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A Shapley-value Mechanism for Bandwidth On
Demand between Datacenters

Weijie Shi, Student Member, IEEE, Chuan Wu, Member, IEEE, and Zongpeng Li, Member, IEEE

Abstract—Recent studies in cloud resource allocation and pricing have focused on computing and storage resources but not network
bandwidth. Cloud users nowadays customarily deploy services across multiple geo-distributed datacenters, with significant inter-
datacenter traffic generated, paid by cloud providers to ISPs. An effective bandwidth allocation and charging mechanism is needed
between the cloud provider and the cloud users. Existing volume based static charging schemes lack market efficiency. This work
presents the first dynamic pricing mechanism for inter-datacenter on-demand bandwidth, via a Shapley value based auction. Our
auction is expressive enough to accept bids as a flat bandwidth rate plus a time duration, or a data volume with a transfer deadline.
We start with an offline auction, design an optimal end-to-end traffic scheduling approach, and exploit the Shapley value in computing
payments. Our auction is truthful, individual rational, budget balanced and approximately efficient in social welfare. An online version
of the auction follows, where decisions are made instantly upon the arrival of each user’s realtime transmission demand. We propose
an efficient online traffic scheduling algorithm, and approximate the offline Shapley value based payments on the fly. We validate our
mechanism design with solid theoretical analysis, as well as trace-driven simulation studies.

Index Terms—Dynamic Bandwidth Pricing, Auction Mechanism Design, Shapley Value
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1 INTRODUCTION

Today’s Internet sees the proliferation of on-demand
cloud computing services, which cloud providers pro-
vision from multiple datacenters in different geographic
locations, e.g., Amazon, Google and Rackspace [1]. Cloud
users host their tasks or services on the cloud platform,
often in multiple datacenters, to stay close to service
users, exploit lower power costs in different regions, and
enable service robustness in the face of network/power
failures. Substantial inter-datacenter transfers have hence
become the norm rather than abnormality, for migration
of virtual machines [2], replication of contents like videos
[3], and backup of data [4]. The bandwidth needed does
not come for free from the cloud provider: except for a
few large operators (e.g., Google) which own the network
among their datacenters, cloud providers typically rent
the link between their datacenters from ISPs and are
charged for their inter-datacenter traffic [5]. A proper
charging mechanism is needed to share the bandwidth
cost with the cloud users.

Existing studies have substantially investigated allo-
cation and pricing mechanisms for cloud resources like
computation and storage [6][7][8], but see a lack of
proposals for bandwidth pricing in cloud computing.
The current common practice is to charge a fixed flat
rate on data volume, e.g., per GB by Amazon EC2 [9].
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Such a flat charging model inherently lacks of market
efficiency to adapt to realtime demand/supply changes,
jeopardizing efficient bandwidth utilization as well as
social welfare of the cloud provider and cloud users.

This paper presents the first dynamic pricing mech-
anism for on-the-fly requested inter-datacenter band-
width to the authors’ knowledge. We resort to an auction
based mechanism, for effectively discovering the market
value of the link bandwidth. The users with data trans-
fer needs submit bids to the provider, specifying their
bandwidth demands, willing-to-pay prices, and source-
destination pairs of the transfer; the cloud provider
decides admission control, the transfer schedule of users’
data and the charges. The following properties are
mandatory through this auction: (1) Truthfulness and (2)
Individual Rationality, the quintessential properties which
stimulate participation and voluntary revelation of val-
uation in auctions; (3) Competitiveness in Social Welfare,
which is evaluated by the upper bound of the ratio
between the optimal social welfare and the social wel-
fare under the proposed algorithm, and quantifies the
efficiency of the auction mechanism; (4) Budget Balance
at the Cloud Provider, such that the payments from the
users are sufficient to cover the ISP charge.

We identify the following key challenges in auction
design to achieve the above properties. First, there are
different types of bandwidth demands, e.g., a flat band-
width rate plus a duration, or an amount of data to
be sent within a completion deadline; with one-hop
connection or through a linked path. How can we design
one unified auction framework taking care of all this
variety? Second, the auction’s underlying social wel-
fare maximization problem is an NP-hard combinatorial
problem, even with decisions on admission control and
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traffic scheduling only. There is one more dimension
in our decision space: the overall bandwidth to rent
from the ISPs on each inter-datacenter link. Different
ISP bandwidth charging models exist, e.g., the 95th-
percentile or the maximum-traffic charging models [10].
It is computationally difficult to decide both bandwidth
capacities to rent from the ISPs and allocation of these
capacities to users; the hardness escalates when this
optimization appears as the winner determination prob-
lem in an auction, which renders the auction a similar
flavor to double auctions, shown to be very difficult
to simultaneously achieve all 4 properties listed above
[11]. The challenge is already daunting even for the
offline version of the auction, where the cloud provider is
assumed to have complete knowledge of task arrivals in
the whole system span. However, third, an online auction
is needed in practice, to instantly make decisions upon
the arrival of each user’s real-time transmission demand.
Our contributions in tackling the above challenges are
summarized as follows:

B We set up an auction framework that is expressive
enough to allow cloud users to specify their bandwidth
demands and transmission paths, and design an efficient
mechanism for traffic scheduling and charging.

B We investigate both an offline version and an on-
line version of the auction, considering both the 95th-
percentile and the maximum-traffic charging models
of ISPs. A number of non-trivial, intriguing theoretical
results are obtained.

B For the offline version of the auction, we design
an optimal end-to-end traffic scheduling algorithm, and
novelly exploit the Shapley value in deciding admission
control and the payments, based on a cost sharing idea.
The Shapley value has been widely used for allocating
an aggregate profit/cost among the individual partici-
pants. But it has rarely been exploited for payments in
auction mechanism design. We identify that calculating
users’ payments based on the Shapley values is more
reasonable than using a classical VCG mechanism in
our system, which together with the traffic scheduling
algorithm, is proven to achieve all 4 desired properties
and a δ/(δ − γ)-approximation in social welfare, where
δ and γ are constants related to users’ valuations.

B For the online version of the auction, we propose an
efficient traffic scheduling algorithm, and approximate
the offline Shapley value based admission control and
payments on the fly. In particular, we compute an online
Shapley value based on requests that have arrived, scale
it according to the passed time, the total time span, the
ISP charge due to the existing traffic and estimated total
ISP charge. The online auction achieves all the desired
properties in expectation, with δ/(δ−γ)-competitiveness
in social welfare as well.

This theoretical work sits upon the state-of-the-art de-
velopment in datacenter networks, with link multiplex-
ing and virtual datacenter networking [12]. Especially,
the recent software defined networking (SDN) paradigm
enables a centralized controller to manage the entire

network, with typical applications to inter-datacenter
networks. Our centralized auctioneer fits nicely as a
functionality module implemented on the controller, to
overview traffic scheduling and charging in the system.

In the rest of the paper, we discuss related work in
Sec. 2, and define the system model in Sec. 3. Sec. 4 and
Sec. 5 present the offline auction and the online auction,
respectively. Simulation results are presented in Sec. 6.
And extension of the online auction is presented in Sec. 7
Sec. 8 concludes the paper.

2 RELATED WORK
Resource allocation and pricing in cloud computing
have attracted substantial research interests in recent
years (e.g., [13][14][15][16][17][18] [19][20][21][22]). Sossa
et al. [14] study scheduling algorithms for deadline-based
workflows on clouds. Hong et al. [15] solve the optimiza-
tion problem of VM placement. The biggest differences
of our work from them are to use a dynamic pricing
mechanism to adapt to the dynamic market situation,
and to incentivize users to follow the designed mech-
anism based on truthfulness guarantee. Due to their
efficiency in discovering the market value of resources,
auction mechanisms have been widely exploited for
resource provisioning with either fixed VM types [23]
or dynamically assembled VMs [7], in static systems [6]
or in an online setting [8]. All these works focus on
allocating computational resources of VMs such as CPU,
disk and RAM, but do not deal with network bandwidth.
There have been a few recent studies on bandwidth
allocation and pricing in cloud computing [16][12]. But
they focus on the network inside a datacenter, rather
than the Internet links connecting different datacenters,
where the role played by ISP charging brings another
dimension of difficulty.

