
EXISTENTIALLY CLOSED DE MORGAN ALGEBRAS

VAHAGN ASLANYAN

Abstract. We show that the theory of De Morgan algebras has a model completion and
axiomatise it. Then we prove that it is ℵ0-categorical and describe definable and algebraic
closures in that theory. We also obtain similar results for Boole-De Morgan algebras.

1. Introduction

A De Morgan algebra [Moi35, Bir67, Grä11, Kal58, BD74] is a structure D := (D; +, ·, ¯, 0, 1)
where (D; +, ·, 0, 1) is a bounded distributive lattice with a largest element 1 and a smallest
element 0 and ¯ is a unary operation satisfying the following identities:

∀x(¯̄x = x) and ∀x, y(x+ y = x̄ · ȳ).

If, in addition, ∀x(x + x̄ = 1) then D is said to be a Boolean algebra. Note that henceforth
we will denote the unary operation of a Boolean algebra (Boolean negation) by ′ and that of
a De Morgan algebra (De Morgan negation) by ¯ . It is customary to use ∨ and ∧ for lattice
operations (known as join and meet), but we use + and · instead to avoid confusion with
logical disjunction and conjunction which are used throughout the paper.

De Morgan algebras are important structures in algebra and mathematical logic and have
various applications. In particular, they are closely related to algebraic logic and, more specifi-
cally, to Belnap–Dunn logic and Relevance logic [AB75, ABD92], and fuzzy logic [Háj98]. Note
that the standard fuzzy algebra ([0, 1]; min(x, y),max(x, y), 1 − x, 0, 1) is a De Morgan alge-
bra. Furthermore, De Morgan algebras have applications to multi-valued simulations of digital
circuits [BEI03].

It is well known that a Boolean algebra is existentially closed if and only if it is atomless.
The theory consisting of the axioms of Boolean algebras and the additional axiom

∀x(x > 0→ ∃y(0 < y < x))

is the model completion of the theory of Boolean algebras and has quantifier elimination [Poi00].
Similarly, a bounded distributive lattice is existentially closed if and only if it is atomless and
complemented [Sch79]. The latter means that every element in the lattice has a complement,
that is,

∀x∃y(xy = 0 ∧ x+ y = 1).

Complements in distributive lattices are unique, hence a bounded complemented distributive
lattice is just the underlying lattice of a Boolean algebra.

In this paper we give a first-order characterisation of existentially closed De Morgan algebras
and thus obtain a model companion of the theory of De Morgan algebras. We also observe
that De Morgan algebras satisfy the amalgamation property, hence the aforementioned theory
is actually the model completion of the theory of De Morgan algebras and has quantifier
elimination. Unlike the case of Boolean algebras, the theory that we obtain for existentially
closed De Morgan algebras is somewhat more complicated. In particular we have an axiom
scheme stating that certain systems of one-variable equations and inequations have solutions.

Further, we study model theoretic properties of that theory. In particular, we show that it is
ℵ0-categorical, i.e. it has a unique countable model up to isomorphism (which is also the case
for atomless Boolean algebras), and describe definable and algebraic closures in existentially
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closed De Morgan algebras. Actually we prove all those results for Boole-De Morgan algebras
first (those are lattices equipped with a Boolean negation and a De Morgan negation, see
Section 3) and then translate them to the language of De Morgan algebras. This is possible
due to the fact that the underlying lattice of an existentially closed De Morgan algebra is
complemented.

Note that a Boolean algebra is uniquely determined by its lattice structure. Unlike this, we
have a lot of freedom in defining a De Morgan structure on a given distributive lattice. It is
this fact that makes the model theoretic treatment of De Morgan algebras significantly harder
than that of Boolean algebras.

After finishing the work on this paper it was brought to my attention by James Raftery that
[CD98] discusses similar questions and may have some overlap with the current paper. Indeed,
[CD98, Chapter 5] discusses existentially and algebraically closed algebras in varieties from
the point of view of natural dualities (Theorem 5.3.5). Then the authors give the aforemen-
tioned characterisation of existentially and algebraically closed Boolean algebras and bounded
distributive lattices (Theorems 5.4.1 and 5.4.2). Further, they ask in Exercise 5.10 to show
that a De Morgan algebra is existentially closed if and only if it is atomless and complemented.
However, we claim that this description is incorrect, and we will prove this in the next section
(Remark 2.9). Actually, if it were true then every atomless Boolean algebra would be exis-
tentially closed in the variety of De Morgan algebras, which is not the case. Moreover, it is
easy to see that one has to impose some conditions on the negation (unary operation) of a De
Morgan algebra to make it existentially closed; properties of the underlying lattice alone cannot
characterise existentially closed De Morgan algebras. Our characterisation is somewhat more
complicated and we believe there is no simple description as in the case of Boolean algebras.
One might also get a characterisation of existentially closed De Morgan algebras using the
methods of [CD98] but apparently one has to do a substantial amount of work for that. On the
other hand, our proof presented here is quite elementary and does not require any advanced
theory.

