
University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/36283

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.

kr

High Sample-Rate Givens Rotations for
Recursive Least Squares

Richard Lewis Walke

A thesis submitted to The University of Warwick for the degree
of

DOCTOR OF PHILOSOPHY

Faculty of Science

Department of Computer Science

July 1997

To Valerie

Summary

The design of an application-specific integrated circuit of a parallel array processor is con-

sidered for recursive least squares by QR decomposition using Givens rotations, applicable

in adaptive filtering and beamforming applications. Emphasis is on high sample-rate opera-

tion, which, for this recursive algorithm, means that the time to perform arithmetic opera-

tions is critical. The algorithm, architecture and arithmetic are considered in a single

integrated design procedure to achieve optimum results.

A realisation approach using standard arithmetic operators, add, multiply and divide is

adopted. The design of high-throughput operators with low delay is addressed for fixed- and

floating-point number formats, and the application of redundant arithmetic considered. New

redundant multiplier architectures are presented enabling reductions in area of up to 25%,

whilst maintaining low delay. A technique is presented enabling the use of a conventional

tree multiplier in recursive applications, allowing savings in area and delay. Two new divider

architectures are presented showing benefits compared with the radix-2 modified SRT algo-

rithm.

Givens rotation algorithms are examined to determine their suitability for VLSI implemen-

tation. A novel algorithm, based on the Squared Givens Rotation (SGR) algorithm, is devel-

oped enabling the sample-rate to be increased by a factor of approximately 6 and offering

area reductions up to a factor of 2 over previous approaches. An estimated sample-rate of

136 MHz could be achieved using a standard cell approach and O.35pm CMOS technology.

The enhanced SGR algorithm has been compared with a CORDIC approach and shown to

benefit by a factor of 3 in area and over 11 in sample-rate. When compared with a recent im-

plementation on a parallel array of general purpose (GP) DSP chips, it is estimated that a sin-

gle application specific chip could offer up to 1,500 times the computation obtained from a

single OP DSP chip.

-1-

Contents

Chapter 1	 Introduction. •..•....... 1

1.1	 Background ..1

	

1.2	 Objective of Research ..2

	

1.3	 Adaptive Filtering ...3

	

1.4	 The QR-Algorithm ..6

	

1.5	 The QR-Array ..8

	

1.6	 Performing Rotations in VLSI9

	

1.7	 VLSI Design Methodology...................................12

	

1.8	 Overview of Thesis ...13

Chapter 2	 Redundant Arithmetic 16

2.1	 Introduction...16

2.2	 Redundant Number Systems..................................16

2.3	 Addition of Redundant Numbers19

2.4 Most-Significant-Digit-First Arithmetic.........................25

2.5	 DSP Using Msdf Arithmetic..................................28

Chapter 3	 High-Throughput, Low-Latency Multipliers...... 31

3.1	 Introduction...31

	

3.2	 Msdf Multipliers ...32

	

3.3	 Tree-Based Multipliers46

	

3.4	 Discussion of Multiplier Results...............................62

Chapter 4	 High-Throughput, Low-Latency Dividers 64

4.1	 Introduction...64

4.2	 Overview of Division65

4.3	 Digit Recurrence Methods66

- 11 -

Contents

	4.4	 Radix-2 Modified SRT69

	

4.5	 Speculative SRI ...72

	

4.6	 Multiplier-Based Division Methods77

4.7 Low-Latency Convergence Divider80

	

4.8	 Summary of Divider Results..................................89

Chapter 5	 Floating-Point Operators 91

	5.1	 Introduction...91

	

5.2	 Floating-Point Representation.................................92

	

5.3	 Floating-Point Adder..93

	

5.4	 FixedlFloating Point Adder..................................100

	

5.5	 Floating-Point Multiplication102

	

5.6	 Floating-Point Division.....................................109

	

5.7	 Other Operators...114

5.8 Comments on Floating-Point Operator Designs115

Chapter 6	 Givens Rotation Algorithm Variants.... 116

6.1 Overview of Givens Rotation Algorithm Variants116

6.2 Square-Root-Free Algorithm.................................121

6.3 Divide-and-Square-Root-Free Algorithm.......................128

6.4 Summary of Givens Rotation Algorithms.......................130

6.5 Normalisation of Conventional Givens Rotation Algorithm131

Chapter 7	 Comparison of Givens Rotation Algorithms. 138

	7.1	 Introduction..138

	

7.2	 Conventional Givens Rotations...............................141

7.3 Normalised Algorithms.....................................144

7.4 Square-Root-Free Algorithms................................151

7.5 Divide-and-Square-Root-Free Algorithms161

- 111 -

Contents

7.6	 Comparison Between Algorithms............................. 163

Chapter 8	 Architecture of Adaptive Filter 167

	

8 .1	 Introduction.. 167

	

8.2	 Parallel Array Processing 167

	

8.3	 Full-Sized QR-Array Solution 170

	

8.4	 LPGS Linear Array Solution................................. 171

	

8 .5	 LSGP Solution.. 176

8.6 VLSI Implementation of Full-Sized Array 178

8.7 QR-Array Implementation using General Purpose DSP Processors. . . 183

8.8 Adaptive Beamforming Application........................... 186

8.9	 Discussion ... 187

Chapter 9	 Conclusions . 189

	

9 .1	 Overview.. 189

	

9.2	 Low-Latency Arithmetic.................................... 189

	

9.3	 Givens Rotation Algorithm.................................. 191

9.4 Application Specific Array Processor.......................... 192

	

9 .5	 Future Work ... 193

Chapter 10 References . 197

Appendix A Analysis of Msdf Multiplier-Adders 210

Appendix B Low-Latency, High-Throughput Redundant

Squarer.................................... 219

Appendix C Summary of Convergence Reciprocal Circuit

Parameters . 224

Appendix D Numerical Effect in Normalised Algorithm 225

Appendix E Overview of Channel Equaliser Application 226

- iv -

List of Figures

1.1	 Adaptive linear combiner 	 . 3

	

1.2	 Channel equalisation using an adaptive filter5

	

1.3	 Diagram of an adaptive sidelobe canceller 5

	

1.4	 The QR-array architecture for performing the QR-algorithm8

	

1.5	 Signal flow graph of conventional rotation algorithm10

2.1	 An example of modified Booth's recoding19

2.2	 Redundant number adders ...20

2.3	 The generalised full-adder ...22

2.4	 Using full-adders to add a signed-binary and a binary number22

	

2.5	 Using full-adders to add two signed-binary numbers24

	

2.6	 Using full-adders to add two MinR4 numbers24

	

2.7	 Digit-serial, on-line computation26

	

2.8	 Msdf arithmetic ...27

	

3.1	 Minimum latency for a range of digit redundancy and radix37

	

3.2	 Msdf multiplier-adder architectures39

	

3.3	 Type 2 architecture for a signed-binary, radix-2 multiplier-adder40

	

3.4	 Type 2 architecture for a minimally-redundant, radix-4 multiplier-adder41

	

3.5	 Type 2 architecture for a maximally redundant radix-4 multiplier-adder43

	

3.6	 Delay and area comparison of msdf multipliers45

	

3.7	 Tree-based redundant multiplier49

	

3.8	 Simplified adder-tree ...49

	

3.9	 Obtaining signed-binary output from adders50

3.10 Obtaining signed-binary from a conventional adder-tree51

3.11 Recoding from signed-binary to MinR451

3.12 Speed and area comparison of tree-based, redundant multipliers53

List of Figures

3.13 Block diagram of recoded, redundant multiplier 55

3.14 Recoding from carry-save to MinRl6 56

3.15 Recoding from carry-save to MinR4 59

3.16 Recoding of 2X from carry-save to MinR460

3.17	 Partial-product generation ...60

3.18 Speed and area comparison of tree-based redundant multipliers61

4.1	 Division using digit recurrence66

4.2	 Radix-2 modified SRT division array with prescaling70

4.3	 Area and speed of modified SRT divider71

4.4	 Comparison between SRT and modified SRT algorithms72

4.5	 Speculative calculation of SRT partial remainders73

4.6	 Block diagram of one row of the radix-8 speculative divider74

4.7	 Logical implementation of selection function and DCSA75

4.8	 Circuit synthesis results for the speculative divider76

4.9	 Dependence graphs for division by multiplicative convergence81

4.10 Circuit synthesis results for reciprocal LUT85

4.11	 DG for 16-bit reciprocal ..87

4.12 Circuit synthesis results of the convergence reciprocal circuits88

5.1	 Floating-point number format ..92

5.2	 Block diagram of simple floating-point adder 95

5.3	 Normalisation using speculation of leading zeros97

5.4	 Detailed block diagram of floating-point adder98

5.5	 Circuit synthesis results for the floating-point adder99

5.6	 Fixed/floating-point adder ..101

5.7	 Circuit synthesis results for fixed/floating-point adder102

5.8	 Block diagram of the basic floating-point multiplier104

5.9	 Performing the addition, rounding and normalisation together105

- vi -

List of Figures

5.10 Detailed block diagram of floating-point multiplier107

5.11 Circuit synthesis results for the floating-point multiplier108

5.12 Block diagram of a basic floating-point divider110

5.13 Detailed block diagram of floating-point divider112

5.14 Circuit synthesis results for the floating-point divider113

5.15 Circuit synthesis results for other floating-point operators114

6.1	 Summary of square-root-free algorithm123

6.2	 Summary of SGR algorithm ..128

6.3	 Summary of the DSF algorithm129

6.4	 Summary of the normalised Givens rotation algorithm135

6.5	 Summary of colunm normalised Givens rotation algorithm137

7.1	 Numerical performance of conventional algorithm141

7.2	 SFG of boundary and internal cell for the conventional algorithm142

7.3	 Modified SFG for the conventional algorithm143

7.4	 Numerical performance of the normalised algorithms145

7.5	 SFG for the normalised algorithm146

7.6	 Fixed-point Msdf implementation of the conventional algorithm149

7.7	 Section of QR-array showing effect of pipeline cut through boundary cell 150

7.8	 Effect of accumulator length on errors154

7.9	 SFGs of internal cells for two-multiply feed-forward algorithms 155

7.10 SFG for two-multiply feedback algorithms156

7.11 SFG of SGR Algorithm ..157

7.12 Performance of SGR algorithm with floating-point loop variable158

7.13 Performance of SGR algorithm with fixed-point ioop variable159

7.14	 Removing beta from the loop161

7.15	 SFG of DSF algorithm ...162

7.16 Number of gates required to meet an SNR of -6OdBs165

- vii -

List of Figures

	8.1	 Stages in the design of a VLSI array processor168

	

8.2	 Rader's folding of the QR-array171

	

8.3	 An alternative folding of the QR-array172

	

8.4	 Array with diagonal fold marked173

	

8.5	 LPGS projection of the folded QR-array174

	

8.6	 Scheduling of the QR-array ... 175

	

8.7	 Linear systolic array for the LPGS schedule176

8.8	 Reducing array size using an LSGP schedule177

8.9	 Retimed QR-array ..179

8.10 VLSI layout of the enhanced SGR boundary and internal cells180

8.11	 Array processor of DSP chips184

8.12 Estimated performance of an adaptive beamforming ASIC186

A.1	 Result digit selection regions ..213

A.2	 Non-overlapping selection regions215

B.!	 Block diagram of the redundant number squarer220

B.2	 Derivation of function f and its truth-table221

B.3	 Modified recoders for correct partitioning of recoded input222

B.4	 Partial-product array for a small squarer222

C.1	 Convergence Reciprocal DG ..224

E.1	 Block diagram of channel equaliser for algorithm evaluation226

E.2	 Channel equaliser output during adaption phase228

- viii -

List of Tables

2.1
	

Representationsof the number..17

2.2
	

Encodingof signed bits ...22

3.1
	

Compression and saturation cell functions...............................44

3.2
	

Minimallyredundant radix-r digit-sets.................................. 57

3.3
	

Codingof partial-product for adder-tree................................. 59

4.1
	

Selectionfunction.. 75

4.2
	

Circuit synthesis results for reciprocal circuit89

5.1
	

Obtaininga positive output from adder96

5.2
	

Dividerrounding..111

5.3
	

Summary of the performance of 16-bit floating-point operators115

6.1
	

Summary of Givens rotation algorithms................................130

6.2
	

All two-multiply solutions obtained by feedback.........................131

7.1
	

Permissiblevalues of beta ..142

7.2
	

Numbersof cells required by QR-array163

7.3
	

Operationcount of algorithm variants164

7.4
	

Operator area as a function of wordlength164

7.5
	

Latency of operations in loop and QR-array sample-rate...................166

8.1
	

Propertiesof floating-point operators..................................179

8.2
	

Area and computation rate of the enhanced-SGR cells180

8.3
	

Comparison between SGR and CORDIC approaches182

8.4 Comparison between programmable DSP and ASIC approaches185

A.1
	

Truncationerrors ...217

B.1
	

Truth-table of digit squaring logic223

- ix -

Acknowledgements

I have been fortunate to receive guidance and supervision from a number of knowledgeable

and generous people. In particular, I thank my supervisors Prof. John McWhirter and

Prof. Graham Nudd for their encouragement and help. I also thank Dr. Richard Evans for his

encouragement, the helpful discussions on arithmetic, his comments on this thesis, and ena-

bling the supporting research to be performed. I am very grateful to Dr. Ian Proudler for his

explanations and guidance on the adaptive filtering and numerical simulation aspects of this

research.

The results and conclusions of this thesis have relied on circuit synthesis results produced by

Integrated Silicon Systems Ltd. An enormous effort has been made by Dr. Yi Hu to code and

synthesise these circuits which has been far and beyond the call of duty. I am very grateful

for his efforts.

I would also like to thank Prof. John McCanny for allowing me to use the VLSI design tools

in August 1995 at The Queen's University of Belfast to produce circuit layout.

My thanks goes to Dr. Robert Hamill for the CORDIC results, Dr. David Trainor for the use

of the IRIS tools and help with the other VLSI design tools, and Simon Knowles for discus-

sions on arithmetic and for the information on the power consumption of circuits. My thanks

to Dr. Neil Burgess for his helpful comments on the thesis.

This work has been funded by the Ministry of Defence, through the Defence Evaluation and

Research Agency, and I thank those who have enabled this to happen.

I thank Rev. Frank Holt for proof reading the thesis.

Lastly, I would like to thank my wife Valerie for being patient and supportive during this

challenging period.

Declaration

Unless otherwise stated, the work in this thesis is the author's own original research work.

Some of the work has been published previously:

R. L. Wailce and R. A. Evans, "A Minimally Redundant Radix-4 Systolic Array for High Per-

formance hR Filtering", VLSI Signal Processing, VI, ISBN 0-7803-0996-0, pp. 168-178,

1993.

J. G. McWhirter, R. L. Wailce and J. Kadlec, "Normalised Givens Rotations for Recursive

Least Squares Processing", VLSI Signal Processing, Vifi, ISBN 0-7803-2612-1, pp. 323-

332, 1995.

- xi -

Abbreviations

Abbreviations

lsb

lsd

msb

msd

msdf

ASIC

CAD

CLA

CMOS

CORDIC

CSA

DFE

DG

DSF

DSP

GPDSP

FFT

FIR

FPU

IEEE

1W

LPGS

LSGP

LUT

MFLOPS

least significant bit

least significant digit

most significant bit

most significant digit

most significant digit first

Application specific integrated circuit

Computer aided design

Carry look ahead (adder)

Complementary metal oxide semiconductor

CoOrdinate Rotation by DIgital Computer

Carry save adder

Decision feedback equaliser

Dependence graph

Divide-and-square-root-free (Givens rotation algorithm)

Digital signal processing

General purpose digital signal processor

Fast fourier transform

Finite impulse response (filter)

Floating-point unit

Institute of Electronic and Electrical Engineers

Infinite impulse response (filter)

Locally parallel globally sequential

Locally sequential globally parallel

Look-up table

Million floating-point operations per second

- xli -

Abbreviations

MinR4	 Minimally redundant radix-4

MaxR4	 Maximally redundant radix-4

RAM	 Random access memory

QR-Algorithm QR decomposition by Givens rotations

QR-Array	 Triangular array of processors for performing the QR-algorithm

SFG	 Signal flow graph

SGR	 Squared Givens rotation

SNDR	 Signed digit number representation

SNR	 Signal-to-noise ratio

SQF-XFB	 Square-root-free X-feedback (Givens rotation algorithm)

SRT	 Sweeney, Robertson and Tocher (divider algorithm)

VHDL	 VHSIC hardware description language

VLSI	 Very large scale integration

- xlii-

Chapter 1	 Introduction

1.1	 Background

The rapid evolution of integrated circuit technology into the realms of very large scale inte-

gration (VLSI) has enabled the realisation of the complex circuit structures necessary to

process real-time signals in a digital manner. Processing a signal in this way offers consid-

erable advantages over the real-world analogue representation, as it simplifies the storage of

signals and allows functions to be performed on them that would otherwise be impractical.

Consequently, the application of digital signal processing (DSP) has grown, and become an

important enabling technology in many new applications of digital electronics. For example,

the development of digital audio, multimedia and mobile communications have relied heav-

ily on DSP.

There is now a wide variety of programmable general purpose digital signal processors com-

mercially available with which to implement DSP. These offer a rapid and low cost devel-

opment route, but currently only achieve computation rates of the order of 50 million

floating-point operations per second (MFLOPS) as only one arithmetic unit is generally in-

tegrated. Also, for some simple functions they are inefficient, and use large amounts of sili-

con area and power as a consequence of the generality of their architecture and the overheads

of programmability. In some instances, as little as 5% of the chip area may be occupied in

useful operations on a signal.

More efficient use of the silicon resource can be achieved using an application specific inte-

grated circuit (ASIC), as the processor architecture and arithmetic unit may be tailored to the

specific requirements of the algorithm. In this way, significant reductions in area and power

are possible, which enables either die sizes to be reduced, or higher levels of computation to

be achieved by integrating more arithmetic units on a chip.

When adopting an ASIC approach, the optimum design is achieved in a process of develop-

ing the algorithm, the processor architecture and arithmetic in a way which accommodates

-1-

Chapter 1	 Introduction

the benefits and limitations of VLSI technology. Parallelism, regularity and local intercon-

nect are features that are sought to achieve high levels of computation from circuits which

are easy to realise.

Parallelism is perhaps the most important feature of any algorithm, as it allows results to be

produced at a greater rate by using more than one arithmetic unit simultaneously to process

a signal. With current technology it is possible to integrate large numbers of arithmetic units

on a single chip and so achieve computation rates in excess of 10,000 MFLOPS. If the algo-

rithm and architecture are both parallel and scalable, then it is possible to apply the increasing

level of circuit integration to improve the rate at which signals can be processed (i.e. the sam-

ple-rate).

Recursive algorithms are very restrictive, as they have a sequential dependence between op-

erations, as by their definition they use previous outputs to generate the next. In this case, the

maximum sample-rate achievable is governed by the time it takes to perform the sequence

of operations. In which case, improvements can only be made by either transformiiig the al-

gorithm to reduce the number of operations, or implementing the operators in a way which

reduces their delay, referred to as latency.

Most-significant-digit-first (msdf) arithmetic is a technique which has been used to minimise

the latency of an operator, and has been applied in the design of a multiplier-adder for a high-

sample-rate infinite impulse response (IJIR) filter. However, this is a relatively simple appli-

cation, and so the general applicability of this technique has not yet been fully established.

1.2	 Objective of Research

The objective of this research has been to examine the VLSI implementation of an array

processor for adaptive filtering. Currently, ASIC solutions employing parallel architectures

are highly relevant due to the enormous levels of computation required by applications such

as radar, sonar and communications. For example, radar applications can require computa-

tion levels of 50,000 MFLOPS. One adaptive algorithm which is of particular interest is re-

cursive least squares, as this requires only low wordlength arithmetic when implemented

-2-

Chapter 1	 Introduction

using QR decomposition by Givens rotations, and has a parallel architecture for high-

throughput implementations. However, this algorithm, which henceforth shall be referred to

as the QR-algorithm, is recursive and this can limit sample-rate at which an implementation

may operate. In certain radar and communications applications the sample-rate can be very

high (in excess of 100MHz). Therefore, a specific objective of this work has been to examine

techniques to maximise the sample-rate of the QR-algorithm. Before considering the imple-

mentation issues any further, it is worth introducing the concepts of adaptive filtering, and

presenting applications in which it could be applied.

1.3	 Adaptive Filtering

A filter is a device for extracting information from a noisy signal, where the noise is consid-

ered to be any unwanted component of that signal. For example, the noise could be interfer-

ence introduced into sensors or the circuits of a system, or be due to distortions or signal

echoes resulting from imperfections in a transmission channel.

When it is not possible to determine the coefficients of a suitable filter because there is in-

sufficient a priori knowledge of the signal and noise, or if the filter characteristics vary in an

unknown way, it is necessary to use an adaptive filter. In this event an adaptive algorithm is

used to update the filter parameters as new samples of the signal become available.

1.3.1 Adaptive Linear Combiner

At the heart of most adaptive filters is the adaptive linear combiner shown in Figure 1.1.

x(n)
	

y(n)

e(n)

Figure 1.1 Adaptive linear combiner

-3-

Chapter 1	 Introduction

The combiner has (p - 1) auxiliary inputs and a single primary input, which are given in a

discrete time form at time t,, by x(n) and y(n) respectively. (Note that bold lower-case let-

tering has been used to denote a vector quantity, and bold upper-case will be used to denote

a matrix quantity). The combiner forms a sum of the auxiliary inputs weighted by parameters

w 1 to w, which is added to the primary input to form an error signal e(n). These parame-

ters, which are referred to as weights, are controlled by an adaptive algorithm to minimise a

measure of the error signal, such as its mean squared value. The error is also, on occasions,

referred to as the residual, and is given by

e(n) = xT(n)w+y(n)	 (1.1)

where w denotes the optimum weights in vector form, and xT is the transpose of auxiliary

input data vector.

1.3.2 Applications of Adaptive Filtering

Two important applications of adaptive filtering are channel equalisation and adaptive

beamforming. The channel equaliser is used in Chapter 7 to evaluate the numerical properties

of algorithms for performing Givens rotations, whereas adaptive beaniforming is considered

to be the primary application for the work of this thesis.

1.3.2.1 Channel Equalisation

If the bandwidth of a transmission channel is restricted, then dispersion of the conveyed sig-

nal will occur resulting in intersymbol interference. If severe, this will cause the signal to be

incorrectly detected at the receiver. The channel equaliser, shown in Figure 1.2, aims to undo

the distortion of an imperfect channel by implementing its inverse (as described in [Hayk9l],

p. 492). This is done using an adaptive transversal filter, which is constructed from an adap-

tive linear combiner fed by a tapped delay line. A predetermined sequence of data is gener-

ated at the transmitter and receiver to provide the adaptive filter with an uncorrupted version

of the transmitted signal from which to adapt its weights.

-4-

Auxiliary
Antennas

Primary
Antenna

Chapter 1
	

Introduction

An adaptive equaliser is useful when the channel characteristics are unknown, or vary with

time.

Binary signal

J1LT-ii

Channel
Frequency
Response

Frequency

Adaptive Channel Equaliser

Training sequenc

jjt•H
x(n)	 yn

Adaptive Linear Combiner

e(n)

Figure 1.2 Channel equalisation using an adaptive filter

1.3.2.2 Adaptive Beamforming

In the adaptive beamforming application, the adaptive linear combiner is used to provide

spatial filtering to reduce the effects of interference impinging upon an antenna array from a

direction other than the direction of interest (i.e. the look direction). Figure 1.3 depicts an

adaptive sidelobe canceller.

Desired

J

Output

Figure 1.3 Diagram of an adaptive sidelobe canceller

-5-

[XT(1)1	 [y(1)l

xT(2) w(n) +

Lx (n)j	 [Y(fl)]

e(1)

e(2) =

e(n)

(1.2)

Chapter 1	 Introduction

The primary signal constitutes the input from a main antenna which has high directivity, but,

due to theoretical and practical design constraints, has a small but significant gain in other

directions (i.e. it has sidelobes). If there is a strong unwanted signal incident on the array in

the direction of a sidelobe, e.g. due to jamming, it is possible that enough interference will

be received to swamp a signal of interest in the look direction. To overcome this, a number

of omnidirectional auxiliary antennae are used to sample the interference. The adaptive com-

biner is then used to remove any signal common with the main antenna. At this stage in the

processing, it is assumed that the signal of interest is hidden by noise, so only interference is

suppressed. The effect of the combiner on the beam pattern of the main antenna is to intro-

duce deep nulls in the direction of the interference as shown in Figure 1.3.

1.4 The QR-Algorithm

The adaptive linear combiner residual can be minimised in a least mean squares sense using

the QR-algorithm. This algorithm is of interest to an ASIC implementation as it has good nu-

merical properties. In particular Ward et al.[Ward86a] have shown its use can reduce the

wordlength requirement over a matrix inversion approach from 24-bits to 16-bits in their par-

ticular adaptive beamforming example.

The residuals up to time n can be expressed collectively in matrix form as

A more compact representation is

e(n) = X(n)w(n)+y(n)
	

(1.3)

where the square error is simply E(n) = Ie(1)1 2 + e(2)I 2 + ... + Ie(n)1 2 = IIe(n)112.

-6-

Q(n)X(n) = [R(n)1
[0]

and	 Q(n)y(n) - ru(n)1
- [v(n)]

(1.5)

Chapter 1
	

Introduction

A very numerically stable method of solving equation (1.3) is to use orthogonal triangulari-

sation by QR-decomposition to obtain

R(n)w(n) + u(n) = 0
	

(1.4)

where R(n) is upper-triangular matrix obtained by applying a unitary matrix Q(n) to the in-

put data X(n) i.e.

The matrix Q(n) can be applied recursively using a simpler matrix (n) such that

(n)Q(n-1) = Q(n)
[R(n-1)l	 rR(fl)1

Q(n)I
Tx (n)]

= [u(n)1 (1.6)
L y(n) J	 La(n)]

where ()(n) is also a unitary matrix which is chosen to set the elements of xT(n) to zero in

the middle equation. The term a(n) is used to obtain the residual and is discussed later. The

transformation (n) can be constructed from a sequence of 2-dimensional rotations, known

as Givens rotations, which progressively set, from left to right, each element of xT(n) to ze-

ro. To avoid undoing the effect of previous rotations, the Givens rotation is performed be-

tween the elements of xT(n) and the row of R(n - 1) which has the same number of leading

•th	 . T	 •thzeros. For example, to zero the i element in x (n) , we use the i row of R(n - 1) and the

rotation

[c 1 [... 0 r ,1 r + ... r ,	= [o ... 0 rt	 r' , + •.. r'

[—s c] [o ... 0 x x +1 ... Xk]	 [o ... 0 0 x' 1 ... X]

The 2-by-2 rotation matrix consists of the sine and cosine of the rotation angle obtained from

the leading terms x, and using

	

_______	 xi

	

c = ____	 s= ____
AIX1	 r1

(1.7)

(1.8)

-7-

Internal Cell

x

öNEbce

I

r 1,1)	 .jr1,3	 I r i,4 I	
i

r2,2	 r2,3_h-rz4	 U2

Chapter 1
	

Introduction

A complete derivation of the QR-algorithm can be found in Shepherd[Shep93].

1.5 The QR-Array

One benefit of performing QR-decomposition by Givens rotations is that it can be imple-

mented using a highly parallel array processor, known as the QR-array, and shown in

Figure 1.4. The array was originally proposed by Gentleman and Kung[Gent8l}, but con-

tains important modifications made by McWhirter[McWh83] to generate the residual direct-

ly from the array. It presents a good starting point for the design of a parallel implementation

of the adaptive linear combiner, as considered in Chapter 8.

x1(n)	 x2(n)	 x3(n)	 x4(n)	 y(n)
1	 i	 I	 I	 I	 I

\(r', 0)J

= cos8

y(n)\1a(n)

Multiplier ()

7(13r,x)
	 e(n)

r', x')
	

Residual

Figure 1.4 The QR-array architecture for performing the QR-algorithm

The array is composed from boundary cells and internal cells which perform the Givens ro-

tation as indicated in the corresponding insets. The term 1 is generally referred to as thefor-

get-factor, and is simply a constant, which is close to, but less than 1 (e.g. f3 = 0.996 would

be a typical value in adaptive beamforming).

-8-

Chapter 1	 Introduction

The elements of R(n) and u(n) are stored within the cells of the array, and are initialised to

zero. Each combiner input x(n) enters the top of the array, and propagates down from row

to row. On each row of the array the leading non-zero element of the vector is set to zero by

the rotation performed in the boundary cell on its input and the stored element r. The same

angle of rotation is applied to the remainder of the vector by the internal cells within the same

row. The rotation in each cell is performed on a vector, formed from the cell input x and the

stored variable, r or u. As a consequence of the rotation process, the stored variable is up-

dated to r' and u' respectively. The term i provides a forget-factor, such that the stored var-

iables decay over time.

The weights of the adaptive linear combiner can be obtained by extracting R(n) and u(n)

from the array and solving equation (1.4) by back-substitution. However, in some applica-

tions, such as adaptive beamforming, it is the residual which is of primary interest. Direct

residual extraction has been incorporated into the QR-array by McWhirter[McWh83] by not-

ing that the residual can be obtained by multiplying the output of the right-hand column, de-

noted a(n) in Figure 1.4, by the product of the rotation cosines, formed down the diagonal

of the array (and denoted 'y(n) in Figure 1.4).

1.6	 Performing Rotations in VLSI

There are two principal approaches to performing the rotations required by the QR-array.

CORDIC[Vold59][Walt7l] (COordinate Rotation by Digital Computer) has been a popular

approach as it implements the rotations directly using a single arithmetic component. Wheth-

er CORDIC can offer high sample-rate implementations was a question proposed earlier in

this work, and has subsequently has been addressed by Hamill in [Hami95a].

In this thesis, the alternative approach based on the standard arithmetic operators, add, mul-

tiply, divide and square-root has been addressed. Figure 1.5 shows a signalfiow graph (SFG)

of the QR-array cells implemented using standard arithmetic operators. The conventional

Givens rotation algorithm has been used, and the equations defining the operation of the cells

-9-

x

Chapter 1
	

Introduction

are shown in the figure.

X
I I Boundary Cell

(.)2) (()2)uauI

OUT
1d(n

L	
Internal Cell

True addition

Addition (negative inputs allowed)

Multiplication	 Square

Division of n by d 	 Square-root

Delay

Critical
Path

______	 Xri_____ x

Boundary Cell Function

rB' = J((rB) 2 +I:B I 2)	 ___________________

s=sinO=—	 X1
r

I Internal Cell Function
c=cos8=	 I

rB	 I	 xi' = CXI - sI3ri

= coseö	 r1' = c 13r1 + sx1

Figure 1.5 Signal flow graph of conventional rotation algorithm

Several observations can be made about the algorithm:

• division and square-root operations are required and these are conventionally high-

latency operations,

• loops exist in the boundary and internal cells to update the quantities r and r1, and

the latency of these will limit the sample-rate at which the QR-array may operate.

increased sample-rate can be achieved by moving the square-root operation out of the loop

-10-

Chapter 1	 Introduction

in the boundary cell by maintaining r in a squared form. However, there are other transfor-

mations which can be performed to the conventional algorithm which will completely re-

move the need for a square-root operation and also reduce the number of multipliers. As a

consequence, there is a wide variety of algorithm possibilities for implementing the QR-ar-

ray. To determine the best choice for a particular application, it is essential to consider the

requirements of each algorithm for wordlength and fixed- and floating-point arithmetic as

well the number of operations, their type and topology.

Fixed-point implementations of a DSP algorithm are often sought, as this simplifies the de-

sign of the arithmetic operators. For many conventional DSP operations, such as FF1' and

FIR filtering, this can be achieved with ease, and the solutions are generally fast and efficient.

However, the QR-algorithm contains a greater range of arithmetic operations, and has many

variants, and it is not obvious what fixed-point solutions are possible, and whether they

would offer lower area, higher sample-rate or greater throughput. Therefore, both fixed- and

floating-point solutions need to be considered.

Another important aspect of the arithmetic, irrespective of whether fixed- or floating-point

arithmetic is used, is the type of rounding used. It is apparent from the SFG of the rotation

algorithm that r and u are accumulated quantities. When a number is accumulated, so are

the errors. If the errors are unbiased, i.e. their mean is zero, the error grows as Jr, where n

is the number of additions performed (as a consequence of the central limit theorem). If there

is a bias, then the error will grow with n. Arithmetic errors are introduced in finite-precision

arithmetic in the process of returning the wordlength of the result of an arithmetic operation

to that of its input[Wilk63]. Unbiased arithmetic errors can be achieved by rounding the re-

sult to the nearest valid number. As will be shown later, this form of rounding takes more

time than a simpler scheme, but is worth adopting because the accumulated numerical errors

are significantly lower.

-11-

Chapter 1
	

Infroduction

1.7 VLSI Design Methodology

The task of implementing VLSI circuits has been greatly simplified over recent years. It is

now possible to use CAD tools to synthesise circuits from VHDL (Very high speed integrat-

ed circuit Hardware Description Language) into optimised circuits composed of standard

cells (such as gates and adders). Tools also exist which will generate circuit layout by auto-

matic placement-and-routing of the standard cell circuit.

This automated design route provides a very rapid path into silicon. For the relatively low

wordlengths required by the QR-algorithm applications considered in this thesis (i.e. less

than 20-bits), it is possible to synthesise the operators as one complete entity with very good

speed and area results. For wordlengths greater than this, the synthesis times become large,

the results are not so good, and it is necessary to break down the operators into smaller parts.

Within the thesis, the synthesis tool Synopsys has been used to generate estimates of the cir-

cuit delay and number of gates required by arithmetic operators. VHDL descriptions have

been produced, which have been parameterised in terms of wordlength and level of pipelin-

ing, and so specific circuits can be realised relatively easily (although synthesis times can be

long). A 0.35 pm standard cell CMOS process has been used as the target technology, and

represents the minimum commercially available circuit geometry available at the time of

writing. Some arithmetic operators have also been taken through to layout using automatic

place-and-route tools, and this has provided a useful guide of how the number of gates trans-

lates into circuit area.

The synthesis tool Synopsys is able to identify full-adder components within a circuit de-

scription and employ an optimised standard cell for its realisation (if supplied within the

standard cell library). This can lead to significant performance improvements over a realisa-

tion from basic gates. Hence, there is a strong motivation to use full-adder descriptions of

circuits where possible. Within the thesis, full-adders are used almost exclusively to realise

arithmetic circuits.

-12-

Chapter 1
	

Introduction

1.8	 Overview of Thesis

The QR-algorithm has been the subject of a number of implementation studies and designs,

most notably by Rader[Rade96] and McWhirter et al.[Ward86b] for applications such as

adaptive beamforming in radar systems. None of these, however, has directly addressed the

issue of achieving high-sample-rate operation.

The thesis is in two parts. The first part (Chapters 3 to 5) considers the design of arithmetic

operators with low-latency and high-throughput. Although this research was motivated by

the needs of the QR-algorithm, the results are more generally applicable. The second part

(Chapters 6 to 8) specifically addresses the issues of determining the algorithm, architecture

and arithmetic implementation of a VLSI implementation of the QR-algorithm. A detailed

overview by chapter now follows.

In Chapter 2 the important concept of redundant arithmetic is introduced, as this provides a

means of avoiding carry-propagation, which enables the latency of an arithmetic operation

to be reduced. On-line and msdf arithmetic techniques are presented as ways in which redun-

dant arithmetic has been exploited to reduce the latency of operators. The extension of the

msdf operators to floating-point arithmetic is discussed, as this is of some importance to

modern DSP algorithms.

In Chapter 3 two schemes for achieving low-latency, high-throughput multiplication are in-

vestigated. Firstly, msdf approaches are analysed for a range of digit-sets, and a new archi-

tecture based on the minimally-redundant, radix-4 digit-set is presented as offering the best

compromise between latency, area and redundancy. Circuit delay and gate numbers are pre-

sented here and later in the thesis to support the research. Secondly, low-latency multipliers

based on trees of adders are presented as an alternative which does not require the data skew-

ing of an msdf format. A multiplier with a single redundant input is developed as a replace-

ment to the msdf multipliers considered, which offers single-cycle latency with an area less

than a conventional tree-multiplier. For multipliers with two redundant inputs, a new archi -

- 13 -

Chapter 1	 Introduction

tecture is presented, which uses a minimally redundant radix-n recoding on both multiplier

and multiplicand inputs, to reduce the cost of the redundant representation by up to 25%. The

application of this technique to a squarer is also addressed, as a dedicated squarer circuit of-

fers significantly reduced area over a multiplier used for the purpose.

Division is a requirement of all but one of the Givens rotation variants examined, and is im-

portant in achieving an efficient processor implementation. In chapter 4 the various ap-

proaches to achieving low-latency, high-throughput division are examined. Two new

architectures are presented, one a modification of a speculative SRT (Sweeney, Robertson

and Tocher) divider, made to obtain an acceptable gate count, and the other a high-through-

put implementation of the convergence approach.

Floating-point operators are required by the Givens rotation algorithms considered later in

the thesis; a range of these has been developed and is presented in Chapter 5.

In Chapter 6 an overview of the Givens rotation variants is presented, and a generalised set

of equations is given from which a number of relevant algorithms are derived. Also, normal-

isation of the Givens rotation is described, as a means of allowing implementation using

fixed-point arithmetic.

The suitability of a range of Givens rotation variants for VLSI implementation is examined

in Chapter 7. Their numerical performance and subsequent wordlength requirements have

been investigated, together with the type, order and number of arithmetic operations used.

An enhanced version of the Squared Givens Rotation (SGR) algorithm is developed, which

obtains extremely high sample-rate with good numerical performance and low circuit area.

A detailed comparison with other Givens rotation variants shows that it offers the highest

sample-rate and lowest area of the algorithms investigated.

Developing an architecture for the QR-algorithm which can be mapped onto an integrated

circuit is addressed in Chapter 8. A number of array architectures are presented that would

-14-

Chapter 1
	

Introduction

enable a range of problem sizes and sample-rates to be implemented. The circuit layout, for

one of these architectures, is presented using the enhanced-SGR algorithm, and the area and

speed has been derived and compared with a solution based on CORDIC and an array of pro-

grammable DSP chips.

The research has produced a range of results in the areas of arithmetic, algorithm and archi-

tecture from which conclusions have been drawn. These are presented in Chapter 9 and fol-

lowed by a summary of topics on which further research could be productive.

- 15 -

Chapter 2	 Redundant Arithmetic

2.1	 Introduction

The representation of a number plays a vital role in achieving low-latency arithmetic. In this

chapter the important concept of a redundant number representation is introduced, and it is

shown how it may be used to obtain fast addition, an operation fundamental to the implemen-

tation of all arithmetic operations. A simple, but effective, technique is presented to realise

redundant adders using standard full-adders, and a number of examples are given. This tech-

nique is used extensively in later chapters to obtain low-latency arithmetic operators.

Redundant arithmetic also enables arithmetic operations to be performed in a most-signifi-

cant-digit-first (msd-first) manner. This offers an approach for achieving arithmetic with la-

tency which is low and independent of wordlength, and is considered later in the chapter.

2.2 Redundant Number Systems

2.2.1 Redundant Representation

Consider the representation of a number using a fixed-positional number system with radix-r

X	 Xaxa^l...xlxOXlx2...xb
b	

(2.1)

=	 x1r'	 x € {Pmin, ..., Pmax}

i-a

Here and later in the thesis upper case letters are used to represent a complete word and lower

case letter to represent individual digits.

In a conventional number representation each digit is allowed to assume one of r values. In

a redundant number representation each digit assumes more than r values i.e.

Prnax - p 1,, ^ r. More formally, the cardinality of a digit set is C = Prnax - pm + 1 , and by

definition the digit-set is redundant if C, > r and non-redundant if C, = r. If there is only

-16-

Chapter 2	 Redundant Arithmetic

one additional value in the digit-set (i.e. C, = r + 1) then the digit-set is minimally redun-

dant. If Cr - 2r - 1 then it is referred to as maximally redundant and over redundant if

Cr ^ 2r. If negative digits are allowed, the representation is signed. If the digit set is sym-

metric (i.e. —p m,,, = Prnax) then it is a Signed Digit Number Representation (SDNR), other-

wise it is asymmetric and a Generalised Signed-Digit Number Representation[Parh9O].

Table 2.1 [McQu92] presents a summary of the number systems, and for each gives examples

of how the number 528 10 could be represented. An overbar is used as a more succinct repre-

sentation of negative digit values.

Table 2.1 Representations of the number 528

Number system	 Digit-set Cardinality Representation of 528

Conventional	 [0.. .9]	 10	 528

Non-redundant, signed	 [3...6]	 10	 532

Minimally-redundant, symmethc [5..
.51	 11	 532, 1532

Maximally-redundant, symmetric [99] 	 19	 532, 1532, 1488

Over-redundant, symmetric	 [F...F]a	 30	 532, 1532, 1488, 4C8

Asymmetric	 [7...8]	 16	 528, 532, 1532

a. Hexadecimal digit coding adopted (i.e. A—b, B=1 1 etc.)

One advantage of a redundant representation is that the need for carry-propagation is reduced

or completely eliminated when two numbers are added. This reduces the time to perform ad-

dition and also makes it independent of wordlength. Due to the fundamental importance of

addition this has implications for the realisation of all arithmetic operators.

The carry-save representation constitutes a redundant number system, since each digit com -

prises a carry and a sum bit, and so may take values [0.. .2]2 (where the subscript is used to

signify the radix of the digit-set). The carry-save representation has been used for many years

to avoid carry-propagation, and so reduce the time to perform repeated additions in an accu-

mulator or multiplier. On completion of either operation, the result is converted to conven-

- 17 -

Chapter 2	 Redundant Arithmetic

tional, non-redundant binary by adding the sum and carry bits together using an adder which

propagates the carries. In the worst case, the conversion takes as long as a carry takes to prop-

agate from the least to the most significant bit of the result. However, it is performed only

once, whereas the number of redundant additions is far greater.

SDNRs have the advantage that the truncation error is almost unbiased[Priv9O], whereas

asymmetric digit-sets, such as carry-save, require rounding to achieve similar low-levels of

bias in truncation error. A particularly useful SDNR is the minimally redundant radix-4 rep-

resentation (MinR4), which uses the digit-set [2.. .214 . This does not contain the digit 3 or

3, so it is possible to form products between its digits and a binary number using only shift

and complement operations. More specifically, multiplies by 3 are not required, which

avoids the need for an adder to produce them.

The MinR4 number representation has been used to reduce the number of partial products

generated in multiplication, and is obtained from the conventional binary representation us-

ing modified Booth's coding. Both the original[Boot5l] and the modified Booth's coding

schemes[Rubi75] represent important arithmetic techniques, which are considered further in

the next section.

2.2.2 Booth's Coding

The original Booth's algorithm replaces sequences of 1 's in a number with a 1 preceding the

sequence and a 1 at the end, e.g. 1111 would be represented by 10001. In multiplication,

this recoding operation can be applied to increases the number of Os in a multiplier, and so

reduce the number of partial-products which must be formed and added. The recoding of dig-

its can be performed without carry-propagation. However, on occasions where there are few

runs of is or Os, this form of recoding can increase the number of non-zero digits.

The number of non-zero digits can be minimised by using an alternative recoding. However,

it is time consuming as the whole word must be examined to determine each bit. Further-

- 18-

Binary

Recoded '1 010 To i

MinR4 2 1 1

Chapter 2
	

Redundant Arithmetic

more, the result is of little benefit, as in a synchronous parallel multiplier it is necessary to

design for the worst-case number of non-zero bits, which is approximately half the total

number of bits. Therefore, a modified form of Booth's coding is generally used, which

achieves the same worst-case reduction of partial-products, but in much less time. The mod-

ified recoding ensures that there is at most one non-zero digit in each pair of output digits.

