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Abstract—Market mechanisms are a means by which re-
sources in contention can be allocated between contending parties,
both in human economies and those populated by software agents.
Designing such mechanisms has traditionally been carried out
by hand, and more recently by automation. Assessing these
mechanisms typically involves them being evaluated with respect
to multiple conflicting objectives, which can often be non-
linear, noisy, and expensive to compute. For typical performance
objectives, it is known that designed mechanisms often fall
short on being optimal across all objectives simultaneously.
However, in all previous automated approaches, either only a
single objective is considered, or else the multiple performance
objectives are combined into a single objective. In this paper we
do not aggregate objectives, instead considering a direct, novel
application of multi-objective evolutionary algorithms (MOEAs)
to the problem of automated mechanism design. This allows the
automatic discovery of trade-offs that such objectives impose
on mechanisms. We pose the problem of mechanism design,
specifically for the class of linear redistribution mechanisms, as a
naturally existing multi-objective optimisation problem. We apply
a modified version of NSGA-II in order to design mechanisms
within this class, given economically relevant objectives such as
welfare and fairness. This application of NSGA-II exposes trade-
offs between objectives, revealing relationships between them that
were otherwise unknown for this mechanism class. The under-
standing of the trade-off gained from the application of MOEAs
can thus help practitioners with an insightful application of
discovered mechanisms in their respective real/artificial markets.

Keywords—automated mechanism design, welfare, fairness, re-
distribution, market based interaction, resource allocation.

I. INTRODUCTION

Market mechanisms lay out rules governing the allocation
of resources amongst contending parties. Such parties could
be humans interacting in real economies, whereby allocations
of commodities via market mechanisms like auctions are
commonplace. The parties can also be software agents in a
multi-agent system, autonomously interacting with each other
through a market mechanism to exchange resources [1], [2]
that allow them to carry out tasks. Furthermore, software
agents can also act on behalf of humans, for example in
the case of grid and cloud computing, where agents are
responsible for computational tasks using processors on the
grid, or services in the cloud. Scheduling tasks or admitting

access to services via market based interaction mechanisms
thus becomes an option [3], [4].

With such a prevalence of market mechanisms both in
human and agent economies, market mechanism design is
likely to remain a topic of great interest in economics and
multi-agent systems. This is primarily due to the idea that
according to most common mechanism design objectives, there
frequently exists no single dominant mechanism [5]. Given this
situation, the key research question becomes: what mechanism
should be chosen, given a current set of design objectives? This
paper aims to contribute towards an answer to this question.

In particular, we study a class of mechanisms called
linear redistribution mechanisms, with the design objectives
of allocative efficiency or welfare maximisation and fairness1.
Fairness can further be defined in multiple ways, and we look
at two such definitions2, namely envy and disproportionality.
Welfare and fairness can be conflicting goals. For example,
when the welfare of a system of agents is high, this can
be due to a minority of the agents having high utility as
compared to the rest, while fairness may entail (depending on
the definition of fairness considered), a more even spread of
utilities. Thus we have a three-objective automated mechanism
design problem.

This problem naturally lends itself to being tackled using
multi-objective evolutionary algorithms (MOEAs), yet previ-
ous work has mainly considered designing mechanisms by
hand, or using a single (or a single aggregated) objective
optimisation approach. We thus pose the mechanism design
problem as a multi-objective optimisation problem (MOOP),
and apply NSGA-II to expose the trade-off that the considered
objectives impose on linear redistribution mechanisms. This
reveals insights into the nature of the linear redistribution
mechanism space hitherto unknown, additionally revealing
unknown relationships between the considered objectives. The

1Allocative efficiency is also known as welfare, and is used interchangeably
in the paper. Welfare is usually defined as some variant of the sum of individual
agent utilities, where agents derive their utilities from their possessions,
namely their possessed allocations and money. The greater the utility, the
more an agent may be able to carry out the tasks it is employed for.

2We consider two and not a single definition in order to stay consistent with
previous work for this particular class of mechanisms, for fair comparisons
with that work, and to build on it.
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potential of using MOEAs for the problem of mechanism
design is thus revealed.

Section II gives some background on how market mech-
anisms are usually designed. Section III elaborates on the
class of mechanisms and the multiple performance objectives
considered in this paper. The application of NSGA-II and the
experimental setup are described in Section IV. Experimental
results are presented in Section V, and the paper is concluded
in Section VI.

II. DESIGNING MARKET MECHANISMS

Examples of market mechanisms often employed in human
and agent economies include the English, Dutch and Vickrey
auctions [6], in which an auctioneer facilitates the bidding and
determines the allocation of resources. Where scarcity exists
on both the seller and buyer sides, double auctions such as the
Continuous Double Auction and Clearing House provide an
alternative approach [7].

