
Copyright

by

Yeong Foong Choo

2018

The Report committee for Yeong Foong Choo

Certifies that this is the approved version of the following report:

Complex Block Floating-Point Format with Box Encoding in
Communication Systems

APPROVED BY

SUPERVISING COMMITTEE:

Brian L. Evans, Supervisor

Earl E. Swartzlander Jr.

Complex Block Floating-Point Format with Box Encoding in
Communication Systems

by

Yeong Foong Choo

Report

Presented to the Faculty of the Graduate School

of the University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

May 2018

This report is dedicated to my wife, Mun and my newborn daughter, Grace.

Acknowledgments

I would like to take this opportunity to thank Professor Brian L. Evans for

allowing me to conduct this research topic in communication systems design. I am

also thankful for the idea generation from Dr. Alan Gatherer at Huawei Labs. With

the guidance of Dr. Gatherer and Dr. Evans, I had the opportunity of presenting my

first publication at 2017 Asilomar Conference on Signals, Systems, and Computers. I

would also like to offer my appreciation to Professor Earl E. Swartzlander Jr. for his

willingness to be the reader of this report and for his detailed attention in suggesting

improvement on this report.

My experience in pursuing the graduate degree of Electrical and Computer

Engineering (ECE) is enriched by participating in all research-oriented networking

events within the Embedded Signal Processing Lab (ESPL) and the Wireless Net-

working Communications Group (WNCG). The feedback that I received from Jinseok

Choi, Junmo Sung, Faris Mismar, Matthew Koenig, and other remote ESPL mem-

bers over the duration of my research project have been very valuable and ensuring

the quality of my research presentation. At the Texas Wireless Summit 2017 and

WNCG Open House 2018, Dr. Amine Mezghani was a consistent visitor at my poster

presentation who offered valuable feedback at potential improvement of this project.

v

Complex Block Floating-Point Format with Box Encoding in
Communication Systems

by

Yeong Foong Choo, MSE

The University of Texas at Austin, 2018

Supervisor: Brian L. Evans

This research project entails an efficient numeric digital representation in com-

munication systems design. A complex block floating-point format with box encoding

is proposed to encode an array of complex numbers that has better numeric resolu-

tion than its IEEE-754 counterpart when the same number of bits are allocated to

the dominant value in the array. It is estimated that at least 10% of bit savings could

be achieved by the new complex block representation on a quad-precision IEEE-754

format. A further bits savings of up to 18% could potentially be achieved for complex

blocks at half-precision and single-precision IEEE-754 representation.

The implementation cost of the proposed block floating-point format is evalu-

ated in terms of memory usage, design of arithmetic units, and memory input/output

rates for communications system modeling and block diagrams. Further analysis is

performed on the limitation and quantization effects of this complex block format

relative to complex IEEE-754 format. The coverage of the arithmetic units design

include complex block adder and complex block multiplier. The appropriate sys-

tems that would be required to perform algorithms such as the fast Fourier transform

vi

(forward and inverse) are designed using the proposed complex block format in multi-

stages complex block multiply-adder.

The proposed block floating-point format is simulated as a new numeric class

defined and implemented in MATLAB simulation environment. The MATLAB simu-

lation is divided into two major parts. The first part of MATLAB simulation targets

the simulation of complex block addition and complex block multiplication units for

arbitrary size of complex samples per input block. The reference output values of

complex block arithmetic are those computed with similar precision in IEEE-754 for-

mat. The second part of MATLAB simulation is performed on the system model

of the single-carrier modulation-based and multi-carrier modulation-based commu-

nication systems. The quadrature amplitude modulation (QAM) is the baseband

modulation type targeted in this work. The specification identified in the system

model is relevant to those specified in the Long-Term Evolution (LTE) Standards for

Base Station, Release 12.

vii

Table of Contents

List of Tables xi

List of Figures xiii

1 Implementation of Digital Communication Systems 1

1.1 Digital Communication Systems Brief .. 1

1.2 Hardware Design Constraints and Tradeoffs.. 3

1.3 Digital Signal Processor Architecture ... 4

1.4 Data Converter Architecture ... 5

1.5 Organization.. 6

2 Number Systems 7

2.1 IEEE-754 Floating-Point Format ... 7

2.1.1 Binary Numeric Representation .. 7

2.1.2 Implementation Complexity.. 9

2.1.3 Complex-valued Representation .. 11

2.2 Complex Block Floating-Point Format ... 11

2.2.1 Common Exponent Encoding ... 13

2.2.2 Conversion with Two Parallel ADCs.. 19

2.2.3 Conversion with Single ADC .. 20

viii

3 Proposed Complex Block Floating-Point Representation 21

3.1 Exponent Box Encoding Technique.. 21

3.2 Vector Arithmetic Subsystem Modeling.. 24

3.2.1 Complex Block Addition .. 24

3.2.2 Complex Block Multiplication... 26

3.3 Algorithms Modeling .. 28

3.3.1 Fast Fourier Transform (Radix-2).. 28

3.3.2 Fast Fourier Transform (Radix-4).. 32

3.4 Analysis and Limitation.. 34

3.4.1 Phase Resolution ... 34

3.4.2 Block Wordlength Analysis... 35

3.4.3 Block Arithmetic Complexity Analysis 35

4 System Model of Baseband Transceivers Design 37

4.1 Single-carrier Modulation System .. 37

4.1.1 Discrete-time Complex Baseband QAM Transmitter 38

4.1.2 Discrete-time Complex Baseband QAM Receiver 39

4.1.3 Channel Model and Assumptions .. 41

4.1.4 LTE Specifications and Requirements 41

4.2 Multi-carrier Modulation System... 42

4.2.1 Discrete-time OFDM Transmitter ... 43

4.2.2 Discrete-time OFDM Receiver .. 45

4.2.3 Channel Model and Assumptions .. 45

4.2.4 LTE Specifications and Requirements 46

5 Desktop Simulation 47

ix

5.1 Signals Generation ... 47

5.2 MATLAB: Vector Arithmetic Unit .. 48

5.3 MATLAB: Algorithms Modeling Unit .. 51

6 Conclusion 54

6.1 Summary .. 54

6.2 Future Work.. 55

Appendices 58

A Maximum Exponent Difference for Low Quantization Error 58

B Phase Resolution in Common Exponent Encoding 59

C Block Diagrams for Complex Block Arithmetic 60

Bibliography 64

x

List of Tables

2.1 Table of IEEE-754 Format .. 7

2.2 Table of Common Exponent.. 15

2.3 Table of Bit Savings in Common Exponent Format (64 Complex Samples) 17

3.1 Table of Exponent Box Format ... 21

3.2 Table of Bit Savings in Exponent Box Format (64 Complex Samples) ... 23

3.3 Table of Exponent Box Shift Effect on Complex Mantissa Addition 26

3.4 Table of Real Intermediate Mantissa in Multiplication......................... 28

3.5 Table of Imaginary Intermediate Mantissa in Multiplication................. 28

3.6 Table of Phase Resolution of Complex Block Format........................... 34

3.7 Table of Wordlength Requirement for Complex Block Format 35

3.8 Table of Hardware Operations for Complex Block Addition 36

3.9 Table of Hardware Operations for Complex Block Multiplication.......... 36

4.1 Table of Complexity Analysis of Complex Baseband QAM Transmitter 39

4.2 Table of Complexity Analysis of Complex Baseband QAM Receiver 40

4.3 Table of QAM Specification .. 41

4.4 Table of Digital Transceiver Specifications .. 42

4.5 Table of EVM Requirement of LTE Base Station Transmitter 42

4.6 Table of ACLR Requirement of LTE Base Station Transmitter............. 42

4.7 Table of Complexity Analysis of OFDM Transmitter 44

xi

4.8 Table of Complexity Analysis of OFDM Receiver................................ 45

4.9 Table of EVM Window Length Requirement of Digital Transmitter 46

xii

List of Figures

1.1 Block Diagram of Simple Communication Systems 1

1.2 Block Diagram of Transmitter Baseband Processing 2

1.3 Block Diagram of Receiver Baseband Processing 3

2.1 Bit Packing of IEEE-754... 7

2.2 Bit Packing of Complex IEEE-754 Extension...................................... 11

2.3 Bit Packing of Complex Block IEEE-754 Extension............................. 12

2.4 Plot of Phase-Magnitude Coherence... 13

2.5 Plots of IQ Waveform and Upsampled Waveform of 64-QAM Symbols .. 14

2.6 Bit Packing of Common Exponent Format ... 16

2.7 Algorithm for Conversion to Common Exponent Format 17

2.8 Plot of Common Exponent Format Effective Encoding Region 18

2.9 Data Converter Architecture with Two Parallel ADCs 19

2.10 Data Converter Architecture with One ADC 20

3.1 Bit Packing of Exponent Box Format... 22

3.2 Algorithms for Conversion to Exponent Box Format 22

3.3 Plot of Exponent Box Format Effective Encoding Region..................... 23

3.4 Interface of 2-to-1 Complex Block Arithmetic Subsystems.................... 24

3.5 Interface of 2-to-1 Complex Block Addition Subsystems....................... 25

3.6 Interface of 2-to-1 Complex Block Multiplication Subsystems............... 27

xiii

3.7 Block Diagram of Radix-2 2-point FFT.. 30

3.8 Block Diagram of Radix-2 4-point FFT.. 31

3.9 Bit Packing of Radix-2 4-point FFT .. 31

3.10 Block Diagram of Radix-4 4-point FFT.. 33

3.11 Plot of Phase Resolution... 35

4.1 Plot of 256-QAM Normalized Constellation .. 37

4.2 Block Diagram of Complex Baseband QAM Transmitter 38

4.3 Block Diagram of Complex Baseband QAM Receiver 40

4.4 Block Diagram of OFDM Transmitter.. 44

4.5 Block Diagram of OFDM Receiver... 45

5.1 Plots of Magnitude Error Distribution of Complex Block Multiply 49

5.2 Plots of Phase Error Distribution of Complex Block Multiply 50

5.3 Scatter Plots of Complex Block Multiply Output 51

5.4 Plots of Magnitude Error Distribution of 4-point FFT......................... 52

5.5 Plots of Phase Error Distribution of 4-point FFT................................ 53

C.1 Complex Block Addition Block Diagram (i) Real Output..................... 60

C.2 Complex Block Addition Block Diagram (ii) Imaginary Output............ 61

C.3 Complex Block Multiply Block Diagram (i) Real Output..................... 62

C.4 Complex Block Multiply Block Diagram (ii) Imaginary Output............ 63

xiv

Chapter 1

Implementation of Digital Communication Systems

1.1 Digital Communication Systems Brief

The digital communication systems take various forms. The basic unit of infor-

mation is a logical bit of a "0" or "1" and the rate of information transfer is measured in

terms of bits/s. Multiple fixed-length bits are grouped into a symbol. Each symbol is

mapped to a unique symbol amplitude and the symbol amplitudes are converted into

a continuous-time analog baseband (low frequency) signal. The baseband signal is

then upconverted to a carrier frequency for bandpass transmission. Figure 1.1 shows

the block diagram for simple communication systems with abstraction on transmitter

baseband processing (TX BB), upconversion unit, channel model, downconversion

unit, and receiver baseband processing (RX BB).

