presented as a case study typical 

of this class of medium grain, flow-graph networks. This filter section, called an 
adaptor, permits the realisation of digital filters with the desirable characteristics of 

passive RLC ladder filters, namely their stability and insensitivity to component 

value variations. 

For highly concurrent numerical computations, bit-parallel computational arrays 
may be employed. The coarser granularity of these nodes tends to increase the 
physical extent of the communication paths in such arrays, making it difficult to 

operate all the nodes in synchrony. This difficulty may be overcome in arrays 
operating with self-timed communication. Generic logic structures that enable self-
timed computational nodes to be efficiently realised will be presented and verified. 

Finally, a wavefront array multiplier will be described to illustrate this mode of 

computation. 
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Index of Abbreviations 

For convenience, some acronyms and abbreviations commonly used throughout this 

thesis are listed below 

Ack Acknowledge FIFO First-in, first-out memory 

AGC Automatic gain control LSB Least-significant bit 

ALU Arithmetic logic unit M Mega or 106  scaling factor 

CCD Charge-coupled device MSB Most-significant bit 

CPU Central processing unit PP Partial product 

CSA Carry-save adder PPS Partial product sum 

CVSL Cascode voltage switch logic Req Request 

DSP Digital signal processing SD Sign-digit 

FFT Fast fourier transform VLSI Very large scale integration 

WDF Wave digital filter 
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Chapter 1 

Computational Structures in VLSI 

An Overview 

1.1. Introduction 

Commercial microprocessors and digital signal processor (DSP) chips are becoming 

increasingly powerful, offering the user an ever improving cost-performance ratio. 

These devices are tailored to specific applications through software development and 

probably represent the most cost effective solution if they are capable of 

accommodating the application at hand. However, in applications where the input 

data is to be processed in real time or a high throughput rate is required, the 

hardware used must be capable of performing high speed arithmetic. This 

requirement is not met by commercial programmable components that are based on 

traditional von Neumann processor-memory organisation. Such machines consists 

of a single processor or central processing unit (CPU) connected to a single, central 

memory. The computational bottlenecks of such devices stem from two 

fundamental limitations 

• 	There is only a single processor unit working sequentially in 

time. 

• 	The processor-memory bandwidth is limited by the use of a 

single bus structure that forces data transfer to proceed 

sequentially. 

In an attempt to address the above shortcomings, the latest generation of digital 

signal processors incorporate additional hardware for address generation and dual-

ported memories to increase data transfer rates. The increase in computational 

throughput provided by this approach however, is marginal and a more radical 

approach is needed for orders of magnitude improvement. 

Most signal processing algorithms are computationally intensive, requiring multiple 

arithmetic operations to be performed on each signal sample flowing from a 

continuous stream of data. However, the sequence of computations are usually 

repetitive in nature, setting up a regular flow of data through successive series of 
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computations. This inherent structure within the underlying algorithm makes them 

highly amenable to a Very Large Scale Integration (VLSI) solution. VLSI offers 

the designer the opportunity to define computational structures with local memory 

at multiple sites for the concurrent processing of data. For high throughput rates or 

operation in real-time, the computational demands of signal processing algorithms 

can only be met by application-specific computational architectures incorporating 

the use of multiple processing elements with distributed memory. In this respect, 

we are aided by the inherent structure and regularity of most signal processing 

algorithms, enabling a direct mapping of the algorithm into regular computational 

arrays for efficient implementation in VLSI. 

This fixed-function approach to signal processor realisation exploits the benefits of 

VLSI technology to the full. Firstly, control overheads are kept to a minimum 

since there is no longer a need to specify the function required, as in programmable 

devices. In addition, the flow of data between computational elements is known 

beforehand and remains constant. As a result, memory local to the computational 

elements can be provided for the storage of intermediate results. For a dedicated 

VLSI device receiving data and outputting results through an attached host, the 

provision of local memory can significantly reduce the 110 bandwidth requirements. 

A typical computing environment for such devices is shown in Fig. 1.1. The host 

in this context can be a computer, a memory or a real-time data stream. 

1.2. Computational Costs in VLSI 

The cost of implementing a computation can be viewed as consisting of two 

aspects 

• 	The cost of realising the processing elements as measured by the 

use of silicon area, pin count and computation time. 

• 	Providing communication between processor elements, giving 

rise to an interconnection cost that is measured in terms of 

silicon area and signal propagation time. 

The relative contribution of processing and communication towards the total costs 

of computation is not a constant and is strongly dependent on the architecture and 

technology used to implement the computation. 
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System Bus 

I I Central 	I Dedicated 
Host 	

Memo 	
VLSI 

I Device 

Fig. 1.1 	Typical computing environment for custom, dedicated 

VLSI devices. 

1.2.1. Scaling Effects of VLSI 

With VLSI, there is a relentless drive to define smaller feature sizes over an 

increasing chip area in order to exploit the economic, benefits of the technology to 

the full. With the scaling down of device feature size, the communication cost 

would increasingly dominate the power, time and area required to implement a 

computation [79]. 

Consider the scaling down of all feature dimensions by a factor 1/a (a>1). If 

device structures in the vertical dimension are assumed to scale correspondingly, 

then to hold the electric fields constant, the operating voltage must scale by 1/a as 

well. The first effect of scaling is that the number of transistors that can be placed 

on a chip per unit area is increased by a factor of a 2 . The switching delay or 

transit time of a transistor T, is given by the time it takes charge carriers to traverse 

the electric field in the channel. Since the electric field remains constant with 

scaling, the shorter channel length of a scaled transistor results in a transit time 

decreased by a factor 1/a. The transistor becomes faster and the cost of realising 

the active devices within processing elements becomes increasingly affordable with 

scaling. 
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The interconnection delay in a wire is governed by the diffusion equation that 

determines the rate at which a voltage driven onto a point on a wire, equalises 

along the length of the wire. This diffusion delay is proportional to RCI 2 , where R 

and C are the resistance and capacitance per unit length of wire and 1 the length of 

the wire. The cross-sectional area of a wire is decreased by 1/a 2 , scaling R by a 2 . 

C remains unchanged since the scaling down in conductor area is accompanied by a 

corresponding decrease in dielectric separation. The wire length 1 is reduced by 1/a 

and the wire delay Rd 2  remains constant with scaling. 

Since transistor switching delay decreases while interconnect delay remains 

unchanged with scaling, the speed at which a circuit can operate will eventually be 

dominated by wire delay rather than device switching delay. The consequences, of 

scaling down the physical dimensions in MOS technology are summarised in 

Table 1.1. 

Parameter Scaling Factor. 

Device density a 2  

R a2 

C 	 ' constant 

Switching delay T 1/a 

Wire delay RC12  constant 

Table 1.1 Scaling effects in MOS technology. 

1.3. Thesis Core 

With VLSI technology, communication will become increasingly expensive in area 

and time with scaling relative to switching. Communication is therefore the key 

issue in VLSI design and only computational structures that support efficient 

communication will exploit the full benefits of the technology. The physical 

communication requirement arising from the mapping of an algorithm into VLSI is, 

to an extent, dependent on the complexity of the chosen processing elements or 

nodes. The complexity or grain-size" of the nodes determines the number of nodes 

that can be accommodated on a given die size. Fig. 1.2 illustrates the range of 

granularity of hard-wired processors that this thesis will address, a subset of the 
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Fig. 1.2 
	

Typical range of granularity for application-specific 

processors. 

range of ensemble machines as classified by Seitz [72]. 

With current fabrication technology, an integrated circuit today would typically be 

about 5 to 10 mm square, with a 2 iJ.m minimum feature size. In units of A, the 

scalable unit of length measurement representative of the fundamental resolution of 

the process [45], this translates to a die size of approximately 10 A per side or 100 

MA2  in total area. For fine grain systems composed of a few thousand nodes per 

chip, computation on signal quantities is carried out in the analogue domain so that 

the individual node size can be restricted to an area of about iO A 2 . Next on the 

scale of granularity are bit-serial machines with node size of the order of 1 MA 2 . 

Such systems are typically characterised by nodes where memory and logic are 

extensively intermingled in tightly pipelined structures. For highly concurrent 

numerical computations, computational arrays composed from nodes with node size 

of the order of 10 MA 2  are used. These arrays are connected in such way that the 

communication topology exactly matches the data flow of the computation. The 

coarser granularity of the nodes tends to increase the physical extent of the 

communication paths in such arrays. For this reason, it may prove difficult to 

operate all the nodes in a computational array in synchrony. This difficulty may be 
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overcome if communication between nodes is carried out in a self-timed fashion. 

Such an approach will be presented as part of this thesis. 

1.3.1. Fine Grain Analogue Systems 

For a system composed of a few thousand nodes per chip, the physical design. is 

tractable only if communication between nodes is constrained to nearest neighbours 

or if global broadcasting is employed. At this extreme fine grain-size, each node is 

constrained to fit into an area in the region between 10 1 X 2  to 101  X2 . With this 

area constraint, a digital approach is clearly impossible and an analogue approach is 

required to provide a viable solution. Typical application areas for such fine grain 

processing are in signal conditioning functions for sensors. In these "smart" sensors, 

an analogue functional element is integrated onto the same site as the sensing 

element to form an individual node. Pioneering work in this area has been carried 

out by Mead and colleagues at Caltech [83, 76, 82, 30] where the main objective is 

in computing motion from moving visual images in real-time. The workhorse used 

in the above body of work is the transconductance amplifier [54], which is used as 

a building block for functional elements such as integrators, differentiators, 

multipliers and resistive networks. 

In this thesis, a pure current-mode approach to analogue computation will be 

presented. Current is pEeferred over voltage and charge as a means of manipulating 

analogue signal quantities for three reasons 

• 	For computations involving voltages, the bandwidth may be 

limited by the time required to charge and discharge circuit 

capacitances. 

• 	For computations involving charge quantities, the injection of 

stray noise charge from switching transistors [92] and parasitic 

capacitances onto floating capacitors can severely degrade 

accuracy. 

• 	Compact realisation of complex computational functions is 

possible by applying the translinear principle [20] which applies 

exclusively in the current domain. 
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This approach has been applied to the design of an optical imager with the unique 

ability to automatically compensate for the brightness level of ambient lighting, in 

order to prevent the sensing elements from saturating. In this respect, this self-

compensating mechanism imitates the behaviour of a receptor cell in the retina, 

which is capable of adjusting its sensitivity to keep its response in register with 

ambient lighting conditions [90]. The imager may be viewed as a two-dimensional 

array of processing nodes, with each node consisting of a photodiode sensor with 

built-in variable gain control. Due to the large number of nodes characteristic of 

such fine grain systems and the limitation in pin-count imposed by current 

packaging technology, the output of the nodes are usually scanned out sequentially 

in time. 

1.3.2. Medium Grain Bit-Serial Machines 

For medium grain size nodes each occupying an area of about 1 MA 2 , a digital 

approach may be used which would enable tens of such nodes to be accommodated 

per chip. Systems can then be constructed from the modular use of multiple chips 

so that the number of nodes in a system can be matched to the application 

bandwidth. For lower bandwidth applications, the hardware resources of a system 

may be reduced by time-multiplexing an appropriate number of nodes to spread the 

computations out in time. For this level of granularity, the communication paths 

typically extend over two levels of interconnection, namely between nodes residing 

on the same chip and nodes on different chips. To meet the twin criteria of 

efficient communication and bandwidth matching, bit-serial arithmetic is often used 

to realise the computational nodes. Since signals are transmitted via single wires, 

there is rarely a pin-out problem with bit-serial parts. Systems constructed from 

bit-serial nodes can be conveniently partitioned into two distinct classes: logic 

enhanced memories [73] and flow-graph networks [14]. 

Logic enhanced memories are nodes that contain a mixture of storage and logic, 

with the logic operating on the contents of the local store. For low-level image 

computations that can be decomposed into local pixel operations, logic enhanced 

memories provide a concurrent mapping of the algorithm directly into hardware. 

Typical systems would consist of hundreds of such identical nodes. The number of 

nodes can be arbitrarily increased to track the problem size without any difficulty 

since communication between nodes is local and the distributed nature of memory 
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provides such systems with unlimited memory bandwidth. Examples of such 

systems are CLIP [18] and Pixel-Planes [64] developed respectively at University 

College, London and the University of North Carolina. 

For flow-graph networks, the nodes may be of different functional complexity but 

they all conform to a common generic type. The nodes of the system correspond to 

the functional operators in the flow-graph of the algorithm to be computed. One of 

the earliest example of this approach was the second-order filter section reported by 

Jackson [31]. With external state memory, the nodes within the section can be 

time-multiplexed to realise a virtual cascade of second-order sections for speech 

bandwidth applications. Higher throughputs can be achieved through functional 

parallelism by increasing the number of nodes in a system. This has been 

demonstrated by Powell [65] for the implementation of the fast fourier transform 

(FFT) algorithm and other matrix-oriented computations. 

A filter section based on wave digital filter theory [17] will be presented as a case 

study typical of this class of medium grain, flow-graph networks. The filter section, 

called an adaptor, permits the realisation of digital filters with the desirable 

characteristics of passive RLC ladder filters, namely their stability and insensitivity 

to component value variation. 

1.3.3. Coarse Grain Computational Arrays 

The numerical solution of a system of linear equations often involves a more 

advance class of arithmetic operations such as division and square-root extraction. 

Both of these arithmetic operations are data-dependent, requiring a comparison of 

two operands that cannot be efficiently mapped into bit-serial form [77]. For this 

reason, such functions are usually realised using bit-parallel arithmetic, resulting in 

an increase in computational node size to an area of about 10 MX 2 . Due to the 

coarse granularity, the communication paths of a system composed of an array of 

such nodes typically span three levels of interconnect. The interconnection network 

provides communication within chips, between chips residing on the same printed-

circuit board and finally, between boards of chips. 

In order to limit the extent of the communication paths in computational arrays, 

H.T. Kung and his collaborators at Carnegie-Mellon University [35] proposed the 

systolic array. A systolic array is a regular connection of nodes distinguished by its 
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nearest-neighbours-only communication strategy. The nodes constituting the main 

body of the system are usually identical, performing the same basic operation whilst 

those nodes at the array boundary may compute a different function. The 

computations are distributed in a pipeline fashion across the entire array with all 

nodes operating synchronously. With systolic arrays, the ommunication topology 

of the array exactly matches the data flow of the algorithm so that the nodes are 

kept busy all the time. The only control required is a globally distributed clock. 

They are ideal for high bandwidth applications where the aim is to extract the 

maximum throughput available from the implementation technology. 

Systolic arrays synchronise data communication between nodes through a globally 

applied clock signal. For large two-dimensional arrays, the clock may need to be 

derated to account for possible clock skews. To overcome this shortcoming, a 

variant of systolic arrays with self-timed communication, called wavefront arrays has 

been proposed by S.Y. Kung [36]. In wavefront arrays, the synchronisation of data 

at each node is accomplished locally using a data-driven approach. A node in the 

array remains inactive until all input data are available and its previous output has 

been delivered to all neighbouring nodes. An additional advantage of the 

wavefront approach is that the time taken to complete a computation is not fixed 

and can vary from cycle to cycle. With computations requiring different 

completion times that vary with actual data values, a wavefront array may achieve a 

higher throughput than the corresponding systolic array, which must be clocked at a 

rate set by the worst-case completion time [7]. Examples of such data-dependent 

computations include ripple-carry addition, division and the comparison of the 

magnitude of two operands. 

Although the concept of self-timed communication is attractive, there are very few 

practical examples of such asynchronous, wavefront systems due mainly to the 

difficulty in implementing the self-timed communication protocols. To partly 

address this difficulty, logic structures that enable self-timed computational nodes to 

be efficiently realised will be presented as part of this thesis. A first-in, first-out 

(FIFO) memory will be used to verify the self-timed communication protocol by 

demonstrating proper propagation of wavefronts between nodes. As the nodes in a 

FIFO are pure storage nodes without any computational facility, a wavefront 

multiplier is subsequently described to demonstrate the viability of realising 

wavefront arrays in VLSI. 
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1.4. Original Contribution 

Three distinct approaches to concurrent computation are presented in this thesis for 

application-specific VLSI processors. The following are original contributions of 

this thesis 

• 	In § 2.3, the translinear principle is applied to analogue VLSI 

current computation, exploiting the weak inversion characteristic 

of MOS transistors. This approach allows the compact 

realisation of complex computational functions, illustrated with 

the design of a "receptor cell" described in § 3.4. This 

compactness of realisation is essential for "smart" vision sensing 

systems requiring the features in an image to be captured with 

acceptable resolution. 

• 	A race-free clocking scheme for high-performance CMOS 

pipelines, ideal for realising bit-serial operators, is presented and 

tested in § 4.4.2. This technique, called PHIMOS, requires just 

a single global clock line to be distributed. The clock may be 

driven by a sinusoid to avoid the transmission of the higher 

frequency components associated with fast clock edges. 

• 	A data flow approach to self-timed logic is introduced in § 6.5. 

Generic hardware structures that allow an efficient realisation of 

data flow logic are presented in § 6.6. This is illustrated with 

the design of a wavefront array multiplier described in § 7.4. 

A new design for a first-in, first-out (FIFO) memory based on 

the data flow approach is presented and tested in § 7.2. 

1.5. Summary 

This thesis describes three distinctly different approaches to concurrent computation 

for application-specific VLSI processors. The distinction is based on the granularity 

of the individual processing elements from which a system is constructed. The 

thesis, therefore, decomposes into three parts with each part consisting of two 

chapters. The three parts deal respectively with analogue computational systems 

(Chapters 2 & 3), bit-serial flow-graph networks (Chapters 4 & 5) and wavefront 
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arrays (Chapters 6 & 7). The first of each pair of chapters introduces the 

fundamental concepts relevant to that particular computational form, together with 

the appropriate literature survey on the subject. The second chapter of each pair 

then describes a case study illustrative of the computational form under discussion, 

together with th.e presentation of practical results that serve to verify the concepts 

introduced in the preceding chapter. Chapter 8 provides some concluding remarks 

and the problems encountered with each of the three computational forms. The 

three case studies described have been fabricated on two sets of chips, VB076 and 

IMAGOO4. The pin-out of chips VB076 and IMAGO04 are given in Appendix A. 

The derivation of the equations describing the operation a prototype logarithmic 

imager, used as a test vehicle in Chapter 3, is given in Appendix B. Finally, 

Appendix C lists the author's publications. 
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Chapter 2 

Analogue VLSI Computation 

2.1. Introduction 

Analogue circuits operate on signals in the amplitude domain. They have 

traditionally been applied to perform the linear functions of addition, subtraction 

and scaling (or amplification) and are often referred to as linear circuits. 

Improvements in fabrication process and the development of new circuit 

techniques [54, 70] in recent years have dramatically extended the application area 

of analogue circuits. Nonlinear functions such as multiplication and division can 

now be realised in a simple and elegant fashion by applying the translinear 

technique [20]. As a result, a variety of analogue computational functions can now 

be realised that are often more efficient both in terms of silicon area and 

computation time than their digital counterparts. In addition, signals at the 

interface of a system to the external world are often analogue in nature. If 

analogue computation can be applied, then external signals at the interface may be 

manipulated directly without the need for conversion into and out of the digital 

domain. This would reduce overall system complexity and cost. 

More importantly, there may be problem areas in which a digital solution may not 

be at all possible because a digital realisation of system components would be too 

complex and slow. Such a situation arises when the output of some sensor requires 

some form of nonlinear correction to achieve some desired output response. This 

feature is central to the design of a novel imager that will be presented as a case 

study in Chapter 3. The computational requirement of this "electronic eye" is 

extremely demanding, requiring some form of nonlinear computation to be carried 

out on each individual pixel value, in real-time, at the focal plane. The only 

tractable solution is to use analogue VLSI techniques that permit the realisation of 

compact structures that operate directly on sensed data at the sensor site. This 

integration of sensor and signal conditioning function onto a single element forms 

the basis of so called "smart" sensors. The integrated element or pixel may be 

viewed as a fine grained computational node that can he tessellated to form an 

A linear function f satisfies the principle of superposition so that 
f(x 1  + x2) = f(x 1 ) + f(x2 ) and f(ax 1 ) = af(x1). 



§2 
	 13 

image plane. 

This chapter will introduce how computation can be done with analogue circuits in 

VLSI. In the analogue domain, we can represent a signal as either a current or 

voltage level. Certain computations are more conveniently realised using currents 

as signals and others by using voltages. In general however, the realisation of basic 

arithmetic functions such as scaling, addition, subtraction, multiplication and 

division tends to require fewer transistors in a current-mode approach. This area 

efficiency in the realisation of complex computational functions is of prime 

importance in the design of the electronic eye. The area occupied by a pixel must 

be kept sufficiently small so that an image may be captured with acceptable 

resolution. For a description on analogue computation involving voltages, the 

interested reader is referred to Ref [54]. 

2.2. Elementary Arithmetic Functions 

A current mirror is probably the most common circuit configuration encountered in 

analogue design. It can be used to produce a replica of some input current, to 

invert current direction or to scale a current by some constant factor. Current 

mirrors are often used to channel together copies of current signals and form the 

basis of several elementary functional circuits. By directly exploiting the physical 

law of charge conservation, the realisation of functional circuits through the use of 

current mirrors is particularly elegant and efficient. 

2.2.1. Identity and Scaling 

When the result of a computation from a functional block is fed to several different 

destinations, the number of destinations is referred to as the fan-out of the source. 

In MOS technology, the interconnection requirement for multiple fan-out is strongly 

influenced by whether the source is current or voltage based [3]. The input 

impedance of a MOS transistor is nearly infinite and from a d.c. standpoint, 

voltage-mode sources can have a near unlimited fan-out. For multiple fan-out, a 

signal voltage carried on a single wire can be applied directly to all destinations. In 

contrast, current-mode devices require as many interconnection lines as there are 

destinations, with one line dedicated to each destination. A current signal is 

therefore replicated to generate as many copies of the signal as is required by the 
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fan-out of the source. 

