140 research outputs found

    A Survey on Thread-Level Speculation Techniques

    Get PDF
    ProducciĂłn CientĂ­ficaThread-Level Speculation (TLS) is a promising technique that allows the parallel execution of sequential code without relying on a prior, compile-time-dependence analysis. In this work, we introduce the technique, present a taxonomy of TLS solutions, and summarize and put into perspective the most relevant advances in this field.MICINN (Spain) and ERDF program of the European Union: HomProg-HetSys project (TIN2014-58876-P), CAPAP-H5 network (TIN2014-53522-REDT), and COST Program Action IC1305: Network for Sustainable Ultrascale Computing (NESUS)

    Interactive Trace-Based Analysis Toolset for Manual Parallelization of C Programs

    Get PDF
    Massive amounts of legacy sequential code need to be parallelized to make better use of modern multiprocessor architectures. Nevertheless, writing parallel programs is still a difficult task. Automated parallelization methods can be effective both at the statement and loop levels and, recently, at the task level, but they are still restricted to specific source code constructs or application domains. We present in this article an innovative toolset that supports developers when performing manual code analysis and parallelization decisions. It automatically collects and represents the program profile and data dependencies in an interactive graphical format that facilitates the analysis and discovery of manual parallelization opportunities. The toolset can be used for arbitrary sequential C programs and parallelization patterns. Also, its program-scope data dependency tracing at runtime can complement the tools based on static code analysis and can also benefit from it at the same time. We also tested the effectiveness of the toolset in terms of time to reach parallelization decisions and of their quality. We measured a significant improvement for several real-world representative applications

    ACOTES project: Advanced compiler technologies for embedded streaming

    Get PDF
    Streaming applications are built of data-driven, computational components, consuming and producing unbounded data streams. Streaming oriented systems have become dominant in a wide range of domains, including embedded applications and DSPs. However, programming efficiently for streaming architectures is a challenging task, having to carefully partition the computation and map it to processes in a way that best matches the underlying streaming architecture, taking into account the distributed resources (memory, processing, real-time requirements) and communication overheads (processing and delay). These challenges have led to a number of suggested solutions, whose goal is to improve the programmer’s productivity in developing applications that process massive streams of data on programmable, parallel embedded architectures. StreamIt is one such example. Another more recent approach is that developed by the ACOTES project (Advanced Compiler Technologies for Embedded Streaming). The ACOTES approach for streaming applications consists of compiler-assisted mapping of streaming tasks to highly parallel systems in order to maximize cost-effectiveness, both in terms of energy and in terms of design effort. The analysis and transformation techniques automate large parts of the partitioning and mapping process, based on the properties of the application domain, on the quantitative information about the target systems, and on programmer directives. This paper presents the outcomes of the ACOTES project, a 3-year collaborative work of industrial (NXP, ST, IBM, Silicon Hive, NOKIA) and academic (UPC, INRIA, MINES ParisTech) partners, and advocates the use of Advanced Compiler Technologies that we developed to support Embedded Streaming.Peer ReviewedPostprint (published version

    A transprecision floating-point cluster for efficient near-sensor data analytics

    Full text link
    Recent applications in the domain of near-sensor computing require the adoption of floating-point arithmetic to reconcile high precision results with a wide dynamic range. In this paper, we propose a multi-core computing cluster that leverages the fined-grained tunable principles of transprecision computing to provide support to near-sensor applications at a minimum power budget. Our design - based on the open-source RISC-V architecture - combines parallelization and sub-word vectorization with near-threshold operation, leading to a highly scalable and versatile system. We perform an exhaustive exploration of the design space of the transprecision cluster on a cycle-accurate FPGA emulator, with the aim to identify the most efficient configurations in terms of performance, energy efficiency, and area efficiency. We also provide a full-fledged software stack support, including a parallel runtime and a compilation toolchain, to enable the development of end-to-end applications. We perform an experimental assessment of our design on a set of benchmarks representative of the near-sensor processing domain, complementing the timing results with a post place-&-route analysis of the power consumption. Finally, a comparison with the state-of-the-art shows that our solution outperforms the competitors in energy efficiency, reaching a peak of 97 Gflop/s/W on single-precision scalars and 162 Gflop/s/W on half-precision vectors