Figure 1.1: Block Diagram of Simple Communication Systems

Any communication system would be restricted to occupying finite bandwidth

for information transfer. The modulating signal has its fundamental frequency at

the center of the transmission frequency band. Baseband modulation allows one-

dimension baseband symbol be modulated on the modulating signal. Amplitude

modulation allows information be encoded as symbols with varying amplitude. Phase

shift keying allows symbols to be encoded in the phase of a carrier signal. The combi-

nation of amplitude and phase modulation is a common way to use the transmission

1

frequency band efficiently. The combination of amplitude and phase modulation leads

to the study of complex baseband modulation or quadrature amplitude modulation

(QAM).

Figure 1.2 shows the block diagram of transmitter baseband signal processing

for quadrature amplitude modulation (QAM). QAM is preferred for high data rates

since it effectively increases the data rate by 2x for the same transmission bandwidth

and signal-to-noise ratio (SNR) condition. Information is carried independently on

two parallel streams of amplitude symbols known as In-phase and Quadrature-phase

signals. Both In-phase and Quadrature-phase signals share a common oscillator cir-

cuitry and therefore sharing the same transmission band centered at the intermediate

frequency, fim, but the Quadrature-phase signals have phase offset of π
2 relative to

the In-phase signals. The pair of In-phase and Quadrature-phase signals is commonly

known as complex IQ signals.

Figure 1.2: Block Diagram of Transmitter Baseband Processing

Figure 1.3 shows the block diagram of receiver baseband signal processing for

quadrature amplitude modulation (QAM). The channel effect introduces signal dis-

tortion and degradation to the received signals and requires additional recovery work

performed at the receiver. Often, the receiver would perform higher than Nyquist

sampling rate to provide additional samples for running phase and timing offset cor-

2

rection algorithm. Furthermore, the channel equalization algorithm requires that the

received data samples be available in a block for processing and higher throughput.

Figure 1.3: Block Diagram of Receiver Baseband Processing

The channel behavior determines the selection of modulation type. Single-

carrier modulation refers to shifting the baseband (low frequency) signal to be cen-

tered at a carrier frequency, fc. Multi-carrier modulation refers to the composition of

several narrowband signals in the baseband frequency region that each of them car-

ries baseband symbol (Narrowband means that the transmission bandwidth is much

smaller than the carrier frequency). More details on transmitter and receiver design

in signal-carrier modulation and multi-carrier modulation are described in Section

4.1 and Section 4.2. For frequency flat fading channels, the receiver design would

favor a simpler single-carrier modulation. For frequency selective channels, the re-

ceiver design would prefer multi-carrier modulation as the channel equalization can

be performed on each subcarrier.

1.2 Hardware Design Constraints and Tradeoffs

Energy-efficient data representation in application specific baseband transceiver

hardware are in demand resulting from energy costs involved in baseband signal pro-

3

cessing [1]. In macrocell base stations, about ten percent of energy cost comes from

digital signal processing (DSP) modules while power amplification and cooling pro-

cesses consume more than 70% of total energy [2]. The energy consumption by DSP

modules relative to power amplification and cooling will increase in future designs of

small cell systems because low-powered cellular radio access nodes handle a shorter

radio range [2]. The design of an energy-efficient number representation will reduce

overall energy consumption in base stations.

The design choices for the digital radio transceiver subsystems are often made

between the tradeoffs of hardware resources and system performance. The hardware

resources may include the power, timing and memory requirement, while the system

performance could be judged by quantitative measures such as power consumption,

clocking frequency, processing bandwidth, supported numeric data types, processing

delay, etc.

1.3 Digital Signal Processor Architecture

One of the techniques for keeping the power consumption low is by limiting

the clock frequencies. However, limiting the clock frequencies may not be the op-

timal tradeoff to make against the system performance. The clock frequencies are

needed to provide sufficient sampling operations demanded by the software applica-

tions. Therefore, the power requirement correlates with the required clock frequencies

and sampling frequencies at the analog-to-digital converters (ADC) and digital-to-

analog converters (DAC).

Several processor architectures such as SIMD and VLIW parallelism have been

proposed to increase overall system performance at the cost of higher power consump-

tion. With VLIW parallelism, several functional units could be initiated to operate

4

on arithmetic operations, logic operations, or memory accesses independently to in-

crease system throughput. With SIMD parallelism, the instruction overheads could

be reduced by executing operation on a group of data of similar type. A slightly

lower power consumption could be achieved by individually optimizing each of the

frequently used functional units.

The floating-point processing unit is included to speed up the processing of

scalar/vector floating-point data. The floating-point unit could occupy up to 40% -

50% of the total core area and could consume up to 50% - 60% of the available core

power [3].

1.4 Data Converter Architecture

The processor clock rate (cycle per second) is limiting the processor while mem-

ory bandwidth (bits per second) is limiting the interaction between processor, memory

banks, and arithmetic processing module. Analog-to-digital converters (ADCs) gen-

erate discrete and quantized bits to represent the signal magnitude. Oversampling

above the Nyquist rate at the data converter is often needed to ensure fidelity of the

data signal. The resampling operation will often be needed and performed on the

raw data bits when the processor runs on limited resources.

The main design choices of data converter would affect the power consumption,

signal bandwidth, and effective number of bits. These parameters are tied together

by a general measure of power efficiency of the data converter, namely the figure

of merit (FoM). The Walden FoM measures the above quantities and generalizes

the energy needed for each conversion step of least significant bit, [4]. The Schreier

FoM includes the term dynamic range of the data converter, which is affected by the

variable in-band noise power [5]. Extensive consideration of the ADC selection will

5

require some insight on the impact of system design such as placement of anti-aliasing

filter, out-of-band signal transmission, and signal leakage [6].

Suppose the passband waveform occupies bandwidth, W , centered at carrier

frequency, fc. The data converter unit would require sampling frequency to be at

least, fs > W since the baseband bandwidth is B = W
2 and the Nyquist sampling

criterion requires fs ≥ 2B.

1.5 Organization

This report is organized in the following format. Chapter 2 reviews the binary

floating-point number format most commonly implemented in modern processor. The

discussion of complex valued floating-point number format is natural extension that

relates to modified floating-point format in prior arts.

Chapter 3 describes the main contribution of this work which focuses on pro-

posed complex block floating-point representation that has acceptable implementation

complexity and reduced error in complex block multiplication-based arithmetic. The

proposed representation is shown to apply to implementation of fast Fourier transform

algorithm in radix-2 and radix-4 format.

Chapter 4 focuses on the system model of communication systems design that

features the proposed representation. The particular modulation systems in discus-

sion are single-carrier and multi-carrier amplitude-based modulation which are com-

monly used in communication technology.

Chapter 5 shows the simulation results obtained from computations of complex

block arithmetic and algorithms modeling. Chapter 6 draws on the conclusion and

future work based on the design approach and simulation results of the proposed

complex block floating-point representation.

6

Chapter 2

Number Systems

2.1 IEEE-754 Floating-Point Format

2.1.1 Binary Numeric Representation

The IEEE-754 Standards [7] specify a normalized number format that provides

better numeric precision and larger range than a fixed-point number systems. Table

2.1 lists a number of supported floating-point number representation in the IEEE-754

Standards. Each supported wordlength is even integer multiple of a byte (8-bit).

Nw-bit is defined as the wordlength of scalar floating-point number, Ns as the 1-bit

Sign, Ne as the Exponent bit width, and Nm as the Mantissa bit width. The possible

value of Nw is the sum of Ns +Ne +Nm. Figure 2.1 shows the bit packing of Nw-bit

IEEE-754 real-valued number that would be in memory or in floating-point register.

Components Definition Bit Widths, B
Wordlength Nw {16, 32, 64, 128}

Sign Ns {1, 1, 1, 1}
Exponent Ne {5, 8, 11, 15}
Mantissa Nm {10, 23, 52, 112}

Table 2.1: Definition & bit widths of IEEE-754 Format [7] listing half-precision (16-bit),
single-precision (32-bit), double precision (64-bit), and quad precision (128-bit). The
wordlength is obtained by summing the sign, exponent, and mantissa bits.

Figure 2.1: Typical bit packing of IEEE-754 format.

7

The Mantissa bits are interpreted as the fractional value (1.0000 ≤ x < 2.0000)

and represent the most significant figures of a number. The IEEE-754 Standards

require the normalized result to have a leading bit of 1. The leading bit of 1 is

not coded and would be located before the radix-2 point of the Mantissa bits. The

Exponent bits are adjusted in the process of normalization and serve as a Base-2

integer/fractional multiplier that controls the magnitude of a number.

To represent numbers that are out of range, the IEEE-754 Standards have

specified a few unique sequence. With the Exponent bits set to all ones and the

Mantissa bits set to all zeros, the +∞ and −∞ are represented depending on the Sign

bit. With the Exponent bits set to all ones and the Mantissa bits set to any non-zeros,

Not a Number (NaN) is represented. To represent an exact 0.0, the Exponent bits are

set to all zeros and the Mantissa bits are set to all zeros. The Sign bit of 0 determines

+0.0 and the Sign bit of 1 determines -0.0.

There are several quantitative measures that determine the effectiveness and

show the limitation of this number format. The numeric range is defined as the most

negative and the most positive values that can be represented. The numeric precision

is defined as the smallest mantissa increment that affects the resultant mantissa value

in addition/subtraction with a value of 1.0. The effective dynamic range, D, is cal-

culated as the ratio of numeric range to numeric precision, D = 20log(numeric range
precision

).

With a specific signal-to-noise ratio requirement in an application, the effective dy-

namic range would be a useful metric to compare and select from the IEEE-754 format

and non-IEEE-754 format.

8

2.1.2 Implementation Complexity

The IEEE-754 Standards also specify the exception handling requirement of

invalid operation, division by zero, overflow and underflow. Algorithms that consist

of heavy multiplication and addition operations of two large numbers or two small

numbers are likely to incur overflow or underflow exceptions. To conform with the

standards, additional circuitry is needed to perform exception handling.

The two common arithmetic operations involved in signal processing are addi-

tion and multiplication. All arithmetic operations that operate on two floating-point

numbers require internal rescaling of mantissa and exponent bits.

For the addition operation, the Exponent bits must be compared and the

leading hidden bit of one before the Mantissa bit is recovered. If the Exponent bits

are not equal, then the smaller Exponent value would be increased by one and the

Mantissa value would be divided by two. This process repeats until both Exponent

values are equal. Fixed-point addition is applied on the Mantissa bits to give an

intermediate Mantissa. There will be tradeoff made between the delay and gate

cost involved in the fixed-point addition algorithm. For example, with a carry skip

adder algorithm, the delay of the Mantissa bits addition result can be reduced to

O(
√
Nm + 1) at the gate cost of O(Nm). The intermediate Mantissa bits would be

normalized to give a leading bit of one, increasing/decreasing the value of Exponent

bits in the process.