The identity function allows replication of a signal and in the current domain, this 

function is performed by a current mirror. In saturation, the drain current 'OS  of a 

MOS transistor is essentially independent of the drain-source voltage VDS. 'DS is 

therefore determined by the gate-source voltage VGS when a transistor is in 

saturation. To preserve a current-only approach, the controlling gate voltage can be 

set by a diode-connected transistor biased by a reference current 'ref'  as shown in 

Fig. 2.1a. The controlling gate voltage can then be distributed to multiple current 

mirror transistors to produce multiple copies of 'id  (Fig. 2.1b). 

The drain current 'OS  flowing in a transistor is also linearly related to its aspect ratio 

W/L. By varying the size of transistors in a mirror, the output current 'Out•  can be 

scaled by a factor given by the geometric ratio of the output transistor to the diode-

connected transistor. However, scaling by geometric means is only used in practice 

when the scaling factor required is small. For scaling factors greater than ten, the 

mirror occupies a substantial area and is seldom used. 

' 0 ti 'out2 	outn 

'out 

Fig. 2.1a Basic current 
	

Fig. 2.1b Multiple fan-out for 

mirror. 	 current signals. 



'out = 11 + 12 

'out = Ii - 1 2 

1 2 
T 1 2 
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2.2.2. Addition and Subtraction 

The addition and subtraction of currents follow directly from the principle of charge 

conservation as embodied by Kirchhoff's current law: the sum of currents flowing 

into a node is equal to the sum of currents flowing out of a node. We can add 

currents by mirroring currents into the same node. This is shown in Fig. 2.2a for 

the addition of two currents in which Kirchhoff's law gives L 11  = I + 12. 

Similarly, subtraction of currents is effected by mirroring positive currents into a 

node from VDD and reflecting negative currents out of the node into ground. This 

is illustrated by the current mirror given in Fig. 2.2b. 

(a) Current mirrors are used to 	(b) Subtraction of currents using 

reflect currents into a node 	current mirrors follow directly 

to perform addition. 	 from Kirchhoff's current law. 

Fig 2.2 	Addition and subtraction of currents by current mirrors. 
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2.2.3. Ensemble Averaging 

In many instances, the average of a group of signals is required as a reference to 

other functional blocks. The ensemble current-averaging circuit shown in Fig. 2.3 

computes the average for current-type signals in a simple and elegant fashion. 

Suppose the drain current 'DS  of a transistor is related to the gate-source voltage VGS 

by the expression 

'DS 10  A f(V05) 

where 10  is some constant, A the aspect ratio W/L of the device and f(V GS) some 

function of VGS. Then summing the currents, 

'total = 

= 10 f(VGS) 	A, 

assuming that all the transistors are operating in the same region in their output 

characteristics so that the function f(V GS) is common to the summation. Then 

'total 
f(V0) = 

1=1 

Since all the transistors share a common gate voltage VGS, L is given by 

I. = 10  A0 , f(V05) 

A = 	0ut 0  

Ai  j1 

If all the transistors have identical aspect ratios, then 1 is the average of all the 

input currents I, i.e. 

'Out= n 



if 

A0  
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'out 
	

1 2 
	

I n 

Fig 2.3 	Ensemble averaging circuit where Lut = A0n 	I II 

i=] 

2.3. Complex Arithmetic Functions 

In order to form a more complex class of arithmetic functions than those realised so 

far with current mirrors, a branch of analogue circuits based on the translinear 

principle [20] is introduced. Translinear circuits can perform a variety of linear 

and nonlinear functions of high functional complexity with a surprising small 

number of devices. As an example, the four-transistor realisation of a variable gain 

current amplifier [21] given in Fig. 2.6 can effect the multiplication and division of 

currents. Translinear circuits are operated exclusively in the current domain. Their 

principle of operation is based on the proportionality of transconductance to output 

current in certain electronic devices. 
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2.3.1. Translinear Principle 

Translinear circuits exploit the exponential relationship between a current flowing in 

the output node of a device as a result of an input voltage applied to its control 

node. Thus 

yin  

'Out = 10 emuT 	 (2.1) 

where 10 is some constant, UT  the thermal voltage kT/q and m a process dependent 

factor. The transconductance of such a device is given by 

a L - out 

3V10 	mUT  

The transconductance is therefore a linear function of current and the term 

translinear is used to describe this key property of the device. The prime example 

of a device with a current-voltage relationship satisfying Eqn. 2.1 is the bipolar 

transistor where the collector current is exponentially related to the base-emitter 

voltage over many decades of current [19]. In MOS technology, a transistor biased 

to operate in weak inversion will also exhibit translinear behaviour [86]. In weak 

inversion, the MOS transistor drain characteristic can be approximated by 

vGs 

T 	mIJT 
1DS = 'DO e (2.2) 

where 'DS  is the drain current, VGS the gate-source voltage and 'DO  some process 

dependent constant. From Eqn. 2.2, 

[ IDS
VGS = mUT ln 	 J 
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2.3.2. Translinear Current Loops 

In this section, the translinear principle is derived [20] using MOS transistors 

operated in weak inversion as the translinear elements. Consider a simplified loop 

consisting of diode-connected transistors as shown in Fig. 2.4. In any electrical 

network consisting of one or more loops, the sum of the voltages in each loop is 

equal to zero by Kirchhoff's law. In practical circuits, the currents in the loop may 

be set up by three terminal connections but the principle derived will still be valid. 

Summing voltages round the loop, 

= 0 

VGsI + Vs - VGS2 - V0  + .....= 0 

= Y, Vj 

anli —clockwise 	clockwise 

DSi 	 iPLi (2.3) mU- In I 	I = 	mUT  In 
anti—clockwise 	 ( '1)01 J 	clockwise 	 ( 'DOj ) 

where anti-clockwise direction of current flow is taken to be positive. If the 

translinear elements are realised in a monolithic form, then the following 

assumptions can be made 

• 	Process-dependent device parameters are uniform for all 

elements. 

• 	The elements all operate at the same temperature. 

Eqn. 2.3 can therefore be simplified to 

'I 

	

J 	I 

	

lnl- 
 
j- -- I 	In 

clockwise 	( 'DOj ) anti —clockwise 

Equivalently, the sum of a series of logarithmic terms can be expressed as a product 

of the arguments. Therefore 

(IDS  
H  

anti —clockwise 1Doi =  clockwise I'DOj) 
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H 	'DSi H 	'DOi 
anti—clockwise 	- anti—clockwise 	 (2.4)  

H 'DSJ 	- fl 	'DOj 
clockwise clockwise 

IDO  is proportional to the aspect ratio A = W/L of a transistor, but it also contains a 

temperature and process-dcpendent term J [85]. J DO  is poorly controlled and its 

absolute value will vary with chips from different batch runs. However, its value 

may be considered a constant independent of current level for transistors on the 

same chipt .  Eqn. 2.4 then becomes 

H 	'DSi 	 fl 	A1J0 

anti—clockwise 	- anti—clockwise 

H IDSj - 	fl AJJD0 

clockwise 	 clockwise 

The influence of temperature and processing can be removed if the JDO  terms in the 

numerator and denominator on the right hand side of Eqn. 2.5 mutually cancel. 

This would be the case if elements in the ioop occur in matched pairs connected in 

opposing polarity. Eqn. 2.5 reduces to 

'DS(2r-1) 	2 'DS(2r) 

1= 1 A 2r-1 	r1 A21 
(2.6) 

If Ins/A is regarded as the current density, then the translinear principle states that 

in any closed loop with pairs of devices connected in opposing polarity, the product 

of the current densities in one direction is equal to that in the opposing direction. 

Translinear circuits therefore operate uniquely in the current domain and are 

insensitive to uniform variations of temperature and processing. 

2.3.3. Translinear Synthesis 

As an example of translinear synthesis, consider the classic configuration consisting 

of a quadruple of transistors as shown in Fig. 2.5. Depending on how the devices 

are driven, this circuit can perform a variety of functions on the currents I, 12, 13  

and 14 . Two functional circuits, a prod uct-quoti ent circuit and a high-ratio current 

mirror will now be derived [21]. The product-quotient circuit provides a variable 

current gain with the gain factor set by a ratio of two currents. The current mirror 

This is true only if there no mismatch in the threshold voltage of the transistors. Refer to 

§ 2.4. 

(2.5) 
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U 	 I 

U 	 U 
I 	 I 

Fig 2.4 Simplified translinear current loop. 

has a scaling factor determined by the geometric ratio of transistors connected in a 

translinear loop. 

Product-Quotient Circuit 

If the currents I, 12  and 13  shown in Fig. 2.5 are forced, then applying the 

translinear principle, 

11 	13 - 12 	14  

A1  A3 	A2  A4  

A2 A4  13 13  
14 	

A1  A3  12 
(2.7) 

'1 13 

12 

assuming identical geometries for all four transistors. The product-quotient circuit 

is given in Fig. 2.6 and can be used as a variable gain current amplifier with a gain 

set by a ratio of two currents. 
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'1 
	1 3 	14 	12 

if 

T -4 
Fig 2.5 Classic translinear quadruple core. 

Ii 

Ti 12 

1 2 

Fig 2.6 Product-quotient circuit where 1 4  = 
12 
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High-Ratio Current Mirror 

If 12 can be made proportional to either I or 1 3 , then the quadruple core of the 

product-quotient circuit can be used to synthesise a current-mirror with scaling 

factor determined by a geometric ratio of transistors. Such a current-mirror is 

shown in Fig. 2.7. Applying the translinear principle around the minor loop 

consisting of T3  and T5 , 

13  - 15  

A3 	As  

11  - '2 

A3 	As  

since 13  = I and 15  = 12. Substituting into Eqn. 2.7, 

A2A4 
11 X 

A3 
14= 

Al A3 	A 5 1 1  

- A2 A4  
- A 1 A5  

2.4. Sources of Error 

In a translinear ioop, non-ideal effects such as ohmic resistances giving rise to stray 

voltage drops around the loop, will introduce errors into Eqn.2.6. Random 

variations in the geometry of transistors are also unavoidable and will contribute an 

error to the ideal current relationship. However, the main source of error in using 

MOS transistors as translinear elements is caused by variations in the threshold 

voltage of the transistors. This threshold voltage variation can be due to two 

effects 

• 	In any fabrication process, a mismatch IVTO in zero-bias 

threshold voltage among transistors inevitably occurs. This 

threshold voltage mismatch will impose a fundamental limit on 

the accuracy of translinear circuits realised from MOS devices. 

• The threshold voltage VT  of a MOS transistor is not a constant, 

varying slightly as a function of the voltage between its source 

terminal and the substrate. This behaviour is referred to as the 

body effect. 
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4 

T4 

Fig 2.7 	High ratio current mirror where 14 = A2A4 
A1 A5  

2.4.1. Threshold Mismatch 

In present MOS processing technology, the zero-bias threshold voltage V TO  cannot 

be controlled to anything better than ±10 mV, even for physically close 

transistors [87]. The threshold mismatch AV TO  can be expressed as an equivalent 

geometric mismatch X. given by 

mUT 
X m  = e 	 (2.8) 

Taking the threshold mismatch into account, Eqn. 2.6 is modified to 

- 

'DS(2r-1) = 	j 	2 'DS(2r) 
e H 

= 	2r-1 	 ri A21 
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1± 
2 'DS(2r

- 
 1) 	 2 'DS(2r) 	 (2.9) 

MA 	mH 
A2r  

The equivalent effect of threshold mismatch is to introduce a temperature-

dependent geometric factor K m . Translinear analysis of current densities can then 

proceed as before, with Km  regarded as a constant scaling factor. For typical values 

of zV.1.0  = 5 mV and mUT  = 40 mV, Km  has an approximate value of 1.13, 

representing a possible deviation in expected current value of about 15 %. As a 

result, translinear circuits realised from MOS devices are limited in their output 

signal current accuracy. Emerging fields of application where such circuits may be 

tolerated are in the areas of collective computation [81,751 and "smart" vision 

sensors in which features of interest, such as the edges of objects, show up as sharp, 

abrupt intensity variations that are not easily swamped by such inaccuracies. 

2.4.2. Body Effect 

In the preceding discussion on the operation of a MOS transistor in weak inversion, 

the source and bulk are assumed to be at the same potential. The source may 

therefore be used as the reference for the gate potential. The drain current can 

then be expressed as 

vGS 

'DS = IDo e mUT 
 

where IDO  is some constant, VGS the gate-source voltage, UT the thermal voltage 

kT/q and m a process dependent factor. If the potential at the source terminal V s  is 

different from that of the bulk VB, then VGS must be replaced by (V G  —mVs), with 

all potentials defined with respect to the substrate. The voltage V s  reverse-biases 

the source-bulk junction and causes the depletion layer under the channel to 

become wider with increasing values of V. There is now more charge resident in 

the depletion layer due to the ionised impurities in the substrate. Since the 

threshold voltage VT  can be regarded as the gate voltage necessary to maintain the 

depletion region without creating a channel, V T  will increase with V s  as a result. 

This effect can be accounted for by modifying the drain current expression to 

give [87]: 
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VG_mVS 

mUT 
'DS = 'DO e 	 (2.10) 

The factor m is determined primarily by local substrate doping with a value that 

increases with substrate doping. For a typical process, m has a value in the range 

1.3m<2 and can be considered a constant. Body effect in transistor can be 

eliminated by tying its source terminal to the local substrate. This is easily done in 

practice though at some expense of layout density due to the need for separate 

wells. 

2.5. Transistor Characteristics in Weak Inversion 

When MOS transistors are used as translinear elements, the transistors must be 

operated in the weak inversion part of their output characteristic. In weak 

inversion, the drain characteristic of a transistor can be expressed as [85]: 

~ Q( 	_x 
mU— le UT 	UT' 

I0s= 	' I o e 	—e 	I 
) 

V0 —mVs 

= vDs  IDOe 
mU T 

I1—e 
UT1 

' DS  
= 'sat II - e UT 	S 	 (2.11) 

The absolute value of 1DO  is poorly controlled from batch to batch and is 

approximated by [87]: 

VTO 

'DO = K3 UT2  e mUT 

where 0 is the transistor transfer factor p.0 0W/L and K some constant factor 

greater than 1. 'DO is strongly temperature and process-dependent but may be 

considered a constant for transistors on the same chip, provided that the threshold 

mismatch iVTo  approaches zero. However, the threshold mismatch in present 

MOS processes can be controlled to no better than ± 10 mV. This can give rise to 

a possible 28 % error in 
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The drain current 'DS  of a transistor at a given gate voltage, increases rapidly from 

zero with VDs.  When VDS has reached a value of about 3 UT, 'DS saturates to an 

almost constant value L' determined by the gate voltage (refer to Eqn. 2.11). 

Above.this saturated value of drain-source voltage VDSAT, 'DS increases gently with 

VDS. This small increase in IDS  in the saturation region is caused by the drair 

depletion layer extending back into the channel, effectively reducing the channel 

length of the transistor. The gradient of the output drain characteristics in 

saturation is proportional to the drain current level L5.  Therefore, if the drain 

characteristics are extrapolated backwards, they converge onto a single point V A , on 

the VDS  axis. The intercept VA , is called the Early voltage of the transistor. The 

drain characteristics of a typical transistor in weak inversion for different levels of 

L are given in Fig. 2.8. 

In the saturation region, 

'sat 
'DS 	1  VDS 

	

"DS

Lat  
MDS - 	VDS 

Eqn. 2.11 can therefore be approximated by 

	

( 	VJs 
'DS = 'sat 1  + 

l

(2.12) 
VA 

The saturation current L of a transistor in weak inversion has an upper limit given 

approximately by 13UT2  [85]. Above this value, the transistor starts to enter strong 

inversion and 'DS  is no longer exponentially related to Vo.  Therefore in circuit 

designs which exploit the, weak inversion characteristic of transistors [84], the drain 

current levels of those transistors operating in weak inversion must be set below 

13UT2  by proper biasing. For moderately sized transistors with 3 of about 100 

.A/V2 , La , in weak inversion is limited to below 0.1 FLA. In weak inversion 

therefore, 

'DS 	3UT2 	 (2.13) 



VI 
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'DS 

VGS4 

VGS3 

VGS2 

VGS1 

H 	 H 	 VDS 

Fig 2.8 	Output drain characteristics of a transistor in weak 

inversion. 

I 	 I 
WERI-1NV(RSI0N 	TRRNSITION 	STRONG-INV(RSION 

Fig 2.9 	Diffusion and drift components of 'DS  as a function of VGS 

( after Ref [1] 
). 
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2.5.1. Modelling of Weak Inversion Conduction with SPICE2 

The drain current 'DS  of a MOS transistor can be modelled by two components, Liff  

and 'drift,  each arising from a different conduction mechanism [1]. 'DS  can 

therefore be expressed as 

'DS = LJ1ff  + 'diffi 	 (2.14) 

Ljff  arises from the diffusion of carriers caused by a carrier concentration gradient 

along the channel of a transistor. For VGS<VT, 'dill is the dominant term in 

Eqn. 2.14. 'drift  on the other hand, is set up by the drift experienced by charge 

carriers in an electric field. 'drift  is therefore non-zero only if V>0 and VGS>VT, 

so that an inversion layer can be formed under the gate. 

The two components of 'DS  as a function of gate voltage VGS  are shown in Fig. 2.9. 

In an attempt to join the two curves in the transition region, SPICE2 defines a new 

threshold voltage VON [88]. Vo N  is slightly above VT and marks the transition from 

weak to strong inversion. At this point VON, an exponential characteristic is 

attached to the 'drift  curve to model the weak inversion region where V GS<VT . 

Weak inversion operation of a transistor as modelled in SPICE2 is a function of the 

parameter N [88]. N FS  is not related to the physical nature of weak inversion 

conduction; it is a curve-fitting parameter obtained from measurements of actual 

devices. Fig. 2.10 shows the transfer curves for two different values of NFS  as 

simulated by SPICE2. Notice that the attempt to join the two curves results in a 

kink in the current characteristic at the transition point from weak to strong 

inversion VON. Improved models based on the physical modelling of weak inversion 

conduction have been proposed [1,47] to remove this discontinuity in the drain 

current characteristic. 

In SPICE2, weak inversion conduction modelling is included only in the 

LEVEL=2 (MOS2) and LEVEL=3 (MOS3) models. For computational 

efficiency, the MOS3 model can be used where only first-order effects are modelled. 

To invoke weak inversion conduction modelling, NFS must be given some non-zero 

value. Otherwise, NFS  defaults to zero and weak inversion conduction is not 

modelled. Table 2.1 gives a list of the relevant parameters to include for weak 

inversion conduction modelling in MOS3. 
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Fig 2.10 	Drain characteristic of a transistor as modelled by SPICE2 

for two different values of N ( after Ref [1] ). 

V1.0  zero-bias threshold 

KP intrinsic transconductance 

GAMMA bulk threshold parameter -' 

PHI 0.6V 

KAPPA 1 

NFS parameter that controls the amount of 

weak inversion current flowing. 

tox required for calculating VON in weak 

inversion. 

Table 2.1 MOS3 SPICE2 parameters for modelling weak inversion 

conduction. 
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2.6. Summary 

The rudiments of analogue VLSI computation have been presented. using currents 

for representing and manipulating signals. Elementary arithmetic functions such as 

identity, addition and averaging may be realised from a combination of basic 

current mirrors. In addition, more complex arithmetic functions such as 

multiplication, division and square root may be synthesised by applying the 

translinear principle. The translinear principle is based on the exponential 

dependence of the drain current of a MOS transistor in weak inversion on its gate 

voltage. As a result, translinear circuits realised from MOS devices are limited by 

the mismatch in transistor threshold voltages to an accuracy of no better than 

± 20 % in their output signal currents. Emerging fields of application where such 

circuits may be tolerated are in the areas of collective computation and 'smart" 

vision sensors. 
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Chapter 3 

An Electronic Eye 

A Case Study on Analogue Computation 

3.1. Introduction 

Most commercial solid-state imagers are based on the principle of charge sensing 

employing charge-coupled devices (CCD) or MOS photodiodes. These devices 

respond to absolute intensity levels and have an upper limit to their input intensity 

range. When this upper limit is reached, any further increase in intensity values 

will not result in any corresponding response at the output of the sensors. The 

sensors are said to be saturated and are incapable ofresponding to light levels above 

the saturation intensity value. Such sensors are therefore sensitive to overlighting 

and may not work well under unfavourable ambient lighting conditions. When 

these imagers are used at the front-end of computer vision systems to capture image 

data, saturation of the sensors would inevitably result in a loss of.information in the 

acquired data. This failure to acquire an image without loss of information is a 

major drawback of current computer vision systems that are applied in a visually 

uncontrolled environment, such as the outside world. As a practical illustration of 

this difficulty, the present generation of vision systems used for autonomous vehicle 

guidance [16] are unable to track a road under unfavourable conditions, where 

there may be an expanse of water or snow in the scene. 

Another shortcoming of charge-based sensors is that their dynamic range is 

insufficiently wide for use in the outside world [6]. Charge-based sensors have a 

dynamic range of about 1000 or 30 dB. This is significantly less than the dynamic 

range in a typical outdoor scene, where the intensity variation from bright sunlight 

to deep shadow spans about six orders of magnitude or 60 dB. For these reasons, 

the use of currently available vision systems is usually confined to a environment 

where the ambient lighting can be carefully controlled, such as in a factory 

inspection line. Mechanical auto-irises have been developed for commercial 

imaging products to address the susceptibility to saturation of charge-based sensors. 

These mechanical irises operate along the principle of a camera shutter, controlling 

the amount of light incident on the sensor cells. In contrast to this approach, novel 

analogue vlsi computation techniques will be applied in this chapter to effect a 
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solution inspired by biological vision systems. Instead of controlling the light 

intensity incident on a sensor cell with a fixed photo-response, the response of the 

sensor is varied to a range sensitive to that level of incident intensity. In this 

respect, this self-compensating mechanism imitates the behaviour of a receptor cell 

in the retina, which is capable of adjusting its sensitivity to keep its response in 

register with ambient lighting conditions [90]. 