The choice of mechanism to be used is often determined by
assumptions concerning the participants and market conditions.
For example, double auctions may be adapted by modifying
participation fees, transaction overhead fees or bid and ask
matching strategies [8], to appeal to different types of partici-
pants. Wang [9] compares auction-based mechanisms and other
market mechanisms such as posted offer markets in human
economies. He claims that auctions are more commonly used
where there is a greater dispersal of valuations of the good
amongst the buyers. Interestingly, previous work in automated
mechanism design has suggested that many mechanisms which
do not appear at all intuitive to human auction designers may
lead to more efficient outcomes in particular circumstances [5],
[10], [11]. Despite this, the dominant approach to mechanism
design is still by hand.

Cavallo [12] considers welfare as an objective and hand
designs a mechanism within the linear redistribution mecha-
nisms class (a class of auction mechanisms which is a variant
of Vickrey auctions) that achieves high welfare. This class
of mechanisms takes the idea of redistributing the auction
revenue, that otherwise would remain with an auctioneer, back
to the agents bidding for the auctioned resources. Scenarios
where resources are jointly owned by agents, e.g. scheduling
processor time on a jointly owned grid to computational tasks,
such mechanisms can prove to be beneficial [3]. For the same
class of mechanisms, Guo and Conitzer [13] take an automated
approach and, via linear programming, optimise towards linear
redistribution mechanisms to exhibit high welfare in the worst
case. Both these approaches result in mechanisms that, upon
evaluation w.r.t. welfare and fairness objectives, tend not to
dominate each other. We describe both these works in more
detail in Section III. In these prior works however, the (single)
objective considered when evaluating a particular mechanism
is allocative efficiency, or a variant of it.

This paper extends previous work in automated mechanism
design, going beyond the approach of either considering the
single objective of allocative efficiency (as discussed above)
or combining multiple objectives into a single fitness measure
[14]. In doing so, we present a general methodology for multi-
objective automated mechanism design for arbitrary global
objectives.

III. PRELIMINARIES

Let there be a set of agents S = {1, . . . , n}, and a set
of outcomes O, where o ∈ O is an n-tuple (o1, o2, . . . , on),
oi being the allocation for agent i ∈ S. An agent i has a
type θi ∈ Θ. The typespace Θ is the same for each agent,
and represents the set of possible private information, e.g.
preferences for various possible outcomes, that an agent might
have. For n agents, the joint typespace can be denoted by
Θn, where θ = (θ1, θ2, . . . , θn) ∈ Θn. An agent of type
θi has a valuation of vi(θi, oi) for an allocation oi. The
value functions are homogenous across the agents, such that
∀i, j ∈ S, ∀θj ∈ Θ,∀o ∈ O, vi(θj , oj) = vj(θj , oj).

We take the view of [15], and see a mechanism as a tuple
(f, T ), where f : Θn → O is a choice or allocation function,
and T = (Ti, . . . , Tn) represents an n-tuple of transfers (of
currency amongst interacting agents), Ti : Θn → R associated
with each agent i. Within a mechanism, agents report their
types (which may or may not be their true types), and then
the allocations and payment transfers are made according to
f and T . Let oi be denoted by fi(θ), which is part of the
outcome o that is allocated to agent i ∈ S by f , for a
type profile θ. As such, f(θ) = o = (o1, o2, . . . , on) =
(f1(θ), f2(θ), . . . , fn(θ)). We assume each agent i ∈ S to be
self-interested, and acting to maximise their quasilinear utility3

function. This utility for an agent is composed of the value vi
the agent obtains from an allocation oi, as well as the transfers
to and from the agent, encapsulated in Ti. More specifically,
given the mechanism (f, T ), and true joint type θ, agent i
obtains utility vi(θi, fi(θ)) + Ti(θ), provided all agents report
their true types.

Let v(θ, o) denote
∑
i∈S vi(θi, oi), and v−i(θ−i, o) de-

note
∑
j∈S\{i} vj(θj , oj). An efficient allocation function4

f∗ is one which gives us an allocation o such that ∀θ ∈
Θn, f∗(θ) ∈ arg maxo∈O v(θ, o). Let us call f∗(θ−i) an
efficient allocation if we disregard the preferences of agent
i. In other words, assuming that agent i did not exist (i 6∈ S),
and regarding the allocation oi, which would have been
made to agent i, to be in contention amongst the remain-
ing n − 1 agents, the efficient allocation for the remaining
agents is f∗(θ−i) ∈ arg maxo∈O v(θ−i, o), where v(θ−i, o) =∑
j∈S,i 6∈S vj(θj , oj). Vickrey-Clarke-Groves (VCG) mecha-

nisms, variants of which are adopted in this work, comprise
the efficient allocation function f∗(θ), and a transfer func-
tion Ti(θ) = v−i(θ−i, f∗(θ)) − v−i(θ−i, f∗(θ−i)). Note that
Ti(θ) is the negative of the social cost v−i(θ−i, f∗(θ−i)) −
v−i(θ−i, f∗(θ)) that an agent i imposes on the remainder of
the agents, and thus a payment in this case.