For the multiplication operation, the pre-processing of Exponent and Mantissa

bits is less complex. The leading 1s of Mantissa bits are first recovered. Fixed-point

multiplication is applied to the Mantissa bits and fixed-point addition is applied

to the Exponent bits. For example, with the Dadda reduction technique, the com-

plexity of the Mantissa bits multiplication operation can be reduced to approximately

9

O(log1.45(Nm+1)) stages to use O(2(Nm)) carry lookahead adder, O(N2
m) full adders,

and O(N1.5) half adders. The delay would account for O(log1.45(Nm)) stages of full

adder delays and O(logr(Nm)) carry lookahead adder delay. For example, with carry

skip adder algorithm, the delay of the Exponent bits addition result can be reduced

to O(
√
Ne) at the gate cost of O(Ne). The intermediate Mantissa bits would also

undergo normalization process to give leading bit of one and affect the value of the

Exponent.

Both floating-point addition and multiplication require normalization of the

intermediate Mantissa and Exponent to produce the final result. The floating-point

addition requires two pre-scaling of input Mantissa and Exponent bits, but only

involves one fixed-point addition of the Mantissas. Floating-point multiplication does

not require pre-scaling of input Mantissa or Exponent bits, but this involves two

operations: one fixed-point addition of Exponents and one fixed-point multiplication

of Mantissas.

The selection of addition and multiplication algorithms will depend on the

actual bit width of Ne for arithmetic on the Exponents and Nm for arithmetic on the

Mantissas. That is because certain algorithms may provide speedup for particular

bit widths, i.e., root of a number, even numbers, or odd numbers. With the IEEE-

754 Standard, the half-precision format has an odd number of Exponent bits and

(Mantissa + 1) bits, the single-precision format has an even number of Exponent bits

and (Mantissa + 1) bits, the double-precision format has an odd number of Exponent

bits and (Mantissa + 1) bits, and the quad-precision format has an odd number of

Exponent bits and (Mantissa + 1) bits. If the selection of addition and multiplication

algorithms are not optimized based on the number of input bits, then the input bits

are not fully utilized in the arithmetic operations.

10

In any arithmetic operations that potentially change the output values of Man-

tissas, the Mantissas of the result will undergo a stage of re-normalization and the

Exponent will increment or decrement correspondingly.

2.1.3 Complex-valued Representation

Each complex number can be thought of as two orthogonal real numbers in

a Cartesian coordinate system. The arithmetic operations are defined in complex

number domain. Each complex number addition can be realized by performing two

real number additions. Each complex number multiplication can be realized by per-

forming four real number multiplications and two real number additions. With simple

extension of IEEE-754 format from one real value dimension to two real values dimen-

sion, a complex floating-point number can be simply coded as a pair of floating-point

numbers with similar bit widths and precision. This would allow hardware reuse or

easy replication of hardware units. Figure 2.2 shows the bit packing of a complex

IEEE-754 number that would require 2Nw-bits in memory or in floating-point register

where Nw is the scalar floating-point bit width.

Figure 2.2: Typical bit packing of complex floating-point in IEEE-754 precision. Each
real/imaginary dimension has the IEEE-754 precision.

2.2 Complex Block Floating-Point Format

While information is rarely contained in just a scalar real/complex number, the

IEEE-754 numeric representation is often used to represent an array of real/complex

11

numbers. Suppose Nv is the number of complex samples in an array, Figure 2.3

shows the bit packing of an array of complex IEEE-754 numbers that would require

2NvNw-bits in memory or in vector floating-point register.

Figure 2.3: Typical vector form bit packing of IEEE-754 complex block. Each complex
sample has twice the IEEE-754 precision.

The complex block floating-point format is preferred for the purpose of im-

proving both the throughput and latency of obtaining the block arithmetic results

and reducing the area and implementation complexity of block arithmetic units. Sup-

pose the information encoded in a complex block has continuity in magnitude/phase,

a complex block floating-point format can be designed that reduces the wordlength

requirements. The idea of coherence in magnitude or phase is shown in Figure 2.4.

The discrete samples within in a time window may locate within a region or

boundary on a complex value plane. A practical example that shows coherence in

magnitude and phase is the randomly generated 64-QAM symbols oversampled by 4x

above the Nyquist rate in Figure 2.5. With oversampling condition, this shows that

any time-delayed samples generated by the same data converter source would have

the characteristic of coherence in magnitude and phase.

The tradeoff associated with reducing the wordlength maybe the reduced mag-

12

Figure 2.4: Multiple discrete-time complex samples on the scatter plot of real/imaginary
dimension. The smaller dotted circle enclosed complex samples that may have coherence in
both magnitude and phase due to high sampling rate.

nitude/phase resolution in the polar representation. A more memory efficient complex

block format could be designed such that the bits allocation are used to encode the

magnitude or phase difference in a complex block floating-point number instead of

the absolute magnitude/phase value of each complex number in the block.

In hardware design, the data converter converts continuous-time input signals

and generates digital amplitude representations at uniformly spaced time intervals.

Data converter design on this complex block floating-point format will be described

in detail.

2.2.1 Common Exponent Encoding

The concept of common exponent encoding is shown in scalar complex floating-

point representation in [8] and block floating-point representation in [9]. The authors

in [8] target an improvement on IEEE-754 16-bit half-precision and show a complex

floating-point representation that requires 29-bits and achieves 3-bit effective savings.

The 3-bit savings is achieved by saving one of the 5-bit Exponent (Ne)-bit while

reusing 2-bits for explicitly encoding the leading bit of "1" or "0" for re-normalized

13

Figure 2.5: [Top row, from the left to right] The in-phase/quadrature-phase (IQ) waveform
consists of 64-QAM symbols in 40 symbols length. The phase and magnitude plots of the IQ
waveform of 64-QAM symbols show little phase coherence and more magnitude coherence.
[Bottom row, from the left to right] The 4x oversampled waveform of the 64-QAM symbols
in 160 samples length. The phase and magnitude plots of the upsampled waveform show
the most phase and magnitude coherence.

numbers. The Mantissas are 11-bit (Nm+1)-bit and all coded. The authors also report

ASIC silicon footprint of arithmetic units (adder, multiplier) are larger by 10% and

registers and memories footprint are smaller by 10 % in its VLSI implementation.

The performance loss reported varies between 0.2 dB in low SNR and 2 dB in high

SNR cases.

The authors in [9] emulate the block floating-point algorithm on a fixed-point

digital signal processor for a fast Fourier Transform arithmetic unit. The authors

implement a 64-point FFT through radix-4 1st stage and radix-2 subsequent stages

in the block floating-point format. The authors report an error measurement better

than fixed-point FFT, which is expected. However, the more helpful piece of error

measurement should be documented relative to purely floating-point FFT output

accuracy. There is no mention of floating-point precision nor IEEE-754 relevance.

14

Table 2.2 shows the wordlength required for Nv complex samples per block

in common exponent encoding method. Figure 2.6 shows the bit packing of Nv

complex samples in an array that is in memory or in vector floating-point register.

The behavior of the common exponent encoding in a complex block format would have

a somewhat similar behavior as polar representation of complex number encoding,

although not exactly, in terms of bit allocation. The most significant sample in

terms of magnitude, either the real part or the imaginary part would get the full bit

representation, (Nm + 1 + 2Ne)-bits in fixed-point equivalent precision, without any

quantization loss relative to the IEEE-754 format. All other samples would only get

partial bit representation, (Nm + 1 − 2∆Ne)-bits in fixed-point equivalent precision.

The smaller complex values in the block reduces the mantissa precision since the

process of re-normalizing to a common exponent in the block introduces more leading

zero bits.

Components Definition Bit Widths, B
Wordlength Nw {5, 8, 11, 15}+ (2 ∗Nv) ∗ {12, 25, 54, 114}

Common Exponent Ne {5, 8, 11, 15}
Sign Ns {1, 1, 1, 1}

Mantissa Nm {11, 24, 53, 113}

Table 2.2: Definition & bit widths of common exponent encoding assuming block size of Nv

complex samples per block. The wordlength is obtained by summing a common exponent,
2Nv times sign and mantissa bits. The mantissa bit is one bit wider than IEEE-754 format
to ensure the dominant value has same IEEE-754 precision.

Figure 2.7 describes the algorithm used in conversion of complex block format,

assuming that IEEE-754 format is first available. Essentially, the common exponent

encoding technique applied to complex block floating-point format allows sharing of

the common exponent in a block of complex-valued data. The mantissa pairs are

re-normalized to the value of the common exponent after the leading bit is recovered.

15

Figure 2.6: Typical vector form bit packing of common exponent format complex block.
The common exponent applies to all complex samples in the block.

Each of the complex pair would trade the exponent bits with 1-bit leading bit for more

memory storage space. Although being memory efficient, the digital representation

would have weaker encoding of phase resolution in each of the complex pair in the

block. The maximum allowed exponent difference without huge quantization error

under the common exponent encoding is derived in Appendix A. The mantissas of

either the real part or the imaginary part could be reduced to zeros as a result of

large phase difference in a complex sample. It is also possible that the mantissas of

smaller value complex samples in a block be reduced to all zeros as a result of large

magnitude difference across multiple complex samples.

The amount of bit savings in terms of percentage depends on the number

of bits per floating-point number and the block size. Common exponent encoding

would achieve the highest amount of savings for half-precision floating-point number

and smallest amount of savings for quad-precision floating-point number. This is due

to the averaging effect by the exponentially growing word size in the IEEE-754 table.

Table 2.3 lists the expected bit savings for varying IEEE-754 precision numbers with

64 complex samples per block.

16

Figure 2.7: The algorithm assumes IEEE-754 format is first available and consists of four
main steps. Step 1 identifies the common exponent. Step 2 identifies the amount of right
shifting on the mantissa which is the difference between common exponent and original
real/imaginary exponents. Step 3 recovers the leading 1 bit of real/imaginary mantissa and
performs appropriate right shifting. Step 4 completes the conversion.

IEEE-754 # of Exponent Saved # of Traded # Overall Saved Per Block / %
16-bit 5-bit 2-bit (3+8*63)-bit / 24.76%
32-bit 8-bit 2-bit (6+14*63)-bit / 21.68%
64-bit 11-bit 2-bit (9+20*63)-bit / 15.49%
128-bit 15-bit 2-bit (13+28*63)-bit / 10.85%

Table 2.3: The expected bit savings in memory and register for common exponent format.
With block size of 64 complex samples per block, the bit savings range between 10.85% and
24.76% depending on the chosen IEEE-754 precision.

The effective encoding region is defined as a square of size (Nm×Nm) with the

chosen common exponent at the top right corner. The out of touch region floats next

to the effective encoding region and bounded by the real-axis and imaginary axis. The

out of touch region contains all complex exponent pairs in which the corresponding

IEEE-754 mantissa are potentially zeroed as a result of aggressive rescaling. The

union of the effective encoding region and the out of touch region forms a subset of

the entire encoding space (2Nm × 2Nm) of the IEEE-754 format as shown in Figure

2.8.