3.2. Solid-State Image Sensing 

The most common mechanism for the detection of light in semiconductors relies on 

the generation of electron-hole pairs by incident radiation. This process, called 

photon absorption, occurs when an incident photon causes an electron to make a 

transition to a higher energy state. Since energy and momentum must be 

conserved, the energy gained by the electron equals the photon energy hv, where h 

is the Planck constant and v the frequency of the incident photon. If the number 

of photons per second or intensity, is reduced from I by an amount M over a 

distance &x in a semiconductor, then a parameter a called the absorption coefficient 

can be defined by 31i'I = —a 6x. In the limit, dlldx = —a I, with solution 

I = Jo e.  Jo is the intensity at x = 0, the surface of the solid. 

Not all photons will create an electron-hole pair and the fraction that do is called 

the quantum efficiency In order to maximise the quantum efficiency at a 

given wavelength, the dimensions of a photodetector can be tailored to the 

absorption coefficient a at that wavelength. If the attenuation a is too high at the 

incident wavelength, most of the electron-hole pairs will be generated near to the 

surface of the material. Carrier lifetimest  are much shorter near the surface of a 

material than in the bulk due to the presence of defects and impurities in the 

surface region. Therefore fewer carriers will be available for photo-conduction. 

However, if a is too low, the solid appears transparent to radiation at that 

wavelength and the overall quantum efficiency will also be low. A good 

compromise for the thickness of a photodetector is 1/a for the wavelength of 

interest [60], in which case the light intensity is reduced by a factor of e ( 2.72) 

over this distance. 

T The hole or electron lifetime is the time taken, on average, for excess holes or electrons to 
recombine. 
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Fig. 3.1 	Physical structure of photodiode in an N-well CMOS 

process. 

3.2.1. Photodiode 

The most common optical transducer used in solid-state imaging is a reverse-biased 

diode. The physical structure of a photodiode fabricated in an N-well CMOS 

process is given in Fig. 3.1. Photon absorption gives rise to an optically generated 

component of diode current called the photocurrent L?.  To take this into account, 

the diode characteristic equation is modified to 

[VD 	1 
ID = Is Ie kT

- 	- 

I 
The diode characteristic curves under different illumination levels are given in 

Fig. 3.2. With increasing light intensity, the diode characteristic curve is translated 

down the current axis. Under reverse bias of a few hundred millivolts, the diode 

current is essentially independent of the bias voltage VD; its level is set by the 

photocurrent L. 
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V 

Fig. 3.2 	Diode characteristic curves under different illumination 

levels. 

Blooming 

When an array of diodes are used as photosensors, they are usually operated in a 

reverse-bias mode whereby the diodes are first precharged to some initial voltage 

and then isolated. Light incident on the diodes will generate photocurrents that will 

cause the isolated charge packets to "leak" away at a rate proportional to incident 

intensity. If the photocurrents are integrated over some fixed time interval, then 

the change zW 1  in the node voltage of a particular diode from its initial value will 

be proportional to the incident intensity at that location. 

If the diodes are subjected to overlighting, they may be fully discharged within the 

integration period with the result that an electric field no longer exists across the 

diode to sweep up the photo-generated carriers. The excess carriers will accumulate 

and diffuse outwards, giving rise to a phenomenon known as "blooming'. 

Blooming occurs when a bright spot of light saturates not only the sensors on which 

it is incident, but the surrounding sensor sites as well. It is caused by lateral 

diffusion of excess carriers through the bulk into the electric field of neighbouring 
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sensor sites [74]. These excess carriers will recombine with the isolated charge on 

neighbouring sites until they have all been absorbed. Thus, blooming will cause 

circular smearing of a bright spot of light on the diode array. 

In addition to circular blooming, a more objectionable form of blooming may occur 

when isolated photodiodes are use in the integration mode. This phenomenon, 

known as column blooming, takes place when a photodiode is, driven into a 

photovoltaic mode of operation (region A of Fig. 3.2) by an intense spot of light. 

The photo-voltage generated may be sufficient to partially turn on the transistor 

switch connecting that photodiode to the bit-line common to that column of 

photodiodes. An excess of charge is therefore spilt onto that bit-line, overwhelming 

the output of other photodiodes in that column. As a result, column blooming 

produces white vertical streaks in the captured image. 

Blooming can essentially be eliminated if the photo-generated carriers are prevented 

from accumulating. From a design standpoint, this can accomplish by maintaining 

an electric field across a reverse-biased photodiode to produce a continuously 

flowing photocurrent. The magnitude of the photocurrent will be proportional to 

the incident intensity. 

3.3. Enhancements 

To investigate possible ways in which the limitations of charge-based sensors may be 

overcome, some lessons may be drawn from the way biological vision systems work 

in nature. The human eye, for example, responds to intensity ratios rather than 

absolute values of intensity [29]. When the ambient illumination level is raised, 

photochemical mechanisms in the retina somehow reduce the sensitivity of the 

receptor cells to keep their response in range with prevailing light conditions [90]. 

To cope with the wide dynamic range in intensity ratios in a typical scene, the 

retina also performs a logarithmic compression on the incident intensity variation. 

In this section, a 'receptor" cell with the unique ability to tune its response to 

prevailing light conditions is developed. Such a cell has a logarithmic response and 

can be tessellated to form an image plane for an "electronic eye". 
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3.3.1. Logarithmic Response Sensor 

Over a typical outdoor visual scene, the illumination level varies over at least six 

orders of magnitude. This intensity pattern can be converted by a two-dimensional 

array of photodiodes into corresponding values of photocurrents spanning a similar 

range. In order to compress this contrast range onto a reduced scale, a transducer 

with a logarithmic transfer characteristic is employed. 

A MOS transistor operated in weak inversion exhibits a gate voltage that is 

logarithmically related to the value of its drain current. This behaviour has been 

exploited in the design of logarithmic photosensors which use a MOS transistor as a 

weak inversion load [8, 53] to detect the photocurrent generated by a photodiode. 

The diode-connected transistor load performs a logarithmic compression on the 

photocurrent by converting the photocurrent into a corresponding gate voltage. A 

drawback of logarithmic sensors is that details in an image corresponding to small 

variations in intensity may no longer be visible at the output of the sensors. The 

compression further reduces these intensity differences so that such details are no 

longer discernible. However, the features of interest in a scene, such as the edges 

of objects, usually show up as sharp, abrupt variations in intensity that can easily be 

discerned by logarithmic sensors. 

Implementation 

The translinear behaviour of a MOS transistor in weak inversion can be exploited in 

the design of a logarithmic photosensor. The photocurrent generated by a 

photodiode is passed through a MOS transistor used as a weak inversion load. Such 

a scheme is shown in Fig. 3.3a. The photocurrent flowing through the diode-

connected transistor is logarithmically converted into a corresponding value of gate 

voltage. Ignoring body effect for the moment, the drain current 'DS  of a transistor 

in weak inversion is given by Eqn. 2.11 as 

VDS  

'DS = 'DO e mUT  1 - e UT 

j 'I' 
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VDD 
VDD 

V0  

V 0  

Fig. 3.3a Diode-connected MOS 
	

Fig. 3.3b Series-connected load 

transistor used as a 
	 to increase the gradient 

weak inve.rsion load. 	 of V0  with photocurrent. 

IDs increases rapidly with small values of VDS and saturates within a few UT  values 

of VDS. At room temperature, U T  is approximately 25 mV and a diode-connected 

transistor is guaranteed to be in saturation since its drain-source voltage is at least a 

few hundred millivolts. For every decade increase in photocurrent, V. = VGS 

increases by about 100 mV for typical values of m. Corresponding to a zero-bias 

threshold voltage Vw  of about 0.9 V, the voltage swing V. at the gate of a 

transistor in weak inversion varies approximately from 0.3 V to 0.8 V. 

In order to provide a larger voltage swing at the output V 0, a second transistor is 

added in series to the load as shown in Fig. 3.3b. Each transistor now contributes 

about 100 mV in gate-source voltage for every decade increase in photocurrent. 

The gradient of V. can now be expected to double to approximately 200 mV per 

decade of photocurrent. However, due to body effect in the upper transistor as its 

source voltage increases, the gradient of V. is nearer to 300 mV per decade. By 

using two MOS transistors in series, the voltage swing V. can be translated upwards 

into the 1.0 V to 2.4 V range, with both transistors still operating in weak 

inversion. 
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Note that the transistors will remain in weak inversion only if the photocurrent is 

kept below the value 13U- (refer to Eqn. 2.13). This limits the photocurrent to 

values below 0.1 pA for small devices in a 2 to 3 micron process. With any 

increase in photocurrent above 0.1 j.A, V 0  will increase rapidly from 2.4 V to close 

to the VDD rail as the transistor load depart from weak inversion operation. This 

corresponds to a further order of magnitude increase in incident intensity over and 

above the weak inversion range. 

v i  
V 0  

Fig. 3.4 	Isolation of photodiode from load to counteract blooming. 

3.3.2. Blooming Suppression 

To counteract the phenomenon of blooming, we need to prevent the accumulation 

of excess photo-generated carriers by maintaining an electric field across a reverse-

biased diode. Consider once again the pixel cell shown in Fig. 3.3b. If the pixel is 

close to saturation, then V. rises towards VDD and the bias across the diode 

approaches 0 V. Blooming will then start to take place. To prevent blooming from 

occurring, the diode can be isolated from the weak inversion load by a current 
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mirror. This is shown in Fig. 3.4. Note that the rate of increase of V 0  with 

photocurrent is more than twice the rate at which the bias voltage V I , across the 

diode is decreasing. Therefore, even if V. approaches V DD , V1  would still have a 

value above VDIJ2  to mop up the excess carriers generated above the saturation 

intensity level. 

Output 
voltage 

VDC I ----------- i;; -. -------------- / 
	

Part B 

Mid-poin 

-6  10 	10 10102 10-1  1 	10 102 10 

Saturation 
Trttcnsitv 

10_1210_hhlO_b010_910_810_ 7 10 6  1010 	10 

Relative light 
Intensity 

Photocurrent 
(Amps) 

Fig. 3.5 	Ideal transfer characteristic of a logarithmic sensor. 

3.3.3. Automatic Gain Control 

For an imager to respond to intensity ratios rather than absolute intensity values, 

some form of automatic gain control (AGC) over the generated photocurrents must 

be provided at each and every sensor. Suppose that a sensor exhibits an ideal 

logarithmic response as given in Fig. 3.5. If the ambient lighting of the scene being 

captured is above the saturation intensity value, then no useful output will be 

produced. This corresponds to the Part B region of the characteristic shown in 
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Fig. 3.5. To get some meaningful output, the sensitivity of the sensor needs to be 

lowered so that the same intensity pattern produces a range of output centred in the 

Part A region of the characteristic. This can be done by scaling the photocurrent I, 

by some appropriate factor to give a new output current L. The amount of scaling 

required would be determined by the prevailing light level and the value of current 

'ref, corresponding to the mid-point of the Part A region of the sensor characteristic. 

Some measure of the ambient light level is therefore required and suppose this is 

obtained in the form of a current measurement 'av The compensated output 'nut  is 

then given by 

I. 
	 (3.1) 

Implementation 

In general, any form of AGC mechanism must feature some form of close-loop 

control. To implement the AGC mechanism, a measure of the prevailing light level 

must be obtain to give an indication of the background brightness of the image to 

be captured. This measured value of background brightness is fed back to the 

sensors so that their output can be compensated accordingly. in order to 

manipulate signals exclusively using currents, an estimate of the background 

brightness is obtained in the form of a current measurement 'av• 

For 1av  to be a representative measure of the image as a whole, the photocurrents 

generated by all the sensors are aggregated and an average derived. This global 

average 'a'  is obtained using the ensemble-averaging circuit given in Fig. 2.3. 'av  is 

then used as an input to the prod uct-q uoti ent circuit given in Fig. 2.6 to provide 

the variable gain of the AGC mechanism. The magnitude of the current gain is 

given by a ratio of two currents, 're/'av 4d  is a constant that is set externally and 

its value is determined by the characteristic of the weak inversion load. 

Note that when a global reference is used to establish intensity ratios, then features 

in very bright or dark patches may be lost. Ideally, a more localised reference is 

required so that local intensity ratios can be obtained. This local reference or 

average may be derived by considering the immediate neighbourhood surrounding a 

particular point in the image. The local reference is then the weighted sum of the 

intensity values in the surrounding neighbouring points, with points further away 

accorded less weight than those in close proximity to the point where the average 
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will be applied. However, from an implementational point of view, obtaining a 

series of local references is made impractical not by active device considerations but 

by interconnect requirements. 

Current 	av 	Automati 

veraginc 	 Gain 

Control 

out 	
V0 

To other cells 

Log 

Photodiode 
	

Transduder 

Fig. 3.6 Functional diagram of a receptor cell. 

3.4. Design of Receptor Cell 

Analogue vlsi computation techniques will be used in this section to design a novel 

"receptor" cell with features to overcome the shortcomings of commercial charge-

based imagers, namely insufficient dynamic range, blooming and susceptibility to 

saturation. Such a receptor cell can then be tessellated to form the image plane of a 

"smart" imager. A functional diagram of the receptor cell is given in Fig. 3.6, 

comprising of the following elements 

• 	A photodiode that converts light intensity into a proportionate 

photocurrent Ii,. 
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• 	The average or mean value of light intensity in an image frame 

is obtained as a current measurement 'av'  and updated from 

frame to frame using an current-averaging function. 

• 	The average value of light intensity, as represented by 'av,  is 

used as an input to an automatic gain control function that 

scales the photocurrent L, by some factor so as not to saturate 

the output load. 

• 	A load with a logarithmic transfer characteristic is used to 

convert the scaled photocurrent 'OLfl  into a corresponding voltage 

V0 . 

The circuit design for the receptor cell is shown in Fig. 3.7 
[38t]  The receptor 

cell can be tessellated to form the image plane of an an "electronic eye'. The 

photocurrents generated by the array of photodiodes are aggregated by a current 

ensemble-averaging circuit (refer to Fig. 2.3) producing an average value 'av,  that is 

fed into an automatic gain control (AGC) circuit (refer to Fig. 2.6) by a current 

mirror. The constant I is brought into the AGC circuit by another current 

mirror. Ld  is set externally and its value is determined by the characteristic of the 

output load. The AGC circuit scales the photocurrent I, by a factor 1 e/1av , to 

provide a compensated current output I.  The compensated output I,, is then passed 

through a weak inversion load to effect the logarithmic compression of I. into an 

output voltage V0. V. is the output signal that is sensed by the 110 circuitry in the 

imager. 

3.4.1. Transient Response of Photoreceptor 

The transient response of a pixel to sudden changes in intensity is dominated by the 

charging and discharging of capacitance C associated with the node V 0 . Consider 

the case when a spot of light incident on a photoreceptor cell is suddenly removed. 

Since the value of photocurrent generated is now insufficiently large to maintain the 

initial value of V0  = V0(0), capacitance C is discharged by the current I through 

U.K. patent application by the author. 
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Vdd 
	

Vdd 	 Vdd 	 Vdd 
	

Vdd 

Gnd 

Fig. 3.7 Circuit diagram of receptor cell. 
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From Eqn. 2.11, 1 can also be expressed as 

-Y2- 

	

o 	 (3.2) 

	

IDO 	
V 

aT 

V0  = a UT  (in i0  - in mo) 

dV0 
a 	

1 

	

UT 	
d10 

= 	-- 

By substitution, 

'0=  — 

 

1 
CaUT 

 - 

 - 

  

M.  

1 - 1 

	

dt 	CaUT 

d (1) _ 	1 
dt t'0j 	CaUT 

1-d_ 1---" 	1 	fdt I dt = 
J dt 1I 	CaUT 

Solving 

1_i 	t 
'0(0) + C(XUT 

I(0) t ) 
= 	 CaU' T) 

1 	L1 Ii + 
 

T. 

T Note that a in this equation accounts for the cumulative effect of the process parameter m 
and the body effect of the upper transistor in the series-connected load (refer to § 3.3.1) 
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where J(0) is the initial value of J, at time t = 0 and 

CaUT 

To = '(°) 	
(3.3) 

From Eqn. 3.2, 

V0(t) = XUT  (In L(t) - in IDO) 

1 
= aUT  [In (0) - in 11 + 	I - in IDO 

I 

( 	t 
= V0(0) - aUT  in i + - I 	 (3.4) 

I. 
 

To  

Fig. 3.8 Transduction transistor 
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3.5. Scanning Frame 

To reconstruct an image, the output V. from each and every receptor cell must be 

brought out into the outside world. With such a large number of cells to be 

accessed, the readout of the cells is accomplished in a time-multiplexed fashion like 

a serial memory [50]. The output of each cell is serially scanned out onto a single 

output line by means of two orthogonal shift registers. The rows are controlled by a 

vertical shift register and are enabled a row at a time onto "bit lines". Locations 

within the selected row are then enabled by a horizontal shift register, sequentially 

switching the bit lines onto the output line. 

The bit lines and output line run the length of the receptor array and are therefore 

highly capacitive. In order to reduce the RC time delays associated with voltage 

propagation along highly capacitive lines, current-steering readout as proposed by 

Sivilotti [76] is used. In current-steering readout, the output voltage V. of each cell 

is first converted into a current I. Ideally, this should be carried out using a 

device with a constant transconductance so that the conversion process is linear. A 

MOS transistor operated in its linear region with a small constant value of VDS [52] 

can be used for this purpose. I,, is then related to V. by 

= 13 (V. - VT) VDS 	 (3.5) 

The cells are switched a row at a time onto the bit lines by a pass transistor M 2  in 

series with the transduction transistor M (refer to Fig. 3.8). The current I, 

pertaining to each cell within the row is then selectively switched onto an output 

line where it is sensed by an external amplifier. The output line is biased at some 

appropriate voltage VbI(  externally to ensure the linear operation of the transduction 

transistor M 1 . A suitable value of Vbil  is about 1.0 V. In order to reduce the 

dependence of VDS  of the transduction transistor M 1  on I,, P2 of the switching 

transistor M2  should be made significantly bigger than 13  of the transduction 

device. 

The voltage on the bit lines can be defined at all times by including a dummy line 

also biased at V bj, All the bit lines not connected to the output line are connected 

to the dummy line. Off chip, the current flowing in the output line may be 

converted back into a voltage by a transimpedance amplifier that implicitly biases 

the output line at Vb1 . The functional diagram of the scanning frame is given in 

Fig. 3.9. 
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Horizontal Shift Register 

Fig. 3.9 Functional diagram of current-steering scanning frame. 

3.6. Results 

As a prototype for evaluating the performance of the electronic eye and scanning 

frame described in the preceding sections, a logarithmic imager chip with a 50 by 

50 pixel resolution has been fabricated in a 2 tim, dual layer metal n-well CMOS 

process. The photomicrograph of this prototype chip is shown in Fig. 3.10. 

Each pixel contains a photodiode with two series-connected MOS load transistors 

operated in weak inversion (Fig. 3.3b), together with the circuitry for current-

steering read-out (Fig. 3.8). A photomicrograph of an array of pixels is given in 



fm - _• I e 	 I • • 	______ _______ ______ -- 	 -- 
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Fig. 3.11. This imaging array is designed to exhibit a logarithmic response, 

producing a current output that is logarithmic with incident light intensity in the 

visible and near infra-red parts of the spectrum. 

Fig. 3.11 Photomicrograph of pixel array. 

The following characteristics of the imaging array have been evaluated 

• 	Sensitivity response to different light levels. By focusing a light 

spot at different pixel sites in the imager array, the uniformity of 

output response in the x and y direction of the imaging plane 

may also be gauged. 

• 	Spectral response to wavelengths in the visible spectrum. 

• 	Transient response measured with the sudden removal of 

illumination. 

internal technical report by the author. 
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• 	Blooming or spatial crosstalk effects that may be produced in 

neighbouring sites when a pixel is illuminated above the 

saturation intensity value. 

The relevant equations describing the operation of this prototype logarithmic imager 

are included in Appendix B. 

3.6.1. Experimental Evaluation 

The current output from the imager is fed to a transimpedance amplifier to convert 

the current to a voltage to drive an oscilloscope. In principle, this could be done by 

a simple operational amplifier circuit (op-amp) such as that shown in Fig. 3.12a. 

Op-amps however, tend to suffer from limited bandwidth, slew rate and slow 

settling time when the signal at an op-amp input is switched. For this reason, the 

bipolar transistor circuit given in Fig. 3.12b is used instead. Fig. 3.13 shows the 

board constructed to test the prototype imager chip. 

R 

'sig 

V 	+1 	R bias 	sig 

Fig. 3.12a Operational transimpedance amplifier circuit 
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Fig. 3.12b Bipolar transistor transimpedance amplifier. 

3.6.2. Sensitivity Response 

The sensitivity response is carried out at a particular wavelength set by the laser 

source used in this measurement. The experimental setup is outlined below. 

Experimental Setup 

A photograph of the experimental setup is given in Fig. 3.14. The light source 

used is a helium-neon laser with a wavelength X of 632.8 nm. The laser beam is 

passed through a polarising filter that can be rotated to vary the intensity of the 

transmitted beam. In the path of the transmitted beam is placed a variable speed, 

motor-driven "windmill" chopper that can be rotated to produced a pulsed light 

beam. This facility is required to measure the transient response of a pixel. 

The intensity of the transmitted beam is measured using a calibrated radiometer. 

The radiometer readings can then be normalised to give absolute values of intensity 

measurements at X = 632.8 nm. 
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3.13 	Prototype test board. 

Results 

The sensitivity response is measured at 5 different pixel sites located approximately 

at the four corners and centre of the imaging area. Fig. 3.15 gives a superimposed 

plot of the response of all 5 pixel sites, from which we can discern a maximum 

variation in output current of about 7p.A over the 5 sites. From this value of 

output current variation, an estimate of the mismatch in zero bias threshold voltage 

AVm  over the 5 sites may be made. This value of iVTo  is calculated to be 17.5 

mV from experimental data in Appendix B. 

The sensitivity response of the pixel in the region near the centre of the imaging 

array is given in Fig. 3.16. The reference intensity in Fig. 3.16 corresponds to 

7.12 W/cm2 , incident on a photodiode with an active area of 1045 1i.m 2 . The pixel 

has a measured dynamic range in incident light intensity of about 6 orders of 

magnitude. Over the logarithmic part of the plot, the output current changes at a 

rate of about 29.5 i.A per decade increase in intensity. 
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Fig. 3.14 	Experimental setup Inc sensitivity & transient resputise 

measurements. 

