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Abstract

Electricity systems are facing the pressure to change in response to the effects of new
technology, particularly the proliferation of renewable technologies (such as solar
PV systems and wind generation) leading to the retirement of traditional genera-
tion technologies that provide stabilising inertia. These changes create an imperative
to consider potential future market structures to facilitate the participation of dis-
tributed energy resources (DERs; such as EVs and batteries) in grid operation. How-
ever, this gives rise to general questions surrounding the ethics of market structures
and how they could be fairly applied in future electricity systems. Particularly the
most basic question “how should electricity be valued and traded” is fundamentally a
moral question without any easy answer. We give a survey of philosophical attitudes
around such a question, before presenting a series of ways that these intuitions have
been cast into mathematics, including: the Vickrey-Clarke-Groves mechanism, Loca-
tional Marginal Pricing, the Shapley Value, and Nash bargaining solution concepts.

We compared these different methods, and attempted a new synthesis that brought
together the best features of each of them; called the ‘Generalised Neyman and
Kohlberg Value’ or the GNK-value for short. The GNK value was developed as
a novel bargaining solution concept for many player non-cooperative transferable
utility generalised games, and thus it was intrinsically flexible in its application to
various aspects of powersystems. We demonstrated the features of the GNK-value
against the other mathematical solutions in the context of trading the immediate con-
sumption/generation of power on small sized networks under linear-DC approxima-
tion, before extending the computation to larger networks. The GNK value proved
to be difficult to compute for large networks but was shown to be approximable for
larger networks with a series of sampling techniques and a proxy method. The GNK
value was ethically compared to other mechanisms with the unfortunate discovery
that it allowed for participants to be left worse-off for participating, violating the
ethical notion of ‘euvoluntary exchange’ and ‘individual rationality’; but was offered
as an interesting innovation in the space of transferable utility generalised games
notwithstanding.

For sampling the GNK value, there was a range of new and different techniques
developed for stratified random sampling which iteratively minimise newly derived
concentration inequalities on the error of the sampling. These techniques were de-
veloped to assist in the computation of the GNK value to larger networks, and they
were evaluated in the context of sampling synthetic data, and in computation of the
Shapley Value of cooperative game theory. These new sampling techniques were
demonstrated to be comparable to the more orthodox Neyman sampling method
despite not having access to stratum variances.
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Chapter 1

Introduction

The Australian electricity grid is facing structural changes in response to the pres-
sures of new technology. And the way in which the grid should change to meet these
new pressures is cause for reflection on the morally ambiguous question at the heart
of electrical transactions on the grid - how should electricity be valued and traded?

Or, to ask our research question with more granularity: when the possible power-
flows on an electricity network are valued and influenced by participants differently,
what is a reasonable electrical outcome for the network and what monetary transac-
tions should occur between the participants?

Existing electrical power systems in many countries implicitly embody a historic
answer to this essential question, however electrical power systems have a history of
evolution over time, particularly with the introduction of new technologies and new
demands, and this trend continues today as new technology is driving a need for
additional changes. This technological drive for additional changes is felt by various
electricity systems across the world, however here we focus on the Australian case as
an instance.

1.1 The changing nature of supply, and the introduction of
demand elasticity

One of most notable technological changes occurring in electricity networks around
the world is the development and continued proliferation of renewable energy tech-
nologies. For instance, between the fiscal years 2008/2009 - 2018/2019 the Australian
Government [2018] reported that the volume of renewable electricity generated on
Australia’s National Electricity Market (NEM) increased from 18,645 GWh to 44,292
GWh, an increase of approximately 10% per year, increasing the proportion of renew-
able energy in the network from 7.5% to 17% over the same period. This increase was
primarily achieved by the deployment of wind and solar generation, with 90% of so-
lar generation currently being created by small-scale solar photovoltaic (PV) systems,
with Australian Energy Market Operator [2018a] projecting that solar PV generation
will triple by the year 2030.

In contrast, there is an increasing number number of coal fired power stations
being retired from the grid, with Burke et al. [2019] reporting that almost a third of

9
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Australia’s coal-fired power stations closed between 2012 and 2017, and Australian
Energy Market Operator [2018a] reporting an extra 12 coal fired power plants are
expected to be retired over the next 30 years.

The Australian Energy Market Operator (AEMO) operates multiple markets, but
particularly the day-ahead and spot-markets operate on marginal-pricing principles
where the most expensive generator that is dispatched to meet demand sets the price
which is paid for all dispatched electricity. In this context the witnessed changes in
supply (specifically the retirement of coal fired power and its replacement by variable
renewable electricity generation) have created a situation whereby it is increasingly
more likely that more expensive generators are setting the marginal price. This dy-
namic is identified as being a part of the reason that the average price of electricity
for consumers between 2008 and 2018 increased by 35% [Australian Competition and
Consumer Commission, 2018].

This is an example of a technological change creating an emerging problem for
existing electricity networks. The problem is made clear specifically as the stability
and efficiency of the grid in providing affordable electricity for customer needs are
core components of Australia’s National Electricity Objective (NEO)1.

One option to avert this problem is the prospect of a ‘Demand Response’ pro-
grams, whereby consumers (large and potentially small) are contracted and paid to
reduce their consumption in times of peak demand to avoid dispatch of the more
expensive generators which would subsequently set the marginal price, thus making
electricity less expensive for everybody. Demand response programs are one exam-
ple of participatory scheme designed to interact with consumers to bring greater
regularity to electricity grid, and the offering and accepting of such contracts natu-
rally constitutes a new and prospective market structure. In line with the potential
for such a participatory system, there are presently (at time of writing) 12 differ-
ent Australian Renewable Energy Agency (ARENA) funded Demand response pilot
programs across the country (totalling over 100 million dollars of grant money). Ad-
ditionally the Australian Energy Market Commission [2020] is actively drafting rule
changes to formally recognise organisations that provide Demand Response services
to the grid, as being electricity market participants directly equivalent to wholesale
generators.

The effect of these demand-response programs is to attempt to bring the mar-
ket price down by creating mechanisms where the demand of electricity effectively
becomes more elastic, and one of the more direct way of doing this is to produce
a market structure to implement demand-responsive consumption against genera-
tion, or a ‘two sided market’. The idea of a two-sided market is something that is
something that recognised by Australian Energy Market Commission [2020] as an en-
during solution for the Australian electricity grid, and is currently being investigated
by the COAG energy council [2020]. This is one example of a potential future market

1the NEO is part of Australia’s National electricity law (NEL) “to promote efficient investment
in, and efficient operation and use of, electricity services for the long term interests of consumers of
electricity with respect to: price, quality, safety and reliability and security of supply of electricity; and
the reliability, safety and security of the national electricity system.”
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system which may become necessary in response to present technology changes; but
it is not the only one.

With the consideration of demand response programs, the question is how the
time-limited curtailment of consumption of electricity be traded and valued?
And this reflects the broader question: “how should electricity be valued and traded?”

1.2 Increasingly variable supply, and the potential of battery
storage

The increasing number of solar PV systems connected to the Australian grid is chang-
ing the characteristic demand profile on the network and its variability; and this has
the potential to create issues surrounding grid frequency and stability.