2. Preliminaries

2.1. Model theoretic preliminaries. In this section we recall some basic model theoretic
notions that will be used throughout the paper. More notions and results will be recalled later
in the paper when we need them. The reader is referred to [Mar02, TZ12] for details.

Definition 2.1. Given two structures A ⊆ B (in the same language), A is called existentially
closed in B if every existential formula with parameters from A that is true in B is also true
in A (in other words, if a quantifier-free formula with parameters from A has a realisation in
B then it also has a realisation in A). A model of a theory T is said to be existentially closed
if it is existentially closed in all extensions which are also models of T .

Definition 2.2. Let T be a first-order theory.
• T is model complete if all models of T are existentially closed. Equivalently, T is model
complete if every formula is equivalent to an existential formula modulo T .
• A theory T ′ is a model companion of T if T ′ is model complete and every model of T
can be embedded into a model of T ′ and vice versa.
• T has the amalgamation property if for any models M0,M1,M2 of T with embeddings
fi : M0 ↪→ Mi, i = 1, 2, there is a model M of T with embeddings gi : Mi ↪→ M such
that g1 ◦ f1 = g2 ◦ f2.
• If T has the amalgamation property then a model companion of T is also called a model
completion.

Remark 2.3. A theory has at most one model companion (hence at most one model completion).
So we may speak of the model companion (completion) of a theory assuming it exists.
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Remark 2.4. The model completion of a universal theory (if it exists) admits elimination of
quantifiers, that is, every formula is equivalent to a quantifier-free formula modulo that theory
(the model completion).

Let us give a few examples.

Example 2.5. • The theory of algebraically closed fields is the model completion of the
theory of fields.
• The theory of real closed fields is the model completion of the theory of ordered fields
(in the language of ordered rings).
• The theory of atomless Boolean algebras is the model completion of the theory of
Boolean algebras.

2.2. Distributive lattices and Boolean algebras. Given a bounded distributive lattice
L = (L; +, ·, 0, 1), its dual lattice is the lattice given by the reverse order on L. It is denoted
by Lop := (L; ·,+, 1, 0) where the sequence of operations suggests that the meet of L is the join
of Lop and vice versa. The operations on the direct product L × Lop := (L × L; +, ·, 0, 1) are
defined by
(x1, x2) + (y1, y2) = (x1 + y1, x2 · y2), (x1, x2) · (y1, y2) = (x1 · y1, x2 + y2), 0 = (0, 1), 1 = (1, 0).

It can be made into a De Morgan algebra by defining (x, y) = (y, x). Furthermore, every De
Morgan algebra can be embedded into such a one. Given an arbitrary De Morgan algebra
D = (D; +, ·, ¯ , 0, 1), the map i : x 7→ (x, x̄) is a De Morgan embedding of D into DL × Dop

L

where DL is the underlying lattice of D. Note that this construction is sometimes referred to
as twist-product (see, for example, [BC14]) and is attributed to Kalman [Kal58].

The following results will be used in our analysis of existentially closed De Morgan algebras.

Theorem 2.6 ([Poi00, Chapter 6]). The theory of atomless Boolean algebras has quantifier
elimination and is the model completion of the theory of Boolean algebras.

Theorem 2.7 ([Sch79]). The theory of bounded, atomless and complemented distributive lat-
tices is the model companion of the theory of bounded distributive lattices.

In fact, the theory of (bounded) distributive lattices has the amalgamation property (see
[Grä11]) and since it is a universal theory, we get the following consequence.

Corollary 2.8. The theory of bounded, atomless and complemented distributive lattices is the
model completion of the theory of bounded distributive lattices. It is complete and admits
quantifier elimination.

Remark 2.9. Now we prove that it is not true that a De Morgan algebra with a complemented
and atomless underlying lattice is existentially closed. Indeed, this would imply that an atom-
less Boolean algebra is existentially closed as a De Morgan algebra. Pick such an algebra
B = (B; +, ·, ¯ , 0, 1) and embed it into D := BL × Bop

L as above (where BL is the underlying
lattice of B). Note that D is not a Boolean algebra and we claim that B is not existentially
(even algebraically) closed in it. To this end observe that the sentence ∃x(x̄ = x) is true in D
(e.g. for any element u ∈ B we have (u, u) = (u, u) in D) but not in B.

3. Boole-De Morgan algebras

In this section we introduce Boole-De Morgan algebras and make a few observations about
them which will be used later. We refer the reader to [MA14] for more details.

Definition 3.1. A Boole-De Morgan algebra is an algebra (A; +, ·,′ ,¯, 0, 1) where (A; +, ·,′ , 0, 1)
is a Boolean algebra and (A; +, ·, ¯, 0, 1) is a De Morgan algebra.

Observation. The Boolean and De Morgan negations commute in a Boole-De Morgan algebra,
that is, (x′) = (x̄)′. To prove this notice that

(x′) + x̄ = x′ · x = 1, (x′) · x̄ = x′ + x = 0.
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Figure 1. The underlying lattice of 4

If B = (B; +, ·,′ , 0, 1) is a Boolean algebra then the direct product BL × Bop
L is a Boole-De

Morgan algebra where the Boolean and De Morgan negations are defined as follows:

(x, y)′ = (x′, y′), (x, y) = (y, x).