Mounted on the optical bench are (left to right) 	laser, calibrated rotatable 
polansing filter, fixed polarising filter, chopper wheel & motor, aperture, beam-
splitter & calibrated radiometer, lens, test board with imager. 

3.6.3. Spectral Response 

To measure the spectral response, a prism monochromator is used to select different 

wavelengths in the visible spectrum. With a calibrated radiometer, the intensity at 

all the wavelengths are equalised to a convenient value by adjusting the size of a slit 

placed in front of a white light source. With this level of intensity fixed, the input 

wavelength is scanned between 390 nm to 1.040 p.m to provide a measure of 

spectral response. 
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Fig. 3.15 Graph of sensitivity response (over 5 sites). 
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Results 

A plot of the spectral response of a typical pixel is given in Fig. 3.17. The output 

of the pixel at different wavelengths is normalised relative to the peak response at 

X = 560 nm to produce a relative spectral response plot. From its sensitivity and 

spectral plot, the responsivity of the pixel at the peak wavelength is found to be 

0.484 A/W. 

3.6.4. Blooming or Spatial Crosstalk 

To investigate the effects of blooming or spatial crosstalk would ideally require a 

fine spot of light, illuminating an area no larger than that occupied by a single 

pixel. This spot of light, at near saturation intensity, is focused on a particular pixel 

in the imaging array and its effect on neighbouring cells examined. 

Due to the nature of the readout circuitry, the effects of blooming can be observed 

externally only in the y dimension between rows of pixels. It is not possible to 

observe directly the crosstalk between columns of pixels in the x dimension. The 

symmetrical tessellation of the pixel cells, however, ensures that any spatial crosstalk 

present would be of comparable magnitude in both the x and y dimension. 

Result 

To perform this test, the lens system of a microscope is used to focus a spot of white 

light onto the imaging array. The smallest spot size that can be achieved by this 

arrangement illuminates an area covering a 2 by 2 array of pixels. When the 

focused beam of light hits the silicon surface however, some scattering of light 

occurs over a small area. This scattering effect is visible to the naked eye and will 

result in pixels in the vicinity of the illuminated area giving an output response 

above the dark level. The output response of the imaging array can be seen in the 

oscilloscope trace given in Fig. 3.18. 

The two sharp spikes on the trace correspond to the two illuminated pixels on 

adjacent rows. Blooming effects can therefore be seen to be negligible in this form 

of current-based imaging array. 



Fig. 3. 17 Typical spectral response. 
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k )L H IC 101 	Vii[1tI IC )  )OIIIIIIC L 11Cc 1 

Each repeated notch represents 1 scan line of output. 2 pixels are directly 

illuminated (notches 5 & 6) with output response at 5.5 V below the dark level. 4 
neighbouring lines above (trace notches to the left) and 5 below (trace notches to 
the right) exhibit some response to scattered light at about 2.0 V below the dark 
level, This represents a reduction in intensity by a factor of 135 relative to the 
illuminated pixels. The remaining lines exhibit no measurable response. 

3.6.5. Transient Response 

The simplest experiment to evaluate the transient response of a pixel is to observe its 

response to a rectangular light pulse. The experimental setup used is identical to 

that presented in § 3.6.2, with the helium-neon laser beam threaded through a 

windmill-like wheel with spokes and the beam 'chopped" by rotating the wheel. 

From Eqn. B.1 in Appendix B. the output voltage of a pixel is given by 

- VT )V, 
vout  = 	 RL 

-Y 
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where 13  and VT  are the transfer parameter and threshold voltage of the 

transduction transistor, V 1  the external bias drain voltage, RL  the load resistor and 

y a constant with value 1<-y<2. VPh  is the photo-voltage generated by the 

logarithmic sensor. Its response in time with the sudden removal of illumination is 

given by Eqn. 3.4 as 

	

Vph(t) = VPh(0) - aUT  In 11 + 	 (3.6) 
t 	T) 

- CaUT 

To - 'ph(°) 

where T0 is a time constant dependent on the capacitance of the photo-sensitive 

node C, the value of photocurrent flowing at the instant of light removal Ip1,(0)  and 

a, a constant parameter of the logarithmic sensor. 

Result 

Fig. 3.19 gives a trace of the response of the imaging array to a train of rectangular 

light pulses. From this trace, the decrease in output voltage AV. ut , is measured at 

4.5 V over a frame time of 1.04 ms. The change in photo-voltage over this time 

interval zVPh  responsible for V0  is given by Eqn. B.2 in Appendix B as 

= 	
Vout 

AVPh 	
Vbj L  RL 

Substituting in the appropriate values, 

1.8 	4.5 
Ph  = 40 A x 5 55.7 K1 

= 0.73 V 

From Eqn. 3.6, 	A Vph = aUT  in 11 + ---  
T J 

I 
Substituting in the appropriate values, T0 is found to have a value of 1.82 is. 
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Fig. 3.19 Oscilloscope trace of the response of imaging array to a 

rectangular light pulse. 

The top trace displays the output from 10 consecutive frames. The lower trace 
displays the duration of chopped beam illumination. Frames 3, 4, & 5 followed by 

8 & 9 display a response at 5.5 V below the dark level to the chopped beam 
illumination. Pixels illuminated at background level display a response at around I 
volt below the dark level. Note the complete recovery between frames. 
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3.6.6. Summary of Results 

The results of this evaluation, summarised in Table 3.1, demonstrates the viability 

of developing of smart vision sensors based on the design principles of analogue 

VLSI current computation. 

Parameter Typical Value Units 

Dynamic range 60 dB 

Spectral response 400 - 1000 nm 

Variation in V-1.0  17.5 mV 

Blooming suppression factor 135 - 

Pixel time constant 1.8 

Maximum frame rate 1 ms 

Table 3.1 Summary of performance characteristics. 

3.7. Summary 

A novel "electronic eye" has been presented to illustrate the application of analogue 

current computational circuits in "smart" vision sensors. The "eye" is an imager 

with built-in nonlinear correction to keep the operating range of its sensors in 

register with ambient light conditions. The computational requirement of this "eye" 

is extremely demanding, requiring some form of nonlinear computation to be 

carried out on each individual pixel value, in real-time, at the focal plane. As an 

example, for a design with a resolution of 100 by 100 receptor cells, 10 1  additions, 

multiplications and divisions are required to be computed per frame time. For 

typical frame rates of 200 frames/sec, this is equivalent to a computational 

throughput of 2 million additions, multiplications and divisions per second. The 

only tractable solution to such demanding throughput is to use analogue VLSI 

techniques that operate directly on sensed data at each sensor site. This integration 

of sensor and signal conditioning function onto a single element forms the basis. of 

"smart" sensors. 
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Chapter 4 

Bit-Serial Computation 

4.1. Introduction 

In bit-serial computation, signals are transmitted via single wires and pins within 

and between the boundaries of computational cores. As a result, computational 

functions realised bit-serially are characterised by low device pin-counts and may be 

packaged using standard, low-cost packaging technology. This feature endows bit-

serial computation with one of its key strengths, namely that of efficient 

communication. 

Data words are manipulated a bit at a time in bit-serial computation. As a 

consequence, bit-serial elements or operators are proportionately smaller in area and 

slower in operation than their bit-parallel counterparts; measured in terms of 

operations per second per unit area, the two are roughly equivalent. The smaller 

grain size of bit-serial operators however, gives the bit-serial approach an edge in 

terms of overall system computational efficiency. This is achieved through the use 

of functional parallelism [65], whereby arrays of serialised computational cores are 

used concurrently to boost overall system throughput. The finer grain size of the 

bit-serial operators allows a rich mixture of hardware operators that directly reflects 

the flow-graph of a computation. This functional approach can be viewed as 

casting a portion of the algorithm directly into hardware, with the attendant saving 

in control overhead [15]. 

At the system level of design, this hard-wired computational core may be regarded 

as a functional processor and treated as a black box, with all its low level 

implementational details hidden from the system designer. The control overhead at 

this functional processor level is minimal, concerned mainly with the selection of 

data sources at the 110 ports of the functional black boxes. The coarser granularity 

of bit-parallel operators, in contrast, makes the tailoring of hardware resources to 

an algorithm less flexible. As a result, the hardware resources employed may not 

directly reflect computational requirements of the algorithm. A common solution is 

to time-multiplex the operation of a fast bit-parallel ALU to compute an algorithm, 

with an attendant increase in control complexity. 
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Functional Parallelism 

Although the individual functional processors accept data words in a bitseriaI 

fashion, multiple data words may be presented in parallel to an array of processors 

to give a proportionate increase in system throughput. The use of functional 

parallelism to form bit-serial but word-parallel architectures offers distinct 

advantages when fixed-function processors are realised in VLSI 

• 	By selecting an appropriate number of processors in the array, 

hardware resources can be matched to the application bandwidth 

at hand. Bandwidth matching is an important practical 

consideration if the cost, size and power dissipation of the 

system hardware are to be optimised. The number of processors 

employed in the array reflects the degree of parallelism in the 

implementation. This flexibility in the degree of parallelism 

allows a range of sample rates to be easily accommodated. 

• 	There is a direct trade-off between the degree of parallelism 

employed and the performance requirements of the individual 

functional processors. The individual processors may be of 

modest performance but system throughput can be boosted by 

the overall performance of a number of such processors. The 

modest bit rates of the processors obviate the need for expensive 

interconnection requirements and help reduce overall system 

complexity and cost. 

• 	The functional processors within the array are identical and 

accept the same set of control signals. This set of control signals 

is generated once and distributed globally to the array. The 

control overhead incurred therefore remains constant 

irrespective of the degree of parallelism in the array. Since data 

words are processed bit-serially, signal words of arbitrary 

precision can be accommodated on the same hardware platform 

by changing the word-length control marker. This flexibility 

allows system throughput to be traded against precision of signal 

representation within a system. 
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The general architectural form exploiting bit-serial functional parallelism is given in 

Fig. 4.1. At the I/O interface, 'corner turning" memory is used to effect data 

conversion between bit-parallel, word-serial and word-parallel, bit-serial format. 

With a sufficiently high degree of parallelism, the sample rate can be made to 

exceed even the bit-rate of the fUnctional processors [66]. If this is the case, then 

only the 110 part of the system hardware is required to be operated at the higher 

sample rate. 

"Corner turning" memory for data format 

conversion operated at input sampling rate. 

x(n) E*I "o  * ""o  
Control Functional I Functional 'Functional I  Functional 

Counters I Processor Processor Processor Processor 

IMMM"

MEMEM  

I  M WIA Mlw"M 016- MM H I 

Fig. 4.1 	General 	architectural 	form 	exploiting 	functional 

parallelism with bit-serial arithmetic. 

y(n) 
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4.2. Rudiments of Bit-Serial Computation 

A signal is a measurement of some physical effect and is often represented by an 

electrical analogue such as a time-varying voltage or current value. To obtain a 

digital representation, the signal is sampled at equally spaced intervals of time and 

the sampled values digitised to a resolution of n bits. The signal is now represented 

as a sequence of n-bit numbers, with a sample-index associated with each number to 

correspond to the time instant at which the sample is obtained. Within each 

number, a different weight is assigned to each bit. The weights are in powers of 2 

and the weight of each bit is denoted by a bit-index. A binary-coded signal may 

therefore be viewed as a two-dimensional array of bits, with one dimension indexed 

by the weights of the bits w 1  and the other, by a time-index giving the sample 

instant. 

	

[ao,_1  a0,_2 	a0,_3 	. . . 	a0,0 ] 
a 1 ,,_1 	a1 ,_2 	. . . 	. . . 	a,0  

	

am , n _2 	 am,o 
j 

Binary representation of a signal with n-bit precision. 

There are two main conventions for manipulating this two-dimensional array of bits 

representing the signal values the n-bit sample values may be handled either in a 

bit-parallel or bit-serial fashion. 

4.2.1. Bit-Parallel versus Bit-Serial Signal Representation 

An n-nit binary-coded signal may be conveniently viewed as a matrix of bits. In a 

bit-parallel representation, this matrix of bits is arranged as a linear array of n-bit 

words indexed by sample instants. The different weights within an n-bit word are 

spatially distributed across the n-bits and are implicitly associated with the position 

of the bits within the word. 
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a0  a1  a2  a3 	a,, 1  

Bit-parallel representation of a binary signal. 

In contrast, in a bit-serial representation, the bits in the matrix are strung out as a 

linear array of bits so that both the weights and sample instants are distributed in 

time. The weights may be distributed in time in ascending order least significant bit 

(LSB) first or in descending order most significant bit (MSB) first. 

a0 , 0 _2 	a0 , 0  a1 ,_3 	a1 ,0  

Bit-serial representation of a binary signal. 

From an implementational viewpoint, signal manipulation in bit-parallel form 

requires the replication of computation and communication hardware n times to 

accommodate the different weights in an n-bit word. In a bit-serial realisation, a 

single hardware unit is time-multiplexed to handle the signal a bit at a time. This. 

contrast in computational form between the two approaches is summarised in 

Fig. 4.2. 

4.2.2. Control of Bit-Serial Networks 

In bit-serial computation, the signal appears as a continuous stream of bits and 

markers are required to delineate the boundary between sample words. The control 

of bit-serial systems therefore consists essentially of a hierarchy of such word 

markers. At a particular level of the hierarchy, a control signal is asserted true 

during the first time-slot of the time-frame associated with that level and false at all 

other times [46]. A typical example of such a hierarchy of control markers is given 

in Fig. 4.3, where CbI  marks the first bit of a word, Cword  the first word of a frame 

and so on. These control markers are usually derived from a hierarchy of 

counters [14]. 
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n n-bit 	 -bit  

	

Data In , 	 Data Out 	Data In 	
Data Out 

Power 	Serial 	Gnd 	 Power I Parallel  I Gnd 

I Operator 	 1 Operator  r 

	

Controls ' 	 I 	 Controls 

	

Fig. 4.2 	Computational contrast between bit-serial and bit-parallel 

arithmetic operators. 

bit-time 	11111111111111111111111111111111111111 

Cbjt 	_fl 	Ii  

Cd 

Fig. 4.3 Typical hierarchy of control markers. 

With bit-parallel data, the bits of different words in the same bit-position have the 

same weight and may be combined together to perform some arithmetic operation. 

In bit-serial data representation however, the weights assigned to the bits are 

distributed in time instead of in space. As a result, the bits from different bit- 
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streams must be time-aligned so that only bits with the same weight are combined 

together. As an illustration, suppose that three streams of data are to be combined 

together to perform some arbitrary arithmetic function f(a,b,c) = a b c 

(Fig. 4.4). Assume that each operator requires one bit-time to produce the result. 

This delay, in terms of bit-time, is known as the latency of the operator. The 

operation (a . b) takes one bit-time to complete and the bits in input c must be 

shifted by a single bit-time in order to align the weights of the bits in c to those in 

the intermediate result (a . b). This necessity to time-align input streams to bit-

serial operators may be viewed as part of the overall control requirement. The 

generation of word markers and the time alignment of data streams constitute the 

flow of control in a network of bit-serial operators. 

a 	 b 	c 

Fig. 4.4 	Equalising the weights of converging bit-streams by time 

alignment. 
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4.2.3. Arithmetic Shifting 

In bit-serial computation, the bits from different operands must have equal weights 

imparted to them prior to any arithmetic operation. If the weights associated with 

the bits of an operand are to be altered, arithmetic shifting corresponding to 

multiplication or division by powers of 2 can be carried out on the bit stream. 

Consider a stream of 4-bit words {a 1  b1  ci  d1} where d 1  is the least significant bit 

(LSB) of the ith  sample word. For two's complement arithmetic, an arithmetic 

right-shift of 1 bit corresponding to division by 2 is effected by replacing the LSB of 

each word by the most significant bit (MSB) of the previous word, a sign extension 

operation [77]. The LSB of each input word is discarded and the weight of each 

input bit is halved at the output. Arithmetic right-shifting will therefore result in a 

gradual loss of accuracy in signal representation. 

input d3  a2  b2  c2  d2  a 1  b 1  c1  d 1  

output a2  a2  b2  c2  I 	a1  a1  b1  c1  a0  

Bit-serial arithmetic right shift. 

An arithmetic left-shift of 1 bit corresponding to multiplication by 2 is effected by 

replacing the MSB of each word by a zero [77]. The MSB of each input word is 

discarded and the weight of each input bit is doubled at the output. Note that left-

shifting beyond the sign extension bits of the input word causes numerical overflow. 

input d3  a2  b2  c2  d2  a1  b1  c1  d 1  

output d3  0 b2  c2  d2  0 b1  c1  d1  

Bit-serial arithmetic left shift. 
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4.2.4. Bit-Serial System Composition 

At the input of serial operators, bits with different weights are processed at different 

time-slots. In an operation such as the addition of two bit-streams, two outputs are 

produced in the same time-slot, a sum output S 0  with the same weight as the input 

bits and a carry output C O3  with weight twice that of the input bits. To impart the 

correct weight to the carry output, C. must be explicitly left-shifted by one bit-

position as shown in Fig. 4.5. Carry propagation therefore takes place in time 

rather than in space, enabling bit-serial operators to be tightly pipelined for high 

speed clocking [77]. 

A 

11.1  

in 

ctrl 

Fig. 4.5 Bit-serial full adder. 

A pipeline stage may be viewed as a block of combinatorial logic buffered by input 

and output latches. The logic block evaluates when the input data is latched and 

the output from the block is stored before the start of the next bit-time. To 

maintain pipeline operation, no output bit may be combinatorially related to any of 

the input bits, thereby requiring a pipeline stage to have an operational delay or 

latency of one bit-time. Bit-serial hardware consists of cascades of pipeline 

operators. The bit-time is determined by the propagation delay of signals through 

the slowest combinatorial logic block plus the settling time of the buffer latches. 

This makes physical partitioning an important aspect of system design if high bit-

rates are to be achieved. To increase the bit-rate, a logic block can be decomposed 

arbitrarily into smaller blocks, interfaced by latches, so as to reduce the 

combinatorial logic evaluation time. The throughput rate is improved but at the 

expense of increased system latency. 
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Since bit-serial operators are built up from cascades of small, pipeline stages, the 

throughput of an operator is independent of the number of stages from which it is 

composed. Typically, a full adder function would be representative of the largest 

combinatorial logic block included in a serial pipeline. Logic functions more 

complex than the full adder function are usually decomposed into smaller logic 

blocks. If this is the case, then all operators are operated at a fixed throughput set 

by the time taken to perform a full addition. As a result, the throughput rate of an 

adder is the same as that of a delay element, a multiplier or some higher level 

operator such as a filter section, a complex multiplier or a butterfly unit [14]. This 

facility to hierarchically compose higher level operators from a collection of existing 

operators constitutes one of the most powerful features of the design methodology. 

ci, 
	 •1' 

T 

Fig. 4.6 	Highly efficient but risky single phase clocking. 

4.3. Clocking Strategies for Bit-Serial Operators 

Bit-serial operators are essentially cascades of pipelined combinatorial logic elements 

that are clocked at high rates to optimise throughput. As a result, the 

computational efficiency of the operators is a function of the clocking methodology 

adopted to synchronise communication between operators. With VLSI as the 

implementation medium, the primary objective of a clocking methodology is to 

minimise interconnection cost in terms of the time and area required for 

communication. A single phase clocking scheme such as that given in Fig. 4.6 can 

be used for MOS technologies. This scheme, although highly efficient, is inherently 
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risky since it constrains the combinatorial logic delay TCL to satisfy a two-sided 

relationship [23]. If is the period of the clock and thj&,  the time the clock is 

high, then 

thigh < TCL < tp0 j 	 (4.1) 

In the presence of internal delay hazards, variations in device parameters and 

system operating conditions, a two-sided timing constraint on TCL is difficult to 

satisfy system-wide. As a result, a two-phase non-overlapping clocking scheme as 

illustrated in Fig. 4.7 is commonly used to make the time constraint on TCL  into a 

one-sided relationship. Referring to Fig. 4.7, the time constraint on TCL  is now 

reduced to 

TCL < 01 + 02  + t12  

5 	 5 
S 	 I 

I 	 I 
I 	 I 

I 	 • 	I 
• 	I 

cpl 	cP2 i1 

Fig. 4.7 	Classic two-phase non-overlapping clocking methodology. 

In NMOS technology, the use of a two-phase non-overlapping clock permits the 

realisation of efficient pipeline logic [52]. An NMOS bit-pipeline stage is shown in 

Fig. 4.8a. The logic function f(a,b) = c is realised from a combinatorial block 

buffered by an input and an output bit latch. The input bit latch is controlled on 

one phase of the clock 0 1  and the output of the function is stored on the other 

phase of the clock, 2•  Such a stage has a computational latency of one bit-time 
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and is ideally suited for constructing bit-serial operators in NMOS technology. 

Fig. 4.8a A bit-pipeline stage in NMOS technology. 

With CMOS technology, the çb and 02  time epoch in a two-phase, non-overlapping 

scheme can be approximated by the high and low phase of a single clock by 

exploiting the complementary behaviour of n and p-type transistors. This is shown 

in Fig. 4.8b, where a single clock 0 and its inverse 0 are used to control the 

latches. However, this arrangement is sensitive to two practical difficulties 

encountered in distributing clock signals globally, namely degraded clock transition 

times and skew. Slow edge transition times or overlap in the clock phases 0 and 

due to clock skew can, lead to a two-sided timing requirement, similar to that of 

Eqn. 4.1. A true two-phase, non-overlapping scheme with çb and 02  and their 

inverses, 95, and 02  will restore the time constraint on T. to a one-sided 

relationship. A CMOS bit-pipeline stage can be area-inefficient if it is realised from 

static logic trees requiring multi-phase clocks for synchronisation. To improve the 

speed and area requirements of a bit-pipeline stage in CMOS, dynamic precharge 

logic is often used instead [11]. 
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II 

a 

Gnd 

Fig. 4.8b Direct equivalent of an NMOS bit-pipeline stage in 

CMOS technology. 