The major focus of auction mechanism design is
on archiving truthfulness and efficiency. The celebrated
VCG mechanism [24] is essentially the only type of
auction that simultaneously guarantees truthfulness and
optimal economic efficiency, through calculating the op-
timal allocation and charging bidders the opportunity
cost. However, when the underlying allocation problem
is NP-hard, which is the case in our paper and is
common for combinatorial auctions [25], VCG becomes
computationally infeasible. When approximation algo-
rithms are applied to solving the underlying allocation
problem, VCG loses its truthfulness [26]. A payment rule
should be carefully designed to work in concert with the
approximation algorithm to achieve truthfulness, e.g.,
by exploiting critical bids [27], or resorting to the LP
decomposition technique [28], which is applicable to
packing problems. We novelly apply the Shapley value
method as the payment rule, which is suitable for our
bandwidth allocation scenario due to the symmetry and
fairness of Shapley values.

Some older literature has investigated bandwidth
scheduling and pricing in the Internet using game the-
oretical approaches [29][30][31]. MacKie-Mason et al.
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[32] apply a VCG auction on each router to identify
a market price for each data packet. Maille et al. [33]
enable a disparate second-price auction on each link of
a tree network. Lazar et al. [34] study a progressive
second price (PSP) auction. All these auction designs
are set up in a static network with fixed bidders and
persistent bandwidth demands. Differently, our auction
model handles both demands for fixed bandwidth rates
and data transfer with heterogeneous deadlines, in both
offline and online settings. We also combine the auction
mechanism analysis with the Shapley value method.

Shapley value [35] was originally proposed as an ap-
proach to allocate aggregated profit/cost to individuals
in a coalition in a fair and efficient manner. It has
been widely used in a variety of practical problems,
including ISP settlement and analysis of ISP charging
models [36][37].

Feigenbaum et al. [38] compare the Shapley value with
the marginal cost in cost-sharing algorithms for multicast
transmission. Grag et al. [39] propose a distributed mech-
anism to implement Shapley value cost-sharing. Though
a common approach in cooperative game theory, it has
seldom been applied to auction mechanism design. The
only proposed auction using Shapley value is the Moulin
Mechanism [40], used for cost sharing in public good
auction. It rejects users whose valuation is lower than
its Shapley value, re-calculates the aggregated cost and
the Shapley value based on the remaining users, and
repeats this rejection and calculation process until no
more users are rejected. The approximation ratio of the
Moulin mechanism in social welfare is proved to be
O(logN) where N is the number of bidders [40], and
this ratio is quite large but tight. Truthfulness of the
Moulin mechanism relies on a submodular property of the
cost function used in Shapley value computation, which
means that the marginal cost of a user is non-increasing
when new users are added to the game. The ISP charge
function in our model, either the 95th-percentile or max-
traffic charge, is not submodular. Instead, we design a
novel Shapley value based mechanism which overcomes
the drawbacks of the Moulin Mechanism.

3 SYSTEM MODEL

3.1 Network and Auction

Consider a cloud spanning multiple datacenters con-
nected by L links, operated by one cloud provider. The
topology of the network is a directed graph including
these datacenters and links (see Fig. 1 in [41] for an
example topology). The links are owned by an Internet
Service Provider (ISP) and leased to the cloud provider.
Throughout the paper, we use [X] to denote the set
of integers {1, 2, . . . , X}. Let Cl denote the maximum
bandwidth capacity that the ISP can provision on link
l ∈ [L]. The ISP charges the cloud provider based on link
usage periodically, i.e., once in each accounting period.
An accounting period is divided into multiple time slots.
Let T be the number of time slots in each accounting
period.

Fig. 1. An overview of the system.

Fig. 2. Example bandwidth allocation on link (1, 2) of
Fig. 1.

Totally N users arrive over time, with requests for data
transfer among the datacenters. User n ∈ [N ] arrives at
time tn, wishes to send data of size Bn (e.g., bytes) from
a source datacenter to a destination datacenter, along a
network path Pn, within dn time slots. Here Pn consists
of multiple ordered links in [L] such that Pn ⊆ L. The
deadline of user n’s data transfer is tn + dn − 1. User
n has a secret valuation en for the task (e.g., according
to urgency and importance of the data transfer), and
also submits a willingness-to-pay price, ên, for finishing
her task in time. Later we will prove that it is her
best strategy to bid a price equal to her valuation:
ên = en. In summary, the bid submitted by user n is
a three-tuple (Bn, dn, ên). The case that a user wishes to
send data between multiple pairs of source/destination
datacenters can be treated as multiple separate bids in
our model. In addition, our bid model can also describe a
user n’s request for an exclusive bandwidth rate along a
path for dn consecutive time slots, where the bandwidth
rate is Bn/dn.

The provider, as the auctioneer, makes the following
decisions: (1) whether to accept or to reject user n’s trans-
fer request, represented by a binary decision variable
xn = 1 or 0, respectively; (2) the amount of user n’s data
to transmit along her specified path in each time slot
within the transmission deadline, bn(t),∀t ∈ [tn, tn+dn−
1] (we assume bn(t) = 0 for t /∈ [tn, tn + dn − 1]); (3) the
payment that the provider charges user n for finishing
her transmission, jn. In the case that user n requests
an exclusive bandwidth rate, the transmission schedule
decisions are fixed such that bn(tn) = bn(tn + 1) = · · · =
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bn(tn + dn − 1) = Bn/dn, and the decisions of the cloud
provider simplify to xn and jn only. The utility of user
n is the difference between her true valuation en and
her payment jn: un = xnen − jn. Denote the ISP charge
function by v(a), where a = {al(t),∀l ∈ [L],∀t ∈ [T ]} is
the vector of link traffic in the entire network, with al(t)
being the total traffic of the cloud on link l at time t.

Fig. 1 shows an example cloud spanning three geo-
distributed datacenters, as well as the interaction be-
tween the ISP, the cloud provider and users in our
system. Two example users are illustrated: user 1 arrives
at time 1, requesting to send data at the volume of
B1 = 35 from datacenter 1 to datacenter 2 and then to
datacenter 3, within d1 = 10 time slots; user 2 arrives
at time 6, requesting to transmit data B2 = 12 from
datacenter 3 to datacenter 1 and then to datacenter 2
within d2 = 3. Fig. 2 shows an example bandwidth
allocation by the cloud provider on link (1,2) over time,
e.g., the data transmission for user 2 (in red) is scheduled
to happen in time slots 6, 7 and 8 with data volume
b2(6) = 2, b2(7) = 4 and b2(8) = 6, respectively.

The auction targets maximization of the social welfare,
which is the sum of the cloud provider’s revenue, i.e.,
aggregate payment from the users minus link bandwidth
charge paid to the ISP,

∑
n∈[N ] jn − v(a), and utilities of

all the users,
∑
n∈[N ](xnen − jn). Since payments from

the users and those received at the provider cancel each
other out, the social welfare equals the total valuation of
accepted users (users with xn = 1) minus the overall ISP
charge,

∑
n∈[N ] xnen − v(a).

In our system, we assume that the intermediate dat-
acenters along an end-to-end transmission path Pn do
not store the data, but immediately forward the data
received to the next hop datacenter. We ignore the end-
to-end delay along path Pn, since the propagation delay
even along a cross-continent link is usually less than
several seconds, while the typical time slot length used
in ISP bandwidth accounting is 5 minutes [42]. Hence,
the amount of user n’s traffic on any link l along her
path Pn is the same bn(t) in a given time slot t, and
the total traffic on link l at t can be computed as
al(t) =

∑
n∈P̃l

bn(t), where P̃l represents the set of users
whose paths traverse link l, such that n ∈ P̃l if and only
if l ∈ Pn. The social welfare optimization problem, as the
winner determination problem that the cloud provider
solves to produce the auction outcome, is formulated as
follows (assuming truthful bidding):

max
∑

n∈[N ]
xnen − v(a) (1)

s.t. al(t) =
∑

n∈P̃l

bn(t) ∀l ∈ [L], t ∈ [T ] (1a)

xnBn =
∑tn+dn−1

t=tn
bn(t) ∀n ∈ [N ] (1b)

al(t) ≤ Cl ∀l ∈ [L], t ∈ [T ] (1c)

xn ∈ {0, 1} ∀n ∈ [N ] (1d)

bn(t) ≥ 0 ∀n ∈ [N ], t ∈ [T ] (1e)

(1b) specifies that if user n’s task is admitted, her total

amount of data transmitted during tn to tn+dn−1 should
be Bn. (1c) is the maximum link capacity constraint.