Moreover, for every Boole-De Morgan algebra B the map x 7→ (x, x̄) is an embedding B ↪→
BL ×Bop

L due to the above observation.
The lattice given in Figure 1 can be made into a Boole-De Morgan algebra by defining

a′ = b, b′ = a, ā = a, b̄ = b, 0′ = 0̄ = 1, 1′ = 1̄ = 0. It will be denoted by 4 :=
({0, 1, a, b}; +, ·,′ , ¯, 0, 1). Its subalgebra with domain {0, 1} is denoted by 2.

It is proved in [MA14, Theorem 3.12] that 2 and 4 are subdirectly irreducible and in fact
these are the only subdirectly irreducible Boole-De Morgan algebras (this is an analogue of
the well known characterisation of subdirectly irreducible De Morgan algebras [Kal58]). In
particular, we get the following embedding theorem.

Proposition 3.2 ([MA14]). Every Boole-De Morgan algebra can be embedded into a direct
power of 4.

Corollary 3.3. Boole-De Morgan algebras are locally finite, i.e. every finitely generated Boole-
De Morgan algebra is finite.

Lemma 3.4. Let D = (D; +, ·, ¯ , 0, 1) be an existentially closed De Morgan algebra. Then
(D; +, ·, 0, 1) is atomless and complemented.

Proof. Extend (D; +, ·, 0, 1) to an atomless and complemented distributive lattice (L; +, ·, 0, 1).
The map x 7→ (x, x̄) gives an embedding of the De Morgan algebra D into L×Lop. The latter
is a De Morgan algebra with atomless and complemented underlying lattice. Thus, D can be
embedded into an atomless and complemented De Morgan algebra and since it is existentially
closed, it must itself be atomless and complemented. �

Corollary 3.5. Let (D; +, ·, ¯ , 0, 1) be an existentially closed De Morgan algebra. Then there
is a definable (in the language of lattices) unary function ′ on D such that (D; +, ·,′ , ¯ , 0, 1) is
a Boole-De Morgan algebra.

Now we prove that the theory of De Morgan (and Boole-De Morgan) algebras has the
amalgamation property. This is actually well known (see [CF77]) and follows from a more
general theorem about amalgamation in varieties with certain properties. The same theorem
can also be applied to Boole-De Morgan algebras. However, we give a proof below based on
the amalgamation property of distributive lattices (see [Grä11]).

Proposition 3.6. The theory of De Morgan algebras (Boole-De Morgan algebras) has the
amalgamation property.

Proof. Let D0, D1, D2 be De Morgan algebras with embeddings fi : D0 ↪→ Di, i = 1, 2. By
the amalgamation property of distributive lattices there is a distributive lattice L such that
D1 and D2 can be embedded into L over D0 as lattices. Now we embed each Di into Di×Dop

i

as described above and notice that D1 × Dop
1 and D2 × Dop

2 can be embedded into L × Lop
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over D0 ×Dop
0 (see the below diagram). These embeddings obviously respect the De Morgan

negation and so L× Lop is a De Morgan amalgam of D1 and D2 over D0.
A similar argument proves our claim for Boole-De Morgan algebras.

D1 D1 ×Dop
1

D0 D0 ×Dop
0 L× Lop

D2 D2 ×Dop
2

i1

i0

f1

f2

i2

�

4. Existentially closed Boole-De Morgan algebras

In order to characterise existentially closed Boole-De Morgan algebras we will prove that
certain systems of equations and inequations always have a solution in such algebras. This
will give rise to an Existential Closedness axiom scheme. Then we will show that it is actually
equivalent to being existentially closed.

Definition 4.1. Let (A; +, ·,′ , ¯, 0, 1) be a Boole-De Morgan algebra. Define a map ∗ : A→ A

by x∗ = (x̄)′ = (x′). It is evident that ∗ is a lattice automorphism of order 2. We extend the
language of Boole-De Morgan algebras by adding a unary function symbol for ∗.

Assume A is a finite Boole-De Morgan algebra with atoms p1, . . . , pn. Then ∗ permutes the
atoms. Moreover the action of ∗ on A is completely determined by its action on p1, . . . , pn. So
it can be identified with a permutation σ ∈ Sn (where Sn is the symmetric group on the set
{1, . . . , n}), that is, p∗i = pσ(i). Moreover, σ must have order two, i.e. it is a product of disjoint
two-cycles. We will write σA for the permutation associated with A and drop the subscript
when no confusion can arise.

Now let y := (y1, . . . , yn) be an n-tuple of variables. For a subset I ⊆ {1, . . . , n} consider
the formulae

ψnI (y, x) :=
∧
i∈I

yi · xx̄ = 0 ∧
∧
i/∈I

yi · xx̄ 6= 0,

ξnI (y, x) :=
∧
i∈I

yi · xx∗ = 0 ∧
∧
i/∈I

yi · xx∗ 6= 0,

χnI (y, x) :=
∧
i∈I

yi · x′x̄ = 0 ∧
∧
i/∈I

yi · x′x̄ 6= 0.