Figure 2.1 presents an example. Each pair of digits can be obtained in parallel from 3-bits of

the binary using the truth-table shown in the figure. When interpreted as a radix-4 number

the result is in a MinR4 representation, as shown in the figure.

Input Triplet	 Output	 Radix-4

000orlll	 00	 0
001 orOlO	 01	 1

011	 10	 2
100	 10

101orilO	 01	 1
Figure 2.1 An example of modified Booth's recoding

2.3 Addition of Redundant Numbers

23.1 Redundant Adders

Avizienis [Aviz6 1] showed that two SDNR numbers could be added using one or two transfer

digits as shown in Figure 2.2. In the figure, the digits to be added have been denoted a, and

b1 . Their sum has a greater range than can be represented by the output digit z 1 . Therefore,

the objective of the adders is to reduce the range of the input digits to that of the output using

a number of stages of addition.

-19-

rt + w - a + b

zi - w+ t_1

-1

Chapter 2
	

Redundant Arithmetic

zi+2	 z +i	 zi

(a) Adder with single transfer digit

a12	 a +1	 a
b1 ^ 2 b+2

+ 1
rt + w - a + b

rt' + w' 1 - w1 + t1

zi -	 + t'_ i

zi+2	 z1+i	 zi

(b) Adder with two transfer digits

Figure 2.2 Redundant number adders

Figure 2.2 (a) shows this being achieved in radix-r arithmetic using only two stages of addi-

tion and one transfer-digit. The first stage generates the transfer digit t1 and an intermediate

sum w, from the input digits a and b 1 . The second stage adds the intermediate sum to the

transfer digit from the digit-slice to the right. This two-stage addition process ensures that

the transfer digit propagates only one digit-slice to the left. For this to occur correctly, the

two relationships presented in the figure, defming the operation of the adders, must be satis-

fied. This is not possible for a radix-2 representation when adding two or more redundant

numbers, and it is necessary to use three stages of addition and two transfer digits, as shown

in Figure 2.2 (b). It is also necessary to use three stages when the output digit-set has reduced

redundancy, as will be demonstrated later in the chapter by an adder design with a MinR4

output. In either case, the extra level of adders means that the transfer digits may now prop-

agate two digits to the left.

The number of transfer digits required depends upon the radix, the number of inputs, and the

level of redundancy in the input and output of the adder. The design of redundant adders has

also been considered by Parharni[Parh9O] for generalised signed digit numbers. The logical

design of the adders is not considered, yet is important, as the efficiency of the adder is de-

pendent upon the representation used for intermediate digits. Carter and Robertson[Cart9O]

have simplified the design of adder logic by decomposing higher-radix adders into a number

of stages of lower-radix addition. If decomposed into radix-2, then only 3 primitive operators

- 20 -

Chapter 2	 Redundant Arithmetic

are required to construct an adder. However, the logical implementation of the adders must

be chosen to accommodate the digit-sets used within the adder and these digit-sets are iden-

tified by an exhaustive search.

In this thesis, it is proposed that the adder design process be further simplified by basing the

adder design on a single primitive component, which consists of a generalised interpretation

of the full-adder. Also, and perhaps more significantly, the use of a single full-adder primi-

tive offers high speed and low area when an optimised full-adder standard cell is available.

This strategy is supported by recent work by Oklobdzija et al.[0k1o96] which demonstrates

that, for the case of an unsigned adder for multipliers, an approach using full-adders with a

careful choice of inputs and outputs to accommodate their differences in timing, can be an

effective approach for obtaining high-speed implementations of large adders. In this thesis,

SDNR adders are required. To accomplish this, it is necessary to encode signed-digits using

a binary representation so that they may be added using full-adders. This is discussed in the

following sections.

2.3.2 Encoding of Redundant Numbers into Binary

Signed-digits can be encoded into binary in various ways. Signed magnitude and 2's corn-

plement are two possible approaches. Another method is to use a convenient choice of pos-

itively or negatively weighted bits to represent each digit. For example, the MinR4 digit can

be represented by three bits: one bit with weight 2 and two bits with weight 1 . The advan-

tage of this representation is that a generalised version of the full-adder can be used to add

digits.

2.3.3 Generalised Full-Adders

The addition of positively- and negatively-weighted bits can be achieved using a full-adder,

providing that the coding presented in Table 2.2 is adopted. As given, the usual logical en-

coding is used for positively-weighted bits, but an inverted coding is used for negatively-

weighted bits. The conversion from a positively-weighted to a negatively-weighted bit is ob-

- 21 -

Binary

Signed-
binary
Digits

,,1
0

+

Chapter 2
	

Redundant Arithmetic

tamed by inverting it.

Table 2.2 Encoding of signed bits

	Arithmetic Value Logical
	

Arithmetic Value Logical
of Bit	 Value	 of Bit	 Value

o	 o
	

o	 i
+1	 1
	 -1	 0

(a) Encoding of a positively-weighted bit (b) Encoding of a negatively-weighted bit

By adopting this coding, it is possible to realise the four 3-input adder combinations of the

generalised adder shown in Figure 2.3 using the conventional full-adder. It is no longer nec-

essary, as suggested by Hwang[Hwan79] p. 173 and others, to change the logic itself. Exten-

sive use is made of this fact in this and the next chapter.

xyz
	

xyz
	

xyz
	

xyz

11	 I

Cs

x+y+z - 2.c+s
	

x+y—z - 2.c-s
	 x-y-z -2•c+s	 —x—y—z - -2.C-s

Figure 2.3 The generalised full-adder

23.4 Redundant Adders Based on Generalised Full-Adders

Redundant number adders can be constructed from generalised full-adders. For example,

Figure 2.4 (a) shows the addition of a signed-binary number and a binary number.

Signed-binary

(+)

+ +	 + +	 + +	 +

-

Signed-binary

(a) Addition of signed-binary and binary (b) Subtraction of binary from signed-binary

Figure 2.4 Using full-adders to add a signed-binary and a binary number

A single redundant input means that only one transfer digit is required in this addition, and

this is added to the output by appending the digit, avoiding a second row of adders. Figure 2.4

- 22 -

Chapter 2	 Redundant Arithmetic

(b) shows that subtraction of the binary input can be obtained by adding a negated version of

it, obtained by inversion. The sign of the full-adder output must change to accommodate the

two negative input bits. Also, it is necessary to ensure that arithmetically-zero signals are set

to the correct logical values. This means that the transfer digit entering the least-significant-

digit of the result should be set to logic one. Note that obtaining subtraction in this way (i.e.

by inverting bits and adding 1) is the same process as taking the 2's complement. However,

allowing individual bits to take on positive or negative signs offers greater flexibility, as

demonstrated by the following examples.

2.3.5 Further Examples of Redundant Adders

Two further examples of redundant adders constructed using full-adders are presented in this

section. In these and other designs developed in the thesis, the specification of the coding and

the use of full-adders has so constrained the design space that an optimum solution is simply

found by trial and error. When the number of inputs is large, a more systematic design pro-

cedure can be used, and an adder structure based on an adder-tree can be adopted.

As mentioned earlier, the addition of two signed-binary numbers requires at least two trans-

fer digits. Figure 2.5 (a) shows one digit-slice of the generic adder with digit bounds speci-

fied for signed-binary addition. Its implementation using full-adders is shown in

Figure 2.5 (b). As in the previous example, the fmal row of addition is achieved without the

need for logic circuits. Furthermore, the first transfer digit is determined using three of the

four input bits, so there is a degree of flexibility in its calculation which has been exploited

to simplify its generation.

In Figure 2.5 (a) the first intermediate sum is a redundant number (i.e. (wj) max - (W i)min > r).

This avoids a transfer digit from the first adder with the bounds [1...!], requiring two bits.

This would have been a valid solution, but would have required an additional half-adder to

implement the first row of adders.

- 23 -

Chapter 2
	

Redundant Arithmetic

[i...1]

I

[1...1]	 [1...1]
[i...1]

(a) Two transfer digit adder-slice 	 (b) Adder implemented using full-adders

Figure 2.5 Using full-adders to add two signed-binary numbers

As a final example, consider the implementation of the MinR4 adder mentioned briefly in

section 2.3. At least two transfer digits are required, but these can be coded using single bits

by allowing a redundant intermediate sum (as done in Figure 2.5 (a)). This implementation

using full-adders is shown in Figure 2.6 (b).

I_I	 +	 +1

I	 I-	 I	 1 •	I	 1'•	I	 I-	 I	 1 •	I	 1.1

I	 I	 Ii	 ii	 I	 I	 I	 I	 I	 il	 I

T/+)	 T/) 1

[0.. .5] -71?' /_ I +	 /

/
LU...1J	 LL...1J	 1	 +	 + -	 + -

[0... 1]	

- + -	 + + + 0	 + + + + 0
- +	

+ + - +	 + + - +	 0

[2...2]	 -	 + +	 -	 + +	 -	 +

[2...2]

(a) MinR4 adder-slice	 (b) Adder implemented using full-adders

Figure 2.6 Using full-adders to add two MinR4 numbers

In conclusion, in this section it has been shown how full-adders may be used to implement

SBNR adders by a suitable binary encoding of positively- and negatively-weighted bits. The

output representation of an adder, or converter, can be controlled by a suitable choice of out-

[2...2] [2...2]

[i...O] 'JjO...5]
[1...O]

+
--	 rn	 11

- 24-

Chapter 2	 Redundant Arithmetic

put coding. The design process then becomes a matter of constructing a network of full-

adders which compresses the adder inputs into the bit representation of the output.

Conversion from a redundant representation into a non-redundant one, such as a 2's comple-

ment representation, can also be performed by generalised full-adders. Alternatively, the

negatively-weighted bits can be converted to a negative 2's complement number and added

to the positively-weighted bits using a conventional 2's complement adder. In either case,

carry-propagation the full length of the adder will be required. To obtain high-throughput,

the addition should be pipelined. If low-latency is required, then a fast carry-propagation

technique can be used, such as carry-look-ahead (CLA)[Wein56] or carry-select addi-

tion[Bedr62].

2.4	 Most-Significant-Digit-First Arithmetic

Employing redundant arithmetic to reduce carry-propagation time is one effective method of

reducing operator latency. However, another application, which aims to offer further reduc-

tions, is to allow arithmetic to be performed in a most-significant-digit-first (msd-first) man -

ner. There are serial and parallel forms of msd-first arithmetic. The parallel form offers high-

throughput and is of particular relevance in this thesis, but by way of introduction, the serial

form, referred to as on-line arithmetic, is considered first.

On-line arithmetic was proposed by Ercegovac [Erce77], and since then there has been con-

siderable development of the approach[Triv77][Irwi87]. Figure 2.7 (a) shows how numbers

are represented by a serial sequence of digits presented in a msd-first order. Unlike conven-

tional arithmetic, the arithmetic calculation starts with the msd and generates the result in the

same order. The benefits of performing the operation this way are that it offers lower latency,

and the calculation can be stopped as soon as the required number of significant digits has

been calculated.

In contrast, using a conventional least-significant-bit-first serial approach, as employed by

- 25 -

Chapter 2	 Redundant Arithmetic

Denyer[Deny85], it would be necessary in multiplication to calculate all the least significant

digits of the result in the process of calculating the most significant ones - even if they are

not required. This is particularly true in repeated multiplications, since the lower half of each

intermediate product must be discarded to avoid wordlength growth.

1z31z21zi1
	

Ml	 M2M3

Z=
x3x2x1

3A
1z21zh,	

I	 I
6543210

Time

(a) Digit serial on-line computation

	

I	 Input

I MiOut	 I

	

I M2Out	 I
I M3Out	 I

	

• A3	A7	A1

15	 10	 5	 0

Time

(b) Timing of cascaded operators

Figure 2.7 Digit-serial, on-line computation

As shown in Figure 2.7 (b) the on-line operators can be cascaded to obtain the result of a

whole sequence of operations with low-latency. The latency can sometimes be reduced fur-

ther by merging two or more operations into a single combined operator. The most relevant

example of this is by Ercegovac[Erce88] who computes the function z =
	 1	

, which
Jx2 + y2

is a requirement of the conventional Givens rotation.

The serial format of on-line arithmetic minimises the number of wires required to communi-

cate a number, which has advantages in chip design. However, it requires that one calculation

be completed before another starts and so provides low throughput. To obtain higher

throughput, Woods and Knowles[Wood88] proposed the extension of on-line arithmetic to

parallel architectures (generally referred to as msdf arithmetic). They also generalised the ap-

proach to allow inputs in both msdf and parallel formats, as shown in Figure 2.8.

- 26 -

msd

- T

LJIsd

Chapter 2
	

Redundant Arithmetic

Figure 2.8 Msdf arithmetic

An application which has benefited from msdf arithmetic is recursive filtering, in particular,

the infinite impulse response (1W) filter. In this application, the filter output is generated by

summing weighted versions of previous outputs. High sample-rate operation is obtained by

generating and feeding back the output as quickly as possible, using an architecture which

can sustain the rate of computation. An msdf multiply-add operator offers both the high-

throughput and low-latency necessary for high sample-rate operation to be

achieved[Wood95].

2.4.1 Converting To and From the Msdf Format

Converting a number into an msdf representation is trivial. However, converting back the

skewed representation of msdf into a parallel non-redundant representation incurs a delay

while all the digits are aligned, and requires a carry-propagate addition. The addition can be

performed as the digits are being aligned using 'on-the-fly' conversion. This was originally

proposed for radix-2 by Majerski[Maje85] and extended to higher radices by Ercegovac and

Lang[Erce87], and is achieved in the following way.

For each input digit the sum up to and including digit d is obtained recursively by

= A 1 + If carry-propagation is to be avoided, then the result must be assembled

by only appending bits to the binary result. If the signed-binary digit, d, is 1 or 0 the output

is updated by simply appending a 1 or 0 to A_ 1 . if the digit is I then a subtraction is re-

quired, which will result in a borrow. This can be avoided by maintaining a second term in

which the borrow has already been performed, i.e. B.. 1 = A1 - 2.2. The result for

- 27 -

Chapter 2
	

Redundant Arithmetic

d - 1 is then B ... + 2. The B term can be updated in a similar fashion to A.

Knowles[Know89b] produced an alternative form of the signed-binary to binary converter

by noting that the addition of the digit 1 had the effect of inverting the preceding string of

bits of the form 10. . .0 in A 1 (where the number of logic Os may be zero). For example

10110001 = 10101111. Now only A need be maintained, although a second term is not

avoided as a flag must be included for each bit to indicate whether it should be inverted when

a 1 occurs. However, this solution does offer simplification of the hardware and is used later

in the thesis when conversion is required (e.g. at the output of the modified-SRT divider).

2.5 DSP Using Msdf Arithmetic

A wide range of arithmetic operators can be performed using msdf parallel structures, and it

is possible to implement complete DSP algorithms using a combination of msdf operators to

achieve low-latency, high-throughput implementations. For algorithms with feedback this

offers the potential for high sample-rate operation.

DSP system implementation using on-line arithmetic has already been widely addressed, and

the principles can be directly extended to the msdf approach. With a view to exploiting this

work for implementing msdf systems, McQuillan reviewed the on-line arithmetic literature

and considered its application in areas other than 1W filtering[McQu92]. He also examined

the extension of on-line fixed-point operators to floating-point arithmetic. This work is of

particular relevance to this thesis and identifies a serious limitation of the msdf approach, so

is considered next.

Floating-point requires the number representation to be composed from an exponent and a

normalised mantissa. Exponents can be processed very rapidly using conventional arithmetic

as they generally have short wordlength. The mantissas can be processed using fixed-point

msdf operators providing that normalisation and alignment operations are used to convert to

and from the normalised representation (where norrnalisation is a shift-left and alignment a

- 28 -

Chapter 2
	

Redundant Arithmetic

shift-right operation).

Conventionally, a mantissa of a floating-point number, M, is norrnalised if r' ^ IMI < 1

[IEEE85]. To determine if this is true for a redundant representation, it is necessary to exam-

ine all digits (e.g the signed-binary number o.i000000T is unnormalised). Therefore, quasi-

normalised numbers have been proposed (by Watanuki[Wata8l]), where the mantissa is

quasi-normalised if r 2 ^ Ml < 1 . To determine if this is the case only the first two digits of

a number need be examined. However, the truncation error is greater and the wordlength

must be increased by one bit to maintain the same worst-case relative error.

McQuillan showed that all the basic arithmetic floating-point operators (i.e. multiply, divide,

square-root and addition) offer fixed low-latency, apart from true subtraction which could

require a latency of n + 3 (where n is the mantissa wordlength). In subtraction, the problem

arises from the large number of leading zeros which occur when two numbers which have

similar values are subtracted. Consequently, to normalise the result a wordlength dependent

delay can be incurred. In applications where the latency of the subtraction operation is criti-

cal, for example when it is performed within a loop, floating-point msdf arithmetic in its cur-

rent form, will be of little benefit. McQuillan identified three approaches to tackling the

problem.

Variable Precision Arithmetic: Unnormalised numbers which require more than rn-cycles

to normalise are assumed to be zero. Hence, only a delay of rn + 3 -cycles is introduced

where m < n. The smaller m is, the greater the numerical implications of this approach will

be. Unless the system is trivial, it will be necessary to establish the impact on the quality of

the result using numerical simulations. In the QR-algorithm, the implications of this ap-

proach are likely to be severe.

Unnormalised Arithmetic: Floating-point arithmetic, in which the mantissas are not nor-

malised, has been considered by Metropolis in [Metr63]; although normalisation before di-

- 29 -

Chapter 2	 Redundant Arithmetic

vision was still proposed. A limitation of this approach is a lack of error and stability analysis

for unnormalised arithmetic. Owens considers the normalisation problem in detail in

[Owen83] and suggests that certain algorithms can be coerced into generating numbers that

are normalised or nearly so. Generating normalised values has the added benefit that classi-

cal error and stability analysis can be applied.

Asynchronous Systems: The average normalisation delay will be considerably less than the

worst-case delay. If a system is designed to operate in an asynchronous manner, the variable

normalisation delay can be accommodated. Such a system will need buffers to queue data

and a greater level of control to manage its operation, so the extra complexity of implement-

ing these would need to be assessed and compared with the savings offered by msdf arith-

metic.

All of the above approaches will require extensive computer simulations to ensure that the

numerical performance and, in the asynchronous case, the throughput are acceptable. This

can be a computer-intensive task, particularly if very detailed modelling of the operators is

required to faithfully generate numerical errors.

-30-

Chapter 3 High-Throughput, Low-Latency Multipliers

3.1	 Introduction

3.1.1 Importance of Multiplication

Many DSP algorithms are dominated by multiply-add operations. Multipliers can also be

used to realise other operations, such as divides, square-roots and transcendental functions,

using convergence or series expansion approaches. For these reasons high-throughput, low-

latency multipliers have been the primary focus of modern computer arithmetic research.

High-throughput multipliers can be achieved by pipelining. This divides the operation into

stages using latches, so that only the smaller delay of a single stage determines the rate at

which inputs may be applied. Unfortunately, this does not reduce the latency of the result, as

this is generated by the combination of all stages, irrespective of how they are partitioned. In

microprocessors, latency complicates operation and programming, and in the implementa-

tion of recursive systems, limits the sample-rate. One approach to reducing latency is to use

redundant arithmetic, as considered in this chapter.

3.1.2 Low-Latency, Redundant Multiplication

Digital multiplication is essentially a series of additions, which can be performed with a

reduced level of carry-propagation using a redundant representation (as discussed in

Chapter 2). Indeed, the redundant carry-save representation has been used extensively for

this purpose in conventional multipliers, where the final sum, in its carry-save form, is con-

verted to non-redundant binary using a carry-propagate adder. The duration of the latter step

is similar to that of the partial-product addition, but can be avoided by allowing a redundant

output representation from the multiplier. To enable the output to be fed back into the input,

or when cascaded, into another multiplier input, the multiplier must also be designed to

accept a redundant input. This shall be referred to as a redundant multiplier.

-31-

Chapter 3	 High-Throughput, Low-Latency Multipliers

The redundant multiplier output can be viewed as a result of not completing the partial-prod-

uct accumulation process. As a consequence, more bits are required to represent the output,

and when used as an input, the number of partial-product bits which must be formed and

added is increased. In this chapter, ways of minimising the cost of a redundant representation

in multiplication are presented. In particular, it is shown that a multiplier can be designed

with one redundant input, which is suitable for applications such as high sample-rate hR fil -

ters and the Givens rotation, with less area than a conventional multiplier.

Two architectures are considered for obtaining low-latency redundant multiplication:

Array multipliers employing msdf arithmetic

Tree multipliers using a parallel number format

Using the msdf approach, multipliers with only one redundant input are presented. For the

tree-based approach, multipliers with one and two redundant inputs are considered, as the lat-

ter is pertinent to the implementation of high-throughput, multiplicative elementary function

generators, an example of which, is the reciprocal circuit presented in the next chapter.

3.2	 Msdf Multipliers

3.2.1 Background

As discussed in Chapter 2, msdf arithmetic aims to reduce the latency of the multiply oper-

ation by obtaining the result in an msd-first, skewed manner, so that the result digits can be

produced as quickly as possible, before all terms of the partial-products are formed and

summed. This is made possible by the reduced level of carry-propagation that occurs using

redundant addition, which enables digits of the result to be determined from only a few of

the most significant digits of the incomplete partial-product sum.

Msdf arithmetic was proposed by Woods et al. [Wood88] as a means of directly achieving

high-throughput, multiply-add operations with low-latency. The architectures were aimed at

implementing high sample-rate hR filters, and have the advantages of being regular and sim-

-32-

Chapter 3
	

High-Throughput, Low-Latency Multipliers

ply extensible for increased wordlength with little degradation in speed.

A number of radix-2 architectures were proposed by Woods et al. to perform the computa-

tion M = YX + A, where X is a coefficient, A an additive input, and Y and M the msdf

input and output respectively. The work culminated in an architecture which was based on a

simple and regular carry-save array with a signed-binary, msdf representation for the input

and output, and a 2's complement parallel representation for the coefficient[Know89a]. This

multiplier-adder was used to implement a high sample-rate programmable 1W filter

chip[Wood95]. Its implementation required similar area to that of a conventional array mul-

tiplier, yet offered a significant reduction in latency. However, when it was compared with

a conventional Booth's recoded multiplier the area was found to be considerably greater.

This difference was, in part, due to the use of modified Booth's recoding in the conventional

multiplier to almost halve the number of partial-products. This is achieved, as discussed in

Chapter 2, by recoding the multiplier input into the MinR4 digit-set [2... 2} 4 . The radix-4

digit-set halves the number of multiplier digits and associated partial-products, yet only

slightly increases the complexity of forming the partial-products. Consequently, recoding

almost halves the area of a multiplier.

Lapoint et al. in [Lapo9O] aimed to obtain a similar reduction for an msdf multiplier by using

the radix-4 digit-set [3. ..3] and avoided the complexity of calculating the partial-product

with the digit 3 by precalculating 3X. However, the saving in area is restricted by the extra

pipelining latches required to distribute 3X throughout the array and the more complex par-

tial-product logic.

Therefore, the question arose as to whether it was possible to use a redundant representation

other than signed-binary, such as MinR4, directly within the multiplier to reduce its area or

latency. In answer to this, a study of msdf multipliers using a range of digit-sets was under-

taken, and the results are presented in the first half of this chapter.

- 33 -

Chapter 3	 High-Throughput, Low-Latency Multipliers

To provide an algorithmic basis for this research, the analysis of radix-2 msdf multipliers

performed by McQuillan[McQu95] has been extended to higher radices. This has enabled

the minimum latency to be determined for a range of digit-sets and radices. By considering

these results and the complexity of the partial-product generation for each multiplier a

number of the more promising cases have been identified and architectures suitable for hR

filtering produced. In particular, a new architecture has been developed and pub-

lished[Wa1k93] using the MinR4 digit-set, which has been shown by circuit synthesis to

offer significant savings in area over the signed-binary approach.

A similar study was performed by Brackert and Ercegovac [Brac89a] for on-line multipliers,

and they have also considered the application of 1W filtering, but suggest a solution based

on a number of on-line modules[Brac89b]. Here, a more direct approach is used to achieve

high-throughput, based on a parallel msdf implementation. As mentioned in section 2.4,

there is actually little difference in the underlying algorithms used by on-line and msdf mul-

tipliers. However, the architectures are quite different, and the msdf parallel architectures,

presented later in the chapter, and the circuit synthesis results are of sufficient interest for

presentation in this thesis.

3.2.2 Msdf Multiplier Algorithm

The aim of the msdf multiplier-adder is to compute the function

M = XY+A
	

(3.1)

The product M is computed, most significant digit first, with Y and A supplied in a digit-

by-digit, msd-first manner. The multiplicand X is known at the start of the calculation and is

presented in a 2's complement representation.

For the general radix case, the partial multiplier Y and partial addend A at the th iteration

are given by

-34-

Chapter 3
	

High-Throughput, Low-Latency Multipliers

YJ = Y. 1 +yrH =	 yjr'
	

E {ltmin, ..., it}

(3.2)

A = A_ 1 +ar-i =	 a E { ltmin, ..., 7tfl) }

Where 7tmin and ltmax represent the two extreme values of the digit range.

On each iteration, a digit is added to the partial terms Y and A, starting with the most sig-

nificant digit and finishing with the least significant one. The final result M is also compiled

in this manner, but is delayed by the time required to perform the computation. This latency

shall be denoted and defined to be the number of iterations between a multiplier digit

entering the computation and a result digit of the same significance being computed. Hence

on the th iteration, only M 6 is available, where

j-8

M_ 3 = M_ 8_ 1 + m_ 8ri+ & =	 m1r	 m, E {ltmin, ..., 7tmax}
	

(3.3)

To compute the result in this manner a residual can be defined as:

Z = ri6(XY+A—M)
	

(3.4)

This residual represents the multiply-add operation performed with all available digits of the

input minus the partial result M_ 8 . The scaling factor r 6 has been introduced for conven-

ience only, and ensures that the residual is maintained within a fixed range.

A recurrence equation for Z can be developed to compute the next residual from the previ-

ous one. That is,

Z = rZ 1 + r(Xy + as)— mj6	 (3.5)

WhereZ0 = 0.

As formulated, a digit of the result (i.e. m j 8) is determined on each iteration of the recur-

rence. As indicated by equation (3.3) the partial result M_ 8 is obtained by simply appending

- 35 -

Chapter 3	 High-Throughput, Low-Latency Multipliers

successive result digits, and no modification of previous digits occurs.

The minimum latency of the result is derived in Appendix A, and is given by

[iog)ma(+ 1))	 1
R-1—A
logr	

+1	 (3.6)

where

• (IXI '	 is the maximum absolute value of the multiplier coefficient.i	 umax

• A is the overlap and represents the degree of choice in the output digit. The greater

the overlap the fewer digits of the partial-product sum which must be examined to

generate an output digit. If there is no overlap (i.e. A = 0) all digits must be exam-

ined (i.e. carrypropagate addition of the partial-products is required).

• R represents the redundancy in digit-set of the input and output, where

R — tmax Ti!! for the digit-set [lt min .. . 7tmax]r.
r— 1

The minimum value of latency can be calculated by setting the overlap to zero (i.e. A = 0).

With (IXI)max = 2, Figure 3.1 shows the minimum latency as a function of the redundancy

R for a range of radices. Also shown as points on the graph is the latency obtained for a range

of digit-sets. In practice, a value of overlap greater than zero is required to avoid carry-prop-

agate additions, and the greater it is, the faster the result digit selection. For many of the digit-

sets shown in Figure 3.1 the latency is obtained by rounding up to the nearest integer. Con-

sequently, the overlap is usually greater than zero. If not, then it is necessary to increase the

latency by one to make it so.

-36-

Chapter 3

5

Minimum
latency 4

(r61)

3

2

1

High-Throughput, Low-Latency Multipliers

1_

---ra4i2__	 [2...2]2
[1...1]2	 I

-	 [2...2]4-.radix-4	 -- - -
[4...4]8 	[3...3}4	 [4...4]4

radix-8

[7...7]8

1
	

2	 3	 4
Redundancy of digit-set (R)

Figure 3.1 Minimum latency for a range of digit redundancy and radix

3.2.3 Msdf Multiplier Options

In this section, msdf multiplier-adders based on a range of digit-sets are explored with the

objective of identifying an optimum choice. This is undertaken using IIR filtering as the tar-

get application as described by Woods et al.[Wood95], and requires that multiplier-adders

be designed with a coefficient range of lxi ^ 2. The sample-rate of the hR filter depends

upon the latency of the multiplier-adder and the complexity of the circuits to form the partial-

products and select the result digits. With this in mind, the benefits of each digit-set are dis-

cussed below.

Using radix-8 arithmetic and the maximally redundant digit-set [7. . .7]8 provides the lowest

latency. However, the generation of the partial-products will be relatively complex due to the

size and number of digit values, which will offset any benefit of lower latency. Simplifying

the digit-set to [4.. .41 8 increases the latency to that of radix-4 arithmetic, at which point

there are simpler radix-4 digits sets which may be used. Therefore, the radix-8 options are

- 37 -

Chapter 3
	

High-Throughput, Low-Latency Multipliers

considered no further.

All three of the radix-4 digit-sets offer a latency of 3. The over-redundant case will not be

considered further as the digit values will add an excessive amount of further complexity, but

with no saving in latency.

The signed-binary case presents a high latency of 4, but offers simple partial-product gener-

ation. The over-redundant digit-set [2. . .2]2 has a minimum latency of 3 but there is no over-

lap at this point, so the latency will need to be increased to 4. However, if (l xi)max is reduced

then the overlap will be increased and allow a latency of 3. This is no less than the MinR4

digit-set, yet there will be twice as many digits in the radix-2 case and the multiplier will be

twice as large. Hence, this option will also be discarded at this point.

Having eliminated those digit-sets which are clearly of little interest, only three remain.

These are:

Radix-2 signed-binary [1...!]2

Radix-4 minimally redundant (MinR4) [2.. .214

Radix-4 maximally redundant (MaxR4) [3. ..3]4

The most promising digit-set is that of MinR4 i.e. [2.. .21 4 , as it offers the same latency as

the other radix-4 digit-sets, yet with very simple partial-product generation requirements.

3.2.4 Msdf Multiplier Architecture Types

To implement the msdf multiplier-adder two types of architecture are possible, and repre-

sentative portions of both are shown in Figure 3.2.

- 38 -

Xy0+a0	 Yo
a0

a1

•	 S
•	 .
•	 S

Xy0+a0	 Yo
a0

a1

•	 S
•	 S
•	 S

Chapter 3
	

High-Throughput, Low-Latency Multipliers

S
•••	 SSS

- +f Xy+a
m_ 8 Z	

=	 ± zjS

—yj-i
__________ k— a -1

S..	
-

Xy+a

H. tzi
mJ_6+1

mj_fJhJ	 ii+taj+i

(a) Type 1 SFG	 (b) Type 2 SFG

Figure 3.2 Msdf multiplier-adder architectures

The type 1 architecture is a direct mapping of recurrence equation (3.5) on to an array of

cells, and is useful for explaining the operation of the multiplier. The architecture is like that

of an array multiplier, apart from the fact that the partial-products are added most significant

first, and the result digits are generated before the product sum is complete. Each row of the

array forms and accumulates the partial-product between the coefficient X and a digit of the

multiplier y. The digits of the additive input are also accumulated, one at a time, most sig-

nificant first. The result digits are generated msd-first, one by each row of the array. In the

type 1 architecture the result digits are obtained in a two step process in which a selection

cell (denoted S in the figure) determines the correct digit value from a truncated partial

remainder, and a subtractor in the next row removes it from the partial-product sum.

In the type 2 architecture, shown in Figure 3.2(b), the result digit subtraction is avoided by

using adders to partition the partial-product sum into two parts: a leading digit, which forms

the result digit, and remainder, which is the partial-product sum with the result digit

removed. In effect, the selection cell is implemented using the same adders which calculate

yj+1
+ 1

-39-

y
j[1...1]

PJ1[O, 11

NOT(x) if y —1

-	 xify=1

0 ify - 0

sin
[0, 1

0, 1	
a

'	 [i3O]

soul

2c + s01 - s10+a

Inversion

y5

a5

m

rn

Ove
stat

Chapter 3
	

High-Throughput, Low-Latency Multipliers

the remainder of the partial-product sum.

3.2.5 Msdf Multiplier Architectures

Only type 2 architectures are considered for implementation, as these are constructed from

simple full-adder circuits, and should offer reduced result digit selection time over the type

1 architectures.

3.2.5.1 Radix-2 Multiplier-Adder

Figure 3.3 shows the signed-binary multiplier-adder developed by Woods et al. [Wood95].

Figure 3.3 Type 2 architecture for a signed-binary, radix-2 multiplier-adder

-40-

y3

)ify =

ify - 1

)ify	 0

I ify - 1

ify - 2

Chapter 3	 High-Throughput, Low-Latency Multipliers

Both the Y and A inputs are accepted in a signed-binary, msdf format, and a carry-save rep-

resentation is used for the residual. The OA and OB cells provide compression to avoid

increased wordlength due to redundancy overflow. They also provide saturation of the output

to ensure that M < 1 . This is essential in the IIR filter as a coefficient range of (lxi)max = 2.

can lead to overflow, causing gross errors in the output, and leading to oscillation of the filter.

Oscillation can be avoided by saturating the output to a fixed limit when overflow occurs.

Fortunately, saturation can be performed in an msdf manner, and the algorithm developed

for the radix-2 IIR filter chip is described by Woods et al. in [Wood9l].

3.2.5.2 MinR4 Multiplier-Adder

Figure 3.4 presents a type 2 architecture for a MinR4 multiplier-adder.

m1

Figure 3.4 Type 2 architecture for a minimally-redundant, radix-4 multiplier-adder

- 41 -

Chapter 3	 High-Throughput, Low-Latency Multipliers

The inputs A and Y and the output M are in a MinR4 representation. The MinR4 represen-

tation has also been used within the body of the array to simplify the result-digit selection

adders. It also reduces the number of bits required to represent the residual, and hence

decreases the number of pipelining latches by 25% over a carry-save representation. Further

reductions in latches can be obtained by using a minimally-redundant digit-set of higher

radix within the body of the array, although care must be taken to ensure that the resulting

longer carry chains do not lengthen the critical path.

The MinR4 multiplier has only one row of adders for each radix-4 digit. This halves the

number of adders over the signed-binary case. However, the partial-product cells are slightly

more complex than for the signed-binary ones, and so the reduction in multiplier area is not

quite one-half (as shown later).

3.2.5.3 Maximally Redundant Radix-4 Multiplier-Adder

The architecture for the MaxR4 multiplier-adder is shown in Figure 3.5. The radix-4 digits

are represented using 4 bits, which are weighted 2, 1, 1 and 2. These can be grouped into

two signed-binary digits b 1 and b0 weighted by 2 and 1 respectively. Partial-products are

formed for each MaxR4 digit by forming two separate products with each signed-binary digit

and using an extra row of adders to add them. This results in twice the number of rows of

adders over the MinR4 architecture, and as many as the signed-binary one.

Compression and saturation has been implemented in the MinR4 case using the function

described in Table 3.1. The MaxR4 multiplier-adder uses a similar circuit to the signed-

binary case.

- 42 -

m1 y3

a3

I]

fb - —1
—1
-o

Chapter 3
	

High-Throughput, Low-Latency Multipliers

m1

Figure 3.5 Type 2 architecture for a maximally redundant radix-4 multiplier-adder

- 43 -

Chapter 3
	

High-Throughput, Low-Latency Multipliers

Table 3.1 Compression and saturation cell functions

Input Overflow State 	
Input	 Output	 Output Overflow State
DigitDigit _______________________

Positive Overflow	 X	 2	 Positive Overflow

Possible Positive Overflow 	 O..2	 2

	

1	 2	 Possible Positive Overflow

2	 No Overflow

No Overflow	 X	 As Input

Possible Negative Overflow	 2	 2

	

1	 2	 Possible Negative Overflow

	

2..O	 2	 Negative Overflow

Negative Overflow	 X	 2

3.2.6 Comparison of Msdf Multipliers

Figure 3.6 shows the delay and area of the three msdf multiplier-adders as a function of

wordlength. Figure 3.6 (a) shows the results when pipelining is applied between every row

of the multiplier-adder, which results in a latency of 4 for the signed-binary case and 3 for

the 2 radix-4 multiplier-adders. Figure 3.6 (b) shows the results when the level of pipelining

is chosen to give a minimum latency of 2 clock cycles. In both cases the signed-binary mul-

tiplier-adder offers the lowest delay, but also the highest area. The MinR4 multiplier-adder

is not much slower, but as expected achieves a much reduced area, giving a much better area-

time product for both levels of pipelining.

Some of the area savings in the MinR4 have been achieved by the MinR4 coding of the par-

tial sum and as a consequence a reduced number of latches are required to pipeline it over a

carry-save representation. This technique of reducing the level of redundancy to reduce

pipelining cost may be applied in areas of the circuit where speed is not critical, and may be

of value in other operators such as digit recurrence dividers and CORDIC.

The area of all the msdf multiplier-adders is approximately dependent upon the square of the

wordlength, and the delay is almost independent of it (note that the small but finite slope is

due to limitations in the synthesis tool).

-44-

10	 15	 20	 25
Wordlength

10	 15	 20	 25
Wordlength

1 4000

12000

10000

8000

6000

4000

2000

0
5

14000

12000

10000

8000
0
0'

6000

4000

2000

0
5

Delay
15 15

Juct

/
/

/
/

/
I.-

Chapter 3
	

High-Throughput, Low-Latency Multipliers

Delay

- + — — — - — +

+------ —^ --- - +-

10
C

0
0	

+................+-------

5
Signed Binary

- - MoxR4
MinR4

01
5	 10	 15	 20

	
25

Wordlength

140000

120000

0
C

100000
CI

0
0'

80000

o 60000
C)
E

40000

20000

0
5	 10	 15	 20	 25

Wordlength

(a) Pipelined on every row

-' 10
C

>'
0
CI
a

5
Signed Binary

- - MoxR4
— MinR4

01	 I

5	 10	 15	 20	 2
Wordlength

140000

120000

C
100000

CI

0

80000

- 60000
C)

E
I-

40000

20000

0
5	 10	 15	 20	 2

Wordlength

(b) Pipelined for latency of 2 cycles

Figure 3.6 Delay and area comparison of msdf multipliers1

A low-latency msdf multiplier architecture based on the MinR4 digit-set was presented by

Koppenhofer[Kopp93] for application in a decision-feedback equaliser (DFE). Essentially

1. The MaxR4 results were obtained using an architecture developed by McQuillan[McQu94b].

- 45 -

Chapter 3	 High-Throughput, Low-Latency Multipliers

the algorithm employed is the same, although an analysis is not provided within the paper.

There are some significant differences in the architecture worth noting. A carry-save repre-

sentation is used within the body of the array rather than a MinR4 representation, which

increases the number of pipelining latches required. A 4-bit representation is used for the

MinR4 output digits which will also increase the cost of signal delays in the implementation

of a filter. The additive input is not in an msdf format, so the multiplier cannot be cascaded,

even though this is required by the 2nd-order DFE architectures presented in the paper.

Recently it has been shown that the pipelining can be applied to msdf-multipliers to obtain

single-cycle latency[McGo95]. The delay of such an arrangement will be greater than that

given for the 2-cycle latency case, and the relative benefits of each architecture should stay

the same.

3.3	 Tree-Based Multipliers

3.3.1 Background

Msdf arithmetic offers one approach for obtaining low-latency which has been applied very

effectively in a simple recursive system to increase the sample-rate. In more complex sys-

tems the latency of the operations required to convert to and from the msdf representation

can be significant and costly in terms of pipelining latches required to maintain correct tim-

ing elsewhere in the system. To avoid this, Montuschi[Mont93] suggested that the msdf array

multiplier be used without msdf data skewing. In effect, this was achieved by removing all

the pipelining latches from the body of the array and presenting the inputs in a parallel form.

Unfortunately, due to the array structure there is still a relatively long carry chain. In conven-

tionall multiplication, the delay of an array multiplier is reduced by using adder-trees, which

changes the dependence of the delay upon wordlength from a linear one to a logarithmic one.

Although the delay of the tree is not independent of the wordlength, as is the case in msdf

arithmetic, it can be relatively small, particularly for low and medium wordlengths, and so

the approach has the potential to offer low-latency without the inconvenience of an msdf for-

-46-

Chapter 3
	

High-Throughput, Low-Latency Multipliers

mat.

One disadvantage of tree multipliers is that they are much less regular than array multipliers,

and so are more difficult to layout. However, in recent years there has been a rapid improve-

ment in design tools, and it is now possible to automatically synthesise, place and route irreg-

ular designs such as tree multipliers.

Wallace[Wal164] first proposed the use of a tree of full-adders to accumulate partial-products

and reduced the number of adders in the critical path to produce the product. Later Dadda

[Dadd65J saw this as a special case of trees composed of parallel (n, m) counters, which

would count n input bits to give an m-bit binary output. This has been extended by Stenzel

et al. [Sten77] to the case of generalised counters which take several weighted columns of bits

and produce their weighted sum. Alternatively, compressors can be used to provide partial

addition of bits. One very popular example is the 4:2 compressor, which generates 2 outputs

(sum and a carry) from 4 input bits[Wein8l]. It also accepts a carry-in and generates a carry-

out which is independent of it. This compressor has been widely used in multiplier tree

implementations.

In this chapter it is proposed that adder-trees be constructed from simple full-adders for the

reasons given in section 2.3, i.e. the full-adder is a good circuit primitive when available as

a standard-cell component. Indeed, Oklobzija et al. [0k1o96} have demonstrated, that by

careful choice of full-adder intercoimection, very high performance multipliers can be con-

structed from full-adders.

3.3.2 Tree Multipliers with Single Redundant Input

Briggs and Matula [Brig93] presented a redundant multiplier-adder based on a tree of signed-

binary adders. This enabled the signed-binary output to be fed back as either the additive

input or the multiplicand (as in the latter case the signed-binary partial-products formed

between digits of the multiplier and the signed-binary multiplicand could be summed by the

- 47 -

Chapter 3	 High-Throughput, Low-Latency Multipliers

signed-binary adder-tree). The multiplier was in 2's complement fonn, and so ultimately the

design performed the same function as the msdf multiplier-adder described in this chapter.

It achieved single-cycle latency for a 17-bit multiplier and was used to implement multiply,

divide, square-root and transcendental functions using a series of multiplications for a float-

ing-point co-processor chip. The 17-bit, non-redundant multiplier input was recoded into the

minimally-redundant, radix-8 digit-set [4... 4]8 to reduce the number of partial-products by

a factor of 3 and the tree depth to only three signed-binary adders. The radix-8 digit-set

required that partial-products be formed with the digits 3 and 3. This is obtained by adding

multiples of 1 and 2 times the multiplicand and disthbuting the result to the partial-product

generators. In this case, the multiplier is in a redundant form so the addition may be per-

formed very quickly, without significant carry-propagation using a redundant adder.

A disadvantage of using signed-binary adders is that they are approximately twice the size

of a conventional full-adder. They can be avoided by using a conventional tree of full-adders

and feeding back the carry-save output and recoding it, so that it is applied as the multiplier

input. A generalised adder can be used to perform the conversion from carry-save to a MinR4

representation. Such a scheme, at a block diagram level, was recently proposed by Lyu and

Matula[Lyu95], and is, in effect, the tree version of the MinR4 multiplier presented earlier.

A practical realisation of this architecture is now developed.

One critical aspect of the multiplier design not considered by Lyu and Maflila was the need

to avoid redundancy overflow and maintain a fixed wordlength for the feedback variable.