The effective encoding region is labeled () in Figure 2.8 and encloses only

17

Figure 2.8: The unfilled rectangle symbols indicate the original real/imaginary exponent
pairs. The dark rectangle symbols indicate coded exponent pairs. The largest exponent
value is selected to be the common exponent at the top right corner of the effective encoding
region. The size of effective encoding region is the square of the mantissa bit width, Nm+1.
Any complex exponent pairs that fall outside the effective encoding region will have the
corresponding mantissa values coded as zeroes. The possible locations of coded exponent
pairs are within the effective encoding region, on the x-axis, y-axis, and at the origin.

a fraction of the 25 normally distributed complex valued exponent pairs with mean

of 130 and variance of 12. The empty rectangular white box symbols indicate com-

plex exponent pairs in separate exponents encoding. The solid rectangular filled box

symbols indicate complex exponent pairs in common exponent encoding. The coded

complex exponent pairs that fall on either y-axis, x-axis, or origin imply that one or

both of real/imaginary mantissa values are coded as zeros.

The accuracy of the complex block arithmetic (adder, multiplier, matrix oper-

ations) would rely on each mantissa values in the complex block format. The common

exponent encoding is expected to have higher quantization error in the complex block

format and block arithmetic output since the performance of the complex block rep-

resentation is data dependent.

18

2.2.2 Conversion with Two Parallel ADCs

Figure 2.9 describes a block diagram with two parallel data converters that

are assumed to sample in time and provide digital representation of two stream of

numbers in fixed-point format, namely the real and imaginary dimension of complex

numbers. The automatic gain control applies gain on the analog inputs prior to

the data converter with the feedback information on the quantized output of the

data converter. The data converter output passes fixed-point number to convert into

higher precision floating-point number. The parallel stream of real and imaginary

floating-point numbers are combined to generate complex floating-point number in a

block. To benefit from memory efficient storage such as common exponent encoding,

a 2nd stage of number conversion is needed.

Figure 2.9: Two analog-to-digital converters (ADCs) running in parallel generate the in-
phase/quadrature-phase waveforms. To convert to floating-point format, both ADCs work
with separate automatic gain control (AGC) to maximize signal-to-quantization-noise ratio
(SQNR). In this architecture, there is a need of second stage conversion to complex block
floating-point format which applies the algorithm in Figure 2.7.

19

2.2.3 Conversion with Single ADC

Figure 2.10 describes a different front end processing chain that has one data

converter. The analog inputs to the ADC have passband signals centered at inter-

mediate frequency, fIm > 0. This specific design eliminates the time-synchronization

issue between two parallel data converter chains that would occur in Figure 2.9 in

practice.

The complex block floating-point converter is the only number conversion

stage needed in the architecture. The two-stage number conversion in the Figure

2.9 have been transformed to two-stage downconversion in this architecture. The

first downconversion is performed in continuous-time and the second downconversion

is performed in discrete-time fixed-point format. The inputs to the converter undergo

fixed-point multiplication prior to the actual conversion. It is possible to use the gain

values produced by the automatic gain control block as the common exponent, there-

fore, the complex floating-point converter and the automatic gain control block could

share a common clock for synchronization purpose.

Figure 2.10: One ADC converts complex in-phase/quadrature-phase (complex IQ) waveform
to complex block format directly. The common exponent applied to the complex block is
the inverse of gain value of the automatic gain controller (AGC). The IQ waveform needs a
separate demodulation stage in discrete-time prior to conversion to complex block format.

20

Chapter 3

Proposed Complex Block Floating-Point Representation

3.1 Exponent Box Encoding Technique

The main issue with common exponent complex block floating-point format is

the loss of amplitude and phase precision due to aggressive rescaling of mantissas. A

new complex block representation is proposed to address this issue in block floating-

point representation. Table 3.1 shows the wordlength required forNv complex samples

per block with exponent box encoding extension.

Components Definition Bit Widths, B
Wordlength Nw {5, 8, 11, 15}+ (2 ∗Nv) ∗ {13, 26, 55, 115}

Common Exponent Ne {5, 8, 11, 15}
Sign Ns {1, 1, 1, 1}

Box Shift Nx {1, 1, 1, 1}
Mantissa Nm {11, 24, 53, 113}

Table 3.1: Definition & bit widths of exponent box encoding assuming block size of Nv

complex samples per block. The wordlength is obtained by summing a common exponent,
2Nv times sign, box shift, and mantissa bits.

It is noted that two additional bits per complex sample in a block are needed

in the new format relative to common exponent encoding. From the exponent bits

saved, the reuse of 2-bit per complex-valued pair is shown to reduce quantization

error and improve accuracy of block arithmetic result [10]. The block arithmetic

complexity does not significantly increase in new complex block representation [10].

Figure 3.1 shows the bit packing of Nv complex samples in an array that is in memory

or in vector floating-point register.

Figure 3.2 describes the algorithm used in conversion of complex block format,

21

Figure 3.1: Typical vector form bit packing of exponent box format complex block. The
exponent box shift is 2-bit per complex sample.

assuming that IEEE-754 format is first available and this conversion applies to ADC

architecture described in Figure 2.9, Section 2.2.2. This recommendation is preferred

in implementation since the exponent is at least 5-bit for half-precision and up to

15-bit for quad-precision in IEEE-754 Standard. For all listed IEEE-754 precision,

the expected bit savings per block is tabulated in Table 3.2.

Figure 3.2: The algorithm is similar as the conversion to common exponent format in Figure
2.7. Step 2(a) marks box shift bit to be 1 if the right-shifting of mantissa will remove all
the bits. Step 2(b) reduces the amount of right-shifting by mantissa bit width, Bm.

Figure 3.3 compares the effective encoding region in exponent box encoding

technique () to the common exponent encoding technique (). The solid rectangu-

22

IEEE-754 # of Exponent Saved # of Traded # Overall Saved Per Block / %
16-bit 5-bit 4-bit (1+6*63)-bit / 18.51%
32-bit 8-bit 4-bit (4+12*63)-bit / 18.55%
64-bit 11-bit 4-bit (7+18*63)-bit / 13.93%
128-bit 15-bit 4-bit (11+26*63)-bit / 10.06%

Table 3.2: The expected bit savings in memory and register for exponent box format. With
block size of 64 complex samples per block, the bit savings range between 10.06% and
18.51% depending on the chosen IEEE-754 precision.

lar filled box symbols indicate effectively coded complex exponent pairs in the new

format. The empty rectangular white box symbols indicate the exponent pairs such

that mantissa values become zeros in the new format. In the new format, majority

of the complex exponent pairs are effectively coded.

Figure 3.3: The plot is similar as effective encoding region for common exponent format
in Figure 2.8. The effective encoding region is 4x larger than that of common exponent
format. Any coded exponent pairs can fall into one of the four regions. The amount of
coded exponent pairs on x-axis, y-axis, and at the origin reduces.

In common exponent encoding, the size of the effective encoding region is fixed

by the mantissas bit width. In the exponent box encoding, the 2-bit shift values per

complex pair allows the exponent box float vertically, horizontally, or diagonally from

the common exponent. The effective encoding region becomes four times larger than

that of the common exponent encoding.

23

3.2 Vector Arithmetic Subsystem Modeling

Vector processing unit is common for performing arithmetic operation that

increases the subsystems throughput with parallelism of multiple scalar arithmetic

subsystems. This subsystem design would require buffering mechanism prior to issue

of vector arithmetic operation. An example of vector arithmetic unit is shown in

Figure 3.4.

Figure 3.4: The interface of single-precision complex block arithmetic subsystems is shown
for the 2 complex input block and 1 complex output block in the exponent box format.

3.2.1 Complex Block Addition

The Equation 3.1 describes the mathematical relation of complex block addi-

tion. Let X1, X2, Y ∈ C1×Nv be complex-valued vectors with Nv samples per vector,

such that,

<{Y } = <{X1}+ <{X2}

={Y } = ={X1}+ ={X2}
(3.1)

Figure 3.5 shows the simplified block diagram for complex block addition op-

eration. With exponent box encoding, the mantissa vectors have extended precision.

24

The 2Nv-bit binary box shift vector per complex block would decide if additional pre-

processing is required on the input mantissa vectors. It is also possible to combine

the pre-processing stage due to box shift vector and difference in common exponent

and reduces the overall pre-processing complexity to O(Nv). Before truncating the

output mantissa vectors to bit width of the mantissa precision, the output mantissa

vectors are examined whether the box shift vector would be used on the output com-

plex block. The overall post-processing complexity for output mantissa vectors stay

at O(Nv).

Figure 3.5: The interface of single-precision complex block addition subsystems is shown
for the 2 complex input block and 1 complex output block in the exponent box format.
The pre-processing steps involve rescaling of mantissa bits based on the exponent box shift
value.

Table 3.3 shows the effect of input complex binary shift vectors on the complex

block addition. The shorthand notation used here eliminates the index term, kth, i.e.

Nx,real,1 = Nx,real,1(k) where k = {0, ..., Nv − 1}. The pre-processing of addition

operation will compare the two values of input shared exponents and perform right

shift on the mantissa vector by mantissa bit width. This operation essentially reverses

the quantization into the exponent box encoding. The real valued binary shift vectors

of both inputs are used to determine whether right shift on real valued mantissa

vectors. The imaginary valued binary shift vectors have the same impact on the

25

imaginary valued mantissa vectors. In all cases, the output exponent is the maximum

value of the shared exponent of two input complex block.

Vec1 / Vec2 Nx,real,2 == 0 Nx,real,2 == 1
Nx,real,1 == 0 Do nothing Nm,real,2 >> Bm

Nx,real,1 == 1 Nm,real,1 >> Bm Nm,real,1, Nm,real,2 >> Bm

Vec1 / Vec2 Nx,imag.,2 == 0 Nx,imag.,2 == 1
Nx,imag.,1 == 0 Do nothing Nm,imag.,2 >> Bm

Nx,imag.,1 == 1 Nm,imag.,1 >> Bm Nm,real,1, Nm,real,2 >> Bm

Table 3.3: Prior to complex mantissa addition, the exponent box shift bits indicate whether
further right-shifting of complex mantissa is needed. The amount of right-shifting is always
constant, the mantissa bit width, Bm.

Figure C.1 and Figure C.2 in the Appendix C shows the block diagram of

addition unit for exponent box encoding.

3.2.2 Complex Block Multiplication

The Equation 3.2 describes the mathematical relation of complex block mul-

tiplication. Let X1, X2, Y ∈ C1×Nv be complex-valued vectors with Nv samples per

vector, where • denotes element-wise multiply, such that,

<{Y } = <{X1} • <{X2} − ={X1} • ={X2}

={Y } = <{X1} • ={X2}+ ={X1} • <{X2}
(3.2)

Figure 3.6 shows simplified block diagram for complex block multiplication. In

common exponent encoding, the two input common exponents are added to form the

intermediate exponent, sum of Ne,1 + Ne,2. The common exponent addition is real-

valued arithmetic. The intermediate exponent applies to all four pairs of mantissa bits

multiplication result, i.e. {(Nm,real,1 + 1)(Nm,real,2 + 1), (Nm,imag.,1 + 1)(Nm,imag.,2 +

26

1), (Nm,real,1 + 1)(Nm,imag.,2 + 1), (Nm,imag.,1 + 1)(Nm,real,2 + 1)}.