For three sets I1, I2, I3 ⊆ {1, . . . , n} we denote

ϕn(I1,I2,I3)(y, x) := ψnI1(y, x) ∧ ξnI2(y, x) ∧ χnI3(y, x).

Definition 4.2. Let σ ∈ Sn be a permutation. A triple (I1, I2, I3) of subsets of {1, . . . , n} is
σ-consistent if

(i) σ(I2) = I2, σ(I3) = I3, and
(ii) (I1 ∩ I2 ∩ I3) ∩ σ(I1 ∩ I2 ∩ I3) = ∅.

Lemma 4.3. Let A be a finite Boole-De Morgan algebra with atoms p1, . . . , pn, and σ = σA,
that is, p∗i = pσ(i) for all i = 1, . . . , n. If ϕn(I1,I2,I3)(p, x) has a solution in an extension of A
(where p := (p1, . . . , pn)), then (I1, I2, I3) is σ-consistent.



6 VAHAGN ASLANYAN

Proof. Since (xx∗)∗ = xx∗ and (x′x̄)∗ = x′x̄, the formulas ξnI2(p, x) and χnI3(p, x) can have a
realisation only if I2 and I3 are invariant under σ. Indeed, assume ξnI2(p, u) holds for some u in
an extension of A. Then, using the fact that σ−1 = σ, we get

i ∈ I2 iff pi · uu∗ = 0 iff pσ(i) · uu∗ = 0 iff σ(i) ∈ I2 iff i ∈ σ(I2).

Therefore, I2 = σ(I2). Similarly, I3 = σ(I3).
Further, assume there is an element i ∈ (I1 ∩ I2 ∩ I3)∩ σ(I1 ∩ I2 ∩ I3). Then σ−1(i) = σ(i) ∈

I1 ∩ I2 ∩ I3. If for some u in an extension of A the formula ϕn(I1,I2,I3)(p, u) holds then

pi · uū = p∗i · uū = pi · uu∗ = p∗i · uu∗ = pi · u′ū = p∗i · u′ū = 0.

Therefore p∗i ·ū = p∗i ·ū·(u+u′) = 0 and so pi·u′ = 0. On the other hand pi·u = pi·u·(ū+u∗) = 0.
Thus, pi = pi · (u+ u′) = 0 which is a contradiction. �

Definition 4.4. The theory ECBDA consists of the axioms of Boole-De Morgan algebras and
the sentences

(EC) ∀y1, . . . , yn

(∧
i

yi 6= 0 ∧
n∑
i=1

yi = 1 ∧
∧
i 6=j

yi · yj = 0 ∧
∧
i

y∗i = yσ(i) → ∃xϕn(I1,I2,I3)(y, x)

)
for each integer n ≥ 1, each permutation σ ∈ Sn with σ2 = ε (the identity permutation) and
each σ-consistent triple (I1, I2, I3) of subsets of {1, . . . , n}.

Remark 4.5. ECBDA stands for Existentially Closed Boole-De Morgan Algebras. We will prove
shortly that ECBDA is indeed the theory of those algebras. The above axiom scheme is called
Existential Closedness (EC).

Remark 4.6. It is easy to see that if M is a Boole-De Morgan algebra satisfying EC for n ≤ 2
then M must be atomless, and hence infinite. Therefore ECBDA does not have finite models.

Theorem 4.7. Every Boole-De Morgan algebra can be extended to a model of ECBDA.

First, we prove a lemma.

Lemma 4.8. Assume A ⊆ B are finite Boole-De Morgan algebras with atoms p1, . . . , pn and
q1, . . . , qm respectively. Denote p := (p1, . . . , pn), q := (q1, . . . , qm). Let σA ∈ Sn, σB ∈ Sm
be permutations with p∗i = pσA(i), q

∗
j = qσB(j) for all i, j. If for all σB-consistent I1, I2, I3 ⊆

{1, . . . ,m} the formula ϕm(I1,I2,I3)(q, x) has a realisation in an extension of B then for all σA-
consistent I1, I2, I3 ⊆ {1, . . . , n} the formula ϕn(I1,I2,I3)(p, x) has a realisation in an extension of
A.

Proof. Assume I1, I2, I3 ⊆ {1, . . . , n} are σA-consistent. Clearly each pi is the supremum of
some qj’s. For each k = 1, 2, 3 denote

Jk := {j ∈ {1, . . . ,m} : qj ≤ pi for some i ∈ Ik}.
We claim that J1, J2, J3 are σB-consistent. Assume for contradiction that for some l ∈ {1, . . . ,m}
we have l, σB(l) ∈ J1 ∩ J2 ∩ J3 where σB ∈ Sm with q∗j = qσB(j). If for some 1 ≤ s, t ≤ n we
have ql ≤ ps, q

∗
l ≤ pt then ql ≤ psp

∗
t = pspσA(t). But if s 6= σA(t) then pspσA(t) = 0, hence

s = σA(t). Thus, for each k there is sk ∈ Ik with σA(sk) ∈ Ik such that ql ≤ psk . Then
obviously s1 = s2 = s3 =: s. Thus, s, σA(s) ∈ I1 ∩ I2 ∩ I3 which is a contradiction.