This can be done, as in the msdf multipliers presented earlier, and will only incur a small

delay. A signed-binary representation for the output is also advantageous, as this provides

unbiased truncation error without the need for rounding, and as a consequence the lower half

of the partial-product need not be calculated. As will be shown later, this leads to a significant

saving in area over the conventional approach. It is also shown how a signed-binary output

may be generated directly from a conventional adder-tree by using the generalised interpre-

- 48 -

Chapter 3	 High-Throughput, Low-Latency Multipliers

tation of the full-adder. The architecture of the proposed multiplier is presented in Figure 3.7.

Multiplicand Additive Input
4- 2's complement	 4- 2's complement

Full-adder
tree

Signed-binary

Compression
Signed-binary

Figure 3.7 Tree-based redundant multiplier

Figure 3.8 shows an adder tree suitable for adding partial products. Each slice of the tree adds

a number of bits of equal weight. The inputs enter the array from above and the result is

obtained at the bottom. A view of the inputs from above is shown in the right-hand side of

the figure as a rectangular grid. The partial-products are entered into the tree via the inputs

contained within the parallelogram, and the other inputs are set to zero. Describing the tree

with a rectangular array of inputs rather than a parallelogram is much simpler in VHDL, and

does not lead to extra hardware, as the circuit optimisation tool will eliminate all adders with

fixed inputs.

Result

Figure 3.8 Simplified adder-tree

A conventional adder tree provides a carry-save output. However, a signed-binary output can

- 49 -

LI- i + + +fl, Adder formed from bit-slices

+

signed-binary digit

Chapter 3	 High-Throughput, Low-Latency Multipliers

be obtained using a generalised interpretation of the full-adders within the tree and by noting

that the sign of the tree outputs reflects the signs associated with its inputs. If only one bit

within each bit-slice (i.e. column) of the tree input is negatively-weighted then the sum bit

of the output is also negatively weighted and the sum and carry bits form a signed-binary out-

put. This principle is demonstrated for a variety of adders in Figure 3.9.

5-input adder bit-slice 6-input adder-tree bit-slice

Figure 3.9 Obtaining signed-binary output from adders

Figure 3.10 shows an array of inputs to a tree which will generate a signed-binary output.

This has been arranged by ensuring one bit in each column of the adder tree inputs is nega-

tively-weighted. These negatively-weighted inputs are indicated using a '-' sign. Positively

weighted inputs are indicated using a '+' sign, unless they are unused, in which case they are

left blank. As discussed in Chapter 2, the input or output of an adder may be given a negative

weight by inverting its bit-level coding (there is no need to change the logic of the adder-tree

itself).

As in a conventional tree multiplier, the partial-products are entered in a 2's complement

form in rows denoted (a) in Figure 3.10. The number of partial-products has been halved by

recoding the multiplier. The negative weight of the msb of each 2's complement partial-

product is accommodated by negatively weighting the associated tree input. An extra row of

inputs with positive weight are used (row (b) in Figure 3.10) to enter the bits associated with

the +1 operation required when a 2's complement partial product is negated. To ensure that

each column has one negatively-weighted input, a final row of inputs has been included (and

- 50 -

Chapter 3
	

High-Throughput, Low-Latency Multipliers

denoted (c) in Figure 3.10). These inputs are arithmetically zero, so must be set to logic 1

(see section 2.3.3). Therefore, in effect, a signed-binary output is obtained from the tree by

simply adding a constant term. The generalised interpretation of full-adders has been a pow-

erful tool in establishing this fact.

(a) Multiplier
partial-products

} (b) 2's complement bits

} (c) Extra negatively-
weighted inputs

Figure 3.10 Obtaining signed-binary from a conventional adder-tree

The signed-binary output from the tree, when fed back, forms the multiplier input. To reduce

the number of partial-products, the input is recoded into a MinR4 representation. Recoding

is conventionally performed from binary using modified Booth's recoding. However, it is

possible to recode from redundant representations, although the number of bits which must

be examined to generate each output digit is likely to be greater than 3. An effective and con-

venient way of designing the recoder is to construct it from generalised full-adders, as shown

in Figure 3.11.

xo	 x i	x	 x3	x4	x5

- 1+-I 1+	 1	 1-1+-I 1+	 1	 1-1+-I 1+

X=
	 XE{1...1}

1 +11+I	 I1^1	 1!z'
D=
	 d1E{2...2}

d1d2d3

Figure 3.11 Recoding from signed-binary to MinR4

-51-

Chapter 3
	

High-Throughput, Low-Latency Multipliers

3.3.3 Comparison of Tree-Based and Msdf Multipliers

In this section a comparison is made between the tree and the MinR4 msdf multipliers.

Figure 3.12 presents the estimates of the delay and area of the multipliers obtained by circuit

synthesis. The properties of an equivalent modified Booth's encoded multiplier, consisting

of a tree followed by a carry-propagate adder, are also shown.

The tree based multiplier offers lower area and delay than the msdf multiplier at the word-

lengths considered. The latency of the signed-binary tree is significantly less than that of the

other two, principally because it requires only one clock cycle, whereas the msdf and con-

ventional tree multipliers require two. However, the latency of the msdf multiplier is almost

independent of wordlength, whereas tree multiplier delay will increase with wordlength, and

at some point will be greater than that of the msdf multiplier.

- 52 -

10

0,
C

>-.
0
0)
a

5

01	 I

25	 5	 10	 15	 20	 25
Wordlength

30	
Latency Tim•e

20
C

>'
0
	

+--_

0,
a	

+- - --	
- +0

0- 10

0
5

80000

10	 15	 20
Wordlength

..—. 60000
0,
C

0)

0
0

40000

< 20000

15
Delay

6000

4000

0

2000

Chapter 3
	

High-Throughput, Low-Latency Multipliers

01	 .	 I	 I
	 01

5	 10	 15	 20	 25
	

5
	

10	 15	 20	 25
Wordlength
	

Word length

Key

MinR4 Multiplier—Adder

- - Signed—Binary Tree

Booths Wallace Tree (+Adder)

Figure 3.12 Speed and area comparison of tree-based, redundant multipliers

It should be noted that the functions of the multipliers are not identical. The tree multipliers

considered here do not include an additive input, although incorporating it will only increase

the delay and area by a small amount. More significantly, however, the msdf multiplier was

designed for an hR filtering application where the additive input is supplied in an msdf for-

mat, the magnitude of the coefficient may be as large as 2, and saturation is applied. These

three factors significantly increase digit selection time over that of a multiplier where the

magnitude of the coefficient is restricted to 1 and the additive input supplied in a parallel

-53-

Chapter 3	 High-Throughput, Low-Latency Multipliers

form. (The latter can be simply entered into the array via the first row of adders). Therefore,

in other applications, the latency of the msdf maybe significantly reduced, although it will

not be better than that of the signed-binary tree multiplier for the wordlengths considered

here.

One important benefit of the msdf multiplier, is that saturation of the output may be imple-

mented in an msdf manner. If employed on a tree multiplier it will incur a significant delay,

as the whole result must be examined, and the latency will increase to that of the conven-

tional tree multiplier.

Note that the signed-binary tree multiplier is smaller than the conventional one. This is

because the signed-binary multiplier only needs to evaluate the most significant half of the

partial-product sum. This more than compensates for the extra area of the recoding and com-

pression circuits.

In conclusion, the choice of multiplier approach will depend upon the wordlength and

whether saturation is required. If saturation is not required, the tree multiplier wifi provide

the best solution for small and medium wordlengths (i.e. less than approximately 32-bits).

3.3.4 Tree Multipliers with Two Redundant Inputs

If both inputs to a multiplier are in a redundant form, it is necessary to design a multiplier

where the multiplicand can take a redundant form. This will increase the size of the multi-

plier, as the tree will need to accommodate the extra bits associated with a redundant repre-

sentation of the partial-products. In this section a multiplier architecture is presented where

the multiplicand is recoded into a representation with reduced redundancy so that the number

of partial-product bits and the area of the multiplier are reduced.

3.3.4.1 Algorithm

Figure 3.13 shows an example of a recoded redundant multiplier, where MinR4 recoding has

been used on both the multiplier and multiplicand.

-54-

Chapter 3	 High-Throughput, Low-Latency Multipliers

Y	 x
Carry-Save	 Carry-Save

Reco] j Recode X	 I Recode 2X
I MinR4	 MinR4

-.P.P Generation
MR4

Adder-Tree

11	
•'.

Carry-Save

M

Figure 3.13 Block diagram of recoded, redundant multiplier

The partial-products are formed between the recoded multiplier, Y, and multiplicand, X, and

are summed by a conventional tree of full-adders to give a carry-save result. Alternatively,

the tree could be designed to generate a signed-binary result, using the approach presented

in the previous section. The number of tree inputs is reduced by 25% using a MinR4 repre-

sentation for the partial-products. The simplest way to achieve this is to precompute all the

multiples of the multiplicand in a recoded form and distribute them to the partial-product

generators, which select the appropriate multiple for the particular digit of Y. In fact, it is

only necessary to distribute the positive multiples to the partial product generators, providing

that the negative one can be easily obtained from them (as done in Figure 3.13). To achieve

the recoding, generalised adders, similar to the one shown in Figure 3.11, can be used.

A MinR4 representation for the multiplier and multiplicand is one option, but there are other

possibilities, and the next two sections consider more generally the issue of recoding the mul-

tiplicand and multiplier.

3.3.4.2 Recoding of Multiplicand X

The digit-set used to represent the multiplicand X should be chosen to satisfy the following

-55-

Chapter 3
	

High-Throughput, Low-Latency Multipliers

criteria:

1. Products with negative multiplier digits should be easily obtained from the correspond-

ing products with positive ones. In which case, only the positive products need be distrib-

uted, saving wiring and the logic required to form them.

2. The number of bits required to represent a redundant digit should be minimised.

3. The number of digits required to represent the multiplicand, X, should be minimised.

4. The recoding process should take no longer than the recoding of the multiplier, Y, so

that it does not increase the delay of the multiplier.

The radix-r, minimally-redundant representation satisfies both (1) and (2). Point (3) can be

addressed by maximising the radix, although this will increase the time to perform the recod-

ing. Hence, the radix will be limited by the time available, as specified by (4).

For example, minimally redundant radix-16 (MinRl6) can be obtained from carry-save

using the generalised adder shown in Figure 3.14. In summary, as the radix is increased so

the carry-chain becomes longer.

xl	 x2	 x3	 x4	 x5	 x6

+11+	 +11+	 +11+	 + 1+	 +11+	 +11+

+	 +
1+11+	 +11+	 II	 / +1	 1+11+

-

X =	 x, e {O...2)

D =	 16d d, e {8...8}

-	 1	 1+	 I
	 -	 1+

d1	 d1

Figure 3.14 Recoding from carry-save to MinRl6

Table 3.2 summarises the characteristics of a range of minimally redundant digit-sets. The

bit-level coding shown is that obtained using similar recoding arrangements to those pre-

sented in Figure 3.14. The letter 'p' is used to represent a bit with positive weight and the

letter 'n' to represent one with negative weight. Hence, for the case of MinR4 each radix-4

- 56 -

Chapter 3	 High-Throughput, Low-Latency Multipliers

digit is represented by a three bits: two positive of equal significance, and one negative,

which is positioned on their left and so has twice the significance of the positive ones (giving

the digit range [2. .. 214). Note that the number of bits required to represent a number

decreases as the radix is increased.

Table 3.2 Minimally redundant radix-r digit-sets

Length of recoder

	

Proposed bit level coding	 carry-chain in terms

	

Name	
Radix

Digit-set	
(p: positive bit, n: negative bit) of full-adders (log2r)

2

	

MinR4	 [2...2]	 npnpnpnpnpnp
pp p p p p

3

	

MinR8	 8	 [4]8 nppnppnppnpp
p	 p	 p	 p

	

MinRl6	 16	 [8]6 npppnpppnppp	 4
p	 p	 p

3.3.4.3 Recoding of Multiplier Y

One advantage of a redundant representation for the multiplicand is that it is possible to form

multiples of the multiplicand, such as 3X, without significant carry-propagation using a

redundant adder. Therefore, higher radices can be used in the recoding of Y, as the time to

obtain the digit-multiples (y1 X) is shortened. The digit-set used for the multiplier Y should

be chosen to:

1. Reduce the number of digits required to represent the multiplier, Y, and thereby reduce

the number of partial-products which must be formed.

2. Simplify partial-product generation.

3. Reduce the number of product multiples of the multiplicand, X, which must be formed.

The MinR4 digit-set requires only two product multiples, X and 2X to be generated and dis-

tributed. If MinR8 is used the product multiples X, 2X, 3X and 4X will be required. How-

ever, if MinR4 is used for the multiplicand coding, 4X can be obtained from the recoded X

by a 2-bit shift to the left. Therefore, only X, 2X and 3X need be distributed.

- 57 -

Chapter 3
	

High-Throughput, Low-Latency Multipliers

3.3.4.4 Adder-Tree

The partial-products in their recoded form can be summed by a conventional tree by first

converting them to 2's complement form. A minimally redundant number can be converted

to 2's complement by first splitting the number into its positive and negative parts. The neg-

ative part is converted by first inverting the negatively-weighted digits (to remove the

inverted logical coding) and applying the usual 2's complement procedure of inverting and

adding 1 in the lsb position. For example, in the MinR4 digit-set, the negatively weighted

bits form a word OnOnOnOnO (where the subscripts of n, to indicated bit position, are not

shown for clarity). Undoing the coding gives OflOñOñOñO and taking the 2's complement

provides lnlnlnlnl + 1. This can be simplified to OnOnOnOnO + 101010110, which is

the original input plus a constant. The constant will be the same for all partial-products and

their sum can be precalculated so that only one term need be entered in to the adder array.

Ultimately, this term will also be eliminated by the circuit optimisation tool.

The result of the conversion can be merged with half of the positive bits, which in the MinR4

case yields

OOpOpOpOp+OnOnOnOnO = Onpnpnpnp 	 (3.7)

Therefore, two rows of tree inputs are required to add each partial-product. Table 3.3 shows

the terms which must be added for other minimally redundant digit-sets. The third row is the

constant term which must be accumulated for all partial-products and entered once into the

array. Due to the recoding, the second row contains a proportion of logic Os which increases

with the size of the radix. The adders associated with these inputs will be eliminated by the

optimisation tool, providing the saving in area which as been the goal of this technique.

-58-

Chapter 3
	

High-Throughput, Low-Latency Multipliers

Table 3.3 Coding of partial-product for adder-tree

Digit-set	 Partial-product coded for adder-tree 	 Saving in tree area

Onpnpnpnpnpnp
MinR4	 OOpOpOpOpOpOp	 25%

1010101010110

Onppnppnppnpp
MinR8	 000pOOpOOpOOp	 33%

1011011011100

Onpppnpppnppp
MinRl6 0000p000p000p	 38%

1011101111000

3.3.4.5 MinR4 Redundant Tree Multiplier

In this section the design of a redundant multiplier using a MinR4 representation for both the

multiplier and multiplicand is considered.

To enable cascading of multipliers or results to be fed back, the multiplier should accept its

inputs in the same representation as its output. The output of a conventional tree is not strictly

carry-save as it has two negatively-weighted bits in the msd position. These arise from the

addition of partial-products which may be negative due to the negative digits of the recoded

multiplier. To perform the recoding from this representation into MinR4 the generalised

adder shown in Figure 3.15 may be used. It has been assumed here that 0 ^ X, Y, M < 1 , and

consequently the two negatively-weighted bits are exclusive. This fact has been used to sim-

plify the circuit.

y0	 Y	 Y2	 Y3	 y4	y5	 Y6

-II	 +11+	 +11+	 +11+	 +11+	 +11+	 +11+	 Y = —y0+21y
yoE{0,i}

D	 4d1 d• E {2.. .2}

d 1	d2	 d3

Figure 3.15 Recoding from carry-save to MinR4

-59-

Chapter 3	 High-Throughput, Low-Latency Multipliers

The recoder shown in Figure 3.15 is suitable for recoding the multiplier Y and the multipli-

cand multiple X . To recode the other multiple, i.e. 2X, the adder in Figure 3.16 can be used.

Note that for an input less than one, no carry will be generated from the adder in the most

significant bit position, so its carry output may be discarded.

X 0 	 x 1	x2	x3	x4	x5	x6	 00

-H-	 +11^	 H ^11^ H

H	 H

	

- U /++	 1 U/+ 1

0

g0	g1	 g2	 g3

Figure 3.16 Recoding of 2X from carry-save to MinR4

The partial-products can be formed using the network shown in Figure 3.17.

X	 2X

dH
Partial-Product I

Generation

I
Pi

NOT(2X1) if d1 = 2

NOT(X 1)ifd, = 1
Pi=	 Oifd=O

Xifd1 = 1

2Xifd, = 2

Figure 3.17 Partial-product generation

3.3.5 Comparison of Tree-Based Redundant Multipliers

Figure 3.18 presents estimates of the delay and area of a number of tree-based redundant

multipliers. For comparison purposes the results for a conventional tree, preceded by carry-

look-ahead adders (CLAs) to reduce the redundant carry-save input to non-redundant binary,

have also been shown.

The results for three redundant adder-tree multipliers are presented in each graph. The first

uses only a MinR4 representation in the multiplier. As expected this multiplier is about twice

- 60 -

Chapter 3	 High-Throughput, Low-Latency Multipliers

the size of the conventional non-redundant multiplier. It also takes twice as long, due to the

more complex multiplier recoding and the larger number of product terms to be summed.

The second redundant multiplier uses MinR4 on the multiplier and multiplicand, and

achieves a saving of up to 25% in area and a small improvement in speed. The third redun-

dant multiplier extends the recoding of the multiplier to MinR8 and further reduces the

number of multiplier digits and associated partial-products. Unfortunately, this offers no fur-

ther reduction in area over the previous multiplier, due to the relatively low multiplier word-

0
5	 10	 15	 20

Wordlength

0
5	 10	 15	 20

Wordlength

lengths considered.

10000

8000

1 6000
0

4000

2000

120000

100000

80000

60000
V
0

40000

20000

20

15

(n
C

> 10
0
V
0

5

0
5	 10	 15	 20

Wordlength

Key

MinR4 Multiplier

- - - MinR4 Multiplier and Multiplicand

- MInR8 Multiplier and MinR4 Multiplicand

- - Booths Recoded Tree with CLA on Inputs

Figure 3.18 Speed and area comparison of tree-based redundant multipliers

In conclusion, this work has demonstrated that for the multiplication of two redundant num-

bers there is significant value in recoding the multiplicand. For larger wordlengths, it may

also be beneficial to increase the radix of the recoding of the multiplier, and perhaps that of

-61 -

Chapter 3
	

High-Throughput, Low-Latency Multipliers

the multiplicand.

Flynn et al. in [Flyn95] describe a non-redundant multiplier which uses a redundant repre-

sentation for the multiplicand so that higher-radix recoding of the multiplier may be used to

reduce the number of partial-products. They employ a representation which is minimally

redundant, but uses only positive digits. A reduction of 15%-20% in area for a non-redundant

multiplier, without loss of performance.

3.4	 Discussion of Multiplier Results

In this chapter new architectures for two forms of redundant multiplier have been presented.

These use the minimally redundant digit-set in a number of ways to achieve significant

reductions in area with little loss in speed. A conclusion, therefore, is that redundancy can be

employed to obtain low-latency multiplication, and its cost can be significantly reduced by

using a level of redundancy appropriate to the speed requirements of the circuit it which it is

used.

Msdf multipliers offer highly regular architectures, and a latency which is almost constant

with wordlength. For these reasons, the approach has been very attractive in the past for all

but the smallest of multipliers. However, recent developments in circuit CAD tools allow

irregular circuits such as the Wallace-tree to be realised just as easily as regular ones. Fur-

thermore, the results presented in this chapter indicate that for medium wordlengths (i.e. 16-

to 32-bits), where saturation of the outputis not required, a redundant multiplier based upon

a tree offers lower latency. Indeed, for these wordlengths the latency of a conventional tree

multiplier using a carry-propagate adder is similar to that of the msdf multiplier. The con-

ventional and redundant tree multipliers are smaller than the msdf multiplier and avoid the

difficulties and overheads of a skewed data format. However, for larger wordlengths and sit-

uations where saturation is required, the msdf multiplier will still be of value.

It is clear that the cost of performing multiplication of two redundant numbers is high, requir-

- 62 -

Chapter 3
	

High-Throughput, Low-Latency Multipliers

ing an increase in area of over 50% of that of non-redundant multiplication or multiplication

by one redundant number. As power consumption is approximately proportional to area (see

section 8.6.2) the redundant multiplication is expensive, and should only be used when the

requirements for low-latency can justify it.

- 63 -

Chapter 4	 High-Throughput, Low-Latency Dividers

4.1	 Introduction

Recent VLSI implementations of dividers have considerably higher latency than those of

multipliers, typically by a factor of 4 to 30. Research efforts have generally focused on pro-

ducing fast multipliers, motivated by the view that division occurs relatively infrequently

compared to multiplication. In particular, many common DSP operations do not require di-

vision, and those that do, use relatively few when compared with the total number of com-

putations. Even so, the impact of a small number of division operations on the system can

still be significant for both DSP and general purpose computing[Ober94].

For example, if the divide is present within a recursive loop, the sample-rate of a system will

be limited by its high latency. Also, in a parallel array implementation of an algorithm, the

timing of the divider employed within one processor may have implications in the synchro-

nisation of data throughout the whole array. In a pipelined system, this may lead to the intro-

duction of many extra latches to schedule the data.

It will be shown in Chapter 6 that the Givens rotation can be reformulated without the divide

operation, but this leads to a doubling of the number of multiply operations and an increase

in the dynamic range of variables, which must be accommodated by introducing scaling op-

erations. Consequently, an algorithm employing division is used, and the objective of this

chapter is to examine ways in which it may be performed efficiently, and with low latency,

to minimise its impact on the parallel array implementations considered in Chapter 8.

This chapter proceeds with an overview of the available division methods. This is followed

by a detailed examination of three more promising approaches, for which area and speed es-

timates are presented, and concludes with a comparison and discussion of them.

- 64-

Chapter 4
	

High-Throughput, Low-Latency Dividers

4.2	 Overview of Division

Division approaches can be classified into the following three methods:

Digit recurrence

Multiplier-based approaches

Variable latency algorithms

Digit recurrence methods: These are based on the conventional pencil-and-paper method,

where multiples of the divisor are subtracted from the dividend to reduce it to zero. The inter-

mediate quantity is known as the partial remainder, and the divisor multiples form the digits

of the quotient. Only one digit is produced per iteration, so convergence to the solution is

only linear, but the implementation is simple and the partial remainder may be used for exact

rounding of the quotient (i.e. to produce the same value as if a quotient was calculated to infi-

nite precision and then rounded).

Multiplier-based methods: These methods start with an approximation of the quotient

which is refined using a series of multiplications. Newton-Raphson, series expansion and

convergence division are considered to be part of this class. Convergence to the result can be

quadratic or more rapid[1to95]. Alternatively, it may be made linear so that the multiplier

wordlength can be fixed throughout the calculation[Brig93]. The principal disadvantage of

the multiplier-based approach is that the remainder is not directly available, and rounding is

not straightforward. (Either twice the number of quotient digits must be produced to enable

correct rounding, or further operations must be performed to calculate the remainder.) The

application of the divider in this thesis does not require exact rounding, only that the error is

unbiased. Hence, the convergence method offers an opportunity to achieve low-latency divi-

slon.

Variable latency methods: Considerable savings in latency may be achieved by allowing it

to be variable. Self-timed logic can be used to give average timing figures much less than the

- 65 -

N
tial
ainder

;ialised
hN

Chapter 4	 High-Throughput, Low-Latency Dividers

worst-case values. Also, implementations can be designed to take advantage of short itera-

tions, which occur in a digit recurrence algorithm when the quotient digit is zero[Mont9l].

Variable latency can be accommodated in general purpose processor designs and asynchro-

nous systems, but is of little use in a synchronous parallel processor, as adopted later in the

thesis. Therefore, only the digit recurrence and convergence approaches are considered any

further. For a more detailed overview of the approaches to division the reader is referred to

a report by Oberman and F1ynn[Ober95.

4.3	 Digit Recurrence Methods

Division by the digit recurrence method is performed using three steps on each iteration as

shown in Figure 4.1.

Z0=N

FORj = 1 TOn DO

q	 Sel(Z_1)

Z = rZ..1—qD

I Z• if restore = 0
z.=

rZ -i if restore = 1

Q = Q.1+riq
END FOR

Figure 4.1 Division using digit recurrence

The division starts with the partial remainder initialised to the dividend N. On each iteration,

a digit of the quotient q is selected based upon the value of the partial remainder Z_ 1 . This

digit-multiple of the divisor, qD, is formed and subtracted from the partial remainder. If the

partial remainder goes negative, the original restoring algorithm uses a fourth step to restore

it to the previous partial remainder. This takes time and is avoided in the non-restoring algo-

rithm by allowing the quotient digits to take on negative values by using the digits T and 1.

A redundant representation can be used for the partial remainder to avoid carry-propagation

- 66 -

Chapter 4	 High-Throughput, Low-Latency Dividers

in the addition. To exploit this, Sweeney, Robertson and Tocher independently developed the

SRT algorithm [Robe58] (a name obtained from the initials of the three researchers). A re-

dundant signed-binary representation is used for the quotient, which enables the result digit

selection to be based on only a few digits of the partial remainder. Subsequently, higher radix

redundant representations have been employed with the aim of achieving higher throughput.

The digit recurrence is relatively simple for small digit sizes. Increasing the digit size reduces

the number of iterations, but results in an exponential increase in the complexity of the digit

selection circuitry, because greater numbers of remainder digits must be examined[Burg95].

Consequently, only radix-2 or radix-4 algorithms tend to be used in practice, and the number

of iterations required is therefore high.

Three significant developments have occurred since the introduction of the SRT algorithm.

These are prescaling of the divisor, overlapping of the steps within an iteration, and overlap-

ping of the iterations. They are now considered in more detail in the following sections.

4.3.1	 Prescaling of the Divisor

Prescaling has been exploited by Svoboda[Svob63] in a radix-lO divider and more recently

by Ercegovac in radix-2[Erce89b] and radix-4[Erce9O] designs to restrict the range of the

divisor so that result digit selection logic is simplified. Prescaling is performed on both the

divisor and dividend before division, and requires carry-propagate adders to produce non-

redundant results so that simple adders can be used within the divider. The prescaling will

increase the latency by one or more cycles, but enables quotient-digit selection time to be

significantly reduced.

4.3.2 Overlapping of Division Steps and Iterations

Overlapping of the quotient-digit selection and remainder computation was achieved by

Burgess[Burg9l] for radix-2 arithmetic. McQuillan has generalised the solution to other

radices using the modified SRT algorithm for division and square-root[McQu94a]. This

- 67 -

Chapter 4	 High-Throughput, Low-Latency Dividers

solution also uses prescaling to achieve very simple digit-selection logic. This is considered

to be an important algorithm, and the radix-2 implementation of the modified SRT algorithm

is the first of the division algorithms examined later in this chapter.

Overlapping the iterations of the division enables groups of quotient digits to be determined

more rapidly. Taylor proposed a radix-16 divider which overlapped the quotient digit selec-

tion of four radix-2 SRT stages to obtain a radix-16 digit of the quotient[Tay185]. For exam-

ple, overlapping of two stages is accomplished in the following way. The first stage forms

all possible outcomes of the most-significant part of the partial remainder while the quotient

digit is selected. The second stage determines the second quotient digit for each partial re-

mainder. Once the quotient digit from the first stage is known it is used to select the correct

quotient digit from the second stage.

Prabhu[Prab95] achieves a further speed increase in aradix-8 implementation of SRTby also

overlapping the partial remainder computation for each radix-2 stage. This design was pro-

duced for the UltraSparc processor, and using a full custom layout and O.5jim triple-metal

CMOS technology, a single radix-8 stage was implemented producing radix-8 digits at

167MHz. This is a high rate for the technology, and may offer improvements over the mod-

ified SRT algorithm, so this forms the second division technique examined in this chapter.

Overlapping of the quotient-digit selection requires the parallel calculation of only the most

significant part of the partial remainder, of sufficient accuracy to enable speculation of the

digits in later stages. Once the quotient digits are known, it is necessary to calculate the rest

of the partial remainder. This delay may be avoided by speculating on the whole partial re-

mainder, but this is expensive. In Prabhu's implementation this is acceptable, as only a single

radix-8 stage is implemented, which is re-used to produce the require quotient precision. This

is possible in the UltraSparc general purpose processor as low-latency is the objective, and

a throughput of 1 double-precision divide every 22 cycles is acceptable. High-throughput di-

vision is required in this thesis, needing all stages to be realised, and resulting in an excessive

- 68 -

Chapter 4	 High-Throughput, Low-Latency Dividers

area. To overcome this, a modification of Prabhu's architecture has been proposed to signif-

icantly reduce the hardware, while maintaining the high speed of the approach. Firstly, the

implementation of a divider using the radix-2 modified SRT algorithm is presented.

4.4 Radix-2 Modified SRT

4.4.1 Modified SRT Algorithm

The modified SRT algorithm was developed by McQuillan[McQu94a] in an effort to remove

the sequential dependence between the quotient digit selection and the partial remainder up-

dating operations. The modified SRT recurrence is:

T = 2Z..1+aD

11 ifqE{1,O}
where

U ifqE{i3O}

1 T	 ifiqi = 1
ZJ	

2Z1 ifq = 0

A coarse selection is made to determine whether the quotient digit is in one of the digit-pairs

{ 0, 1 } or { 1, 0 }. The partial remainder is calculated for both digits in the selected pair. One

of the digits is always a 0, so in either case only one new partial remainder needs to be cal-

culated. Whilst this occurs, the quotient digit is determined more precisely. Once obtained,

a multiplexer is used to select the correct partial remainder. In this last respect the algorithm

is of the restoring kind.

To simplify the result digit selection, prescaling is performed to restrict the range of the di-

visor to ^ D < . This is achieved by scaling the divisor by 0.75 when D ^ , by adding

to	 . The same scaling is applied to the dividend to maintain their ratio. A carry-prop-

agate adder is needed to ensure a non-redundant representation so that simple adders may be

used for partial remainder calculation in the divider.

(4.1)

- 69 -

z+	 z• z+	 Z

Chapter 4
	

High-Throughput, Low-Latency Dividers

4.4.2 Modified SRT Divider Architecture

The architecture for the radix-2 modified SRT algorithm is shown in Figure 4.2. The selec-

tion cell is required to generate 3 signals. The coarse selection signal a is generated by in-

verting one bit of the partial remainder, and the restore signal is generated from only 2 digits.

The third signal, compress, is required to detect overflow of the redundant residual and signal

the type 2 adder cells to remove it.

Prescale

0

Prescale
control	 1

12kiT0

IN	 d1.d2

q12i

Z1 Z

a
q ELi]	 compress

restore

zI + z I_ Z2	 Z

:ss

z[T...1]
d

a

	

compress	 2	 tin [0,1]

	

restore	 restore

z+ z

zin[r...1I
d[0..1]

a
t01 [01]	 1	

a
[0,1]

restore

z0[T...1]

zz	 d

Figure 4.2 Radix-2 modified SRT division array with prescaling

Figure 4.3 shows the gate count and delay of the modified SRT divider, obtained by circuit

synthesis, for a range wordlengths and levels of pipelining. The circuit includes prescaling

and on-the-fly conversion circuitry (the latter by Knowles as described in Chapter 2), but nei-

ther contributes towards the delays shown, only the latency. As presented in the figure, the

delay and area-time products are improved by increasing the level of pipelining. Values have

not been obtained for the pipelining of every row due to the high synthesis times. It is antic-

-70 -

Delay

+±—--.

0

16

14

12

10
C

>8
0

4

2

0

60(

In
'I

, 40(

a
a)

20(

In
C
a, 600
a,

0
0'

C,

400

a-
V
E

I-
, 200(

800'

0

100

80

Chapter 4	 High-Throughput, Low-Latency Dividers

ipated that this level of pipelining would give a small delay reduction, but an increase in the

area-time product.

As expected, the area of the divider has a square-law dependence upon wordlength. The de-

lay should be independent of it, but increases slowly with wordlength due to the increased

loading of gates driving signals along rows, and the increased complexity of the circuit op-

timisation task. Latency is increased by increased levels of pipelining. The latency in terms

of clock cycles is given in brackets on the graph.

8	 10	 12	 14	 16
	

8	 10	 12	 14	 16
Wordlength
	

Wordlength

Latency	 -. –

Key
- - - Cut every 2 rows

Cut ery 4 rows

Cut every 6 rows

8	 10	 12	 14	 16	 8	 10	 12	 14	 16
Wordlength	 Wordlength

Figure 4.3 Area and speed of modified SRT divider

The improvement that the modified SRT algorithm offers over the basic SRT algorithm is

shown in Figure 4.4. The modified SRT algorithm offers advantages in delay and latency,

whilst maintaining similar area-time products. This is particularly the case for lower levels

-71-

Delay

___ H-

-1-

601

U,
U,

. 401

0
a,

20

0

14

12

10

U,
C

>'
0
a	 6a

4

2

0

Chapter 4	 High-Throughput, Low-Latency Dividers

of pipelining (not shown on the graph), as the modified SRT algorithm allows better merging

of rows.

8	 10	 12	 14	 16
	

8	 10	 12	 14	 16
Wordlength
	

Wordlength

80000

U,
C
a, 60000a,
0

U

40000

, 20000

0

120

100

j' 80
C

>.'
0

60
a

0
0

I— 40

20

0

Latency

SRI- -

Key

Modified SRT

8	 10	 12	 14	 16
	

8	 10	 12	 14	 16
Wordlength
	

Word!ength

Figure 4.4 Comparison between SRT and modified SRT algorithms

4.5	 Speculative SRT

Consider now the radix-8 overlapped SRT divider presented by Prabhu [Prab95]. This uses

the radix-2 quotient digits from three rows of the radix-2 SRT algorithm to deliver one radix-

8 quotient digit per iteration. Whilst the first of the radix-2 digits is being determined, the

most significant bits of the partial remainders for all possible combinations of the first and

second quotient digits are calculated and examined to speculate on the outcome of the second

and third digits. This requires that seven partial remainders be calculated in parallel as shown

in Figure 4.5.

-72 -

Chapter 4
	

High-Throughput, Low-Latency Dividers

q- —1

2Z—D	 2Z
	

2Z+D
- —1

2(2Z—D)—D 2(2Z—D) 2(2Z—D)+D 2(2Z)—D 2(2Z) 2(2Z)+D 2(2Z+D)—D 2(2Z+D) 2(2Z+D)+D

4Z-3D	 4Z-2D	 4Z—D	 4Z	 4Z+D	 4Z+2D 4Z^3D

Figure 4.5 Speculative calculation of SRT partial remainders

In parallel with the speculation of the quotient digits, the complete partial remainder is cal-

culated for each of the three values of the quotient digit. Although this approach is fast, it is

expensive to implement. In this thesis it is proposed that the number of gates be reduced by

speculating on only those digits of the partial remainder required by the quotient-digit selec-

tion logic of the next stage. The other digits of the partial remainder are calculated in the next

stage, in a non-speculative manner, as the quotient digits are known at this point. Figure 4.6

shows one radix-8 row of the divider which does this.

The divider operates as follows. The most significant part of the partial remainder Z. 1 en-

ters the top of the array in a carry-save representation. The 4 msbs are examined by the se-

lection logic to obtain the first digit q. The selection logic consists of a carry-propagate

adder, as shown in Figure 4.7, which implements the selection function specified in

Table 4.1. Whilst this occurs, the partial remainders resulting from the three possible out-

comes of the first quotient digit are calculated using the 1 4-bit carry-save adders denoted in

the diagram as CSA_1 4. Only two adders are needed, as a quotient digit of zero requires no

subtraction, only that the wordlength be compressed using the X-cell. The 4 msbs of the three

partial remainders are fed to selection cells to determine the second quotient digit q +1 for

each case. In parallel with this, the partial remainders for the seven possible outcomes of both

the first and second quotient digits are calculated. These are used to determine the third quo-

tient digit for all outcomes for the previous two digits.

- 73 -

D

i

Chapter 4
	

High-Throughput, Low-Latency Dividers

z	 D
__________________	 1 qJ-2qJ-3 Z	 Z'J2

n-12

ZDIJ	

:r	

L DCSA_(n-1 1)
DCSA_(n-9)
DCSA_(n-7)

4J	

I	 __

5

11_U'U	
I

I CSA_1 I 	 ______
h3	 13 '13'

6	 '6	 6	

EI_s

csAJ[ci X [ci1 X CsA

—•_i__/ lsd

12
DI	 D

71c1

keep
only

L

CTYq j+2	 qj+i	 qj	
ZJ+2	 Zj+I

Figure 4.6 Block diagram of one row of the radix-8 speculative divider

Once the first quotient-digit becomes available, the correct second digit is selected using

multiplexers. The first and second digits are used to select the third. The appropriate partial

remainders can also be selected once the quotient digits become available. Speculation of the

partial remainder is performed only for those bits required by the selection logic of the next

stage. The rest of the partial remainder is calculated in the next stage using the known quo-

tient digits. The components to do this are shown in the top right-hand corner of Figure 4.6.

Delaying the calculation of the lower part of the partial remainder, Z', substantially reduces

the area of the divider, and should not significantly increase its critical path.

- 74-

z	 Selection	 DCCI A

nction

q

q
q

Z D

Chapter 4
	

High-Throughput, Low-Latency Dividers

4.5.1	 Selection Logic

The truth-table for the selection function is shown in Table 4.1.

Table 4.1 Selection function

	_______	 Input	 Output -

Value	 [x1, x2, x 3, x4]	 Value s m

lxx.x	 +1	 0	 1

	

1	 011.1	 0 T ö= - _______________ ____

Oxx.x	 -1 T T
________ (excluding case above) _____

A logical implementation of the selection function is shown in Figure 4.7.

Figure 4.7 Logical implementation of selection function and DCSA

The critical path of the divider consists of a selection cell, two carry-save adders and three

multiplexers. The lowest delay is obtained by ensuring that the partial remainder calculation

is simple. Therefore, a carry-save representation has been used for the remainder, as com-

pressing it to avoid overflow is particularly simple and requires no logic gates. A signed-bi-

nary representation for the partial remainder would reduce the number of digits examined for

selection of the quotient-digit selection by one[Kuni87], but would require logic to compress

the most significant digits into range after each addition[McQu94a].

4.5.2	 Circuit Synthesis Results

Only the single block of three rows, as shown in Figure 4.6, has been coded and synthesised,

as the synthesis times of the full divider would be too great. The results are shown in

- 75 -

Chapter 4	 High-Throughput, Low-Latency Dividers

Figure 4.8. Two area results are presented, one for a row, and the other for the full divider.

The number of gates required by a row is high at low wordlengths due to high cost of the

speculation circuitry, but grows relatively slowly with wordlength because speculation is not

performed on all the additional bits of the partial remainder in this new implementation.

12

10

8
U)

C

0

IC)

4

2

0
10

OF
10	 20	 30	 40	 50

Wordlenyth

50000

40000

30000
0

20000

10000

30000

' 25000
C

U)

U)

20000

C.,

15000

. 10000
IT
0
0.)

. 	 5000

Dc;y

lll'l

20	 30	 40
	

50
Wordlength

Key
- Full array
- - Single row

01	 I	 I	 I	 I
10	 20	 30	 40	 50

Wordlength

Figure 4.8 Circuit synthesis results for the speculative divider

The delay appears to be constant at 9.5ns, and its fluctuation can be attributed primarily to

its estimation errors. The wordlength independence of the delay is expected for a digit-recur-

rence algorithm, but is more pronounced here than for the full modified-SRT divider, as the

smaller circuit simplifies its optimisation. This delay figure is similar to that of the modified-

SRT divider. To make an accurate comparison with the modified-SRT divider it should also

be synthesised for a block of 3 rows. The modified SRT will require an additional clock cycle

to perform pre-scaling, but offers a greater degree of choice in the level of pipelining used,

which is an important systems issue.

- 76 -

Chapter 4
	

High-Throughput, Low-Latency Dividers

4.6	 Multiplier-Based Division Methods

The multiplier-based division methods use a series of multiplications to refine an initial

approximation of the quotient. Consequently, the iterations are more complicated than for

the digit recurrence method, but the number of quotient digits determined on each iteration

is greater than one and grows quadratically or higher with the iteration. One disadvantage of

this approach is that rounding is more difficult to implement as the remainder is not directly

available to determine rounding direction. However, the divider required by the Givens rota-

tion operation does not have to be correctly rounded, it is only important that any bias in the

quotient error is kept small (how small is discussed later). Therefore, with the availability of

low-latency multipliers, the multiplier-based method offers a way of achieving low-latency

division or reciprocation.

There are three methods commonly found in the literature:

Newton Raphson

Series Expansion

Convergence

Each method will now be discussed in more detail.

4.6.1 Newton Raphson

A division can be performed using a two-step process in which the reciprocal of the divisor

is first obtained and then used to multiply the dividend to give the result. The reciprocal can

be found using a popular technique known as Newton Raphson for finding the roots of an

equation. The technique solves the equation f(x) = 0 where f(x) may take a number of

forms. A form which can be used to obtain the reciprocal is f(x) = - D, where D is the

divisor.

The procedure is iterative, and strives to improve the estimate of a root of f(x) by fmding

where the tangent of the function at each estimate intercepts the x-axis i.e.

- 77 -

(4.4)

(4.5)

Chapter 4
	

High-Throughput, Low-Latency Dividers

Xil. 1 -
	 f(x3)	

(4.2)

To find the reciprocal, the recurrence equation is

QJ+	 Q(2—QD)	 j = 1,2,3,...,n
	

Q0 = initial estimate of	 (4.3)

Where Q is the estimate of the root and reciprocal. For each iteration, two sequential

multiplications are required to double the accuracy of Q . For example, if Q0 was obtained

from a table with 7-bits accuracy, then Q would be accurate to 1 4-bits and Q2 to 28-bits.

Any error made in the computations will also be attenuated quadratically by subsequent it-

erations, and so the wordlength of the multipliers can be tailored to each iteration, providing

considerable savings in area and time.

4.6.2 Series Expansion

Alternatively, the reciprocal can be expressed as a series expansion by representing the divi-

sor with D = 1 + x. If 0 <D <2 then the reciprocal is given by

f(x)	 1	 1	 -= - =	 1—x+x2—x3+x4—x5+x6—x7+...
D 1+x

the above can be factored to give

= (1—x)(1+x2)(1+x4)...

which is easily calculated, as each higher order term can be obtained from the product of the

previous terms. For example, the next term in equation (4.5) is (1 + x8), which can be ob-

tamed by first calculating (1 - x 8) using

1—x 8 = (1—x4)(1+x4)
	

(4.6)

The term (1 + x 8) is calculated using the relationship 1 + x8 - 2— (1 - x 8), which is sim-

ply the 2's complement operation.

If P is defined as the expansion of the reciprocal up to terms of order 2, then a recurrence

- 78 -

Chapter 4
	

High-Throughput, Low-Latency Dividers

equation can be written as

P + - P(2—P(l+x))	 j = 1,2,3,...,n
	

P0 = initial estimate of 	 (4.7)

As observed by Flynn [Flyn7O] the recurrence equations obtained by series expansion and

Newton-Raphson are just two variants of the same algorithm related by D = 1 + x.

4.6.3 Convergence Methods

The third multiplicative method is convergence division, which is performed using the fol-

lowing process:

QNNRORl...RmlQ
D	 DRoR i ...Rmi	1

Both the divisor and the dividend are multiplied by m factors R 0, R 1 . ..Rm .. i which are cho-

sen so that the divisor converges to 1. The dividend, N, then converges to the quotient Q.

Convergence methods can be divided into those that use multiplication and those that sim-

plify the multiplication to an addition. The multiplication based convergence methods offer

quadratic or higher order convergence. Additive convergence algorithms offer linear conver-

gence, generating a digit of the quotient for each iteration. In this respect, the additive tech-

nique is similar to the digit recurrence method, but iterates two terms iistead of one, which

relaxes the digit selection criteria (cf CORDIC). Rodrigues et al. [Rodr8 1] exploits this fact

to implement a range of functions in radix-4 arithmetic using the MinR4 representation to

reduce the circuit complexity to that of radix-2.