We will solely be concerned with mechanisms that adhere
to the following properties: strategy-proof, non-deficit, and ex
post individually rational. A mechanism is strategy-proof if
each agent is best off reporting its true type, regardless of
its type and what other agents might report. A non-deficit
mechanism is one where the total payment transfers aggregated
across all agents never exceeds zero, i.e.

∑
i Ti(θ) ≤ 0. An ex

3Quasilinearity allows for agent valuations for an allocation to be interpreted
as their willingness to pay [15] for it, and makes comparing between agent
valuations possible.

4An efficient allocation function allocates resources to agents valuing them
most.



post individually rational mechanism is one where no agent
is worse off from participating. The VCG mechanism has
these properties. Needless to say, such properties are often
required in mechanisms. Strategy-proofness prevents strategic
(including malicious) behaviour on the part of an agent,
thus any cheating is prevented. A deficit would mean that
an auctioneer would incur a loss or end up in debt from
conducting the mechanism, and in the context of this paper,
agents collectively receiving more money than what they spend
for gaining access to resource units. Finally, an agent would
not participate in a mechanism if they were to incur a loss
from it, so mechanisms should ensure that the worst an agent
can be from participating is to remain in the same position as
they were before participating. We now describe the resource
allocation scenario considered throughout this paper, the class
of mechanisms (linear redistribution mechanisms) considered,
and objectives (welfare and fairness) using which we expose
trade-off mechanisms within the considered class.

A. Resource Allocation Scenario

The scenario considered is that of allocating a set R =
{1, . . . ,m} of homogenous or indistinguishable resource units
amongst n agents. Furthermore, an agent cannot be allocated
more than one resource unit, also known as unit demand. This
scenario has previously been considered in [13], [15], [16].
For the experimental results presented in this paper however,
we focus on the case where m = 1 unit of resource, which
may be in contention amongst n agents. Naturally, an agent
cannot be allocated more than one resource unit in this case.
An agent’s type is specified by the value it associates with
the unit of resource in contention. The scenario also implies
that the agent’s type can be given by a single value θi ∈ R.
Furthermore, for comparisons with previous work [15], we let
θi ∈ [0, 1].

1) VCG mechanism in the scenario:: As an example, let
n = 3, and m = 1, with the agents having types θ1 = 1.0,
θ2 = 0.5, and θ3 = 0.3 respectively. Under the VCG
mechanism, this would lead to agent 1 getting the available
unit. The payments, i.e. v−i(θ−i, f∗(θ−i))− v−i(θ−i, f∗(θ)),
by the agents, would be −T1(θ) = 0.5 − 0.0 = 0.5, while
−T2(θ) and −T3(θ) remain zero. If agent i were the agent
with the ith highest reported value θi, then we can write θ1 ≥
θ2 ≥ . . . ≥ θn. In the homogenous unit demand scenario with
n > m, the payment by agent i ∀i ∈ {1, . . . ,m},−Ti(θ) =
θm+1, and ∀i ∈ {m + 1, . . . , n},−Ti(θ) = 0. The total
VCG auction revenue (aggregate payment) in this case is∑
i−Ti(θ) = mθm+1. In the case where m = 1, the VCG

mechanism is also known as the Vickrey auction [6], wherein,
the highest bidder wins the unit at a price determined by the
second highest bid.

B. Redistribution Mechainsms

If the resources are jointly owned by the agents, instead
of them being owned by a third party seller or auctioneer
who can collect the auction revenue, redistribution mechanisms
come to the fore. Allocating processor time on a jointly owned
server for executing computational tasks, each task owned
by a human who delegates an agent to have the task done
[3], is one example of such joint ownership. In redistribution
mechanisms, the auction revenue can be redistributed amongst

the agents in some fashion, instead of having it all thrown
away. As an example, not redistributing the VCG revenue
adversely affects the system by reducing its social welfare
[15], as the payments are transferred outside the set of agents,
thus lowering the utility of those making payments. Therefore,
redistributing, as opposed to throwing away the revenue, has
some merit. In this paper, redistribution mechanisms that
allow returning portions of the VCG revenue back to the
agents, are the ones we are interested in, provided such a
redistribution keeps the mechanism strategy-proof, non-deficit
and individually rational. Such redistribution mechanisms have
previously been proposed, designed both by hand [12], [15],
and by automated search [12], [16].

