105 research outputs found

    Exposing market mechanism design trade-offs via multi-objective evolutionary search

    Get PDF
    Market mechanisms are a means by which resources in contention can be allocated between contending parties, both in human economies and those populated by software agents. Designing such mechanisms has traditionally been carried out by hand, and more recently by automation. Assessing these mechanisms typically involves them being evaluated with respect to multiple conflicting objectives, which can often be nonlinear, noisy, and expensive to compute. For typical performance objectives, it is known that designed mechanisms often fall short on being optimal across all objectives simultaneously. However, in all previous automated approaches, either only a single objective is considered, or else the multiple performance objectives are combined into a single objective. In this paper we do not aggregate objectives, instead considering a direct, novel application of multi-objective evolutionary algorithms (MOEAs) to the problem of automated mechanism design. This allows the automatic discovery of trade-offs that such objectives impose on mechanisms. We pose the problem of mechanism design, specifically for the class of linear redistribution mechanisms, as a naturally existing multi-objective optimisation problem. We apply a modified version of NSGA-II in order to design mechanisms within this class, given economically relevant objectives such as welfare and fairness. This application of NSGA-II exposes tradeoffs between objectives, revealing relationships between them that were otherwise unknown for this mechanism class. The understanding of the trade-off gained from the application of MOEAs can thus help practitioners with an insightful application of discovered mechanisms in their respective real/artificial markets

    Combinatorial Auction-Based Pricing for Multi-tenant Autonomous Vehicle Public Transportation System

    Get PDF
    postprin

    A Shapley-value Mechanism for Bandwidth On Demand between Datacenters

    Get PDF
    postprin

    Stochastic Mechanisms for Truthfulness and Budget Balance in Computational Social Choice

    Get PDF
    In this thesis, we examine stochastic techniques for overcoming game theoretic and computational issues in the collective decision making process of self-interested individuals. In particular, we examine truthful, stochastic mechanisms, for settings with a strong budget balance constraint (i.e. there is no net flow of money into or away from the agents). Building on past results in AI and computational social choice, we characterise affine-maximising social choice functions that are implementable in truthful mechanisms for the setting of heterogeneous item allocation with unit demand agents. We further provide a characterisation of affine maximisers with the strong budget balance constraint. These mechanisms reveal impossibility results and poor worst-case performance that motivates us to examine stochastic solutions. To adequately compare stochastic mechanisms, we introduce and discuss measures that capture the behaviour of stochastic mechanisms, based on techniques used in stochastic algorithm design. When applied to deterministic mechanisms, these measures correspond directly to existing deterministic measures. While these approaches have more general applicability, in this work we assess mechanisms based on overall agent utility (efficiency and social surplus ratio) as well as fairness (envy and envy-freeness). We observe that mechanisms can (and typically must) achieve truthfulness and strong budget balance using one of two techniques: labelling a subset of agents as ``auctioneers'' who cannot affect the outcome, but collect any surplus; and partitioning agents into disjoint groups, such that each partition solves a subproblem of the overall decision making process. Worst-case analysis of random-auctioneer and random-partition stochastic mechanisms show large improvements over deterministic mechanisms for heterogeneous item allocation. In addition to this allocation problem, we apply our techniques to envy-freeness in the room assignment-rent division problem, for which no truthful deterministic mechanism is possible. We show how stochastic mechanisms give an improved probability of envy-freeness and low expected level of envy for a truthful mechanism. The random-auctioneer technique also improves the worst-case performance of the public good (or public project) problem. Communication and computational complexity are two other important concerns of computational social choice. Both the random-auctioneer and random-partition approaches offer a flexible trade-off between low complexity of the mechanism, and high overall outcome quality measured, for example, by total agent utility. They enable truthful and feasible solutions to be incrementally improved on as the mechanism receives more information and is allowed more processing time. The majority of our results are based on optimising worst-case performance, since this provides guarantees on how a mechanism will perform, regardless of the agents that use it. To complement these results, we perform empirical, average-case analyses on our mechanisms. Finally, while strong budget balance is a fixed constraint in our particular social choice problems, we show empirically that this can improve the overall utility of agents compared to a utility-maximising assignment that requires a budget imbalanced mechanism