The multiplicative convergence algorithm used by Anderson et al. [Ande67] can be derived

by noting that the multiplier R can be obtained using the relationship:

(1—x)(l+x) = 1—x 2	(4.9)

Therefore, the divisor D = (1 + x) can be driven closer to one by multiplying it by

R = (1 - x). The latter term can be obtained from the first by a 2's complement operation

(4.8)

- 79 -

Chapter 4
	

High-Throughput, Low-Latency Dividers

i.e. R - 2 - (1 + xi). The recurrence equations to perform a division become,

R - 2—D

D^ 1 = DR
	

(4.10)

N +1 - NR

This bears strong similarities with the Newton-Raphson method. If the substitution

D QD is made then

Q+1D = QD(2—QD)
	

(4.11)

and dividing through by D yields

Q^1 = Q(2—QD)
	

(4.12)

which is the Newton-Raphson recurrence. Unlike the Newton-Raphson method, a division

is performed instead of a reciprocal operation. More significantly, the two multiplications re-

quired on each iteration are independent and can be performed in parallel. This allows re-

duced latency when the multipliers are implemented in parallel. However, their

independence also means that the errors made in the calculation of N are not reduced by

subsequent operations, which will require the use of extra wordlength in this datapath.

The multiplicative convergence algorithm offers the greatest potential for a low-latency im-

plementation, so a divider design based on this approach has been investigated further. The

results of this study are presented in the following section.

4.7	 Low-Latency Convergence Divider

Conventionally, convergence dividers are implemented by re-using a single multiplier a

number of times. This is an effective approach in microprocessor applications where word-

lengths are high and latency is more of an issue than throughput. In this thesis, it is not suit-

able, as high-throughput is also required. A further disadvantage of re-using a single

multiplier is that it is not always used optimally. Therefore, in this section an implementation

using dedicated multipliers for each multiplication is proposed to obtain high-throughput and

- 80 -

Chapter 4
	

High-Throughput, Low-Latency Dividers

allow individual multiplier wordlengths to be minimised.

4.7.1 Reducing the Multiplier Wordlength in the Divider

Figure 4.9 (a) presents the dependence graph (DG) for a convergence divider.

D	 N	 D	 N	 D	 N

u 1	 LU L
Do

X —x	 X	 X —x	 X

1 +	 1+
N1

z0	 z0 -	 N1
N1

xi
artition

x x

xi x

2	x	

+ -

<	 hi

D2
zi __	 w1 -	 zi	 __	

-H-+

x2	 :	 N2	 x2	 :	 N2
S

Xm...2	 •	 Nm_2	 Xm2	 Nm_2

artition

Dm _ i	2's hm 2
x	 x2	 x	 X	 X

Rm...i	 -

	

Nm_i	 +	 Um_2

Zm_2	 W_Zm_2	 W_	

-1-)	 -	 -F)

2's	 Xmi	 Nmi	 Xmi	 Nmi

	

x	 x	 x
Rm

Wm_i	 __	 U - l—w Wm_i

	

Nm	 +	 +
i-i	 Nm	 Nm

w -
	N	 N	 N

	

D	 D	 D

	

R, (2—D 1)	 X1 = (1—D)2"

	

D . (2—D 1)	 X11 = x	 X = XX+XI2"

N 1 = N1 R	 N1 = N(1 +X 12")	 N1+ = N(1 +X2")

a) DG of convergence	 b) DG modified to use 	 c) DG with reduced
multiplier	 squaring operations	 precision multipliers

Figure 4.9 Dependence graphs for division by multiplicative convergence

-81 -

Chapter 4	 High-Throughput, Low-Latency Dividers

The D are calculated in the left-hand column and the N in the right-hand column. The R

factors are obtained by a 2's complement operation on the D, and applied to both the D and

N terms using the multipliers in the respective columns.

A number of improvements can be made to the basic DG. The first can be obtained by noting

that R converges to one. This fact has been exploited by Anderson et al.[Ande67] and others

to reduce the size of the multiplications, by eliminating the leading is that arise in their bi-

nary representation. The D term also approaches 1, a fact which may now be exploited to

further reduce the size of the dedicated multipliers.

The wordlength reductions that may be achieved become more obvious if the graph is refor-

mulated to evaluate the division in terms of a new variable X = 1 - D. In this case

R 1 + X as shown in Figure 4.9 (b). The first term, X 0 , is small relative to one, so a

shift-left operation can be performed by a fixed number of bits, z0 , to normalise the number

and reduce its wordlength. The effect of this scaling and further scaling by z is accounted

for with an exponent w, which is applied in any calculations involving X by a right-shift

of the result by w bits. Both z j and wj are fixed for a particular wordlength of divider, so

the shifters can be implemented using wire. Another advantage of this reformulation is that

X is updated using dedicated squaring operators, which are almost half the size of a multi-

plier of the same wordlength.

The N can be updated using X and N +1 = +	 Due to the quadratic reduction in

the size of X, the value of NX rapidly becomes less significant than N, and so the word-

length of the multiplication can be reduced with each update step.

Another reduction in multiplier size can be obtained by noting that the accuracy of R may

be reduced in early steps without affecting the final accuracy of the result, providing that the

errors introduced are no bigger than those already present in X. Figure 4.9 (c) shows the DG

with this modification. The partitioning circuit splits X into two parts, such that

- 82 -

Chapter 4	 High-Throughput, Low-Latency Dividers

Xi - X +	 The multiplier R is obtained from the most significant part using

R3 1 - X, which reduces the size of the multiplication required to update X and N. The

term X is correctly updated by performing X 1 = XX + 2hX. This arises from the need to

obtain

l—Xj+i = (l—X)R

= (1 - X - 2 h1X)(1 + X)	 (4.13)

= 1 - (XX + 2hX5

This involves an extra addition, but the multiplication will be significantly smaller. The mul-

tiplication can, in part, be implemented using a squarer to reduce the hardware.

This same principle may be applied to limit the multiplier wordlength, but will result in a

convergence rate less than quadratic.

4.7.2	 Initial Estimate of the Reciprocal

The number of stages required to calculate the reciprocal can be reduced by starting with a

more accurate initial estimate of j. The most common approach is to use a look-up table

implemented by a ROM or combinational logic. This offers speed, but requires an area which

grows exponentially with the wordlength. The simplest approach is to use a piece-wise con-

stant approximation to the reciprocal. Alternatively, interpolation using a piece-wise linear

or polynomial approximation may be used to reduce the table size. These latter approaches

use multipliers to calculate values within the intervals, but the wordlengths are small and so

the extra complexity is not great. Interpolation may also be obtained using bipartite tables.

In this case, a multiplier is avoided by performing the interpolation using a second look-up

table. The number of interpolation table entries is reduced by grouping intervals which may

be approximated by the same function. In this way Das Sarma[DasS95] has achieved 2 to 4

times reduction in size for 9-bit tables, and 4 to 16 times reduction for 10 to 16-bit tables over

the piece-wise table approach.

Another method is to modify the partial product arrays of a multiplier so that it can provide

- 83 -

Chapter 4	 High-Throughput, Low-Latency Dividers

an approximation to a reciprocal. The cost of doing this in additional hardware is relatively

small, but it assumes that a multiplier is available for this purpose, otherwise it is very costly.

In this thesis only the piecewise constant look-up table approach is considered, as this can be

determined sufficiently quickly to allow it to be merged with the first multiplier. Alternative

look-up approaches may provide sufficient accuracy to require one less iteration, but the in-

creased complexity would mean an extra cycle being devoted to the look-up operation, and

any latency benefit lost.

4.7.2.1 Reciprocal LUT

For a piecewise constant approximation, the largest look-up error is minimised by calculat-

ing the table entry at the mid-point of the interval and rounding the result[DasS94J. For a ta-

ble input truncated to k fractional bits and the output rounded to g fractional bits, the entries

are given by

1
table(13) = round(

+ 2k1' g)
	 D = trunc(D, g)	 (4.14)

The error in the approximation is a function of both truncation error (CD) of the table input

and rounding error of the stored value (CT). i.e.

1	 1	 1	 CD- =	 +CT-----+CT
D D+CD	 D D2

(4.15)

For a binary input, the truncation error is lED1 <2, and for a binary table entry the rounding

error is l ET1 ^ 2 . If the input is normalised within the range 0.5 ^ D < 1 , it will be of the

form 0. 1b 2b3 . . . b k and the output of the form 1.b 1 t b' 2b' 3 bt 4 . . . b t . The table size will be pro-

portional to 2k- 'g and the total error ICLI <2_ 2) + +1) . It is clear from the latter ex-

pression that the error can be reduced by increasing k and g, and equal contributions are made

by each component of the error when g = k - 3 . However, it is less costly to increase g, due

to its linear relationship with the size of the table, and therefore a better choice is to make

g = k—i.

-84-

Chapter 4	 High-Throughput, Low-Latency Dividers

Figure 4.10 shows the number of gates and delay obtained for a simple reciprocal look-up

table with a range of input wordlengths k and output wordlength g = k - 1.

2000

1500

U,
1)

a
1000

a
U,

500

01	 i_—I--1	 I 	 I

3	 4	 5	 6	 7	 8	 9	 10 11 12
Input Wordlength

OF	 i 	 I 	 I 	 I

3	 4	 5	 6	 7	 8	 9	 10 11 12
Input Wordlength

Area
	 5	 Deiay

4

>'
0

Ii)

Figure 4.10 Circuit synthesis results for reciprocal LUT

The exponential dependence of the area on wordlength is very clear, and at 11-bits the area

is similar to a 16-bit multiplier. Beyond this, the synthesis task becomes too great. All the

area figures are lower than would be achieved with an SRT divider, and the delay is signifi-

cantly lower. For wordlengths up to 8-bits the delay is less than 2.2ns. After this it rises lin-

early, which indicates the point at which the optimisation tool is starting to having difficulty.

It would be prudent to limit the wordlength of the table to 8-bits to enable it to be combined

with the first multiplier.

4.7.3 Rounding

The remainder of a division, performed by convergence, is not directly available, and so ex-

act rounding is not possible. One solution is to calculate the quotient to twice the precision

of the input, but this can be expensive in area (as parallel multipliers have an area propor-

tional to the square of their wordlength). Alternatively, schemes which use an additional

multiply step with only a small increase in wordlength can be used[Darl9O][Brig93].

As mentioned previously, the Givens rotation does not require exact rounding, only that the

bias in the error is kept sufficiently small. Error bias is important in this application, as num-

- 85 -

Chapter 4	 High-Throughput, Low-Latency Dividers

bers are accumulated and biased errors will grow faster than unbiased ones. The convergence

division technique converges on the quotient from below, and so there is always a negative

bias in the error. This can be made small relative to the error in the dividend and divisor by

calculating the quotient to a greater precision. One option it to calculate the quotient to a

wordlength where the bias introduced is similar to that which is naturally present in the div-

idend or divisor (due to the finite number of values they may take). If this is done, then the

quotient precision needs to be approximately 50% greater than the dividend and divisor pre-

cision.

The convergence divider will be large, even with the optimisation of the multiplier sizes, par-

ticularly if extra quotient precision is required to reduce the bias in the output error. Howev-

er, if used for generating the reciprocal of a number the multiplier sizes in the N path can

be reduced substantially. A reciprocal circuit is of value in the Givens rotation as two or three

divisions are performed using the same divisor. Therefore, the VLSI design of a reciprocal

circuit is considered in the remainder of this section.

4.7.4	 Reciprocal Circuit

Figure 4.11 shows the DG for a convergence divider, which has been modified to produce

a reciprocal. This has been achieved by setting the dividend input to one. As a consequence,

the first multiplier is no longer needed, and has been removed. The number of stages and the

multiplier wordlengths chosen for a 16-bit input and 16-bit output (once rounded) are shown.

These have been established using a computer simulation to calculate the error generated

over all divisor inputs.

A lists of the parameters for a range of other input and output wordlengths is presented in

Appendix A.

- 86 -

Chapter 4
	

High-Throughput, Low-Latency Dividers

D
16

trunc

LUT 1
D

><	 —x

trunc
23 (exact)

1+

trunc
23(exact)	

N1
(exact)

	

artitlon	 trunc

8 8 7(exact)

><	 x

trunc	 trUflC
15	 15(exact)

+

trunc	 trUflC
14	 22(exact)

0 .-	 xi

x2

	

trunc	 trUnC
14	 14

x

trunC

14	
13

Figure 4.11 DG for 16-bit reciprocal

4.7.5 Circuit Implementation

The circuit is ideally suited to the application of redundant arithmetic to obtain high speed.

The adders could be merged with the multipliers and implemented using the tree structures

presented in Chapter 3. However, this will be costly in area, even if the techniques presented

in this chapter and Chapter 3 aie used. Therefore, a non-redundant approach has been adopt-

ed.

- 87 -

200000
CO
0)

0
0

' 150000
C-)

•0

100000

50000

OL
10

15	 20	 25
	

10
	

15	 20	 25
Wordlength
	

Wordlength

Chapter 4	 High-Throughput, Low-Latency Dividers

Figure 4.12 shows the number of gates and delays obtained for the range of non-redundant

reciprocal circuits, as summarised in Table 4.2.

10000

8000

0,
0)

o 6000

0
0)

< 4000

2000

0
10

250000 [
Area—Time Product

x

15	 20	 25
Wordlength

30

25

20

0,
C

>. 15
0

0)

10

120

100

-	 80
C

I:
20

0

Latency

x
(4)

3)

(2)

x Multiplier wordlength restricted to 9

10	 15	 20	 25
Wordlength

Figure 4.12 Circuit synthesis results of the convergence reciprocal circuits

The points of the graphs marked by an X are the results of the reciprocal circuit where the

multiplier wordlength has been restricted to 9-bits. This technique can be used to reduce the

circuit delay to meet a particular system clock speed. However, it increases the number of

cycles of latency from 3 to 4 and increases the area and total delay.

In all cases the stage delay is high, which can be attributed to the use of non-redundant arith-

metic and associated carry-propagate adders. Pipelining was applied only between stages.

Extra cuts could be made within the stages between the adders and the multipliers, and may

enable a 1 Ons stage delay to be obtained, but would also double the latency. The delay of the

- 88 -

Chapter 4
	

High-Throughput, Low-Latency Dividers

adders can be reduced by combining them with the multiplier.

Table 4.2 Circuit synthesis results for reciprocal circuit

Modified
Input	 Output	 Stages	 Gate	 Speed Latency	

SRT

	

Wordlength Wordlength (Latency) Count 	 (ns)	 (ns)
Latency

12	 20	 2	 2226	 16.09	 32.18	 67.4

16	 26	 3	 4367	 19.00	 57.00	 89.2

20	 32	 3	 6055	 22.90	 68.70	 112a

32	 4	 7931	 20.75	 83.00	 135a

a. Estimated from 12-bit divider results.
b. Multiplier size restricted to 9.

The convergence method, in the non-redundant form, allows the 12-bit and 16-bit reciprocals

to be obtained significantly quicker than if a modified SRT divider was used and require ap-

proximately 33% and 18% less area respectively.

4.8	 Summary of Divider Results

The divider research can be summarised as follows:

The modified SRT algorithm offers the lowest area-time product of all the approaches

considered. From a system design perspective it also offers great flexibility as the level of

pipelining may be chosen to match the system clock frequency.

The speculative divider offers low-latency and comparable area-time product. However,

it is less flexible than the modified-SRT, as it is designed to be pipelining only every 3

rows.

• In its current form, the convergence divider will offer some advantage in latency over the

other approaches. It is also well suited to the application of redundant arithmetic, which

may allow considerably lower latency to be achieved, but with greater area. For this rea-

son convergence division would appear the more attractive solution for dividers in future

microprocessors (where large circuit area is becoming less critical than latency).

-89-

Chapter 4
	

High-Throughput, Low-Latency Dividers

• The convergence reciprocal circuit, if implemented in a more highly pipelined form, may

offer some area-time advantage over the digit-recurrence approaches. If used as a first

step for division, it will only offer a benefit in area if more than two divisions by the

same number are required. If implemented in a redundant form it will offer a significant

reduction in latency but with approximately 50% increase in area over current levels.

Note that these conclusions have been drawn from results in the case of relatively low word-

lengths (which is required for Givens rotations implementations considered later in the the-

sis). Other observations are:

• The circuit synthesis of the unpipelined block of 3 rows of the speculative divider pro-

vided a delay independent of wordlength. When the whole SRT divider was synthesised

the results were less impressive, probably due to the complexity of the optimisation

problem. Therefore, a two step synthesis approach is proposed for improving the circuit

results and run times. The first step is to synthesise and optimise the logic between

pipelining stages and assemble the divider from these circuit blocks. In a second step,

this block can be used as a starting point from which to obtain an optimisation of the cir-

cuit as a whole.

• One of the most surprising results was the low delay and relatively low size of the look-

up-tables generated for the initial reciprocal estimate. This approach was less effective at

wordlengths greater than 8-bits due to the enormous optimisation problem that arises, but

below this the results were very good. Future research could investigate how the table

look-up function could be posed in a way which simplifies the synthesis and optimisation

task. Alternatively, a more directed optimisation strategy could be used for this task,

rather than a general purpose synthesis tool.

- 90 -

Chapter 5	 Floating-Point Operators

5.1	 Introduction

In the previous two chapters the design of high-throughput, fixed-point operators with low

latency was considered. Floating-point arithmetic is important for the implementation of cer-

tain digital signal processing algorithms and there are now many DSP processors which sup-

port it. Indeed, floating-point arithmetic is a requirement of some of the Givens rotation

algorithms examined later in the thesis, and in particular the most computationally efficient

algorithm requires it. In this chapter the design of the floating-point operators for this algo-

rithm is considered. The algorithms and architectures of these operators are presented, and

the area and speed of their VLSI implementations has been determined for a range of word-

lengths.

To achieve high-throughput floating-point operators, the bit-parallel architectures presented

in the previous two chapters are used to perform the fixed-point mantissa operations. Round-

ing has been included to achieve an output with little or no bias of the truncation error.

For reasons which will become apparent in Chapter 7, very low latency is required from only

the adder, so a non-redundant, parallel binary representation has been used for all other op-

erator inputs and outputs so as to minimise their area. For the adder, two approaches have

been adopted. One approach uses the same non-redundant representation as the other opera-

tors, and relies upon low wordlength and parallel hardware to obtain low latency. The other

obtains lower latency by using a fixed-point representation for one of the inputs and the out-

put. This also enables a redundant representation to be used to avoid carry-propagation, and

so obtain very low-latency which is independent of wordlength.

The steps to implement floating-point operators with rounding are well known and relatively

straightforward, but these steps are numerous and lengthy. Therefore, the challenge in de-

-91-

Chapter 5	 Floating-PoInt Operators

signing operators with low latency is to determine ways of reducing the number of steps.

Many of the techniques used in this chapter have been obtained from the literature.

5.2	 Floating-Point Representation

The IEEE Standard for Binary Floating-Point Arithmetic[IEEE85] has become the standard

for VLSI floating-point units. if adhered to in the implementation of application specific

DSP circuits it is possible to use the FPU of an IEEE compliant workstation to perform exact

numerical simulation of the circuits at much higher speeds than a software emulation could

achieve. The full standard can be complex to implement and only supports two wordlengths,

known as single and double precision formats. Therefore, the standard is used only as a start-

ing point here. In particular, rounding-to-nearest has been implemented, as this is important

in reducing the build-up of numerical errors.

The number format shown in Figure 5.1 has been adopted (where MBits and EBits represent

the number of bits in the mantissa and exponent respectively).

EBits	 MBits	 Number of Bits

Sign s Exponent e	 Mantissa m

msb	 lsb msb	 lsb	 Significance of Bits

Figure 5.1 Floating-point number format

The exponent is stored in a two's complement format, with the most negative value (i.e.

100.. .00) indicating that the floating-point number is zero. The mantissa, m, is positive and

normalised such that 1.0 ^ m < 2.0. This means that the leading bit is always a logic 1, and

so it is not stored. The sign bit is used to indicate when the mantissa is negative, in which

case it takes the value logic 1. Otherwise, the number is positive or zero, and the sign bit takes

the value logic 0.

When the number is zero (i.e. e 100.. .00) the sign and mantissa are superfluous. In this

case their values are left undefined as the logic to set these numbers to defined values will

- 92-

ChapterS	 Floating-Point Operators

only delay the result.

Rounding-to-nearest is achieved by examining the fraction removed by truncation. If this is

greater than one half of an lsb (i.e. O.5lsb), the result is rounded up by adding a bit in the lsb

position. If a binary representation is used, this condition can be determined by examining

the msb of the truncation error. As described, the rounding procedure introduces a small bias

in the error as there are more occasions when the number is rounded up rather than down. To

avoid this the IEEE standard specifies that on occasions when the truncation is exactly half

an lsb that rounding-up should only be implemented when it will generate an even result (i.e.

the lsb of the result is zero, which occurs on average half the time). The truncation error is

exactly O.5lsb when all its bits bar the msb are zero. A signal, referred to as a sticky-bit, is

generated to indicate this condition, and the lsb of the result can be examined before rounding

to determine if the result will be even. This aspect of the rounding is not implemented in the

operators presented in this chapter as its effect on the error is small and the sticky-bit takes

significant time to generate.

The design of each operator is now considered in detail in the next few sections.

5.3	 Floating-Point Adder

The floating-point add operation is the most complicated of the floating-point operators to

implement, and the area of the final adder is significantly greater than that of a fixed-point

one. The complexity arises from the need to align the mantissa before addition and normalise

the result afterwards. These operations significantly increase the adder's circuit area, partic-

ularly when they are required to be performed quickly.

5.3.1 Operation of Basic Floating-Point Adder

A dependence graph for a floating-point adder is shown in Figure 5.2. This simple solution

offers minimum hardware, but results in very high latency. There are seven stages to the ad-

dition process, each of which could be one stage in a pipeline.

- 93 -

ChapterS	 Floating-Point Operators

1. Alignment of mantissas to a common exponent: The mantissa of the number with the

smallest exponent is right-shifted by a number of bits sufficient to make the exponents

equal.

2. Add: The signed-magnitude numbers are converted to 2's complement and added.

3. Absolute value: The 2's complement sum is converted to sign-magnitude representation.

4. Leading zero detection: Leading-digit cancellation may have occurred, so the number

of leading zeros in the absolute value of the sum is determined for normalisation. If both

adder inputs are positive then overflow can occur, in which case a 1-bit right-shift opera-

tion is performed to normalise the sum, and the exponent is incremented.

5. Normalisation: A left-shift operation is performed to normalise the mantissa.

6. Rounding: Alignment or overflow may give a sum with more bits than the input man-

tissa. Rounding is performed to return the wordlength to that of the input. Rounding-to-

nearest is implemented by examining the bit to the right of the lsb, and incrementing the

lsb if its value is logic 1.

7. Overflow normalisation: When the mantissa bits are all logic 1 prior to rounding (i.e.

m = 1.11 ... 11), and rounding is performed, the mantissa will overflow. This produces

the result m = 1O.00...00 which must be normalised by shifting the mantissa 1-bit to

the right. Alternatively, the operation can be simplified by noting that the normalised

result differs from the unnormalised one by only the msb. Therefore, the normalised

mantissa can be obtained directly from the unnormalised one, providing that the msb is

obtained by ORing the msb of the unnormalised number and the overflow bit.

-94-

4. Leading-Zero
Detection
and

Leading Zero I
Encoder	 msb

Chapter 5

	

Floating-Point Operators

1. Alignment
SASB
	

EAEB
	

MAMB
I IMBits

L 1 LH[±H I	 L9	 L!±

00
Right	 J

Shift

MBits+2	 MBits+2

2's comp	 2's comp I

-H° 1] HO 11
MBits+2	 MBits+2

+ +

+
2. Addition	 Pipeline	 MBits+3

Cuts

3. Absolute Value	
2's comp

MBits+2

I	

01

MBits+2

Normalisation	 I MBi1MBits+1

MBits+l

Normalisation	 Left5. Normahse
distance	 Shift

MBits+l

6. Round	 +	
lab

+ +

B1ts
+ -

+ +	 1
7. Normalise

SS	 SE	 SM

Figure 5.2 Block diagram of simple floating-point adder

- 95 -

ChapterS
	

Floating-Point Operators

5.3.2 Low-Latency Floating-Point Adder

The simple floating-point adder requires a high level of pipelining to achieve high through-

put. This introduces a large latency and would be expensive to implement due to the large

number of latches required. The time to perform the operation can be reduced by calculating

all possible outcomes of certain steps using parallel hardware, so that the next step may start,

albeit on several potential results, before the last has been completed. Figure 5.4 shows a de-

tailed block diagram of the floating-point adder that was implemented. Its latency has been

reduced from 7 to 3 by the following modifications:

1. Alignment: Here the mantissa of the number with the smallest exponent must be right-

shifted by the difference of the exponents. Two outcomes of mantissa and exponent are

possible, depending upon which exponent is the largest. Both are calculated so that the

correct one can be selected by a multiplexer when the largest exponent is eventually

determined.

2. Addition and absolute value: Determination of the sign and magnitude of the mantissa

sum can be avoided[Know9l]. This is because only four additions are possible, depend-

ing upon the sign of the mantissas. These are A + B, - A - B, A - B and B - A. In the

first two cases the sign of the output is known, but in the second two the result can be

either positive or negative, so sign detection is necessary. In the latter case, the results

have the same magnitude but opposite sign. Therefore, if both are performed in parallel

the positive one can always be obtained. Two adders are required, and Table 5.1 summa-

rises the operations of each adder in the four cases detailed above.

Table 5.1 Obtaining a positive output from adder

A Sign	 B Sign	 Adder 1 Adder 2 Adder 1 Sign Sum Sign Output

+	 +	 A+B	 X	 +	 +	 Adderl

+	 -	 A-B	 B-A	 +	 +	 Adder 1
-	 -	 Adder 2

-	 +	 A-B	 B-A	 +	 -	 Adder 2
-	 +	 Adderl

-	 -	 A-i-B	 X	 +	 -	 Adder!

- 96 -

ChapterS
	

Floating-Point Operators

For example, if the sign of A is positive and the sign of B is negative then the operations

A - B and B - A are performed by Adder 1 and 2 respectively. The positive output forms

the magnitude component of the sum and the sign is obtained from Adder 1.

3. Normalisation and Rounding: The normalisation and rounding operations are never

required at the same time, so they are performed in parallel rather than sequentially. In

the normalisation path, the leading-digit detection and shift-left operations have been

optimised for speed. Figure 5.3 shows a normalisation circuit developed for this purpose

for a 16-bit mantissa. The number of leading zeros is encoded into binary, and may be

added to the exponent while the mantissa is being shifted.

Rounding may require the exponent to be incremented. In anticipation of this, an adder is

used to increment the exponent, whether or not this is actually required, and a multiplexer

is used to select the correct exponent once the result of rounding is known.

_1	 InputM	
1r4

Exponent Increase	 Normalised Output

Figure 5.3 Normalisation using speculation of leading zeros

- 97 -

ChapterS	 Floating-Point Operators

A	 B
I– -------------------- 1

I	
Unpack	 MbBits^MaBits

I	 EaO	 EbO	 MaBits-1	 MbBits-1

I	 Zero

I	 -	 detect	 1	 1	 0...0

	

+ -	 + -	 Extend	 ExtendI -	 ASubB	 BSUbA	 Zero	 oo...o MaBits-i-2	 00•••0 MaBita+2
I	 ABd	 BAd	 detect

msb	 msb	 1 0	 1 0

I	 SdO	 MaO

	

LL0	 0 1	 0 1
I	 Right

Shift byn
I	 El	 Right

I	 shao	 Shiftbyn
01

I	 Ebits
I0

I	 signext

I	 0 1	 MaBits+
L — MaBis+L__ Pit±

Sd	 Ec	 Sha	 Ma	 Mbb	 Mb
-

	Bitt BitO	 Bit	 BitO

Extend	 Extend

	

__J	

A0	 H 1	
Extend	 Extend

BO	 A0 MaBits+ BO

MaBits+4	 II 1 0	 AaO

CLA	 11	 CLA

Ebite	 -	 'Bi J L	 - - B	 aBj+3j

I	

Ebits+1

____	 I
Round	

Rs'__

_____ ____________________	 II
L0j] Ii_°I

1101	 USCAB

—Rs________ ___ ___
L_

Ss	 00

____	 IBiti	 INormDistl	 II_+
___	 ___	 ___________________/Left

sign I	 b	 msb	 - - - -

	 Stage	 CLA	

by
00 0

L-i I_	 10IJI	 Ovl —I_	 0v0	 01	 [Exte	 I

	

ISigncxt_ I 	 I

i_i_OvUsed	
msb	

MO
_

Ecll	 EcOl	 En-1EBits	 I

__
—s+l

7

msb

I	 OvUsed

L	
T	

UacSt

lO...OJ–	 ___ ___
I	 __ Esh	 III I 	 ___

10	 11	
I	 10	 'I-i

_______________________ 	 IIi
	Pack	 1

L

_
Ov	 IS----------------------

Figure 5.4 Detailed block diagram of floating-point adder

-98-

Area
25

20

' 15
C

>'
0
a,
o 10

5

0

Delay

+

4500

4000

3500

ID
0

3000
0a)

2500

2000

1500

+
'-4-
<:+

7 - /7

7-,---

Chapters
	

Floating-Point Operators

5.3.3	 Circuit Synthesis Results

Figure 5.5 shows the delay and the number of gates obtained for the floating-point adder for

a range of wordlengths and pipelining. For each level of pipelining two sets of results are giv-

en. One where both inputs have the same wordlength, and the other where one input is fixed

at 16-bits and the wordlength of the other input and the output is extended. In the former case

the horizontal axis indicates the wordlength of both inputs and the output, and in the latter

case it indicates the wordlength of the extended input and output.

15	 20	 25	 30
	

15	 20	 25	 30
Wordlength
	

Wordlength

80000

C

a,
, 60000

U

•0
0

40000
a)
E
I-

20000

0
15	 20	 25	 30

Wordlength

Key

Pipelining=1 (latches on output only)
Pipelining=1, 16 bit & extended input

- - Pipelining=2
- . -. Pipelining=2, 16 bit & extended input

Pipelinng=3
- - Ppelining=3, 16 bit & extended input

Figure 5.5 Circuit synthesis results for the floating-point adder

The lowest delay and area-time products are obtained when the adder is pipelined into three

stages. Pipelining at any higher level would be difficult to achieve with the current architec-

ture, and unlikely to yield a significant reduction in delay. The number of gates is almost lin-

early dependent upon wordlength, whereas the delay is less dependent upon wordlength.

- 99-

Chapters	 Floating-Point Operators

The lowest latency is obtained when pipelining latches are used only on the output. However,

this gives a very high area-time product and a delay which is likely to be too great to be com-

patible with the rest of the system (a target of 100MHz would be realistic, allowing a maxi-

mum delay of iOns). Therefore, a level of pipelining of 3 is likely to be used in practice. Note

that pipelining is implemented at no additional cost in area because the circuit between latch-

es is constrained to a manageable size. Consequently, the optimisation results are much bet-

ter.

For the floating-point adder, low-latency has been achieved using parallelism, but at a high

cost in area. It may be possible to achieve a better area-time product by allowing the latency

to increase to 4 or 5, in which case more stages could be used and less parallelism required.

However, a reduction in the area-time product may not be as large as expected due to the ad-

ditional pipelining latches that would be required between stages.

54	 Fixed/Floating Point Adder

Floating-point operation of the adder increases latency principally due to the need to align

the inputs and normalise the output. If it is acceptable for one input and the output to be rep-

resented in a fixed-point, then the latency for that input can be reduced to a single cycle. This

adder is shown in Figure 5.6. It has also been modified to apply scaling by (1 - T') to the

fixed-point input. This is required by the Givens rotation algorithm, and its incorporation

here avoids additional latency elsewhere, but necessitates a three-input-adder.

- 100 -

- Fixed-Point Input

Right "
Shift) Latency=1

ChapterS
	

Floating-Point Operators

Latency-3

Floating-Point Input

____ I

Floating-Point I
Proposed to Fixed-Point I
Pipeline Conversion	 I
Cuts - - - -	

- ' +

+

Fixed-Point Output

Fixed-Point to
Floating-Point
Conversion

Floating-Point Output

Figure 5.6 Fixed/floating-point adder

Using a signed-binary, redundant representation for the fixed-point input and output, and a

redundant adder, it is possible to achieve very fast addition times which are independent of

the wordlength. This allows the wordlength of the fixed-point input to be extended to in-

crease its dynamic range, without increased delay. It also allows truncation to be used, in-

stead of a more complex rounding operation.

Figure 5.7 shows the circuit synthesis results for the fixed/floating-point adder using CLA

and signed-binary adders for a range of wordlengths. For each adder type two sets of results

are given. One where both the fixed- and floating-point inputs have the same wordlength,

and the other where the floating-point input is set to 16-bits and the wordlength of the fixed-

point input and output is extended. In the former case the horizontal axis indicates the word-

length of the inputs and output, and in the latter case it indicates the wordlength of the ex-

tended fixed-point input and output. Fixed-to-floating-point conversion is implemented

separately and hence not included in these figures.

- 101 -

3000

2500

2000
a,
a,
a

1500
a
a,

1000

500

0

Are a

_+
— — —

V	
-

15

10

U,

>,
a
a,
0

5

0

Delay

Chapter 5	 Floating-Point Operators

10	 15	 20	 25	 30
	

10	 15	 20	 25	 30
Wordlength
	

Wordlength

25000

8 20000
U,
a)
a
0'

15000
0

10000

5000

Area — Time Product

/
/

/.+...

Key

Carry—Look—Ahead (CLA)

- - - CLA 16 bit float, fixed—point extended

- — Signed Binary (SB)

SB 16 bit float, fixed—point extended

0
10	 15	 20	 25	 30

Wordlength

Figure 5.7 Circuit synthesis results for fixed/floating-point adder

Very low-latency is achieved using the signed-binary representation. Care must be taken to

ensure that the floating-to-fixed-point and fixed-to-floating-point conversion do not domi-

nate at high wordlengths, and pipelining can be used within the converters to avoid this. The

CLA-based scheme takes twice as long, but is still relatively fast considering that scaling

must also be performed.

5.5	 Floating-Point Multiplication

5.5.1	 Operation of Basic Floating-Point Multiplier

The additional complexity of implementing a floating-point multiplier over a fixed-point one

is small. There is only a modest increase in the overall latency, due to the need to perform

normalisation after multiplication of the mantissas. Achieving rounding with low-latency is

-102-

Chapter 5
	

Floating-Point Operators

the main challenge, and this will arise whether fixed- or floating-point operation is used.

Figure 5.8 shows a block diagram of a basic floating-point multiplier. It consists of the fol-

lowing stages:

1. Multiplication: Calculation of the product of mantissas, in a carry-save format, the sum

of the exponents and the sign.

2. Addition: Carry-propagate addition of the carry-save product to obtain a non-redundant

mantissa. This product has twice the wordlength of the input mantissa, so a fast adder

will be required (also true of fixed-point).

3. Normalisation: If both inputs are normalised i.e. 1 ^ X, Y <2 the output will be in the

range 1 ^ P < 4. So a 1-bit right-shift may be needed to normalise the result. If so, the

exponent must also be decremented. The sticky bit, required for IEEE compliant round-

ing, is also calculated here.

4. Rounding: Rounding-to-nearest is performed by examining the msb of the truncated

part of the product to determine if it is logic 1. If so, the mantissa is incremented.

5. Normalisation: As with addition, rounding can cause the mantissa to overflow if previ-

ous to rounding all bits of the mantissa are logic 1. If so, the mantissa must be normal-

ised and the exponent incremented.

- 103 -

Chapter 5

	

Floating-Point Operators

	SX SYEXEY	 MX MY

1.Multiply

L_i	
1

	V L_.J	 XxY

- L	 ____________	
Pipeline

- - -
-1 -	 I	 Cut

2.Add	 I	 +
----------UP-------

3. Normalise

--4---

Least
______________	 significant

half

msb

Sticky
Bit

lsb	 --

4. Round

+
	

1
5. Exponent

si	 EP

Figure 5.8 Block diagram of the basic floating-point multiplier

5.5.2 Improved Multiplier

The basic multiplier has a latency of 5 cycles assuming the pipeline cuts proposed in

Figure 5.8. This has been reduced to 2 by performing the addition, rounding and normalisa-

tion in one stage as described below.

The carry-save output of the multiplier is partitioned into an upper and a lower part as shown

in Figure 5.9. The carry-save adder on the upper-part may be ignored initially. The upper-

part represents the truncated result without the lsb, and the lower-part is used for rounding

and determining the lsb. The boundary between the two parts has been chosen so that there

can be only one carry from the lower-part to the upper-part resulting from the addition of the

-104-

S..

CPA	 k-i

Chapter 5
	

Floating-Point Operators

carry-save bits and any rounding that may be required. As there is only one carry, there are

only two possible results for the upper-part, one with a carry and one without. Both of these

two possibilities are calculated in parallel to establish whether, or not, there is overflow.

Truncation Point

Upper-part U	 Lower-part L

ers:I1.++±H	
HI..

Rounding

CPA	 +

I-

No	 i	
+

rounding	 +

-	 01 01

Carry (round)
lsb lsb-1

Normalise for
rounding overflow

+ +	 •••	 Carry-propagate

bit (no norm)______________________________ adder

Rounding bit (norm)

I No	 Norm
normJb

Added, rounded and normalised mantissa

Figure 5.9 Performing the addition, rounding and normalisation together

Arranging for only one carry is achieved by ensuring that the terms remaining in the lower

part cannot generate more than one carry when added. Rounding may require the addition of

a bit in the position of the lsb or one bit to the right of the lsb (where the latter is required if

overflow occurs and the result needs to be normalised by a 1-bit right-shift).

For there to be only one carry, the lower sum must bounded such that 0 ^ L < 4lsb. The up-

per bound is obtained from the worst case sum 11.11 ... 111 , where the leading bit is the car-

ry. This bound is not met by a simple partitioning of the carry-save number, and so it is first

necessary to remove a bit in the lsb position using the carry-save adder as shown in

Figure 5.9.

- 105 -

Chapter 5
	

Floating-Point Operators

In the right of the figure, the remaining lsb and the lower partition are added and rounded for

the cases of normalisation and no normalisation. The correct result is selected once the need

to normalise has been established from the addition of the upper part. Also, a multiplexer is

used to select the corresponding carry-out of the lower part, and this is used to determine

which of the two upper-part adder results should be used. Note that overflow will not occur

due to rounding (i.e. a product of 4 cannot be generated from rounding the product of the two

largest mantissas).

Figure 5.10 provides a detailed block diagram of the floating-point multiplier implemented.

The multiplication is performed using a modified Booths recoded, Wallace-tree multiplier,

as this offers high-speed and low-area.

As mentioned previously, the rounding-to-nearest rule, as defined by the IEEE standard, was

not used, and so the sticky-bit was not required. If IEEE compliant rounding were required

then the approach proposed by Yu [Yu95] could be used for rapid generation of the sticky-

bit.

-106-

ChapterS
	

Floating-Point Operators

	

Ix	 IY

	

Unpack	 Unpack	 j
SX IEX

I	
SY	 EY MY

___________	 MxBits^MyBits

	

EBits	 EBits	 -	 -

	

Sy Sx	 signext	 [signext I	 MxBits I	 MyBits 1

I	
0	

LI	
complement bits

	

EBits+l	 J- Eflits+1

01 Add hidden

	

____	 ____	 L and2's

I I 	 ts_1	
msb	

r1	 J.

MxBits

IZero I Zero I sign I msb
J 	 0	

sign ___________	 _______
I___

	

	 li T...0detect I detect I

	

10 .0	 Boo Recoded

	

ISpO	
Unde OVCcfPI]	 Unde ove hf1	 ><

I Recode

___________	 UdO	 1	 Wallace Tree Multipl

Bits

R00 	 Udi	 ________

Pipeline	
ovol l Ean - -

- OvOO [01	
-

CLA	 1 I CLA HO I CLA

fB1
[st	 MxBits-1

.ts\—I
MyBits

MyBits

Sm

lsb
MyBits-1 -

sP 11' l"
Pack

Ip

Figure 5.10 Detailed block diagram of floating-point multiplier

5.5.3	 Circuit Synthesis Results

Figure 5.11 shows the circuit synthesis results for the floating-point multiplier for a range of

wordlengths. Two cases of pipelining are presented, one where latches are only present on

the output of the multiplier, and the other where latches are also placed after the Wallace-

- 107 -

15

U,
.	 10
>'
0

U)

5

0
10

Delay

- +- - - - - H- -

-I-

12	 14	 16	 18	 20
Wordlength

Key

- -	 Pipelining=1 (latches on output only)

Pipelining=2

Chapters
	

Floating-Point Operators

tree, as indicated in the figure.

6000

5000

4000
U,
U,

0

3000
0
U)

2000

1000

0
10

80000 I

LU

e 60000
U)

0
0'

0

40000

20000

Area

-
-	 -

-7i

12	 14	 16	 18	 20
Word length

Area—Time Product

/
/

,

01...	 .1,,	 i..	 I

10	 12	 14	 16	 8	 20
Wordlength

Figure 5.11 Circuit synthesis results for the floating-point multiplier

As with the adder, pipelining actually reduces the number of gates as it breaks down the cir-

cuit into smaller parts which can optimised more effectively. Pipelining also gives a large

improvement in the stage delay. Increasing the level of pipelining above that shown, would

require the Wallace-tree to be partitioned, and the improvement is likely to be small for the

wordlengths considered here.

The area has a square-law dependence upon the wordlength, which is not obvious from the

graph, but arises from the architecture. The delay will have a logarithmic dependence upon

the wordlength due to the use of a Wallace-tree and carry-look-ahead adders.

- 108 -

ChapterS
	

Floating-Point Operators

5.6	 Floating-Point Division

As with multiplication, the extra hardware required to implement a floating-point divider

over that of a fixed-point one is relatively low. This is particularly true here as practical

fixed-point division algorithms also require that the divisor be normalised prior to division.

The challenge in implementing the floating-point divider lies in performing rounding and

normalisation after division as quickly as possible.

5.6.1 Operation of Basic Floating-Point Divider

The block diagram of the basic floating-point divider is shown in Figure 5.12. It consists of

the following stages:

1. Division: Here division of the normalised mantissas is performed, and the difference of

the exponents and the sign of the quotient are evaluated. The division process is usually

very lengthy and needs to be heavily pipelined to achieve high-throughput. The output of

the divider-core is generated in two parts, a quotient Q and a remainder Z.

2. Normalisation: The mantissas are bounded, i.e. 1 ^ N, D < 2, so the quotient will be in

the range 0.5 <Q < 2. Therefore, a shift-left operation may be required to normalIse the

result, and the exponent decremented accordingly.

3. Rounding: The sign of the remainder of the division (Z) must be examined to determine

if rounding is required, and if so, the quotient must be incremented.

4. Normalisation: If overflow occurs after rounding, the mantissa must be normalised by a

shift-right operation and the exponent incremented accordingly.

- 109 -

MDMN

Chapter 5
	

Floating-Point Operators

• •	 SN SDENED
Pipeline -;

-L

1. Divide	 j

--4---

2. Normalise

3. Round

4. Normalise

SQ	 EQ
	

MQ

Figure 5.12 Block diagram of a basic floating-point divider

5.6.2 Improved Divider

Figure 5.13 shows a block diagram of the floating-point divider implemented. The modified-

SRT algorithm has been used to realise the divider core, as it offers good area-time figures

and provides a good degree of flexibility in the choice of pipelining-level to match the speed

of other operators in a system. The architecture for the floating-point divider is also directly

compatible with a range of recurrence division schemes. A number of optimisations have

been made to reduce the time to perform normalisation and rounding, and these are now dis-

cussed.