Solar PV systems are often behind-the-meter and have the effect that they change
the amount of electricity that consumers require throughout the day from the grid.
This effect is particularly manifest in the middle of the day where the abundance of
solar energy offsets household electricity requirements and create the ever increas-
ingly severe decrease in grid demand (the infamous ‘duck-curve’) which is identified
to be one source of potential future difficulty. Not only does solar PV change the
average demand profile on the network but it also recognised as a source of variabil-
ity; because solar output is linked to weather there is the ready potential for large
swings of localised solar power output, which is recognised by Australian Energy
Market Operator [2018a] as potentially creating stability issues related to frequency
and voltage control. These demand side changes are compounded by supply side
changes such as the retirement of traditional generators which provide stabilising
inertia, and continued uptake of industrial wind and solar generation capacity.

One of the primary ways in which sudden changes in supply/demand is manifest
on the grid is by frequency drift. In order to keep synchrony, the frequency of the
grid needs to be closely monitored and kept on a single frequency and this is an
essential stability requirement for the operation of the grid. When there is an increase
in supply or a decrease in demand, there is an excess of power on the network
which causes a decrease on the electromagnetic drag on traditional generation rotors,
causing them to speed up, leading to a increase in their frequency of rotation and
frequency of the power they generate. Conversely a decrease in supply, or increase in
demand, will cause a decrease in frequency. With the rate at which these frequency
increase/decrease occurs being related the inertia of generators.

However the decrease in traditional generation technologies which carry gener-
ation inertia is expected to cause the system frequency to be more sensitive to sup-
ply/demand variability, at the same time that variability is set to increase due to the
increase in renewable generation technologies. There are multiple prospective ways
of ameliorating this emerging problem (as discussed by Hartmann et al. [2019]) such
as to attempt to build artificial inertia into renewable generators, and another is to
requisition generation capacity specifically to maintain system frequency.

Presently there exist a range of electricity markets within the Australian system,
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including a day-ahead market, a spot-market and several capacity markets specifi-
cally for the stabilisation of grid frequency. Some of these ancillary service markets
are the Frequency Control Ancillary Services (FCAS) markets, and there exist six of
them, particularly for bidding for the contracts to deposit and/or withdraw power
from the electricity system where needed, at an upper, middle and lower timeframe
for the response (6 second, 60 seconds, 5 minute respectively). In light of the techno-
logical changes that are being realised it is anticipated that these frequency response
markets will become increasingly important to maintain grid stability [Riesz et al.,
2015].

However, a limitation of some traditional generating technologies that operate
with large synchronous rotors, is that they are unable to respond quickly to assist in
the maintaining of system frequency, and therefore unable to support grid frequency
or bid into FCAS markets due to their ramp-rate limitations and costs. [Gonzalez-
Salazar et al., 2018] And while there does exist some technology for rapid response
gas generators (as discussed by Gonzalez-Salazar et al. [2018]) the more promising
renewable technology for this purpose is battery technologies, which have character-
istically fast response times. While there does presently exist some large institution-
ally owned grid connected batteries, a large number of batteries currently connected
to the grid are residential small scale batteries often connected to solar PV systems.
Additionally it is the expected by Australian Energy Market Operator [2019] that
there will be an increase in the adoption of electric vehicles (EVs) with grid con-
nected batteries, with predictions ranging upto 4.5 million EVs on Australian roads
by 2040. In this way there is an expected potential for batteries and electric vehicles
to be a source of future grid stability.

However there does not currently exist any unified national infrastructure to facil-
itate these distributed energy resources (DERs) such as EVs and small batteries par-
ticipating in Australian grid stability. As presently, network participants are payed
for the power they consume/generate largely behind their own meter, inducing them
to utilise their DERs to optimise their own energy consumption. One current avenue
being explored to create such infrastructure is the creation of virtual power plants
(VPPs) as large scale aggregators of DER power capabilities, and these projects are
currently being developed and are the subject of experimentation [Australian Energy
Market Operator, 2018b]. In this way, VPPs are another example of market structure
that potentially could emerge in response to current technological trends. Another
avenue currently being ivestigated is the contracting strategic reserve power specifi-
cally for grid stability. which are currently being formalised into the Reliability and
Emergency Reserve Trader (RERT) rules.

With the consideration of the various ways of trading, valuing and integrating
storage in providing diachronic arbitrage of electrical energy to offset frequency
deviations, the question is how the storage and time-sensitive rapid injection/con-
sumption of electricity be traded and valued? Because an answer to this should be a
consequence of an answer to the broader and more general question: “how should
electricity be valued and traded?”
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1.3 DERs and the potential for a prosumer era

Another change that is happening, is that increasingly not only are consumers gen-
erating their own electricity via solar panels, but they are also expected to be in-
creasingly storing that energy as well; leading to an increasing level of consumer
energy independence and the potential attractiveness of going ‘off-grid’. However,
there may be future role for electricity consumers not only to participate in network
support and have access to market structures; but also ideas that might induce con-
sumers to create more social benefits, such as directly sharing their electricity with
each other. Particularly, there is an idea that the grid might be able to support con-
sumers selling their excess power and storage capacity to each other, as a peer-to-peer
electricity trading (P2P) system.

There are many different visions of what the structure the future electricity sys-
tem might have, and what features it might have to support trading between producer-
consumers, or so-called ‘prosumers’, such as considered out by Parag and Sovacool
[2016]. These future visions describe ideas about how prosumers might trade di-
rectly or indirectly between themself and the wider grid; such as perhaps between
P2P trading and/or aggregation into many larger virtual power plants (VPPs) or via
localised community storage. [Morstyn et al., 2018].

However the vision of incorporating prosumers into the national electricity mar-
ket poses a range of gains and challenges, particularly with regards to the voltage and
frequency management on distribution networks. Bell and Gill [2018] enumerates
some of the challenges, such as: providing grid stability by securing timely reactive
and real power supply to stabilise voltages and frequency, grid robustness such as
blackout protection and islanding, improving system efficiency by minimising long-
distance transmission costs, and facilitating the advent of a green electricity network,
by fairly and equitably managing the interaction between prosumer’s devices while
preserving their privacy, in a scalable way while minimising the complexity of the
management of such devices.

With the consideration of the various ways of facilitating the fair trading of energy
between heterogeneous devices on distribution networks between consumers, the
relevant question is how to integrate these various factors in a flexible and equitable
way.
And this reflects the broader question: “how should electricity be valued and traded?”

1.4 A summary of the future of the Australian grid

The way that electricity is being produced and consumed is expected to change in
the future, from a system which supports the supply of energy from a few big gen-
eration companies to many small consumers, to being a system in which prosumers
potentially exchange energy with each other. And there is an increasing interest in
the design of new market systems that are appropriate for the future electricity grid.

The technological changes witnessed are seen as potentially leading to future
problems associated with frequency and grid stability, in which batteries and other
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distributed energy resources (DERs) are seen as being important; and new market
structures are being considered to provide a platform for them to participate in grid
operations.

In this context, there are many potentially important engineering considerations
in the operation of powergrids which may bear importance for the exchange of en-
ergy between such prosumers - such as voltage rises and line limits, real and reactive
power compensation, phase connections, network topologies etc, and it is hoped that
a properly designed system might be extensible to be able to accommodate these
technical considerations where applicable.