Figure 3.6: The interface of single-precision complex block multiplication subsystems is
shown for the 2 complex input block and 1 complex output block in the exponent box
format. The pre-processing steps involve computing four different values of intermediate
exponents.

With exponent box encoding, the 2-bit complex binary shift values create three

possible values of intermediate exponent, {Ne,1 +Ne,2, Ne,1 +Ne,2−Bm, Ne,1 +Ne,2−

2Bm} where Bm is mantissa bit width. The intermediate mantissa have 2Nm-precision

if there are more than 1 intermediate exponent allowed. Table 3.4 shows the effect of

input complex binary shift vectors on the complex block multiplication.

Suppose it is defined that, A1 = Nx,real,1 +Nx,real,2, B1 = Nx,imag.,1 +Nx,imag.,2,

C1 = (Nm,real,1+1)(Nm,real,2+1), D1 = (Nm,imag.,1+1)(Nm,imag.,2+1), and Ne,int,real =

Ne,1 + Ne,2 −K1Bm, then Table 3.4 lists the possible values of complex binary shift

vectors effecting the real intermediate exponents and mantissas prior to addition is

given as follow, where X is a don’t care term and U is an unknown term:

The similar operation can be applied to imaginary intermediate exponent,

mantissa generation in the complex block multiplication. Suppose it is defined that,

A2 = Nx,real,1+Nx,imag.,2, B2 = Nx,imag.,1+Nx,real,2, C2 = (Nm,real,1+1)(Nm,imag.,2+1),

D2 = (Nm,imag.,1+1)(Nm,real,2+1), and Ne,int,real = Ne,1+Ne,2−K2Bm, then Table 3.5

also lists the possible values of complex binary shift vectors effecting the imaginary

27

A1 B1 K1 = min(A1, B1) C1 D1

0 X 0 C1 D1 >> (X −K1)Bm

1 0 0 C1 >> 1Bm D1
1 U min(1,U) C1 >> (1−K1)Bm D1 >> (U −K1)Bm

2 0 0 C1 >> 2Bm D1
2 1 1 C1 >> (2− 1)Bm D1
2 U min(2,U) C1 >> (2−K1)Bm D1 >> (U −K1)Bm

Table 3.4: The complex mantissa multiplication generates intermediate mantissa values.
Prior to mantissa addition, each intermediate mantissa is scaled to the intermediate expo-
nent value to preserve more bits. The intermediate exponent values are selected based on
the input shared exponents and individual exponent box shift bits.

intermediate exponents and mantissas prior to addition is given as follow:

A2 B2 K2 = min(A2, B2) C2 D2

0 X 0 C2 D2 >> (X −K2)Bm

1 0 0 C2 >> 1Bm D2
1 U min(1,U) C2 >> (1−K2)Bm D2 >> (U −K2)Bm

2 0 0 C2 >> 2Bm D2
2 1 1 C2 >> (2− 1)Bm D2
2 U min(2,U) C2 >> (2−K2)Bm D2 >> (U −K2)Bm

Table 3.5: The complex mantissa multiplication generates intermediate mantissa values.
Prior to mantissa addition, each intermediate mantissa is scaled to the intermediate expo-
nent value to preserve more bits. The intermediate exponent values are selected based on
the input shared exponents and individual exponent box shift bits.

Figure C.3 and Figure C.4 in the Appendix C shows the block diagram of

multiplication unit for exponent box encoding.

3.3 Algorithms Modeling

3.3.1 Fast Fourier Transform (Radix-2)

Suppose that N is a base-2 number. The Fourier transform formula can be

written in terms of two N
2 -point FFT in Equation 3.3 with the following twiddle

28

factors, WN = e−j
2π
N and radix number, r = 2.

Sk =
N−1∑
m=0

smW
mk
N

=
N
2 −1∑
m=0

smW
mk
N +

N−1∑
n=N

2

snW
nk
N

=
N
2 −1∑
m=0

smW
mk
N +

N
2 −1∑
n=0

sn+N
2
W

(n+N
2)k

N

=
N
2 −1∑
m=0

smW
mk
N +W

N
2 k
N

N
2 −1∑
n=0

sn+N
2
W nk
N

Sk =
N
2 −1∑
m=0

smW
mk
N +W k

r

N
2 −1∑
n=0

sn+N
2
W nk
N

(3.3)

The final expression of Sk in Equation 3.3 consists of two summation of N
2

complex input terms scaled by complex exponential terms. There is an additional

scalar complex exponential scaling applied to the 2nd summation term.

The assumption made here is that all stages of computations share the same

radix-r system that each multiplication and addition unit has 2r complex inputs in

which r complex inputs are the data and r complex inputs are the complex exponen-

tial. The latency is O(logr(N)) stages of complex block multiplication and addition.

The computational complexity is on the order of O(Nlogr(N)). A complex block

floating-point format is also assumed on the input, intermediate buffering, and out-

put of the FFT.

The input vector to the first stage will be multiplied by the 1st stage complex

coefficients,W k
N = 1,−j when k = 0, N2 , which is purely real and purely imaginary. In

its implementation, the complex multiplication can be saved since complex multipli-

cation by purely imaginary term is equivalent to phase shifting the complex operand

29

by π
2 . The N terms complex block addition is performed after the reordering of the

1st stage complex input terms.

Figure 3.7 shows a 2-point FFT structure and bit packing of the input and

output complex coefficients in the proposed block floating-point format. The twiddle

factor is trivial which is a purely real number or purely imaginary number with unit

magnitude. The 2-point FFT is the basic unit of structure in larger radix-2 FFT

structure.

Figure 3.7: The butterfly unit of 2-point FFT is shown (twiddle factors omitted). The bit
packing of complex input block and complex output block is shown for 2-point FFT.

In common exponent encoding/ exponent box encoding, a complex block of Nv

samples can be decomposed into two complex block of Nv2 samples each with the same

common exponent. Since the common exponent is the same for two smaller complex

block, the complex block addition operation that follows gets a free pre-processing

of mantissa and common exponent prior to complex mantissa addition. In the worst

case, the mantissa vector will get 1-bit wordlength expansion which might trigger

increment of common exponent and truncation of complex mantissa vector. Since

the output mantissa from the 1st stage will be used for complex block multiplication

and addition in the 2nd stage, it may not be necessary to perform re-normalization

immediately.

30

Figure 3.8 shows a 4-point FFT structure in the complex block floating-point

format that has smaller structure 2-point FFT pre-processing. The common exponent

from 1st stage can propagate through to the log2(N)th stage of FFT with minimal

changes per stage due to the output of block addition of mantissa.

Figure 3.8: The butterfly unit of 4-point FFT in radix-2 format is shown (twiddle factors
omitted). The bit packing of complex input block and complex output block is shown for
4-point FFT.

Figure 3.9 shows the bit packing of input, output complex coefficients and

twiddle factor in the proposed block floating-point representation. The smallest non-

zero twiddle factor is W 1
4 = e−j

2π
4 1 that has exponent value of +73 in single-precision

IEEE-754 format. The range of exponent values belonging to the twiddle factor is

between +73 and +127. With sharing a common exponent per block, the second

twiddle factor term, W 1
4 = e−j

2π
4 1 is quantized to zero.

Figure 3.9: The bit packing of complex input block, complex intermediate block, and com-
plex output block is shown for 4-point FFT.

31

The radix-2 FFT processing unit can be easily scaled to perform larger point

FFT such as 8-point FFT and 16-point FFT. Suppose the complex exponential term

in the 2nd stage are pre-computed and stored in look-up table (LUT), the number

of non-trivial complex exponential terms are two terms. To allow for complex block

arithmetic, the LUT may also store all complex exponential terms in the form of

complex vectors that include trivial and non-trivial terms. The size of the LUT is

Nr complex exponential terms.

3.3.2 Fast Fourier Transform (Radix-4)

With the consideration of computational latency, it is often preferred to com-

pute fast Fourier transform in higher radices, such as radix-4 or radix-8 to obtain

the result of fast Fourier transform in less number of stages. Each multiplication

and addition unit will need r complex inputs in all stages. Suppose that N is a

base-4 number. The Fourier transform formula can be rewritten in terms of four

N/4-point FFT in Equation 3.4 with the following twiddle factors, WN = e−j
2π
N and

32

radix number, r = 4.

Sk =
N−1∑
m=0

smW
mk
N

=
N
4 −1∑
m=0

smW
mk
N +

N
2 −1∑
n=N

4

snW
nk
N +

3N
4 −1∑
p=N

2

spW
pk
N +

N−1∑
q= 3N

4

sqW
qk
N

=
N
4 −1∑
m=0

smW
mk
N +

N
4 −1∑
n=0

sn+N
4
W

(n+N
4)k

N +
N
4 −1∑
p=0

sp+N
2
W

(p+N
2)k

N +
N
4 −1∑
q=0

sq+ 3N
4
W

(q+ 3N
4)k

N

=
N
4 −1∑
m=0

smW
mk
N +W

N
4 k
N

N
4 −1∑
n=0

sn+N
4
W nk
N +W

N
2 k
N

N
4 −1∑
p=0

sp+N
2
W pk
N +W

3N
4 k

N

N
4 −1∑
q=0

sq+ 3N
4
W qk
N

Sk =
N
4 −1∑
m=0

smW
mk
N +W k

r

N
4 −1∑
n=0

sn+N
4
W nk
N +W 2k

r

N
4 −1∑
p=0

sp+N
2
W pk
N +W 3k

r

N
4 −1∑
q=0

sq+ 3N
4
W qk
N

(3.4)

Figure 3.10 shows the typical radix-4 butterfly unit that computes 4-point

FFT in one stage. The amount of twiddle factors required per stage is r vectors with

r complex exponentials per vector.

Figure 3.10: The butterfly unit of 4-point FFT in radix-4 is shown (twiddle factors omitted).
The bit packing of complex input block and complex output block is shown for 4-point FFT.

33

3.4 Analysis and Limitation

3.4.1 Phase Resolution

The proposed representation of complex-valued pair gives 2x of Bm which

has better effective phase resolution in quantization than that of common exponent

representation. The inverse tangent function is a nonlinear function. The phase

value of a complex number is obtained by fixing the real mantissa bits and increasing

the imaginary bits that change the phase angle through the trigonometric function.

Since common exponent is used in the complex block, the phase resolution observed

at mantissa bits combination is independent of the actual exponent values. This

implies that any complex value pair with magnitude coherence will have the same

phase resolution that can be quantized in complex block representation.