Now we show that a solution of ϕm(J1,J2,J3)(q, x) is also a solution of ϕn(I1,I2,I3)(p, x). Indeed, if
ϕm(J1,J2,J3)(q, u) holds for some u in an extension of B then by our definition of Jk all equations
in the system ϕn(I1,I2,I3)(p, x) are satisfied at x = u. We need to prove that the inequations also
hold at u. Pick i /∈ I1 and assume for contradiction that pi · uū = 0. Then for every qj ≤ pi
we must have qj · uū = 0, hence j ∈ J1. Therefore there is ij ∈ I1 such that qj ≤ pij . Also,
i 6= ij for i /∈ I1. Thus, 0 = pi · pij ≥ qj which is a contradiction. The other inequations are
dealt with similarly. �
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Proof of Theorem 4.7. Given a Boole-De Morgan algebra A and a permutation σ ∈ Sn with
σ2 = ε, pick p1, . . . , pn ∈ A \ {0} such that p∗i = pσ(i),

∑n
i=1 pi = 1 and pi · pj = 0 whenever

i 6= j. Take three σ-consistent sets I1, I2, I3. We will show that in some extension of A the
formula ϕn(I1,I2,I3)(p, x) has a solution. Then we can iterate this process and, taking the union
of the obtained chain of structures, get an extension A1 of A0 := A so that A1 contains a
realisation of ϕn(I1,I2,I3)(p, x) for each appropriate choice of n, σ, I1, I2, I3 and p1, . . . , pn ∈ A.
Then we can construct A2, A3, . . . inductively where Ai+1 is the structure obtained from Ai by
the above procedure. Finally, the union

⋃
iAi will be the desired extension of A which is a

model of ECBDA.
By the amalgamation property we may assume that A is in fact the Boole-De Morgan

algebra generated by p1, . . . , pn. In particular, A is finite and p1, . . . , pn are its atoms. Then
by Proposition 3.2 A can be embedded into a direct power of 4, say 4m. By the above lemma
we may assume that A = 4m, n = 2m and pi = (0, . . . , a, . . . , 0) (the i-th coordinate is a) for
1 ≤ i ≤ m and pi = (0, . . . , b, . . . , 0) (the (i−m)-th coordinate is b) for m+ 1 ≤ i ≤ 2m (these
are all atoms of 4m). Note also that in this case σ(i) = m+ i, 1 ≤ i ≤ m.

We show that there is an extension of 4m where ϕn(I1,I2,I3)(p, x) has a solution.

Case 1. m = 1.
In this case p1 = a, p2 = b and σ(1) = 2. We have only two possibilities for I2 and I3, either
∅ or {1, 2}. We embed 4 into 4k diagonally and show that in all cases a solution exists in the
latter for some k ≤ 4.

• If I1 = I2 = {1, 2}, I3 = ∅ then x = 0 is a solution in 4.
• If I1 = {1, 2}, I2 = I3 = ∅ then x = (1, 0) is a solution in 42.
• If I1 = I3 = {1, 2}, I2 = ∅ then x = 1 is a solution in 4.
• If I1 = {1}, I2 = I3 = ∅ then x = (b, 1, 0) is a solution in 43.
• If I1 = {1}, I2 = I3 = {1, 2} then x = b is a solution in 4.
• If I1 = {1}, I2 = {1, 2}, I3 = ∅ then x = (b, 0) is a solution in 42.
• If I1 = {1}, I2 = ∅, I3 = {1, 2} then x = (b, 1) is a solution in 42.
• If I1 = {2} then a solution can be found as in the previous four cases.
• If I1 = I2 = I3 = ∅ then x = (a, b, 0, 1) is a solution in 44.
• If I1 = I2 = ∅, I3 = {1, 2} then x = (a, b, 1) is a solution in 43.
• If I1 = I3 = ∅, I2 = {1, 2} then x = (a, b, 0) is a solution in 43.
• If I1 = ∅, I2 = I3 = {1, 2} then x = (a, b) is a solution in 42

Case 2. m > 1.
For j = 1, 2, 3 and 1 ≤ i ≤ m denote I ij := Ij∩{i,m+i}. Since (I1∩I2∩I3)∩σ(I1∩I2∩I3) = ∅,
we cannot have I i1 = I i2 = I i3 = {i,m + i}. Hence for each i there is an element ui in some
extension Ai of 4 such that ϕ2

(Ii1,I
i
2,I

i
3)

(a, b, ui) holds. Then ϕn(I1,I2,I3)(p, x) is true of (u1, . . . , um) ∈
A1 × . . .× Am. �

Notation. For two Boole-De Morgan algebras A ⊆ B and a subset V := {v1, . . . , vn} ⊆ B the
Boole-De Morgan subalgebra of B generated by A and V is denoted by A〈V 〉 or A〈v1, . . . , vn〉.