Potential future markets are subject to many requirements, outside of simply de-
livering a reliable and cheap electricity service to consumers, and sometimes they are
even directly quoted as subject to ethical design considerations, such as implement-
ing a “Level playing field” where:

“...all competitors, irrespective of their size or financial strength, get equal
opportunity to compete. It is not enough if all players play by the same
rules. The rules must accommodate the needs of all, whether small or
large, so the market is free of impediments to smaller players.”
[Australian Energy Market Operator, 2018a]

Ethical criteria such as this, as well as wider political and social implications bear
on this discussion. Thus our investigation is to explore and evaluate the research
question of what kinds of market structures should be implemented in the future.
By these considerations we can attempt a new answer to the broader and more gen-
eral question: “how should electricity be valued and traded?”

1.5 Research and problem approach

The fundamental research question is ‘how should electricity be valued and traded?’,
which is general and multifaceted question without an easy or established answer
(from previous sections 1.1-1.4)

The research question is easily identified as having a moral and ethical quality,
and thus in Chapter 2 we survey some of the relevant philosophy associated with
the ethics of Distributive Justice. Distributive Justice is a branch of moral philoso-
phy associated with the distribution of goods and services in society, about which
electricity and electrical services are naturally considered as an example. In this con-
text the philosophy considers different ideas that people have about distribution in
relation to more general moral principles, particularly such as various descriptions
of ‘Equality’, ‘Deservedness’, ‘Reward’, ‘Efficiency’, etc. It is unfortunately seen that
these broad and blurry ethical ideals conflict between themselves and do not logically
imply specific market structures or analytic criteria.

However there do exist various mathematical solutions and structures which have
been developed as mathematical formulations of these different ethical perspectives,
particularly we review a range of different structures and show how they attempt to
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describe different broader ethical ideas in Chapter 3. These existing solutions form a
part of the background of our research, and also provide inspiration and contrast for
further developments. For instance, we review the details about the Vickrey-Clarke-
Groves (VCG) mechanism, showing that it embodies an idea about compensation for
contribution, and identify how it has been proposed as a mechanism for dictating
payments between participants on electricity networks. Other mechanisms which
we consider include Locational Marginal Pricing (LMP), cooperative game theory
solutions such as the Shapley Value, and descriptions of idealised bargaining such as
Nash bargaining solution concepts. These mechanisms were investigated specifically
because of their abstract and general applicability, and hence they could (in theory)
account all the practical factors and possible confluences of electrical system details
to ascribe value to disparate electrical devices on a future smart-grid.

Each of these mechanisms embody specific ideas about ethics, and they are iden-
tified as having features and shortcomings. Because of this we attempted to take the
best features of these mechanisms and synthesise a genuinely novel solution for the
pricing of electrical resources on electricity networks. We developed a novel solution
concept which we called the Generalized Neyman and Kohlberg Value or the GNK value
in Chapter 4.

We identified that Nash bargaining was a particularly interesting mechanism
which was able to provide a unique and direct answer to the question of how elec-
tricity should be traded between two participants that could directly consider all
possible ways that the electrical participants could interact and influence each other.
Our new solution, the GNK value, was designed as a generalisation of Nash bar-
gaining to larger numbers of players (more than two), additionally it was made to be
even more extensible as it was designed to work in the space of generalised games
and so able to account for arbitrary constraints on mutual player interactions. The
GNK value embodies the cooperative game theory axioms (and the marginalism) of
the Shapley Value, and contrasts against the more immediate marginalism of VCG
and LMP. We developed and applied the GNK value against VCG and LMP in the
context of randomly generated electricity networks, to witness and discuss the dif-
ferences between them.

The GNK value is rooted in bargaining perspective and rewards participants for
the advantage they might have in an idealised competition with others. It was hoped
that an idealised bargaining solution like this would mirror the kinds of arrange-
ments that people with divergent interests would freely come to anyway, and hence
would ascribe reasonable economic value to electrical resources in the most natural
way; however this process ultimately yielded a disappointing result, as the net result
failed specific ethical criteria. The specific major ethical issue witnessed in the GNK
value was that it does not respect the ethical criterion called ‘individual rationality’ -
the desirable quality that every participant is ascribed non-negative net utility. Partic-
ularly if zero utility is interpreted as the utility of a non-participant, then individual
rationality property implies that every participant is made better-off by participating.

The GNK value extends from the Shapley Value axioms, and so it inherits the
NP-hard computational burden associated with the Shapley Value. However through
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investigation into sampling techniques and in utilising a particular proxy we were
able to extend the GNK value from being intractable for ∼ 14 bus sized nodal net-
works, to being readily computable to about 80− 100 sized nodal networks with a
standard desktop computer. This was identified as a computational accomplishment
particularly because if the GNK value were to be calculated exactly for a 100 sized
nodal network it would involve 2100 power flow optimisations. This computational
accomplishment was done through a process of considering the different ways that
the GNK value value could be sampled, and we developed our own sampling tech-
nique called the Stratified Empirical Bernstein Method (SEBM).

The SEBM was derived as a online method of choosing samples in the context of
stratified sampling, where the orthodox method of choosing samples (called Neyman
sampling) necessarily takes two unique stages to complete. The development of the
SEBM method was conducted in the context of evaluating other methods for sam-
ple selection in Chapter 6, and the performance of multiple methods were evaluated
on sampling synthetic data sets. All of the stratified sampling methods were iden-
tified as being applicable for sampling the Shapley Value and GNK value, and the
performance of these sampling methods for such a task was evaluated. The SEBM
method was identified as being computationally expensive but well performing, and
the method was extended into a multidimensional form.

1.5.1 Contributions

Within the research program, the primary contributions made are:

• We developed the GNK value as an extension of Nash bargaining to many
players in the context of generalised actions spaces.

• We developed, applied, and ethically evaluated the GNK value against LMP
and VCG in the context of ∼ 100 node synthetic electricity networks.

• We developed new concentration inequalities in the context of stratified sam-
pling, leading to new methods of stratified sample selection, and consequently
evaluated the effectiveness of these methods for synthetic data sets and in ap-
proximation of the Shapley Value.

The contributions in this thesis are also partially given in the following works:

“The Generalized N&K Value: An Axiomatic Mechanism for Electricity Trading” by
Mark Burgess, Archie Chapman and Paul Scott
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS) 2018
(accessible: https://ifaamas.org/Proceedings/aamas2018/pdfs/p1883.pdf)

“An Engineered Empirical Bernstein Bound” by Mark Burgess, Archie Chapman and
Paul Scott
European Conference on Machine Learning (ECML-PKDD) 2019

https://ifaamas.org/Proceedings/aamas2018/pdfs/p1883.pdf
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(accessible: https://ecmlpkdd2019.org/downloads/paper/435.pdf)

“Approximating the Shapley Value Using Stratified Empirical Bernstein Sampling”
by Mark Burgess and Archie Chapman
International Joint Conference on Artificial Intelligence (IJCAI-2021)
(accessible: https://www.ijcai.org/proceedings/2021/0011.pdf)

Particularly, we would like to make note some specific contributions: that Archie
Chapman provided the idea of using Empirical Bernstein Bounds to derive novel
method of sampling the Shapley Value. That Paul Scott encouraged the use of com-
plementary slackness conditions in solving the KKT conditions to allow the solving
the bilevel optimisations in GNK value on electricity network examples. I would like
to claim for myself specific contributions of developing the mathematics for Stratified
Empirical Bernstein Method & Method, and the idea behind extending Neyman &
Kohlberg’s value formulation into generalised games, and for developing software
and techniques for scaling the GNK computation. Additionally both Sylvie Thiébaux,
Paul Scott and Arhcie Chapman is credited with providing assisting direction and
guidance in the production of this research and its publications.