Table 3.6 lists the phase resolution comparison of complex block representa-

tion for all IEEE-754 precisions. Figure 3.11 shows the phase resolution that can

be quantized in the listed forms of complex block floating-point format. The expo-

nent box encoding at 16-bit precision could achieve almost the same phase resolution

achieved by common exponent encoding at 32-bit precision.

Mantissa Common Exponent Exponent Box IEEE-754
Bits (rad) (rad) (rad)
11 4.88520× 10−4 2.38535× 10−7 9.31778× 10−10

24 5.96046× 10−8 3.55271× 10−15 2.80260× 10−45

53 1.11022× 10−16 1.23260× 10−32 4.94066× 10−324

113 9.62964× 10−35 9.27302× 10−69 undefined

Table 3.6: The phase resolution means the minimum quantized phase change. The phase
resolution is measured by computing the inverse tangent function of the ratio of imaginary
amplitude and the real amplitude.

34

Figure 3.11: The plot of phase resolution compares among the combination of mantissa bits
and complex block floating-point format.

3.4.2 Block Wordlength Analysis

Table 3.7 summarizes the block wordlength requirement to represent Nv com-

plex samples in memory or in vector floating-point register.

Encoding Method Block Wordlength (bits) Bit Savings
Complex IEEE754 2Nv(Ns +Ne +Nm) 0
Common Exponent 2Nv(Ns +N∗m) +Ne Ne − 2 + (2Ne − 2)(Nv − 1)

Exponent Box 2Nv(Ns +N∗m +Nx) +Ne Ne − 4 + (2Ne − 4)(Nv − 1)

Table 3.7: The wordlength requirement per complex block is defined in terms of Nv complex
samples per block. The N∗m for common exponent and exponent box format refers to Nm+1
for the complex IEEE754 format.

3.4.3 Block Arithmetic Complexity Analysis

Table 3.8 lists the comparison of computational complexity in the complex

block addition arithmetic. Table 3.9 lists the comparison of computational complex-

ity in the complex block multiplication arithmetic. The pre-processing and post-

processing of exponent and mantissa bits involve the hardware shifters, adders, com-

35

parator, multipliers, and 2’s complement logic.

Hardware Complex Common Exponent
Units IEEE754 Exponent Box
Shifters 4Nv 4Nv

(Nm + 1)-bit Adders 2Nv 2Nv

Ne-bit Adders 3Nv 2
Ne-bit Comparator Nv 2

(Nm + 1)-bit 2’s Complement 4Nv 4Nv

Table 3.8: The computational complexity for implementing complex block addition is deter-
mined in terms of number and type of hardware operations and corresponding bit widths.

For the complex block addition, the direct comparison shows that common

exponent encoding has reduced operations on the number of Ne-bit addition due to

common exponent sharing per complex block.

Hardware Complex Common Exponent
Units IEEE754 Exponent Box
Shifters 4Nv 2Nv

(Nm + 1)-bit Multipliers 4Nv 4Nv

Ne-bit Adders 14Nv 3
Ne-bit Comparator 2Nv 0

(Nm + 1)-bit 2’s Complement 4Nv 4Nv

1-bit XOR Unit 4Nv 4Nv

Table 3.9: The computational complexity for implementing complex block multiplication
is determined in terms of number and type of hardware operations and corresponding bit
widths.

For the complex block multiplication, the direct comparison shows that com-

mon exponent encoding has reduced operations on the number of Ne-bit addition due

to common exponent sharing per complex block. The intermediate exponent applies

to all four mantissa multiplication intermediate results. The intermediate mantissa

can be added without any shifting or comparison of intermediate exponent values.

36

Chapter 4

System Model of Baseband Transceivers Design

4.1 Single-carrier Modulation System

In single-carrier modulation system, the carrier signal with frequency, fc, car-

ries two independent streams of baseband symbols if quadrature amplitude modula-

tion (QAM) is used. The baseband symbols are known as in-phase waveform, I(t)

and quadrature-phase waveform, Q(t) which mean the phase difference relative to

carrier frequency. M-QAM consists of a total of M symbols in the constellation set.

The value of M is a base-2 number and J = log2(M) is the number of information

bits encoded by each symbol. To achieve high data rates, one of the two following

options is possible. The first option is to pick a large symbol rate, fsym, however,

higher sampling rate, fs may be required since fs > fsym. The other option is to

make sure the number of baseband symbol per constellation, M to be high. Figure

4.1 shows an example 256-QAM normalized constellation.

Figure 4.1: The example plot of normalized energy 256-quadrature amplitude modulation
(QAM) constellation.

37

4.1.1 Discrete-time Complex Baseband QAM Transmitter

Figure 4.2 describes the block diagram of a typical baseband QAM transmitter.

The information bit stream is generated at the rate of Jfsym and is fed into the symbol

mapper. The symbol mapper selects from a set of M -QAM complex symbols at a

rate of fsym. The symbol mapper performs conversion from information in logical

bits to complex symbols in numeric quantization bits. The upsampler block has a

memory of L complex samples, takes input at rate of fsym, and generates output at

rate of fs = Lfsym. However, the non-trivial output values are generated at rate of

fsym and the rest are simply zeros.

Figure 4.2: The typical block diagram of complex baseband QAM transmitter consists of
conversion from logical bits to analog waveform. The complex block size can be varied
between each functional block.

In the case of single-carrier QAM transmitter, the sampling frequency has

the following expression, fs = Lfsym Hz where L is the upsample factor and fsym is

the complex baseband symbol rate. Table 4.1 lists the memory read rates (complex

samples per second), memory write rates (complex samples per second), and multiply-

accumulate rate (complex multiply-add per second) required for implementing the

baseline baseband M-QAM transmitter processing chain. There may be additional

processing overheads required for handling buffering mechanism.

With complex block representation, the above complexity analysis will be

38

Transmitter Memory read Memory write Multiply-Accumulate
Chain Rate (complex Rate (complex Rate (COMPLEX

samples/sec) samples/sec) MULT-ADD/sec)
Sym Mapper Jfsym [bps] fsym 0
Upsampler fsym fs 0
RRC Filter 2(krrc + 1)fs fs (krrc + 1)fs COMP. MULT
(kthrrc order) krrcfs COMP. ADD
Upconvert 2fs fs fs COMP. MULT

Table 4.1: The memory access complexity of complex baseband QAM transmitter is mea-
sured in terms of memory read/write rate and the computational complexity is measured
in terms of multiply-accumulate rate.

slightly different. For all functional units in the transmitter processing chain, Nv

is defined as the number of complex samples in a block and fb is defined as the block

rate of data samples feeding into the functional units. Nv(i)fb(i) = fread(i) is the con-

straint on meeting the memory read rates of functional unit i. To be consistent with

definition defined in Table 3.7, Section 3.4.2, Nw(i) is defined as the block wordlength

(bits) to represent Nv(i) complex samples in a block for functional unit i.

4.1.2 Discrete-time Complex Baseband QAM Receiver

Figure 4.3 describes the block diagram of a typical baseband QAM receiver.

The equalizer has input rates of fs and output rates of fs. If the equalizer is imple-

mented asN th
eq -order FIR filter, it hasN th

eq+1 coefficients in memory. The demodulator

is complex block multiply with input rates of fs and output rates of fs. The matched

filter has input and output rates of fs and the matched filter is N th
mf -order where

Nmf = LRXNg, LRX is the upsample factor at the receiver, and Ng is the span of

symbols in the filter. The downsampler has input rates of fs and output rates of

fsym. The symbol demapper has input rates of fsym complex samples per second and

output rates of Jfsym bits per second.

39

Figure 4.3: The typical block diagram of complex baseband QAM receiver consists of front
end processing of data conversion from analog waveform to logical bits. The complex block
size can be varied between each functional block.

Table 4.2 lists the memory read rates (complex samples per second), memory

write rates (complex samples per second), and multiply-accumulate rate (complex

multiply-add per second) required for implementing the baseline baseband M-QAM

receiver processing chain.

Receiver Memory read Memory write Multiply-Accumulate
Chain Rate (complex Rate (complex Rate (COMPLEX

samples/sec) samples/sec) MULT-ADD/sec)
Equalizer 2(keq + 1)fs fs (keq + 1)fs COMP. MULT
(ktheq order) keqfs COMP. ADD

Downconvert 2fs fs fs COMP. MULT
Matched Filter 2(kmf + 1)fs fs (kmf + 1)fs COMP. MULT
(kthmf order) kmffs COMP. ADD
Downsampler fs fsym 0

Sym. Demapper fsym Jfsym[bps] 0

Table 4.2: The memory access complexity of complex baseband QAM transmitter is mea-
sured in terms of memory read/write rate and the computational complexity is measured
in terms of multiply-accumulate rate.

For all functional units in the receiver processing chain, Nv is defined as the

number of complex samples in a block and fb is defined as the block rate of data

samples feeding into the functional units. Nv(i)fb(i) = fread(i) is the constraint on

meeting the memory read rates of functional unit i. To be consistent with definition

40

defined in Table 3.7, Section 3.4.2, Nw(i) is defined as the block wordlength (bits) to

represent Nv(i) complex samples in a block for functional unit i.

4.1.3 Channel Model and Assumptions

The channel model assumed in the system model is Additive White Gaussian

Noise (AWGN).

4.1.4 LTE Specifications and Requirements

Table 4.3 contains the parameter definitions and values that describes the

QAM constellations. Table 4.4 contains the specifications for QAM transmitter and

QAM receiver specifications in the system model. The specifications used in this

simulation are influenced by the requirement of Long Term Evolution (LTE) base

station, Release 12.

QAM Parameters Definition Values / Types
Constellation Order M {4, 16, 64, 256}
Constellation Shape - Square

Normalized - Yes

Table 4.3: The QAM specifications include the constellation order, shape, and normalization
that the transmitter and receiver will follow.

The error vector magnitude (EVM) is defined as the square root of ratio of

mean error vector power of the measured symbols to the mean reference power of the

ideal symbols in percentage. The EVM requirement is specified for the transmitter

conformance testing that depends on transmit symbol constellation. Table 4.5 lists

the EVM requirement of the transmitter specified in LTE base station design.

The adjacent channel leakage ratio (ACLR) is defined as the ratio of filtered

mean power centered on the assigned channel frequency to the filtered mean power

41

Transceiver Parameters Definition Values / Types
Filter Bandwidth (MHz) B 5, 10, 15, 20

Up-sample Factor LTX , LRX 5, 10, 15, 20
Symbol Rate (MHz) fsym 1

Symbol Periods Ng 8
Filter Order NTX , NRX {40th, 80th, 120th, 160th}
Pulse Shape gTX , gRX Root-Raised Cosine

Excess Bandwidth Factor αTX , αRX 0.4

Table 4.4: The implementation specifications of digital transmitter and receiver have bal-
anced the tradeoffs between cost and performance.

Constellation Size (4-QAM) (16-QAM) (64-QAM) (256-QAM)
EVM 18.5 % 13.5 % 9 % unspecified

Table 4.5: The error vector magnitude (EVM) requirement is listed as of specification in
the Long-Term Evolution (LTE) base station standards.

centered on adjacent channel frequency. Table 4.6 lists the ACLR requirement of

transmitter based on operation in unpaired spectrum.