It is known that redistributing the VCG revenue naı̈vely
(e.g. equal share of the revenue) can lead to the violation of
the strategy-proof property [16]. This is because the second
highest bidder gets incentivised to raise its own bid in order
that the highest bidder pay more, thus receiving more from the
redistribution. A general rule that can help prevent the violation
of the strategy-proof property is to remove this incentive. It
is also known that it is impossible to redistribute the whole
VCG revenue amongst the agents, but only a large fraction
of it [16]. Thus, a fraction of VCG revenue mθm+1 gets
redistributed amongst the agents, and the payment to agent i is
not allowed to depend on θi, keeping its incentives unaffected
by the redistribution, and the same as in the VCG auction.

1) Example redistribution mechanisms in the scenario::
For m = 1, the redistribution mechanism proposed in [12],
[17] first implements the VCG, and then redistributed the
revenue in such a way that an agent i receives θ−i2 /n, where
θ−i2 is the second highest reported value other than i’s (i.e.
excluding θi). Thus, θ−i2 = θ3 for i ∈ {1, 2} and θ−i2 = θ2

for i ∈ {3, . . . , n}. The total redistributed amount becomes
2θ3/n+(n−2)θ2/n. This never exceeds the VCG revenue θ2

[12], thus adhering to the non-deficit property. This mechanism
was designed by hand with the objective of welfare under
consideration. Let us call this mechanism RMC . For m = 1,
another redistribution mechanism, mentioned in [16], imple-
ments the VCG, and then redistributes the revenue in such a
way that agent i receives θ−i2 /(n−2)−2θ−i3 /[(n−2)(n−3)],
where θ−i3 is the third highest reported value other than i’s.

2) Linear redistribution mechanisms:: An important point
raised in [13], [16] suggests the potential for there to be better
(with respect to an objective related to welfare) mechanisms
that not only use the values θ−i2 or both θ−i2 and θ−i3 , but
also the values θ−ij ,∀j ∈ {4, 5, . . . , n − 1}, as part of the
redistribution payment computations. In [13], this logic is
applied to m ≥ 1, and better mechanisms do result based
on the single objective considered.

More precisely, a mechanism is sought where agent i would
receive a payment zi = c0 + c1θ

−i
1 + c1θ

−i
2 + . . .+ cn−1θ

−i
n−1.

This is called a linear redistribution mechanism [13]. The
transfer function for such redistribution mechanisms is Ti(θ) =
v−i(θ−i, f∗(θ))−v−i(θ−i, f∗(θ−i))+zi = −θm+1+zi, while
the allocation function remains the same as the VCG allocation
function. This results in a mechanism space that can be char-
acterised by a vector (c0, c1, . . . , cn−1). We intend to explore
this space of mechanisms with respect to multiple performance
objectives, which includes a variant of the objective considered
in [13], [16].



C. Mechanism Design as a MOOP

In [13], the linear redistribution mechanism search problem
is transformed into a linear program with the introduction of
various constraints. The objective used for this optimisation is
the worst case welfare. By inspecting their optimised solution
mechanisms, the authors were able to generalise the solutions
into an analytical description spanning scenario settings, details
of which can be found in [13]. Let us call this mechanism
RMGC . Considering VCG redistribution mechanisms, [15]
proposes performance objective dealing with both welfare
and fairness across the agents. A comparison of the RMC

mechanism with RMGC reveals that neither of these dominates
the other with respect to the objectives proposed in [15], which
gives us further motivation to expose trade-off mechanisms in
the linear redistribution mechanisms space. We also compare
the exposed trade-off mechanisms with RMC and RMGC ,
which are the state-of-the-art in the linear redistribution mech-
anisms class.