We define the ISP charge function v(a) as the ag-
gregated ISP charge incurred by traffic of all accepted
users in the entire network. Next we also define an
alternative form of v(·), which will be useful later. Let
v(b, S) denote the aggregate ISP charge under the traffic
schedule b = {bn(t),∀n ∈ [S], t ∈ [T ]}, incurred by a
subset of users S ⊆ [N ], by assuming bn(t) = 0 for all
users n /∈ S. Hence v(a) is equivalent to v(b, [N ]). We
may omit b when traffic schedule b is known and fixed,
and denote the ISP charge function by v(S).

Theorem 1. The social welfare maximization problem (1) is
NP-hard, even without the ISP charge (v(a) = 0).

The proof is given in Appendix A.

3.2 Target Properties

We seek to achieve the following critical properties in
our auction mechanism design.

Definition 1. (Truthfulness in bidding price) Any user
n cannot increase her utility by bidding a price ên different
from her true valuation en, i.e., fixing other users’ bids, and
assuming that her data size Bn and deadline dn are known
to the auctioneer, user n’s utility is maximized by bidding the
truth valuation.

Definition 2. (Individual rationality) Any user’s utility
is non-negative, whether or not her request is admitted, i.e.,
un ≥ 0,∀n ∈ [N ].

Definition 3. (Budget balance) The revenue of the cloud
provider, which is the total collected payment from users
minus the overall ISP bandwidth charge, is non-negative, i.e.,
uP =

∑
n∈[N ] jn − v(a) ≥ 0.

Definition 4. (Competitiveness) The auction is called c-
competitive if for any arriving pattern of user requests, the
ratio between the optimal social welfare, Sopt, the optimal
objective value of (1), and the social welfare achieved by the
auction mechanism, Sauc, is no larger than c, i.e., Sopt

Sauc
≤ c.

3.3 ISP Charging Models

We consider the most prevalent bandwidth charging
method adopted by many ISPs, the 95th-percentile
charge [43], [37]. An accounting period, usually 1 month,
is split into time slots, typically 5 minutes each, and
the number of bytes transmitted in each time slot along
a link l is recorded. The charge on link l is based
on the 95th-percentile of these recorded volumes in an
accounting period. Let αl be the unit bandwidth price of
link l (e.g., $/byte), and ãl(t),∀t, be the ranked sequence
of al(t),∀t, such that ãl(1) ≥ ãl(2) ≥ · · · ≥ ãl(T ). Then
the charge of link l is v(l)

95 (al) = αlãl(b0.05T c + 1). The
total ISP charge for all links is v95(a) =

∑
l∈[L] v

(l)
95 (al).

We also investigate another ISP charging model, the
maximum-traffic charge, which is a simplification of the
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95th-percentile charge. The maximum volume among
the recorded slots is charged, such that the charge of
link l in an accounting period is v(l)

max(al) = αlãl(1), and
the total ISP charge is vmax(a) =

∑
l∈[L] v

(l)
max(al).

For the example in Fig. 2 where two users share link
(1,2), the maximum-traffic charge for the 10 time slots
is based on the traffic at time slot 8, which is 10. The
95th-percentile charge is based on the data volume in
the time slot with the second highest traffic, which is 9
at time slot 7.

TABLE 1
Key Notation

[X] integer set {1, 2, . . . , X}
N # of users
T # of time slots in an accounting period
L # of links
Cl maximum capacity of link l
Bn user n’s data size
Pn the path of user n’s transmission
dn user n’s allowable delivery delay
tn user n’s arriving time
xn 0 or 1, user n is accepted or rejected
bn(t) traffic of user n sent at time t
al(t) overall traffic on link l at time t
en user n’s valuation
ên user n’s bid price
jn user n’s payment
un user n’s utility
uP cloud provider’s revenue
v(a) ISP charge under overall traffic a = {al(t)}
v(S) ISP charge with a subset S of users
Sopt optimal social welfare
Sauc social welfare under the auction
P̃l set of users whose paths traverse l
φn Shapley value of user n
δ constant in Assumption 2
γ constant in Assumption 3
D maximum allowed delay of all data transfers
N set of users with en ≥ γφn
αl unit bandwidth price of link l

3.4 Key Assumptions
We assume that all users’ requests can be served, if the
cloud provider is willing to pay the ISP any amount
of charge. This implies that the maximum capacity of
the links is sufficient for all the data transfers, which
is reasonable, since the ISP may otherwise improve its
infrastructure to accommodate the extra demand, which
brings more revenue to the ISP under the 95th-percentile
or the maximum-traffic charge model.

If all users’ requests are accepted, the total valuation
of all users should typically be much larger than the
overall ISP’s charge. Otherwise, the cloud provider has
no incentive to rent the links for dispatching user’s traffic
in the first place.

In the following sections, we will design a mechanism
to allocate the cloud provider’s cost due to the ISP charge
proportionally and fairly among the users. Suppose such
a mechanism exists for now, where φn is user n’s cost
share, and the sum of users’ shares equals the total ISP
charge, i.e.,

∑
n φn = v(a), if all the requests are accepted.

We expect that the valuation en of most users is larger

than the respective proportional cost φn. The number
of the rest users, whose valuations are smaller, should
be small, and the sum of the cost shares of these users
should be limited.

We formally formulate the above into the following
assumptions on users’ valuations and cost shares.

Assumption 1. There exists a feasible solution of the social
welfare maximization problem (1), which admits all users’
transfer requests, i.e., xn = 1,∀n ∈ [N ].

Assumption 2. The total valuation of all users is at least δ
times the overall ISP charge, i.e.,

∑
n∈[N ] en ≥ δ

∑
n∈[N ] φn,

where δ is a positive constant.

Assumption 3. LetN denote the set of users whose valuation
en is at least γ times her share of the ISP charge, φn, i.e.,
en ≥ γφn. The aggregate cost share of all users not in N is
no larger than (1 − 1/γ) times the overall ISP charge, i.e.,∑
n/∈N φn ≤ (1−1/γ)

∑
n∈[N ] φn, where γ > 1 is a constant.

Let φ′n be the online estimated ISP charge (will be introduced
in Sec. 5), and let N ′ = {n|en ≥ γφ′n}. Then N ′ has the
same property:

∑
n/∈N ′ φn ≤ (1− 1/γ)

∑
n∈[N ] φn.

Key notation is listed in Table 1 for ease of reference.

4 OFFLINE AUCTION

We first consider the offline scenario where all users’
transmission requests (arrival times and detailed de-
mands) are known within the whole time span, and
design an efficient mechanism to decide whether to
admit each user’s request, how to schedule data transfer
over time, and the payment of each user. It is natu-
ral to start with a VCG-like mechanism in the design,
which is well known for achieving both social welfare
maximization and truthfulness. The VCG auction [24]
decides winners and resource allocation among winners
by solving an underlying social welfare maximization
problem, and charges each winner by their opportunity
cost. The exact optimal solution to the social welfare
maximization problem is typically required, in order
to guarantee truthfulness of the VCG auction. In our
model, the social welfare maximization problem is NP
hard, where a VCG mechanism requires exponential run-
ning time and hence becomes computationally infeasible.
Instead, we seek a novel truthful mechanism inspired
by the cost sharing idea of the Shapley value. In what
follows, we present the basics of the Shapley value first,
and then our Shapley-value based auction design.