Adjacent Channel Adjacent Channel Filter ACLR
Frequency Carrier [Mcps] Bandwidth [Mcps] Limit

BW/2+0.8MHz 1.28 RRC (1.28) 45 dB
BW/2+2.4MHz 1.28 RRC (1.28) 45 dB
BW/2+7.5MHz 3.84 RRC (3.84) 45 dB
BW/2+5MHz 7.68 RRC (7.68) 45 dB
BW/2+15MHz 7.68 RRC (7.68) 45 dB

Table 4.6: The adjacent channel leakage ratio (ACLR) requirement is listed as of specifica-
tion in the Long-Term Evolution (LTE) base station standards with channel bandwidth 5,
10, 15, and 20 MHz.

4.2 Multi-carrier Modulation System

Multi-carrier modulation system divides a carrier signal with large bandwidth,

B Hz into Nf subcarrier signals with smaller bandwidth, B
Nf

Hz. Each subcarrier car-

42

ries either a baseband symbol or no information. The main motivation of using

multi-carrier modulation system is that a frequency selective wideband channel can

be reduced to multiple frequency flat narrowband channels. As a consequence, with

the estimated channel coefficients, the channel equalization operation at the receiver

can be reduced to O(Nf) vector-based division, where Nf is the number of subcar-

riers. In terms of implementation, fast Fourier transform based structure is more

efficient than matrix based structure. The orthogonal frequency division modulation

(OFDM) system is based on fast Fourier transform approach. The periodicity in

OFDM transmit symbol is created by prepending a portion of the tail of the OFDM

symbol to the head of the OFDM symbol.

Each OFDM symbol hasNf complex baseband QAM symbols in a block, which

determines the block size of complex block and block wordlength defined in Table 3.7,

Section 3.4.2. Each OFDM symbol undergoes logr(Nf) stages of r-point multiply-

accumulate for each frequency-time (IFFT) and time-frequency (FFT) conversion,

where r is the radix number of FFT and IFFT Butterfly Unit. The complex block

arithmetic unit through the cascaded stage of FFT and IFFT units would generate

wordlength expansion at each stage and rescaling of the shared exponent.

4.2.1 Discrete-time OFDM Transmitter

Figure 4.4 shows the block diagram of OFDM transmitter. When there is only

a subset of Nf subcarriers assigned for carrying data and control symbols, i.e. Nf−K

are data and control complex symbols, then there are K null tones inserted in the

OFDM modulation. This is also beneficial when channel estimation feedback provides

knowledge that certain subcarriers, si have weak complex channel gains. The cyclic

prefix is intentionally added in the OFDM transmitter for the purpose of creating

43

periodicity in modulated data symbols. The number of cyclic prefix assigned have to

be greater than inter-symbol interference.

Figure 4.4: The typical block diagram of orthogonal frequency division multiplexing
(OFDM) transmitter. The block size of each functional unit can be chosen to be Nf ,
the number of subcarriers.

In the case of OFDM transmitter, the sampling frequency has the following

expression, fs = (Lc + Nf)fsym Hz, where Lc is the length of cyclic prefix, Nf is the

number of subcarriers per OFDM symbol, and fsym is the complex baseband symbol

rate. Table 4.7 lists the complexity analysis of OFDM transmitter.

Transmitter Memory read Memory write Multiply-Accumulate
Chain Rate (complex Rate (complex Rate (COMPLEX

samples/sec) samples/sec) MULT-ADD/sec)
Sym Mapper J(Nf −K)fsym (Nf −K)fsym 0
Insert K (Nf −K)fsym Nffsym 0

Null Tones
Inverse Nffsym Nffsym Nf logr(Nf)fsym C. MULT
FFT (Nf − 1)logr(Nf)fsym C. ADD
Insert Nffsym (Lc +Nf)fsym 0

Cyclic Prefix
Modulation (Lc +Nf)fsym fs fs COMP. MULT

Table 4.7: The memory access complexity of OFDM transmitter is measured in terms of
memory read/write rate and the computational complexity is measured in terms of multiply-
accumulate rate.

44

4.2.2 Discrete-time OFDM Receiver

Figure 4.5 shows the block diagram of OFDM receiver.

Figure 4.5: The typical block diagram of orthogonal frequency division multiplexing
(OFDM) receiver. The block size of each functional unit can be chosen to be Nf , the
number of subcarriers.

Table 4.8 lists the complexity analysis of OFDM receiver.

Receiver Memory read Memory write Multiply-Accumulate
Chain Rate (complex Rate (complex Rate (COMPLEX

samples/sec) samples/sec) MULT-ADD/sec)
Demodulation 2fs (Lc +Nf)fsym fs COMP. MULT

Remove (Lc +Nf)fsym (Nf)fsym 0
Cyclic Prefix

FFT (Nf)fsym (Nf)fsym Nf logr(Nf)fsym C. MULT
(Nf − 1)logr(Nf)fsym C. ADD

Remove (Nf)fsym (Nf −K)fsym 0
K Null Tones

Symbol (Nf −K)fsym J(Nf −K)fsym 0
Demapper [bps]

Table 4.8: The memory access complexity of OFDM receiver is measured in terms of mem-
ory read/write rate and the computational complexity is measured in terms of multiply-
accumulate rate.

4.2.3 Channel Model and Assumptions

The channel model is assumed to be Lthchannel-order.

45

4.2.4 LTE Specifications and Requirements

Table 4.9 specifies the additional requirement on EVM window length.

Channel FFT CP Length CP Length EVM Window
Bandwidth [MHz] Size Sym 0 Sym 1-6 Length

1.4 128 10 9 5
3 256 20 18 12
5 512 40 36 32
10 1024 80 72 66
15 1536 120 108 102
20 2048 160 144 136

Table 4.9: The error vector magnitude (EVM) window length of OFDM transmitter as of
the long-term evolution (LTE) base station standards.

46

Chapter 5

Desktop Simulation

5.1 Signals Generation

The signals generated in this simulation are complex normal random vector

according to complex normal distribution specified in Equation 5.1 and Z = X + jY .

The generated signals are quantized to 32-bit single precision floating-point number

for both inputs of complex block arithmetic unit. Under normal operating condition,

the common exponent encoding works well.

ϕ(t) = 1√
2π
e−

1
2 t

2

X ∼ ϕ(t)

Y ∼ ϕ(t)

(5.1)

The exponent box encoding would perform better in practical operating con-

dition when the input signals to the complex block arithmetic unit are generated

from multiple sources. With the interfering signals condition, the input signals could

be modeled as linear combination of two normally distributed random vectors with

different statistics (mean and variance). With the additive white noise condition,

the input signals may have a difference distribution from the noise distribution. The

current simulation explores both conditions.

The simulation software is published under MIT license at Github repository

[11].

47

5.2 MATLAB: Vector Arithmetic Unit

Complex block addition is not the main focus of this work. The exponent

box encoding format would provide lower quantization error. However, part of the

complex block addition will reverse the process of exponent box encoding. Therefore,

the simulation of complex block addition in common exponent encoding and exponent

box encoding will give the same results. The simulation of complex block addition is

currently omitted in this section.

Complex block multiply is implemented for 32-bit precision. Each multiply

has two input blocks with Nv = 1, 000 complex samples per block. The inputs to

the complex block multiply are modified Gaussian where they are initially generated

with normal distribution and unit variance. In each complex block, one input term,

ith is randomly selected to be applied with additional gain, gi.

Figure 5.1 shows the magnitude error distribution of the multiply result when

the additional gain, gi = 21, 210, 215, 225. For 32-bit precision, the mantissa are 23 bits

which corresponds to 8× 106 in magnitude difference. Each bit error corresponds to

10−6 of the exponent value. As gain value, gi increases by 10x, the span of magnitude

error also corresponds to 10−6 of the new gain value.

Figure 5.2 shows the phase error distribution of the multiply result when the

additional gain, gi = 21, 210, 215, 225. The phase error distribution shows an interesting

finding that 4 different clusters of about the same size. None of the error distribution

plots show that the bin that contains phase error of 0 is the majority. The important

takeaway is the due to sharing a common exponent in complex block, the phase

resolution of each sample starts to degrade. For gi = 25, it begins to show that the

error bin containing the zero phase error shows a peak.

Figure 5.3 shows the scatter plot of complex value pairs of the multiply re-

48

(a) Magnitude Error, gi = 1 (b) Magnitude Error, gi = 10

(c) Magnitude Error, gi = 15 (d) Magnitude Error, gi = 25

Figure 5.1: The complex block inputs are initially generated from normal distribution with
unit variance and quantized to 32-bit floating-point number per dimension. A fixed gain
value, gi is applied on a randomly selected term of the complex input block. The magnitude
error distributions are plotted for corresponding gain values, gi.

sult when the additional gain, gi = 21, 210, 215, 225. The scatter plot is obtained by

normalizing each dimension of complex pair by the maximum absolute value per di-

mension. When gi = 1, the scatter plot shows a Gaussian distribution where the

top right corner has the largest value. When gi = 10, the scatter plot shows a non-

linear transformed version of Gaussian distribution towards the bottom left corner.

That can be explained by the scaled mantissa vector in the complex block has been

scaled due to sharing of common exponent. When gi = 15, the scaling of mantissa

49

(a) Phase Error, gi = 1 (b) Phase Error, gi = 10

(c) Phase Error, gi = 15 (d) Phase Error, gi = 25

Figure 5.2: The complex block inputs are initially generated from normal distribution with
unit variance and quantized to 32-bit floating-point number per dimension. A fixed gain
value, gi is applied on a randomly selected term of the complex input block. The phase
error distributions are plotted for corresponding gain values, gi.

vector continues and some of the complex value pair with smaller exponent values

start hitting the boundary of effective encoding region determined by the bit width of

mantissa. That can be observed with a number of complex pairs lie on the left (real

mantissa becomes zero) and bottom (imaginary mantissa becomes zero) of the com-

plex plane. When gi = 25, the exponent rescaling is the most aggressive. There are

the most complex pairs that lie on the left (real mantissa becomes zero) and bottom

(imaginary mantissa becomes zero) of the complex plane.

50

(a) Scatter Plot, gi = 1 (b) Scatter Plot, gi = 10

(c) Scatter Plot, gi = 15 (d) Scatter Plot, gi = 25

Figure 5.3: The complex block inputs are initially generated from normal distribution with
unit variance and quantized to 32-bit floating-point number per dimension. A fixed gain
value, gi is applied on a randomly selected term of the complex input block. With increasing
gain values, a larger dynamic range is required.

5.3 MATLAB: Algorithms Modeling Unit

Fast fourier transform algorithm is implemented in complex block floating-

point format. Higher radices such as r = 4 and r = 8 are more commonly used when

the number of samples per vector is high, N = 1024 and N = 2048. With radix-4

implementation, Figure 5.4 shows the magnitude error distribution of 4-point FFT

output coefficients.