4.3.1. Dynamic Precharge Logic 

Fig. 4.9 illustrates the general circuit configuration for the two possible "flavours" of 

dynamic gates. The operation of the two types of gates are complementary in 

nature and for brevity, will be described in terms of the n-type gate. When the 

clock 0 is low, the output node c is precharged high whilst the input logic values a 

and b are in a state of transition. When the input values have stabilised, 0 is 

pulsed high so that output node c may be conditionally discharged through the n-

type logic tree. 

For the realisation of complex logic functions, it would be convenient to be able to 

directly cascade dynamic gates together. However,, the cascading of dynamic gates 

directly can lead to an internal signal race condition [34]. Consider the cascading 

of two gates directly as shown in Fig. 4.10a. Node X and c are initially precharged 

high so that transistor A of the following gate is turned on. When the evaluation 

phase starts, the finite time it takes node X to conditionally turn off transistor A can 

result in the partial discharge of node c. A simple way to eliminate this race 

condition is to insert an inverter at the output of every dynamic gate. This scheme 

is known as domino logic (Fig. 4.10b). Transistor A is now initially off and node 
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a a 

Fig. 4.9 N and p-type dynamic gates. 
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Fig. 4.10 Cascading of dynamic gates. 

a 

M. 
c 

Fig. 4.11 Cascading of NORA gates. 
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X can conditionally discharge node c without causing any signal races. 

The effect of inserting an inverter at the output node of a dynamic gate is 

reproduced if the output node is cascaded directly onto a gate of the opposite 

flavour. This is shown in Fig. 4.11 and the resultant logic structure is known as 

NORA (No Race) logic [24]. Clocked latches can be added to the output of 

dynamic gates to store the result of the evaluation. These latches have a sample 

and hold phase that works in tandem with the evaluation and precharge phase of 

the dynamic gates to form bit-pipeline stages. 

4.3.2. Dynamic Pipeline Logic 

Consider a NORA pipeline stage as shown in Fig. 4.12. When 0 is high, the gates 

evaluate and the latch is open to sample the result of the evaluation. When 0 goes 

low, the gates are precharged whilst at the same time, the latch closes to hold the 

result. This constitutes a -type half-bit stage, so called as the result is evaluated 

when 0 is high. By interchanging the 0 and q  clocking of a -block, a 

complementary q block is created which precharges when 95 is high and evaluates 

when 95 is low. A 0 and 95 block cascaded together forms a bit-pipeline stage. 

IN 	

N1 	

ip

I2.UT 
ip 

1N2 

Fig. 4.12 NORA -type half-bit pipeline stage. 
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Note that in principle, a NORA pipeline stage effectively works on two non-

overlapping phases, delineated by the high and low phases of a single clock. In 

common with all clocking methodologies that use a single clock to delineate two 

separate time epochs, it is susceptible to race conditions associated with clock edge 

transition times and clock skew. When the clock makes a transition in a NORA 

stage to start the precharge phase, the output latch must close simultaneously to 

hold the result of the previous evaluation. Since the precharging and the latch are 

controlled by the same clock phase, there is an inherent race between the 

precharging process and the latch closing sufficiently fast, to prevent the 

precharging from corrupting the dynamically held logic value. As a result, clocks 

with sharp transition edges are required for reliable operation. 

This race condition can be removed by using different clock phases to separate the 

precharging of the gates from the sampling and hold operation of the latches. For 

this reason, dynamic pipeline logic usually requires multi-phase clocks for race-free 

operation [58]. NORA pipeline stages may be clocked by two non-overlapping 

phases 0 1 . and 02  to render it insensitive to signal race conditions. This however, 

requires the use of four clock lines, 01, 02 and their inverses. 

4.4. Race-free Dynamic Pipeline Logic 

For the implementation of a complete system on a chip, a race-free clocking 

methodology is essential for reliable operation. This section outlines two such 

clocking schemes, a two phase version of the NORA bit-pipeline stage [57,49t  

and a novel single clock scheme incorporating self-timed logic principles 

4.4.1. Two Phase NORA 

The two phase version of a NORA bit-pipeline stage has been used as the basis for 

the implementation of a bit-serial wave digital filter. The computational core of 

this system will be presented as a case study in the next chapter. In this section, the 

clocking scheme common to all operators from which the core is composed is 

described using a full adder/subtractor as a design example. The circuit diagram of 

the adder/subtractor operator and its temporal behaviour are given in Fig. 4.13a 

and Fig. 4.13b respectively. Referring to Fig. 4.13a, I. and 'b  are the input bit 

published work by the author. 
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streams to be added or subtracted to produce the sum output S 0 ; the state of the 

input L, selects the addition or subtraction function. 

When 0 1  is high, nodes n 1 , n3 , n5  are precharged low whilst nodes n 2 , n4  are 

precharged high. During this time epoch, the input latches are open so that the 

input to the adder, 'a 'b and L, can be sampled. When 0 1  goes low, 'a 'b and 

are held stable whilst the logic trees evaluate, thereby conditionally discharging 

nodes n 1  to n5 . Between a pair of latches, the n and p logic trees may be cascaded 

to any arbitrary depth, provided that the total evaluation time does not exceed half 

a clock period. 

ri__H___r__H___H__ 

1 	___H H H rL 

	

HOLD S  HOLD S HOLD }OLD S HOLD 	c, ctrl 

n 2, n4 
EVAL 	EVAL. 	EVAL. 	EVAL. 	EVAJ.. 

ni, n, n 

	

HOLDHOLD 	OLD 	OLD 	HOLD ([ 	S02 'a 'b' 'sign 

EVAL 	EVAL. 	EVAL 	EVAL 	EVAL 

Fig. 4.13b Temporal behaviour .  of NORA full adder/subtractor. 

Results 

To evaluate the reliability and performance of two-phase NORA logic, several bit-

serial operators including an adder/subtractor and an 8-bit multiplier have been 

fabricated as test structures in a 2.5 i.m, dual layer metal p-well CMOS process. 

The microphotOgraph of these test structures is given in Fig. 4.14, with 110 nodes 

brought out onto probe pads. These pads may be probed by a test card and the 

photograph of the probe card used is given in Fig. 4.15. 
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Fig. 4.13a Two-phase NORA full adder/subtractor circuit. 
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Fig. 4.14 Microphotograph of test structures for evaluating two-

phase NORA clocking. 

Fig. 4.15 Photograph of test card manufactured to probe the hO 

pads of the test structures. 
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For flexibility in testing, the clock phases çb, 02  and their inverses are generated 

on-chip, routed off-chip and re-applied via input pads. The full addcr/subtractor 

function described in this section has been probe-tested at just over 15 Mhz. The 

result of this test is displayed in the oscilloscope trace given in Fig. 4.16. 

Fig. 4.16 Oscilloscope trace for two-phase NORA addition at over 

15 Mhz. 

The top two traces are the inputs 'a  and 'b•  The bottom trace displays the 
sum output S, with a latency of I bit-time. 
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Performance Evaluation 

Although a two-phase NORA pipeline stage is race-free, it suffers from one major 

and serious weakness likely to prevent its widespread use NORA logic structures 

and their variants are highly susceptible to internally generated noise. This poor 

immunity to noise is a result of the worst of a combination of factors 

• 	The logic threshold of a NORA gate is determined by the device 

threshold voltage VT. in a typical commercial process, the low 

values of VT  will result in a noise margin of less than 1 V. 

• 	Unlike domino logic, the internal nodes are not buffered by 

restoring logic, giving rise to chains of floating nodes. For this 

reason, NORA logic is highly sensitive to capacitive coupling 

noise and charge redistribution. 

• 	The use of fully dynamic latches. As a result, the isolated 

storage node in a latch may be de-stabilised by clock 

breakthrough and parasitic capacitive coupling [571. 

The two major limitations of two-phase NORA as a means of realising high 

performance bit-serial operators are poor noise immunity and multi-wire clock 

distribution. In order to overcome these drawbacks whilst maintaining race-free 

operation, a robust pipeline logic structure called PHIMOS will be described in the 

following section. 

4.4.2. Race-free PHIMOS 

Bit-serial operators are tightly pipelined to be exercised continuously through the 

application of globally distributed clocks. For clock schemes such as the two-phase 

NORA, the generation and distribution of the clock phases not only require 

additional area but may also degrade operator throughput. The temporal 

relationship between the phases must be maintained at all times, even in the 

presence of clock skew. For this reason, the different clock phases are constrained 

to make sequential transitions, with finite rise and fall times that can account for a 

significant proportion of the clock period. This can be viewed as "dead time" 

during which the pipeline is idle and reduces the computational efficiency of 

pipeline structures. 
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To address the problems of multi-phase clocking, clocking schemes requiring only a 

single clock line have been proposed for CMOS pipeline stages [51, 94]. Although 

only a single clock is used, such schemes are inherently two phase in nature, using 

the high and low phase of the clock to approximate two non-overlapping time 

epochs. As discussed in § 4.3, the finite transition time of a clock edge inevitably 

requires the propagation delay, TCL  of the combinatorial logic in a pipeline stage to 

satisfy a two-sided constraint. With dynamic logic, the minimum value of 'r can 

be of the order of one or two nanoseconds, as the precharging process is inherently 

fast. As a result, clocks with fast transition times are required. 

To overcome this inherent race condition brought about by the use of a single clock 

to delineate two non-overlapping time epochs, a novel circuit technique called 

PHIMOS [41t]  is introduced. PHIMOS is based on precharged, differential 

cascode voltage switch logic (CVSL) [26] and requires just a single global clock 

when realised in CMOS technology. The operation of a PHIMOS pipeline stage is 

race-free since the clock is used to delineate only a single time epoch, analogous to 

say 0 1 , which controls the precharging process. The other epoch corresponding to 

2' which sets the sampling time of the latches, is defined not by the clock but by 

the precharging mechanism. As a result, the sample and hold operation of the 

latches are self-timed in synchrony with the evaluate and precharge mechanism of 

the logic trees, giving rise to an "elastic" period functionally equivalent to 0 2 . 

The combinatorial logic in PHIMOS is built from of a pair of logic trees which 

forms the true and complement of a logic function. A logic variable a is then 

represented as a pair of signals {a }. The logic configuration for a bit-pipeline 

stage in PHIMOS is illustrated in Fig. 4.17. Two flavours of precharged trees are 

used, with n-type trees precharged high and p-type trees precharged low. The pair 

of signals resulting from an n-tree evaluation is stored in a nand set-reset (SR) latch 

while that from a p-tree is held in a nor set-reset (SR) latch. When the clock PHI 

is high, the n-tree evaluates forming a complementary signal pair {a ã} on nodes n 

and n2 . The complementary nature of the signal pair {a } opens the nand SR latch 

to allow the result of the evaluation to be written into the latch. When the clock 

PHI makes a high-to-low transition, precharging of the nodes n 1  and n2  occurs. 

When both nodes are fully precharged high, this condition closes the nand SR latch 

to hold the result of the previous evaluation {a }. In this way, the hold and sample 

published work by the author. 
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PHI 

Fig. 4.17 Logic configuration for a PHIMOS bit-pipelinestage. 

phase of the nand latch is synchronised to the precharge and evaluate phase of the 

logic tree in a self-timed manner. As a result, a bit-pipeline stage in PHIMOS is 

race-free, with the requirement that the combinatorial delay TCL  satisfies a one-sided 

constraint TCL  < 

Results 

As part of the scan-out circuitry used in the scanning frame described in § 3.5, a 

PHIMOS shift register has been fabricated in' a 2 pm, dual layer metal n-well 

CMOS process. The microphotograph of the 50-stage register is shown in 

Fig. 4.18. The maximum clock rate that this shift register is capable of is displayed 

in the oscilloscope trace given in Fig. 4.19. The maximum clock frequency is 

measured at close to 40 Mhz and is constrained not by the inherent speed limitation 

of the PHIMOS technique, but by the output pad driver delay. The output pad 

driver used in this design has a measured propagation delay of 20 ns. 
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Fig. 4.18 Microphotograph of a 50-stage PHIMOS shift register 

Fig. 4.19 Oscilloscope trace of PHIMOS shift register clocked at 

close to 40 Mhz. 

The top trace is the clock waveform P1-H. The bottom two traces are the waveforms 
for signal pair (a a) with the sequence 1000 being shifted. 
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To verify the race-free operation of PHIMOS pipelines, a slow sine-like clock with 

2 iJs edge times has been successfully applied to the shift register. The oscilloscope 

trace for this test is given in Fig. 4.20. 

Fig. 4.20 Oscilloscope trace of PHIMOS shift register clocked by a 

slow sine-like signal. 

The top trace is the dock waveform PHI. The bottom two traces are the waveforms 

for signal pair (a } with the sequence 1000 being shifted. 

Performance Evaluation 

The circuit diagram of a bit-serial partial product sum (PPS) adder in PHIMOS is 

given in Fig. 4.21. Note that the use of CVSL in the logic trees allows complex 

boolean functions such as the sum and carry function of a full adder to be evaluated 

within a single tree delayt.  From measurements carried out on similar CVSL adder 

structures presented in § 7.3.2, the delay taken to form the carry out function, Tcay 

is around 5 ns. 

Compare this with the two-phase NORA full adder given in Fig. 4.13 where evaluation of 
the sum function requires the input logic signals to ripple through three successive logic trees. 
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CVSL offers improved switching delay over other forms of logic [11]. In addition, 

the functional power of the differential trees in CVSL in forming the true and 

complement of a logic function {q }, may reduce device redundancy by enabling 

transistors common to both the q and q trees to be shared. This feature of CVSL is 

exploited in realising the sum and carry function of the PHIMOS adder given in 

Fig. 4.21. The resulting realisation can be seen to be more device efficient than 

conventional static CMOS. 

4.5. Summary 

The two key strengths of bit-serial computation are communication and 

computational efficiency. Computational efficiency is achieved through functional 

parallelism, in which arrays of hard-wired processors are used to boost system 

throughput. Data words are presented in a bit-serial but word-parallel fashion to an 

array of functional processors to give a proportionate increase in system throughput. 

In bit-serial arithmetic, carry propagation takes place in the time dimension rather 

than in space. As a result, bit-serial operators may be tightly pipelined for clocking 

at high rates. A race-free clocking methodology for high performance pipelines, 

termed PHIMOS, has been presented and verified with test measurements: As only 

a single clock line is used in PHIMOS, clock skew between various sub-systems is 

relatively easy to accommodate, in contrast to multi-phase clock schemes. Such. 

clock skew adjustments may indeed be necessary for high levels of functional 

parallelism, with an interconnection network extending over the logic operators 

within a chip, chips mounted on a printed circuit board and boards of chips on a 

rack. 
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Chapter 5 

Digital Wave Filter Adaptor 

A Case Study on Bit-Serial Computation 

5.1. Introduction 

The bit-serial approach to the implementation of fixed function digital signal 

processors will be illustrated by a system case study of a recursive digital filter 

section. This filter section is called a universal wave filter adaptor [49t ,  67t1 It 

can be used as a computational core to construct a variety of filters belonging to a 

class known as wave digital filters [17]. The design study will cover the functional 

design of the adaptor structure, the design of a serial pipeline multiplier operator 

central to the realisation of the adaptor and finally, system composition integrating 

computational and control hardware. Practical results will be presented to vindicate 

the particular strengths of the bit-serial approach to dedicated processor 

implementation. This will take the form of the measured frequency response of a 

seventh-order, low-pass Chebyshev filter constructed from a cascade of two 

universal adaptors. 

5.2. Wave Digital Filters 

A digital filter can be described by a general linear difference equation of the form 

v0[nT] = 	v1[(n—j)T] - 	bk v0 j(n —k)T] 	 (5.1) 

Any digital filter can therefore be realised using only the arithmetic functions of 

addition and multiplication. These two arithmetic operations are data-independent 

in nature and are ideally suited to the bit-serial approach [31]. 

As can be seen from Eqn. 5.1, digital filters are completely characterised by the 

values of the two sets of coefficients {a 0 , a 1  . aM} and {b1 , b2  . bN}. The 

behaviour of a filter is however, more conveniently described by a set of 

specifications in the frequency domain, such as passband and stopband frequencies 

and characteristics. In order to obtain a digital realisation of a filter with the 

published work by the author. 
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specified frequency characteristics, the coefficients a 1  and b1  of the general linear 

difference equation must be derived in some way. For reasons which stem from 

technological heritage, the most common approach to designing a digital filter with 

the desired frequency characteristics is to start with a classical RLC filter network of 

the same specification. These classical analogue filters, widely known and 

extensively tabulated, play the role of reference filters from which the coefficient 

values of the equivalent digital filter may be derived. This task is accomplished by 

selecting an appropriate frequency transformation function having the general form 

s = 1(z) so that the frequency characteristics in the reference domain is preserved in 

the digital domain. The most well known and useful of these transformation 

functions is the bilinear transform [32] given by 

z —1 
Sa= z+ 1 	

(5.2) 

where 5a  is the complex frequency in the reference domain and z = esdT, Sd and T 

being the complex frequency and sample period in the digital domain respectively. 

A digital filter produces an output response sample v0[nT]  by evaluating its linear 

difference equation within one sample period T. Since the computation as specified 

by the difference equation is carried out digitally, the accuracy of v0[nT]  is 

inherently limited by the use of a finite number of bits for signal representation. 

These inaccuracies arise from the quantisation of the sampled input signal, the use 

of a finite number of bits for representing filter coefficients a 1  and b., and the 

accumulation of arithmetic roundoff errors. Certainly, if the wordlength is made 

sufficiently wide, these finite wordlength errors can be reduced as much as is 

required. However, this simplistic approach brings about an increase in the 

hardware resources required to evaluate the linear difference equation of the filter. 

In addition to the wordlength, the accuracy of a filter is also influenced by its 

physical structure. A new class of filter structures called wave digital filters 

(WDF) [17] have been proposed to reduce the sensitivity of digital filters to finite 

wordlength effects. Wave digital filters (WDF) are exact transformations of RLC 

reference filters which are resistively terminated. They therefore retain many of the 

desirable properties of this class of reference filters, such as insensitivity to 

component value variations and excellent stability [17]. The insensitivity of the 

response of a filter to component value variations will lead to a digital filter with 

low coefficient wordlength requirements. This would result in a considerable saving 
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in the multiplier hardware required to implement the filter structure. 

5.2.1. Choice of Frequency and Signal Parameters 

The frequency transforrnation function used in developing the wave filter theory is 

the bilinear transform given by Eqn. 5.2. 

z — 1 	=esT Sa = 	 z 
z+1'  

(sdT) 
=tanh 11 

where the subscripts a and d refer to the analogue and digital domain respectively. 

In addition to the frequency variable Sa , an appropriate choice of signal variables in 

the reference domain must be chosen to become the signal parameters in the digital 

domain. If voltage and current in the reference filter are selected as the signal 

variables, the choice of Sa  as given in Eqn. 5.2 would result in unrealisable digital 

structures containing delay-free loops [17]. For this reason, linear combinations of 

voltage and current, A and B called voltage "waves" are used instead. A and B are 

given by 

A = V + RI 
	

(5.3) 

B== V — RI 

A. can be regarded as the incident voltage wave on a two-terminal port, B the 

reflected wave and R the port reference resistance. 

5.2.2. Circuit Elements 

With the choice of voltage waves as signal parameters and 5a  as the complex 

frequency variable in the reference domain, circuit elements such as resistors, 

inductors and capacitors in the reference domain can be transformed into their 

equivalents in the wave digital domain. Table 5.1 lists the wave-flow equivalents of 

some of the more useful elements encountered in the reference domain. Briefly, a 

capacitor is transformed into a unit delay wave element which delays the incident 

wave by one sample time T, an inductor into a unit delay wave element with signal 

negation, a resistor into a wave sink and a unit elementt  into two half-unit wave 
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delay elements of length T/2. 

Capacitor Inductor Resistor Unit Element 

1 Al ..... 	- 	 B2 3L R] UE 

81 _.<.. 	A2 

A A A Al 	 B2 

—1 —K B 1 —3--IJ-_ic3._ A2 
B B-— B=O 

Table. 5.1 Wave-flow equivalents for some common analogue circuit 

elements. 

5.2.3. Interconnection of Elements with Adaptors 

A filter network is constructed from an interconnection of circuit elements. In 

order to ensure full equivalence between the reference network and the wave digital 

flow-graph, the interconnection or topological rules as embodied by Kirchhoff's 

current and voltage laws in the reference domain must also hold in the wave 

domain [17]. Structures called adaptors in the wave digital domain ensure that the 

topological rules are satisfied. The adaptors may be of two types, series or parallel, 

and they emulate a series or parallel connection in the reference filter. 

T A unit element is a section of transmission line th a delay of T/2 and characteristic im-
pedance R. 
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Consider an n-port network with ports k = 1, 2 	n having port resistances Rk. 

Rk can assume arbitrary values and is determined by the element that is connected 

across that port. With a parallel connection, Kirchhoff's laws state that 

V1 =V2 = 	= V,, 	 (5.4) 

11+12+ 	+IO 

The voltage waves Ak  and Bk at port k are related to Vk and 'k  by 

Ak  = Vk + RkIk 

Bk = Vk - RkIk 

Eliminating Vk and 'k' 

Bk = A0 - Ak 	 (5.5) 

where 	A0  = 	Uk Ak 

2 Gk 
ak - G1  + G2  + 
	

+ G 

Gk = - 
Rk 

From a similar derivation, the equations for an n-port series adaptor are given by 

Bk = Ak - 1kA0 	 (5.6) 

where 	A0 = k Ak 
i  

2Rk  

R1+R2+ 
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5.3. Functional Design of Universal Adaptor Structure 

The key to the realisation of WDF are the adaptors which are used to emulate the 

parallel and series connections of the reference filter. The adaptors form the basic 

building blocks from which arbitrary WDF can be constructed. In this section, the 

functional structure of a universal adaptor that permits the realisation of the WDF 

network equivalents of reference RLC ladder filters is considered. 

5.3.1. Adaptor Flow-Graph 

To fulfill its role as a general purpose building block, the universal adaptor has 

three ports with a unit delay element built into one port. The adaptor can then be 

configured externally to behave as a parallel or series adaptor with an attached 

inductive or capacitive filtering element. In addition, they are directly cascadable 

to permit the construction of higher order filters [63]. 