    A Mechanism Design Approach to Bandwidth Allocation in Tactical Data Networks

    Get PDF
    The defense sector is undergoing a phase of rapid technological advancement, in the pursuit of its goal of information superiority. This goal depends on a large network of complex interconnected systems - sensors, weapons, soldiers - linked through a maze of heterogeneous networks. The sheer scale and size of these networks prompt behaviors that go beyond conglomerations of systems or `system-of-systems\u27. The lack of a central locus and disjointed, competing interests among large clusters of systems makes this characteristic of an Ultra Large Scale (ULS) system. These traits of ULS systems challenge and undermine the fundamental assumptions of today\u27s software and system engineering approaches. In the absence of a centralized controller it is likely that system users may behave opportunistically to meet their local mission requirements, rather than the objectives of the system as a whole. In these settings, methods and tools based on economics and game theory (like Mechanism Design) are likely to play an important role in achieving globally optimal behavior, when the participants behave selfishly. Against this background, this thesis explores the potential of using computational mechanisms to govern the behavior of ultra-large-scale systems and achieve an optimal allocation of constrained computational resources Our research focusses on improving the quality and accuracy of the common operating picture through the efficient allocation of bandwidth in tactical data networks among self-interested actors, who may resort to strategic behavior dictated by self-interest. This research problem presents the kind of challenges we anticipate when we have to deal with ULS systems and, by addressing this problem, we hope to develop a methodology which will be applicable for ULS system of the future. We build upon the previous works which investigate the application of auction-based mechanism design to dynamic, performance-critical and resource-constrained systems of interest to the defense community. In this thesis, we consider a scenario where a number of military platforms have been tasked with the goal of detecting and tracking targets. The sensors onboard a military platform have a partial and inaccurate view of the operating picture and need to make use of data transmitted from neighboring sensors in order to improve the accuracy of their own measurements. The communication takes place over tactical data networks with scarce bandwidth. The problem is compounded by the possibility that the local goals of military platforms might not be aligned with the global system goal. Such a scenario might occur in multi-flag, multi-platform military exercises, where the military commanders of each platform are more concerned with the well-being of their own platform over others. Therefore there is a need to design a mechanism that efficiently allocates the flow of data within the network to ensure that the resulting global performance maximizes the information gain of the entire system, despite the self-interested actions of the individual actors. We propose a two-stage mechanism based on modified strictly-proper scoring rules, with unknown costs, whereby multiple sensor platforms can provide estimates of limited precisions and the center does not have to rely on knowledge of the actual outcome when calculating payments. In particular, our work emphasizes the importance of applying robust optimization techniques to deal with the uncertainty in the operating environment. We apply our robust optimization - based scoring rules algorithm to an agent-based model framework of the combat tactical data network, and analyze the results obtained. Through the work we hope to demonstrate how mechanism design, perched at the intersection of game theory and microeconomics, is aptly suited to address one set of challenges of the ULS system paradigm - challenges not amenable to traditional system engineering approaches

    Investigation of Game-Theoretic Mechanisms for the Valuation of Energy Resources

    Get PDF
    Electricity systems are facing the pressure to change in response to the effects of new technology, particularly the proliferation of renewable technologies (such as solar PV systems and wind generation) leading to the retirement of traditional generation technologies that provide stabilising inertia. These changes create an imperative to consider potential future market structures to facilitate the participation of distributed energy resources (DERs; such as EVs and batteries) in grid operation. However, this gives rise to general questions surrounding the ethics of market structures and how they could be fairly applied in future electricity systems. Particularly the most basic question "how should electricity be valued and traded" is fundamentally a moral question without any easy answer. We give a survey of philosophical attitudes around such a question, before presenting a series of ways that these intuitions have been cast into mathematics, including: the Vickrey-Clarke-Groves mechanism, Locational Marginal Pricing, the Shapley Value, and Nash bargaining solution concepts. We compared these different methods, and attempted a new synthesis that brought together the best features of each of them; called the 'Generalised Neyman and Kohlberg Value' or the GNK-value for short. The GNK value was developed as a novel bargaining solution concept for many player non-cooperative transferable utility generalised games, and thus it was intrinsically flexible in its application to various aspects of powersystems. We demonstrated the features of the GNK-value against the other mathematical solutions in the context of trading the immediate consumption/generation of power on small sized networks under linear-DC approximation, before extending the computation to larger networks. The GNK value proved to be difficult to compute for large networks but was shown to be approximable for larger networks with a series of sampling techniques and a proxy method. The GNK value was ethically compared to other mechanisms with the unfortunate discovery that it allowed for participants to be left worse-off for participating, violating the ethical notion of 'euvoluntary exchange' and 'individual rationality'; but was offered as an interesting innovation in the space of transferable utility generalised games notwithstanding. For sampling the GNK value, there was a range of new and different techniques developed for stratified random sampling which iteratively minimise newly derived concentration inequalities on the error of the sampling. These techniques were developed to assist in the computation of the GNK value to larger networks, and they were evaluated in the context of sampling synthetic data, and in computation of the Shapley Value of cooperative game theory. These new sampling techniques were demonstrated to be comparable to the more orthodox Neyman sampling method despite not having access to stratum variances
    corecore