The objectives from [15], which are computed with respect
to the truthful outcome of the VCG mechainsm, are as follows:

• Welfare rate w: the ratio of the social welfare of the
agents including payments, to the social value of the
efficient VCG allocation without payments. For a
mechanism (f, T ) and joint type θ ∈ Θn, the welfare
rate w((f, T ), θ) can be written as,∑

i∈S vi(θi, fi(θ)) + Ti(θ)∑
i∈S vi(θi, f

∗
i (θ))

• Envy rate e: represents the average extent throughout
the system of agents to which an agent prefers the
outcome for another agent. Maximising over all
agents j, if agent i were to experience a utility
umaxi = maxj∈S{vi(θi, fj(θ)) + Tj(θ)} upon
receiving j’s allocation and j’s payment, then, for a
mechanism (f, T ) and joint type θ ∈ Θn, the envy
rate e((f, T ), θ) can be written as,

1

n

∑
i∈S

umaxi − (vi(θi, fi(θ)) + Ti(θ))

umaxi

• Disproportionality rate d: As a dictator, an agent
is seen as able to receive a utility composed of
getting the optimal allocation for itself but with
zero payment. 1/n of this utility is seen as a “fair
share” [15]. The disproportionality rate represents
the average extent throughout the system of agents
to which an agent fails to obtain a “fair share” for
itself. Thus, for agent i, if the ratio between its actual
utility to its dictatorial utility is 1/n, the agent gets a
“fair share”. For a mechanism (f, T ) and joint type
θ ∈ Θn, the disproportionality rate d((f, T ), θ) can
be written as,

1

n

∑
i∈S

max

{
0, 1− nvi(θi, fi(θ)) + Ti(θ)

maxo∈O vi(θi, oi)

}
In the scenario we are considering, the optimal allo-
cation maxo∈O vi(θi, oi) amounts to the true value θi
for agent i (i.e. dictatorial utility is θi).

It should be noted that the objective of maximising the
worst case welfare in [13] is similar to the objective of
maximising the welfare rate in [15] for the following reason.
Both worst case welfare and the welfare rate are directly
proportional to the aggregate redistribution payment. In both
cases, the pressure for any search algorithm would be to make
the aggregate redistribution payment move closer and beyond
the VCG revenue. So, we can use the welfare rate objective
as a proxy for the worst case welfare, although the latter is
a much stronger search criterion. Nevertheless, we may omit
the latter in our problem definition.

Constraints on the space of linear redistribution
mechanisms of interest, which are characterised by
(c0, c1, . . . , cn−1), can be defined as follows. It is shown
in [13], that for a mechanism to stay ex post individually
rational, zn ≥ 0. This can also be written as

∑j
i=m+1 ci ≥ 0

for j ∈ {m + 1, . . . , n − 1} [13]. Moreover, one can further
limit the search space by the constraint suggesting that a
mechanism is both ex post individually rational and non-deficit
if ci = 0 for i ∈ {0, 1, . . . ,m} [13] (please refer to Section IV
for the specification of the value ranges of non-zero ci). The
non-deficit property can further be elaborated as a set of
three constraints [13], namely: (n − m − 1)cm+1 ≤ m,
(n
∑j=m+i−1
j=m+1 cj) + (n − m − i)cm+i ≤ m for

i ∈ {2, . . . , n − m − 1}, and n
∑j=n−1
j=m+1 cj ≤ m. The

constraints make the welfare rate range between 0 and 1. The
envy and disproportionality rates also range between 0 and 1.
Moreover, in accordance with previous work [15], the envy
rate is made to be 0 in the case where the numerator and
denominator are 0.

Note that we are interested in designing mechanisms based
on their average case performance. Since the joint type
θ ∈ Θn is not known beforehand, this uncertainty needs
to be accounted for whilst searching for a Pareto optimal
set of mechanisms. We assume θis for the agents to be
independently and identically distributed. We further assume
the distributions to be uniform, and within the interval [0, 1].
This gives us a joint type that is distributed uniformly in
the space [0, 1]n. To account for the uncertainty in the joint
type, we do the following. We take ηmc Monte Carlo (MC)
samples from this joint type distribution, and evaluate the
mechanism with respect to the specified multiple objectives
ηmc times, each evaluation corresponding to a sample of the
joint type. Following this, the average case performance of the
mechanism is given by its welfare, envy and disproportionality
rates, averaged across the ηmc evaluations. Let Θmc be the set
of ηmc joint type samples. Thus, subject to the aforementioned
constraints on the space of linear redistribution mechanisms,
the search algorithm will need to optimise with respect to the
following average case performance objectives:

• (Maximise) Average case welfare rate gw:

gw((f, T ),Θmc) =
1

ηmc

∑
θ∈Θmc

w((f, T ), θ)

• (Minimise) Average case envy rate ge:

ge((f, T ),Θmc) =
1

ηmc

∑
θ∈Θmc

e((f, T ), θ)



• (Minimise) Average case disproportionality rate gd:

gd((f, T ),Θmc) =
1

ηmc

∑
θ∈Θmc

d((f, T ), θ)

IV. APPLICATION OF MOEAS FOR DESIGNING MARKET
MECHANISMS

The closest that previous work has come to applying
MOEAs for designing market mechanism is by converting this
multi-objective problem to that of a single objective [14]. We
see that a truly multi-objective approach would seamlessly fit
to this problem domain, especially since mechanisms often do
not satisfy all objectives simultaneously. Exposing mechanisms
which exist at different points within the trade-off thus helps
enhance the understanding of the space of mechanisms consid-
ered, potentially resulting in insightful eventual application of
discovered mechanisms in markets. We now describe how we
apply an MOEA in the domain of market mechanism design.