    Large-Scale Data Management and Analysis (LSDMA) - Big Data in Science

    Get PDF

    An FPGA implementation of an investigative many-core processor, Fynbos : in support of a Fortran autoparallelising software pipeline

    Get PDF
    Includes bibliographical references.In light of the power, memory, ILP, and utilisation walls facing the computing industry, this work examines the hypothetical many-core approach to finding greater compute performance and efficiency. In order to achieve greater efficiency in an environment in which Moore’s law continues but TDP has been capped, a means of deriving performance from dark and dim silicon is needed. The many-core hypothesis is one approach to exploiting these available transistors efficiently. As understood in this work, it involves trading in hardware control complexity for hundreds to thousands of parallel simple processing elements, and operating at a clock speed sufficiently low as to allow the efficiency gains of near threshold voltage operation. Performance is there- fore dependant on exploiting a new degree of fine-grained parallelism such as is currently only found in GPGPUs, but in a manner that is not as restrictive in application domain range. While removing the complex control hardware of traditional CPUs provides space for more arithmetic hardware, a basic level of control is still required. For a number of reasons this work chooses to replace this control largely with static scheduling. This pushes the burden of control primarily to the software and specifically the compiler, rather not to the programmer or to an application specific means of control simplification. An existing legacy tool chain capable of autoparallelising sequential Fortran code to the degree of parallelism necessary for many-core exists. This work implements a many-core architecture to match it. Prototyping the design on an FPGA, it is possible to examine the real world performance of the compiler-architecture system to a greater degree than simulation only would allow. Comparing theoretical peak performance and real performance in a case study application, the system is found to be more efficient than any other reviewed, but to also significantly under perform relative to current competing architectures. This failing is apportioned to taking the need for simple hardware too far, and an inability to implement static scheduling mitigating tactics due to lack of support for such in the compiler

    Combining dynamic and static scheduling in high-level synthesis

    Get PDF
    Field Programmable Gate Arrays (FPGAs) are starting to become mainstream devices for custom computing, particularly deployed in data centres. However, using these FPGA devices requires familiarity with digital design at a low abstraction level. In order to enable software engineers without a hardware background to design custom hardware, high-level synthesis (HLS) tools automatically transform a high-level program, for example in C/C++, into a low-level hardware description. A central task in HLS is scheduling: the allocation of operations to clock cycles. The classic approach to scheduling is static, in which each operation is mapped to a clock cycle at compile time, but recent years have seen the emergence of dynamic scheduling, in which an operation’s clock cycle is only determined at run-time. Both approaches have their merits: static scheduling can lead to simpler circuitry and more resource sharing, while dynamic scheduling can lead to faster hardware when the computation has a non-trivial control flow. This thesis proposes a scheduling approach that combines the best of both worlds. My idea is to use existing program analysis techniques in software designs, such as probabilistic analysis and formal verification, to optimize the HLS hardware. First, this thesis proposes a tool named DASS that uses a heuristic-based approach to identify the code regions in the input program that are amenable to static scheduling and synthesises them into statically scheduled components, also known as static islands, leaving the top-level hardware dynamically scheduled. Second, this thesis addresses a problem of this approach: that the analysis of static islands and their dynamically scheduled surroundings are separate, where one treats the other as black boxes. We apply static analysis including dependence analysis between static islands and their dynamically scheduled surroundings to optimize the offsets of static islands for high performance. We also apply probabilistic analysis to estimate the performance of the dynamically scheduled part and use this information to optimize the static islands for high area efficiency. Finally, this thesis addresses the problem of conservatism in using sequential control flow designs which can limit the throughput of the hardware. We show this challenge can be solved by formally proving that certain control flows can be safely parallelised for high performance. This thesis demonstrates how to use automated formal verification to find out-of-order loop pipelining solutions and multi-threading solutions from a sequential program.Open Acces
    • 

    corecore