4.1 Shapley Value

The Shapley value originates from the cooperative game
theory, which denotes the share of an individual in
a coalition when the total surplus generated by the
coalition is allocated among the individuals, following
a uniquely designed distribution method [35]. The idea
of the distribution method is to estimate the surplus
contributed by an individual by averaging her marginal
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contribution over all possible permutations of the indi-
viduals. A number of nice properties are achieved by the
Shapley values. We adapt the Shapley value idea for cost
sharing, by distributing the ISP’s bandwidth charge that
the users’ traffic aggregately leads to, among the users.
In our model, the Shapley value, i.e., each user’s cost
share, when all uses are accepted (and hence share the
ISP charge), is referred to as the offline Shapley value, and
defined as follows.

Definition 5. Assuming all users’ transfer requests are
admitted and the traffic schedule {bn(t),∀n ∈ [N ],∀t ∈ [T ]}
is known, the offline Shapley value φn of user n is defined as
the average marginal ISP charge incurred by user n’s traffic

φn =
1

N !

∑
π∈ΠN

(v(S(π, n))− v(S(π, n)\n)),

where ΠN is the set of all N ! permutations of N users,
S(π, n) is the set of users that are no later than user n in
permutation π, v(S(π, n)) is the ISP charge (under either
the 95th-percentile or max-traffic charging method) supposing
only requests from the subset S(π, n) of users are served, and
v(S(π, n)\n) is the ISP charge with one less user – user n.

Again we use the example in Fig. 2 to illustrate how
to calculate the Shapley value of user 2. There are two
permutations in this example: (i) [1,2], and (ii) [2,1]. In
case (i), user 2’s contribution to the ISP charge (under
the maximum charge model) is 6 at time 8. In case 2, the
ISP charge due to sending user 1’s data only is 6; after
including user 2’s transmission, the ISP charge increases
to 10, and hence the marginal ISP charge due to user 2
is 4. The Shapley value of user 2 is the average of the
two cases, which equals 5.

Though an intuitive idea for cost sharing, the Shapley
value has been proven to be the only distribution which
achieves all the following three nice properties [44].
(1) Efficiency: the aggregate Shapley value of all users
is guaranteed to be equal to the overall ISP charge,
i.e.,

∑
n∈[N ] φn = v([N ]). (2) Symmetry: if two users

have exactly the same traffic pattern (source/destination,
path, transfer schedule), their Shapley values should be
equal. (3) Fairness: a user’s influence on another user in
Shapley value computation is symmetric, i.e., ∀n,m ∈ S,
φn(S)− φn(S\m) = φm(S)− φm(S\n), ∀S ⊆ [N ], where
φn(S) is the Shapley value computed when only traffic
incurred by users in set S is considered.

Theoretically, calculating a Shapley value involves
O(N !) time complexity. However, it is proved that a
sampling over possible permutations gives an efficient
and unbiased estimator of the Shapley value [37]. We
choose a polynomial number of permutations, Π, ran-
domly from the set of all N ! permutations of users in
[N ], and calculate the average marginal cost of each user
over Π to obtain her estimated Shapley value.

φΠ
n =

1

|Π|
∑
π∈Π

(v(S(π, n))− v(S(π, n)\n)) (2)

Theorem 2, which follows immediately from Proposi-
tion 2 in [37], shows that the estimated Shapley value still
retains the efficiency property, if all users are computed
using the same set of permutations Π.

Theorem 2. If the estimated Shapley values in (2) for all
users are computed using the same set of permutations Π, the
sum of the estimate Shapley values of all users equals the total
ISP charge, i.e.,

∑
n∈[N ] φ

Π
n = v([N ]).

We compute the Shapley value based on (2) through-
out the rest of the paper, but omit Π from the notation
φΠ
n .

4.2 Shapley Value Based Offline Auction
We design a Shapley value based admission control and
payment mechanism, based on the idea of sharing the
overall ISP charge, that the cloud provider is subject to,
among all the users who bring the traffic on the links.
The key idea of the mechanism is: if a user’s bid price
is no larger than her share of the overall ISP charge
times a factor, then the user’s transfer request should be
rejected; otherwise, the user’s request is accepted and
she is charged at her share of the ISP charge times the
factor.

The detailed auction design is given in Alg. 1. The
algorithm decides admission control and payments of
the users, assuming a given efficient traffic scheduling
algorithm, which we will detail in Sec. 4.3. We first sup-
pose all users’ requests were accepted, i.e., xn = 1,∀n ∈
[N ], and schedule the data transfer b = {bn(t),∀n ∈
[N ],∀t ∈ T} using the traffic scheduling algorithm. We
compute the Shapley value φn for each user n according
to this traffic schedule b, and compare the user’s bid
price with γφn to decide the acceptance/rejection and
payment, where γ is a positive constant in Assumption
3 in Sec. 3.4. Finally, based on the admission control
decisions xn,∀n ∈ [N ], we run the traffic scheduling
algorithm in Sec. 4.3 again to re-schedule data transfer
for all accepted users, to further optimize the traffic
schedule for reduced ISP charge.

The payments in our auction are proportional to the
respective Shapley values (with the same coefficient γ),
such that they are fair among the users, according to the
portions of overall ISP charge that their traffic incurs on
the links that their data transfer traverses. It is also a
reasonable method for the cloud provider to charge the
users, that associates the payments with her cost (due to
the ISP’s charge). The parameter γ decides the revenue
obtained by the cloud provider, and is tunable by her.
It should be no smaller than 1, such that the overall
payment from the users would be no lower than the
ISP charge, in order to guarantee budget balance at the
provider (based on the efficiency property achieved by
Shapley values). It should not be too large though, in
order to retain as many users as possible in the cloud
service, with better social welfare.

In addition, although the Shapley values used for
deciding the payments are not exactly the Shapley values
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Algorithm 1 Offline Auction Mechanism
1: Calculate a feasible traffic schedule b = {bn(t),∀n ∈

[N ],∀t ∈ [T ]}, using the offline traffic scheduling
algorithm in Sec. 4.3 with xn = 1,∀n ∈ [N ]

2: for all users n ∈ [N ] do
3: Calculate the offline Shapley value φn based on

b
4: if user n’s bid price ên ≥ γφn then
5: Accept user n by setting xn = 1
6: Charge user n by payment jn = γφn
7: else
8: Reject user n by setting xn = 0
9: end if

10: end for
11: Re-compute the traffic schedule b using the offline

traffic scheduling algorithm in Sec. 4.3, with xn,∀n ∈
[N ], computed above

computed based only on traffic of admitted requests, we
show in Theorem 3 that our auction achieves all four
target properties of the mechanism design. The proof is
given in Appendix B.

Theorem 3. The Shapley value based offline auction de-
scribed in Alg. 1 is computationally efficient, budget balanced,
individually rational, truthful in bidding price, and δ

δ−γ -
competitive in social welfare, where δ and γ are constants
given in Assumptions 2 and 3.

For example, if δ > 10 and 1 < γ < 2, the competitive
ratio δ

δ−γ is no larger than 1.25. Note that we only require
a feasible traffic schedule b to be computed in line 1 of
Alg. 1 by the offline traffic scheduling algorithm, and
can rest assured that Theorem 3 is correct. We give an
algorithm which produces a feasible traffic schedule in
the following.

4.3 Offline Traffic Scheduling Algorithm
Given the admission decisions, xn,∀n ∈ [N ], we solve
the following linear program (LP) to compute a feasi-
ble traffic schedule to the social welfare maximization
problem in (1):

max
∑

n∈[N ]
xnen −

∑
l

αlcl (3)

s.t. xnBn =
∑tn+dn−1

t=tn
bn(t) ∀n ∈ [N ] (3a)∑

n∈P̃l

bn(t) ≤ cl ∀l ∈ [L],∀t ∈ [T ] (3b)

bn(t) ≥ 0 ∀n ∈ [N ], ∀t ∈ [T ] (3c)

cl ≤ Cl ∀l ∈ [L] (3d)

Here, cl,∀l ∈ [L], and bn(t),∀n ∈ [N ],∀t ∈ [T ], are
decision variables, where cl denotes the maximum traffic
on link l among the time slots within the accounting
period T . We can see that the objective function is the
same as that in (1), except for computing the ISP charge

v(a) using the maximum-traffic model. The constraints
are similar too, except for replacing al(t),∀t ∈ [T ], by cl.
It is easy to see that if there exists a feasible solution b
to LP (3) at the given xn’s, then this b and xn’s render
a feasible solution to problem (1). Hence by solving LP
(3) using any efficient LP solver, we can find a feasible
solution to problem (1) with the given xn’s.