The adaptor functional structuret  given in Fig. 5.1 implements the parallel and 

series adaptor equations given respectively by Eqn. 5.5 and Eqn. 5.6 for a 3-port 

network. Here, extensive use is made of multiplexers so that a common data path 

can be configured dynamically on-the-fly into two different flow-graphs, describing 

either the parallel or series adaptor equations for a 3-port network. One of the key 

advantages of bit-serial design, that of single wire communication, is evident from 

the design of the universal adaptor structure given in Fig. 5.1. For single wire 

communication, the cost of reconfiguring signal communication paths through the 

use of multiplexers is minimal. For bit-parallel systems, providing similar facility 

would require the routing and switching of unwieldy word-wide busses. 

The flow-graph of a universal adaptor is composed from two major arithmetic 

operators, a full adder/subtractor and a multiplier. The design and realisation of a 

full adder/subtractor cell has already been covered in § 4.4.1. Design 

considerations for the multiplier will be discussed next. 

The functional structure of the universal adaptor is adapted from Ref [63]. 
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Fig. 5.1 Functional structure of a 3-port universal adaptor. 
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5.3.2. Serial Pipeline Multiplier 

A serial multiplier is basically constructed from a linear array of full adder cells. 

Each cell produces an accumulating partial product sum (PPS) from the addition of 

its two input operands, a partial product (PP) formed locally within the cell and the 

previous value of PPS passed from the neighbouring cell. The PPS output of each 

cell is then passed through an arithmetic shifter (refer to § 4.2.3) so that the 

correct weights can be imparted to the accumulating PPS bits before delivery to the 

next cell. 

Subscribing to the general philosophy of tight pipelining for increased throughput in 

bit-serial operators, a fully pipelined serial multiplier is employed. Due to the 

recursive nature of the computation carried out by the adaptor, the maximum wave 

filter sample rate is determined by the total computational latency of the realised 

adaptor structure. For a conventional add-and-shift multiplication algorithm, the 

computational latency of a fully serial multiplier is 2m bits, in being the coefficient 

wordlength. For high sample rates, a low computational latency is required. For 

this reason, the pipeline multiplier described here is based on the modified Booth's 

algorithm [68], enabling the latency of the serial multiplication to be shorten to 

(3/2 rn+ 2) bits. 

The multiplier structure is based on a design proposed by Lyon [44] which permits 

multiplication on a continuous bit-stream of data. If an n-bit word is multiplied by 

a rn-bit coefficient, bit growth occurs to produce a product that is (m+ n—i) bits 

long. If this full precision product is allowed to propagate on a single pipelined 

path to the output, then the throughput of the multiplier limits the rate at which 

new data can be input. The pipeline operation of such a multiplier requires every 

n-bit input word to be padded by at least m blanks. if the in least significant bits 

(LSBs) of the product are diverted onto an alternative propagation path so that 

each adder cell is used no more than n times per multiplication, then the 

multiplication cycle can be made equal to the input wordlength of n-bits [69]. In 

this case, the full precision product appears from the output of the multiplier on two 

wires. The m LSBs of one product appear on one wire concurrently with the n 

most significant bits (MSBs) of the preceding product on the other wire. This 

follows the convention for multi-precision word formatting in bit-serial design, 

where multi-precision words are arranged in time-staggered form on multiple 

wires [14]. 
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To avoid word growth, the full precision product can be truncated back into a 

single precision format by discarding the (rn—i) LSBs of the product. The circuit 

diagram of such a truncating multiplier, module implemented in two phase NORA 

logic is shown in Fig. 5.2. The coefficient values are restricted to the range +1— 1 

so that the range of possible products is less than the range of the input data. 

5.3.3. Adaptor Latency 

For a digital filter to be . realisable, the signal flow-graph describing its linear 

difference equation must not contain any delay-free loops. Unfortunately, 

connecting a port from one adaptor directly onto a port on another adaptor will, in 

general, create a delay-free loop [17]. To get round this difficulty, timing delays 

can be deliberately introduced between adaptor port connections by inserting unit 

elements into the reference RLC filter [67t]  A unit element in the reference 

domain is transformed into two half-unit delay elements of length T/2 in the wave 

digital domain. .. The evaluation of the 'adaptor equations must therefore be 

completed within a time period of T12 In a bit-serial environment, this evaluation 

period of T/2 corresponds to Lad  the computational latency of the adaptor structure 

given in Fig 5. 1. n The adaptor latency in bit-times is give by [67t] 

Lad = 	in + 10 

where in is the filter coefficient wordlength. With a bit-rate of f 0 , the maximum 

sampling rate f5  of a WDF constructed from universal adaptors is given by 

fo ' 
Hz. s 	2XLad 

The  maximum system wordlength (SWL) that can be used in a WDF system is 

determined by the sampling rate, f 5 . Word growth may occur during the process of 

carrying out arithmetic operations such as addition. To guard against word growth 

that may lead to numerical overflow, the signal word is padded with sign extensions 

or guard bits. The number of guard bits actually required is determined by the 

'longest computational path from an input port to an output port in a flow-graph. 

For the adaptor flow-graph shown in Fig. 5.1, six guards 'bits are required. As a 

result, the signal dynamic range in a WDF system constructed from adaptors is 

published work by the author. 
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limited to a maximum of (SWL-6) bits. 

5.3.4. Universal Adaptor Control 

As discussed previously in § 4.2.2, the control function in a bit-serial environment 

is concerned mainly with two tasks 

• 	providing a hierarchy of control markers to delineate sample 

words in a bit-stream. 

• 	inserting synchronising delays on merging bit-streams so that the 

bits from the different streams are time-aligned at the input of 

operators to possess equal weights. 

A bit-serial operator is configured as a pipeline for high throughput. As a result, a 

bit-stream presented at the input of an operator will incur a latency at the output of 

that operator, measured in terms of a number of bit-times. Unless the latencies of 

all operators are constrained to integer multiples of the system wordlength, the 

control markers must be distributed to the operators with the correct timing in 

relation to the signal words. For this reason, a separate control network that tracks 

the signal network purely in terms of latency is required to distribute the control 

markers. This control network is essentially made up of one or more chains of shift 

registers. Note that the control markers are cyclic in nature and if one of them is 

displaced beyond the cycle length, an identical version can be obtain by taking the 

previous version modulo the cycle length [14]. This places an upper limit on the 

length of the shift registers required in the control network. 

The operation of the universal adaptor is controlled by four markers : LSB, P/S, 

LJC and SIR. LSB is at the lowest level of the hierarchy and marks the least 

significant bit of a word. At one level above, the other three markers are used for 

multiplexing purposes 

• 	P/S selects a parallel or series adaptor connection. 

• 	L/C selects an inductive or capacitive termination for the 

adaptor. 
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• 	SIR selects the source of data into the adaptor. This can be a 

new sample from an external source or the recycled output from 

the adaptor produced in the preceding T/2 cycle. 

The control markers and their timing in relation to the input signals of the adaptor 

are given in Fig. 5.3. Fig. 5.4 is the signal flow-graph of the adaptor with 

synchronising delays inserted in the signal paths. Although the control network is 

not shown explicitly, the required latency of the control markers at the operators 

are indicated with the notation 0(t), where 0 refers to the name of the marker and 

t the incurred latency in bit times. 

5.4. Results 

The universal adaptor structure described in the preceding section has been 

fabricated in a 2.5 rim, dual layer metal p-well CMOS process. The 

microphotograph of the chip, VBC076, is given in Fig. 5.5. Although the 

granularity of bit-serial computational nodes will allow four independent universal 

adaptors to be accommodated on a standard die size of 25 mm 2 , this has not done 

on this prototype chip. VBC076 contains two adaptors that may be operated 

independently, with each adaptor provided with its own internal clock generator. 

Half the area on the die is taken up by test structures that can be accessed via probe 

pads. This allows the test structures on unbonded chips to be evaluated using 

probes mounted on a custom-made probe card. The pin-out of the prototype chip 

VBC076 is included in Appendix A. 

5.4.1. Seventh-Order Wave Digital Filter (WDF) System 

As a practical illustration of a WDF network implemented using universal adaptors, 

a stand-alone seventh-order low-pass WDF system has been constructed. The 

reference ladder RLC filtert  on which this WDF is based is given in Fig. 5.6a. 

Fig. 5.6b shows the WDF network equivalent of the reference ladder filter, which 

may be realised with a cascade of two universal adaptors. The WDF coefficients 

and the component values from which they are derived are tabulated in Table 5.2. 

The component values are chosen to give a Chebyshev response with a passband 

ripple of 0.644 dB, with a cut-off frequency set at 20 % of the sampling frequency. 

The reference filter topology and component values are obtained from Ref [63]. 
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Fig. 5.4 Flow-graph of universal adaptor with 

control synchronising delays. 
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Fig. 5.6a Seventh-order, low-pass reference ladder filter. 

Fig. 5.6b Wave digital filter network equivalent of reference filter. 

Component 

Values 

Parallel Adaptor 

Coefficients 
( 

a1 	
) 

Universal Adaptor 

Coefficients 
 ( 

a 	- 1 
) 

Rs  1.000 fl 11  0.4879371 —0.5120629 

C 1  2.570 F a 12  0.2579995 —0.7420005 

C 2  3.777 F a21 0.2198710 —0.7801290 

C 3  3.777 F a22  0.2093644 —0.7906356 

C 4  2.570 F a 31  0.2093644 —0.7906356 

UE1 1.891 fl U32 0.2198710 —0.7801290 

UE2 1.986 fl OL41 0.2579995 —0.7420005 

UE3 1.891 fl a42  0.4879371 —0.5120629 

RL  1.000cl - - - 

Table 5.2 Component and coefficient values for seventh order 

lowpass Chebyshev reference filter. 
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5.4.2. Frequency Response Measurement 

in order to measure the frequency response of the prototype WDF system, analogue 

interfaces to the external world are provided at the 110 ports of the WDF network. 

The conversion between the analogue and digital domain in this prototype system is 

carried out with a resolution of 8-bits. The functional diagram of the prototype 

filter system is shown in Fig. 5.7. The control generator is not included in the 

diagram but is essentially a central counter that is used for demarcating the 

boundary of sample words. A photograph of the board containing the prototype 

WDF system, complete with control generator is given in Fig. 5.8. 

The prototype filter system is clocked at a bit-rate of 10 MHz, giving a maximum 

sampling frequency of 227 KHz and a cut-off frequency of 45.45 KHz. The 

frequency response is measured using a spectrum analyser and the overall frequency 

response plot is given in Fig. 5.9. 

Fig. 5.9 	Spectrum analyser trace of the frequency response of the 

prototype seventh order, low-pass Chebyshev WDF. 

The input frequency is swept from dc to 10 K1-lz. The cut-off frequency is 

measured at around 45 l(1-lz. 
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6. Summary 

The design methodology for bit-serial computational systems spanning operator, 

functional processor and system level integration has been applied to the design of a 

universal adaptor, conceived as a basic building brick for arbitrary ladder wave 

digital filters. A seventh-order, low-pass wave digital filter system has been 

constructed to demonstrate the virtues of realising computational systems from bit-

serial cores. The finer grain size of bit-serial operators allows the computational 

cores to have a rich mixture of hardware operators that directly reflects the flow of 

computation. The cores may also be readily re-configured dynamically on-the-fly 

by virtue of their single wire communication paths. As a result, the control 

overhead at the system level is minimal, consisting of a hierarchy of counters for 

generating markers to demarcate the boundary of sample words. 
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Chapter 6 

Self-Timed Computation 

6.1. Introduction 

In the design of a dedicated processor system, the design task can be broken down 

into two separate components 

S 	the functional design of a data path which defines the physical 

and topological structure of the computational core required to 

compute an algorithm. The data path specification defines the 

connectivity and the different basic operations that can be 

carried out by the core. 

• 	the design of a system controller to orchestrate the flow of 

information among the constituent parts of the data path in 

time. 

At the highest level, the behaviour of a system can be completely specified by a 

sequence of events, much like an algorithm. Only when the system behaviour is 

realised in some physical form does the notion of time arises, as a consequence of 

the physical laws governing the properties of the implementation medium. In 

general, there are two ways of organising the behaviour of a system in the time 

dimension. As a signal propagates through a system, it will be delayed by some 

value. The precise value of this delay is unknown, and the two forms of timing 

organisation differ in the way they deal with this delay uncertainty. The more 

common method is to use a global clock to define timing relationships. This form 

of timing discipline is known as synchronous design. The clock is used to equalise 

delays throughout the system by holding up all signals, thereby removing the delay 

uncertainty. In other words, the delays are all prolonged to a single worst-case 

value defined by the period of the clock. The period of this clock is thus 

determined by the propagation delay through the slowest possible path in the entire 

system. By considering worst-case delay values, a piece of data is guaranteed to be 

available at any node within the system by the end of a clock period. 
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An alternative way to organise timing behaviour is to use self-timing. In this case, 

signals converging at a particular section of the data path are held up until the 

arrival of the slowest signal has been detected. This form of timing discipline is also 

sometimes referred to as asynchronous design. The elements making up the data 

path each indicate completion of operation so that neighbouring elements can make 

use of this information to decide when to initiate an operation. As a result, the 

delay that an element has to wait tends to reflect the average rather than the worst-

case value. 

Conceptually, the behaviour of a computational system may be completely specified 

by an ordering of events without any reference to timing. When a system is 

realised in some physical form, events must necessarily take a finite amount of time 

to happen. Realising a system with self-timing enables the ordering of events to be 

abstracted from their occurrence in time. System behaviour is then determined 

entirely by the way the self-timed parts or elements are interconnected together. 

Only within the elements themselves are sequence and time related, linked together 

by the physical laws governing the implementation. This separation of abstract 

sequence specification from the timing behaviour of the physical realisation, 

simplifies the behavioural design of a system by removing all timing constraints 

from the design process. This distinctive feature makes self-timing highly attractive 

for the design and construction of large concurrent computing structures. 

In a real-time, sampled-data system, the sampling process imposes a precise timing 

requirement on the signal samples. Such a sampled-data system may be 

accommodated in a self-timed environment by buffering the 110 data streams of the 

system by first-in, first-out (FJFO) memories. Provided that the average throughput 

of the self-timed processor is higher than the signal sampling frequency, signal 

reconstruction may be performed in real-time at the output. - 

6.2. Scaling Aspects of Self-Timing 

Advances in VLSI technology will lead to a scaling down of device feature size over 

an increasingly larger chip area. From § 1.2.1, the wiring delay over a distance 

measured in X units is increased relative to the transistor switching delay with 

scaling, A being the scalable unit of length measurement representative of the 

minimum feature size of a process. For a synchronous system controlled by a global 

clock, clock skew would require the clock to be derated accordingly. Therefore 
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with scaling, synchronous systems become increasingly inefficient, as the switching 

of transistors constitutes a smaller and smaller fraction of the clock duty cycle. 

With self-timing, there is no global clock and temporal control of the activity of the 

system is distributed over the elements that compose the system. An element 

responds to a local start signal to initiate an operation and generates a completion 

signal to indicate the presence of valid data at the output. As a result, the speed of 

operation of a self-timed element is, not constrained by worst-case delay values. For 

computations with completion times that vary with data, self-timing can lead to an 

improved average rate of computation. As an example, consider the ripple-carry 

addition of two numbers. The completion time of the addition is usually 

determined by the length of the actual longest carry propagation, particular to any 

two numbers. The worst-case carry propagation occurs when the carry has to 

propagate through the length of the entire adder. For a synchronous design, this 

worst-case carry propagation delay is assumed for every addition. However, worst-

case carry propagation rarely occurs with two randomly chosen numbers. In 

contrast, in a self-timed approach with carry-complete detection, an addition can be 

started as soon as the previous is completed. As a result, the average rate of 

• addition is improved. 

In a self-timed system, the switching activity of the transistors are distributed out in 

time and are not concentrated at a particular instant. As a result, there is no 

sudden surge in the current drawn from the power rails. Instead the current drawn 

is averaged out in time, thereby reducing the power supply noise generated by 

sudden surges of current through the stray resistances and inductances in a system. 

These issues will assume increasing significance as devices are progressively scaled 

down. 

6.3. Delay Insensitive Specification 

Self-timed operation allows the specification of system behaviour purely in terms of 

an abstract sequence or order of events. Correct system behaviour is therefore 

independent of any constraints introduced in the time domain by the 

implementation, such as the delay incurred by signals propagating along lengths of 

wires or the switching delay of gates. The elements that comprise a system that can 

behave in such a manner are said to be speed-independent or delay-insensitive in 

nature. Consider an element forming part of a larger system with some interface 
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separating the element from the rest of the system, the element's environment. 

Input signals will propagate through the interface from the environment to the 

element and output signals from the element to the environment. The nature of the 

interface can be assumed to be such that signal events crossing its boundary have 

their order preserved, so that the element's behaviour is specified by the allowed 

ordering of events on signal paths at the point of entry to the interface. This is 

shown in Fig. 6.1a and elements that satisfy this interface requirement are said to 

be gate-delay insensitive. Most of the early work on asynchronous logic 

design [55,2] belong to this category, since in earlier technologies prior to VLSI, 

the propagation delay of signals along wires may be assumed to be negligible 

relative to the switching delay of gates. 

Consider now a more elastic form of interface surrounding the element, with 

properties similar to that of a "foam rubber wrapper" [56]. Such an interface is 

shown in Fig. 6.1b. It has two surfaces, an outer surface that defines an interface 

with the environment and an inner surface that defines an interface with the 

element. Signals propagating on paths that traverse these two surfaces will incur 

propagation delays that are assumed to be unknown. As a result, the ordering of 

signal transitions on the different paths may be altered by the passage of the signals 

through the interface. If the behaviour of an element is not dependent on the 

arbitrary delays incurred by signals propagating through the interface, then its 

operation is said to be wire-delay insensitive. In this case, the behaviour of the 

element is independent of the ordering of signal transitions at its 110 terminals. 

6.3.1. Isochronic Regions 

In the foregoing discussion on self-timed elements, the wire-delay insensitive 

specification is applied to a set of signals crossing an element-environment interface; 

Note that it may not be possible to extend the property of wire-delay insensitivity 

into the innards of an element itself, as there is no known way of constructing 

wire-delay insensitive circuits from wires and transistors alone. This can be seen by 

considering certain basic components such as flip-flops and C-elements, in which 

the propagation delay of signals on the feedback paths are always taken to approach 

zero. To circumvent this difficulty, an approximation is used so that over a 

sufficiently small area, the delay incurred on any length of wire within this region is 

negligible relative to the switching delay of a transistor. Such a region is called an 



113 

Interface 

Fig. 6.1a Gate-delay insensitive specification in which A F B 	a F 

b,cFdCFD. 

Envi roi 

Fig. 6.1b Wire-delay insensitive specification in which A F B # a F 

b, c F d qk C F D. 

The notation x F y is used to denote the ordering of signal events x and y, i.e. whether x pre-
cedes y or follows on after y. 
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equipotential or isochronic region [71]. Within such a region, the occurrence of 

signal events are assumed to be sufficiently well separated in time, relative to the 

wire delays, that their ordering will be preserved at any point within the region. 

An element must therefore be contained entirely within at least one isochronic 

region, though it may reside in more than one region. 

6.3.2. Wire-Delay Characteristics 

The timing behaviour at the 110 terminals of a self-timed element is dependent on 

• 	the evaluation time taken to compute a given function, arising 

from the switching delay of transistors. 

• 	the delay contributed by output capacitance to the evaluation 	 V  

time. 

• 	the delay associated with equalising potential across 

interconnecting wires 

The delay required to equahse a potential along a length of wire is governed by the 

diffusion equation 

RC (61) 
dt 	dx2 	

V 

R and C are the resistance and capacitance per unit length of wire, and V the 
V 	

voltage along the wire as a function of time t and distance x. The distance x is 	: 

measured from the point where the voltage V is applied. Solution of the diffusion 	
V 

• equation gives the time required for a step to propagate a distance x as -  proportional 

to x2RC. In the process, the voltage step is also progressively degraded or "smeared 

out" as a monotonicallyt  increasing function of time. 

A function f(x) is said to be an increasing monotonic function in x if 
df(x) > o. 

dx 
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6.4. Reset Signaling Protocol 

In self-timed communication, the most basic form of signaling that can be used to 

mark the occurrence of an event is a transition. A pulse of some fixed interval is 

unsatisfactory, since the interval would need to be arbitrarily long to accommodate 

the unknown delay between the occurrence of events. A signal transition can occur 

in one of two directions, a low-to-high (LH) or a high-to-low (1-IL) transition. At 

least two transitions are required for every cycle of self-timed communication : a 

transition on a request (Req) wire to initiate an operation and a transition on an 

acknowledge (Ack) wire to indicate the completion of the operation. In principle, 

transitions in both the LH and HL directions can be used for signaling. Such a 

scheme is referred to as nonreturn-to-zero signaling [71]. 

Logic devices however, tend to be sensitive to signal levels rather than edges. For 

this reason, detecting the occurrence of uni-direction transitions 

(either LH or HL) may be carried out more readily than the detection of 

transitions that may occur in either direction. A signaling scheme referred to as 

reset or return-to-zero signaling uses a uni-directional transition to mark an event. 

This is accomplished by dividing the communication cycle into two phases, an 

active phase in which the Req and Ack signals are activated and a reset phase in 

which these two signals are, returned to a known initial state, in preparation for the 

next active transition. The sequence of events for reset signaling is given in 

Fig. 6.2. 

6.4.1. Data Encoding 

Within an isochronic region, the ordering of signaling events propagating on wires 

within that region remains unaltered. As a result, the signal ordering established at 

the output of an element sending data will apply at the inputs of other elements 

residing within the same isochronic region. As an example, the sender may 

indicate the presence of new data items on its data lines by activating the Req wire 

after a data value has been defined. For communication between isochronic regions 

however, the above form of signaling cannot be used since the ordering of events 

established by the sender may not be preserved at the receiver. For wire-delay 

insensitive communication, it is necessary to encode the data validity information as 

an integral part of the data that is sent, later to be decoded at the receiver end. 
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Input data 

Req 

Output data 

Ac k 

reset 
Active phase 	I 	phase 

Fig. 6.2 Reset or return-to-zero signaling protocol. 