The modified-SRT divider core generates a quotient and a remainder in a signed-binary rep-

resentation. The quotient is converted to binary within the divider block using an on-the-fly

conversion scheme. Two additional bits are generated, one for rounding and another in case

-110-

ChapterS	 Floating-Point Operators

normalisation is required. The only other item of information required to determine if round-

ing should take place is the sign of the remaining quotient bits, which can be established from

the sign of the residual. Table 5.2 shows when rounding should be performed.

Table 5.2 Divider rounding

Q (including guard
Normalisation

Rounding Sign of	 Rounded
and rounding bits)	 Bit(s)	 Residual Z	 Quotient

Olxx...xxx0	 Shift-left	 0	 x	 lxx...xxx

Olxx...xxxl	 Shift-left	 1	 -	 lxx...xxx

Olxx...xxxl	 Shift-left	 1	 0/+	 lxx...xxx+1

lxxx...xxOO	 00	 x	 lxxx...xx

lxxx...xxOl	 01	 x	 lxxx..xx

lxxx...xxlO	 10	 -	 lxxx..xx

lxxx...xxlO	 10	 01+	 lxxx..xx+l

lxxx...xxll	 11	 x	 lxxx..xx+1

The first column of the table shows the quotient output of the modified-SRT divider with two

additional bits. The x's are used to represent bits of Q which are not used to determine the

rounding direction. If the msb of the quotient is 0 then normalisation is required. In which

case, the first of the additional quotient bits forms the Isb and rounding is based on the second

bit. If this bit is 1 and the residual is positive or zero then the combination (which forms the

truncated part) is equal to or greater than 0.5Isb, so the quotient should be rounded up by in-

crementing it. If the residual is negative or the rounding bit is 0, then the truncated part is less

than 0.Slsb, and no rounding is performed.

If normalisation is not required, then both additional bits and the sign of the remainder must

be used to determine if rounding is required, and the principles presented above are used to

determine rounding direction.

In all cases rounding has one of two outcomes. Either the normalised quotient, or an incre-

mented version of it, provides the rounded result. To improve the performance of the round-

ing circuit au incremented quotient is produced, even if not required, in parallel with the

remainder sign detection operation. A multiplexer is used to select the correct quotient when

-111-

0

0

IEOO I ElO

EBits	
sign msb	

ri EBi

Over	

Unde	

Over
oo...o

Doll	
H	 TLU

oa_110.0

l-: _

01 __

EQ

Pipeline delay equivalent to

Sq	 ZeroN ZeroD

sign

Chapters	 Floating-Point Operators

the rounding detection circuit completes.

Note that the incremented version of the result can be obtained from the on-the-fly conver-

sion circuit[Erce89a]. Here a simpler approach was adopted as it does not significantly in-

crease the hardware or critical path of the divider.

N -[MBits+EBits
MxBits^MyBits	

I Unpack

'SN lEN

I	 EBits	 EBits _____ZeroI	 ______	 ______

detect I	 I sign ext	 sign ext

i- EBits+1	 i- EBits+1

D

Unpack	 I
SD lED IMD

MBits-1	 J-MBits-1

0

If operation is 0/0 then

If Q00-1 then Q—O.0

else Q—I.0

N N D

D

Modified SRT with
pre-scaling and

on-the-fly conversion

Q	 Z

J-
MBits+2

signed-
binary

unpack I

+ —J

L CLA H
cout

I if<0

Remainder
-	 sign

El

rnsb	 Rbl RbO

MBits+l

QmO

CLA-lI

Qmf

EBits

Pack

Ov	 P	 EBits+MBits

Figure 5.13 Detailed block diagram of floating-point divider

-112-

ShQ
Rbl

RbO Not

ShQ Shifted

Rbl
Sz

ShQ

RbO Shifted

Sz

8	 10	 12	 14	 16
Word length

Area—Time Product

+
/

/
/

Chapter 5
	

Floating-Point Operators

5.6.3	 Circuit Synthesis Results

Figure 5.14 shows the circuit synthesis results for the floating-point divider.

10000

8000

0,
00

o 6000

0
00

< 4000

2000

0

250000

200000
0,
00

0
a,

150000
0

100000

50000

0

30

25

20

0,
C

>, 15
0

a,
0

10

5

0

100

U)
C

>..

.2
a,
0

50

0

Delay

-

.T1O)
1)

8	 10	 12	 14	 16
Wordlength

Latency

- - -	 Level of pipelining=4

Level of pipelining=6

Level of pipelining=8

- - Level shown in brackets

8	 10	 12	 14	 16
	

8	 10	 12	 14	 16

Word length
	

Wordlength

Figure 5.14 Circuit synthesis results for the floating-point divider

The area-time product is improved by increasing the level of pipelining. The maximum level

of pipelining used represents a cut every two rows. In this case the delay for the 16-bit divider

is not as low as the core presented in Chapter 4. This is because the critical path is in the pres-

caler. This can be avoided by pipelining the prescaler, which increases the latency to 11, but

will reduce the delay to that marked on the figure by the star.

For all pipelining levels, the number of gates is significantly greater than that of the divider

core presented in the previous chapter, as two extra quotient bits are generated for normali-

sation and rounding. Also a large number of latches are required to pipeline the exponent.

Note that much of this would also be required by a fixed-point implementation of a divider.

-113-

Area

15	 20	 25
Wordlength

Delay

15	 20	 25
Wordlength

1000

800

cn

0

400

200

0
10

14

12

10

0,
C

>.-
0

o 60

4

2

0
10

8000
U)
C

0,
0)

. 6000

C)

•0
0

4000
0)

E

2000

Key

- - - Beta Multiplier 1—bit shift
Beta Multiplier 3—bit shift

- - Fixed to float converter (FIFI)
FIFI 16—bit output, extended input

- - - - - Rounder (output wordlength)

Chapter 5
	

Floating-Point Operators

5.7
	

Other Operators

Other operators which have been developed are:

1. Rounder: This reduces the precision of a number by rounding.

2. Beta Multiplier: Performs the multiplication X 13 where f3 = (1 - 2 S) and s> 1 . This

requires that X be right-shifted by s-bits, complemented and added to X. Only rounding

is performed on the output as normalisation is not required.

3. Delay Block: This delays a floating-point number by a fixed number of clock cycles D.

The number of gates is 5(EBits + MBits)D and the delay is approximately 3ns.

4. Fixed-to-Floating-Point Converter.

Figure 5.15 shows the circuit synthesis results for the other floating-point operators.

Area — Time Product

0L
10	 15	 20	 25

Wordlenyth

Figure 5.15 Circuit synthesis results for other floating-point operators

-114-

ChapterS
	

Floating-Point Operators

5.8	 Comments on Floating-Point Operator Designs

A 95MHz throughput rate could be achieved using the floating-point designs presented in

this chapter and the fabrication process described in Chapter 1. A rate of 100MITIz should be

possible by increasing the optimisation effort, but this will require longer computing times.

The operator properties are summarised in Table 5.3. In particular, the fixed/floating-point

adder provides single-cycle latency on the fixed-point input for all practical wordlengths.

Table 5.3 Summary of the performance of 16-bit floating-point operators

Operator	 Second Input	 100MHz Operation 	 Max. Clock
16-bit mantissa	 Wordlength	 Latency	 Gate Count Frequency

Adder	 16	 3	 2266	 105

32	 3996	 96.8

Fixed/Floating-Point	 16	 1	 1318	 143
Adder	 32	 2661

Multiplier	 2	 3075	 94.9

Divider	 11	 9600	 108

For the operators add, multiply and divide the cost of obtaining floating-point operation is

only significant for the adder. In this case, the area has increased by approximately a factor

of 10 and the latency by a factor of 3 over the fixed-point design. Therefore, further work to

develop a more area-time efficient floating-point adder would be worthwhile.

For multiplication and division, the additional hardware to achieve floating-point operation

is small and its effect on latency negligible. The major effort has been to implement round-

ing, and this would affect fixed-point operators in a similar way. If rounding were not re-

quired and truncation used, it would be unnecessary to calculate the lower-half of the product

in the multiplier and the remainder in the divider, and considerable savings in area could be

made. Therefore, achieving an unbiased error using truncation would be worth investigating.

One approach would be to arrange for a signed-binary representation at the output of the di-

vider core, or multiplier tree (as done in Chapter 3). Applying normalisation and truncating

at the right point could probably be done using similar techniques to those already applied.

-115-

Chapter 6	 Givens Rotation Algorithm Variants

In the previous chapters, the design of low-latency fixed- and floating-point operators was

considered. The purpose of this work was to identify and develop operators for the imple-

mentation of a Givens rotations processor suitable for a high sample-rate implementation of

the QR-algorithm for adaptive filters. In this and the next two chapters, the design of a

Givens rotation processor and its use in the construction of an adaptive filter are considered.

The Givens rotation is a relatively simple operation, yet there are many forms of it for per-

forming the QR-algorithm. Each of these has properties that significantly influence the per-

formance of any VLSI implementation. In this chapter, the most promising variants of the

algorithm are identified and discussed. This results in a wide variety of algorithms; however

in the next chapter the properties of the algorithms are examined in more detail and a single

variant is identified as offering significant advantages over the others for VLSI implementa-

tion. This is followed by a chapter which examines how the Givens rotation processor could

be used to construct an adaptive filter for a range of problem sizes.

6.1	 Overview of Givens Rotation Algorithm Variants

The use of unitary rotations to triangularise a matrix was proposed by Givens[Give58] in

1958. (Note that Householder[Hous58] was also publishing his method at the time). Since

then a number of variants of the algorithm have been developed for various reasons. The con-

ventional Givens rotation (introduced in Chapter 1) requires both square-root and division

operations in the boundary cell and four multiplications are needed to implement the rotation

within the internal cells of the array. The square-root and divide operations are widely re-

garded as much more complex than multiply. Gentleman[Gent73] provided the first variant

that did not require a square-root operation; the number of multiplications required to imple-

ment the rotation in the internal cell was also reduced to three in one variant, and at Golub's

suggestion to two in another. The two-multiplier variant was derived using the output of the

-116-

Chapter 6	 Givens Rotation Algorithm Variants

cell to update the stored parameters r and u (and is referred to as the square-root-free, x-

feedback (SQF-XFB) algorithm). This algorithm halved the number of multiply operations

within the internal cell and so reduced the number of computations required to implement

the QR-algorithm by almost one third. Hammarling [Hamm74j observed, however, that sig-

nificant numerical errors could arise in the two-multiply variant and it was not possible to

guarantee stability when this form is used. He proposed five two-multiplier solutions as al-

ternatives. More recently Döhler[Döhl9l] proposed another, which is a simplified variant of

one of these solutions, to give what he called the Squared Givens Rotation (SGR). It will be

shown in Chapter 7 that this variant offers particular benefits in achieving an efficient appli-

cation specific VLSI implementation of the Givens rotation.

The variants of the Givens rotation which are square-root-free and also use only two multi-

plications to perform the rotations in the internal cell are known as fast Givens rotations. Al-

though these offer reduced numbers of computations, there is still some concern over their

numerical properties[Anda94]. One reason for this concern is that numbers may overflow or

underfiow, and the effort required to monitor these conditions is high. Harnma-

rling[Hamm74] proposed that underfiow be overcome by storing an exponent separately, by

normalising occasionally, or performing row interchanges. The latter option makes the de-

sign of a good VLSI architecture difficult - one of the reasons why an approach based on

Givens rotations was adopted. Barlow and Ipsen[Bar187] proposed a scaling approach based

on powers of 2 so that it could be implemented using shifters. Unfortunately, their algorithm

uses 4 multipliers in the internal cell.

Golub and Van Loan[Golu89] use a combination of two fast algorithms which can be select-

ed depending upon the rotation to be performed so that the scaling is limited to 2 on each

iteration. Anda et al. [Anda94] have taken this one step further by using a combination of

two algorithms which act either to increase or reduce the stored quantity in the boundary

cells. By selecting the appropriate rotation it is possible to ensure that the scaling of each row

is maintained close to unity (in fact the scaling factor, s, is bounded such that 	 ^ s ^ 12).

-117-

Chapter 6	 Givens Rotation Algorithm Variants

In the variants mentioned so far, division operations are still required to calculate the rotation

parameters in the boundary cell. This operation is of similar VLSI circuit complexity as the

square-root operation, so to avoid division in both the boundary and internal cells Götze and

Schwiegelshohn[Gotz9l] developed the divide-and-square-root-free variant of the Givens

rotation. Only multiplications and additions are required by the boundary and internal cells,

but four multiplications are required in the internal cells to perform the rotation. Another

problem associated with removing the division is that the dynamic range requirements of the

arithmetic increase dramatically, although this can be overcome relatively easily by scaling

the variables by powers of two[Götz9l][Fran94].

The QR-algorithm is usually implemented using floating-point arithmetic due to dynamic

range requirements of variables. Fixed-point implementations are simple, and therefore at-

tractive, and possible by applying scaling to the input of the conventional Givens rotation al-

gorithm. However, scaling must be precalculated, and the numerical errors introduced can

be relatively high. To address this issue McWhirter, Walke and Kadlec[McWh95] recently

presented the normalised Givens rotation, in which scaling is applied dynamically based

upon the energy of the signal in each cell. This ensures fixed-point number ranges. However,

the cost of normalising at each cell can be high. Therefore, two new algorithms, which are

presented later in this chapter, have been developed which apply normalisation to either

whole columns or the whole array. In summary, the algorithms can be grouped into the fol-

lowing classes:

Conventional algorithm

Square-root-free algorithms

- Scaled-Givens rotations

- Hammarling's two-multiply rotation

- Squared-Givens rotations

Divide-and-square-root-free algorithm

Normalised algorithms

- 118-

Chapter 6	 Givens Rotation Algorithm Variants

All but the normalised algorithms can be described using a generalised form of the Givens

rotation equations. This is presented next and then used to derive some of the more relevant

algorithm variants.

6.1.1 Generalised Givens Rotation Algorithm

The following generalised Givens rotation equations were first proposed by Gentle-

man[Gent73], and similar approaches have been used in the literature subsequent-

ly[Hanmi74] [Hsie93]. As indicated in Chapter 1, the Givens rotation is a 2-dimensional

unitary rotation which eliminates an element of a matrix. In the QR-array shown in

Figure 1.4, the rotation is used to eliminate the input to the boundary cell, XB, i.e.

[c s* [rB ri - [ra' ri'l
c [xB xi•j	 [o xjj

where rB represents the stored parameter in the boundary cell, and x 1 and r1 are, respective-

ly , the input and stored parameter of one of the internal cells in the same row as the boundary

cell. In practice the rotation is applied to the parameters associated with all the internal cells

in a row, but only one set is shown in equation (6.1) for clarity. The results of the rotation are

the internal cell output x 1' and the boundary and internal cell parameters r B and r1' updated

to time t,, (i.e. elements of R(n)).

Note that later in the chapter, when dealing with an array of cells, the cell to which a variable

relates is indicated by subscripts. For example, the input to the cell on the i" row and the j

column is denoted by x 1, (n).

For the purposes of generality, the Givens rotation has been described for the case when x,

and consequently r, are complex quantities, as this is required for adaptive beamforming. In

this case, s is also complex quantity and s represents its complex conjugate. The rotation

equations for the case of real x are a degenerate case of the equations for complex x.

(6.1)

The Givens rotation can be generalised by introducing two scaling terms using the following

-119-

(6.2)

(6.3)

(6.4)

(6.5)

(6.6)

(6.7)

(6.8)

Chapter 6
	

Givens Rotation Algorithm Variants

substitution

[rB ru	 rdl/2 ol[?B ru

LXB X i] = [61/2] LXB x!j

Making this substitution in equation (6.1) yields

r	 1/2-	 1/2-1 — [d11/2tBt dt1'2f,tlC S iI3d r 13d r,1

[_s	
L 6 XB 6 xiJ	 [0
I	 1/2	 1/2- I

where the two rotation parameters are given by

1/2-	 n 1/2-
6 XB	 pd rB

d"2t'	
C

= d"2'

Equation (6.3) can be rearranged to express the rotation in terms of a new transformation ma-

trix acting on the new variables i.e.

1/2I3cd

d"2
1/2sd

I-,

s 61/21

ft; i:;1	 [rB ri

cö	 LX B X,J	 [Ii

1/2J

I- -I

Hence, the updated values are given by

= I3 2d B 2 + 6IBI2
B	 d'

=
 (

3 cd" 2 	(s*61/2\

d"2)i+1 d"2

c6 hI' 2	 (sd"2'\-

=	 oh1'2

where equation (6.6) has been obtained by making the substitution for s and c as defmed in

equation (6.4).

For the standard Givens rotation, the residual is given by ?(n)a(n), where ?(n) is the product

-120-

2d
c —I3 p 	 S	

d'
(6.13)

Chapter 6
	

Givens Rotation Algorithm Variants

of the rotation cosines down the array diagonal and a(n) is the output from the bottom cell

of the right-hand colunm i.e. a(n) - x i,, (n) (noting that p is the number of array inputs).

In the generalised case, this output is (n), where a(n) = 	 2(n)L(n). So the residual is

e(n) -
	 (6.9)

This completes the definition of the generalised Givens rotation. The new equations contain

the freedom to specify some constraints on the variables. In the following sections specific

variants of the Givens rotation are obtained by choosing appropriate constraints.

6.2	 Square-Root-Free Algorithm

The conventional Givens rotation formula contains a square-root operation in the boundary

cell, however, a range of square-root-free variants have been developed.

6.2.1	 Gentleman's Solution

If substitutions for s and c are made in equation (6.8), the generalised internal cell equation

for the cell output takes the form

;, -
	 -t	 j:;i	

J

	
(6.10)

If is updated using the formula

-
d'
	 (6.11)

then the square-root in equation (6.10) is avoided. There is also sufficient freedom to impose

the condition rB - rB' - 1, avoiding the need for a square-root operation to compute r in

the boundary cell. The boundary cell equations become

d'
	

(6.12)

- 121 -

Chapter 6
	

Givens Rotation Algorithm Variants

_ cS
	

(6.14)

and the internal cell equations

XI' = x1—xr1	 (6.15)

r1'	 sx1 + xBrI
	 (6.16)

The resulting algorithm was proposed by Gentleman[Gent73] and is summarised in

Figure 6.1.

The least squares residual is given by e(n)	 2(n)'y(n), where (n) is the output from

the bottom cell in the right hand column at time t,. If c1(n) is defined to be the cosine gen-

erated by the boundary cell on the th row of the anay at time t, then

I p	 \	 P_ll/2()
'y(n) - LJ]I ci(n)J - IT1/2(n)

(6.17)

	

_____	 2(n)
=	 2(n)=	 '2(n)	

(n)

and hence

e(n) - 6(n)(n)
	

(6.18)

-122-

Chapter 6

Boundary Cell

NI

d2d+I2

IFd'O THEN

(s, c) — (0, 1)

&
ELSE

(& 132d
(s, c) -	 --

ENDIF
d — d'

Givens Rotation Algorithm Variants

1	 x 1 (n)	 x2(n)	 x 3(n)	 y(n)

U2

Internal Cell

(zsc)+ (z,s,c)

' - — zF

F —	 + cF

(n)
64(n)

e(n)

Figure 6.1 Summary of square-root-free algorithm

6.2.2	 Golub's Solution

The square-root-free algorithm presented above requires three multiplications in the internal

cell and three parameters to describe the rotation. Golub suggested a more efficient form

which requires only two multiplications and two additions. It is obtained from Gentleman's

solution by using the cell output ', rather than its input, to update F 1 . Substituting equation

(6.15) for x 1 into equation (6.16) gives

(6.19)
s*jI+(s*z+c)t1

But from equation (6.12) and (6.13) it follows that sz + c = 1 and so

= *II+tI	 (6.20)

This solution requires only two multiplies in the internal cell. Furthermore, only two quanti-

ties (s and z) are required to represent the rotation, and this reduces the communication costs

of an implementation.

- 123 -

Chapter 6
	

Givens Rotation Algorithm Variants

Hammarling [Hamm74] observed that it is no longer possible to guarantee stability when us-

ing Golub's solution with finite precision arithmetic. This can be attributed to the use of

1 - sz instead of c in the internal cells. When c is small, this substitution is poor and nu-

merical errors can be relatively high. This is particularly significant during the initialisation

phase leading to the extremely slow convergence observed in simulations. However, once

convergence has been attained and c - 32, the substitution is more accurate and a signifi-

cant reduction in the numerical errors has been observed.

6.2.3 Hammarling's Two-Multiply Rotations

As alternatives to Golub's solution, Harnmarling [Hamm74J proposed another five two-mul-

tiply rotations. These were obtained by choosing relationships to update the scale factors so

that two of the multipliers applied in the internal variables reduce to unity. These cases can

be identified by considering the generalised equations applicable in the internal cell as given

by equations (6.7) and (6.8). Four possible cases can be directly obtained; the first by choos-

ing d" 2 - I3cd hhl2 and I1I2 = cöhl'2. This gives the following two-multiply formulae

= t1' + a1'
	

(6.21)

=	 (6.22)

where

s*l'2	 I3sd"2	 XB*d	 dh/2ö'2 X B* -
(6.23)1/2	 1/21 -a - d"2 = d'fB'	

b	
I1/2 = dh12?BI1/2 = d' cö 	 rB

In the boundary cell, the scaling-factor update equations become

d'=-_	 (6.24)

where

1	 IXBI2
K = -i dt

(6.25)

-124-

— r +
I B I 2 	 KrB

132dB
(6.26)

(6.29)
r

k' = kic q' = qK
-	 rBK=

-i-
(6.30)

Chapter 6	 Givens Rotation Algorithm Variants

Also, using the first substitution (i.e. dIhI'2	 I3cd" 2) and the expression for c given in equa-

tion (6.4), the expression to update B, given by equation (6.6), becomes

The least squares residual is computed using e(n) =	 '2 (nry(n), where (n) is the output

from the bottom cell in the right hand column, and

I p	

J	

"'ö1'?j(n)
y(n)	 I fJc1(n) = 11I "2(n)

-1 (6.27)
_____	 '2(n)

—	 V'2(n) o 1L/2() ...	 (n)

Therefore e(n) = 6(n) (n).

A simplification of Hammarling's solutions can be obtained by defining two new variables

k=	 q= 1
	

(6.28)

The boundary cell equations become

kxB
a=

i3qrB

where

K —
2kIxBI2	

(6.31)
qrB

Consequently, K IS greater than 13 2 and will increase the diagonal matrix scaling terms (d

and) on each iteration. Potentially, the growth can be quite high, but Golub and Van

Loan[Go1u89] avoid this by ensuring that K ^ 2 by selectively using a second two-multiply

algorithm which meets this condition when the first does not.

- 125 -

Chapter 6
	

Givens Rotation Algorithm Variants

The substitutions which enabled the other three of Hammarling's direct two-multiply solu-

tions to be obtained are listed in Table 6.1. Further solutions are possible by using one of the

updated internal cell variables to calculate the other. In this case the rotation matrix can be

written as the product of two matrices, where each uses only one multiplication to update one

of the variables. The combined effect, as shown below, is to perform three multiplications.

[i ol[i al_[i	 a 1
[v ij[o 1]	 [y i+avj

For example, if r 1 is updated first and d" 2 - cd"2 then

r1' = r1 + ax1

where

a

Now equation (6.33) can be rewritten as

= i' - a1

and substituted into equation (6.8) to give

c0lu'2_ 13sd"2 , _______ ______
- 0,2X1	

011/2
r1 + 011/2 Ldi1/2)

the term in brackets can be replaced by and the equation rearranged to give

0"2 1 (c2 + ss*) - csd"2t1'I i -
c& 1/2

But c 2 +ss	 1,so

01/2 -	 sd"2Ii - cOIl/2 X1 -

(6.32)

(6.33)

(6.34)

(6.35)

(6.36)

(6.37)

(6.38)

Now there are two further solutions which reduce this second equation to just one multiply.

01l2
Theseare 8W2 = - or Ohh/2= sd"2.

C

-126-

Chapter 6
	

Givens Rotation Algorithm Variants

Two solutions based on this approach were suggested by Hammarling and are provided in

Table 6.1. Further analysis suggests that there are another 14 solutions. All 16 solutions are

listed in Table 6.2. The implications of each solution on the signal flow graph of the internal

cell is considered in the next chapter.

6.2.4 Squared Givens Rotation

Döhler[Döhl9l] developed a simplified version of one of Hammarling's two-multiply solu-

1,	 1	 2tions by making the substitutions d = :-, d = :- and S = c S into the generalised equa-
rs	 r

tions. The internal cell formulae are

=	 + aX1

= X1—bt1

a = Sx	 b=
rB

The boundary cell formula are simplified to

j:;i = 2r+5Ix2	 St =
r

(6.39)

(6.40)

(6.41)

(6.42)

This algorithm is known as the Squared-Givens Rotation (SGR) and is summarised in

Figure 6.2.

- 127-

1	 x 1 (n)	 x2(n)	 x3(n)	 y(n)

:n)

2 -2
- 3 qr (6.44)

Chapter 6
	

Givens Rotation Algorithm Variants

Boundary Cell

r

a-
IF t - 0 THEN

b—O
ELSE

x
b—

r
ENDIF

1Ff'— 0 THEN
&

ELSE
pr
r

ENDIF
1• f—f'

Figure 6.2 Summary of SGR algorithm

6.3	 Divide-and-Square-Root-Free Algorithm

A divide-and-square-root-free (DSF) algorithm can be obtained by choosing the updates

d'rB'—d

	

	
(6.43)

rB

and defining new variables k - and q = . The boundary cell equations then become

k' = kqr'	 q' - rB '	 (6.45)

The internal cell formula become

- 128 -

Chapter 6
	

Givens Rotation Algorithm Variants

and

- __ __r1'	
[32d	 /	 *\

= d'	 d'rB')

+ kxB*xj

x1' = 13(rBxI-xBrI)

(6.46)

(6.47)

The DSF algorithm is summarised in Figure 6.3.

Boundary Cell

(m,q)

(m', q')

1	 x1(n)	 x2(n)	 x3(n)	 y(n)

t 1,1)	 • 1,2	 iri3	 '•i ul

r2.2)	 jr2,3 I	 I U2

a*-13f
b-

f—k

r' f— qa2 + f*

e 4-

k4—kqt'

q 4— f'

m' 4— am

Internal Cell

(ab,e,b,e,f)

' —a—bF

f - f + ei

(m,q)

()

e
ma

e4--
q

r3,3

1(n)

e(n)

(m4(n), q4(n))

Figure 6.3 Summary of the DSF algorithm

The least-squares residual is computed using e(n) - ?(n)(n)	 y(n)"2a(n), where

(p-i
y(n) - Iflci(n)J -

qj+
i_1	 i-i

(6.48)p-i

_______	 ____________ i-i	 = mp+i
=	

q2f2,	 3q_21F_1,_1 = _______	 _____
/2 •	 1/2	 q"2	 1/2	 1/2

q	 q2	 q	 qp

(n) This is the only division required by the algorithm.Therefore e(n) - -.
qp

-129-

Chapter 6
	

Givens Rotation Algorithm Variants

6.4	 Summary of Givens Rotation Algorithms

Table 6.1 summarises the choices required to obtain some of the more important Givens ro-

tation algorithm variants.

Table 6.1 Summary of Givens rotation algorithms

Givens Rotation	 Substitution

Conventional, Givens[Give58] 	 d = d' = 1	 =	 = 1

Square-Root-Free (SQF-XFB), 	 =	 = i	 =
Gentleman[Gent73]

Squared-Givens Rotation (SGR), 	 ,	 i	 i
DOhler[Döhl9l]	 d =	 d =	 =

r

Divide-and-Square-Root-Free (DSQF),	 -	 1
Götze and Schwiegelshohn[Gotz9l] 	 d'rB' = d

Scaled Givens Rotations, 	 1.1I	 I	 A,-1t

Barlow and Ipsen[Bar187]	 U =	 V = UUU

L r

Two-Multiplication, Feed-Forward	 d' = cd	 ' = c6
Solutions, Hammarling[Hamm74]

d'=cd

d'—s

d'=s

Feedback solutions, Hamma- 	 d' = s	 c
rling [Hamm74]

d'=s

Table 6.2 summarises the 16 possible two multiply solutions which can be obtained using

feedback.

- 130 -

Chapter 6
	

Givens Rotation Algorithm Variants

Table 6.2 All two-multiply solutions obtained by feedback

	0 1/2	 d"2
d'"2 = cd"2	011/2	 -	 011/2 = cO" 2	d'"2 = -

C	 C

d'"2 = cd" 2	011/2 = sd"2	Ohh/2 = cO"2	 d11'2 = 50112

d"2
d1112 - cd"2	 8W2 - -	 811/2 = c0 11'2	 d'"2 = -

S	 S

c2d"2	 c28"2
d'"2 - cd"2	&1'2 -	 Ohl/2 = cO" 2	d'"2 =

	

S	 S

d'"2 = sO"2	 011/2 - cO" 2	01/2

	

011/2 = sd" 2	d'"2 = -
S

	d"2	 011/2 = sd" 2	d'"2 = cd"2
d'"2 - sO" 2 	 011/2 - -

S

	0 1 / 2	 d"2
d'"2 - sO"2	Oh1'2 - -	 llI2 = sd"2	d'"2 = -

c	 c

s 28"2	d"2s2
d'"2 = sO"2	Olh/2	 &1/2 = sd"2	d'"2 =

	

c	 c

6.5	 Normalisation of Conventional Givens Rotation Algorithm

6.5.1 Fixed-point Operation

Fixed-point operation is obtained by defming the QR-algorithm in terms of parameters

whose magnitude is guaranteed to be less than one. Also, for good numerical performance it

is necessary to do this in a way which makes good use of the available wordlength. In this

section a normalised version of the conventional Givens rotation algorithm is presented

which can be implemented using fixed-point arithmetic. Unfortunately, this algorithm is

costly to implement, so other schemes with relaxed levels of normalisation are derived. Nor-

malisation of the other Givens rotation variants is not considered due to its cost. In particular,

two multiply solutions are not possible when normalisation is applied.

6.5.2 Normalised Algorithm

The normalised algorithm is achieved in the following manner. The input of the cell on the

i t ' row and the j column is normalised using

- 131 -

n

=	
2(n_k)x(k)x)

k-i

(6.52)

Chapter 6
	

Givens Rotation Algorithm Variants

-.	 x,,(n)
x,,(n)	

g12(n)
where

(6.49)

n

g,, (n)	 32(n_k)x(k)2 = I32g(n - 1) + x1 (n) 2	 (6.50)
k-i

Consequently I1,(n)I ^ 1 , as required. The internal cell (i, i) stores and updates the param-

eter r1, (n) as follows:

2r1,(n— l)r 1, (n— 1) + x1,1(n)xi,(n)	
(6.51)r1, (n)	

r 1(n)	 r 1(n)

and so

r(n)r,1(n) = I3 2r(n - l)r1, (n - 1) + x1(n)x1,(n)

Similarly, the parameter stored in the
th boundary cell may be written in the form

/n
1/22(n-k)

r (n) = I	 I	 x, (k)2]gjj (n)	 (6.53)

If, for every cell in the array, a normalised parameter is defmed as

±	
(6.54)r1, (n) =	 k-i

n= g2(n)	
2)32(flk)XI(k)	

--i

then it follows from the Cauchy-Schwarz inequality that jFk, (n)I ^ 1 , and so this quantity is

also normalised.

The function of the ith boundary cell may now be expressed in terms of normalised param-

eters by noting that f , 1(n) - 1 and

- 132 -

Chapter 6
	

Givens Rotation Algorithm Variants

s,(n)	
x1, 1(n) - x1, 1(n)	 -

-	 —x1(n)
r1,1 (n)	 g12(n)

c(n)	 Ji - s?(n)

(6.55)

The function of the internal cell in the ith row and th colunm may also be written in terms

of normalised quantities. From equation (6.1) it follows that

i 3(n)	
r (n)
g12(n)

- 13cj(nf"1+	
x1(n)

g','j2(n)	
s(n)

g"2(n)

but r(n - 1) =	 - 1)g 2(n - 1) so

- g112(n -
	 - 1) +

g1' 2(n)

(6.56)

(6.57)

- 1)
The term [3 "1121	 represents the change in normalisation of (n) from time tn_ i to

n,

time t, and is the generalisation of the c 1(n) parameter (which represents the change in nor-

malisation for the th boundary cell). The term can be determined from its defmition, i.e.

(6.58)g , (n) = p g,(n—l)+x2(n)

dividing through by g 1 (n), re-arranging and taking the square-root yields

- 1)
= A/i -1/2(n)

Hence, equation (6.57) becomes

rLJ(n) = A/i - 2 1, (n)c 1(n)f(n - 1) + s(n)(n)

The output of a cell can also be expressed in terms of normalised parameters

+ (n) = x, + 1,j(n) = c 1(n)x1, (n) - s 1(n) [3r1, (n - 1)

g 1 , (n)	 g12, (n)

(6.59)

(6.60)

(6.61)

Substituting for r1, (n - 1) and multiplying top and bottom by g 112(n) gives

- 133 -

Chapter 6
	

Givens Rotation Algorithm Variants

(n)	
(ci(n)xi,j(n) -

s 1(n)I3i 1,(n - 1)g 2(n - 1)'\ g12(n)
'	 —	 g12(n)

(c1(n)1,(n) - s(n) 1, (n - 1)AJ1 - 21,(n))_g12(n)
(n)

(6.62)

•U.2(n)
The new term "	 represents the change in normalisation from cell to cell down a col-g1i2j (n)

unm of the array. An expression for it can be obtained by using the fact that each cell per-

forms an orthogonal transformation. Clearly

x ?+ 1, (n) + r(n) = x(n) + 13 2ri(n - 1)

and hence

	

n	 n	 n
k) 2, 2(n- x1, (k) -	 x +1, (k) =	 2(fl_k)(r2j(k)_32rj(k_ 1))

	

k-i	 k-i	 k-i

— r?(n)

that is g1+, (n) — g 1, (n) - r?3(n)

Hence, by rearranging and expressing in terms of (n)

g 2(n)	 1

______ = A/i2.J(n)

(6.63)

(6.64)

(6.65)

Substituting this into the expression for the normalised cell output (i.e. equation (6.62)) gives

-	 c(n), (n) - s 1(n)t1 (n - 1)4If21,(n)
x1+1,(n) — (6.66)

Alternatively, the cell output may be expressed in terms of the updated value of f, i.e. i (n),

by using equation (6.60) to make the following substitution

- 1)J1 - 2(n) = ? , (n) —s(n),(n)	
(6.67)

This leads directly to the simpler, alternative formula for the output

-134-

7\	 /\ _4____

g 13	 (gl;')_-1

r23

/e(t)

U

Xe

e =

Chapter 6
	

Givens Rotation Algorithm Variants

-	 , (n) - s 1(n)F1, (n)
x+1 , (n) =	 __________

c 1(n) /l - t2 , (n)
(6.68)

The normalised algorithm is summarised in Figure 6.4.

Internal Cell

(s, c)4(s c)

- A/i
_2

Ar f Ji_2
W1rOTHEN

, f-. 0
ELSEIFc = 0 THEN

r - 0
ELSE

(x—s?)
CLir

ENDIF

x(n)	 X2(fl)	 X3(fl)	 y(n)

Boundary Cell

s—X

C f— A/i -

'y' - C/

Input Cell

2
g(—AJ) +x

IFg=OTIIEN

ELSE
- xx f— -

g
END IF

Y-Channel Internal
Cell

(s,c)(s,c)

Same operation as inter-
nal cell but with

g' (— A1g

g11

1\

Figure 6.4 Summary of the normalised Givens rotation algorithm

The boundary and internal cells perform the functions derived previously, and can be imple-

mented using fixed-point arithmetic. The diamond shaped input cells normalise the input

data and should be realised using floating-point arithmetic, or fixed-point arithmetic with ex-

tended wordlength. The output cell at the bottom of the array calculates the least squares re-

sidual using the following relationship

e(n) = (n)a(n)'y(n)(n)g(n)
	

(6.69)

- 135 -

Chapter 6	 Givens Rotation Algorithm Variants

and makes use of the expression

g(n)	 gL(n)fJJ1 —t +1 (n) g(n)(n)	 (6.70)

which is readily deduced from equation (6.65). The normalised scalar (n) is computed in a

recursive manner by extending the function of the cells in the right-hand column. The unnor-

malised parameter g , (n) (g(n)) is computed in the right-hand input cell and passed

directly to the output cell. The output cell forms the product of its four inputs and must be

implemented using floating-point arithmetic, or fixed-point arithmetic with sufficient word-

length.

The normalised algorithm uses a level of scaling specific to each cell to make good use of

the wordlength. However, the extra arithmetic operations required to do this are significant.

Therefore, a number of alternative schemes have been proposed based on the simplification

of the normalised algorithm.

6.5.3 Column Normalisation

The column normalised algorithm only normalises the array inputs once at the top of each

column. As the input normalisation changes from one time instance to the next, the f and U

parameters stored within the cells are renormalised. This is achieved by transmitting the

change in input normalisation (i.e. A) down each column and within each cell applying it

to i or U using a multiplier. The effect of normalisation is removed from the residual by mul-

tiplying the right-hand column output by the normalisation applied at the column input

(i.e. g). The algorithm is summarised in Figure 6.5.

6.5.4 Array Normalisation

The normalised algorithm can be further simplified by using only a single normalisation

quantity applied to all inputs of the array. If the greatest value of column normalisation (i.e.

max(g 1, (n)) is used, then the magnitude of all parameters will be less than one. Calculating

this quantity will introduce latency in the input cells, as the normalisation terms for all inputs

-136-

e(n)

Output Cell
-	 1/2

,y"tI5,1,y

e =

Chapter 6
	

Givens Rotation Algorithm Variants

must be examined to determine the quantity before it may be applied to all inputs. The and

U parameters must also be renormalised, as done in the column normalised algorithm. These

requirements can be avoided by precalculating a fixed worst-case value of the input normal-

isation, v, and applying it to all the array inputs. Where,

v = max(,2(k))

< Jl_I3
	 (6.71)

- max(x1,(k))

This is the simplest of the normalised algorithms allowing fixed-point operation.

x(n)	 X2(fl)	 x3(n)	 y(n)

g13

r 13	 U1

F23	 U2

3II3

x

Boundary Cell

c)

- F

F - AJ+X
IFr— OTHEN

(s,c)	 (0,1)
ELSE

(s,c)	 (c;')

ENDIF

,y' - c'

g11	 g12

Internal Cell

(s,	 (s, c)

, 1x

F' f- rA

F f- cF' + s

Input Cell

g"2

g' - 2 g +
IFg' = OTHEN

ELSE
-	 xX f- -

Arg

END IF
g •- g'

Figure 6.5 Summary of column normalised Givens rotation algorithm

This concludes the discussion on the variants of the Givens rotation algorithm. In the next

chapter the implications of each algorithm on a VLSI implementation are considered.

- 137 -

Chapter 7 Comparison of Givens Rotation Algorithms

7.1	 Introduction

7.1.1 VLSI Signal Processing

It is essential to consider the constraints of the technology, when implementing an algorithm

in VLSI, if optimum results are to be achieved. In this chapter the Givens rotation algorithms

are examined in detail to determine their suitability for implementation using a VLSI appli-

cation specific circuit approach. Consideration is given to issues such as the number of op-

erations, their type and order, whether fixed- or floating-point arithmetic is required and the

wordlength necessary to meet a particular signal-to-noise ratio (SNR).

Number, Type and Dependence of Operations: Minimising the number of operations re-

duces either the area or execution time. In a parallel implementation of an algorithm, where

all operations are implemented to achieve high throughput, a reduction in the number of op-

erations leads directly to a reduction in the circuit area. In a sequential implementation,

where one or more operators are reused to implement the algorithm, a reduction in the

number of operations will reduce the time to generate a result.

The type of operation is significant as the area and latency requirements vary considerably.

Division and square-root have high latency, which can complicate timing and increase the

number of latches required throughout a system to maintain the synchronisation of data. The

location of these operations is also important, for if such operations are within a recursive

loop their high latency can severely limit the sample-rate of the system. The order of the op-

erators can influence the numerical properties and can restrict the effectiveness of a redun-

dant representation to reduce latency.

Wordlength Requirements: In an application specific circuit, the wordlength of arithmetic

is often under the designer's control. By minimising the wordlength it is possible to reduce

- 138 -

Chapter 7	 Comparison of Givens Rotation Algorithms

circuit area and increase speed. Wordlength is particularly critical in the implementation of

parallel multipliers, dividers and square-root operations, as their area is proportional to the

square of the wordlength.

Fixed or Floating-Point Arithmetic: Fixed-point arithmetic offers simplicity and speed,

but limited dynamic range. A floating-point representation uses an exponent to increase the

dynamic range but requires additional circuitry to handle normalisation and alignment oper-

ations, which increases latency and the complexity of its implementation. The simplicity of

fixed-point arithmetic must be weighed against the cost of increases in wordlength necessary

to meet an algorithm's dynamic range requirements.

Algorithm: The algorithm determines the type, number and order of operations, and the op-

timisations which can be applied to minimise wordlength and simplify the arithmetic. A

range of Givens rotation variants was presented in the previous chapter, and in this chapter

their suitability for a high sample-rate application specific VLSI implementation is exam-

ined.

7.1.2 Overview of the Chapter

The first algorithm examined in section 7.2 is a floating-point implementation of the conven-

tional Givens rotation. Floating-point operation results in high latency within a critical feed-

back loop. To avoid this, fixed-point operation using the normalised algorithms is

investigated in section 7.3. The normalised algorithms are found to offer high sample-rate,

but at the expense of a large number of operations and high wordlength. Therefore, floating-

point arithmetic is reconsidered in section 7.4, but using the more efficient fast-Givens rota-

tion algorithms. A variant is developed which contains only an adder within the critical feed-

back path. This enables the wordlength of the feedback path to be extended to improved

numerical performance and give significant savings in wordlength requirements elsewhere.

Latency of the adder is still a problem, so fixed-point redundant arithmetic is used within the

feedback path to give a sample-rate which is extremely high and independent of wordlength.

-139-

Chapter 7
	

Comparison of Givens Rotation Algorithms

This is referred to as the enhanced-SGR algorithm.

In section 7.5 the properties of the DSF algorithm are briefly examined. The chapter con-

cludes with a direct comparison of the estimated area and sample-rate of various implemen-

tations of the QR-array. This clearly demonstrates the benefits, in terms of high sample-rate

and low area, of the enhanced-SGR algorithm.

One aspect of this study has been to consider the numerical performance of the variants under

the conditions of limited precision arithmetic, because wordlength requirements are so crit-

ical to the area and speed of a VLSI implementation. This has been done using a computer

simulation of the algorithms in a channel equaliser application, similar to that presented in

section 1.3.2. This provides a simple and useful application with which to test the numerical

performance of each algorithm variant.

Channel equalisation can be performed more efficiently using a lattice filter, but the triangu-

lar array is required by adaptive beamforming (the primary application of this research) and

so is of more interest here. The findings from the simpler channel equaliser simulations are

directly relevant to the adaptive beamforming application.

Further details of the channel equaliser application are given in Appendix E. Here it is suffi-

cient to say that the QR-array is used to form an FIR filter to undo certain effects of an im-

perfect channel. This approximate 'inverse' channel filter is estimated over a window of

input data determined by the forget-factor 13, where [3< 1 . The length of this window is ap-

proximately given by 1
	

. As [3 - 1 the window becomes larger and the estimate of the

filter parameters in the presence of noise is improved, but the slower is the response of the

filter to changes in the channel. Typical values for [3 range from 0.9 to 0.9999.