We note that solving LP (3) actually produces an
optimal traffic schedule that maximizes the social wel-
fare (or equivalently minimizes the ISP charge) with
given xn’s, under the maximum-traffic ISP charge model.
Nevertheless, we only require a feasible traffic schedule
in Alg. 1, and hence Theorem 3 is correct no matter
whether the ISP charge is based on the 95th-percentile
or maximum-traffic model.

Remark: We have presented the offline auction focus-
ing on the request model that a user specifies an amount
of data and the transmission deadline. In the case that
requests for exclusive bandwidths exist, Alg. 1 works
in a simplified fashion by setting bn(t)’s of those users
directly to the respective demanded bandwidth rates.
The existence of a feasible traffic schedule is guaranteed
by Assumption 1.

The overall messaging complexity of the offline auc-
tion is O(N). Suppose we use O(N2) random permu-
tations when calculating the Shapley value, which is
adopted in our simulations. We also use a heap to record
the maximum traffic. The time complexity of the offline
auction is O(N3D log T + M), where M is the time
complexity of solving LP (3).

5 ONLINE AUCTION

We now design an online version of the auction in Alg. 1,
which makes decisions on admission, traffic scheduling
and payment of each user’s request upon its arrival.

5.1 Online Auction based on Estimation of Offline
Shapley Value
The online auction follows a similar idea as Alg. 1,
in order to retain the nice properties achieved by the
offline auction: the cloud provider calculates the Shapley
value of each user upon the arrival of her request,
and rejects the user if her bid price is low relative to
the Shapley value. In the online auction, we also stick
to the offline Shapley value defined in Definition 5,
computed as the share of each user in the overall ISP
charge incurred when all users’ transfer requests are
scheduled, since we are able to show nice properties
achieved by an auction based on such a Shapley value.
Again we assume a known online traffic scheduling
algorithm which produces a feasible traffic schedule, to
be discussed in the next Sec. 5.2, that essentially divides
the data to be transmitted evenly among all the allowed
time slots. The challenge, however, is that it is impossible
to precisely calculate such an offline Shapley value on
the spot without knowing any future request arrivals. In
our design, we estimate a user’s offline Shapley value as
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best as we can. Here we present two methods to estimate
the offline Shapley value, assuming that we can estimate
the probability distribution of user arrivals using some
regression techniques [45].

When a new user n arrives at tn, our first estimation
method is based on the Monte Carlo simulation [46]: we
randomly simulate future user arrivals according to the
arrival distribution and then calculate the offline Shapley
value of user n using all the produced user arrivals.
Using this method, we are guaranteed to obtain the
expectation of the offline Shapley value (based on the
estimated probability distribution of user arrivals), and
the precision is higher if we repeat the simulation for
more times.

Our second estimation method is according to an
efficient formula, which can approximately calculate the
expectation of the offline Shapley value. We first cal-
culate user n’s Shapley value φ′n according to the ISP
charge incurred by all the users that have arrived so far,
using a formula similar to (2), assuming that all their
requests are scheduled. This value, φ′n, can be considered
as the amortized cost of user n supposing no new users
would arrive after tn. Then we scale φ′n by a factor
v̄([N ])tn/(v([1, n])T ) to obtain an estimate φ̂n of the
offline Shapley value, i.e., φ̂n =

φ′
nv̄([N ])tn
v([1,n])T . Here v([1, n])

is the overall ISP charge due to the traffic of the first n
arrived users, and v̄([N ]) is the expectation of the overall
ISP charge due to traffic of all N users that may arrive in
T . The intuition behind this scaling is as follows: Assume
the probability distribution of user request arrival is
the same in any time slot, i.e., the probability for a
specific number of users with a specific transfer request
to arrive is the same among different time slots. Then in
expectation, tn/T fraction of all the users arrive no later
than tn. For the upcoming users after tn, their transfer
data sizes and allowable transmission delays follow the
same distributions as those of the n earlier users, based
on the assumption above. So the cost share of user n will
eventually be amortized by T/tn times more users, and
hence we scale the Shapley value φ′n down by a factor
of tn/T to estimate the effect of more arriving users in
user n’s offline Shapley value. Meanwhile, the total ISP
charge will increase from v([1, n]) to v̄([N ]), so we also
multiple the ratio v̄([N ])/v([1, n]) in the estimation.

To estimate v̄([N ]), the provider can use the history
records in previous accounting periods, and take the
average ISP charge per accounting period as the esti-
mate. Or another approach is as follows: Let P (b, d,m)
denote the probability that m users with a per-time-
slot traffic b and an allowable delay no smaller than
d arrive in time slot t which is known. First, we cal-
culate the probability that m users are transmitting
traffic b in time slot t: p(b,m). These m users should
arrive during time slots [t − D + 1, t]. So p(b,m) =∑
m1+m2+...+mD=m

∏D
d=1 P (b, d,md). Then the probabil-

ity that the total traffic at time t is B is: p′(B) =∑
m1,m2,...,mbmax

∏
b p(b,mb), where bmax is the upper

Algorithm 2 Online Auction Mechanism
1: B Upon arrival of user n’s transfer request:
2: Calculate the traffic schedule bm(t),∀m ∈ [1, n],∀t ∈

[T ], using the traffic scheduling algorithm in Sec. 5.2
3: Calculate the Shapley value φ′n based on bm(t),∀m ∈

[1, n],∀t ∈ [T ]
4: Calculate the estimation of the offline Shapley value:
φ̂n =

φ′
nv̄([N ])tn
v([1,n])T

5: if user n’s bid price ên ≥ γφ̂n then
6: Accept user n by setting xn = 1
7: Charge user n by payment jn = γφ̂n
8: else
9: Reject user n by setting xn = 0

10: end if

bound of the per-time-slot traffic, and m1 + 2m2 + . . .+
bmaxmbmax = B. Next, the probability that the peak
traffic over time slots [tn, T ] is no more than B is:
ξ(B) = (

∑B
i=0 p

′(i))T−tn . The probability that the peak
traffic is exactly B is: ξ′(B) = ξ(B + 1) − ξ(B). Finally,
we obtain v̄([N ]) =

∑B̃
i=0 B̃ξ

′(i) +
∑∞
i=B̃ iξ

′(i), where B̃
is the peak per-time-slot traffic during [1, tn].

The sketch of our online algorithm is given in Alg. 2,
where we adopt the second method above to estimate
the offline Shapley value of each user upon her arrival.
The messaging complexity of this algorithm is still O(N),
and its time complexity is O(N4D log T ).

Theorem 4. The online auction described in Alg. 2 is com-
putationally efficient, individually rational, truthful in both
bidding price and bidding data size, budget balanced in expec-
tation, and δ

δ−γ -competitive in social welfare in expectation,
if the expectation of the offline Shapley value of each user can
be estimated upon her arrival.

For the online auction, we can prove its truthfulness
in both bidding price and bidding data size (and only
assume that the deadline is known to the auctioneer),
which is stronger than the property of the offline auction.
The proof of Theorem 4 is given in Appendix C.

5.2 Online Traffic Scheduling Algorithm

We design a simple but effective online algorithm to
provide a traffic schedule {bn(t),∀t ∈ [T ]}, upon the
arrival of user n, utilizing the idea of simple smoothing
[42]: We distribute user n’s data traffic equally over the
entire transmission time window [tn, tn + dn − 1], such
that bn(t) = Bn/dn, ∀t ∈ [tn, tn + dn − 1]. This simple
algorithm provides us a simple feasible solution to (1),
since we assume the maximum capacity of the ISP’s
links is sufficient for all the data transfers if the cloud
provider is willing to pay an ISP charge at any amount
(Assumption 1).

Similar to the case in Sec. 4.3 where the solution
we find further maximizes social welfare under the
maximum-traffic charging model, here we move a step
further to show that the solution produced by such a
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simple-smoothing algorithm is also efficient in minimiz-
ing the ISP charge part of the social welfare, under the
maximum-traffic charging model. The intuition is that by
evenly distributing the traffic, we may avoid high traffic
peaks.