There are various ways of encoding the data to embed the data validity information 

in a reset signaling scheme [2]. The general requirement is to encode the data 

values to form two disjoint sets of codes. The members of one set, denoted by 

D1  E D, correspond to valid data states whilst members of the other set, with 

notation Si  E S, are all assigned to be reset or spacer states. In general, a self-timed 

element performs a logical mapping f of input states {S 1 , D1 } into output states 

{S0 , D0} such that 

	

f(S1) = S. 	Si , S. E S 

	

f(D) = D. 	D1 , D. E D 

The state information is encoded onto several variables. In changing between 

states, transitional states must inevitably be traversed if the two states differ in more 

than one variable. The requirement for any valid coding scheme is to ensure that 

in making a state transition from some S i  -. D, the intermediate states S. passed 

through must all belong to the set S. that is S E S. Data validity can therefore be 

detected by recognising a state as a member of the data code set D. 
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6.4.2. Double-Rail Coding 

The reset state may be encoded directly into the data if each variable is assigned 

three states: 0, 1 and - (reset) . Transitions between 0 and - or 1 and - are 

allowed but not transitions directly between 0 and 1. If n ternary variables are 

used, there are 20  data states and (30 - 211) spacer states. Alternatively, each 

ternary variable may be realised with two binary variables using a "double-rail" 

coding scheme [71], with {00} representing a -, {10} a logic zero and {01} a logic 

one. If n binary variables are used, the total number of data states possible is 2". 

Note that in double-rail coding, the {11}. state for a pair of binary variables is 

redundant. As a result, double-rail coding does not provide the most efficient form 

of coding in terms of the maximum number of data states that can be encoded onto 

n binary variables. For any valid code set, a transition from S i  - D, must not 

traverse any intermediate states that are members of the data set D. This condition 

can still be met if all the data states are reset towards the all zero state as before in 

double-rail coding, but each D i  is now encoded using p out of the n available binary 

variables. Combinations with fewer than pnumber of, ones are assigned to the set S 

and 'a code is a valid data item D 1  E D if there are p number of ones: in the code 

combination Note that codes with greater than p number of ones do not occur 

since in any D, Si  transition, the code resets towards the all zero state 

In an n-bit code, the total number of combinations with p number of ones is given 

by 

(ni = n (n—i) . . (np+l) 
[p) 	 p! 

= n (n—i) . 	(n—p+1) (n—p)! 
p! (n—p)! 

n! 
- p! (n—p)! 

(6.2) 

The number of possible states that can be encoded using p out of n binary variables 

is given by Eqn. 6.2 and is maximum when p = n/2 [89]. 
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6.5. Data Flow Model of Self-Timed Computation 

A data flow system can be viewed as a directed graph in which each node 

represents an operator and each directed arc a defined path over which data items 

or tokens flow [13]. The operators are enabled or "fired" according to a simple 

data availability rule. When tokens are present on each input are of an operator 

and all its output arcs are empty, the operator fires and applies its associated 

function to the values carried by the input tokens. Tokens carrying the values of 

the result are then placed on the output arcs and the consumed tokens are removed 

from the input arcs. An example of a data flow operator is shown in Fig. 6.3. 

a 
	 a 	b 

Fig. 6.3 Firing rule of a data flow operator. 

In a data flow model of computation, there is no explicit flow of control among the 

operators. The order in which the operations are performed is governed solely by 

data dependencies among the operators. This is in contrast to other approaches to 

self-timing where self-timed control modules [12,28] are used to synchronise the 

operations of the data path modules in a system. With a data flow model, the 

scheduling and synchronisation of operations are built into the operators and self-

timed operation is a natural consequence of the data flow concept. 
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If self-timed elements are to be modelled as data flow operators, then a restriction 

must be placed on the number of tokens that may reside on the arcs in a data flow 

network. Since an arc would correspond to a wire in a data flow model of a self-

timed element, no more than one token may be placed on any arc at a given time. 

This is to ensure that a data token on an arc is consumed before the arrival of a 

new one. 

6.5.1. Implications of Data Flow Operation 

From the preceding description of data flow operation, an operator must be able to 

determine whether there are tokens on any of its arcs. In any implementation of a 

data flow operator, this implies that the following two requirements are met [2]: 

• 	an operator is able to distinguish between valid data states 

D, E D and transient states S i E S passed through between state 

transitions. The valid data states correspond to the presence of 

tokens while the transitional states correspond to the removal of 

tokens. 

• 	The operator is free of delay hazards so that signals at its output 

arcs are glitch-free. 

A realisation of a logic function is said to contain a delay hazard if the state of one 

or more of its output is dependent on the relative delay of, signals propagating 

through its logic. If such delay hazards are present, an operator f may produce an 

output sequence f(S 1  - D1) = S0  -. -. S. D. for some input state transition 

Si  - D1 , S, S, S. E S and D1 , D, D. E D. The glitches produced in passing 

through D. and S,A  will cause critical races in the network of operators. 

The first requirement for detecting tokens may be met by encoding data values so 

that valid data or tokens are encoded onto one code set D whilst all transitional 

states are encoded into a separate, disjoint spacer set S. A coding scheme 

convenient for implementation is the double-rail code described in § 6.4.2. With 

double-rail coding of data values, a data flow operator is able to map input tokens 

into output tokens and input spacers into output spacers. 



§6 	 120 

Data flow operators must also be free of delay hazards, which may be ensured if the 

operation of the data flow operators are based on precharging [4]. During 

precharge, the output of a gate is forced low (or high). When the gate is 

evaluating, the output can only make a single LH (or HL) transition. As a result, 

there are no delay hazards at the ou!.nut nodes of precharged gates. 

6.5.2. Delay Model of Data Flow Operators 

In a data flow model of self-timing, there is no explicit notion of time at which 

operators fire and perform logic functions on input token values. The scheduling 

and synchronisation of logic activities are built into the hardware of the operators 

themselves. Note that the internal activity of an operator need not be self-timed. 

The only requirement is for an operator to obey the firing rule at its input and 

output interfaces and to process data internally at a rate no slower than that set at 

the interlaces. This feature may sometimes be used to reduce the hardware 

overhead associated with self-timed operation. 

A delay model of a data flow operator is given in Fig. 6.4. The evaluation time at 

the output of an operator is assumed to be bounded. For the dynamic operation of 

MOS operators based on precharging, charge leakage will determine the upper 

bound on the evaluation time. The input delay, on the other hand, is assumed to 

be unbounded. This input delay is associated with equalising potential along wires 

that constitute the arcs of an operator. 

6.6. Data Flow Logic Realisation 

A novel method of realising data flow operators in CMOS technology [37t]  will 

now be presented. This technique is based on differential cascode voltage switch 

logic [26], employing a pair of complementary trees to compute complex boolean 

functions. The complementary trees are driven by input signals and their inverses. 

The general form of the logic configuration for this technique is shown in Fig. 6.5. 

The circuit works in two distinct phases, a precharge phase and an evaluation phase 

defined by the logic level of a local "clock" signal 01 . When 0 goes high, the 

evaluation phase starts and one tree evaluates to its true logical value q 1 , while the 

published work by the author. 
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unbounded 

Input1 	 D1 
	 bounded 

operator 
	F D-  0 

Output 

Input 

Fig. 6.4 Delay model of a data flow operator. 

other tree evaluates to its logical complement q. During the evaluation phase, the 

signal pair {q q'} at the output represents a token for variable Q  in double-rail 

coding. 'When çb, goes low, nodes q 1  and q j  are precharged high with signal pair {q 

q'} forced low. Therefore in precharging, the signal pair {q q'} reverts to a spacer 

(-) for Q in double-rail coding. 

The operation of the circuit, like that of domino logic [34], is hazard-free. During 

the evaluation phase, either q, or q, will make a single HL transition and will stay in 

that state until the next precharge phase. Note that since the circuit operates on a 

precharge-evaluate cycle, spacer and token occurs alternately. Effectively, this 

corresponds to the reset and active 'phase in a reset signaling protocol. However, 

unlike clocked domino logic, the precharge and evaluation phase do not occur at 

fixed time intervals. The phases respond instead to the timing information provided 

by the locally derived clock signal 0 1 . 

The result of the evaluation is held in a form of static latch. Static storage is 

necessary since the wire delay on the arcs of operators are assumed to be 

unbounded. However, the latch is only conditionally static. During the precharge 

phase, the cross-coupled paths in the latch are broken to allow the latch to admit a 

spacer. At the start of the evaluation phase, one of the trees discharge to produce a 
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:k 

Fig. 6.5 	General logic configuration for a data flow operator. 

token {q q'}. The load signal ld now activates to close the cross-coupled paths in 

the latch. Static storage can thus be achieved without logic conflicts. Note that the 

logic configuration given in Fig. 6.5 functions correctly irrespective of signal edge 

times, provided that signal transitions are monotonic in nature. This is necessary to 

accommodate the wire-delay characteristics assumed for data flow operators, as 

described in § 6.3.2. 

Interconnection of Operators 

Given functional operators, some means must be provided for interconnecting the 

operators together to form a data flow network. For simplicity, consider a linearly 

connected array of operators as shown in Fig. 6.6. The presence of a token on the 

output arc of operator e 1  causes e 1  to fire. While e11  is evaluating, the token on 

e1  is held steady until it has been absorbed by e 11 . There are now tokens on the 
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output arc of e11  and e1 . The consumed token on e 1  may now be removed by 

resetting e 1  to a spacer state. Only when the resetting of e 1  is completed can the 

token on e11  be allowed to propagate by the enabling of operator e 12 . 

Fig. 6.6 Linear array of data flow operators. 

The above sequence of steps is essential to ensure the race-free operation of the 

network. If e12  is allowed to fire before the token on e 1  is removed,, a race 

condition potentially exists whereby e 11  is reset before e 1 . The same token on e 

will then be mistaken for the next token and re-used. Tokens are therefore not 

allowed to reside in more than two adjacent operators at any one time. To ensure 

race-free operation, operator e i  has to satisfy the following constraints: 

• 	ei  is reset to a spacer whenever e 11  contains a token. 

• 	it cannot fire unless 

e11  contains a spacer and 

a token-spacer pair resides in e_ 1  and e1 _2 . 
The above constraints can be imposed by interconnection logic that accept request 

(Req) and acknowledge (Ack) signals from communicating operators. It may be 

viewed as the logic required to generate the local clock signal 01  for each operator. 

A possible configuration for the local clock generator is given in Fig. 6.7. When ç 

goes high, the operator fires and places a 'token on each of its output arcs. When 

these output tokens have been consumed by other operators, 01  is driven low. The 
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operator is reset, thereby removing the tokens. The local clock generator ensures 

that unrelated tokens are separated by at least a spacer. 

reqin 

ackout 

qin 

q ' 

reqout 

reset 

ackin 

qout  

q0' 

Fig. 6.7 	Local clock• generator providing locally derived timing 

information. 

The structure of a data flow operator may therefore be viewed as consisting of two 

modules, a combinatorial logic module and a local clock generator module. The 

combinatorial logic module performs the logical mapping of input token values and 

takes the form of precharged, differential cascode voltage switch logic. Design 

procedures that have been developed for synchronous cascode voltage switch 

logic [10] may therefore be applied to the design of data flow operators. As a 

result, the data flow operators as proposed here [39t]  are no more difficult to 

design than conventional synchronous logic. The local clock generator module 

effectively implements the reset signaling protocol required for asynchronous 

communication between operators. As such, it is common to all operators 

regardless of their logical function. 

published work by the author. 
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For an operator with multiple input arcs, the local clock generator module must 

detect the arrival of the slowest input token. Similarly, if an operator has a fanout 

of more than one, the operator is reset only after the slowest of the driven 

destinations has responded. To detect the slowest of a set of changing signals, C-

elements [71] may be incorporated into the local clock generator module. A C-

element is a storage device that responds to the "last of a set of signals changing in 

the same direction. A 2-input C-element is shown in Fig 6.8. Its output is low 

when both inputs are low and becomes high only when both inputs are high. 

Otherwise, its output remains in its previous state. A tree of these devices can be 

used to build a multiple-input C-element. 

b 

Fig. 6.8 A 2-input C-element. 

6.7. Summary 

Conceptually, the behaviour of a system may be completely specified by an ordering 

of events without any reference to the time domain. The self-timed approach to 

computation allows the sequence specification of a system to be abstracted from the 

timing behaviour of the physical realisation, thereby ensuring correct system 

behaviour independent of all timing constraints. In addition, for computations with 

data dependent completion times, self-timing can also improve the average 
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throughput by not being constrained by worst-case delay values. A data flow 

approach to self-timed computation has been described, with generic hardware 

structures that allow data flow logic to be efficiently realised presented. The 

practicality of this approach as an alternative to synchronous logic in VLSI will be 

demonstrated by case studies in the next chapter. 
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Chapter 7 

A Wavefront Array Multiplier 

A Case Study on Self-Timed Computation 

7.1. Introduction 

In the preceding chapter, a data flow approach to logic is proposed as a means of 

realising coarse grain computational operators that communicate asynchronously. 

The structure of such a data flow operator may be viewed as consisting of two 

modules, a combinatorial logic module and a local clock generator module. The 

combinatorial logic module performs the logical mapping of input token values. 

The local clock generator module accepts requesi (Req) and acknowledge (Ack) 

signals from communicating operators and implements the reset signaling protocol 

required for self-timed communication. As such, it is common to all operators 

regardless of their logical function. 

With the data flow approach, self-timed elements are no more difficult to design 

than their synchronous counterparts. This is an important advantage that 

considerably reduces the design complexity of communicating, self-timed logic 

elements. To demonstrate the viability of this approach for realising complex self-

timed elements, the design of a two's complement, wavéfront array multiplier [42t] 

will be presented as a case study in this chapter. This multiplier array is composed 

entirely from the replication of only three different cells with local 

interconnections : (i) a full adder cell, (ii) a register cell and (iii) a local clock 

generator cell. As such, it is eminently suited to a VLSI implementation. 

Before describing the multiplier architecture in detail, the nature of the self-timed 

communication imposed by the local clock generator module given in Fig. 6.7 is 

examined by measurements on the operational performance of a First-In, First-Out 

(FIFO) memory. 

published work by the author. 
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7.2. FIFO Elements 

A FIFO allows the concurrent reading and writing of data and automatically tracks 

the order in which the data items are entered. It is often used as a buffer between 

processors operated at different rates to even out the rate of data transfer. To 

demonstrate the self-timed communication imposed by the local clock generator 

module given in Fig. 6.7, an 8-stage bit-wide First-In, First-Out (FIFO) memory 

has been designed and fabricated in a 2 tim, dual layer metal n-well CMOS 

process. The microphotograph of this FIFO is shown in Fig. 7.1. 

% .j 

* 

$[Al i A
t 

Fig. 7.1 Microphotograph of 8-stage bit-wide FIFO. 

The FIFO is implemented as a network of single hit data flow register cells as 

shown in Fig. 7.2a. The logic for the individual register cells is given in Fig. 7.2b. 

In order to be able to insert arbitrary delay values on the set of signals 

communicating between neighbouring register cells, a set of these signals are 

brought off-chip via external pads (refer to Fig. 7.2a). 



§7 
	

129 

reset 

write 	clock 	

• 

clock clock clock 	reqout 
generator generator generator 

PAD PAD 
generator 

reqout 6  reqin7 

PAD 
read 

 

AD 

FIFO FlED FlED 
07 

cell ow 	cell 
FIFO 

S- Q1 05 

Fig. 7.2a FIFO realised as a network of data flow register cells. 
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Fig. 7.2b Individual register cell. 
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7.2.1. Mode of Operation 

The FIFO is first initialised so that all the ackout signals are reset to 0, indicating 

that no token is stored. When a data token is available at the input to the FIFO, 

the write control is enabled and the token is copied into the first cell. ackouti then 

goes high to indicate the completion of this operation. When the input token has 

been reset or removed in response to ackouti, the second cell fires, copying the 

token from the first cell. When the token has been successfully copied, ackour2 is 

activated and resets ackouti. The token in the first cell has now been discarded. 

This process is repeated until the data token appears at the output stage of the 

FIFO. The oscilloscope trace for the above sequence of operations is given in 

Fig. 7.3. From this trace, the propagation delay through the length of the entire 

FIFO is measured at 180 ns, giving a delay of 22.5 ns per stage. Note that in this 

prototype FIFO, token throughput is unnecessarily degraded by having 

communicating signals going off-chip for test purposes (refer to Fig. 7.2a). Input 

and output pad driver delay can make a significant contribution to the 

communication delay between neighbouring cells; the output pads that were used in 

this design have a measured propagation delay of about 20 ns. 

Note that a transfer can be initiated as soon as a cell becomes available, without 

having to wait for a token to propagate all the way to the output stage of the FIFO. 

Occasionally the FIFO fills up and no further tokens may be queued. This state of 

the FIFO is shown in Fig. 7.4a with tokens and spacers residing in alternate stages. 

When a token is de-queued from the FIFO, the read line is activated and resets 

ackout7. The output stage now contains a spacer (Fig. 7.4b). This triggers a chain 

of events whereby the two consecutive spacers are seen to "bubble' towards the first 

stage of the FIFO, as tokens are moved one stage to the right. This process can 

continue until the FIFO is emptied of its contents. In general, the feeding and 

removal of tokens to and from the FIFO are concurrent activities and the data 

throughput of the FIFO is the average of these queuing and de-queuing rates. This 

is displayed in the oscilloscope trace given in Fig. 7.5 
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the entire FIFO. 

The top trace is the write control cycled at a penod of 400 ns. The middle and 
bottom traces show Q7 and reqout respectively from the FJFO output. 

spacer I-_I data  -1 spacer 	data F-I spacer  F-I data 

Fig. 7.4a FIFO filled to maximum capacity when no further tokens 
may be accepted. 
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spacer -1 data 	spacer F-H data  j- spacer  i_-H spacer 

Fig. 7.4b "Bubbling" effect of two consecutive spacers within the 

FIFO. 

Fig. 7.5 	Oscilloscope trace displaying the concurrent reading and 
writing of token values. 

The top trace is the write control cycled at a period of 110 ns. The middle and 

bottom traces show Q7 and reqout respectively from the FIFO output. 



§7 
	 133 

7.2.2. Detay Insensitive Communication 

To demonstrate the delay insensitive operation of the FIFO, external delay lines are 

inserted into the communication paths of the last three stages as shown in Fig. 7.6. 

The delay lines each have a delay value of 250 ns and are labelled into two groups, 

DA  and DB. The delay incurred by a token in propagating from the first to the last 

stage of the FIFO are considered for four different cases, with DA  and DB set to 

different values for each case. 
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Fig. 7.6 	FIFO with external delay lines inserted to verify delay- 

insensitive communication. 
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Case I 

Fig. 7.7a shows the oscilloscope trace taken when the FIFO is operating with D A  

and DB  set to 0. The propagation delay through the length of the FIFO is 

measured at 180 ns. 

Fig. 7.7a Oscilloscope trace for a token propagating the length of 

the entire FIFO with DA  = 0, DB  = 0. 

The top trace is the write control. The middle and bottom traces show 07 and 

reqout respectively from the FIFO output. The propagation delay is measured at 

l8Ons. 

Case II 

Fig. 7.7b shows the oscilloscope trace taken when the FIFO is operating with D A  

and DB  set to 0 and 250 ns respectively. The propagation delay has increased by a 

margin of 250 ns over the previous value to 430 ns, in response to the delay 

introduced by D. 
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Fig. 7.7b Oscilloscope trace for a token propagating the length of 

the entire FIFO with DA = 0, DB = 250 ns. 

The top trace is the write control. The middle and bottom traces show Q 7  and 

reqout respectively from the FIFO output. The propagation delay is measured at 

430 ns. 

Case III 

Fig. 7.7c shows the oscilloscope trace taken when the FIFO is operating with DA 

and DB set to 250 ns and 0 respectively. The propagation delay is measured at 450 

ns, in response to the delay introduced by DA. Note that communication on the 

signal paths skewed by the DA delay lines are gate-delay but not wire-delay 

insensitivet .  For this reason, the ordering of signal events on these paths are 

preserved by tracking the absolute delay values incurred by signals propagation on 

these paths. 

This subtle difference between the two forms of delay insermtivity is discussed in greater de-

tail in § 6.3. 
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Fig. 7.7c Oscilloscope trace for a token propagating the length of 

the entire FIFO with D A  = 250 ns, DB  = 0. 

The top trace is the write control. The middle and bottom traces show 07 and 

reqout respectively from the FIFO output. The propagation delay is measured at 

450 ns. 

Case IV 

Fig. 7.7d shows the oscilloscope trace taken when the FIFO is operating with D A  

and DB both set to 250 ns. The propagation delay has increased to 700 ns. The 

overall delay margin is equivalent to the sum of delay margins measured in the 

previous two cases. 
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Fig. 7.7d Oscilloscope trace for a token propagating the length of 

the entire FIFO with DA  = 250 ns, DB = 250 ns. 

The top trace is the write control. The middle and bottom traces show Q and 
reqout respectively from the FIFO output. The propagation delay is measured at 
700 ns. 

7.3. Binary Multiplication 

Multiplication is one of the main arithmetic operations that underlie most signal 

and image processing algorithms. Large number of algorithms in this field are 

characterised by the predominance of multiply/add or inner product 

operations [59]. In general, multiplication requires the formation of a number of 

partial products (PP) and the accumulation of these partial product terms. The 

number of PP are progressively reduced by carry-save adder stages until two partial 

product sum (PPS) terms are left, from which the final product may be formed. 

The final summation requires the carry to be propagated in a carry-propagate adder 

such as a ripple adder or a carry look-ahead adder. 
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In implementing a computation in hardware, the need to allow for carry 

propagation forms a severe bottleneck to throughput. This delay may be reduced in 

one of two ways 

• 	The length of carry propagation may be limited by performing 

the addition in a 'redundant number representation, such as the 

sign-digit [80] or residue number representation [9]. Addition 

can then be performed in a constant time independent of n, the 

word-length of the operands. 