1.6 Thesis outline

The thesis is arranged into the following chapters:

1. in Chapter 2, we give a series of brief philosophical points to provide ethical
background for the underlying question of ‘how should electrical energy be
traded?’. In this section, we refer to the diversity of conceptions about social
Equality, the different ways in which systems can be considered better/worse
apart from equality (particularly by notions of Efficiency), and by ethical rules
and guidance in proportion to various norms and reference points, introducing
notions of envy-freeness, in a broader environmental context.

2. in Chapter 3, we provide a presentation of some of the core ideas and back-
ground of already developed and/or applied solutions to electricity networks,
particularly each of these ideas mathematically embody different ideas about
distributive ethics. The particular ideas we briefly present, are the Vickrey-
Clarke-Groves (VCG) mechanism, the Locational Marginal Pricing (LMP) method,
cooperative game theory solutions such as the Shapley Value and The Core, and
the approach of bargaining solution concepts such as Nash bargaining.

3. in Chapter 4, we develop and explore a new solution concept called the GNK
value, that is derived from Shapley Value axioms and relates directly to Nash
bargaining, and we compare it against LMP and VCG results in the context
of a small-scale simulated electricity network, we make observations about its
qualities point-by-point and consider the difficulty in computing it for larger
networks.

https://ecmlpkdd2019.org/downloads/paper/435.pdf
https://www.ijcai.org/proceedings/2021/0011.pdf
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4. in Chapter 5 We address the difficulty in computing the GNK value by explor-
ing two approaches to approximate it, particularly the use of sampling schemes,
and the use of a proxy for the inner terms of the GNK value. The advantages
and disadvantages of the new approach are discussed in relation to its com-
puted result on a larger electricity network. The GNK value is discussed with
regard to the ethical qualities established in Chapter 2.

5. in Chapter 6, we investigate a range of stratified sampling techniques which
were developed for computing the new GNK value. this investigation cov-
ered different techniques of conducting stratified sampling by minimising con-
centration inequalities, and a new technique was resolved called the stratified
empirical Bernstein method (SEBM).

6. in Chapter 7 we conclude the thesis by providing reflections of the approach
against the situations highlighted in this chapter, as well as outline future work
and summarising major accomplishments.



Chapter 2

Some background philosophy on
Distributive Justice

In considering the question of what electricity market structure should be imple-
mented, it is essential to at least acknowledge that there exists a wide range of moral
and practical factors that bear on the question.

In this chapter we briefly consider some of the moral considerations that frame
the question, however in doing so we must make clear that the deliberate brevity of
this chapter is not to suggest that these moral considerations are not important and
worthy of much greater treatment. But that we are not philosophers, and hence we
intend only to acknowledge the moral situation with some of its depth.

The moral and ethical side of our question is associated with a branch of moral
philosophy called Distributive Justice, which seeks to ask and make headway on
the question of how different kinds of resources (such as money/power/goods/etc)
should be distributed in society; and this is a broader question.

We begin by acknowledging the ambiguous nature of moral knowledge, and the
approach that we take notwithstanding, before addressing some different categories
of moral intuitions surrounding the nature of distributive justice. Particularly we
give brief surveys about ideas of: formal equality, social equality, efficiency, propor-
tionality, and envy-freeness.

• in section 2.1 we introduce the context of our approach to discussing these
philosophical topics

• in section 2.2 we introduce a series of moral factors that may bear relevance to
a solution, particularly:

– in subsection 2.2.1 we introduce and talk about the different ideas about
moral equality before considering two specific formulations

– in subsection 2.2.2 we consider the notion of formal equality, that of iden-
tical or equal treatment

– in subsection 2.2.3 we consider the articulation of equality with respect to
social freedoms in a broad sense

19
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– in subsection 2.2.4 we contrast against the ideas of equality by considering
differing ideas about utilitarian efficiency

– in subsection 2.2.5 we consider the ideas of fairness by proportionality
with respect to various possible normative reference points

– in subsection 2.2.6 we consider the idea of justice defined by envy-freeness
in society

– in subsection 2.2.7 we briefly consider some philosophical considerations
of import regarding climate change and other environmental priorities

• in section 2.3 we conclude and summarise the discussion before introducing
the next chapter where these ideas are rendered in mathematics.

2.1 A philosophical prelude

We begin by noting there is a long history of philosophical scepticism about the na-
ture of moral knowledge and judgements, and Distributive Justice is not exceptional
in this regard.

An example historical argument is Hume’s ‘Guillotine’ [Hume, 1739]1 which is
often read as stating that: no material facts about how the physical world is, by-
themself, could ever seem to logically imply any claim about how the world (or its
material components) should be.

Another historic argument is G.E. Moore’s open-question argument [Moore, 1903]2,
which argues that for anything which defines what is morally good, then a question-
about or statement-of that equivalence would only be tautology.

Such arguments are probably best used as discussion-starters today, however,
talking about the ontological nature and the basis of moral knowledge is not our
focus. Instead, our focus tends towards discussion around the moral views that
people are likely to have upon reflection; and we give an extremely brief survey
some of the attitudes expressed in literature.

What is quite evident, is that different people have different conceptions of how
the world should be, and not all of these conceptions are compatible with each other.
That any particular ethical system is likely to be rooted in a specific focus (as encoded

1“For as this ought, or ought not, expresses some new relation or affirmation, it is necessary that it
should be observed and explained; and at the same time that a reason should be given, for what seems
altogether inconceivable, how this new relation can be a deduction from others, which are entirely
different from it. But as authors do not commonly use this precaution, I shall presume to recommend
it to the readers; and am persuaded, that this small attention would subvert all the vulgar systems of
morality, and let us see, that the distinction of vice and virtue is not founded merely on the relations of
objects, nor is perceived by reason.” T3.1.1

2“Moreover any one can easily convince himself by inspection that the predicate of this proposition -
‘good’ - is positively different from the notion of ‘desiring to desire’ which enters into its subject: ‘That
we should desire to desire A is good’ is not merely equivalent to ‘That A should be good is good.’ ...
clearly that we have two different notions before our minds.”Ch1:13
“If I am asked ‘What is good?’ my answer is that good is good, and that is the end of the matter. Or if
I am asked ‘How is good to be defined?’ my answer is that it cannot be defined, and that is all I have
to say about it.” Ch 1:6
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by principles, maxims, cultural narrative, language etc) and will yield outcomes that
may be disagreeable to some people and agreeable to others.

We attempt to give a brief survey to address what we believe are often some
of the elements that feature in people’s moral thinking, and attempt to develop a
novel synthesis about electricity systems, which bears some relevance to these moral
considerations.

While we must acknowledge the moral ambiguity inherent in the question of
electricity allocation, we contend that this does not mean that any answer is simply
as good as any other. But only that we believe that the suitability of our answer is not
something we can totally demonstrate, in principle.

Let us begin.