A. Experimental Setup

We use NSGA-II [18] for searching the market mechanism
design space, with the following modifications:

1) Evaluation procedure: Each candidate solution mech-
anism, given by the vector (c0, c1, . . . , cn−1),
whether in a parent or offspring population, is eval-
uated based on the average case welfare, envy and
disproportionality rates defined in Section III-C. This
requires MC sampling, which we described in Sec-
tion III-C. We describe how we choose the MC sam-
ple size ηmc for such an evaluation in Section IV-A1.

2) Selection and variation: We use binary tournament se-
lection with crowded-comparison to select one parent,
which is then mutated as described in Section IV-A2.
Such a selection is done as many times as the parent
population size. We do not use crossover.

The evolved mechanisms are compared, given our three ob-
jectives, with state-of-the-art linear redistribution mechanisms,
namely RMGC and RMC , as described in Section III-B.

1) Number of MC Samples for Average Case Performance
Evaluation: To identify a suitable number of MC samples
ηmc, we performed a preliminary experiment based on the
idea of moving averages. More precisely, for a set of randomly
generated solutions (i.e. mechanisms), we plotted the moving
averages gk((f, T ),Θmc) for 1 ≤ ηmc ≤ 6000, for each of the
objectives k ∈ {w, e, d} as a function of the number of MC
samples ηmc.

Fig. 1 shows the moving averages, together with the
standard error, for a scenario setting with n = 10 agents
using 10 randomly generated feasible solutions. The parameter
ηmc can be set to the number of MC samples at which
reliable convergence of the moving averages in all objectives
becomes visually apparent. Such a convergence occurs around
ηmc = 2000. Similar observations were made for the scenario
settings given by n = 5 and n = 8, results not shown here.

As a comparison, previous work in this domain [15]
considers 2000 ≤ ηmc ≤ 10000 MC samples, depending
on the scenario setting, in order to compute the average case

Fig. 1. Moving averages and standard error for n = 10 agents using 10
randomly generated linear redistribution mechanisms.

performance. Since more MC samples only make the perfor-
mance estimate more accurate, we choose ηmc = 6000 for
our experiments (during evolution), even though ηmc = 2000
would suffice. Moreover, in order to make fair comparisons
(i) with previous work and (ii) among solutions exposed to
different numbers of MC samples during evolution (which
might occur due to the allowance of duplicate solutions), the
performance of the mechanisms RMGC and RMC , as well as
mechanisms represented by the final evolved population are
evaluated on the same 10000 MC samples to form the new
(averaged) objective values.

2) Managing Infeasible Solutions – Variation Operators
and Numerical Limits on Solution Vectors: A solution mech-
anism is constrained by the inequalities which make it ex-
post individually rational and non-deficit, as mentioned in
Section III-C. These constraints define the feasible solution
space. MOEAs use variation operators for the exploration of
this space, and one can employ techniques commonly used for
dealing with infeasible solutions, e.g. penalisation, clamping
to the boundary, if a solution goes out of the feasible region.
Penalisation, given constraint inequality violations, is possible,
but we believe this can result in a loss in the search gradient if
the variation operator generates too many infeasible solutions.

In the class of mechanisms considered, the constraints
depend on n and m, thus different scenario settings impose
different numerical limits on feasible solutions. As a first step,
for the work reported in this paper, we take a simple approach
to managing infeasible solutions. We explicitly set approximate
and pessimistic lower and upper bounds on the numerical
limit for each variable of the solution vector as follows.
Considering the same 2000 MC samples, we compute the
average (across 2000 randomly generated feasible solutions)
number of random draws from a joint uniform distribution
[−λ, λ]n−m−1 that are required to generate a feasible solution
from within the bounds [−λ, λ] on solution variables, given
the scenario. The bounds [−λ, λ] for a scenario setting n are
chosen with one decimal precision to be those that result in this
computed average ≤ average number of random draws from



the joint uniform distribution [−1.0, 1.0]3 required to generate
a feasible solution for n = 5 and m = 15. The reasoning
behind this is primarily to keep the time spent by the MOEA
in coming up with a new population at each generation roughly
the same across different scenario settings. The reasoning also
results from the type of mutation operator considered. This
mutation operator is as follows: with probability 1/(n−m−1)
(the effective length of a solution vector), we replace a
solution variable by a value drawn randomly from a uniform
distribution within the interval [−λ, λ].