• 	Use of carry-completion detection logic [22] that allows for the 

actual carry propagation length in a particular n-bit addition. 

From statistical analysis of the random addition of two n-bit 

numbers, the actual longest carry length is, on average, found to 

be significantly less than the worst case value of n bits. 

7.3.1. Redundant Binary Number Addition 

As an example of redundant number addition, consider a radix-2 sign-digit (SD) 

representation of an integer with digit set 1,0,1 where 1 denotes —1. An n-digit 

redundant integer Y = [y_ . YOISD2 has value 

n-I 	 - 
Y = 	y1 X2 1 	(y1  E 1,0,1) 

i=O 

Due to possible redundancy in the number representation, the addition of two SD 

integers may be constrained so that carry propagation is limited to just one higher 

digit position [80]. When two SD integers X = [x . . x 0] and Y = [y1  . Y] are 

added together to produce Z = [z . . . zJ, the intermediate sum s 1  and carry ci  at 

each digit position is determined from the relation x 1  + y1  = 2c, + s. Note that 

redundancy in the SD representation allows 1" to be represented as either [0 1] 

or [1 i]. "-1" may correspondingly be represented as either [0 1]sD2  or [1 1]. 

This feature is exploited to enable an intermediate sum digit s and the carry digit 

c1 _1  from the next lower order digit to be added together to form the result digit z1 , 

without generating any carries. 
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The key to breaking the carry chain is to prevent the formation of s 1  and c1 _1  both 

with value 1 or 1. If there is a possibility of a 1-carry from c 1 _1 , [c, s1 ] is chosen to 

be [1 1]. Otherwise, [c 1  5j] is taken to be [0 1]. A corresponding set of rules apply 

when there is a possibility of a 1 carry from c 1 _1 . The digit selection rules for carry 

propagation free addition are given in Table 7.1. 

Operands digit Next lower order Intermediate Intermediate 

digit position carry sum 

x1 	y3  x1 _1 	y1 _1  c• 	 Si 

1 	1 xxx 1 	 0 

1 	0 both are non-negative 1 	 1 

o 	1 other combinations 0 	 1 

o 	0 xxx 

1 xxx 0 	 0 

1 	1 xxx 

o 	1 both are non-negative 0 	 1 

1 	0 other combinations 1 	 1 

1 	1 xxx 1 	 0 

Table 7.1 Digit selection rules for carry propagation free addition 

(after Ref [80]). 

Carry propagation chains may be avoided in arithmetic operations so long as the 

numbers are represented in SD form. However, if the SD numbers are converted to 

an equivalent non-redundant binary representation such as 2's complement, then 

carry propagation cannot be avoided in the conversion process. 
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7.3.2. Self-Timed Carry Propagate Addition 

Suppose that the delay of a 1-bit full adder is denoted by A. The delay xA in 

performing an n-bit carry-propagate addition is dependent upon the two numbers 

being added and is determined by the length of the actual longest carry propagation 

particular to that addition. Therefore x can take any integer value between 

1xn. For a synchronous design, we have to allow for the worst-case condition 

when the carry propagates through the length of the entire adder. In this case, the 

addition delay is fixed by nz. However, worst-case carry propagation rarely occurs. 

From statistical analysis of the addition of two randomly chosen binary integers, X 

and Y, the average longest carry length is found to be bounded by 1092  n [27]. 

With the use of carry-complete detection logic, the average speed of carry-propagate 

addition may therefore be increased by a factor of n!(1092  n). 

01 

Fig. 7.8 	Combinatorial logic for a data flow, partial product sum 

adder. 

The combinatorial logic for a full adder function in data flow logic is given in 

Fig. 7.8. The carry-out function C. is defined independent of the carry-in input C 1 , 

when the input operand bits x i  and y, are in the carry-kill (x= 0, y1 = 0) or carry-

generate (x 1 = 1, y 1) condition. A self-timed, carry-propagate adder may be 
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formed by directly cascading such full adder cells. Completion of an addition 

operation is indicated by an acknowledge signal Ack 0 ,, that is formed by the 

ANDing of acknowledge signals from the individual sum bits. The 

microphotograph of a 4-stage carry-propagate adder, implemented in a 2 p.m, dual 

metal n-well CMOS process, is given in Fig. 7.9. 

'1 

Fig. 7.9 	Microphotograph of a 4-stage, self-timed carry-propagate 

adder. 

To verify the self-timed operation of such an adder, two sets of operands are chosen 

to demonstrate addition involving the two extreme carry propagation conditions. 

With the carry-in C j  to the least-significant stage set to 1, one addition is set up so 

that no carry propagation takes place. In the other addition, the carry propagates 

the entire length of the adder. Referring to the oscilloscope trace shown in 

Fig. 7.10, a 20 ns difference in computation time between these two additions is 

measured. This implies that each adder stage contributes a delay A of 5 ns. 
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Fig. 7.10 	Oscilloscope trace displaying the self-timed addition of two 

sets of operands. 

The top trace is the local start signal 0 1 . The middle trace is the carry-out signal 

C, from the most significant bit of the adder. The bottom trace is the 

acknowledge signal Ack 0,,,. These traces were produced with operands x 1  = 1010, 

y1  = 1010, Q = 1 followed by x2  = 1010, Y2 = 0101, = 1. 

7.4. Multiplier Structure 

Fig. 7.11 shows the composition of a data flow, pipelined multiplier for two's 

complement, fixed-point numbers. It is derived from the well-known structure for 

carry-save array (CSA) multiplication. The weighted summation of partial products 

is carried out using a carry-save array, with a last stage carry-propagate adder to 

form the final product. Except for the last carry-propagate stage, the interstage 

delay between two adjacent rows is determined by the delay A of a 1-bit full adder. 

With the provision for carry-completion detection, the carry-propagate addition may 

be completed in an average time that varies as log 2  n for an n-bit adder. 



y77yo 	xi —x o 	 Req 

to 

I 	8-input AND gate 	 I 
I R: register, CK: local clock generator, RA: register array, 

C: C-element 	0 : full adder 

Fig. 7.11 Composition of wavefront multiplier array. 

 



§7 
	

144 

7.4.1. Multiplier Algorithm 

The Baugh-Wooley algorithm [5] for two's complement multiplication allows the 

product of a multiplication to be formed by the weighted summation of positive 

partial products only. Each partial product bit is formed by the ANDing of a 

multiplicand and multiplier bit. The product P of the multiplication of two n-bit, 

two's complement numbers X and Y, can be expressed as 

n-2 n-2 
XY = (-y_ 2I_1  + 	y1  2')(-x_1  2 	+ f x1 i)  

i=0 	 i=0 

n-2 n-2 
= (x_1y_1 22 _2  + E f xy i+J) 

i=0 j=0 

n-2 n-2 
-( 	x_y 	+E y_1x 2n_ 1 ) 	 (7.1) 

i=0 	 i=O 

In accumulating the partial product sum (PPS), instead of subtracting partial 

products (PP) with negative signs, the negation of these PP may be added to the 

PPs. 

n-2 
Therefore if 	Z = -z_1 2'' + E z1  2' 

i=0 

n-2 - 
then 	—z = —z_1  2' + f z, 2' + 20  

i=0 

The PP in Eqn. 7.1 with negative signs may therefore be equivalently expressed 

as 

( 	 n-2 	 ) 
— I -O2"_' + 0.22n_2  + 2  x_1y, 2n-1+i 

I' 	 i=° 	 ) 

n-2 
= _1.221  + 1.22n-2  + 	 2n-1+i + 2n-1 

1=0 

n-2 	- 
= _221  + (i + i) 22n-2 + E xniYi 2n-1+i  + x_1 2' 

i=0 
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as 	this 	term 	reduces 	to 	zero 	for 	x_ 1  = 0 	and 
n —2 

(_221  + 22 _2  +Y, y1  2' 	+ 2n_1)  for x_ 1  = 1. 

For completeness, the individual partial product terms produced by the algorithm 

for the product of two 8-bit integers are shown in Fig. 7.12. Note that the true and 

complement of the multiplicand and multiplier bits are needed to form the partial 

product terms. This presents no difficulty since the true and complement of a signal 

are readily available at the output of data flow logic operators. Note also that the 

five extra partial product bits produced by the algorithm, x 7 , y, x71  y7  and 1, may 

be accommodated by the unused inputs of the full adders on the periphery of the 

array, as shown in Fig. 7.11. This is accomplished without disrupting the regularity 

of the structure or incurring an area penalty. 

n-2 Y7 	Y6 Ys Y4 Y3 Y2 Yi 	Yo 
XY - 	2 —v_ 	_1  + 	yj  2)(—x_ 1  21  + I x 2') 	x7 	x6  x 5  io i=O 

x4  x 3  x 2  x 1 	x 0  
ii —2 n —2 

= (x_1y_1  2 2  + I I x1y 2'J) 
i 	O J 	O Y 6 XOYS  x(L4 x0y3 X0y2 X01 	X(L)'0 

n-2 

-(E x_1y, 2n-1+1  + 	 n.1+i) Xi Y7 X 1Y 6  X 3Y5 XY. XIY3 XiY2 XIYI X 1Y 0  
iO - 

x 2 Y 7  x 2y 6  x 2y 5  x 2y 4  x 2y3  x 2y2  x 2y 1  x 2y0  

x 3  y, X3JV6  x3y5 x3y4 x3y3 x3y2 X3y1 x3y0 

x4  Y7 x 4y6  X4y5 x 4y4  x4y 3  x 4y2  x 4y 1  x 4y0  

x 5 y7  x 5y6  x 5y5  x 5y 4  x 5y3  x 5y2  x 5y 1  x 5y0  

x 6 y7  x6y6 X6)'5 x04 x6y3 x02 x6yi x6y0 

x 7Y 7  x 7Y 6  x 7Y 5  x 7y 4  x 7y3  x 7y 2  x 7y 1  x 7y 0  

1 Y7 Y7 

X7 

Pis P14 P13 P12 Pu Pio 	P 9 	P8 	P7 	P 6 	P 5 	P 4 	P3 	P2 	Pi 	Po 

Fig. 7.12 Partial product terms derived from the Baugh-Wooley 

algorithm for 2's complement multiplication. 
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7.4.2. Multiplier Composition 

In any pipeline system, the throughput is limited by the propagation aelay through 

the slowest stage. This delay value will then determine the partitioning of a system 

into logical blocks, with each block forming a single stage in the pipe. In an n-bit 

self-timed multiplier, the slowest stage within its structure is the final carry-

propagate adder with an average delay of A 1092 n, A being the propagation delay 

of a 1-bit full adder. In order to reduce the number of registers required for the 

intermediate storage of PPS terms, registers are not placed after every row of full 

adders. Instead, log2  n rows may be combined together to form a single pipeline 

stage, thereby improving the performance-area ratio of the pipeline. 

Due to the regularity of the multiplier array structure, self-timing is not extended 

down to the bit level. The local clock generator modules derive their timing from 

the most significant bit of the intermediate PPS terms. This temporal information is 

then assumed to apply across the bits in a PPS word. For the multiplier described, 

such an assumption is valid for two reasons 

• 	The propagation delay of a full adder is always greater than that 

of a register cell. 

• 	The regularity of the interconnections between full adder cells in 

the array ensures the close matching of interconnection delay 

across a PPS word. As a result, the difference margin will 

always be less than the delay through a local clock generator 

cell. 

With the above assumption, the multiplier is described as being self-timed at the 

word level. The computational wavefronts are then assumed to travel in straight 

lines between pipeline stages (Fig. 7.13a). In the equilibrium condition, data 

words and spacers reside in alternate stages of the pipeline and the computational 

wavefronts are stationary. The wavefronts propagate only when two adjacent 

pipeline stages both contain spacer words. For irregular structures, self-timing may 

be extended down to the bit-level, allowing the computational wavefronts to 

propagate without restriction. However, the wavefronts must be non-intersecting 

and separated by at least a spacer word (Fig. 7.13b). Implementing self-timing at 

the bit-level will incur a heavy area penalty, arising from the proliferation of local 

clock generator cells incorporating multiple input C-elements. 
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SPACER 

TOKEN 

SPACER 

Fig. 7.13a Computational wavefronts constrained to straight-line 

movements by word-level self-timing. 

SPACER 

TOKEN 

SPACER 

Fig. 7.13b Irregular computational wavefronts for bit-level, self-timed 

operation. 

Note that at the interface of the multiplier to the external environment, a 2-input 

C-element detects the condition when both the multiplicand and multiplier words 

are valid. This is necessary since no assumptions are made about the timing 

behaviour of the multiplicand and multiplier words external to the multiplier. 
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7.5. Summary 

The self-timed communication imposed by the generic hardware structures 

presented in the last chapter for data flow logic has been verified using a first-in, 

first-out (FIFO) memory as a test vehicle. The data flow approach may be readily 

applied to the realisation of complex, self-timed logical functions such as addition 

and multiplication. As a basis for a wavefront array multiplier, a self-timed carry-

propagate adder has been fabricated, from which measurements on addition 

completion times were obtained. In addition to improving the average throughput 

by not being constrained by worst-case delay values, self-timing also alleviates the 

problems associated with clock and power distribution. By deriving clocks locally, 

the difficulties associated with distributing global clock signals at high speed with 

integrity are avoided. By activating the local clocks at different times in response to 

data availability, the current demand of a self-timed processor is averaged out in 

time, rather than concentrated at particular instants. These issues will assume 

increasing significance as devices scale down to the micron and sub-micron levels. 
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Chapter 8 

Conclusion 

The core of this thesis centres on the investigation of architectural forms that are 

able to exploit the inherent structure and regularity in algorithms to realise highly 

concurrent VLSI systems. High concurrency in computation may be achieved by 

directly mapping an algorithm into an architectural form embracing multiple 

processing elements with distributed memory, linked by efficient communication 

channels. Three distinct architectural forms have been presented, based on the 

granularity of the modular processing elements. These are based respectively on 

analogue current computational systems, bit-serial flow-graph networks and 

wavefront arrays. The following remarks are a summary of the strengths and 

weaknesses of the three architectural forms. 

Analogue current computational circuits.exploiting the weak inversion behaviour of 

MOS transistors are characterised by their high functional efficiency in terms of the 

number of computations performed per second per unit area but at low precision 

with an accuracy limited to no better than ± 20 % in their output signal currents. 

Emerging fields of application where such circuits may be tolerated are in the areas 

of collective computation [81, 75] and "smart" vision sensors in which features of 

interest, such as the edges of objects, show up as sharp, abrupt intensity variations 

that are not swamped by such inaccuracies. 

A novel "receptor" cell has been presented to illustrate the application of analogue 

current computational circuits in "smart" vision sensors. The receptor cell may be 

tessellated to form an imager with built-in nonlinear automatic gain control (AGC) 

correction to maintain the operating range of the imager in register with ambient 

light conditions. The AGC function requires a feedback mechanism and as such, 

the imager may be susceptible to the problem of instability. Although the issue of 

stability in such tightly-coupled feedback networks has not been addressed in this 

thesis, relevant design techniques to make such networks unconditionally stable 

have recently been presented [93]. 

Bit-serial, flow-graph networks are characterised by their communication and 

computational efficiency for executing data-independent algorithms. Computational 
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efficiency is achieved through functional parallelism, in which arrays of hard-wired 

processors are used to boost system throughput. An array of functional processors 

accept data words in a bit-serial but word-parallel fashion to give a proportionate 

increase in system throughput. 

A bit-serial flow-graph network is essentially a pipeline of bit-serial operators, with 

a throughput rate that is independent of the composition of the network. However, 

pipelining introduces an operational delay or latency on a network that is 

determined by the number of bit-times separating an input sample word from the 

corresponding output sample computed by the network. For non-recursive 

computations, the maximum sample rate is independent of the latency and is 

determined solely by the throughput of a network. Examples of algorithms 

belonging to this class are the fast fourier transform (FFT), finite-impulse response 

(FIR) filtering and low level image processing operations. For recursive algorithms 

such as infinite-impulse response (IIR) filtering, the latency of a network effectively 

determines the maximum sample rate. Such recursive algorithms require the i1h 

output sample yj  to be available before computation for the next output sample y1+  

may proceed. As a result, the maximum sampling frequency is limited by the 

latency inherent in a bit-serial network and cannot be increased further through 

functional parallelism. This can be seen in the case study of the digital wave filter 

presented which achieves a maximum sampling frequency of 227 KHz with a bit-

rate of 10 MHz. 

For, a limited class of recursive computations, the sample rate may be increased by a 

factor of L by manipulating a block of L input samples to form a block of L output 

samples concurrently [43, 62,61]. This is achieved by computing all the 

intermediate terms required in forming the L output samples dynamically, 

effectively decoupling the computations of the output samples in the block. 

However, the price to be paid is a massive increase in hardware resources to 

compute ahead of time those intermediate terms that would have formed later in a 

recursive computation. 

Conceptually, the behaviour of a system may be completely specified by an ordering 

of events without any reference to the time domain. The self-timed approach to 

computation allows the sequence specification of a system to be abstracted from the 

timing behaviour of the physical realisation, thereby ensuring correct system 

behaviour independent of all timing constraints. The discipline of self-timed design 
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has two principal facets, the design of elements and the design of systems consisting 

of an interconnection of elements. At the element level, the primary design task is 

in the physical design of the internal structure of an element in which time and 

sequence are related together. In addition to defining the logical function of an 

element, signal events at its 110 terminals must be constrained to a certain ordering 

so as to satisfy some physical requirement for reliable communication. Elements 

that fulfill these conditions are said to be "safe". 

At the system level, an element may be viewed as a functional black box with well-

defined terminal behaviour. Systems may be built by interconnecting various black 

boxes together. Since there are no time constraints at the system level, system 

function is a result of the overall interaction of an interconnection of elements. 

Different topologies of interconnection will give rise to different functional 

behaviour. However, with certain topologies, part of a system may eventually reach 

a "dead" state from which it is unable to recover. This condition is known as 

deadlock and will cause the entire system to come to a halt. Systems that are free 

from deadlocks are said to be "live". 

To illustrate this property of liveness or deadlock of an interconnection of self-timed 

elements, a parallel may be drawn using a circular connection of inverters. If there 

is an odd number of inverters in the chain, then the topology of interconnection is 

live and the system functions as a ring oscillator. However, if the number of 

inverters in the chain is even, then the system will eventually settle into a stable 

condition in which no further activity is possible. This topology results in deadlock. 

Given a set of safe elements, a system designer must ensure that an interconnection 

of elements performs the specified function and is free from deadlock. Several 

formal methods [12, 48, 25] have been proposed to analyse system behavioural 

aspect of the self-timed discipline. The most promising of these approaches is the 

theory of traces [78]. However, even with these formal methods, the analysis 

rapidly becomes intractable with increasing system complexity. For this reason, the 

majority of self-timed systems implemented in VLSI [91,33] have all adopted a 

very simple interconnection topology along the lines of a ring oscillator. The 

burden of ensuring the liveness of a system is therefore removed and the design 

effort is concentrated on constructing safe elements. 
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The computations required to execute an algorithm may be implemented by a 

variety of architectural forms. The real challenge is to define or identify an 

architectural form that will exploit the benefits of VLSI in order to meet the 

throughput requirement of the application at hand. It is hoped that some of the 

work presented in this thesis will have made inroads into this chaJenging field. 
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Appendix A 

Pin-Out of Prototype Chips VB076 and IMAGO04 
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Appendix B 

Prototype Logarithmic Imager Operating Equations 

The transduction device in the readout circuitry of a sensor cell is operated in its 

linear region of its drain-gate transfer characteristic. 

'out = 13 (Vh - VT) VDS 

= 132 (q)dk - VT) (V1,, - Vs) 

where the gain and threshold voltage of the devices are denoted by 13  and VT. Vi,,, 

is the photo-voltage generated by the sensor, Vbil  the external bias drain voltage and 

c1k the applied clock voltage. Re-arranging, 

Vs = 	
132 (c1k - VT) Vb1  

13 (Vh - VT) + 132 (1c1k - VT) 

VOUt = lout R 

- 01 132 (Vh - VT) (I - VT) 

- 131 (V - VT) + 132 	- VT) 
VbI, RL  

If l3< 13 , V0, can be approximated by 

13 (VPh - VT) Vb1, RL 
(B.1) 

-Y 

where -y has a value between 1<y<2 depending on the relative values of 13  and 

132. 

For two different levels of illumination corresponding to output currents L,, t2  and 

'outi' 

- V1 = 
	

-y 	(i 	- Io) 	 (B.2) 
 l3 l Vb1t  

For a MOS transistor in weak inversion, 

vph 

	

'ph = I e aUT 	
IM 



164 

where a is a measured constant of the sensor and UT  the thermal voltage. 

'1ph2 

	

Therefore V - Vhl = aUT in I 	I 
('phl ) 

'pli2 = 	
' 	(L - buLl) 

	

Equating aUT in I 	I 

	

phl) 	13lVbt 

a
________ 	 1 

	

= 1lbit ('out2 - 'outi) 	

1-- I UT in 
( 1phl) 

For an output current gradient of 29.5 A/decade of photocurrent and typical 

process parameters, 

1.8 	 1 
a 

= 40x5 
X 29.5 X 

UTinlO 

= 4.6 

From Eqn. B.1, 

L = 1 
Vbit

(Vh - VT) 

	

dI0, - I3lVbIt 	dV 	'I 
i Differentiating 

dV dVT 	-y 	T 
—i 	 (13.4) 
 ) 

From Eqn. 2.11 and Eqn. 3.2, the photocurrent iph  required to generate the 

photo-voltage Vh is given by 

	

IPhKe 	eT 

	

F 	 1 

	

Vh = a UT  in I 	I + V i 

	

F 	 I 

For a constant vaiue of 

dVph - 

dVT - 
a 
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Substituting into Eqn. B.4, 

dLut  - 131V 
(a —1) 

dVT 	-Y 

at has a derived value of 4.6. Therefore 

=36x 13lVbt 
dVT 	 -Y 

u v  

3.6 x f3 
-Y 

For typical process parameters and a Al u, of 7 pA, 

7 zVT 
- 3.6 

1.8 

= 17.5 mV 
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