2.2 Introducing moral factors about distributive justice

The choice of centralised market structures and processes can be seen as a choice
between methods of allocating resources between multiple parties in a system based
on the parties interaction within it. In this context the choice of the market structures
and also the resultant likely distribution of resources can be viewed as being moral-
ly/socially desirable or undesirable based on a number of factors. What constitutes
a desirable distribution of resources?

Throughout time there have been an array of philosophers who have discussed
ideas surrounding the moral distribution of resources and capital; and one of the
major ideas surrounding the ethics of distribution is Equality.

2.2.1 Moral equality

“A common characteristic of virtually all the approaches to the ethics of
social arrangements that have stood the test of time is to want equality of
something... They are all ‘egalitarians’ in some essential way ... To see the
battle as one between those ‘in favour of’ and those ‘against’ equality (as
the problem is often posed in the literature) is to miss something central
to the subject."[Sen, 1992, Chapter 1]

“for all men have some natural inclination to justice ... what is equal ap-
pears just, and is so; but not to all; only among those who are equals: and
what is unequal appears just, and is so; but not to all, only amongst those
who are unequals;
which circumstance some people neglect, and therefore judge ill; the rea-
son for which is, they judge for themselves, and every one almost is the
worst judge in his own cause." [Aristotle, Politics, chapter III.9]

People tend to believe that they are, should be, or be treated, ‘equal’ in some
sense, And this broad conception has changed throughout time and place in history.
[Capaldi, 2002]. From at least as far back as Aristotle3, notions and concepts about

3see section quote
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equality have come from across culture and peoples, and between Spiritual 4 and the
Materialist 5 thought. Throughout the ages the way in which equality in society has
been constructed and implemented has varied dramatically.

There is something appealing about the idea of Equality between people. From
the aesthetic perspective equality is an ideal with a simple structure. From a human-
itarian perspective equality is associated with relief from envy and want. From the
social perspective it is associated with community and solidarity.

On a practical level, the divergences between people’s ideas of equality can be
seen as regarding what things should-be equal (when, where and for whom); and
also what should be done about inequalities as they may exist.

The question: “Equality of what?” can have many answers, some of which are
commonly held and seldom controversial today, such as might be gleamed from the
United Nation’s declaration of Human Rights: Equality before the Law, Democratic
Equality to vote, equal freedoms to marry and to live, etc. However more contro-
versial answers tend to have broader social and political scope, such as: Equality of
Opportunity, and Equality of Welfare and/or Economic Equality.

For some, equality is a contestable notion, or an ideal for the direction of efforts in
narrow and specific contexts, but for others equality is an attainable and far-reaching
goal with multifaceted implications across social spheres, as reflected by works of
Walzer [2008]; Miller and Walzer [1995]; Baker [1992].

There are many ways in which equality of specific things have been argued; par-
ticularly, a person can advocate for an equality in a given context directly or alter-
natively as a means to some other end, ie. instrumentally. So, What amounts to
an equal allocation can also instrumentally satisfy other values, for instance, Miller
[1998] gives some broad examples of reasons for equalities in society: for aesthetic
and pro-social reasons, because it can be a sufficiently practical and simple social
contract, or because it might be politically inevitable etc. Alternatively, there have
been arguments directly for the equality of specific things, particularly from (or in
light of) more abstract concepts such the notion that people have equal moral worth or
moral equality - see discussions in Steinhoff [2015].

Though it is difficult to define6, the notion that people have equal moral worth is
sometimes seen not to logically imply any very specific kind of equality of measure.

“The distinction between “equal treatment” and “treatment as equals” ex-
presses this difference between offering people the same treatment, and

4across multiple religions, eg. in Islam “No Arab is superior to a non-Arab, no coloured person
to a white person, or a white person to a coloured person except by Taqwa (piety)." [Ahmad and At-
Tirmithi], and in Christianity, St Paul’s Galatians 3:28 “There is neither Jew nor Gentile, neither slave
nor free, nor is there male and female, for you are all one in Christ Jesus” (NIV)

5Such as in Engel’s Anti-Dühring Part 1 Chapter 10 “The idea that all men, as men, have something
in common, and that to that extent they are equal, is of course primeval. But the modern demand for
equality is something entirely different from that; this consists rather in deducing from that common
quality of being human, from that equality of men as men, a claim to equal political social status for all
human beings”

6for instance, Discussion about who has equal moral worth (or alternatively how/why they do) seems
to occasionally to turn into a discussion about the moral rights of animals, Steinhoff [2015]
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acting in accordance with the fact that they are moral equals. Equal sta-
tus does not constrain us to a set of identical actions regardless of our
differences.” [Nathan, 2015]

The question about what things should be equal (rights, freedoms, duties, respon-
sibilities etc, and for whom and when) can be seen as forming a large component of
the various moral systems. It is also sometimes seen that moral equality simply
cannot be a logical premise for these questions.

“The idea of moral equality, while fundamental, is too abstract to serve as
a premise from which we deduce a theory of justice. What we have in po-
litical argument is not a single premise and then competing deductions,
but rather a single concept and then competing conceptions or interpreta-
tions of it. Each theory of justice is not deduced from the ideal of equality,
but rather aspires to it, and each theory can be judged by how well it
succeeds in that aspiration.” [Kymlicka, 2002]

Thus it is perhaps better to take a more descriptive process to analysing equality,
rather than a deductive one. So for instance, expecting any particular person to give
a precisely defined answer to the question “Equality of what?” may be asking too
much; as even the phrases which people use in everyday life are seldom given exact
specifications7, let alone concepts pertaining to the spectra of possible societies. In
this way, the space of various contemporary political philosophies which faithfully
attempt to construct and interpret some reasonable form of equality between persons
has been described as belonging to an ‘egalitarian plateau’ [Brown, 2007].8 Or con-
versely, while a specific ethical equality may not be agreed upon, perhaps there may
be a more broadly accepted notion of what an ‘inequality’ looks like, particularly as
it is sometimes blurred with the concept of a ‘social injustice’.9

And in this way, the concept of Equality is seen as a vague notion that can be
inclusive-of and also contrasted-against other views; such as those that emphasise
the priority of resources to the poor, or such as emphasise alleviation of insufficiency
among the poor; broadly termed “prioritarianism” and “sufficientarianism” respec-
tively, such as by Arneson [2013]10

Although the concept of equality is the subject of wider analysis, we will focus
on two specific interpretations of equality which we feel can be made relevant to
mechanisms for electricity allocation.

7Degrees of vagueness are well witnessed in everyday sentences, “There are a gathering of people
near that tree”, such as argued in the classic Sorties paradox [Frances, 2018]

8The phrase is originally attributed to Dworkin and subsequently adopted by others.
9There is some debate as to when/where/how an inequality also becomes an injustice. It is possible

to believe that an inequality constitutes an injustice directly, or perhaps that an inequality is proof (or
perhaps only potential evidence) of a injustice in procedure or treatment. see Parfit’s concept of Telic
vs. Deontic Egalitarianism. [Parfit, 1997]

10for good measure we might also consider Rawls [2005]’s Theory of Justice as a specific kind of
(layered) priority principle.
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2.2.2 Formal equality

One of the most common interpretation of equality is that people should be subject
to systems that treat them in a manner that is impartial. The minimal idea is that an
impartial system should not afford arbitrary or unjustified special treatment toward
any particular individual/s. Hence that systems should operate by rules which are
blind to particular identity and sensitive only to morally relevant characteristics.