For the purposes of obtaining estimates of area, latency and speed of the VLSI implementa-

tions of the algorithms, the synthesis results presented in earlier chapters of the thesis are

used. A system clock frequency of 100MHz is assumed (as it is a convenient figure and a

-140-

120

100

U,

D

.2 80
0

60

! 40
0
C

20

0

Chapter 7
	

Comparison of Givens Rotation Algorithms

realistic clock frequency for the operators described in the previous chapters). This choice

does not constrain the conclusions to a single technology, as the relative merits of each ap-

proach will be the same irrespective of the technology. It is convenient, however, for putting

realistic figures to the sample-rates achievable.

7.2	 Conventional Givens Rotations

7.2.1 Numerical Performance of Conventional Givens Rotation Algorithm

The conventional Givens rotation algorithm requires floating-point arithmetic. Figure 7.1

shows the signal-to-noise ratio (SNR) obtained for a range of arithmetic wordlengths and for-

get factors. Notice, that as 3 - 1 the SNR falls. This is because the length of window over

which the numerical error is accumulated is increasing.

.9	 .94	 0.96	 0.98	 .99	 .994 0.996	 0.998	 0.999
Beta

Figure 7.1 Numerical performance of conventional algorithm

7.2.2 Signal Flow Graph of Conventional Algorithm

The SFG for the boundary and internal cells of the conventional algorithm are shown in

Figure 7.2.

- 141 -

Chapter 7
	

Comparison of Givens Rotation Algorithms

ö X

Cell	
True addition

Addition (negative inputs allowed)

Shift and subtract

Multiplication	 Square

Division of n by d	 Square-root

XII

Figure 7.2 SFG of boundary and internal cell for the conventional algorithm

Both the boundary and internal cells contain ioops, which are emphasised in the figure using

a thick line to represent the critical signal paths. The multiplier applying the forget-factor has

been simplified to a shift-and-subtract operation by restricting I to values which can be rep-

resented by (1 - 2'), where s is an integer. This operation will subsequently be referred to

as the beta multiplier. This limits the number of values which 3 may take, but as shown by

Table 7.1, not to an unreasonable extent.

Table 7.1 Permissible values of beta

s	 3	 4	 5	 6	 7	 8	 9	 10

(1 —2) 0.875 0.9375 0.9688 0.9844 0.9922 0.9961 0.9980 0.9990

The SFG shows that the loop in the boundary cell involves a square-root operation which has

considerably greater latency than the multiply and add operations in the internal cell. It is

- 142-

Chapter 7	 Comparison of Givens Rotation Algorithms

possible to remove the square-root operation from the ioop by maintaining r in a squared

form. This gives the modified signal flow graph for the boundary cell shown in Figure 7.3.

ö X

Figure 7.3 Modified SFG for the conventional algorithm

The loop now consists of only an adder and a beta multiplier. Another modification made in

the figure is the replacement of the two dividers by a single reciprocal circuit and two mul-

tipliers. Dividers are significantly larger than multipliers (see Chapter 5), so this option may

reduce area. Furthermore, the reciprocal can be generated with low-latency using a conver-

gence technique. This is likely to be particularly worthwhile in a complex arithmetic imple-

mentation of the boundary cell, where three divisions by a common divisor are required.

7.2.3 Floating-Point Design of the Conventional Algorithm

A conventional floating-point implementation of both the modified and unmodified SFGs is

relatively straight-forward once the operators have been designed. For the modified algo-

rithm the sample-rate would be limited by the latency of internal cell loop, which would be

6 (multiplier: 2, adder: 3, beta-multiplier: 1), allowing a sample-rate of 16.7 MHz to be

achieved. It may be possible to reduce the latency by one by merging the beta-multiplier with

- 143 -

Chapter 7
	

Comparison of Givens Rotation Algorithms

the recoding circuits in the multiplier.

A floating-point, msdf format would offer little benefit to a implementation of the algorithm

due to the latency of the normalisation operation within the adder/subtractor. A parallel re-

dundant format would also suffer from normalisation and the alignment operations within

the adder.

In conclusion, a minimum latency of 5 is probable with a floating-point implementation of

the modified conventional Givens rotation. Much of this latency is due to the use of floating-

point arithmetic, so algorithms which can exploit fixed-point arithmetic are investigated

next.

7.3	 Normalised Algorithms

The latency in the floating-point implementation of the conventional algorithm arises prima-

rily from the alignment and normalisation operations required by floating-point addition!

subtraction. Fixed-point avoids these operations, and enables redundant arithmetic to be con-

sidered, which will allow the merging of the multiply and add operations.

In the previous chapter, a normalised algorithm was presented which allowed fixed-point

arithmetic to be used. Two simpler versions, referred to as the colunm and array normalised

algorithms were also proposed. The numerical performance of all three is considered below.

7.3.1 Numerical Performance of Normalised Algorithms

The SNR of the normalised algorithms is shown in Figure 7.4.

-144-

Chapter 7
	

Comparison of Givens Rotation Algorithms

1201—	
Normalised Civens Rotations

	

100 -	 18 bits	 -
................

	

------_- -	 N

- - - Column normalised

	

Array normalised by fixed value	 -
0 -Conventional floating—point (reference)

I	 I	 I	 I

	

.9	 .94	 0.96	 0.98	 .99	 .994 0.996	 0.998	 0.999
Beta

Figure 7.4 Numerical performance of the normalised algorithms

The array-normalised algorithm presented here, uses a fixed, precalculated quantity. It offers

similar SNR to the column-normalised algorithm in this application, as the colunm inputs are

just delayed versions of the one input signal, and so have the same normalisation require-

ments.

A surprising result is that the cell normalised algorithm generates numerical errors far in ex-

cess of the other two algorithms. In the process of tracking down the cause of this, it was not-

ed that the same errors were produced when floating-point arithmetic was used,

demonstrating that it was not due to the arithmetic, but the algorithm. Further investigation

showed that it was the result of a numerical effect, introduced by one of the normalisation

operations. Its source is considered further in Appendix B.

Even with this numerical effect, the SFG of the normalised algorithm is of interest and is con-

sidered next, as the algorithm achieves dynamic normalisation of each term, much like float-

ing-point does, but without the need for an exponent and the associated alignment and

normalisation requirements of the addition/subtraction operation.

- 145 -

d

Special function: y = Ji - x2

x

Boundary Included if	 d
('11	 'V ('I,nrn,1

Chapter 7
	

Comparison of Givens Rotation Algorithms

7.3.2 Signal Flow Graph of Normalised Algorithm

The SFGs for the input, boundary and internal cells of the cell normalised algorithm are

shown in Figure 7.5. Loops are present in the input and internal cells. Within the internal cell

the ioop is relatively simple and contains only a multiply-add operation. Within the input cell

the ioop appears to be more complicated, but as in the case of the conventional algorithm, it

can be simplified by removing the square-root operation from the ioop.

X	 Tnniit Cell

'yl

Figure 7.5 SFG for the normalised algorithm

-146-

Chapter 7
	

Comparison of Givens Rotation Algorithms

7.3.3 Fixed-Point Design of Normalised Algorithm

The input cells convert the input of the array into a normalised fixed-point format. If the array

input is floating-point then the input cells must be implemented using floating-point arithme-

tic. However if the input is fixed-point, which may be the case if its source is an analogue-

to-digital converter, then a fixed-point implementation of the input cell may be employed,

provided that sufficient wordlength is used for the loop variable.

The internal cell requires a divide operation and two special functions to be evaluated. The

special functions are unary, and could be implemented quite efficiently at low word lengths

(i.e. 12-bits) using a look-up table and interpolation. For higher wordlengths some functional

iteration could be used to improve accuracy. The divide operation is costly in terms of both

area and latency.

In contrast to the complexity of the internal cell, the boundary cell is relatively simple. Un-

fortunately, internal cells dominate the array, so this change is not beneficial.

A particularly interesting aspect of the normalised algorithm is how the loop variable within

the internal cell is dynamically normalised using only a multiplier within the loop. Scaling-

down of the variable is achieved by multiplication by a number less than one within the ioop.

Whereas scaling-up of the variable, relative to the loop input, is achieved by scaling down

the loop input. Hence, the operations of alignment (scaling-down of the loop variable) and

normalisation (scaling-up of the loop variable) are achieved without the need for explicit

shift operations. Also, the level of normalisation applied is not determined in the loop by ex-

amining the size of the variable, but is obtained from the energy in the signal, which is eval-

uated outside of the loop and so out of the critical path. However, the extra computation is

high, and due to the numerical anomaly the algorithm's performance is unreliable. Therefore,

the implementation of the array normalised algorithm shall be addressed instead, as this of-

fers better numerical performance (in this application), with fewer operations and the same

simple loop.

-147-

Chapter 7
	

Comparison of Givens Rotation Algorithms

7.3.4 Implementation of the Array Normalised Algorithm with Fixed Normalisation

The array normalised algorithm, as considered here with a fixed level of normalisation, is

simply a fixed-point implementation of the modified conventional Givens rotation algo-

rithm. Fixed-point operation of the algorithm has been achieved as described in section 6.5.4

by scaling the input of the array by the quantity

v = di-132
max(x)

Note that r2 rather than r, is stored in the modified boundary cell, which has greater dynamic

range, and so the wordlength used to represent it should be increased in a fixed-point imple-

mentation. This will also increase the size of any storage latches.

The longest loop is present in the internal cell, but the latency of this could be reduced by

combining the addition and multiplication and employing redundant arithmetic. Either par-

allel redundant arithmetic and MSDF arithmetic could be used within the ioop to achieve

high sample-rate operation.

7.3.4.1 Approach Based on Parallel Redundant Arithmetic

If a parallel redundant representation was used for the loop variable and a non-redundant rep-

resentation was used for the s and c inputs to the internal cell, then single-cycle latency

could be achieved using the adder-tree presented in section 3.2.2 (for wordlengths of approx-

imately 16-bits). This multiplier is no larger than a conventional tree-multiplier, and the

signed-binary output representation would provide an unbiased error using truncation; thus

avoiding an extra clock-cycle to round. Saturation would not be required as f, , ^ 1 , so a sam-

ple-rate of 100 MHz would be feasible. There is little benefit in using a parallel redundant

format outside of the loop, so it should be avoided as it is more costly to implement.

7.3.4.2 Approach Based on Msdf Redundant Arithmetic

An msdf approach is also worth considering, as it offers a latency that is independent of

(7.1)

- 148-

Chapter 7	 Comparison of Givens Rotation Algorithms

wordlength, and wordlength has to be increased to maintain numerical performance in fixed-

point implementations.

Figure 7.6 shows how an msdf representation may be used within the loop of the internal cell

to obtain high sample-rate operation. One of the msdf multiplier-adders presented in

section 3.2 could be used within the internal cell loop. In particular, the MinR4 multiplier is

only slightly larger than a conventional tree-multiplier, but offers a 2-cycle latency which is

independent of wordlength. The delay of the msdf multipliers required here is likely to be

less than those presented in Chapter 3, as the additive input is not in an msdf form and the

magnitude of the non-redundant coefficient input would be 1 rather than 2 (as the magnitude

of both s and c are less than 1). Therefore, a 50 MHz sample-rate should be achievable.

An msdf format is not required for the boundary cell loop variable, as only addition is re-

quired in the loop, and this can be achieved with single-cycle latency using a parallel redun-

dant representation.

'. Msdf format
- Non-redundant parallel

N
Msdf to non-redundant
parallel converter

XI	 TlltPrnQl C:11

XI,

Figure 7.6 Fixed-point Msdf implementation of the conventional algorithm

Another potential application of msdf arithmetic is to reduce the latency of the square-root

-149-

,1

Pipeline Ci.

Chapter 7	 Comparison of Givens Rotation Algorithms

and divide operations within the boundary cells. Although the latency of these operators does

not limit the sample-rate is does introduce similar delays into the internal cells which can be

costly in terms of additional latches. This is demonstrated by Figure 7.7 which shows that

any pipelining cut through a boundary cell must also continue through all the internal cells

in a row of the array. However, any more extensive use of the msdf representation will re-

quire multiplier-adders in the internal cell that could accept two redundant inputs, which

would make them 50% larger and outweigh any latch reduction obtained by the reduced

boundary cell latency. Therefore, more extensive use of the msdf representation is consid-

ered no further.

Figure 7.7 Section of QR-array showing effect of pipeline cut through boundary cell

7.3.4.3 Summary of Redundant Arithmetic Implementation Approaches

In summary, an adder-tree redundant multiplier could be used to reduced the latency of the

loop to 1-cycle, and enable a sample-rate of 100 MHz to be achieved for medium word-

lengths (i.e. 16-bits). An msdf approach would give a latency of 2-cycles and a sample-rate

of 50MHz. This would be independent of wordlength, and it may also be possible to achieve

higher clock rates (alternatively, the single-cycle pipelining of the msdf multiplier could be

investigated to reduce latency). The two approaches would require similar sized multipliers.

7.3.5 Possible Improvements to Normalised Algorithm

The array normalised algorithm uses a fixed level of scaling, which would be acceptable in

applications where the inputs were fixed-point. However, in cases where the input has a

higher dynamic range then its performance may not be so good. To overcome this and avoid

-150-

Chapter 7	 Comparison of Givens Rotation Algorithms

the need to choose an appropriate level of scaling in the first place, an approximate form of

column scaling could be used. Here it is proposed that the input cells determine the normal-

isation requirements of each input as in the column normalised case, but apply it in an ap-

proximate manner down a column by scaling by powers of two, using shifters. This is also

compatible with a redundant arithmetic implementation. In the case of msdf arithmetic, scal-

ing down operations can be performed without latency, although scaling-up introduces a la-

tency dependent upon the amount of scaling. However, only scaling by 1 or 2 is ever

required, as the input energy can only decay slowly with f3. So, this approach could be in-

troduced with only one additional cycle of latency.

The idea could also be extended to an approximate form of cell nonnalisation (without the

numerical problem), by using the boundary cell to specify an approximate normalisation

term for each row. This can be combined with the column normalisation and applied in a sin-

gle shift operation within each cell.

7.3.6 Summary of Normalised Algorithms

In summary, normallised algorithms offer high sample-rate operation, but are costly to imple-

ment, due to their increased wordlength requirements and extra operations. This is particu-

larly true of the cell normalised algorithm, which due to a numerical effect, has generated

errors far in excess of the other simpler normalisation schemes. Normalisation is applied in

a similar way in lattices. It would be worthwhile investigating whether this numerical error

could also occur there.

7.4	 Square-Root-Free Algorithms

7.4.1	 Introduction

The wordlength necessary to meet a particular SNR is very important in a bit-parallel arith-

metic implementation of the Givens rotation cells, as their area is dominated by multipliers

and dividers, which have an area dependent upon the square of their wordlength. Therefore,

- 151 -

Chapter 7	 Comparison of Givens Rotation Algorithms

floating-point arithmetic shall be reconsidered, since for a particular SNR, lower word-

lengths can be obtained using the conventional algorithm rather than the normalised ones.

Another advantage of floating-point arithmetic is that fast-Givens rotation algorithms can be

considered. As shown in the previous chapter, these avoid the square-root and reduce the

number of multiplication operations in the internal cells from 4 to 2. They also offer much

greater variety of SF0, which helps to address another issue, considered next.

In the simulation results of algorithms presented in previous sections, the SNR falls as the

window length increases. This was found to be due to accumulations of numerical error in

the ioop variable. As shown later, additional wordlength for representing the ioop variable

leads to significant improvements in SNR. One potential benefit of this is to enable reduc-

tions in the wordlength of arithmetic used elsewhere in the algorithm, and so make savings

in area. Unfortunately, increasing the wordlength of the loop variable in the algorithms con-

sidered so far is not straightforward, as they all contain a multiplier in the loop of the internal

cell. Consequently, increased wordlength results in increased multiplier area and latency, but

more significantly, requires an increase in the wordlength of the parameters c and s and the

area of the operators which calculate them.

Motivated by this issue, a fast Givens rotation algorithm was developed which simplifies the

loop in the internal cell to an add operation. This has allowed the wordlength of the loop var-

iable to be increased to give superior SNR and single-cycle latency. Before considering the

algorithm in more detail, it is worth elaborating on the importance of additional wordlength

in the representation of the loop variable.

7.4.2 Error Accumulation in the Loop Variable

It is clear from the simulation results and rudimentary error analysis that the output error is

dominated by the round-off errors which accumulate in the recursive update of the loop var-

iable, r. Build-up of errors in accumulators is a well known problem[Wi1k63]. Here it can

be explained by considering the accumulation process which updates r:

-152-

Chapter 7
	

Comparison of Givens Rotation Algorithms

r' = cr+y
	

(7.2)

wherey - ax.

Initially consider the case where c = 1 , in which a simple accumulation operation is being

performed. In this circumstance, two errors affect the value of r: the error in the input y and

the error due to rounding the result of the addition. If the accumulator is large enough, then

the error in r' is dominated by the error in the input. If this input error is due to rounding in

previous calculations or thermal noise in the input signal, then it is likely to be random, so

the sum of these errors will grow as Jn, where n is the number of iterations. The purpose

of equation (7.2) is to accumulate correlated quantities, which will grow with n. Therefore,

the accumulation process is able to produce a result with greater relative accuracy than the

input.

If the wordlength of the accumulator is not large enough it is possible for the error in r to

become dominated by the accumulator round-off error. For example, consider the calculation

of r when the correlation is high and the sum grows as n. In this case r will approach 1 to

indicate high correlation. Figure 7.8 (a) shows graphically the input and the accumulator

contents for an accumulator which has the same wordlength as the input. The sum in the ac-

cumulator is a factor of n times greater than the input. Therefore, the input is shown right-

shifted to align it with the contents of the accumulator. The erroneous bits of the input, which

are shaded in the figure, make no contribution to the error in r, which is dominated instead

by the accumulator round-off error.

Figure 7.8 (b) shows the accumulation of error for an accumulator with twice the wordlength

of the input. The accumulator error is now dominated by the error in the input. Depending

upon the size of the input error the reduction in the error in r (denoted c in the figure) can

be as much as a factor of!.
n

- 153 -

Chapter 7
	

Comparison of Givens Rotation Algorithms

1

Input

Accumulator

Cr AJa
ca	

Cr -

(a) Single length accumulator
	

(b) Double length accumulator

Figure 7.8 Effect of accumulator length on errors

In the case of the conventional algorithm c - 132 . This has the effect of limiting n even

though the sum is repeated infinitely (i.e. an effective window length can be defined where

effective - _____). As 13 approaches 1 the effective window length over which r is accu-

mulated increases, and the effect of a short accumulator becomes more pronounced.

This simple analysis suggests that the numerical performance of the QR-algorithm imple-

mentation can be improved by increasing the wordlength of the accumulator above that used

by the rest of the algorithm. This can be done in the conventional algorithm, but as discussed

previously, it increases the size of the multiplier in the ioop and the wordlengths of operators

elsewhere. These side-effects can be avoided by transforming the algorithm to remove the

multiplication from within the ioop. A fast-Givens rotation algorithm was derived which

achieved this, although further investigation of the literature showed that the algorithm was

the Squared Givens Rotation (SGR), recently proposed by Döhler[Döhl9l]. As published, it

offers little advantage over other fast-algorithms and there has been only limited interest in

it[Deit93a][Deit93b] . However, later in the chapter it is shown how the algorithm can be en-

hanced to offer significant benefits over other variants when an application specific circuit

solution is adopted.

7.4.3 Signal Flow Graphs for Fast-Givens Rotation Algorithms

It is interesting to note that the fast-Givens rotation algorithms offer a whole range of SFG

possibilities for the internal cell computation. Figure 7.9 shows the SFGs of the internal cells

-154-

a

b

a

b

a

b

a

b

Chapter 7	 Comparison of Givens Rotation Algorithms

for the 4 feed-forward variants and Figure 7.10 shows the 8 SFGs resulting from the 16 feed-

back variants.

SFG1	 SFG2

SF03
	

SF04

Figure 7.9 SFGs of internal cells for two-multiply feed-forward algorithms

The popular SQF-XFB algorithm, is presented as SFG 11 in Figure 7.11. This has 4 opera-

tors in the loop and numerical problems[Hamm74J, and so is of no further interest. Half of

the SFGs offer simple loops in the internal cells. The SF0 of the internal cell of the SGR

algorithm is the same as SFG 2. However, the SGR algorithm also offers a simple boundary

cell without multipliers in the loop. The other SFGs have not been considered, as they offer

no obvious benefits over that of the SGR algorithm.

- 155 -

a

b

a

b

SGF7

b

Sc

a

a

b

SGF9 X

a

b

SGF1O

a

b

SGF11 SGF12 5

aa

b

b

Chapter 7
	

Comparison of Givens Rotation Algorithms

SGF5
	

SGF6

XI

Figure 7.10 SFG for two-multiply feedback algorithms

-156-

Chapter 7	 Comparison of Givens Rotation Algorithms

The SFG for both the boundary and internal cells of the SOR algorithm are shown in

Figure 7.11.

X

tI

Figure 7.11 SFG of SGR Algorithm

The boundary cell has a very similar loop to the internal cell, and only differs in its use of a

true-add rather than an addlsubtract operation. The wordlength of both ioop variables can be

increased at little cost in hardware. The numerical performance of the SGR algorithm, when

it is enhanced with increased wordlength in the loop variable, is considered next.

7.4.4 Numerical Performance of SGR Algorithm

Figure 7.12 shows the SNR of the SGR algorithm for a range of wordlength and beta factor.

For each, the SNR is shown for three wordlengths of the loop variable mantissa. For the orig-

inal algorithm (denoted SGR-FLO in the figure i.e. no additional wordlength in the loop),

there is a marked decrease in the SNR as beta approaches one. Increasing the wordlength in

the loop by 4-bits (denoted SGR-FL4) provides a marked improvement in the SNR, which

becomes very significant for large window lengths. The SNR now increases with the win-

dow length. Increasing the loop wordlength by more than 4-bits only provides a small addi-

tional improvement, when compared with SGR-FL4O where a 40-bit mantissa is used in the

- 157 -

Chapter 7
	

Comparison of Givens Rotation Algorithms

loop.

I	 I	 I	 I	 I	 I	 I	 I

	

120 -	 Squared Givens Rotation - Floating—Point R 	 -

100	
18 bits	 ____..._-

--S. --
t ::E-----''-"T

S________

	

40 -	 -
0
a,

Key

	

20 -	 - - SGR-FLO: All at some precision 	 -
- - - SCR-FL4: Precision of R increased by 4 bits	 - - -

SGR-FL4O: High precision R (40 bits)

	

0 -	-

9	 .94	 0.96	 0.98	 .99	 .994 0.996	 0.998	 0.999
Beta

Figure 7.12 Performance of SGR algorithm with floating-point loop variable

Although, the enhanced SGR algorithm improves the SNR and enables reduced area imple-

mentations, the latency is still quite high. The ioop in the internal cell consist of a floating-

point adder and beta-multiplier which have a combined latency of 4, resulting in a maximum

sample-rate of 25MHz. By merging the beta-multiplier with the adder it should be possible

to achieve a latency of 3 and a sample-rate of 33MHz. However, as shown in the next section,

the latency can be reduced to single-cycle by using fixed-point arithmetic within the ioop and

a single 3-input adder to implement both operations.

7.4.5 Fixed-Point Loop in the SGR Algorithm

A fixed-point number range can be obtained in the loop, as done for the conventional algo-

rithm, by scaling the array input to ensure that the loop variables, i.e. the f terms, are less

than one. In the SOR algorithm the ioop variable is given by

iij =
	

132(kn)xx
	

(7.3)

which can be normalised by noting that

- 158 -

Chapter 7
	

Comparison of Givens Rotation Algorithms

n

13 2 (k xx11	
U

k - i 	 ________ ^1	 (7.4)
n

IE I32(k_0)x.J
Ii

Ik-i	 k-i

As in the array-normalised algorithm, a single fixed worst-case value of normalisation can

be applied to the inputs. In this case, multiplication of the inputs by v 2 is sufficient (where

v is defined in equation (7.1)). In practice, a slightly greater level of scaling should be ap-

plied to provide headroom for correct representation of the errors. If this is not done, the er-

rors can cause numbers close to 1 to overflow. Note that if saturation is used to avoid the

large errors associated with overflow, it will introduce a bias in the errors which will increase

the overall level of error in r considerably.

The simulation results obtained using fixed-point arithmetic in the loop are shown in

Figure 7.13.

I	 I	 I	 I	 I

	

120 —	 Squared Givens Rotation — Fixed—Point R 	 -

18 bits

	

bc -	- - _-_:-=.-:_. -

U,	 --
--D	 -

	

o 80-	 l4bits
0

60
lObits

0

— 40 ._-

6bits	 --

	

20-	 -------------------

Key
— — SGR—F18: Precision of R increased by 8 bits
— — — SGR—F112: Precision of R increased by 12 bits

	

0 -	 ______ SGR—FL4O: High precision R (40 bits) 	 —
I	 I	 I	 I	 I	 I

	

.9	 .94	 0.96	 0.98	 .99	 .994 0.996	 0.998	 0.999
Beta

Figure 7.13 Performance of SGR algorithm with fixed-point loop variable

It is clear from the simulation results that an extension of the wordlength by 12-bits is suffi-

cient to obtain optimum performance (represented here by SGR-FL4O). This can be obtained

at little cost in area due to the simplicity of the ioop. In Chapter 5 a delay of 13.24ns was

-159-

Chapter 7	 Comparison of Givens Rotation Algorithms

obtained using a carry-look-ahead adder with a 16-bit floating-point input and a 32-bit fixed-

point input for the ioop variable. This is not fast enough for single-cycle latency at 100MHz.

However, redundant arithmetic may be used within the loop to reduce the time required to

perform the addition and make it independent of the wordlength. In this case, a delay of

7.33ns can be achieved, which would allow single-cycle latency and a sample-rate of up to

136 MHz to be achieved for any realistic wordlength. (Although, to achieve a sample-rate

above 100 MHz it would be necessary to apply higher levels of pipelining in the other oper-

ators outside of the loop.)

7.4.6 Further Simplification of the Loop of the SGR Algorithm

A further simplification of the loop, which would allow even higher sample-rates to be

achieved, is to replace the beta-multiplier by a simple single-bit shifter. This can be achieved

in the following way.

The beta-multiplier is used to implement an exponential decay of the loop variable, which

can also be achieved by scaling-up the input, rather than scaling-down the loop variable. In

this way, the ratio of input to loop variable is maintained, but the multiplication is performed

outside of the ioop.

The scaling applied outside the loop is r and so grows exponentially with the iteration

number n (because [3'> 1). Its magnitude can be limited by periodically scaling-down both

it and the loop variable by 0.5. If this is done each time the input scaling exceeds 2, the scal-

ing of the loop variable can be maintained between 1 and 2.

Figure 7.14 (a) shows the SFG for the original loop, and Figure 7.14 (b) the SFG for the case

with beta removed from the loop. In the latter figure, the second loop is present to keep track

of the level of scaling which must be applied to the input. In any practical implementation it

would be replaced by a circuit to generate the necessary sequence at high sample-rates (i.e.

a pre-loaded shift register). The same shift operation would be applied globally to all the ioop

-160-

Chapter 7
	

Comparison of Givens Rotation Algorithms

variables within the array, and only a simple 1-bit shifter would be required in each cell to

implement it. The scaling would be removed from the output by a division.

Shift right by 1 bit if xl

(a) Beta inside ioop

I- ----------------

Initial value=1	 z'

II
____ -

	 I

I	 Ifx^2then	 I
I	 y-1	 X

I	 1

I	 -1	 a	 I

	

____ x	 I

IIJL
Single ioop, but array in practice

(b) Beta removed from ioop

Figure 7.14 Removing beta from the loop

This technique does not restrict the values of beta to those which can be implemented using

a shift-and-subtract operation, and it also enables more complicated windowing functions to

be implemented very easily.

7.5	 Divide-and-Square-Root-Free Algorithms

The fast square-root-free algorithms require a divide operation within the boundary cells. As

discussed in Chapter 4, the divide operation is lengthy and needs to be heavily pipelined to

achieve high-throughput. This introduces a large latency into the output, and although this

does not affect the sample-rate it will require that similar levels of pipelining be applied in

other signal paths, which do not benefit from it.

To avoid the divide operation, the Givens rotation algorithm has been reformulated as the

DSF algorithm (as discussed in section 6.3)[Götz9l]. The SFG for this algorithm is shown

in Figure 7.15.

- 161 -

Chapter 7
	

Comparison of Givens Rotation Algorithms

q	 XB	 m

q'	 m'

Figure 7.15 SFG of DSF algorithm

It is clear from the SFG that the DSP algorithm has been achieved at the cost of a more com-

plex internal cell and greater communication between the cells. Also the recursive loop of

the boundary cell is quite complicated. For these reasons it is not discussed further, other than

making the following comments:-

A potential benefit of the DSF algorithm is that both the boundary and internal cells can be

realised from a multiplier-adder building block. A disadvantage of this algorithm is a lack of

stability, as terms are not bounded[Pran94]. This is to be expected, as the division operation

served to provide normalisation of terms. A solution has been to introduce scaling by powers

of 2 to bring the variables into a more acceptable range. The scaling is applied on a row by

row basis, and in effect implements the exponent of the missing division.

-162-

Chapter 7
	

Comparison of Givens Rotation Algorithms

7.6	 Comparison Between Algorithms

7.6.1 Gate-Count Requirements

So far, a range of algorithms has been examined where the primary objective has been to

achieve high sample-rate solutions. Another important property for VLSI implementation is

the area-time product of each variant as this will be a key factor in determining the silicon

area required to achieve a particular sample-rate for a given problem size. Therefore, in this

section the time-area products are estimated for the algorithms so that they may be compared.

The time element of the area-time metric can be fixed by implementing all operators with the

same throughput, and a figure of 100 MHz is considered realistic for the operators developed

in the earlier chapters of this thesis.

Determining the area is a little more complicated as it depends upon a range of factors. It can

be established for a particular array size by determining the number of cells and the area re-

quired by each. The cell area is a function of the number, type and wordlength of the opera-

tors used. The latter can be established for a particular beta-factor and SNR using the

simulation results presented in this chapter.

The simulation results were obtained for an array with 11-primary and 1 -auxiliary inputs. For

this array size the number of each cell type is shown in Table 7.2.

Table 7.2 Numbers of cells required by QR-array

Number of cells operations
Cell T'pe	 Formula

______________ ___________ whenp = 1l,q = 1

InputCell	 p+q	 12

Boundary Cell	 p	 11

Internal Cell	 —1)r + qp	
66

Output Cell	 q	 1

The number and type of arithmetic operations required by each cell is shown for each variant

of the Givens rotation algorithm in Table 7.3.

- 163 -

Chapter 7
	

Comparison of Givens Rotation Algorithms

Table 7.3 Operation count of algorithm variants

Beta	 .	 Square Special
Algorithm	 Cell Add Mult Square Mult Div -Root Function

Square-root	 TI	 1	 1	 2	 1	 2	 1
IC2 4	 1 __ __ ___

____	 1 _ _
Cell Normalised	 IP	 1	 1	 1	 1	 1	 ________

1 ___ 1
IC 2	 5	 1	 2 ___
YIC 2	 6 __	 1	 2

____-o _3	 __
Colunm Normalised IP 	 1	 1	 1	 2	 1

BC	 1	 2	 2	 1
1C2 5	 _

____OP_ _2 _ _ __
SGR	 BC 1	 3	 1	 2 __ ___

IC2 2	 1 _________
____	 1 _ _ __
DSF	 BC 1	 8	 2	 ___

1C24 _____
_ _ 1 __

The number of gates required by each operator as a function of wordlength has been extract-

ed from the circuit synthesis results presented in earlier chapters. These are summarised in

Table 7.4, where w is the basic wordlength used and z is any extra wordlength used in the

representation of the ioop variable. (Note that the relationships marked by an asterisk have

been estimated based on the results of the floating-point operators.)

Table 7.4 Operator area as a function of wordlength

Fixed-Point	 Floating-Point ______
Operator

Gate Count	 Latency	 Gate Count	 Latency

Adder	 CLA	 14.7w	 1	 26O+125w+115z	 3

SBNR_________________ _____	 81.6w+35.3z	 1
Multiplier (Wallace 	 9.43w2 *	 2	 613 + 9.43w 2	2
Tree)	 ______________________ _______ ________________________ _______
Squarer	 943(w+1)w	 2	 613943(w--1)w	 2
(Wallace Tree) 	 2	 2
Beta Multiplier (CLA)	 36.4w *	 1	 46.9 + 36.4(w + z)	 1

Divider (Mod. SRT)	 1534 + 32.9w2 *	 w	 1534 + 32.9w 2	w

- 164.-

Chapter 7

	

Comparison of Givens Rotation Algorithms

Table 7.4 Operator area as a function of wordlength

	Fixed-Point	 Floating-Point ______
Operator

Gate Count	 Latency	 Gate Count	 Latency

Square-Root	 ________	 ________
(Mod. SRT)	 1534+

329 (w 4-1)w	 + 3 1534+
329 (w +1)w

Special Function	 11w2 *	 w	 N/A

The number of gates required to implement the array with a sample-rate of 1-MHz and an

SNR of 6OdBs are shown in Figure 7.16 as a function of the forget-factor, 13.

25000

QR Algorithm Area Requirements

- 20000
0

a-
E

15000

- 10000

0
a)

ci

(0
a)
0
C) 5000

Key
__. Array normalised by fixed value
- - . - - Square—root floating—point	 -

-	 - - - - - Column normalised
- - Square—root free X—feedback
- - - SCR one precision

SGR fixed—point R, 12 bits extra
_____ 5CR floating—point R, 8 bits extra

01	 I	 I	 l____-_	 I

.9	 .94	 0.96	 0.98	 .99	 .994 0.996	 0.998	 0999
Beta

Figure 7.16 Number of gates required to meet an SNR of -6OdBs

The cell normalised algorithm is not shown, as it is very expensive due to the numerical

anomaly, and would be off the scale.

The numbers of gates required to implement the conventional algorithm using fixed- and

floating-point arithmetic are similar. The improvement offered by the enhanced-SGR algo-

rithm is significant for all values of 13, but becomes very significant as [3 - 1 and the win-

- 165-

Chapter 7
	

Comparison of Givens Rotation Algorithms

dow length increases. Also shown is the number of gates required for the SQF-XFB

algorithm. This algorithm has been quite popular, but can exhibit numerical problems which

result in slow convergence. Once convergence has been achieved, however, it provides sim-

ilar levels of SNR to the enhanced-SGR algorithm and so similar numbers of gates are re-

quired, as indicated in the figure. However, as 3 —f 1 the SNR and wordlength requirements

of the SQF-XFB algorithm increase. For very large window lengths the benefits of the en -

hanced-SGR algorithm over this and all the other variants becomes very significant.

7.6.2 Sample-Rate

A summary of the sample-rates which may be achieved using each algorithm variant is pre-

sented in Table 7.5.

Table 7.5 Latency of operations in loop and QR-array sample-rate

	Number	 Sample rate, (MHz)
Algorithm Variant	 Latency

Representation	 fk = 100MHz

Conventional	 Floating-point Non-redundant 6a(5)b	 167(20)b

(with modified BC) ______________ ____________ _______ _________________
Normalised (fixed-	 Fixed-point	 Parallel	 la	 100
point input)	 redundant
__________________	 msdf	 2	 50

SGR	 Floating-point r Non-redundant 4a(3)b	 25(33•3)b

Fixed-point r	 Parallel	 1	 l00(136)c

redundant
DSF	 Non-redundant	 a	 20

a. Wordlength dependent, given for 16-bit arithmetic.
b. If beta-multiplier simplified to a 1-bit shifter or merged with another operation.
c. Maximum sample-rate if operators outside of loop are more highly pipelined.

The enhanced-SGR algorithm, using a fixed-point redundant representation for the ioop var-

iable r, offers the highest sample-rate, and is the only algorithm to offer latency which is sin-

gle-cycle and independent of wordlength.

7.6.3	 Conclusions

The enhanced-SGR algorithm offers minimum area and the highest sample-rate. For very

large window lengths, it will offer very significant savings in area over other algorithms.

-166-

Chapter 8	 Architecture of Adaptive Filter

8.1	 Introduction

In the previous chapter, algorithms and architectures were examined for the VLSI implemen-

tation of the boundary and internal cell processes of the QR-algorithm. In this chapter a range

of architectures are developed to use these cells to implement high-throughput parallel proc-

essor arrays to perform the QR-algorithm for a range of problem sizes. In particular, a new

linear array has been developed which offers local interconnection and wide flexibility in

number of processors used.

VLSI layout has been obtained for the boundary and internal cells for one array architecture

using the enhanced SGR algorithm. This has provided an estimate of the level of perform-

ance achievable using an application specific approach, and enables a comparison to be made

with a CORDIC based solution. The results are also compared with a solution implemented

on an array of general purpose (GP) DSP chips. This second comparison provides an indica-

tion of the enormous performance improvements possible using an application specific VLSI

approach.

8.2	 Parallel Array Processing

To achieve high throughput for applications such as radar adaptive beamforming it is neces-

sary to adopt a highly parallel computing approach. One attraction of the QR-algorithm is

that it may be implemented very efficiently using the QR-array SFG. Maximum throughput

is obtained by allocating a processor to each cell in the array, in which case the solution is

referred to asfull-sized[Bu90].

However, due to current technological constraints, such as chip size and package pin-count,

it is not possible to realise the whole array on one chip. Also, the throughput of such an array

is likely to be greater than required. Therefore, an array processor architecture is required

-167-

Dependence Graph

/
time

Signal Flow Graph

Partitioning
(process scheduling a
processor assignment

• Unit delay

Chapter 8
	

Architecture of Adaptive Filter

which enables reduced area to be obtained at the expense of reduced speed. This is referred

to as the partitioning problem and is a key issue which must be addressed in the development

of a VLSI array processor.

Figure 8.1 shows the stages in the design of an array processor for the particular case of the

QR-algorithm.

• 4-unit delay

Retiming

Systolic VLSI Array	
Wavefront	 SIMD/MIMD

Figure 8.1 Stages in the design of a VLSI array processor

-168-

Chapter 8	 Architecture of Adaptive Filter

The dependence graph (DG) describes the algorithm in terms of the processes which must

be performed and their data dependence. The QR-algorithm is recursive, so the DG has a

time dimension, which shows the operations of the QR-array being performed at each time

instant on the input vector.

The QR-array SF0 is obtained by projecting the DG down the time axis onto a set of process-

ing nodes. The data dependencies between the operations at one time instance and the next

are maintained by placing latches on the data paths between them (in this case on all the r

and u variables updated by the cells). The SF0 can be viewed as a simplified DO which is a

step closer to the hardware architecture used to implement it. It provides a good starting

point, free from the semi-infinite time dimension of the DG, from which to perform the nec-

essary architecture manipulations to obtain practical solutions.

One manipulation often required is to reduce the number of processors by partitioning. This

may be performed by a further projection. The linear array shown in Figure 8.1 has been ob-

tained by a projection down the i-axis. The new SFG contains additional latches on the out-

puts of a processor to store the output from one set of operations so that they may be applied

as the inputs of the operations performed on the next time instance. Also the number of latch-

es in the loops has been increased to 4 to store the parameters of each column of the original

array which are updated by each of the processors in the linear array.

In the current form of the SGF, it is assumed that each processor performs its function instan-

taneously. Therefore, a final step is required to retime the graph to account for the actual de-

lays of the physical VLSI processor. A systolic array is a special result, where processes and

data movement are synchronised by a global clock. The clock is the only global signal, as all

other connections between processors are local. This latter property avoids the delay and

power associated with broadcasting signals over large distances.

-169-

Chapter 8
	

Architecture of Adaptive Filter

In the next three sections, three array processor solutions are considered:

• Full-sized array

• Locally sequential globally parallel (LSGP) array: The array is partitioned into

a number of blocks. The operations within a block are performed in a sequential

fashion by one processor. An array of these processors is used to process the blocks

in parallel.

• Locally parallel globally sequential (LPGS) array: The array is partitioned into

blocks. The blocks are processed in a sequential manner by an array of processors

which perform the operations within a block in parallel.

8.3	 Full-Sized QR-Array Solution

The full-sized array solution offers maximum throughput, 100% utiisation of processor cells

and an output in minimum time. When the enhanced-SGR algorithm is used, this solution

also offers the maximum sample-rate of one input every clock cycle.

A rectangular shaped array is more convenient for VLSI implementation, and can be ob-

tained by folding the array. Figure 8.2 (b) shows the folding proposed by Rader[Rade92]. As

it stands, the array requires global interconnect to connect the two parts of the array. This can

be avoided by a second folding, shown in Figure 8.2 (c), which interleaves the processors

from each half of the array to give that shown in Figure 8.2 (d).

-170-

Chapter 8
	

Architecture of Adaptive Filter

(a) Original array

(c) Second folding to
interleave processors

(b) Folded array

(d) Final array

Figure 8.2 Rader's folding of the QR-array

8.4	 LPGS Linear Array Solution

The number of processors necessary to implement the QR-algorithm can be reduced by pro-

jecting the operations of the QR-array onto a smaller number of processors. If the projection

is performed so that processors either perform the function of a boundary or an internal cell,

it is possible to avoid the inefficiency of using a processor designed to implement both func-

tions. This is not possible for the arrays shown in Figure 8.2 (without producing inefficient

implementations), so a new folding has been proposed, which is shown in Figure 8.3.

- 171 -

2,31	 I2,4I	 i2,5l	 i2,6I	 I2,7

3 ,41	 I 3 ,5 I	 I3,6l	 I3,7

Chapter 8	 Architecture of Adaptive Filter

1,21	 l 1,31	 'I 1,41	 I 1,51	 I 1,61	 I 1,7

4,51	 I4,6l

The loops to update the '
	 5,6j	 'I5,7

stored quantities r and u
have been omitted for clarity

c7

(b) Folded array

Figure 8.3 An alternative folding of the QR-array

-172-

Chapter 8
	

Architecture of Adaptive Filter

The bottom-right corner of the array has been reflected about the diagonal and moved to the

top to obtain a rectangular shape (set at 450 in Figure 8.3). As will be shown shortly, the glo-

bal interconnect will be removed by the projection on to a linear array, however, the connec-

tions are also transposed, and this must be removed first. This can be achieved by folding the

array to interleave the processors, as shown in Figure 8.4.

Figure 8.4 Array with diagonal fold marked

This fold also places all the boundary cell operations back on one diagonal. By projecting

down the diagonal it is possible to assign all the boundary cell operations to one boundary

- 173 -

Chapter 8	 Architecture of Adaptive Filter

cell processor and all the internal cell operations to a row of internal cell processors. In each

diagonal there are the same number of operations, so the loading of each processor, in terms

of cell computations per second, will be the same.

Figure 8.5 LPGS projection of the folded QR-array

The order in which the operations are performed on the linear array is identified by the sched-

ule. This is shown in Figure 8.5 as a number of thick parallel lines (referred to as hyperplanes

in cases where there are more than two dimensions to the SFG). These cut across operations

in the array which should be performed at the same time. The schedule is also denoted more

compactly in Figure 8.5 by a schedule vector s normal to the hyperplanes.

The schedule indicates that the linear array should perform, at each instance in time, the op-

erations of one diagonal row of the array in parallel. The whole array is processed by per-

forming the operations in each diagonal in a sequential manner, cycling from the top of the

array to the bottom. For these reasons the solution is referred to as locally parallel globally

sequential (i.e. LPGS).

A valid schedule is obtained by ensuring that the data required by each set of scheduled op-

-174-

1

Chapter 8
	

Architecture of Adaptive Filter

erations is available at the time of execution. This implies that data must flow across the

schedule lines in the direction of the schedule vector. This is true in Figure 8.5 for all data

connections, but those that pass from the bottom of the array to the top (not shown in the fig-

ure) due to the first fold. These dependencies can be removed by delaying the dependent op-

erations until the data is available. This results in a delay of one cycle of the array, which can

be easily justified by considering the scheduling of the unfolded array, as shown in

Figure 8.6 (a). Figure 8.6 (b) shows the array and schedule with the first fold. The schedule

for those operations that came from the bottom of the original array can be overlapped with

that of the rest of the array, as at each time instance there are enough processors in a linear

array to implement the operations on a diagonal from both parts of the array. However, the

operations associated with the top part of the array will process the data output from the bot-

tom part from the previous cycle of the array.