Lemma 1. Our simple smoothing based online traffic schedul-
ing algorithm achieves a 2HD ∈ O(logD) competitive ratio
in the peak traffic on each link, where D = maxn∈N{dn} is
the maximal allowable delay among all users’ requests, and
HD =

∑D
d=1 1/d.

Lemma 1 shows that if the optimal solution of (1)
leads to a peak traffic C along a link in the system,
our online scheduling algorithm achieves a peak traffic
at most 2HDC on the link. The proof of Lemma 1 is
given in Appendix D. This competitive ratio is also
asymptotically tight. Consider D users who arrive at
t1 = 1, t2 = 2, . . . , tD = D, respectively, and maximum
transfer completion time d1 = D, d2 = D−1, . . . , dD = 1,
respectively. The data size of all these requests is B1 =
· · · = BD = 1. The minimal peak traffic is 1 when user
1’s data is transferred in time slot 1, user 2’s data is
transmitted in time slot 2, and so on. With our online
scheduling algorithm, the peak traffic

∑D
d=1 1/d occurs

at time D.
Based on Lemma 1, we can bound the ratio of the over-

all ISP charge for traffic in the entire network incurred
by our online scheduling algorithm over that computed
with the optimal solution to (1), as follows, under the
maximum-traffic charging model. The proof of Theorem
5 is given in Appendix E.

Theorem 5. The simple smoothing based online traffic
scheduling algorithm achieves a 2αHD competitive ratio in
overall ISP charge in the system, under the maximum-traffic
charging model, where α is the ratio between the highest and
lowest unit bandwidth prices among all links, and HD =∑D
d=1 1/d.

Finally, we readily see that Alg. 2 and all results
derived in this section also apply to the case that some
users request exclusive bandwidth rates.

6 PERFORMANCE EVALUATION

6.1 Simulation Setup
We evaluate the performance of our bandwidth auctions
through trace-driven simulations. We simulate the topol-
ogy of Google datacenter network [41], which includes
12 datacenters and 16 links between the datacenters. The
capacity of the links is assumed to be always sufficient
for data transfer. A unit bandwidth price αl for each link
is generated randomly in the range [1, 2]. We uniformly
randomly choose one time slot as the arrival time tn
of each request, such that each user arrives at each
time slot with an equal probability. We generate our
data transfer workloads in two ways: (1) assigning each
user with a transfer data size Bn based on the recorded
Wikipedia page view counts (available at [47]) during

her arrival hour, multiplied by a random coefficient in
[1, 4]; (2) uniformly randomly generating a data transfer
size in the range of [104, 105]. The source and destination
datacenters of each request are randomly picked among
all the datacenters, and the shortest path between the
two is indicated for data transfer. The allowable delay
dn is randomly set within [1, D]. The valuation en of
user n is set proportional to the data size Bn, negatively
correlated with the allowable delay dn, and scaled by a
random coefficient. Based on the data we generated, we
have δ = 10. By default, γ = 2, and the percentage of
flat bandwidth requests among all requests is zero.

We evaluate the performance of our auctions against
the optimal performance achieved by the optimal solu-
tion of the social welfare maximization problem (1). The
evaluations are based on the maximum-traffic charging
model, because problem (1) under the 95th-percentile
charging model cannot be formulated into a standard
mixed integer program and cannot be readily solved by
an optimization solver. We run each experiment for 10
times (5 following the Wikipedia workload and 5 with
randomly generated workload) and present the average
result.

6.2 Performance of the Offline Auction
We first compare the social welfare achieved by our
offline auction Alg. 1 and the optimal social welfare by
solving (1) exactly, with T = 1000. In Fig. 3, we show the
ratio of the optimal social welfare over the social welfare
derived by Alg. 1, averaged over 10 times of the exper-
iment, together with the best and worst ratios obtained
among the 10 trials. Our theoretical upper bound of the
approximation ratio is δ

δ−γ = 1.25. Fig. 3 shows that the
average ratio that our offline auction actually achieves
is much better than the theoretical bound. The impact
of D on the ratio is not obvious. When N is larger, the
performance tends to downgrade a bit. This is because
with a larger N , more random permutations are required
in computing Shapley value with Eqn. (2), in order to
obtain an accurate estimation, i.e., using O(N2) random
permutations may not be sufficient. This calls for a more
efficient permutation selection method (rather than ran-
dom selection among the set of all possibly permutations
over [1, N ]), to achieve more accurate estimation with
fewer permutations, whose in-depth study we leave as
future work.

Next we study the impact of the percentage of flat
bandwidth requests on the social welfare ratio. Given
the data sizes in delay-tolerant data transfer requests are
in the range of [100, 105] based on the Wikipedia traces,
we set the bandwidth rate demanded in a flat band-
width request n by randomly picking from [ 100

dn
, 105

dn
].

In addition, T = 400, N = 2000, and D = 10 in this
set of experiments. Fig. 4 shows that the performance of
our offline auction remains stable at any ratio of the flat
bandwidth requests and the delay-tolerant data transfer
requests, demonstrating that the offline auction Alg. 1
can handle any mixed request patterns well.
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Fig. 3. Performance of the offline auc-
tion

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

1.02

1.04

1.06

1.08

1.1

Percentage of Flat Bandwidth Requests

O
pt

im
al

/O
nl

in
e 

S
oc

ia
l W

el
fa

re N=2000

Fig. 4. Performance of offline auc-
tion with different percentages of flat
bandwidth requests

1.5 2 3 4 5 6 7 8
0

0.6

1.2

1.8

2.4

3
x 10

7

γ

P
ro

vi
de

r 
R

ev
en

ue

 

 

1.5 2 3 4 5 6 7 8
1

1.1

1.2

1.3

1.4

1.5
x 10

8

S
oc

ia
l W

el
fa

re

Provider Revenue
Social Welfare

Fig. 5. Impact of γ on the provider’s
revenue and the social welfare

0.95 1 1.05 1.1 1.15 1.2 1.25

x 10
9

2

3

4

5

6
x 10

8

Social Welfare

P
ro

vi
de

r 
R

ev
en

ue

Auction
Flat Price

Fig. 6. Comparison of the provider’s
revenue between our offline auction
and flat pricing
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Fig. 8. Performance of online schedul-
ing algorithm

We also study the impact of parameter γ in Alg. 1
on the provider’s revenue and the social welfare. Here
we set T = 100, N = 2000, D = 15, and vary γ used
in deciding the acceptance of users ên ≥ γφn and the
payment jn = γφn between 1.5 and 8. Fig. 5 shows that
with the increase of γ, the social welfare decreases, and
the provider’s revenue in general increases, revealing
a tradeoff between social welfare and the provider’s
revenue. With larger γ, the admission criterion becomes
higher, and hence more users are rejected. Both the
total valuation and the ISP charge decrease due to more
rejected users. Since most users’ valuations are much
larger than their incurred ISP charges, the decrease of the
total valuation is dominating, leading to reduced social
welfare. For the provider, she accepts fewer requests
but charges a higher payment from each winner. When
γ is relatively small, the increase of payment with the
increase of γ is dominating, and the provider’s revenue
increases; when γ is larger, the impacts of per-winner
payment increase and winner number decrease roughly
cancel out, and the provider’s revenue becomes more
stable. We also notice that for γ > 5, the provider’s
revenue increases very little with the decrease of social
welfare. This implies that the provider can set γ at a rea-
sonable level (about 4 in this case) to achieve a satisfying
level of revenue, while looking after the benefit of most

users (social welfare).

