34 research outputs found

    A methodology for full-system power modeling in heterogeneous data centers

    Get PDF
    The need for energy-awareness in current data centers has encouraged the use of power modeling to estimate their power consumption. However, existing models present noticeable limitations, which make them application-dependent, platform-dependent, inaccurate, or computationally complex. In this paper, we propose a platform-and application-agnostic methodology for full-system power modeling in heterogeneous data centers that overcomes those limitations. It derives a single model per platform, which works with high accuracy for heterogeneous applications with different patterns of resource usage and energy consumption, by systematically selecting a minimum set of resource usage indicators and extracting complex relations among them that capture the impact on energy consumption of all the resources in the system. We demonstrate our methodology by generating power models for heterogeneous platforms with very different power consumption profiles. Our validation experiments with real Cloud applications show that such models provide high accuracy (around 5% of average estimation error).This work is supported by the Spanish Ministry of Economy and Competitiveness under contract TIN2015-65316-P, by the Gener- alitat de Catalunya under contract 2014-SGR-1051, and by the European Commission under FP7-SMARTCITIES-2013 contract 608679 (RenewIT) and FP7-ICT-2013-10 contracts 610874 (AS- CETiC) and 610456 (EuroServer).Peer ReviewedPostprint (author's final draft

    Power efficient job scheduling by predicting the impact of processor manufacturing variability

    Get PDF
    Modern CPUs suffer from performance and power consumption variability due to the manufacturing process. As a result, systems that do not consider such variability caused by manufacturing issues lead to performance degradations and wasted power. In order to avoid such negative impact, users and system administrators must actively counteract any manufacturing variability. In this work we show that parallel systems benefit from taking into account the consequences of manufacturing variability when making scheduling decisions at the job scheduler level. We also show that it is possible to predict the impact of this variability on specific applications by using variability-aware power prediction models. Based on these power models, we propose two job scheduling policies that consider the effects of manufacturing variability for each application and that ensure that power consumption stays under a system-wide power budget. We evaluate our policies under different power budgets and traffic scenarios, consisting of both single- and multi-node parallel applications, utilizing up to 4096 cores in total. We demonstrate that they decrease job turnaround time, compared to contemporary scheduling policies used on production clusters, up to 31% while saving up to 5.5% energy.Postprint (author's final draft

    Power Characterisation of Shared-Memory HPC Systems

    Get PDF
    Energy consumption has become one of the greatest challenges in the field of High Performance Computing (HPC). Besides its impact on the environment, energy is a limiting factor for the HPC. Keeping the power consumption of a system below a threshold is one of the great problems; and power prediction can help to solve it. The power characterisation can be used to know the power behaviour of the system under study, and to be a support to reach the power prediction. Furthermore, it could be used to design power-aware application programs. In this article we propose a methodology to characterise the power consumption of shared-memory HPC systems. Our proposed methodology involves the finding of influence factors on power consumed by the systems. It is similar to previous works, but we propose an in-deep approach that can help us to get a better power characterisation of the system. We apply our methodology to characterise an Intel server platform and the results show that we can find a more extended set of influence factors on power consumption.Red de Universidades con Carreras en Informática (RedUNCI

    Power Characterisation of Shared-Memory HPC Systems

    Get PDF
    Energy consumption has become one of the greatest challenges in the field of High Performance Computing (HPC). Besides its impact on the environment, energy is a limiting factor for the HPC. Keeping the power consumption of a system below a threshold is one of the great problems; and power prediction can help to solve it. The power characterisation can be used to know the power behaviour of the system under study, and to be a support to reach the power prediction. Furthermore, it could be used to design power-aware application programs. In this article we propose a methodology to characterise the power consumption of shared-memory HPC systems. Our proposed methodology involves the finding of influence factors on power consumed by the systems. It is similar to previous works, but we propose an in-deep approach that can help us to get a better power characterisation of the system. We apply our methodology to characterise an Intel server platform and the results show that we can find a more extended set of influence factors on power consumption.Red de Universidades con Carreras en Informática (RedUNCI

    Analysis of power consumption in heterogeneous virtual machine environments

    Get PDF
    Reduction of energy consumption in Cloud computing datacenters today is a hot a research topic, as these consume large amounts of energy. Furthermore, most of the energy is used inefficiently because of the improper usage of computational resources such as CPU, storage and network. A good balance between the computing resources and performed workload is mandatory. In the context of data-intensive applications, a significant portion of energy is consumed just to keep alive virtual machines or to move data around without performing useful computation. Moreover, heterogeneity of resources increases the difficulty degree, when trying to achieve energy efficiency. Power consumption optimization requires identification of those inefficiencies in the underlying system and applications. Based on the relation between server load and energy consumption, we study the efficiency of data-intensive applications, and the penalties, in terms of power consumption, that are introduced by different degrees of heterogeneity of the virtual machines characteristics in a cluster