The following is an analogue of [Sch79, Lemma 7].
Lemma 4.9. Assume A0 ⊆ A ⊆ B are Boole-De Morgan algebras where A |= ECBDA and
A0 is finite. Then for every v ∈ B there is u ∈ A such that the map f : A0 ∪ {v} → A0 ∪ {u}
which fixes A0 pointwise and maps v to u extends to an isomorphism of A0〈v〉 and A0〈u〉.
Proof. Let p1, . . . , pn be the atoms of A0 and denote σ := σA0 . Define

I1 ={i ∈ {1, . . . , n} : pi · vv̄ = 0},
I2 ={i ∈ {1, . . . , n} : pi · vv∗ = 0},
I3 ={i ∈ {1, . . . , n} : pi · v′v̄ = 0}.
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By Lemma 4.3 the triple (I1, I2, I3) is σ-consistent. Let u ∈ A be a realisation of the formula
ϕn(I1,I2,I3)(p, x).

The atoms of the Boole-De Morgan subalgebra of B generated by v, which will be denoted
by C, are in the set {vv̄, vv∗, v′v̄, v′v∗, v, v̄, v′, v∗}. In particular, the last four elements can be
expressed as joins of two of the first four elements. Hence, if any of the first four elements is
non-zero then it is an atom. Also, notice that for any pi

pi · v′v∗ = 0⇔ p∗i · vv̄ = 0⇔ σ(i) ∈ I1 ⇔ p∗i · uū = 0⇔ pi · u′u∗ = 0.

Thus, for any term function g(x) ∈ {xx̄, xx∗, x′x̄, x′x∗, x, x̄, x′, x∗} and any pi we have
pi · g(v) = 0 iff pi · g(u) = 0.

This shows that the map f fixing each pi and mapping v to u can be extended to a bijection
between the atoms of A0〈v〉 and A0〈u〉 respecting the automorphism ∗. Therefore, f extends
to an isomorphism of the underlying Boolean algebras of A0〈v〉 and A0〈u〉 which also respects
∗ and hence the De Morgan negation. So it is actually an isomorphism of Boole-De Morgan
algebras. �

Theorem 4.10. A Boole-De Morgan algebra is existentially closed if and only if it is a model
of ECBDA.

Proof. By Theorem 4.7 every existentially closed Boole-De Morgan algebra is a model of
ECBDA.

Now let A |= ECBDA. Given a quantifier-free formula η(x1, . . . , xn) with parameters from
a finite substructure A0 ⊆ A and a realisation (v1, . . . , vn) in an extension of A, we repeatedly
apply Lemma 4.9 and find u1, . . . , un ∈ A such that A0〈u1, . . . , un〉 ∼= A0〈v1, . . . , vn〉 with an
isomorphism sending ui to vi. Then A |= η(u1, . . . , un). �

Theorem 4.11. ECBDA is the model completion of the theory of Boole-De Morgan algebras.
It is complete and eliminates quantifiers.

Proof. Theorem 4.10 shows that ECBDA is the model companion of the theory of Boole-De
Morgan algebras. Since the latter is a universal theory and has the amalgamation property, the
former is actually its model completion and admits quantifier elimination. Furthermore, the
two-element Boole-De Morgan algebra 2 embeds into every Boole-De Morgan algebra, hence
by quantifier elimination ECBDA is complete. �

Example 4.12. If B is an atomless Boolean algebra then B × Bop is an existentially closed
Boole-De Morgan algebra and hence a model of ECBDA.

5. Existentially closed De Morgan algebras

Now we translate the theory ECBDA to the language of De Morgan algebras replacing the
Boolean negation by its definition in the language of lattices, that is,

z = x′ iff x+ z = 1 ∧ x · z = 0.

For y := (y1, . . . , yn) and for a subset I ⊆ {1, . . . , n} consider the formulae

ψ̃nI (y, x) :=
∧
i∈I

yi · xx̄ = 0 ∧
∧
i/∈I

yi · xx̄ 6= 0,

ξ̃nI (y, x) :=∃z

(
x̄+ z = 1 ∧ x̄z = 0 ∧

∧
i∈I

yi · xz = 0 ∧
∧
i/∈I

yi · xz 6= 0

)
,

χ̃nI (y, x) :=∃z

(
x+ z = 1 ∧ xz = 0 ∧

∧
i∈I

yi · zx̄ = 0 ∧
∧
i/∈I

yi · zx̄ 6= 0

)
.

Further, for I1, I2, I3 ⊆ {1, . . . , n} set
ϕ̃n(I1,I2,I3)(y, x) := ψ̃nI1(y, x) ∧ ξ̃nI2(y, x) ∧ χ̃nI3(y, x).



EXISTENTIALLY CLOSED DE MORGAN ALGEBRAS 9

Definition 5.1. The theory ECDA consists of the axioms of complemented De Morgan algebras
and the sentences

∀y1, . . . , yn

(∧
i

yi 6= 0 ∧
n∑
i=1

yi = 1 ∧
∧
i 6=j

yiyj = 0 ∧
∧
i

(
ȳi + yσ(i) = 1 ∧ ȳiyσ(i) = 0

)
→ ∃xϕ̃nI (y, x)

)

for each integer n ≥ 1, each permutation σ ∈ Sn with σ2 = ε and each σ-consistent triple
I = (I1, I2, I3) of subsets of {1, . . . , n}.

