79 research outputs found

    Existentially closed De Morgan algebras

    Get PDF
    We show that the theory of De Morgan algebras has a model completion and axiomatise it. Then we prove that it is ℵ0-categorical and describe definable and algebraic closures in that theory. We also obtain similar results for Boole–De Morgan algebras

    Bohrification

    Get PDF
    New foundations for quantum logic and quantum spaces are constructed by merging algebraic quantum theory and topos theory. Interpreting Bohr's "doctrine of classical concepts" mathematically, given a quantum theory described by a noncommutative C*-algebra A, we construct a topos T(A), which contains the "Bohrification" B of A as an internal commutative C*-algebra. Then B has a spectrum, a locale internal to T(A), the external description S(A) of which we interpret as the "Bohrified" phase space of the physical system. As in classical physics, the open subsets of S(A) correspond to (atomic) propositions, so that the "Bohrified" quantum logic of A is given by the Heyting algebra structure of S(A). The key difference between this logic and its classical counterpart is that the former does not satisfy the law of the excluded middle, and hence is intuitionistic. When A contains sufficiently many projections (e.g. when A is a von Neumann algebra, or, more generally, a Rickart C*-algebra), the intuitionistic quantum logic S(A) of A may also be compared with the traditional quantum logic, i.e. the orthomodular lattice of projections in A. This time, the main difference is that the former is distributive (even when A is noncommutative), while the latter is not. This chapter is a streamlined synthesis of 0709.4364, 0902.3201, 0905.2275.Comment: 44 pages; a chapter of the first author's PhD thesis, to appear in "Deep Beauty" (ed. H. Halvorson

    Bohrification of operator algebras and quantum logic

    Get PDF
    Following Birkhoff and von Neumann, quantum logic has traditionally been based on the lattice of closed linear subspaces of some Hilbert space, or, more generally, on the lattice of projections in a von Neumann algebra A. Unfortunately, the logical interpretation of these lattices is impaired by their nondistributivity and by various other problems. We show that a possible resolution of these difficulties, suggested by the ideas of Bohr, emerges if instead of single projections one considers elementary propositions to be families of projections indexed by a partially ordered set C(A) of appropriate commutative subalgebras of A. In fact, to achieve both maximal generality and ease of use within topos theory, we assume that A is a so-called Rickart C*-algebra and that C(A) consists of all unital commutative Rickart C*-subalgebras of A. Such families of projections form a Heyting algebra in a natural way, so that the associated propositional logic is intuitionistic: distributivity is recovered at the expense of the law of the excluded middle. Subsequently, generalizing an earlier computation for n-by-n matrices, we prove that the Heyting algebra thus associated to A arises as a basis for the internal Gelfand spectrum (in the sense of Banaschewski-Mulvey) of the "Bohrification" of A, which is a commutative Rickart C*-algebra in the topos of functors from C(A) to the category of sets. We explain the relationship of this construction to partial Boolean algebras and Bruns-Lakser completions. Finally, we establish a connection between probability measure on the lattice of projections on a Hilbert space H and probability valuations on the internal Gelfand spectrum of A for A = B(H).Comment: 31 page

    κ-frames

    Get PDF

    Semigroup-valued metric spaces

    Full text link
    The structural Ramsey theory is a field on the boundary of combinatorics and model theory with deep connections to topological dynamics. Most of the known Ramsey classes in finite binary symmetric relational language can be shown to be Ramsey by utilizing a variant of the shortest path completion (e.g. Sauer's SS-metric spaces, Conant's generalised metric spaces, Braunfeld's Λ\Lambda-ultrametric spaces or Cherlin's metrically homogeneous graphs). In this thesis we explore the limits of the shortest path completion. We offer a unifying framework --- semigroup-valued metric spaces --- for all the aforementioned Ramsey classes and study their Ramsey expansions and EPPA (the extension property for partial automorphisms). Our results can be seen as evidence for the importance of studying the completion problem for amalgamation classes and have some further applications (such as the stationary independence relation). As a corollary of our general theorems, we reprove results of Hubi\v{c}ka and Ne\v{s}et\v{r}il on Sauer's SS-metric spaces, results of Hub\v{c}ka, Ne\v{s}et\v{r}il and the author on Conant's generalised metric spaces, Braunfeld's results on Λ\Lambda-ultrametric spaces and the results of Aranda et al. on Cherlin's primitive 3-constrained metrically homogeneous graphs. We also solve several open problems such as EPPA for Λ\Lambda-ultrametric spaces, SS-metric spaces or Conant's generalised metric spaces. Our framework seems to be universal enough that we conjecture that every primitive strong amalgamation class of complete edge-labelled graphs with finitely many labels is in fact a class of semigroup-valued metric spaces.Comment: Master thesis, defended in June 201
    corecore