Note that these choices indeed result in the MOEA not
being allowed to search the entire feasible region, thus the
resulting solutions are only approximately Pareto optimal
within the restricted search space. We thus can expect to see
the trade-off imposed by the considered multiple objectives
on the found solutions, but within this smaller feasible space.
The goals of the paper being the exposition of a new problem
domain, and a simple application of an MOEA on the problem
helping reveal insights for the domain in terms of trade-offs,
we did not find the choices to be too restrictive.

3) Settings of Various Parameters for the Experiments:
The scenario settings in which we use NSGA-II for exposing
trade-off mechanisms are specified in Table I, along with the
used NSGA-II parameter values and the bounds on the search
space that we impose, as discussed in Section IV-A2.

TABLE I. SCENARIO SETTINGS, PARAMETER VALUES FOR NSGA-II,
AND BOUNDS ON THE NON-ZERO VARIABLES OF THE SOLUTION VECTOR

FOR EACH SCENARIO SETTING.

Scenario Settings
n 5, 8, and 10
m 1

NSGA-II Parameters
generations 200

population size |P | 50
population size |Q| 50

ηmc 6000
mutation rate 1/(n−m− 1)

Bounds on the non-zero
solution variables for each n

5 [−1.0, 1.0]
8 [−0.2, 0.2]

10 [−0.1, 0.1]

V. RESULTS AND DISCUSSION

We now present the results that the application of NSGA-II
reveals.

A. Revealing New Mechanisms and Hidden Relationships be-
tween Objectives

Fig. 2 shows trade-off plots for NSGA-II outcomes for the
three scenario settings n ∈ {5, 8, 10}. We show the trade-
off imposed by the considered objectives by plotting graphs
for the three pairs of combinations given these objectives, i.e.
welfare vs. envy, welfare vs. disproportionality, and envy vs.
disproportionality6.

5Note that the constraint inequalities in Section III-C impose restrictions on
(c0, . . . , cm) to be zero, leaving us with a joint distribution over n−m− 1
variables.

6This is for ease of visualising the trade-offs, which would be harder to
ascertain in three dimensional plots.

Previous work that has looked at designing mechanisms by
hand (RMC) [12], [15] in the linear redistribution mechanisms
class came up with a mechanism with both high welfare and
relatively fair (in terms of both envy and disproportionality)
mechanism. We can see this in Fig. 2, where the RMC

mechanisms can be seen to have low −gw (high welfare)
and low ge (envy) and gd (disproportionality) across scenario
settings. Mechanism RMGC on the other hand, which was
designed for high worst case welfare [13], [16], happens to
do well on disproportionality across scenario settings, but
results in high envy in the system. Both these works, which
are state-of-the-art when it comes to designing mechanism
in the linear redistribution class, did not however tell us
much about the trade-off that the three objectives imposed
on the designed mechanism. Thus, the relationship between
welfare and fairness in the linear redistribution mechanisms
class remained unknown. Applying NSGA-II on the problem
indeed reveals this relationships.

More specifically, we can get the following main insights
from the NSGA-II outcomes that can inform practitioners
who want to design mechanisms and employ them in their
respective markets:

1) We find mechanisms with lower envy w.r.t. the state-
of-the-art in linear redistribution mechanisms, specif-
ically when it comes to n = 5, and n = 8, as
evident from Figs. 2(a) and 2(b). Such low envy
based fairness comes at the expense of welfare of
course. For n = 10, this does not seem to be the
case (Fig. 2(c)), but remember we apply NSGA-II
on a search space smaller than the feasible region
(cf. Section IV-A2). This affects the outcomes we
get. Searching in a larger feasible region, or indeed
the entire feasible region remains future work. In any
case, a practitioner could, in effect, decide to employ
a mechanism with lower envy, at least for scenario
settings with fewer number of agents, and yet keep
the system with high enough welfare.

2) Welfare and disproportionality are negatively corre-
lated with each other (Figs. 2(d), 2(e), and 2(f)).
In other words, welfare and fairness (given by the
disproportionality objective) do not conflict with each
other. Yet, envy (which also measures fairness), does
conflict with welfare. This difference in the rela-
tionship between welfare and disproportionality, and
welfare and envy, has previously not been exposed for
linear redistribution mechanisms. We also see from
Figs. 2(g), 2(h), and 2(i), that envy conflicts with
disproportionality. The relationship between these
fairness objectives was hitherto unknown, and was
possible to be revealed via the multi-objective opti-
misation approach. A practitioner would benefit from
understanding such conflicting relationships between
different fairness measures they consider mechanisms
to satisfy, and indeed how one could be traded for
the other. This can help them employ mechanisms
with the desired kind and level of fairness in their
respective markets.