Finally we compare the performance of our offline
auction with that of a flat pricing policy. Under the
flat pricing policy, each user is charged by her total
data size Bn times a flat price rate. The provider also
faces the social welfare and revenue trade-off when
using flat pricing: when the price is higher, the provider
may gain more revenue for serving each user while
driving more users away, affecting social welfare. So we
compare the provider’s revenue achieved under the two
pricing methods, our auction and flat pricing, when the
same total social welfare is achieved. Under our auction
mechanism, we can calculate the revenue achieved at
any given social welfare, just like what we do in Fig. 5.
For flat pricing, given an amount of social welfare, we
find the unique corresponding flat price by gradually
increasing a price rate until the target social welfare
is achieved; then the revenue under such a flat price
can be calculated. As we can see in Fig. 6, under either
pricing mechanism, if more social welfare is desired, the
provider has to give up some revenue. At any given
amount of social welfare, the revenue under our auction
mechanism is much larger than that under flat pricing,
revealing the better performance of our mechanism.
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6.3 Performance of the Online Auction

We now evaluate our online auction Alg. 2, and show in
Fig. 7 the ratio of the social welfare achieved by Alg. 2
over the optimal social welfare by solving (1) exactly,
with T = 100. The average ratio is smaller than the
theoretical approximation ratio 1.25 in all cases.

Finally, we evaluate the ratio between the overall ISP
charge incurred by our online scheduling algorithm in
Sec. 5.2) and the optimal ISP charge, derived based
on the optimal solution to (1). The ratio between the
maximum and minimum unit bandwidth prices on all
links is set to α = 2, and we use T = 1000. Fig. 8
shows that the performance of our online scheduling
algorithm slowly downgrades with larger D, which is
consistent with our analysis in Theorem 5. Nevertheless,
for large D, the ratio is around 2, still much lower than
the theoretical upper bound given in Theorem 5. It also
shows that the extreme worst cases (like the example we
present in Sec. 5.2) rarely happen in practical scenarios.

7 EXTENSION

Recall that our offline auction Alg. 1 is truthful in
bidding price and our online auction Alg. 2 is truthful
in bidding price and bidding data size. Among the three
parts in a user’s bid, truthfulness in the deadline dn is
still missing. We now propose an extension of the online
auction mechanism, which achieves fully truthfulness in
all parameters in a user’s bid.

Intuitively, a user cannot bid a later deadline than her
true need, which will lead to incomplete transmission by
the time of her said deadline. Then the only possibility
for untruthfulness in the deadline is that a user may
report an earlier deadline than her true need. In order
to prevent such manipulation, our approach is to let
the auctioneer decide an optimal transfer completion
time for the user, which brings the lowest price for the
user. Then the user has no incentive to report an earlier
deadline since the bandwidth allocation at the auctioneer
is already to achieve the best utility for her. The modified
online auction is given in Alg. 3. Let φ̂n(d) denote the
estimation of the offline Shapley value of user n in Alg. 2
under deadline d, which decides the threshold for accep-
tance/rejection in our mechanism. Our extended online
auction works by running Alg. 2 with different deadlines
d, for d = 1, . . . , dn, and choosing the smallest threshold:
φ̂minn = mind∈[dn]{φ̂n(d)}, as well as the corresponding
traffic schedule. The auction accepts a user if ên ≥ γφ̂minn .

We prove the properties achieved by Alg. 3 in Theorem
6, with proof given in Appendix F.

Theorem 6. The extended online auction Alg. 3 is compu-
tationally efficient, individually rational, truthful in bidding
price, deadline and data size, as well as budget balanced in
expectation.

We note that since the online scheduling algorithm is
modified in this extension mechanism, the competitive

Algorithm 3 Extended Online Auction Mechanism
1: B Upon arrival of user n’s transfer request:
2: for all d ∈ [dn] do
3: Calculate the traffic schedule bm(t),∀m ∈

[1, n],∀t ∈ [T ], using the traffic scheduling algorithm
in Sec. 5.2, supposing user n’s deadline is d instead
of dn

4: Calculate the Shapley value φ′n(d) based on traffic
schedule bm(t),∀m ∈ [1, n],∀t ∈ [T ]

5: Calculate the estimation of the offline Shapley
value: φ̂n(d) =

φ′
n(d)v̄([N ])tn
v([1,n])T

6: end for
7: Choose the smallest offline Shapley value φ̂minn =

mind∈[dn]{φ̂n(d)}, and the corresponding optimal
deadline dmin.

8: if user n’s bid price ên ≥ γφ̂minn then
9: Accept user n by setting xn = 1

10: Charge user n by payment jn = γφ̂minn

11: Schedule user n’s traffic in dmin time slots
12: else
13: Reject user n by setting xn = 0
14: end if
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Fig. 9. Performance of the extended online auction

ratio in social welfare is no longer guaranteed. We in-
stead evaluate the performance of Alg. 3 in social welfare
using trace-driven simulations under the same setup as
in previous experiments. Fig. 9 shows the ratio of the
optimal social welfare over the social welfare derived
by Alg. 3, averaged over 10 times of the experiment,
together with the best and worst ratios obtained among
the 10 trials. Here T = 100. We observe that the ratios are
very close to those achieved by the online auction Alg. 2
in Fig. 7. The reason behind the unaffected performance
is as follows: The search for the optimal completion time
leading to the lowest Shapley value is in line with the
minimization of the ISP charge; if a user’s traffic would
increase the maximum traffic in the billing time slot, such
a traffic schedule will result in a relatively high Shapley
value, and thus is unlikely to be chosen. So in the long
term, traffic schedules which smooth the peak traffic are
more likely to be chosen, and the total ISP charge and
hence the social welfare remain at similar levels.
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8 CONCLUSION

This paper presents a novel Shapley value based auction
mechanism for dynamic pricing of inter-datacenter on-
demand bandwidth. Targeting truthfulness, individual
rationality, budget balance and competitiveness in social
welfare, our mechanism design is divided into two steps:
we first propose the offline version of the auction, which
exploits the Shapley values in admission control and
payment computation together with an optimal traffic
scheduling algorithm, achieving all four desired proper-
ties; we then design the online auction approximating
the offline mechanism, retaining the nice properties. As
the first pricing mechanism for inter-datacenter band-
width, our design has been targeting a generic system
model, by allowing two representative types of band-
width demands and two typical ISP charging models.
There yet exist other dimensions that our model can be
further extended on, e.g., involving routing decisions for
selecting (possibly) multiple paths for each transfer task.
We also plan to extend this work by addressing com-
putational resource and bandwidth resource together
in cloud resource allocation, and seek to build a more
comprehensive auction framework for cloud providers.
We seek to explore such extensions in our future work.
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APPENDIX A
PROOF OF THEOREM 1
Proof. We prove the computational complexity of the
social welfare maximization problem by a reduction to
the 0-1 knapsack problem, which is NP-hard. Suppose
the ISP charge is 0, and all users allow 0 delay (im-
mediate transmission), and only consider one time slot.
Then the social welfare maximization problem becomes
maximizing the sum of the valuation of served users,
under the constraint that the sum of their data size does
not exceed the bandwidth limit. This is exactly the form
of the 0-1 knapsack problem.

APPENDIX B
PROOF OF THEOREM 3
Proof. It is ready to see that each step of Alg. 1 involves
polynomial computation complexity.

First we calculate the revenue of the provider. The ac-
tual ISP charge is no larger than the ISP charge when all
users are served, i.e.,

∑
n∈[N ] φn. The payment collected

is γ(
∑
n∈N φn), where N is the set of accepted users. So:

uP ≥ γ(
∑
n∈N

φn)−
∑
n∈[N ]

φn

= γ(
∑
n∈[N ]

φn −
∑
n/∈N

φn)−
∑
n∈[N ]

φn

≥ γ(
∑
n∈[N ]

φn − (1− 1/γ)
∑
n∈[N ]

φn)−
∑
n∈[N ]

φn = 0

So budget balance at the provider is guaranteed. The
utility of rejected users is always 0. The utility of ac-
cepted users is un = en − γφn ≥ 0 according to the
offline auction mechanism. So the auction is individually
rational.

For user n, if she is accepted with truthful bidding en,
submitting her bid price ên different from her valuation
en does not affect the traffic scheduling algorithm and
the traffic bn(t). Thus her Shapley value φn is the same
either bidding en or ên. So her utility is not affected. For
a rejected user, for the similar reason, her Shapley value
φn cannot be decreased by false valuation bidding. So

the utility is also not increased if she is still rejected with
bidding ên. And her utility becomes negative if accepted
with false bid.