51

(a) Magnitude Error, gi = 10 (b) Magnitude Error, gi = 15

(c) Magnitude Error, gi = 25 (d) Magnitude Error, gi = 28

Figure 5.4: The 4-point fast Fourier transform (FFT) in radix-4 implementation has complex
block inputs generated from normal distribution with unit variance. A randomly selected
term of the complex block input is added with additional gain, gi specified. The magnitude
error distribution is plotted for each gi.

Figure 5.5 shows the phase error distribution of 4-point FFT output coeffi-

cients.

52

(a) Phase Error, gi = 10 (b) Phase Error, gi = 15

(c) Phase Error, gi = 25 (d) Phase Error, gi = 28

Figure 5.5: The 4-point fast Fourier transform (FFT) in radix-4 implementation has complex
block inputs generated from normal distribution with unit variance. A randomly selected
term of the complex block input is added with additional gain, gi specified. The phase error
distribution is plotted for each gi.

53

Chapter 6

Conclusion

6.1 Summary

This research work investigates the possibility of using complex block floating-

point format as the standard floating-point format for vector-based data. The pro-

posed complex block floating-point format is derived from IEEE-754 format and ex-

tends to two dimensional data that have sensitivity in magnitude and phase. The

main assumption used in this proposed format is the coherence in magnitude and

phase across multiple data point in a complex valued vector.

Chapter 1 motivates the design of hardware structure in the form of complex

block floating-point format for implementation of digital communication systems.

The quadrature amplitude modulation based communication systems typically has

complex baseband symbol in vector form for baseband transmitter and baseband

receiver processing.

Chapter 2 reviews on the standard IEEE-754 floating-point format because

the its abundant implementation of single-precision (32-bit) and double-precision (64-

bit) in modern processor and arithmetic units. There are also usage of half-precision

(16-bit) floating-point format in transmitter and receiver design. The discussion of

standard IEEE-754 floating-point format extends to complex-valued representation (2

dimensional scalar data of similar precision) and complex block floating-point format

(2 dimensional vector data of similar precision).

Chapter 3 describes a proposed complex block floating-point format that has

the basis of block floating-point (shared exponent across the entire complex vector)

54

with extension of dynamic range using two additional bit per complex sample in the

block. The vector arithmetic subsystem is modeled for complex block addition and

complex block multiplication on the proposed data type. The fast Fourier transform

algorithm is evaluated for radix-2 and radix-4 type in the proposed representation.

Chapter 4 evaluates the transmitter and receiver design in the single-carrier

and multi-carrier modulation system in the form of proposed complex block floating-

point format. The main specification of the transceiver design is obtained from the

Long-Term Evolution (LTE) Base Station Standard, Release 12.

Chapter 5 concludes with the numeric and graphical results of the simulation

performed in MATLAB environment. The major pieces of MATLAB simulation are

conducted on evaluating the performance of complex block arithmetic and algorithm

modeling unit in the proposed complex block representation. The transmitter and

receiver design simulator are also simulated for single-carrier modulation system and

multi-carrier modulation system.

6.2 Future Work

The simulation results obtained thus far from this research project look en-

couraging and the idea of using complex block floating-point for the standard data

type in vector based processor looks promising. For future work extending from here,

there are a few main directions that seem possible.

For hardware design and implementation of complex block arithmetic, the

block diagrams used in complex block addition and multiplication have not been

heavily optimized. The current model of complex block arithmetic shows the base

model in which all bits used in representing the proposed complex block format have

been meaningfully used for computation of the block arithmetic results.

55

For specific design of receiver baseband processing, it maybe possible to opti-

mize hardware energy requirement by allowing multi-level precision in receiver system

model such that the highest precision quantization bits is required at the ADC end and

decreases to the lowest precision quantization bits at the symbol de-mapper end. The

modeled communication system in current work is single-input single-output (SISO)

channel model. The work can be extended to multi-input multi-output (MIMO)

channel model for more relevance in the communication system implementation in

practice today.

56

Appendices

57

Appendix A

Maximum Exponent Difference for Low Quantization Error

Let i, j be two bounded positive real numbers represented in floating point

precision. Assume that i has larger magnitude than j, such that |j| < |i|. Define

E(k) as exponent of k,M(k) as mantissa of k, andB(k) = 2E(k)−1−1 as exponent bias,

where k = {i, j}. It is assumed that the bias of two floating point, i, j, is the same, i.e.

B(i) == B(j). Let the difference between two exponents be ∆E = E(i)−E(j) > 0.

Since it is assumed that |j| < |i|,

|j| < |i|

(1.M(j) ∗ 2E(j)−B(j)) < (1.M(i) ∗ 2E(i)−B(i))

(1.M(j) ∗ 2E(j)) < (1.M(i) ∗ 2E(i))

(1.M(j) ∗ 2E(j)−E(i)+E(i)) < (1.M(i) ∗ 2E(i))

(1.M(j) ∗ 2E(j)−E(i)) < (1.M(i))

(1.M(j) ∗ 2−∆E) < (1.M(i))

(0.M(j′)) < (1.M(i))

where M(j′) = 1.M(j)
2∆E

(A.1)

The mantissa bits in M(j′) are truncated in practice, therefore, ∆E must be

less than M(j) for low quantization error. The quantization error is the largest when

the M(j′) gets zero and M(j) is nonzero.

58

Appendix B

Phase Resolution in Common Exponent Encoding

Suppose a complex floating-point vector, X has the numeric precision defined

in Section 2.2.1 and 3.1. The complex vector, X is defined as X = XReal + jXImag.

The magnitude and phase vector representing the vector X can be defined as, |X| =√
X2

Real + X2
Imag and θX = tan−1(XImag

XReal
).

The smallest phase increment has the form of the following equations when

the difference and arc tan function are reordered,

∆ θ = ∆ tan−1(XImag

XReal

)

≈ tan−1(∆ XImag

XReal

)
(B.1)

Since XImag and XReal share the same exponent in a complex block floating-

point format, they have the form, XImag = (−1)SImagM Imag2Eblock and XReal =

(−1)SRealMReal2Eblock . Rewriting the above equation, we have,

∆ θ ≈ tan−1(∆ XImag

XReal

)

min∆XImag(∆ θ) ≈ tan−1(0.0...1
MReal

)
(B.2)

The smallest phase increment is obtained by maximizing the mantissa values

of the real part in the complex block. The phase difference in the complex pair is

a function of real mantissa value and increment of imaginary mantissa value. The

phase resolution is independent of the exponent value.

59

Appendix C

Block Diagrams for Complex Block Arithmetic

Figure C.1: Complex Block Addition Block Diagram (i) Real Output

60

Figure C.2: Complex Block Addition Block Diagram (ii) Imaginary Output

61

Figure C.3: Complex Block Multiply Block Diagram (i) Real Output

62

Figure C.4: Complex Block Multiply Block Diagram (ii) Imaginary Output

63

Bibliography

[1] G. Fettweis and E. Zimmermann, “ICT energy consumption-trends and chal-

lenges,” in Proc. Int. Symposium on Wireless Personal Multimedia Communica-

tions, vol. 2, no. 4, 2008, p. 6.

[2] O. Blume, D. Zeller, and U. Barth, “Approaches to energy efficient wireless access

networks,” in Int. Symp. on Comm., Control and Sig. Process., March 2010, pp.

1–5.

[3] E. Matu, H. Seidel, T. Limberg, P. Robelly, and G. Fettweis, “A GFLOPS Vector-

DSP for Broadband Wireless Applications,” in IEEE Custom Integrated Circuits

Conference 2006, Sept 2006, pp. 543–546.

[4] R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE Journal

on Selected Areas in Communications, vol. 17, no. 4, pp. 539–550, Apr 1999.

[5] S. Rabii and B. A. Wooley, “A 1.8-V digital-audio sigma-delta modulator in 0.8-

um CMOS,” IEEE Journal of Solid-State Circuits, vol. 32, no. 6, pp. 783–796,

Jun 1997.

[6] S. Pavan, R. Schreier, and G. C. Temes, The Magic of Delta-Sigma Modulation.

Wiley-IEEE Press, 2017, pp. 1–26.

[7] IEEE Standard for Floating-Point Arithmetic, Institute of Electrical and Elec-

tronics Engineers (IEEE) Std., 2008.

[8] N. Cohen and S. Weiss, “Complex Floating Point A Novel Data Word Repre-

sentation for DSP Processors,” IEEE Transactions on Circuits and Systems I:

Regular Papers, vol. 59, no. 10, pp. 2252–2262, Oct 2012.

64

[9] R. I. Arun Chhabra, “A Block Floating Point Implementation on the

TMS320C54x DSP,” Texas Instruments, Tech. Rep., 1999.

[10] Y. F. Choo, B. L. Evans, and A. Gatherer, “Complex block floating-point format

with box encoding for wordlength reduction in communication systems,” in 2017

51st Asilomar Conference on Signals, Systems, and Computers, Oct 2017, pp.

1023–1028.

[11] Y. F. Choo, “CBFP-Exponent-Box-Encoding,” May 2018. [Online]. Available:

https://github.com/yeongfoongc/CBFP-Exponent-Box-Encoding

65

https://github.com/yeongfoongc/CBFP-Exponent-Box-Encoding

	List of Tables
	List of Figures
	Implementation of Digital Communication Systems
	Digital Communication Systems Brief
	Hardware Design Constraints and Tradeoffs
	Digital Signal Processor Architecture
	Data Converter Architecture
	Organization

	Number Systems
	IEEE-754 Floating-Point Format
	Binary Numeric Representation
	Implementation Complexity
	Complex-valued Representation

	Complex Block Floating-Point Format
	Common Exponent Encoding
	Conversion with Two Parallel ADCs
	Conversion with Single ADC

	Proposed Complex Block Floating-Point Representation
	Exponent Box Encoding Technique
	Vector Arithmetic Subsystem Modeling
	Complex Block Addition
	Complex Block Multiplication

	Algorithms Modeling
	Fast Fourier Transform (Radix-2)
	Fast Fourier Transform (Radix-4)

	Analysis and Limitation
	Phase Resolution
	Block Wordlength Analysis
	Block Arithmetic Complexity Analysis

	System Model of Baseband Transceivers Design
	Single-carrier Modulation System
	Discrete-time Complex Baseband QAM Transmitter
	Discrete-time Complex Baseband QAM Receiver
	Channel Model and Assumptions
	LTE Specifications and Requirements

	Multi-carrier Modulation System
	Discrete-time OFDM Transmitter
	Discrete-time OFDM Receiver
	Channel Model and Assumptions
	LTE Specifications and Requirements

	Desktop Simulation
	Signals Generation
	MATLAB: Vector Arithmetic Unit
	MATLAB: Algorithms Modeling Unit

	Conclusion
	Summary
	Future Work

	Appendices
	Maximum Exponent Difference for Low Quantization Error
	Phase Resolution in Common Exponent Encoding
	Block Diagrams for Complex Block Arithmetic
	Bibliography