Theorem 5.2. ECDA is the model completion of the theory of De Morgan algebras. It is
complete and eliminates quantifiers.

Proof. This follows from the results of the previous two sections. �

Example 5.3. If L is a bounded atomless complemented distributive lattice then L × Lop is
a model of ECDA.

6. Model theoretic properties

6.1. ℵ0-categoricity. The theory of atomless Boolean algebras is ℵ0-categorical, that is, it has
a unique countable model up to isomorphism. We show now that ECBDA and ECDA have
the same property.

Theorem 6.1. ECBDA and ECDA are ℵ0-categorical.

The proof uses the Ryll-Nardzewski theorem which is recalled below for the convenience of
the reader.

Theorem 6.2 (Ryll-Nardzewski, [Mar02, Theorem 4.4.1]). A theory T is ℵ0-categorical if and
only if for every positive integer n there are only finitely many formulas with n free variables
modulo T , that is, every formula with n free variables is equivalent to one from a fixed finite
set of formulas.

Proof of Theorem 6.1. It suffices to prove this for ECBDA. The proof is based on local finite-
ness of Boole-De Morgan algebras (Corollary 3.3). For each positive integer n the free n-
generated Boole-De Morgan algebra is finite (cf. [MA14, Section 4]). So there are finitely
many terms ti(x1, . . . , xn), i ∈ I such that for every term t(x1, . . . , xn) there is an i ∈ I with

ECBDA |= ∀x1, . . . , xn(t(x1, . . . , xn) = ti(x1, . . . , xn)).

By quantifier elimination, every formula is a Boolean combination of formulas of the form
t1 = t2 or t1 6= t2 where t1 and t2 are terms. So the above observation implies that for every n
there are finitely many formulas of n variables modulo ECBDA. Now ℵ0-categoricity follows
from the Ryll-Nardzewski theorem. �

The above argument also shows that the theories of atomless Boolean algebras and atomless
complemented distributive lattices are ℵ0-categorical.

Remark 6.3. The unique countable model of ECDA (ECBDA) is the Fraïssé limit of finite De
Morgan (respectively Boole-De Morgan) algebras, and is homogeneous. Homogeneity, as well
as ℵ0-categoricity, can be deduced directly from Lemma 4.9 by a back-and-forth argument.

Remark 6.4. It is clear that models of ECDA and ECBDA are atomless. This means that we
have infinite linearly ordered sets in all models of these theories. Hence, for each uncountable
cardinal κ these theories have 2κ non-isomorphic models of cardinality κ (see [Mar02, Chapter
5, Theorem 5.3.2]).
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6.2. Algebraic and definable closures. In this section we describe algebraic and definable
closures in ECBDA and ECDA. We begin by recalling the necessary model theoretic notions
and fixing some notation. As before, the reader is referred to [Mar02, TZ12] for details.

Definition 6.5. LetM be a structure and A ⊆M be a subset (possibly empty). The algebraic
(definable) closure of A in M , denoted by acl(A) (respectively dcl(A)), is the union of all
definable finite sets (respectively, singletons) with parameters from A.

For example, in an algebraically closed field the model theoretic definable closure of a set A
is the subfield generated by A, and the model theoretic algebraic closure of A coincides with
the field theoretic algebraic closure of that subfield. The definable and algebraic closures in
atomless Boolean algebras and atomless complemented bounded distributive lattices coincide
with the Boolean subalgebra generated by the parameter set.

Definition 6.6. For a structure M , a subset A ⊆ M and a tuple b̄ ∈ Mn the type of b̄ over
A (in M), denoted tp(b̄/A), is the set of all formulas with parameters from A that are true of
b̄ in M . A realisation of a type is a tuple which satisfies all formulas of the type. A type is
isolated if there is a formula in the type which implies all other formulas of the type. A type
is algebraic if it has only finitely many realisations.

Notation. For a positive integer n the set {1, . . . , n} is denoted by [n].

Theorem 6.7. If D is a model of ECBDA or ECDA then the definable and algebraic closures
of an arbitrary set A ⊆ D are both equal to the Boole-De Morgan subalgebra of D generated by
A.

We will prove this for ECBDA only. Assume D |= ECBDA and A ⊆ D is a finite Boole-De
Morgan subalgebra of D with atoms p1, . . . , pn. Pick an element v ∈ D and denote

I1 ={i ∈ [n] : pi · vv̄ = 0},
I2 ={i ∈ [n] : pi · vv∗ = 0},
I3 ={i ∈ [n] : pi · v′v̄ = 0}.

Lemma 6.8. The formula ϕn(I1,I2,I3)(p, x) isolates the type tp(v/A), that is, for any formula
ψ(x) from that type (with parameters from A) we have D |= ∀x(ϕn(I1,I2,I3)(p, x)→ ψ(x)).