Straightforward examples of this doctrine are embedded in anti-discrimination
legislation, and Mason and Press [2006] gives some examples. A person’s religion for
instance, is not generally a morally relevant characteristic for employability decisions,
except in some example cases, such as in the performance of religious positions (eg. a
Priest), or where a person’s religious practice (such as wearing religious clothing, eg.
a turban) may directly affect performance (such as on the construction site, requiring
a hard-hat). Many more examples exist, but what is notable is that where and when
morally relevant characteristics arise is not always easy.

At a more general level, the idea of moral impartiality has been clarified by var-
ious thought experiments and also stated with moral maxims. Particularly famous
devices include Rawl’s “Original Position”, Kant’s categorical imperatives, or vari-
ous positions defined by hypothetical ideal sympathy and/or perfect detachment —
Smith [2018]; Gauthier [1986]; Firth [1952]. Additionally the idea of impartiality is
perhaps somewhat mathematically expressible, in that people who are (in all the rel-
evant ways) equal should be treated equally; and this has been called formal equality
as in [Nathan, 2015].

Although formal equality is occasionally seen as being an important part of a
fair system, it is also sometimes seen to be insufficient to capture broader notions of
equality and justice.

“In its majestic equality, the law forbids rich and poor alike to sleep under
bridges, beg in the streets and steal loaves of bread.”
–Anatole France, Le Lys Rouge [The Red Lily] (1894), ch. 7

Indeed, by imagination many kinds treatment or processes could be rationalised
as being issued by impartial principles which are universally applied. Furthermore,
not all kinds of desirable impartiality are mutually compatible, or perfectly achiev-
able in practical settings, such as discussed by Hutchinson and Mitchell [2019].

Notwithstanding, formal equality can be seen as a basic doctrine that ascribes
value to the incorporating degrees (and/or kinds) of impartiality into the design of
social processes from the outset.

In all developments in this thesis, the principle of formal equality - that individ-
uals are treated equally but-for specific factors - is assumed.

2.2.3 Equalities of social freedoms

“I want to emphasise what is, on my view, the most important object of
egalitarian distribution, and that is power. Of course power is not some-
thing which can be parcelled up and shared out like a commodity but
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we can properly talk of ‘the distribution of power’ and this is, more than
anything, the determinant of whether a community is authentically coop-
erative.” [Norman, 1998]

There are different and interrelated ways of how to conceive of wider social equal-
ity, and one historic way of framing social equality is in terms of power. For some
people, the ideal of equality encodes the hope of a society free of abusive power
relations that perpetuate social injustices.

One of the more historically notable instances of this framing is featured in
Marxist thought, which focuses on abusive economic power relations between so-
cial classes. This frame also shows up historically in feminist thought (eg. Cudd
[2006]) where the inequalities of power between men & women are considered as a
form of oppressive dominance & submission.11

But what is notable is that neither Marxist nor feminist writers always viewed
power itself, negatively. For instance, Marx opposed private property (as capitalistic
ownership) but seems to have had a more complex attitude toward property relations
generally.12 Additionally some feminists (such as Allen [1998]) occasionally consider
power in the positive (or potentially neutral) language of empowerment.

One feature of power that is associated with abuse, is the exercise of ‘power over’
other people, or ‘power to’ do things which impinge upon other’s rights. But dissect-
ing when and where an exercise of power constitutes an abusive or morally objec-
tionable act may not be easy. Particularly the ‘power to’ do something is straightfor-
wardly an example of a freedom, and one well known dichotomy exists between posi-
tive and negative freedoms13 particularly in the discussion of doing or allowing harm.
But even more broadly, freedoms can be considered (such as by Gerald C. MacCal-
lum [1967]) as triadic relationships: a freedom of a person, from particular preventing
conditions, to do certain things.

However different freedoms are not equally valued (or compatible), and some
are esteemed by individuals and societies more than others. Some would place an
importance on political freedoms (to openly discuss, vote, and run for office) or
economic freedoms (to work, to buy, sell and lease property), etc. But particularly,
the having and actualising of freedoms associated with the meeting of needs; such as
basic needs (of shelter, food, etc - as at the bottom of Maslow’s hierarchy) as well as

11eg. MacKinnon writes “difference is the velvet glove on the iron fist of domination. The problem is
not that differences are not valued; the problem is that they are defined by power”MacKinnon [1989].

12"the theory of the Communists may be summed up in the single sentence: Abolition of private
property ... Do you mean the property of the petty artisan and of the small peasant, a form of property
that preceded the bourgeois form? There is no need to abolish that"Engels and Marx [1848]
"Property thus originally means no more than a human being’s relation to his natural conditions of
production as belonging to him, as his, as presupposed along with his own being; relations to them
as natural presuppositions of his self, which only form, so to speak, his extended body."[Marx, 1857,
Notebook V]

13While vague, a negative freedom is associated with an absence of external obstacles to conducting
the specific action, and a positive freedom is associated with the possibility (or actuality) of doing the
act in accordance with one’s will and purposes. The positive/negative dichotomy is also associated
with what is or is not effort-full. [Mossel, 2009]
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higher needs (such as social belonging and self-actualisation); can be considered as
defining of human wellbeing, and perhaps even a constituent of the state of having
‘Freedom’ - the moral and political ideal.

Unfortunately most of these (and other) wider conceptions of societal Equality
are beyond the scope of what we can earnestly engineer directly. But what we can do
is to reflect and evaluate the influence that any proposed system might have on the
freedoms of individuals and the wellbeing of society - and this is a task we attempt
in later section 5.4.

2.2.4 Efficiency and utility maximisation

“It is the greatest happiness of the greatest number that is the measure of
right and wrong.” [Jeremy Bentham, 1776]

“Essentially, Utilitarianism sees persons as locations of their respective
utilities ... Persons do not count as individuals in this any more than
individual petrol tanks do in the analysis of the national consumption of
petrolium.” [Sen and Williams, 1982]

It is occasionally thought that what is morally good for society should have some
relationship with what is good for the individuals of society; and there is a ques-
tion about how to characterise that relationship. Historically what is morally good
for individuals has been associated with such things as happiness [Burns, 2005] or
subjective welfare [Dworkin, 1981a], access to resources (such as electrical power)
[Dworkin, 1981b], and/or opportunity for welfare [Christiano, 1991].

In more immediate and material contexts, what is good for an individual may
be more straightforward such as: access to sufficient food and medicine, monetary
yields, opportunities for educational attainment, probability of survival etc.14 But for
whatever measures are considered to be relevant, the question of how these quanti-
ties should combine to bear on the broader moral judgement about what is good for
society, has a variety of answers. It is useful to illustrate the question by introducing
the concept of utility as a quantification of what is good for individuals.

The concept of utility has changed over time15 but minimally it is conceived as
a measure of the strength of the preference (or value) that a specific person does
(or alternatively should, rationally, pragmatically and/or morally) attach to different
possible outcomes. The concept can be seen to extend from the consideration that
such preferences should be transitive and comparable between people: If a person
prefers A to B, and also B to C, then they ought to also prefer A to C. Additionally, if a
person/s can prefer A ‘more’ than another person/people prefer B - then it remains
a task of invention to associate numbers to the strength of these preferences over
outcomes. Utility or value is relatively abstract concept that is sometimes difficult

14many thought experiments invoke lifeboat/classroom/triage/trolley-problem circumstances,
where what is good for specific individuals is unambiguous

15historically and notably held by famous utilitarians such as John Stuart Mill [1863] and Jeremy
Bentham (see section quote), who defined it in terms of happiness or pleasure/pain [Bentham, 1823]
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to elicit or measure in practice (measurement via monetary equivalence is seen to
have potential issues), and numbers that are associated with utility are not objective
but inherently defined by being relative to each other, hence equivalent under affine
transformations.