    Power Modeling for Heterogeneous Processors

    Get PDF
    As power becomes an ever more important design consideration, there is a need for accurate power models at all stages of the design process. While power models are available for CPUs and GPUs, only simple models are available for heterogeneous processors. We present a micro-benchmarkbased modeling technique that can be used for chip multiprocessor (CMPs) and accelerated processing units (APUs). We use our approach to model power on an Intel Xeon CPU and an AMD Fusion heterogeneous processor. The resulting error rate for the Xeon’s model is below 3 % and is only 7% for the Fusion. We also present a method to reduce the number of benchmarks required to create these models. Instead of running micro-benchmarks for every combination of factors (e.g. different operations or memory access patterns), we cluster similar micro-benchmarks to avoid unnecessary simulations. We show that it is possible to eliminate as many as 93 % of the compute micro-benchmarks, while still producing power models having less than 10 % error rate

    SEDEA: A sensible approach to account DRAM energy in multicore systems

    Get PDF
    As the energy cost in todays computing systems keeps increasing, measuring the energy becomes crucial in many scenarios. For instance, due to the fact that the operational cost of datacenters largely depends on the energy consumed by the applications executed, end users should be charged for the energy consumed, which requires a fair and consistent energy measuring approach. However, the use of multicore system complicates per-task energy measurement as the increased Thread Level Parallelism (TLP) allows several tasks to run simultaneously sharing resources. Therefore, the energy usage of each task is hard to determine due to interleaved activities and mutual interferences. To this end, Per-Task Energy Metering (PTEM) has been proposed to measure the actual energy of each task based on their resource utilization in a workload. However, the measured energy depends on the interferences from co-running tasks sharing the resources, and thus fails to provide the consistency across executions. Therefore, Sensible Energy Accounting (SEA) has been proposed to deliver an abstraction of the energy consumption based on a particular allocation of resources to a task.In this work we provide a realization of SEA for the DRAM memory system, SEDEA, where we account a task for the DRAM energy it would have consumed when running in isolation with a fraction of the on-chip shared cache. SEDEA is a mechanism to sensibly account for the DRAM energy of a task based on predicting its memory behavior. Our results show that SEDEA provides accurate estimates, yet with low-cost, beating existing per-task energy models, which do not target accounting energy in multicore system. We also provide a use case showing that SEDEA can be used to guide shared cache and memory bank partition schemes to save energy.This work has been supported by the RoMoL ERC Advanced Grant (GA 321253) and National Key R&D Program of China under No.2016YFB1000204, by the European HiPEAC Network of Excellence, by the Spanish Ministry of Science and Innovation (contracts TIN2015-65316-P), by Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272) and by the IBM-BSC Deep Learning Center initiative. Also by the major scientific and technological project of Guangdong province (2014B010115003), and NSFC under grant no 61702495, 61672511. M. Moret´o has been partially supported by the Ministry of Economy and Competitiveness under Juan de la Cierva postdoctoral fellowship number JCI- 2012-15047. J. Abella has been partially supported by the Ministry of Economy and Competitiveness under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717Peer ReviewedPostprint (author's final draft

    Computing server power modeling in a data center: survey,taxonomy and performance evaluation

    Full text link
    Data centers are large scale, energy-hungry infrastructure serving the increasing computational demands as the world is becoming more connected in smart cities. The emergence of advanced technologies such as cloud-based services, internet of things (IoT) and big data analytics has augmented the growth of global data centers, leading to high energy consumption. This upsurge in energy consumption of the data centers not only incurs the issue of surging high cost (operational and maintenance) but also has an adverse effect on the environment. Dynamic power management in a data center environment requires the cognizance of the correlation between the system and hardware level performance counters and the power consumption. Power consumption modeling exhibits this correlation and is crucial in designing energy-efficient optimization strategies based on resource utilization. Several works in power modeling are proposed and used in the literature. However, these power models have been evaluated using different benchmarking applications, power measurement techniques and error calculation formula on different machines. In this work, we present a taxonomy and evaluation of 24 software-based power models using a unified environment, benchmarking applications, power measurement technique and error formula, with the aim of achieving an objective comparison. We use different servers architectures to assess the impact of heterogeneity on the models' comparison. The performance analysis of these models is elaborated in the paper
    corecore