(a) Scheduled original triangular array
	

(b) Scheduled folded array

Figure 8.6 Scheduling of the QR-array

Figure 8.7 shows a more detailed description of the SFG for the LPGS linear array.

-175-

ultiplexer
ontrol not

;hown

Chapter 8
	

Architecture of Adaptive Filter

X7(fl)	 X6(fl)	 X5(fl)

1 (n) - 1 x 1 (n)	 x2(n)	 x3(n)	 x4(n)

(output supplied
on one cycle)

Figure 8.7 Linear systolic array for the LPGS schedule

The latches are present on all processor outputs to maintain the data between operations per-

formed on one diagonal and the next. The latches for maintaining the parameters within the

cells are also shown. In this case, a total of 7 latches are required; one for each diagonal of

the 2D-anay.

Multiplexers are present at the top of the array so that the inputs to the QR-array can be sup-

plied to the cells at the right instances in time. The multiplexers at the bottom of the figure

are present to cater for the different direction of data flow that occurs between rows of the

original array (occurring due to the second fold).

8.5	 LSGP Solution

Greater reductions in the number of physical processors required to implement the QR-array

can be achieved by adopting a LSGP solution. Figure 8.8 shows a doubly-folded QR-array

with 9 inputs. A schedule has been chosen to reduce the number of processors operating at

any one time to three. Consequently, the array can be projected onto a 3-processor linear ar-

ray, as shown in Figure 8.8.

Notice that a boundary cell operation is only required on alternate instances in time. There-

fore, the boundary cell processor will be utilised only 50% of the time. This inefficiency can

-176-

15
16
17
18

ChapterS
	

Architecture of Adaptive Filter

be avoided by designing the boundary cell processor to operate with a lower throughput (giv-

ing an associated reduction in silicon area).

Greater reductions in the number of processors can be obtained by further rotations of the

schedule vector.

Figure 8.8 Reducing array size using an LSGP schedule

The LSGP schedule enables large arrays to be implemented using only a small array of proc-

essors and provides a good degree of flexibility over the number of processors required.

Further flexibility over the number of processors can be obtained by implementing the array

using more than one linear array. This solution can be obtained by first dividing the 2D-array

into a number of parts containing an equal number of diagonal rows of cells. Each part can

then be implemented using a LSGP linear array. The global interconnect from the bottom lin-

ear array to the top can be avoided by a further fold. Alternatively, any delay associated with

the interconnect can be accommodated by pipelining (i.e. allocating a clock cycle to the

-177-

Chapter 8
	

Architecture of Adaptive Filter

transmission of the signal).

8.6	 VLSI Implementation of Full-Sized Array

Consideration will now be given to the physical implementation of the architectural solutions

presented in this chapter. Two implementation approaches are considered. The first exam-

ines the use of an application specific VLSI approach and specifically considers the imple-

mentation of a small full-sized array. The layout has been produced for the boundary and

internal cells using the enhanced-SGR algorithm, and area and speed figures have been ob-

tained and compared with a CORDIC implementation of the cells. The second approach is

based on the use of an array of programmable general purpose DSP chips, and a scalable im-

plementation of the LSGP solution is presented.

8.6.1 VLSI Design of Full-Sized QR-Array

As presented in Figure 8.1 the final step in the design flow to obtain a VLSI architecture is

to retime the SFG to accommodate the particular latencies of the physical processors used.

Figure 8.9 shows a small full-sized QR-array which has been retimed for the enhanced-SGR

algorithm. The latencies of the individual arithmetic operators are shown in the inset. The

retiming process has been performed using a well established set of rules (see [Megs92] pag-

es 49 to 54). In this particular case, the CAD tool IRIS was used to perform the process using

a computer. IRIS has been developed by the Queen's University of Belfast[Train95], and is

unique in that it can retime circuits with unconventional data formats such as msdf arithme-

tic. The tool generates a correctly pipelined description of the architecture in a VHDL format

expressed hierarchically in terms of the operators used.

In this particular example, a floating-point representation has been used for the loop variable.

A fixed-point loop could have been used to obtain high sample-rate operation just as easily

but the fixed/floating-point adder operator was not available at the time. However, both

adders require the same area, so the overall layout of both will be very similar.

-178-

x(n)	 x2(n)	 x3(n)	 y(n)

12D	 14D	 16L

1OD

IC

16 bit mantissa
24 bit mantissa

'C,.	 __\ Internal Cell

b
	

b

Chapter 8	 Architecture of Adaptive Filter

A 0.6pm two-layer metal CMOS process was targeted, and a system clock frequency of

50 MHz was achieved for the operators (cf. to 100 MHz for 0.35 pm). The area and latency

obtained for each operator are summarised in Table 8.1.

Divider

Multiplier

Adder

Beta Multiplier

Rounder

Delay (6 cycles)

Latency of operator
shown in bottom
right corner of box

Figure 8.9 Retimed QR-array

Table 8.1 Properties of floating-point operators

a. Using O.6jim two-layer metal CMOS process and for 50MHz operator throughput.

-179-

Diide,s'

3.0mm

Chapter 8
	

Architecture of Adaptive Filter

The layout for the boundary and internal cells is shown in Figure 8.10. The performance and

area of the cells are summarised in Table 8.2.

Boundary Cell	
5.7mm

3.0mm-

Internal Cell	 -	 - -	 - -

Multiplier____	 __________

4D -k-	 4

Adder] 6 - ________	 -

2D -

Rounder	 Multiplier

- Adderl6_24

- BetaAdder

3.0mm

I

Figure 8.10 VLSI layout of the enhanced SGR boundary and internal cells

Table 8.2 Area and computation rate of the enhanced-SGR cells

Number of
FLOPS at 50MHz	 Latency

	

Cell	 Areaa (mm2)	 floating-point	
clock (MFLOPS)	 (clock cycles)

operations per cell

	

Boundary 5.7x3.0=17.1	 7	 350	 4

	

Internal	 3.0x3.0=9.0	 5	 250	 4

a. Implemented with a two-layer metal O.6im CMOS process

-180-

Chapter 8
	

Architecture of Adaptii'e Filter

8.6.2 LPGS Architecture

Using the cell designs presented in the last section, it is possible to perform a realistic paper

design of the LPGS linear array architecture for a medium sized array. Consider the case of

an array with 16 auxiliary inputs and 1 primary input. This could be implemented using a

linear array consisting of 1 boundary cell and 8 internal cells. A simple calculation suggests

that an area of 17.2 + 8x8.15 = 82.4mm2 would be required for the processors. Allowing

area for routing (which would be local) and the additional 17-4 - 13 pipeline delays in

the recursive ioop, a single die of size 1 Ox 10mm should be sufficient. A sample-rate of

3.125MHz could be achieved, which relates to a sustained computation rate of

2,350 MFLOPS 1 . This is an impressive figure, particularly if it is compared to results ob-

tamed from a general purpose DSP array considered later.

The power consumption of such a device is difficult to estimate accurately as it depends on

many factors. However, in practice it is found to be relatively independent of circuit function,

and related to area and frequency in the following manner[West93], p 235:

P KpA(___fk
\(V\2

-	 lOOxlO6J3J

For 0.5prn technology K-45mW/mm2 and for 0.35pm technology K=60mW/mm2.

Therefore, the chip described above will have a power consumption of approximately 4.6W.

A power consumption of up to 5W is acceptable for an air cooled low cost package. Up to

15W can be sustained if fan cooling is used. Above this, a more sophisticated cooling scheme

is required, e.g. using a thermo-syphon.

A very important issue in the past has been power dynamics. Currently, this is being solved

using on-chip capacitors and extra layers of metal to provide power planes. Therefore, con-

structing large arrays of synchronous processors on chip is a practical proposition.

(8.1)

1. Note that these floating-point operations are for 16- and 24-bit arithmetic.

- 181 -

Chapter 8
	

Architecture of Adaptive Filter

8.6.3 Comparison with CORDIC

As mentioned in Chapter 1, CORDIC is a popular method for implementing the Givens ro-

tations. This option was considered by Hamill with the objective of comparing the CORDIC

approach with that adopted in this thesis. Hamill has investigated two options. The first was

based upon an msdf implementation of the CORDIC algorithm developed by Hamill and

Walke[Hami95b]. This achieved a wordlength-independent latency of 10 cycles, but was

considered to be very area intensive. The second approach used a more conventional imple-

mentation of CORDIC and consequently a much higher latency of 25 was obtained for a 16-

bit mantissa. The latter has been synthesised and a direct comparison with the SGR algorithm

can be made as presented in Table 8.3.

Table 8.3 Comparison between SGR and CORDIC approaches

CORDIC	 SGR
Property

_______________________________ Boundary Internal Boundary Internal

Latency (minimum)	 25	 la

Cell throughput (million cell computa-	 52.6	 50

tionsper second)	 ____________________ ___________________

Maximum input sampling-rate 	 2.1	 12.5/50a

Cell area (mm2)	 20.9	 20.0	 17.1	 8.15

Area required to imple- Per cell type 	 6.37	 60.8	 2.60	 22.2

ment arrayt' (ri2)	 Total	 67.2	 24.8

a. If the enhanced-SGR algorithm is used with a fixed-point loop.
b. In this case the QR-algorithm has 16 primary inputs, 1 auxiliary input and a sample-rate of 1MHz.

The SGR processor requires 136x106 internal cell operations and 16x106 boundary cell operations
per second. The CORDIC processor requires an additional 16x106 internal cell operations per sec-
ond to implement the product of cosines for direct residual extraction.

It is clear from the table that the SGR algorithm offers almost a 3:1 advantage in area and a

25:1 advantage in sample-rate.

A reason why the SGR algorithm is so much better in terms of latency and area is that an

approach based on standard arithmetic operators provides the flexibility to optimise the SFG.

In this way it has been possible to simplify the loop and make significant savings in the size

of the cells, particularly the most common one. The CORDIC algorithm implements the

-182-

Chapter 8	 Architecture of Adaptive Filter

whole rotation in one combined operator; which leaves little scope for optimisation.

One important advantage of a CORDIC approach is that the boundary and internal cells can

be implemented using a single processor design because the solutions are so similar. This

considerably simplifies the VLSI implementation of the QR-algorithm with a programmable

array size. Also the basic CORDIC operation can be extended to other functions, allowing

the design of a single, very flexible chip.

The CORDIC approach can also be beneficial in applications, such as singular value decom-

position, where rotations by one of a small number of angles are required, but where the new

coordinates need to be calculated accurately[Gotz95] (i.e. the rotations are orthogonal). In

this case, only a small number of CORDIC iterations are required and the latency and area

are very much reduced.

8.7	 QR-Array Implementation using General Purpose DSP Processors

8.7.1 A Parallel Processor Array Implementation

A more flexible alternative to an ASIC approach is to use programmable general purpose

DSP processors to implement the QR-algorithm. The low throughput of these devices can be

overcome by using many of them in parallel. Coffey et al. [Coff96] have developed a proc-

essor architecture specifically for implementing the QR-algorithm. The architecture is

shown in Figure 8.11(a) and consists of a linear array of DSP32C 32-bit general purpose

DSP processors interconnected using dual-port and tn-port RAMs. In the figure the architec-

ture is shown using eleven processors. Ten processors have been used to implement internal

cell operations and one processor to implement the boundary cell operations. Data is passed

between processors via the RAMs using a dead-letterbox approach. The location from which

an input is obtained and an output placed, is contained in a table supplied as part of each proc-

essor's program. The program is downloaded to each processor from a host PC computer.

A system has been constructed to implement an array of 45 DSP32C processors. Four

- 183 -

Chapter 8	 Architecture of Adaptive Filter

DSP32C processors are held on a card with the multi-port memories, and the size of the proc-

essor array is determined by the number of boards used.

8.7.2 Improved Architecture

This linear array architecture of Figure 8.11(a) was not obtained using any formal design

method. It has been obtained using a similar fold to that presented in Figure 8.3. However,

the second fold, used to avoid the transposition of data as described in Figure 8.4, has not

been performed. Consequently there is a requirement for tn-port RAMs to implement this

data path. If the second fold were performed, then the architecture shown in Figure 8.11(b),

requiring only dual-port RAMs, could be used. This represents a significant simplification

of the implementation.

6

I-fl	 6F-1--(D) iH5

101	 -F2l	 lH-

II	 I10HJ

C

(a) Scalable array of programmable DSP chips 	 (b) Simplified array

Figure 8.11 Array processor of DSP chips

8.7.3 Comparison with ASIC Approach

In this section, the implementation of the QR-array using DSP32C processors is compared

with an ASIC approach. The DSP array by Coffey et al. implements a QR-array with 81 aux-

-184-

Chapter 8	 Architecture of Adaptive Filter

iliary inputs using 45 processors. An array of this size requires the storage of 3340 r-varia-

bles. This storage would be expensive to implement on an ASIC. If the storage were off chip,

then only a small number of processors could be implemented due to the 110 requirements

of transferring the stored data on and off chip (i.e. the performance of an ASIC implementa-

tion is 110 limited rather than silicon area limited). Even so, such an implementation would

nevertheless offer higher performance than the DSP array.

For example, Table 8.4 compares the properties estimated for an ASIC solution and for the

DSP array. The ASIC estimates are based on 16-bit arithmetic, which is less than the 24-bit

arithmetic provided by the DSP array, but sufficient for the beamforming applications of in-

terest. The ASIC solution uses one boundary and two internal cells, giving a total of

6x32-192 pins to get 3 r-variables on and off the chip on each clock cycle. For an 81-input

array the ratio of internal to boundary cell operations is 40:1, so in the proposed implemen-

tation the boundary cell in this ASIC implementation would be utilised only 5% of the time.

Even with this inefficiency and low number of processors, the ASIC solution still offers sig-

nificantly higher performance than the DSP array. It also requires significantly less volume

and area, and the one-off construction costs are similar. One further benefit of an ASIC ap-

proach is that, in many ways, it is simpler to design. This is because the CAD tools are avail-

able to model the system and the fabrication process has been well characterised, whereas

this is not the case for a board-level system.

Table 8.4 Comparison between programmable DSP and ASIC approaches

45 Processor	 1 ASIC
Property	

DSP Array using SGR

Floating-point operations per second (FLOPS)	 109	 518

Volume (cm3)	 27,000	 45

Power (W)	 200	 2

Estimated one-off construction cost (k 1,000s) 	 65	 100

- 185 -

1000

Sample-rate
(MHz)

100

10

1

)MHz

Chapter 8
	

Architecture of Adaptive Filter

8.8	 Adaptive Beamforming Application

Adaptive beamforming for radar systems is an important application of the QR-array. It is

possible to estimate the performance of an ASIC solution using the VLSI layout results pre-

sented in this chapter. The adaptive beamformer requires a complex arithmetic implementa-

tion of the cells which is about 2.5 times the size of the real ones considered up to this point.

Typical applications require arrays of approximately 16 to 24 inputs. For this size, it is pos-

sible to store all the r-variables on chip. In which case, the number of processors which can

be implemented on a single chip is determined by the silicon area available rather than the

package pin-count. Figure 8.12 shows the expected sample-rate of a single chip ASIC imple-

mentation of an adaptive beamformer with 16 auxiliary inputs and 1 primary input (where

the predictions of future technology have been obtained from [Nat94]).

	

0.7	 0.35	 0.25	 0.18	 0.12	 0.1

	

1992	 1995	 1998	 2001	 2004	 2007
Feature size, and year of introduction

Figure 8.12 Estimated performance of an adaptive beamforming ASIC

Using current 0.35 pm technology, it would be possible to implement the beamformer at a

sample-rate of 11.7MHz. The power consumption would be about 8W, which is acceptable

if fan cooling were used.

-186-

Chapter 8
	

Architecture of Adaptive Filter

8.9	 Discussion

It has been demonstrated in this chapter how methodical techniques can be used to obtain a

broad range of VLSI architectures for implementing a fixed-size QR-array with a reduced

number of processors. In particular, a new systolic array has been developed. This enables

efficient implementation of the QR-algorithm using optimised processors designed to irnple-

ment either boundary or internal cells.

There is currently a need for commercial tools to automate, or at least assist with, the array

processor architecture design process.

The automation of the VLSI design route has improved enormously over the last few years,

and the cell designs produced in this thesis were achieved in 1 week (once the VHDL oper-

ators had been coded in VHDL). This suggests that very rapid realisation of VLSI DSP de-

signs is now possible, although it should be noted that other issues such as testability and

verification of the design have not been addressed.

A CORDIC approach for implementing Givens rotations was found to require more than

3 times the area of the SGR algorithm implemented using standard arithmetic operators and

incurred a latency between 11 and 25 times greater. This can be attributed to the greater

scope for optimisation available when the rotation is constructed from a number of simple

operators.

One slightly surprising result, was how inefficient the solution based upon an array of pro-

grammable DSP chips was when compared to an ASIC approach. For an 81 input array the

ASIC solution was pin-count limited, yet it achieved more than a factor of 4 improvement

over an array of 45 DSP chips. If a 16-input array were considered, where the ASIC solution

is silicon area limited, then the figure would be 35. That is, the ASIC is a factor of 1575 faster

than each OP DSP chip.

Why is this figure so large? One reason for this is that the DSP chips spend a high proportion

-187-

Chapter 8
	

Architecture of Adaptive Filter

of time communicating data in a multiprocessor configuration. This is particularly true of the

DSP32C, although more recent processors have better support for this [SHAR95] . Secondly,

the DSP chip has only one arithmetic unit, whereas 74 could be integrated on a single ASIC.

Thirdly, the arithmetic unit of the DSP chip is of fixed size and may be considerably larger

than required, whereas the wordlength of the operations in an ASIC may be tailored to save

area. Multi-processor programmable DSP chips are possible, but the only one currently

available commercially is difficult to program, yet has only 5 processors (4 of which are

fixed-point).

The development time of a DSP array solution is high, and comparable to that of an ASIC.

The one-off implementation costs are also similar. Therefore, in circumstances where the al-

gorithm is application specific and well defmed, there is a strong argument for the adoption

of an ASIC solution.

-188-

Chapter 9	 Conclusions

9.1	 Overview

The VLSI design of an array processor for recursive least squares based on QR-decomposi-

tion using Givens rotations has been investigated. The emphasis has been on achieving high

sample-rate operation, so particular interest has been paid to the complexity of the recursive

loops in the algorithm and the delay of the operators used. In the search of the optimum de-

sign, the aspects of arithmetic, algorithm and architecture have been investigated in a way

which accounts for the limitations and benefits of VLSI technology.

The main contributions of the work were:

It has been shown that an ASIC design of the QR-algorithm based on floating-

point arithmetic requires less silicon area than those based on fixed-point arithme-

tic.

• A novel algorithm has been presented, based on a combination of fixed- and float-

ing-point arithmetic, which offers both higher sample-rate and reduced area

requirements over previous Givens rotation algorithms when used in an ASIC

implementation of the QR-algorithm.

• A novel linear array architecture has been proposed for the QR-array, which offers

local interconnect and thereby greatly simplifies both ASIC and DSP parallel proc-

essor implementations.

• Novel multiplier-adder structures have been presented which uses minimally

redundant radix-4 arithmetic to achieve low-latency multiplication with reduced

area over previous techniques.

These are discussed in more detail below.

9.2	 Low-Latency Arithmetic

Architectures for msdf multiplier-adders have been presented in the thesis as a method for

-189-

Chapter 9	 Conclusions

obtaining low-latency for applications such as the QR-algorithm and hR filtering. An archi-

tecture is presented which offers a 25% reduction in area over previous designs by a judi-

cious use of redundancy whilst maintaining low-latency. The msdf approach is attractive as

it uses an array multiplier with a very regular architecture, yet replaces the linear dependence

of delay on wordlength with one which is fixed and relatively low. Indeed, the very regular

architecture offered by msdf multipliers has enabled the automatic compilation of their lay-

outs for any wordlength using a simple bit-slice approach.

Over the course of this research there have been rapid developments in the capabilities of in-

tegrated circuit design tools, and this means that it is now also possible to implement irreg-

ular circuits in an efficient and rapid manner. Therefore, low-latency multipliers based on

adder trees have also been considered in the thesis, as they offer a delay which is only loga-

rithmically dependent upon wordlength. It has been shown how these may be used to obtain

a recursive multiply-add operation, and for medium wordlengths (i.e. 16 to 32-bits) a Wal-

lace-tree multiplier will offer significant reductions in latency and area over an msdf ap-

proach without the inconvenience of a skewed data format.

In a study of high-throughput, low-latency dividers it has been shown that the modified SRT

divider offers significantly higher levels of throughput than the standard SRT algorithm. It

also compares well on speed with a version of a speculative divider which has been presented

in the thesis in a modified form to provide acceptable area requirements. Although, it has

higher latency, the modified SRT algorithm offers advantages in system design, as there is

greater flexibility in the level of pipelining which may be applied and so greater control over

throughput.

Fully parallel architectures for a convergence divider and reciprocal operator have been pre-

sented, which aim to offer low-latency with high-throughput. In this parallel form, it is pos-

sible to optimise multiplier wordlengths in order to obtain realistic area requirements. A

design based on non-redundant arithmetic was produced and resulted in a similar level of la-

-190-

Chapter 9	 Conclusions

tency to the modified SRT approach. A redundant implementation should significantly re-

duce the latency, and the techniques presented in this thesis can be used to obtain this with

only a 50% increase in area rather than 100%.

9.3	 Givens Rotation Algorithm

An important achievement has been the development of an enhanced version of the Squared

Givens Rotation (SGR) algorithm as this offers extremely high sample-rate operation which

is considerably better than any other algorithm examined, yet with reduced area and good

numerical performance. Using a 0.35pm CMOS standard cell process, a sample-rate of

136 MHz is considered achievable.

The Givens rotation presented an interesting example of a recursive algorithm which was

more complex than hR filtering. In particular, there were a wide range of algorithm variants

which exhibited quite distinct characteristics, and there was a requirement for more than just

multiply-accumulate operations. In particular, fixed- and floating-point variants were possi-

ble, and although the simplicity of fixed-point arithmetic is generally sought in DSP imple-

mentations, it was found that a floating-point algorithm offered significantly reduced area

and high sample-rate. The main reason for this was that the additional dynamic range pro-

vided by the floating-point format has enabled a transformation of the algorithm to be used

which avoids the square-root operation, halves the number of multiplies and simplifies the

recursive loop to just an add operation. The latter enables the wordlength of the ioop variable

to be increased at little cost in hardware, with significant reductions in the accumulated nu-

merical error. Consequently, significant reductions can be made in wordlengths used else-

where - particularly when large window lengths are required when error accumulation is at

its worst. This provides large savings in the area occupied by the multipliers and dividers.

The extra cost of floating-point operators over fixed-point ones is only significant in the im-

plementation of an adder, where the area increases by approximately a factor of 10 and the

- 191 -

Chapter 9	 Conclusions

latency by a factor of 3. However, in the case of the Givens rotation, this increase in area is

more than compensated for by reductions in wordlength and the number of operations used.

The latency of the floating-point addition is avoided in the feedback loop by using a fixed-

point representation for the loop variable. Also a signed-binary redundant representation has

been used to reduce the addition time and make it independent of wordlength. Consequently,

very high sample-rate operation is feasible which is independent of wordlength.

It is clear from this work that low-latency operators are expensive to implement in terms of

their area-time product. For highly parallel implementations, maximum computation rates

are obtained from a finite area of silicon by using operators offering the lowest area-delay

product. If power is an issue, as for portable equipment and highly integrated systems, the

area-speed-power product should be minimised. As power is approximately a function of ar-

ea, then low-latency operators become even more expensive. Therefore, they should only be

used for critical operations where their expense can be justified. It is interesting to note that

in the QR-algorithm, a very high sample-rate design was achieved through the combination

of an algorithm transformation and the use of only a redundant adder. This emphasises the

need to consider the design process as a whole in order to obtain optimum results.

9.4	 Application Specific Array Processor

The enhanced SGR algorithm provides exciting opportunities for realising very-high sample

rate adaptive filters based on the QR-algorithm. It should be possible to use the SGR algo-

rithm in a QR-based lattice filter. The current levels of integration and the efficiency of the

algorithm are sufficiently high that the full lattice operating at maximum sample-rate could

be implemented on a single ASIC (providing the length of the lattice were not too great). It

should also be possible to implement realistic adaptive beamforming solutions using a com-

plex arithmetic implementation of the QR-array and a single ASIC. For example, it has been

estimated that an adaptive beamformer with 16 auxiliary and 1 primary input could be im-

plemented with a sample-rate of 3.125 MHz using a single integrated circuit and a 0.35 pm

-192-

Chapter 9	 Conclusions

standard cell process. This would represent a sustained performance of 12,500 MFLOPS.

The enhanced-SGR algorithm has been compared with a CORDIC approach and shown to

benefit by a factor of 3 in area and over 11 in sample-rate. Also when compared with a recent

implementation of the QR-algorithm on a parallel array of OP DSP chips, it was estimated

that a single application specific chip could offer as much as 1,500 times the level of com-

putation as that obtained from a single OP DSP chip.

The automated design route used to obtain layout for SGR processor design was very rapid,

once the arithmetic operators had been coded in VHDL. The layout was also very compact

for the size of operators used, which suggests that obtaining an ASIC is no longer as difficult

as it used to be. It is clear from the performance figures presented above that an application

specific approach can offer levels of computation several orders of magnitude greater than

can be achieved using programmable DSP chips, even when a standard cell approach is

adopted. Therefore, there is a very strong argument for pursuing ASIC solutions for more

complex DSP algorithms, and for developing the tools to enable the design process from al-

gorithm to architecture to be performed as rapidly and as efficiently as possible.

9.5 Future Work

The research has identified a number of areas in which further work may be productive.

These are summarised below:

The comparison of the msdf and tree-based multipliers suggested that multipliers offering

minimum latency will depend upon the application - in particular, whether saturation is re-

quired and what wordlength is to be used. Further characterisation of the multipliers would

be worthwhile to allow a more direct comparison to be made for particular applications. Spe-

cifically, it would be worthwhile obtaining performance figures for the msdf multiplier-

adders pipelined for single-cycle latency.

Recent work by Oklobziga et al. [0k1o96] has shown that the delay of an adder-tree can be

- 193 -

Chapter 9	 Conclusions

improved by careful construction and description of the tree in VHDL. This has been

achieved by performing a high level optimisation on the tree using detailed knowledge of the

full-adder building block. The synthesis and optimisation results obtained from Synopsys for

the optimised tree should be compared with those obtained from a simple tree description to

see if the approach provides any advantage over the current synthesis approach.

The convergence divider was implemented using non-redundant multipliers, which gave an

area-efficient solution. The implementation of the divider and reciprocal circuit using redun-

dant arithmetic is possible, and should be investigated. Redundant tree multipliers suitable

for this purpose have been presented in this thesis and found to reduce the area required by

25%. Even so, the area will be substantially greater than the modified SRT divider (by ap-

prox. 50-100%), but the latency could be as much as halved.

The reciprocal LUT5 synthesised using combinational logic in Chapter 4 were very fast and

surprisingly small. The use of table based approaches (i.e. interpolation) should be further

investigated for implementing low precision reciprocals and other functions.

The floating-point adder was designed to minimise latency in the recursive loop of the SGR

algorithm. The design of a more area-time efficient floating-point adder may be possible by

allowing a latency of 4 or 5. In many DSP implementations, the resulting sample-rate will be

sufficient.

Much of the research on computer arithmetic is performed with microprocessor arithmetic

units in mind, in which case the design objective is invariably high wordlength at low laten-

cy. This is not necessarily the requirement of DSP systems. Therefore, research on arithmetic

techniques targeted at implementing operators with low area-time products for low and me-

dium wordlengths is worthwhile.

The high sample-rate variant of the SGR algorithm currently achieves fixed-point number

ranges for the loop variable by assuming that the input is in a fixed-point number range and

-194-

Chapter 9	 Conclusions

applying scaling to the input appropriate to the value of forget-factor used. Simple normali-

sation schemes based on shifters have been suggested in the thesis which would allow float-

ing-point inputs to be used, and would not be costly in time and area to implement. They

should be pursued further.

The enhanced SGR algorithm may also be applied in the implementation of a QR based lat-

tice filter[Prou9 1]. In the single channel case, the lattice generally requires fewer boundary

and internal cells than the array, and is more likely to be applied in high sample-rate appli-

cations. Architectures for implementation of a lattice will be simpler, as it consists of only a

linear array of boundary and internal cells. Consequently, a more flexible VLSI implemen-

tation could be achieved and would be worth investigating. The ratio of boundary to internal

cells is 1 to 1, so there may be scope for developing a single optimised cell. Numerical sim-

ulations would need to be performed to confirm that the same numerical benefits can be ob-

tained from the SGR algorithm.

Only cell designs for the SGR algorithm based on real arithmetic have been considered in

this thesis. Complex arithmetic versions are required in adaptive beamforming applications.

They could be achieved by modifying the SGR algorithm to accept complex quantities for

the x and r terms. It is anticipated that the complex implementation would benefit from the

improved numerical performance of the enhanced SGR algorithm, but this would need to be

confirmed by simulation. One requirement of complex cells would be a complex multiplier.

The latency of this device is not critical, as in the SGR cells it is not required within the feed-

back loop, but area-time efficient designs would be worth investigating.

Simple estimates, presented in the previous chapter, indicate that it is possible to solve a cer-

tam radar beamforming problem using a single application specific chip. The implementa-

tion of this chip would be an exciting objective. Obtaining measurements of real power

consumption would be very useful, as it may be quite high. High power consumption is less

likely to be a problem in military applications, but in many commercial ones it will be much

- 195 -

Chapter 9
	

Conclusions

less acceptable. Therefore, ways of reducing power consumption should be investigated. To

achieve this objective, ways must be sought for minimising the number of logic transitions.

Signed representations can be useful as they do not require large numbers of bit transitions

when making small changes in value. Whereas, with a 2's complement representation it is

necessary for all the bits to change when going from negative to positive number, even when

the number is small.

Many of the basic arithmetic operators now exist in a parameterised VHDL form. This li-

brary could be exploited for the rapid implementation of range of application specific DSP

problems. A wider study of relevant DSP algorithms and their architectures would be very

worthwhile to see how many can currently be satisfactorily implemented in this way. It is

likely that such a study would help define the requirements of software tools for rapid imple-

mentation of high performance DSP ASICS.

-196-

Chapter 10 References

[Anda94]

[Ande67J

[Aviz6l]

[B arl8 7]

[Bedr62]

[Boot5l]

[Brac89a]

A. A. Anda and H. Park, "Fast Plane Rotations with Dynamic Scaling", SIAM

J. on Matrix Analysis and Applications, Vol. 15, No. 1, pp. 162-174, 1994.

S. F. Anderson, J. G. Earle, R. B. Goldschmidt, and D. M. Powers, "The IBM

SystemI36O Model 91: Floating-Point Execution Unit", IBMJ., Jan. 1967.

A. Avizienis, "Signed-Digit Number Representations for Fast Parallel Arith-

metic", IRE Trans. on Compt., Vol. EC-lO, pp. 389-400, 1961.

J. L. Barlow and I. F. Ipsen, "Scaled Givens rotations for the solution of linear

least squares problems on systolic arrays", SIAMJ. Sci. Stat. Comput., Vol. 8,

No. 5, pp. 716-733, Sept. 1987.

0. J. Bedrij, "Carry-Select Adders", IRE Trans. Electronic Computers, Vol.

EC-1 1, No. 3, pp. 340-346, 1962.

A. D. Booth, "A Signed Binary Multiplication Technique", Qt. J. Mech. Appi.

Math., Vol. 4, Part 2, 1951.

R. H. Brackert Jr., M. D. Ercegovac and A. N. Willson Jr., "Design of an On-

Line Multiply-Add Module for Recursive Digital Filters", Proc. of the 9th

Symp. on Compt. Arith., pp. 34-41, 1989.

[Brac89b]	 R. H. Brackert Jr., A. N. Wilison, and M. D. Ercegovac, "A High-Speed Dig-

ital Filter Uisng On-Line Arithmetic", Proc. of IEEE Int. Symp. on Circuits

and Systems, pp. 1552-1555, 1989.

[Brig93]	 W. S. Briggs and D. W. Matula, "A 17x69 Bit Multiply and Add Unit with Re-

dundant Binary Feedback and Single Cycle Latency", Proc. of the 11th Symp.

-197-

Chapter 10	 References

on Compt. Arith., pp. 163-170, 1993.

[Bu90]

[Burg9l]

[Burg95]

[Cart9OJ

[Coff96]

[Dadd65]

[Darl9O}

[DasS94]

[DasS95J

[Deit93a]

J. Bu, E. Deprettere, and P. Dewilde, "A Design Methodology for Fixed-Size

Systolic Arrays", Proc. of the mt. Conf ofApplication Specc Array Proces-

sors, pp. 59 1-602, 1990.

N. Burgess, "A Fast Division Algorithm for VLSI", IEEE Intl. Confi on

Compt. Design, pp. 560-563, 1991.

N. Burgess and T. Williams, "Choices of Operand Truncation in the SRT Al-

gorithm", IEEE Trans. on Compt., Vol. 44, No. 7, pp. 933-938, 1995.

T. M. Carter and J. E. Robertson, "The Set Theoiy of Arithmetic Decomposi-

tion", IEEE Trans. on Compt., Vol. 39, No. 8, pp. 993-1005, 1990.

A. S. Coffey, M. Johnson, and R. Jones, "Nonlinear Dynamical Systems An-

alyser", Proc. SPIE 2296, pp. 687-699, 1996.

L. Dadda, "Some Schemes for Parallel Multipliers", Alta Frequenza, Vol. 34,

pp. 349-356, March 1965.

M. Darley et al., "The TM5390C602A floating-Point Coprocessor for Sparc

Systems", IEEE Micro, Vol. 40, No. 3, pp. 36-47, 1990.

D. DasSarma and D. W. Matula, "Measuring the Accuracy of ROM Recipro-

cal Tables", IEEE Trans. on Compt., Vol. 43, No. 8, pp. 932-940, 1994.

D. Das Sarma and D. W. Matula, "Faithful Bipartite ROM Reciprocal Tables",

Proc. of the IEEE 12th Symp. on Compt. Arith., pp. 17-28, 1995.

C. R. Deitrich, "Computationally Efficient Cholesky Factorization of a Co y-

ariance-Matrix with Block Toepliz Structure", J. Statistical Computation and

-198-

Chapter 10
	

References

Simulation, Vol. 45, No. 3-4, pp. 203-218, 1993.

[Deit93bJ
	

C. R. Deitrich, "Computationally Efficient Generation of Gaussian Condition-

a! Simulations over Regular Sample Grids", Mathematical Geology, Vol. 25,

No. 4, pp. 439-45 1, 1993.

[Deny8SJ
	

P. Denyer and R. Renshaw, VLSI Signal Processing: A Bit Serial Approach,

Addison-Wesley, IBSN 0-201-14404-2, 1985.

[Dini95]
	

P. S. R. Diniz and M. G. Siqueira, "Fixed-Point Error Analysis of the QR-Re-

cursive Least Squares Algorithm", IEEE Trans. on Circuits and Systems - II:

Analog and Digital Signal Processing, Vol. 42, No.5, 1995.

[Dohl9l}
	

R. Dohler, "Squared Givens Rotations", IMA J. of Numerical Analysis, Vol.

ll,pp. 1-5, 1991.

[Erce77J
	

M. D. Ercegovac, "A General Hardware-Oreiented Method for Evaluation of

Functions and Computations in a Digital Computer", IEEE Trans. on Compt.,

Vol. C-26, No. 7, pp. 667-680, 1977.

[Erce87J
	

M. D. Ercegovac and T. Lang, "On-the-Fly Conversion of Redundant into

Conventional Representations", IEEE Trans. on Compt., Vol. C-36, No.7, pp.

895-897, 1987.

[Erce88J
	

M. D. Ercegovac, "On-Line Scheme for Computing Rotation Factors", J. of

Parallel and Distributed Computing, 5, pp. 209-227, 1988.

[Erce89a]
	

M. D. Ercegovac and T. Lang, "On-the-Fly Rounding for Division and Square

Root", Proc. of the 9th Symp. on Compt. Arith., pp. 169-175, 1989.

[Erce89bJ	 M. D. Ercegovac and T. Lang, "Fast Radix-2 Division With Quotient-Digit

Prediction", J. of VLSI Signal Processing, Vol.1, No. 3, pp.169-180, 1989.

-199-

Chapter 10

[Erce9O]

[Flyn7O}

[F1yn95]

[Fran94J

[Gent73]

[Gent8 1]

[Go1u89]

[Götz95]

[Give58]

References

M. D. Ercegovac and T. Lang, "Simple Radix-4 Division with Operands Scal-

ing", IEEE Trans. on Compt., Vol. C-39, No. 9, ppl2O4-1207, 1990.

M. J. Flynn, "On Division by Functional Iteration", IEEE Trans. on Compt.,

Vol. C-19, No. 8, pp. 702-706, 1970.

M. J. Flynn, K. Nowka, G. Bewick, E. Schwarz and N. Quach, "The SNAP

Project: Towards Sub-Nanosecond Arithmetic", Proc. of the IEEE 12th Symp.

on Compt. Arith., pp.75-82, 1995.

E. N. Frantzeskakis and K. J. R. Liu, "A Class of Square Root and Division

Free Algorithms and Architectures for QRD-Based Adaptive Signal Process-

ing", IEEE Trans. on Signal Processing, Vol. 42, No. 9, 1994.

W. M. Gentleman, "Least-Squares Computations by Givens transformations

without square roots", J. Inst. Math. Its Applics., Vol. 12, pp. 329-336, 1973.

W. M. Gentleman and H. T. Kung, "Matrix triangularization by systolic ar-

rays", Proc. SPIE 298, Real-Time Signal Processing IV, pp. 19-26, 1981.

G. H. Golub and C. F. Van Loan, "Matrix Computations", 2nd Ed., John Hop-

kins, ISBN-08018-3739-1, 1989.

J. Götze and G. J. Hekstra, "An algorithm and architecture based on orthonor-

mal rn-rotations for computing the symmetric EVD", Integration, the VLSIJ.,

20, pp. 21-39, 1995.

W.Givens, "Computation of Plane Unitary Rotations Transforming a General

Matrix to Triangular Form", J. Soc. Indust. Appl. Math., Vol. 6, No. 1, pp. 26-

50, March 1958.

[Götz9lJ
	

J. Gotze and U. Schwiegelshohn, "A square root and division free Givens ro-

- 200 -

Chapter 10
	

References

tation for solving least squares problems on systolic arrays", SIAM J. Sci. Stat.

Compt., Vol. 12, No. 4, pp. 800-807, 1991.

[Hami95a] R. Hamill, "VLSI Algorithms and Architectures for DSP Arithmetic Compu-

tations", PhD Thesis, The Queen's University of Belfast, 1995.

[Hami95b] R. Hamill, R. L. Walke and J. V. McCanny, "Constant Scale Factor, On-Line

CORDIC Algorithm in the Circular Coordinate System", VLSI Signal

Processing, VIII, ISBN 0-7803-2612-1, pp. 562-571, 1995.

[Hamm74] S. Hanimarling, "A note on modifications to the Givens plane rotation", J.

Inst. Maths Applics., Vol. 13, pp. 215-218, 1974.

[Hayk9l]	 S. Haykin, Adaptive Filter Theory, Second Edition, Prentice Hall, ISBN 0-13-

013236-5, 1991

[HousS8]

[Hsie93]

[Hwan79]

[IEEE85]

[Irwi87]

A.S. Householder, "Unitary triangularization of a nonsymmetric matrix", .1.

ACM, Vol. 5, pp. 339-342, 1958.

S. F. Hsieh, K. J. R. Liu, and K. Yao, "A Unified Approach for QRD-Based

Recursive Least-Squares Estimation Without Square Roots", IEEE Trans. on

Signal Processing, Vol. 41, No.3, pp. 1405-1409, March 1993.

K. Hwang, Computer Arithmetic: Principles, Architecture and Design, John

Wiley and Sons, 1979.

"IEEE Standard for Binary Floating-Point Arithmetic", IEEE Std. 754-1985,

IEEE, New York.

M. J. Irwin, R. M. Owens, "Digit-Pipelined Arithmetic as Illustrated by the

Paste-Up System: A Tutorial", IEEE Compt., pp. 6 1-73, 1987.

-201-

Chapter 10
	

References

[1to95]	 M. Ito, N. Takagi, and S. Yajima, "Efficient Initial Approximation and Fast

Converging Methods for Division and Square Root", Proc. of the 12th Symp.

on Compt. Arith., pp. 2-9, 1995.

[Kopp93]	 B. Koppenhofer, "A Novel Architecture for a Decision-Feedback Equalizer

Using Extended Signed-Digit Feedback", Proc. of the mt. Conf ofApplication

Specific Array Processors, pp. 490-501, 1993.

[Know89a] S. C. Knowles, J. G. McWhirter, R. F. Woods, and J. V. McCanny, "Bit Level

Systolic Architectures for High Performance IIR Filtering", J. of VLSI Signal

Processing, Vol. 1, No. 1, pp. 9-24, 1989.

[Know89b] S. Knowles, J. G. McWhirter, "An Improved Bit-Level Systolic Architecture

for 1W Filtering", Systolic Array Processors, Eds. J. V. McCanny, J. G.

McWhirter and B. Swartzlander, Prentice Hall, pp. 205-2 14, 1989.

[Know9l] S. C. Knowles, "Arithmetic Processor Design for the T9000 Transputer",

SPIE Vol. 1566 Advanced Signal Processing Algorithms, Architectures and

Implementations II, pp. 230-243, 1991.

[Kung78]	 S. Y. Kung and C. E. Leiserson, "Systolic Arrays (for VLSI)", In Sparse Ma-

trix Symp., pp. 256-282, SIAM, 1978.

[Kung87]	 S. Y. Kung, "VLSI Array Processors", in Systolic Arrays, Eds. W. Moore, A.

McCabe and R. Urquhart, Adam Huger, IBSN 0-85274-826-4, 1987.

[Kung88]	 S. Y. Kung, VLSI Array Processors, Prentice Hall, IBSN 0-13-942749-X,

1988.

[Kuni87J	 S. Kuninobu, T. Nishyama, T. Tanguchi, and N. Takagi, "Design of High

Speed MOS Multiplier and Divider using Redundant Binary Representation",

- 202 -

Chapter 10
	

References

Proc. of the IEEE 8th Symp. on Compt. Arith., pp. 80-86, 1987.

[Lapo9O]

[Leis83]

[Lore9S]

[Lyu95]

[Maje85]

[McGo95]

M. Lapointe, P. Fortier and H. T. Huynh, "A New Faster and Simpler Systolic

Structure for IIR Filters", Proc. of the IEEE mt. Conf on Circuits and Systems,

pp. 1227-1230, 1990.

C.E. Leiserson and F. Saxe, "Optimizing Synchronous Systems", J. of VLSI

and Compt. Systems, Vol. 1, No. 1, pp. 41-67, 1983.

F. Lorenzelli and K. Yao, "A Linear Systolic Array for Recursive Least

Squares", IEEE Trans. on Signal Processing, Vol. 43, No. 12, 1995.

C. N. Lyu and D. W. Matula, "Redundant Binary Booth Recoding", Proc. of

the 12th Symp. on Compt. Arith., pp. 50-57, 1995.

S. Majerski, "Square Rooting Algorithms for High Speed Digital Circuits",

IEEE Trans. in Compt., Vol. C-34, pp. 724-733, 1985.

B. P. McGovern, R. F. Woods, and C. McAllister, "Optimised multiply/accu-

mulate architecture for very high throughput rate digital filters", Electronics

Letters, Vol. 31, No. 14, pp. 1135-1136, 1995.