In anycase, for these definitions, the sum of utility is straightforwardly one of
many examples of a collective utility function, a function that aggregates the utility of
individuals and hence is a possible target for moral decision making - a topic more
widely discussed by Holtug [2015]. As another example, some people’s egalitarian
intuitions might be satisfied by moral decision making that affords equal utility for
all individuals - and in some contexts this may be appropriate, even though it might
not maximise the sum of utility. This outcome could be constructed as an alternative
collective utility function.

What is to be realised is that maximising one collective utility function does
not necessarily maximise the other. Particularly this is made clear in the famous
’levelling-down objection’, which loosely stated, is the objection that a person imple-
menting a strict Egalitarian distribution of utility would potentially prefer a world
in which every single person had less, if it were more equal; as considered by Parfit
[1997]; Temkin [2003].

These considerations frame some possible articulations of the broader contrast
between the values of Equality and ’Efficiency’; where the specific concept of effi-
ciency considered in the levelling-down objection is Pareto optimality. In this context
outcome is Pareto optimal if there does not exist another outcome which is weakly
better for every person and strongly better for atleast one. Pareto optimality is one
commonly discussed and formalised efficiency condition, and is a property which
we satisfy in our subsequent developments. Particularly, as it is the case that max-
imising the sum of utility is Pareto optimal and forms an axiom in our treatment (as
it is given by our efficiency axiom (4.2) in chapter 4).

As a total theory of ethics, Utilitarianism has a substantial history in moral
thought and many criticisms have been made of it throughout the years. Partic-
ular objections can be drawn about whether the moral conditions and preferences
between people can actually be compared, and thus measured/quantified, and then
faithfully rendered into a kind of calculus for moral decision making. Indeed the feel-
ing about utilitarianism is that it has the potential to be dehumanising (see section
quote about petrol tanks), and specific arguments attempt to bring forth this objec-
tion - eg. that utilitarians should prefer be plugged into pleasure machines Nozick
[1974] or should lie and betray each other Kymlicka [2002] etc. However, as stated
previously, in more immediate and material contexts the moral conditions and pref-
erences between people are potentially more straightforward and comparable (such
as the costs and supply of electricity between homes), and ultimately *some* kind of
calculus must be either explicitly drawn or implicitly acted upon to make systematic
decisions in a particular sphere anyway.

However, of general note, is that in various realistic situations the difference be-
tween sensible outcomes which are better or best for more people, and what is more
equal for them, can be the subject of dispute (such as in the medical field [Reidpath
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et al., 2012; Culyer, 2015], the provision of welfare [Headey et al., 2000], and eco-
nomics [Andersen and Maibom, 2019]). Notwithstanding the philosophical distinc-
tion (and potential conflict) between the various articulations of efficiency between
people and equality among them, can remain.

2.2.5 Fairness by proportionality to some reference point

There are various ways in which what is considered fair is determined in relation
to what is normative, and/or related to the various counterfactual events that could
happen. One of the more basic and famous examples of this relationship is given by
Mill’s harm principle:

“That the only purpose for which power can be rightfully exercised over
any member of a civilised community, against his will, is to prevent harm
to others.” [John Stuart Mill, 1859, Chapter 1]

Insofar as the harm principle is accepted, there subsequently remains a question
about defining where and when harm occurs. Among its features, harm is often con-
sidered to be negative and defined with respect to a more normative (and potentially
counterfactual) ‘unharmed’ state. However in more complicated cases, it is not al-
ways clear what the more normative ‘unharmed’ state should be (eg. who is harmed
by whom).

But also reversely, there are also various conceptions of justice which involve com-
pensation for providing benefit to others. For instance, in Business ethics there is a
viewpoint (such as held by Sternberg [2000]) where an employee’s just wage should
be in proportion to their contribution to the value and productivity of the firm. In this
context, the contribution may by measured by profit relative to their absence and/or
by the replacement cost of contracting equivalent work (potentially depending on
which ever is more pertinent). Particularly, the idea that people should be rewarded
in proportion to their contribution to the social good above their absence individu-
ally, is most directly rendered by the Vickrey-Clarke-Groves (VCG) mechanism - see
section 3.1.

We note that this relation to a reference points may be somewhat associated with
the ideas of deservedness, compensation, reward and/or proportionality; however
these relation is not necessarily exact. For instance, the idea of compensation is most
often associated with damages or injury to others, but less commonly associated de-
tracting gain that occurs to them (eg. beating someone in competition), the notion
of reward is often associated specifically with incentivising particular pro-social be-
haviours among individuals, and to some extent the same is true of the validity of
deservedness claims. Furthermore in considering the notion of proportionality, the
one primary question which occurs, is ‘proportionality with respect to what?’ - ie.
what should the reference point be?

However, thinking in terms of proportionality may be slightly misleading as ex-
ample of a normative reference point is also found in Business ethics. Particularly
there is a viewpoint (such as held by Boatright [2010]) where a business transaction
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(such as pay for an employee’s work) is considered justified if it was attained by a
process of truly-free negotiation between the parties, such as to make all parties bet-
ter off than they would be otherwise. This ‘truly-free’ exchange (sometimes called
euvolentary exchange by Guzmán and Munger [2019]) is particularly defined by the
fact that all parties could have realistically elected to walk away from the negotia-
tion. The event that would be triggered if the parties did not successfully negotiate
is sometimes called the ‘disagreement event’, the existence of which is the normative
reference point that determines the morality of the transaction. Some of these ideas
are mathematically rendered by various bargaining solution concepts, such as Nash
bargaining - see section 3.4.

In these cases we can see instances where the morality of an event is defined
by normative reference points. And this dynamic can extend even to groups of
individuals, as we might consider ways that groups of individuals might be exploited
even if their individual interactions are truly-free.

“This is the main aim of John Roemer’s work on [Marxist] exploitation.
... If we view the different groups in the economy as players in a game
whose rules are defined by existing property-relations then a group is ex-
ploited if its members would do better if they stopped playing the game,
and withdrew their per capita share of external resources and started
playing their own game.” [Kymlicka, 2002]

And this idea of allocation exceeding what any group could achieve if they withdrew
to cooperate among themselves, is most directly articulated and formalised by the
Core solution concept of cooperative game theory - see section 3.3.

Similarly, another solution concept in cooperative game theory is the Shapley Value
(see section 3.3.2), which can be summarised as allocating compensation in propor-
tion to each individuals contribution (in expectation) to group welfare above their
absence, under uncertainty about the presence of other group members.