Proof. This follows from quantifier elimination and the proof of Lemma 4.9. �

Lemma 6.9. Assume for some set I ⊆ [n] we have v =
∑

i∈I pi. Then

I1 = ([n] \ I) ∪ σA(I),

I2 = [n] \ (I ∩ σA(I)),

I3 = I ∪ σA(I).

Conversely, if the above equalities hold for some I then v =
∑

i∈I pi and it is the only realisation
of ϕn(I1,I2,I3)(p, x) in an extension of D.

Proof. Assume v =
∑

i∈I pi. Let us prove the first equality. The other two equalities are proven
similarly. To this end we notice that

i ∈ I1 iff pi · vv̄ = 0 iff (pi · v = 0 or pi · v̄ = 0) iff (i /∈ I or i ∈ σA(I)).

Now if the equalities hold for some i then the element u :=
∑

i∈I pi realises the formula
ϕn(I1,I2,I3)(p, x) and hence the type tp(v/A). But since u ∈ A, it is the unique realisation of
tp(v/A). In particular, v = u. �

Definition 6.10. We say (I1, I2, I3) is A-trivial (or just trivial) if the above equalities hold for
some I ⊆ [n].

Triviality just means that the formula ϕn(I1,I2,I3)(p, x) is equivalent to x = u for some u ∈ A.
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Lemma 6.11. Let A ⊆ B ⊆ D where B is a finite Boole-De Morgan extension of A with
atoms q1, . . . , qm. For k = 1, 2, 3 denote

Jk := {j ∈ [m] : qj ≤ pi for some i ∈ Ik}.

If (J1, J2, J3) is B-trivial then (I1, I2, I3) is A-trivial.

Proof. For each 1 ≤ i ≤ n denote Qi := {j ∈ [m] : qj ≤ pi}. Then Qi’s are pairwise disjoint,
Jk =

⋃
i∈Ik Qi and

σA(i1) = i2 iff σB(Qi1) = Qi2 .

Now assume J ⊆ [m] witnesses the triviality of (J1, J2, J3). We claim that

I := {i ∈ [n] : Qi ⊆ J}

witnesses the triviality of (I1, I2, I3).
We show first that J is a union of some Qi’s. Denote J̃ := J \

⋃
i∈I Qi. We will show that

J̃ = ∅. Since J1 = ([m] \ J) ∪ σB(J) is a union of some Qi’s, σB(J) ⊇ J̃ . On the other hand
J2 = [m] \ (J ∩ σB(J)) is also a union of some Qi’s, therefore so is J ∩ σB(J). The latter is
equal to (⋃

i∈I

Qi ∩ σB(J)

)
∪ (J̃ ∩ σB(J)) =

(⋃
i∈I

Qi ∩ σB(J)

)
∪ J̃ .

This implies J̃ = ∅ for
⋃
i∈I Qi is disjoint from J̃ .

Now we show that (I1, I2, I3) is trivial. Let i ∈ [n].

• We have i ∈ I1 iff Qi ⊆ J1 = ([m] \ J) ∪ σB(J) iff Qi ⊆ [m] \ J or Qi ⊆ σB(J). The
former is equivalent to i ∈ [n] \ I, while the latter is the case iff QσA(i) ⊆ J iff σA(i) ∈ I
iff i ∈ σA(I). Thus I1 = ([n] \ I) ∪ σA(I).
• We have i ∈ I2 iff Qi ⊆ J2 = [m] \ (J ∩ σB(J)) iff Qi ∩ J ∩ σB(J) = ∅ iff Qi ∩ J = ∅
or Qi ∩ σB(J) = ∅. As above, this is equivalent to i /∈ I or i /∈ σA(I), hence I1 =
[n] \ (I ∩ σA(I)).
• We have i ∈ I3 iff Qi ⊆ J3 = J ∪ σB(J) iff Qi ⊆ J or Qi ⊆ σB(J). This happens iff
i ∈ I or i ∈ σA(I) and so I3 = I ∪ σA(I).

�

Now we are ready to prove the main theorem.

Proof of Theorem 6.7. Assume A ⊆ D is a finite Boole-De Morgan subalgebra with atoms
p1, . . . , pn. Pick an element v ∈ D \ A and let I1, I2, I3 be as above. Then (I1, I2, I3) is non-
trivial. Let B := A〈v〉 be the Boole-De Morgan subalgebra of D generated by A ∪ {v} and
let q1, . . . , qm be the atoms of B. Define J1, J2, J3 as in Lemma 6.11. Then (J1, J2, J3) is non-
trivial. By the EC axiom scheme there is an element w ∈ D such that ϕm(J1,J2,J3)(q, w). By
the proof of Lemma 4.8, w also satisfies the formula ϕn(I1,I2,I3)(p, x), hence it realises the type
tp(v/A). On the other hand w /∈ A for (J1, J2, J3) is non-trivial. Thus, tp(v/A) has a realisation
w 6= v. Repeating this procedure, we will find infinitely many realisations of tp(v/A), hence
v /∈ acl(A). �
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