The optimal social welfare is no larger than the social
welfare achieved in the following fictional scenario: all
users are accepted and the ISP charge is 0. So Sopt ≤∑
n∈[N ] en. The total valuation under our auction is∑
n∈N en, and for n /∈ N , en < γφn. The actual ISP

charge is no larger than
∑
n∈[N ] φn. So

Sauc ≥
∑
n∈N

en −
∑
n∈[N ]

φn

≥
∑
n∈[N ]

en −
∑
n/∈N

γφn −
∑
n∈[N ]

φn

≥
∑
n∈[N ]

en − γ(1− 1/γ)
∑
n∈[N ]

φn)−
∑
n∈[N ]

φn

=
∑
n∈[N ]

en − γ
∑
n∈[N ]

φn

Then the ratio between optimal social welfare that is
derived by solving (1) exactly and the social welfare
achieved by our offline auction is:

Sopt
Sauc

≤
∑
n∈[N ] en∑

n∈[N ] en − γ
∑
n∈[N ] φn

= 1 +
γ
∑
n∈[N ] φn∑

n∈[N ] en − γ
∑
n∈[N ] φn

≤ 1 +
γ
∑
n∈[N ] φn

δ
∑
n∈[N ] φn − γ

∑
n∈[N ] φn

=
δ

δ − γ

APPENDIX C
PROOF OF THEOREM 4
Proof. Similar to the proof in Appendix B, the online
auction described in Alg. 2 has polynomial time com-
plexity. The expectation of the provider’s revenue is
E[uP ] ≥ E[γ(

∑
n∈N ′ φ̂n) −

∑
n∈[N ] φn] ≥ 0, based on

the assumption that
∑
n/∈N ′ φn ≤ (1 − 1/γ)

∑
n∈[N ] φn

and E[φ̂n] = φn. So budget balance in expectation at the
provider is guaranteed. The utility of the accepted users
un = en−γφ̂n ≥ 0 according to the online auction mech-
anism. So the auction is individually rational. Bidding a
different valuation ên does not change the traffic alloca-
tion bm(t). Also the overall ISP charge due to the traffic
of the first n arrived users v([1, n]) and the expectation of
overall ISP charge v̄([N ]) are not affected by the bidding
price ên, since v([1, n]) depends on the previous users
and v̄([N ]) depends on the user distribution estimation
(e.g., using some regression techniques). Therefore the
estimated Shapley value φ̂n is not affected by ên. So this
mechanism is truthful in bidding price. Next we prove
that the user cannot decrease the estimated Shapley
value φ̂n by misreporting her data size Bn. First the
user cannot bid a smaller data size Bn because other-
wise the transmission task is not fully served. If a user
submits a larger Bn, then her traffic at any time slot is
larger according to our online scheduling algorithm. If
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the ISP charge due to the first n users v([1, n]) is not
increased under the false Bn value, then φ̂n remains the
same. Otherwise, the billing time slot is one of the time
slots during user n’s stay. According to the property of
Shapley value, her Shapley value will increase more than
the increase of the ISP charge: φ′n/v([1, n]) is larger, and
so is φ̂n, which can only decrease the utility of user n. So
this mechanism is also truthful in bidding data size. The
optimal social welfare Sopt ≤

∑
n∈[N ] en. The expectation

of social welfare under the online auction is:

E[Sauc] ≥ E[
∑
n∈N ′

en −
∑
n∈[N ]

φn]

≥
∑
n∈[N ]

en −
∑
n/∈N ′

γE[φ̂n]−
∑
n∈[N ]

φn

≥
∑
n∈[N ]

en − γ
∑
n∈[N ]

φn

So the competitive ratio is E[
Sopt

Sauc
] ≤ δ

δ−γ .

APPENDIX D
PROOF OF LEMMA 1
Proof. First we formulate the minimal peak traffic prob-
lem on a single link (4), as well as its dual (5).

minC (4)

s.t. Bn =

tn+dn−1∑
t=tn

bn(t) ∀n ∈ [N ] (4a)∑
n∈[N ]

bn(t) ≤ C ∀t ∈ [T ] (4b)

bn(t) ≥ 0 ∀n ∈ [N ], t ∈ [T ] (4c)

max
∑
n∈[N ]

znBn (5)

s.t.
∑
t∈[T ]

y(t) ≤ 1 (5a)

zn ≤ y(t) ∀n ∈ [N ], t ∈ [tn, tn + dn − 1] (5b)

y(t) ≥ 0 ∀t ∈ [T ] (5c)

For an arbitrary user set [N ], suppose the highest
traffic appears at time T ′ in our online algorithm. Let
N be the set of user involved in the traffic at time T ′, i.e.
n ∈ N iff T ′ ∈ [tn, tn+dn−1]. Then the peak traffic of our
algorithm is

∑
n∈NBn/dn. Note that for any user n ∈ N,

its delay satisfies D ≥ dn ≥ T ′ − tn + 1 and its arriving
time tn ≥ T ′ − D. Now we give a feasible solution
for the dual (5). Let w = 2HD. y(t) = 1/(|t − T ′|w)
for t ∈ [T ′ − D,T ′ + D], and 0 otherwise. For n ∈ N,
zn = 1/(dnw), and 0 otherwise. We verify that this
solution is feasible.

∑
t∈[T ] y(t) ≤ 2

∑d=D
d=1 (1/dw) ≤ 1. For

∀n ∈ N, we need to show that zn ≤ mint∈[tn,tn+dn−1] y(t).
Note the distribution of the value of y(t), we can
conclude that mint∈[tn,tn+dn−1] y(t) equals either y(tn)
or y(tn + dn − 1). Since y(tn) = 1/(T ′ − tn)w, and
y(tn+dn−1) = 1/(tn+dn−T ′−1)w (if tn+dn−1 ≥ T ′,
otherwise this case can be ignored), we only need to
show T ′ − tn ≤ dn, and tn + dn − T ′ − 1 ≤ dn. These 2
inequalities holds obviously. So this solution is feasible,
and the value of the objective function of the dual (5) is∑
n∈NBn/(dnw).

APPENDIX E
PROOF OF THEOREM 5
Proof. The key issue we need to prove here is: for every
link, if the peak traffic of the optimal solution is C,
then the peak traffic in our algorithm is no larger than
2HDC. If we take all the users involved in this link, and
create a new network with only one link and these users.
Then the minimal peak traffic is no larger than C in
the new network. So our algorithm running on single
link network does not exceed 2HDC. The schedules for
the single link network and the original network are the
same for these users, and so are the peak traffic. Then
take the effect of unit prices into consideration, we get
the bound on total ISP charge.

APPENDIX F
PROOF OF THEOREM 6
Proof. The truthfulness in bidding price and data size
is due to the same reason in Appendix C. Suppose a
user makes a smaller deadline bid. Her threshold φ̂n

min

cannot be smaller than under the truthful bid. Because
under the truthful bid, φ̂n

min
is the smallest taken on

d = 1 . . . dn. Thus the extended online auction is also
truthful in bidding deadline.

Weijie Shi received his B.E. degree in 2012,
from Department of Computer Science and
Technology, Tsinghua University, China. He is
currently a PhD candidate in the Department of
Computer Science, the University of Hong Kong.
His research interests include cloud computing
and mechanism design.

Chuan Wu received her B.E. and M.E. degrees
in 2000 and 2002 from Department of Computer
Science and Technology, Tsinghua University,
China, and her Ph.D. degree in 2008 from the
Department of Electrical and Computer Engi-
neering, University of Toronto, Canada. She is
currently an associate professor in the Depart-
ment of Computer Science, The University of
Hong Kong, China. Her research interests in-
clude cloud computing and online/mobile social
network.
Zongpeng Li received his B.E. degree in Com-
puter Science and Technology from Tsinghua
University (Beijing) in 1999, his M.S. degree in
Computer Science from University of Toronto
in 2001, and his Ph.D. degree in Electrical
and Computer Engineering from University of
Toronto in 2005. He is currently an associate
professor in the Department of Computer Sci-
ence in the University of Calgary. His research
interests are in computer networks, particularly
in network optimization, multicast algorithm de-

sign, network game theory and network coding.