[McQu92j S. E. McQuillan and J. V. McCanny, "Algorithms and Architectures for High

Performance Recursive Filtering", Proc. of the Int. Conf on Application Spe-

cfic Array Processors, pp. 230-244, 1992.

[McQu92] S. E. McQuillan, "Algorithms and Architectures for High Performance Proc-

essors", Ph.D. Thesis, The Queen's University of Belfast, 1992.

[McQu94a] S. E. McQuillan, "Fast VLSI Algorithms for Division and Square Root", J. of

VLSI Signal Processing, Vol. 8, pp. 15 1-168, 1994.

- 203 -

Chapter 10
	 References

[McQu94b] S. E. McQuillan, Y. Hu, "Algorithms and Architectures for Most Significant

Digit First Arithmetic", Integrated Silicon Systems Ltd, Belfast, 1995

[McQu95] S. McQuillan and J. V. McCanny, "A Systematic Methodology for the Design

of High Performance Recursive Digital Filters", IEEE Trans. on Compt., Vol.

44, No. 8, pp. 97 1-982, Aug. 1995.

[Mc Wh 83]

[McWh95]

[Metr63]

[Megs92]

[Mo1d86]

[Mont9l]

[Mont93]

J . G. McWhirter, "Recursive least-squares minimization using a systolic ar-

ray", Proc. SPIE 431, Real-Time Signal Processing VI, pp. 105-112, 1983.

J. G. McWhirter, R. L. Walke and J. Kadlec, "Normalised Givens Rotations

for Recursive Least Squares Processing", VLSI Signal Processing, VIII, ISBN

0-7803-2612-1, pp. 323-332, 1995.

N. Metropolis and R. L. Ashenhurst, "Basic Operations in an Unnormalised

Arithmetic System, IEEE Trans. on Electronic Compt., Vol. EC-12, pp. 896-

904, 1963.

G. M. Megson, An Introduction to Systolic Algorithm Design, Clarendon

Press, Oxford, IBSN 0-19-853813-8, 1992.

D. I. Moldovan and J. A. B. Fortes, "Partitioning and Mapping Algorithms

into Fixed Size Systolic Arrays", IEEE Trans. on Compt., Vol. C-35, No. 1,

1986.

P. Montuschi and L. Ciminiera, "Simple Radix 2 Division and Square Root

with Skipping of Some Division Steps", Proc. of the IEEE 10th Symp. on

Compt. Arith., pp. 202-209, 1991.

P. Montuschi and L. Ciminiera, "n x n Carry-Save Multipliers without Final

Addition", Proc. of the IEEE 11th Symp. on Compt. Arith., pp. 54-61, 1993.

- 204 -

Chapter 10
	

References

[Monz8O]	 R. A. Monzingo and T. W. Miller, Introduction to Adaptive Arrays, John Wi-

ley and Sons, ISBN 0-471-05744-4, 1980.

[Nat94J

[Ober94]

[Ober95]

"The National Technology Roadmap for Semiconductors", Semiconductor In-

dustry Association, 1994.

S. F. Oberman and M. J. Flynn, "Design Issues in Floating-Point Division",

Technical Report, CSL-TR-94-647, Stanford University, 1994.

S. F. Oberman and M. J. Flynn, "An Analysis of Division Algorithms and Tm-

plementations", Technical Report, CSL-TR-95-675, Stanford University,

1995.

[Owen83]

[0k1o96]

[Parh9O]

[Peng87]

[Prab9S]

R. M. Owens, "Techniques to Reduce the Inherent Limitations of Fully Digit

On-Line Arithmetic", IEEE Trans. on Compt., Vol. C-32, No. 4, 1983.

V. G. Oklobzija, D. Villeger, and S. S. Liu, "A Method for Speed Optimized

Partial Product Reduction and Generation of Fast Parallel Multipliers Using an

Algorithmic Approach", IEEE Trans. on Compt., Vol. 45, No. 3, pp.294-306,

1996.

B. Parhami, "Generalized Signed-Digit Number Systems: A Unifying Frame-

work for Redundant Number Representations", IEEE Trans. on Compt., Vol.

39, No. 1, pp. 89-98, 1990.

V. Peng, S. Sanudrala, M. Gavrielov, "On the Implementation of Shifters,

Multipliers and Dividers in VLSI Floating Point Units", Proc. of the IEEE 8th

Symp. on Compt. Arith., pp. 95-102, May 1987.

J. A. Prabhu and G. B. Zyner, "167MHz Radix-8 Divide and Square Root Us-

ing Overlapped Radix-2 Stages", Proc. of the 12th Symp. on Compt. Arith., pp.

- 205 -

Chapter 10
	

References

155-162, 1995.

[Priv9O]

[Prou9 1]

[Rade92]

[Rade96]

[Reed74]

[Robe58]

[Rodr8 1]

G. Privat, "A Novel Class of Serial-Parallel Redundant Signed Digit Multipli-

ers", mt. Symp. on Circuits and Systems, pp. 2116-2119, 1990.

I. K. Proudler, J. G. McWhirter and T. J. Shepherd, "Computationally Effi-

cient, QR Decomposition Approach to Least Squares Adaptive Filtering", lEE

Proceedings, Vol. 138, Pt. F, No. 4, pp. 341-353, 1991.

C. M. Rader, "MUSE: A Systolic Array for Adaptive Nulling with 64 Degrees

of Freedom using Givens Transformations and Wafer Scale Integration",

Proc. of the mt. Conf of Application Specific Array Processors, pp. 277-291,

1992.

C. M. Rader, "VLSI Systolic Arrays for Adaptive Nulling", IEEE Signal

Processing Magazine, Vol. 13, No. 4, pp. 29-49, 1996.

I. S. Reed, J. D. Mallett, and L. E. Brennan, "Rapid Convergence Rate in

Adaptive Arrays", IEEE Trans. on Aerospace Electronic Systems, Vol. AES-

10, pp. 853-863, 1974.

J. E. Robertson, "A New Class of Division Methods", IRE Trans. on Electron-

ic Compt., Vol. EC-7, pp. 218-222, 1958.

M. R. D. Rodrigues, J. H. P. Zurawski, and J. B. Gosling, "Hardware Evalua-

tion of Mathematical Functions", lEE Proc., Vol. 128, Pt. E, No. 4, pp. 155-

164, 1981.

[Rubi75]
	

L. P. Rubinfield, "A Proof of the Modified Booth's Algorithm for Multiplica-

tion", IEEE Trans. on Compt., pp. 1014-1015, Oct. 1975.

[SH.AR95] ADSP-2106x SHARC User's Manual, Analog Devices, Inc., First Edition,

- 206 -

Chapter 10
	

References

1995.

[Shep93]

[Sten77]

T. J. Shepherd and J. G. McWhirter, "Systolic Adaptive Beamforming" in

Chapter 5: Array Processing, Eds. S. Haykin, J. Litva and T. J. Shepherd,

Springer-Verlag, ISBN 3-540-55224-3, pp. 153-243, 1993.

W. J. Stenzel, W. J. Kubitz, and G. II. Garcia, "A Compact High-Speed Par-

allel Multiplication Scheme", IEEE Trans. on Compt., Vol. C-26, pp. 948-957,

1977.

[Svob63]

[Tay185]

[TMS95]

[Train95]

[Triv77]

[Vo1d59]

[Wa1k93]

A. Svoboda, "An Algorithm for Division", Information Processing Machines,

No. 9, pp. 25-34, 1963.

G. S. Taylor, "Radix 16 SRT Dividers with Overlapped Quotient Selection

Stages", Proc. of the 7th Symp. on Compt. Arith., pp. 95-101, 1985.

TMS32OC8x System Level Synopsys, Texas Instruments, Document

SPRU113B, September 1995.

D. W. Trainor, R. F. Woods and J. V. McCanny, "Architectural Synthesis on

an Image Processing Algorithm Using IRIS", , VLSI Signal Processing, VIII,

ISBN 0-7803-2612-1, pp. 167-176, 1995.

K. S. Trivedi and M. D. Ercegovac, "On-Line Algorithms for Division and

Multiplication", IEEE Trans. on Compt. Vol. C-26, No. 7, pp. 68 1-687, 1977.

J. Voider, "The CORDIC Trigonometric Computing Technique", IRE Trans.

Electron. Comput., Vol. EC-8, pp. 330-334, 1959.

R. L. Wailce and R. A. Evans, "A Minimally Redundant Radix-4 Systolic Ar-

ray for High Performance hR Filtering", VLSI Signal Processing, VI, ISBN 0-

7803-0996-0, pp. 168-178, 1993.

- 207 -

Chapter 10
	

References

[Wa1164]

	

	
C. S. Wallace, "A Suggestion for a Fast Multiplier", IEEE Trans. on Electron-

ic Compt., Vol. EC-13, pp. 14-17, 1964.

[Walt7 1]
	

J. S. Walther, "A unified algorithm for elementary functions", Proc. Spring

Joint Compt. Conf, pp. 379-385, 1971.

[Ward86al C. R. Ward, P. J. Hargrave, and J. G. McWhirter, "A Novel Algorithm and Ar-

chitecture for Adaptive Digital Beamforming", IEEE Trans. on Antennas and

Propagation, Vol. AP-34, No. 3, pp. 338-346, 1986.

[Ward86b] C. R. Ward and E. B. Davie, "The Application and Development of Wavefront

Array Processors for Advanced Front-end Signal Processing Systems", in

Systolic Arrays, W. Moore, A. P. H. McCabe, and R. B. Urqhart (eds.), Adam

Hilger, Bristol, U.K., pp. 295-302, 1986.

[Wata8l]
	

0. Watanuki, M. D. Ercegovac, "Floating-Point On-Line Arithmetic: Algo-

rithms", Proc. of the 5th Symp. on Compt. Arith., pp. 8 1-86, 1981.

[WeinS6]
	

A. Weinberger and J. L. Smith, "A On-Microsecond Adder Using One-Meg-

acycle Circuitry", IRE Trans. Electronic Computers, Vol. EC-5, pp. 65-73,

1956.

[Wein8l]

[West93]

[Widr6O]

A. Weinberger, "4:2 Carry-Save Adder Module", IBM Technical Disclosure

Bull., Vol. 23, Jan, 1981.

N. Weste and K. Eshraghian, "Principles of CMOS VLSI Design", 2nd Ed.

Addison-Wesley, IBSN 0-201-53376-6, 1993.

B. Widrow and M. E. Hoff, Jr, "Adaptive Switching Circuits", IRE WESCON

Cony. Rec., Pt. 4, pp. 96-104, 1960.

[Wi1k63J
	

J. H. Wilkinson, "Rounding Errors in Algebraic Processes", Notes on Applied

- 208 -

Chapter 10
	

References

Science No. 32, HMSO, 1963.

[Wood88]

[Wood95]

[Wood9l]

[Yu95]

[Zehe92]

R. F. Woods, S. C. Knowles, J. V. McCanny, and J. G. McWhirter, "Systolic

hR Filters with Bit-Level Pipelining", Proc. IEEE mt. Confi on Acoustics,

Speech and Signal Processing, pp. 2072-2075, 1988.

R. F. Woods, G. Floyd, K. Wood, R. Evans, and J. V. McCanny, "Program-

mable high-performance hR filter chip", lEE Proc. of Circuits, Devices and

Systems, Vol. 142, No. 3, pp. 179-185, June 1995.

R. F. Woods, 0. C. McNally, and S. E. McQuillan, "Saturation Circuitry for

Redundant Number System Based hR Filters", Electronics Letters, Vol. 27,

No.21, pp. 1961-1963, Oct. 1991.

R. K. Yu, "167MHz Radix-4 Floating-Point Multiplier", Proc. of the IEEE

12th Symp. on Compt. Arith., pp. 149-154, 1995.

E. Zehendner, "Efficient Implementation of Regular Parallel Adders for Bina-

ry Signed Digit Number Representations", Microprocessing and Micropro-

gramming, Vol. 35, pp. 3 19-326, 1992.

- 209 -

Appendix A Analysis of Msdf Multiplier-Adders

To provide an algorithmic basis from which to examine alternatives to the radix-2 number

system, the analysis of msdf multiplier-adders by McQuillan[McQu95] has been extended

from radix-2 to the general radix-r case, and is presented below:

The aim of this analysis is to derive an iterative algorithm to compute the multiply-and-add

operation:

M - XY+A
	

(A.1)

The result M is computed, most significant digit first, with Y and A supplied in a digit-by-

digit, msd-first manner. Xis known at the start of the calculation and is presented in 2's corn-

plement parallel form.

A.1 General Radix Analysis

For the general radix case, the partial multiplier Y and partial addend A at the Jth iteration

are given by

Y, - Yj..1+yri	 Yi e {Km in, .,

(A.2)

A - A_ 1 +ar i -	 a1r	 a, E {Kmin, ...,

Where iç 1, and Kinax represent the two extreme values of the digit range. For a symmetrical

digit set Kmin — Kmax.

On each iteration, a digit is added to the partial terms Y and A, starting with the most sig-

nificant digit and finishing with the least significant one.

The final result M is also compiled in this manner, but is delayed by the time required to

perform the computation. This latency shall be denoted and be defined here in terms of the

-210-

Appendir A
	

Analysis of Msdf Multiplier-A dders

number of iterations between a multiplier digit entering the computation and a result digit of

the same significance being computed. Hence on the Jth iteration, only M_ 5 is available,

where

j-S
M_ 8 - M_ 6_ 1 + m_ 8r i3 =	 m1r	 m1 E {ltmin, ..., ltmax}

Where itmin and ltmax represent the two extreme values of the output digit range.

To compute the result in this manner a residual can be defined as:

ZJ - ri-8(XY+A—M8)

(A.3)

(A.4)

The residual represents the multiply-add operation performed with all available digits of the

input minus the partial result M - . The scaling factor r 8 has been introduced for conven-

ience only, and ensures that the residual is maintained within a fixed range.

A.2 Recurrence Equation

A recurrence equation for Z can be developed to compute successive residuals from the pre-

vious one. That is,

Z-
	

(A.5)

WhereZ0 - 0.

As formulated, a digit of the result (i.e. m) is determined on each iteration of the recur-

rence. As indicated by equation (A.3) the partial result M 8 is obtained by simply appending

successive result digits, and no modification of previous digits can occur.

To obtain a correct result, the result digit must be chosen on each iteration such that

1tmin I <M -	 maxr
	

(A.6)
i-j-8+1	 i-j-6+1

That is, the remaining digits of the result must always be sufficient to represent what remains

-211-

AppendirA
	

Analysis of Msdf Multiplier-Adders

of the multiply-add computation.

Summing the sequence of digits which represent the two extremes given in equation (A.6)

yields

•	 '''mIn 'max

r-1	 r-1

The associated bounds on Z can be determined by noting from equation (A.4) that

M... 8 -

Substituting for the partial result with the above expression into equation (A.7) gives

tminr	
'

r— 1
	 "max'

r— 1
	 (A.9)

(A.7)

(A.8)

and also substituting for M as given in equation (A. 1) gives

- .	 '	 r i - 6)' umax"mm'	 <X(Y - Y) ^ (A - A,) + Zr(i8) <
r-1	 r—1

(A.10)

The term Y - Y represent the value of the remaining digits of Y, and A - A the remaining

digits of A. The two extremes of Y - Y occur when all the remaining digits are either ax

or	 Summing these two series provides the bounds:

y - y <I(maxri

r-1	 r-1

and likewise the bounds on what remains of A are

<A - A . < ISnax1

r-1	 r-1

(A.11)

(A.12)

By applying these limits to equation (A. 10) an expression for the bounds of the residual is

obtained

1
(•

—K • r (J X Imm	 mm	 + l)) <Zj <__r(lrmax_Kmaxr_& (JXI + 1))	 (A.13)

Therefore, the result digits must be selected to ensure that Z remains within these bounds.

-212-

Appendix A	 Analysis ofMsdfMuliiplier-Adders

The selection of m_ 8 is based on the value of rZ_ 1 (as Z is dependent upon m_). There-

fore, it is necessary to determine the regions of rZ_ 1 over which particular result digits

should be selected. i.e.

if Lk ^ rZ.. 1 ^ U, then m j _ 8 - k for k E {ltmin, ..., tmax}	 (A.14)

If recurrence equation (A.5) is substituted into the residual bounds of equation (A.13) then

by setting mj .. 8 - k the result digit selection bounds are found to be

1
Uk - k+	 (1tmax-Kmaxr(lXi ^ l))-r8(Xy+a)	 (A.15)

r- 1

1
Lk - k +	 (7tmin—Kminr(lXi + 1)) - r(Xy + a)	 (A.16)

r- 1

These bounds are shown for three values of result digit in Figure A. 1 for a simplified case

where Kmax - Kmin - ltmax - ltmin - K and A 0. The shaded region indicates where

two bounds overlap. If the residual is located in this region it is possible to choose either re-

sult digit. To obtain overlap the condition lxi <r8 ' must be satisfied. The closer X gets to

this limit the smaller the overlap becomes, also as is decreased, the overlap is also de-

creased.

U1	

rZJ	

K
----1+	 (1-r8IXj)

(r-1)

I X)

_	

Xy +

K	 ____________________

(r- 1) (1 - r IXI)	 regions overlap and

-1 +(1)(1 -rIXI)	

m may be chosen

___	 ___________
to be lorO

Figure A.1 Result digit selection regions

-213-

Appendix A
	

Analysis ofMsdf Multiplier-Adders

A.3 Simplified Result Digit Selection

To allow the selection of a valid result digit, the regions must overlap or be continuous, if

they overlap, it is necessary in a practical design to decide which of the two possible results

will be chosen, and so define a new set of continuous regions. Once done, however, any over-

lap that did exist, can still be used to allow result digit to be selected based on only an ap-

proximate value of the residual. This can be arranged, by ensuring that any digit selected

using the new regions is still true to the original bounds, even when there is some uncertainty

in the residual due to the use of an approximate value.

The new continuous selection bounds are defined as

if 'k ^ 2 ^ u then m_ - k for k E {7tmin, ..., ltmax }
	

(A.17)

Where 2 is a reduced precision approximation to rZ.. 1 , which is obtained by truncating the

residual to t-bits. In which case,

neg ^ rZ_ 1 —2 ^ A
	

(A.18)

where A., and A, are the magnitudes of the positive and negative truncation bounds.

The new selection bounds must lie within the old ones and accommodate the error which

arises due to truncation of the residual. Accounting for the worst case truncation errors, the

new bounds are related to the old by

1k ^ (Lk)max + Aneg

Uk ^ (Uk) min	 pos
	 (A.19)

uk^lk

Where (Lk)max and (Uk)mjfl are worst case values of Lk and Uk respectively. The worst case

values are used to make the selection bounds independent of all terms but the truncated re-

sidual.

For the regions to be continuous when a t-bit approximation of the residual is used, the fol-

lowing must be true

-214-

_t
Uk_1+ 2 - (A.20)

Appendix A
	

Analysis ofMsdf Multiplier-Adders

Figure A.2 shows diagrammatically the relationship which must exist between the bounds.

Uk_i	 Irzj_i

(TI \ -- ---
'-'k-11min	 P

I	 ^A0

--------1k

II ----------Uk1

j J^Ane
(Lk)max	

f2-t Where n is an
arbitrary integer

xyj

Figure A.2 Non-overlapping selection regions

The overlap of the original bounds is shown on the figure as A. The larger the overlap, the

fewer bits of the residual which need to be examined to select a result digit. The overlap is

given by:

A - (Uk _ l)min (Lk)max	 (A.21)

From the relationship for Uk in equation (A.15) the worst case limit can be determined as

(Uk1)min - k—i + _(7tmax_Kmaxr'(IXI + 1))
r-

and similarly from equation (A.16)

1
(Lk)max - k +	 (ltmin 4(minr_ 6+1 (IXI + 1))

(A.22)

(A.23)

Substituting these relationships into equation (A.21) gives the following expression for the

overlap

A - - 1 +	 (ltmax - min - r +
1 (lxi + 1)(Kmax - Kmin))	 (A.24)

r—

This can be written more succinctly by defining a term which represents the redundancy of

-215-

ltmax - min
R-

r— 1
(A.25)

Appendix A
	

Analysis of Msdf Multiplier-Adders

a digit set i.e.

This quantity is 1 when the digit-set is non-redundant, and is greater than 1 when the digit-

set is redundant. Using this redundancy term in equation (A.24), we obtain for the overlap

- —1+R—r8'(lXJ+1)RK

From Figure A.2 it is clear that the overlap must satisfy

L ^ Apos + Aneg -

Substituting the expression for the overlap given in equation (A.26) gives

- 1 + R - r '(lx i + 1)R ^ A 0, + Aneg - 2_t

From this, an expression for the minimum latency can be obtained. i.e.

I	 RK((IXI)max + 1)
log	

-1 - A 0, - Aneg - 2)
+1

log r

(A.26)

(A.27)

(A.28)

(A.29)

This expression can be used to determine the minimum latency which can be obtained for a

particular radix, and input and output digit-sets. The equality occurs when there is no over-

lap, in which case all bits of the residual must be examined to select the result digit. However,

it is unlikely that this expression will be an integer quantity, and the effect of rounding up the

latency to the nearest integer will introduce some level of overlap. However, if the result is

an integer then overlap must be obtained by increasing the latency by one.

A.4 Approximating the Residual

Assuming that a value of is chosen to give some degree of overlap, then only a t-bit trun-

cated value of the residual need be examined to select the result digit. The truncation errors

which can be expected for a range of residual representations are listed in Table A. 1.

-216-

Appendix A
	

Analysis of Msdf Multiplier-Adders

Table A.1 Truncation errors

Representation	 A,	 Aneg

Binary	 2-t	 0

Carry-Save	 - 2 t+1	 0

Signed-Binary	 2t	 2-t

Minimally Redundant 	 2 -,	 2
—t

Radix-4

Symmetric Digit Set 	 R —t	 R
—t

with Redundancy R	 T2

Alternatively, the sum of the positive and negative truncation errors can be expressed in

terms of the redundancy of the representation used i.e.

Apos + Aneg = Rz2_t
	

(A.30)

Substituting this into equation (A.28) yields,

—1 + Rr '(IXI + l)R^(R— l)2t	 (A.31)

Therefore, t must be selected to ensure that

log(
R-1

R —1 - r '((IXj)max+ l)RK)
t^	 (A.32)

log 2

A.5 Multiplier-Adder Design Procedure

Based on the preceding analysis, the following procedure can be defined to design a multi-

plier-adder.

1. For a particular multiplier coefficient range X determine the minimum latency, and

the associated overlap A.

2. Choose a number representation for the residual and determine the truncation

bounds, A 0, and Aneg, in terms of t (the bit position to which the residual is trun-

cated).

-217-

Appendix A
	

Analysis of Msdf Multiplier-A dders

3. Determine the minimum value of t for which the overlap requirements are met (us-

ing equation (A.32)).

4. Solve for the selection bounds uk and 1k by satisfying the relationships of

equation (A. 19). These bounds must be multiples of 2.

-218-

Appendix B Low-Latency, High-Throughput
Redundant Squarer

B.1 Algorithm

A multiplier may be used to square a number, however, this is inefficient as it is possible al-

most to halve the number of partial products by designing a dedicated squarer. This reduction

is possible as most product terms appear twice in the multiplication of a number by itself.

This can be clearly observed by partitioning the number before it is squared i.e.

X2 - (xr° + (x 1 r' + x2r2 + ... + xr))2

- (x0r°)2 + 2x0f°(x 1 r_1 + x2r2 + ... + xr) + (x 1r1 + x2r2 + ... + xr)2 (B 1)

- x + 2x0rx1r' + (x 1 r' + x2r 2 + ... + xr)2

The middle term groups the two repeated partial products. The other pairs can be found by

repeating the expansion for the last term, and those that follow to yield:

X2 =	 [x?r21 + 2x 1	xi2_i_i)	 (B.2)
i-O	 j-i+1

This can be implemented using the same bit reduction techniques as used in the redundant

multiplier in Chapter 3. A block diagram of a redundant squarer using a MinR4 coding is

shown in Figure B.1.

-219-

Appendix B	 Low-Latency, High-Throughput Redundant Squarer

x

Carry-Save

Recode X	 Recode 2X
MinR4	 MinR4

Partition	 Partition

P.P Generation
Multiplier
digits

Adder Tree

I..

Carry-Save

M

Figure B.1 Block diagram of the redundant number squarer

The partial products are formed between a digit of the recoded input and a partition of the

recoded input (as indicated by equation (B.2)). Using a MinR4 digit set, only recodings of

input multiples X and 2X are required and the same recoders as presented in the MinR4

multiplier design may be used to produce them. Ideally, the input should be recoded once

partitioned, but this would require separate recoders for each input. A simplification is to re-

code the input once and then partition it. To do this correctly it is necessary to modify the

2X-recoder output to ensure that its partitioned output is in fact twice that of the partitioned

output of the X-recoder. This modification is considered next.

B.2 Recoding of Partitioned Numbers

The X-recoder defines how the input is recoded into digits, as it is used to supply the digits

of the multiplier. When the output of the 2X-recoder is partitioned it must generate a value

which is twice that of the partitioned output of the X-recoder. Therefore, it must be designed

so that the same number of carries occur between the two partitions as occurs in the recoding

of X i.e. the number is split in the same way in both recoders. This can be achieved by sub-

- 220 -

x2 	x3

X-recoder

t+

Negate for	 $

subtraction	 2	 X3

a b ++

- - + c + 2X-recoder

+
_np + + 	 +

Appendix B
	

Low-Latency, High-ThroughputRedundantSquarer

tracting the carries which occur in the X-recoder from the partitioned output of the 2X-re-

coder. Fortunately, this effects only the most significant digit of the partitioned output of the

2X-recoder.

Figure B.2 shows the relevant slices of the recoders. The two carries from the X-recoder are

subtracted from the output of the 2X-recoder using the adder function v. Because the inputs

are common to both recoders it is possible to simplify the logic. The truth table shows all

possible combinations of the inputs of the relevant adders in the two recoders. The number

of combinations has been reduced by noting that if c 2 	1 then c 1 = 1.

a. c 1 -1 when c2-1.

b. Arithmetic value of the sum oft 1 and t2.

c. Arithmetic value of x2.

d. Arithmetic value of the sum of x 2 and t.

Figure B.2 Derivation of function f and its truth-table

From the truth table in Figure B.2 a logic function f can be determined to give the modified

msd of the partitioned output of the 2X-recoder. This function is used within the modified

recoder shown in Figure B.3 to generate the msd of each partition required (i.e. partitions

would take the form g2mg3g4).

-221-

Appendix B
	

Low-Latency, High-Throughput Redundant Squarer

	xo	 x i 	x2 	x 3 	x4 	x5 	x6

	

-	 + +	 + +	 + +	 + +	 + +	 + +

	

1	
++	 ++	 ++	 0

X0	 X1	 X3	 X4	 X5	 X6	 X7 0 00

+11+	 +11+	 +11+	 +11+	 +11+	 ^III	 +11+

J: + +	 _____

g	 gim	 g2m	 g3

g0	g1	 g2	 g3

C1 a b
fcH
np]

H
(b) Function f

Figure B.3 Modified recoders for correct partitioning of recoded input

B.3 Partial Product Array for Squarer

The adder-tree input for a small squarer is shown in Figure B.4.

r 0 1 2 4 6 8 2-1 0 12 14 16 18 20 Only 3 out of 4 inputs used

____ _____	 ______________	
Zd242i

L.	 .4.ji	 4.-.<'4i4- }2di4-'±di4i

::::::	 od2d3d4d5--::::::1

_____________	 ii ui iii ui	 '
0d 3 d4 d5 	::::::i	 _35	 -.

Lit. j _____________
1 2d3 4	 d4 J

F L L	 L	 _	 }2d44-4d4-J

I_ 'scompiementcorrect!oncpnstan	 Blank cells contain logic 0

Figure B.4 Partial-product array for a small squarer

The top row consists of the individual digits of the input X squared. The remaining rows of

the array contain the partial products formed from the partitioned outputs of either the X- or

- 222 -

Appendix B
	

Low-Latency, High-Throughput Redundant Squarer

the 2X-recoders (or 0). Both sets of recoded outputs are marked on the array to show the bit

positions at which partial products formed from them would be entered into the array. For

negative multiplier digits, d 1 , the appropriate multiple is negated. The same logic as present-

ed for the multiplier in Figure 3.17 may be used for this purpose.

The truth-table describing the digit squaring operation is given in Table B. 1. To maintain

compatibility with the coding of the partial product array, the coding used to represent the

squared digit is different to that used for the input digit itself. Fortunately, this coding is more

convenient, and only 3-bits are required to represent the result.

Table B.1 Truth-table of digit squaring logic

MinR4 Input	 Output

bit weighting	 .	 bit weighting
____ ____ - Anth. Value Anth. Value

-2	 1	 1	 2	 2	 -1

o	 oir	 -2	 +4	 1	 1	 1

o	 oT	 -1	 +1	 o	 1	 o
o	 1	 ö—	-1	 +1	 0	 1	 0

0	 1	 1	 0	 0	 0	 0	 1

1	 0	 0	 0	 0	 0	 0	 1

1	 0	 1	 +1	 +1	 0	 1	 0

1	 1	 0	 +1	 +1	 0	 1	 0

1	 1	 1	 +2	 +4	 1	 1	 0

- 223 -

zo

zl

.	 N2

.
S

Appendix C Summary of Convergence Reciprocal
Circuit Parameters

Parameters used to obtain reciprocal circuits are listed in Figure C. 1.

D

x2

Xm.

1
D

Wordlength
Parameter

12	 16	 20 20

a0	12	 16	 20	 20

g	 10	 8	 9	 9

h 0/v0 	9	 7	 8	 8

Po	 12	 16	 20	 20

z0	 9	 7	 8	 8

h 1 	-	 8	 9	 9

z i 	-	 0	 0	 0

Pi	 11	 14	 17	 17

q 1	 9	 7	 8	 8

9	 7	 8	 8

20 22 25 25

h2	-	 -	 17	 9

-	 -	 -	 8

-	 -	 17	 9

q2	 -	 14	 17	 17

-	 14	 16	 16

-	 26	 32	 32

p3 -	-	 -	 9

q3-	 -	 -	 9

-	 -	 -	 24

v3 	--	 -	 -	 32

a. Multiplier restricted to 9-bits (i.e.

h0, h 1 , h2, p3	 9)

Figure C.i Convergence Reciprocal DG

- 224 -

Appendix D Numerical Effect in Normalised Algorithm

The increased numerical error in the residual when using the cell normalised algorithm is in-

troduced by the term A, which is calculated to adjust the normalisation of the cell output

from one row to the next. i.e.

x1 - sr
CA

(D.1)

where Ar - A/i —r2.

As r approaches 1, the value of A, becomes more sensitive to the error in r. When Ar is

applied using equation (D.1), this error is transferred to the cell output.

The effect can be quantified by considering the impact which a small change fri r has on Ar

in the vicinity of r - 1 . Defining A, = f(r) and Cr as the small perturbation in r, the per-

turbed result f(r + Cr) can be obtained by performing a Taylor's series expansion. Two terms

are sufficient for this purpose, and

f(r + Cr) = f(r) + 4-f(r) Cr
	 (D.2)

Performing the differentiation and factorising yields

rCr "f(r + Cr) = f(r)(1 + 1— r2J
	

(D.3)

Therefore, as r - 1 the quantity 1 r2 oo and the effect of Cr on the output is magnified.

These results have been confirmed by simulations. This was achieved by choosing a range

of channel spread parameters which cause one of the r quantities to approach one. As this

happened, so the quiescent value of the residual grew very rapidly, as predicted.

- 225 -

Appendix E Overview of Channel Equaliser
Application

A block diagram of the channel equaliser is presented in Figure B. 1. It shows the triangular

array being used as an adaptive linear combiner, and the channel modelled by a 3-tap FIR

filter and a noise source.

Training sequence

Binary signal

Noise
L------

QR-array basN

L
adaptive combiner - -

JLflI
Output
Residual

Figure E.1 Block diagram of channel equaliser for algorithm evaluation

The amount of inter-symbol interference introduced by the channel is controlled by the pa-

rameter a. The adaptive filter aims to undo this by approximating an inverse to the channel

filter. In this simple case, the ideal inverse channel filter can be calculated to see what form

it takes. The z-transform of the ideal inverse filter is given by

1
1	 -2a+z +az

This results in an infinite impulse response filter. However, it can be approximated by an a-

causal FIR filter, which has the z-transform

(5.1)

- 226 -

Appendix E	 Overview of Channel Equaliser Application

1(z) a(l_b2)(—bz+bz—bz+ 1—bz' +b 2z 2—b 3 z 3 + ...)	 (E.l)

where

b= /L1L
AJ4a2	 2a

If a ^ 0.5 then b is real and IbI <1 . Therefore, in these circumstances a causal HR filter can

be obtained for practical purposes by truncating the sequence and delaying the training data.

(See box labelled qt in Figure E.1.)

The adaptive FIR filter will strive to implement this inverse channel filter, and it is clear that

the greater the number of taps the better should be the approximation (under ideal condi-

tions), but the larger the triangular array required to determine it. The channel inverse is de-

termined during an adaption phase, when a predefined sequence of data is transmitted so that

the adaptive filter can be provided with the undistorted data upon which to base the adaption.

The output of the filter represents the least squares error, which will be high at the start of

the adaptation phase, but rapidly reduces as the filter converges to the channel inverse. The

level to which the residual will ultimately descend is limited by three factors

the ability of the FiR adaptive filter to form the inverse of the channel (depends

upon the order of the filter)

the noise in the channel

numerical errors introduced by limited precision arithmetic in the adaptive filter

The last of these factors is the main interest of this study. So that it could be directly meas-

ured, the channel noise was set to zero and the order of the adaptive filter was made high

enough so as not to be the limiting factor. In the simulations presented in this chapter, an

1 l-th order filter was used (i.e. the number array inputs p 	 12).

(E.2)

The forget-factor, I, is an important parameter of the adaptive filter, as this determines the

- 227 -

Appendix E	 Overview of Channel Equaliser Application

length of the window of input data over which the filter parameters r and u are calculated.

The window size is given by 1 1 , so as 1 - 1 it increases. The larger the window, the bet-

ter the estimate of the filter parameters in the presence of noise, but the slower the response

to changes in the channel. Typical values for range from 0.9 to 0.9999.

The filter output residual is dependent upon the particular sequence of data transmitted over

the channel. Therefore, 100 random sequences of the input are used and a single output se-

quence is obtained by taking the rms value over the ensemble for each time instance in the

sequence. Figure E.2 shows a typical set of results obtained in this way.

0

- —20
U)

—40

—100

50	 100	 150	 200
Iteration Number

Figure E.2 Channel equaliser output during adaption phase

The solid lines represent the residual calculated using floating-point arithmetic with the

shown mantissa wordlengths. The residual is initially high but rapidly decays to a steady val-

ue (which will be referred to as the quiescent value) as the filter adapts to the channel inverse.

As expected, increasing the mantissa wordlength reduced the numerical error and causes a

reduction in the quiescent residual level. For small wordlengths (i.e. 10- to 1 4-bits) the resid-

ual initially falls, but then increases before settling to a quiescent value. This is due to the

—120
0

- 228 -

Appendix E	 Overview of Channel Equaliser Application

accumulation of arithmetic errors in the recursive computations to update the r and u pa-

rameters. Note that these results were obtained without channel noise. If noise were intro-

duced by the channel at a level of —60dB , then the residual shown using a dotted line on the

graph would be obtained when using high precision arithmetic. In this example, it is clear

from the graph that the channel noise will mask any benefit of using a mantissa wordlength

greater than 16-bits.

- 229 -

	DX204057_1_0001.tif
	DX204057_1_0003.tif
	DX204057_1_0005.tif
	DX204057_1_0007.tif
	DX204057_1_0009.tif
	DX204057_1_0011.tif
	DX204057_1_0013.tif
	DX204057_1_0015.tif
	DX204057_1_0017.tif
	DX204057_1_0019.tif
	DX204057_1_0021.tif
	DX204057_1_0023.tif
	DX204057_1_0025.tif
	DX204057_1_0027.tif
	DX204057_1_0029.tif
	DX204057_1_0031.tif
	DX204057_1_0033.tif
	DX204057_1_0035.tif
	DX204057_1_0037.tif
	DX204057_1_0039.tif
	DX204057_1_0041.tif
	DX204057_1_0043.tif
	DX204057_1_0045.tif
	DX204057_1_0047.tif
	DX204057_1_0049.tif
	DX204057_1_0051.tif
	DX204057_1_0053.tif
	DX204057_1_0055.tif
	DX204057_1_0057.tif
	DX204057_1_0059.tif
	DX204057_1_0061.tif
	DX204057_1_0063.tif
	DX204057_1_0065.tif
	DX204057_1_0067.tif
	DX204057_1_0069.tif
	DX204057_1_0071.tif
	DX204057_1_0073.tif
	DX204057_1_0075.tif
	DX204057_1_0077.tif
	DX204057_1_0079.tif
	DX204057_1_0081.tif
	DX204057_1_0083.tif
	DX204057_1_0085.tif
	DX204057_1_0087.tif
	DX204057_1_0089.tif
	DX204057_1_0091.tif
	DX204057_1_0093.tif
	DX204057_1_0095.tif
	DX204057_1_0097.tif
	DX204057_1_0099.tif
	DX204057_1_0101.tif
	DX204057_1_0103.tif
	DX204057_1_0105.tif
	DX204057_1_0107.tif
	DX204057_1_0109.tif
	DX204057_1_0111.tif
	DX204057_1_0113.tif
	DX204057_1_0115.tif
	DX204057_1_0117.tif
	DX204057_1_0119.tif
	DX204057_1_0121.tif
	DX204057_1_0123.tif
	DX204057_1_0125.tif
	DX204057_1_0127.tif
	DX204057_1_0129.tif
	DX204057_1_0131.tif
	DX204057_1_0133.tif
	DX204057_1_0135.tif
	DX204057_1_0137.tif
	DX204057_1_0139.tif
	DX204057_1_0141.tif
	DX204057_1_0143.tif
	DX204057_1_0145.tif
	DX204057_1_0147.tif
	DX204057_1_0149.tif
	DX204057_1_0151.tif
	DX204057_1_0153.tif
	DX204057_1_0155.tif
	DX204057_1_0157.tif
	DX204057_1_0159.tif
	DX204057_1_0161.tif
	DX204057_1_0163.tif
	DX204057_1_0165.tif
	DX204057_1_0167.tif
	DX204057_1_0169.tif
	DX204057_1_0171.tif
	DX204057_1_0173.tif
	DX204057_1_0175.tif
	DX204057_1_0177.tif
	DX204057_1_0179.tif
	DX204057_1_0181.tif
	DX204057_1_0183.tif
	DX204057_1_0185.tif
	DX204057_1_0187.tif
	DX204057_1_0189.tif
	DX204057_1_0191.tif
	DX204057_1_0193.tif
	DX204057_1_0195.tif
	DX204057_1_0197.tif
	DX204057_1_0199.tif
	DX204057_1_0201.tif
	DX204057_1_0203.tif
	DX204057_1_0205.tif
	DX204057_1_0207.tif
	DX204057_1_0209.tif
	DX204057_1_0211.tif
	DX204057_1_0213.tif
	DX204057_1_0215.tif
	DX204057_1_0217.tif
	DX204057_1_0219.tif
	DX204057_1_0221.tif
	DX204057_1_0223.tif
	DX204057_1_0225.tif
	DX204057_1_0227.tif
	DX204057_1_0229.tif
	DX204057_1_0231.tif
	DX204057_1_0233.tif
	DX204057_1_0235.tif
	DX204057_1_0237.tif
	DX204057_1_0239.tif
	DX204057_1_0241.tif
	DX204057_1_0243.tif
	DX204057_1_0245.tif
	DX204057_1_0247.tif
	DX204057_1_0249.tif
	DX204057_1_0251.tif
	DX204057_1_0253.tif
	DX204057_1_0255.tif
	DX204057_1_0257.tif
	DX204057_1_0259.tif
	DX204057_1_0261.tif
	DX204057_1_0263.tif
	DX204057_1_0265.tif
	DX204057_1_0267.tif
	DX204057_1_0269.tif
	DX204057_1_0271.tif
	DX204057_1_0273.tif
	DX204057_1_0275.tif
	DX204057_1_0277.tif
	DX204057_1_0279.tif
	DX204057_1_0281.tif
	DX204057_1_0283.tif
	DX204057_1_0285.tif
	DX204057_1_0287.tif
	DX204057_1_0289.tif
	DX204057_1_0291.tif
	DX204057_1_0293.tif
	DX204057_1_0295.tif
	DX204057_1_0297.tif
	DX204057_1_0299.tif
	DX204057_1_0301.tif
	DX204057_1_0303.tif
	DX204057_1_0305.tif
	DX204057_1_0307.tif
	DX204057_1_0309.tif
	DX204057_1_0311.tif
	DX204057_1_0313.tif
	DX204057_1_0315.tif
	DX204057_1_0317.tif
	DX204057_1_0319.tif
	DX204057_1_0321.tif
	DX204057_1_0323.tif
	DX204057_1_0325.tif
	DX204057_1_0327.tif
	DX204057_1_0329.tif
	DX204057_1_0331.tif
	DX204057_1_0333.tif
	DX204057_1_0335.tif
	DX204057_1_0337.tif
	DX204057_1_0339.tif
	DX204057_1_0341.tif
	DX204057_1_0343.tif
	DX204057_1_0345.tif
	DX204057_1_0347.tif
	DX204057_1_0349.tif
	DX204057_1_0351.tif
	DX204057_1_0353.tif
	DX204057_1_0355.tif
	DX204057_1_0357.tif
	DX204057_1_0359.tif
	DX204057_1_0361.tif
	DX204057_1_0363.tif
	DX204057_1_0365.tif
	DX204057_1_0367.tif
	DX204057_1_0369.tif
	DX204057_1_0371.tif
	DX204057_1_0373.tif
	DX204057_1_0375.tif
	DX204057_1_0377.tif
	DX204057_1_0379.tif
	DX204057_1_0381.tif
	DX204057_1_0383.tif
	DX204057_1_0385.tif
	DX204057_1_0387.tif
	DX204057_1_0389.tif
	DX204057_1_0391.tif
	DX204057_1_0393.tif
	DX204057_1_0395.tif
	DX204057_1_0397.tif
	DX204057_1_0399.tif
	DX204057_1_0401.tif
	DX204057_1_0403.tif
	DX204057_1_0405.tif
	DX204057_1_0407.tif
	DX204057_1_0409.tif
	DX204057_1_0411.tif
	DX204057_1_0413.tif
	DX204057_1_0415.tif
	DX204057_1_0417.tif
	DX204057_1_0419.tif
	DX204057_1_0421.tif
	DX204057_1_0423.tif
	DX204057_1_0425.tif
	DX204057_1_0427.tif
	DX204057_1_0429.tif
	DX204057_1_0431.tif
	DX204057_1_0433.tif
	DX204057_1_0435.tif
	DX204057_1_0437.tif
	DX204057_1_0439.tif
	DX204057_1_0441.tif
	DX204057_1_0443.tif
	DX204057_1_0445.tif
	DX204057_1_0447.tif
	DX204057_1_0449.tif
	DX204057_1_0451.tif
	DX204057_1_0453.tif
	DX204057_1_0455.tif
	DX204057_1_0457.tif
	DX204057_1_0459.tif
	DX204057_1_0461.tif
	DX204057_1_0463.tif
	DX204057_1_0465.tif
	DX204057_1_0467.tif
	DX204057_1_0469.tif
	DX204057_1_0471.tif
	DX204057_1_0473.tif
	DX204057_1_0475.tif
	DX204057_1_0477.tif
	DX204057_1_0479.tif
	DX204057_1_0481.tif
	DX204057_1_0483.tif
	DX204057_1_0485.tif
	DX204057_1_0487.tif