Note that the multi-objective approach as applied in this
paper is meant to only help reveal trade-offs. Searching for
mechanisms in the entire feasible region could potential reveal
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Fig. 2. Trends in the trade-off imposed by the average case performance objectives, specifically ((a), (b), (c)) average case welfare vs. envy, ((d), (e), (f)) average
case welfare vs. disproportionality, and ((g), (h), (i)) average case envy vs. disproportionality, on evolved linear redistribution mechanisms across scenario settings
given by n ∈ {5, 8, 10} (m = 1 for all). Plotted are the average case performances of the evolved as well as state-of-the-art linear redistribution mechanisms
(RMGC and RMC ), based on the same 10000 MC samples. For the evolved mechanisms, each plot shows the non-dominated set of mechanisms generated
from the collated final populations of 10 independent runs of NSGA-II.

Pareto-superior mechanisms as compared to state-of-the-art,
but this remains future work.

B. Potential Impact of Exposing Trade-off Market Mechanisms

It is not clear why the potential of MOEAs in exposing
trade-off mechanisms has remained untapped to date. For
linear redistribution mechanisms, previous work to which we
compare our work has designed mechanism based on a single
objective, but analysed the performance of these mechanisms
on other relevant objectives. From the trade-offs exhibited in
Fig. 2, and the revelations in Section V-A, it seems reasonable
to exploit the multi-objective philosophy and carry out such
an analysis at design time via MOEAs.

The virtue of designing mechanisms by hand is that an

analytical solution can be more general in that it usually
is a function of the scenario setting, e.g. RMC [12], [15],
thus one function spans scenario settings. On the other hand,
optimisation using a single objective or as in our case using
multiple objectives, is done specific to a scenario setting.
Even so, as shown in [13], [16], it is possible to inspect
and generalise the optimisation outcomes into an analytical
description spanning scenario settings, e.g. RMGC . Even
if a single analytical description for a mechanism can be
constructed by inspecting optimisation outcomes, one would
miss out on possible trade-off analytical descriptions which
could potentially be constructed upon inspecting the multi-
objective optimisation outcomes. The potential of the multi-
objective approach in this problem domain should thus not be
undermined.



Moreover, in multi-agent systems research, specifically
tailored towards resource allocation problems in decentralised
systems, employing market mechanisms for such allocations
is becoming commonplace [1], [19], [20]. Designing mech-
anisms for these systems with an a priori specification of
preferences over the objectives may not always be feasible.
This is because the requirements on the nature of allocation
of resources in these systems may change in time, sometimes
requiring efficiency/welfare and at other times requiring a fair
distribution (proportionality or low envy). Such changes in
requirements would necessitate different mechanisms to be
employed. Knowing the trade-off imposed by the objectives
on the discovered mechanisms can thus be useful for making
such choices.

VI. CONCLUSIONS AND FUTURE WORK

Mechanism design has traditionally been carried out by
hand, and recently via automation, albeit as a single objective
optimisation problem or as an optimisation problem with the
aggregation of multiple objectives into a single objective.
Considering a class of mechanisms known as linear redistri-
bution mechanisms, and the objectives of welfare and fairness
(which is represented by the objectives envy and dispropor-
tionality), we pose the automated mechanism design problem
as a naturally existing multi-objective (in our case three-
objective) optimisation problem. We apply a modified NSGA-
II to this problem, and show how the trade-off imposed by the
objectives, which has previously never been exposed for linear
redistribution mechanisms, provides insights into the problem
domain. This revealed trade-off can be seen to be useful in
at least the following ways: it can (i) provide practitioners
with mechanisms exhibiting lower envy w.r.t. state-of-the-art
linear redistribution mechanisms, and (ii) can reveal previously
unknown relationships between the objectives considered. The
application of the MOEA is rather simple, even though novel,
and leaves many open directions for future research. As such,
we will look at a more elaborate way of applying MOEAs
which allows for searching the entire feasible region of the
mechanism space considered. Further, scenario settings with
1 < m < n will also be looked at. The assumption of agent
types distributed uniformly in the space [0, 1]n will also be
relaxed. We will also consider different mechanism spaces (e.g.
allowing non-linear redistribution of revenue) and objectives in
order to gain insight into those spaces and potential trade-offs
that the objectives impose on those spaces.
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