The consideration that the relevant normative reference point occurs under uncer-
tainty (or in expectation), is featured in other formulations. For instance, if we expect
that euvolentary market exchanges would normally occur at a certain market price,
then we may consider that the moral trading of goods would occur at this market
price. One famous example of this idea is featured in John Locke’s short essay ‘Ven-
ditio’ [Locke and Wootton, 2003] where it is argued that a fair price for something is
simply its normal market price at its location. (see section 3.2 for elaboration)

In all these cases, the morality of a situation is defined with respect to various
reference points, which of these reference points are most relevant (and to what
extent) may depend on a range of practical and moral factors.

It is also worth noting that these decisions about normative reference points can
be defined by social policies and embodied in moral codes and standards; and in
this thesis, we consider development of a novel synthesis that extends from a specific
reference point – see Chapter 4.
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2.2.6 The concept of envy-freeness

“... an allocation is equitable if and only if each person in the society
prefers his consumption bundle to the consumption bundle of every other
person in the society.” [Foley, 1966, Chapter 4]

Although it will be of lesser relevance to the developments in this thesis, it would
be remiss of us to neglect a discussion of the concept of envy-freeness as a significant
concept in the discussion of distributive justice. As introduced by Foley [1966] and
stated in this section’s quote, an allocation is ‘envy-free’ iff every person prefers their
allocation of resources which they receive to that received by everyone else. There
has been significant research examining the contexts in which envy-free allocations
of resource bundles exist and can be computed, and the development of similar/-
substitute qualities where they cannot.

The first and most notable notable quality of the envy-freeness condition is that
it has a genuinely straightforward ethical appeal, particularly the transparent envy-
free allocation of resources could be expected to minimise a certain kind of social
discontent defined by interpersonal comparisons. Additionally, the minimising of
social discontent may overlap and/or motivate other ethical measures, for instance,
an equal or egalitarian allocation may also be envy-free and/or efficient.

However, the envy-free criterion my not necessarily select a unique outcome or
indeed necessarily any outcome at all, and even insofar as envy-free allocations are
known to exist, they may be time-prohibitive to compute. Envy free allocations may
exist or not depending on many conditions, such as whether the resources are di-
visible and/or indivisible. The case of indivisible goods envy-free allocations may
not exist (consider a single item and two agents) [Manurangsi and Suksompong,
2019], and even when such allocations do exist they may be NP-hard to compute,
as even the case of identical valuations of indivisible goods between two agents is
directly equivalent to the classic NP-hard partition problem. [Nguyen and Rothe,
2014] However even in the continuous case, although Pareto-efficient and envy-free
are guaranteed to exist in some circumstances [Weller, 1985; Cole and Tao, 2021],
they may be prohibitive to compute, see for instance the problem of envy free cake
cutting for discontinuous slices and for arbitrary number of players was solved

by Aziz and Mackenzie [2016] requiring as many as nnnnnn

operations. There are
also situations with mixed divisible and indivisible goods which are not necessar-
ily more simple.[Bei et al., 2021] In recourse to these problems, some alternative
measures have been adopted and investigated, such as the various conceptions of
envy-minimisation, in these conceptions some aggregate envy criteria are possible
[Benade et al., 2018; Lipton et al., 2004; Nguyen and Rothe, 2014], for instance if
ui(πj) is the utility player i would receive from receiving player j’s resource bundle,
and if I is the indicator function then:

• the number of envious individuals, ∑i I[∑j I[ui(πj) > ui(πi)] > 0]

• the number of envy-relations, ∑i,j 6=i I[ui(πj) > ui(πi)]
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• the maximum envy-difference maxi,j{max{0, ui(πj)− ui(πi)}}

• the maximum envy-ratio defined by how much a player values the allocation

of another over their own maxi,j{1, ui(πj)

ui(πi)
}

Since allocating nothing to every player (if possible) is straightforwardly envy-free,
there is a secondary question about what efficiency measure should also be optimised
in this context. Examples include: egalitarian social welfare (ie. maximising the
utility of the worst-off agent) or utilitarian social welfare (ie. maximising the sum
of all agents’ utilities) or satisfying Pareto efficiency, or Nash social welfare (see also
Section 3.4) [Nguyen and Rothe, 2014].

The notion of envy-freeness relies on comparisons between agents and the bun-
dles of resources which they could gain, however there is some flexibility about how
the agents and bundle comparisons are defined. For instance, a similar and more
expansive notions of envy-freeness such as applied to groups (’group envy free-
ness’) are even more restrictive and difficult to compute; Group envy freeness was
first introduced by Berliant et al. [1992] for equally sized groups, and for heteroge-
neously sized groups by Conitzer et al. [2019]. Or conversely, there are other paths
to more relaxed envy-free conditions, such as include constructions where there is
envy-freeness only between specific pairs of individuals, such as specified on a group
or graph structure (see Flammini et al. [2019]) sometimes called ’social/local/net-
work envy-freeness’. Another more relaxed notion is that of envy-freeness prior to
a random assignment, or envy-freeness in expectation ie. ‘ex-ante’ envy-freeness -
contrasing ‘ex-post’ envy-freeness.

We will consider the application and implications of the concept of envy-freeness
in the context of electricity markets in Section 3.5.

2.2.7 Broader environmental considerations

Additional to the topics thus far considered in this chapter, there is a broader context
and special considerations regarding environmentalism and how it intersects with
energy systems and policy. Environmental considerations focus on the externalities
of decisions and interactions on third parties, particularly of importance in the en-
ergy context, is the production and emission of greenhouse gasses (GHG) into the
atmosphere causing anthropogenic climate change, which is expected to cause harm
to human life and property in the coming decades.[IPCC, 2022]

The emission of GHG causing harm to the environment and damage to the lives
of others, is an example of an externality in the context of the electricity system, and
there is the question of how and-or if such externalities should be accounted for in
an electricity context.

There is, for instance, the question about how (and how much) the wellbeing of
future generations be accounted and considered relative to the wellbeing of those
presently living. [Meyer, 2021] Or how should international effort and compensation
costs be divided between nation states today. [Gardiner, 2004] However more specific
energy considerations exist, particularly if electricity market structures are the best
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place for such externalities to be accounted for. Particularly, a uniform tax or trading
system on GHG pollution across industries and sectors would be more consistent
with handling the externality holistically. Contrastingly, there are some who have
considered that the policies of ‘resource neutrality’ evident in energy systems may
also an issue. [Outka, 2021]

As an example, Australia’s National Energy Objective (NEO) is part of Australia’s
National electricity law (NEL) is an example of a resource neutral policy in that it
does not prioritise particular forms of generation or consumption over others, as
stated: “to promote efficient investment in, and efficient operation and use of, elec-
tricity services for the long term interests of consumers of electricity with respect
to: price, quality, safety and reliability and security of supply of electricity; and the
reliability, safety and security of the national electricity system.”

At issue is that the long-term interests of consumers may be broader than simply
reliable and cheap electricity, and that such policy directives have the potential to
focus attention on mitigating shorter term risks to energy reliability (such as may be
produced by the integration of renewables) rather than focus on the actual interests
of people in the longer term (such as energy consequences, as may be brought about
by GHG driven climate change and its political ramifications).

The question is to what extent should electricity market systems prioritise, by
design, renewable generation over GHG emitting technologies. By considering this
question, we see that ideally a comprehensive answer to the question of how electric-
ity should be valued and traded (our research question) would hopefully be adaptive
and tunable to such politically relevant priorities. As considered in the introduc-
tory chapter, Sections 1.1-1.4, we outlay the circumstance that existing renewable
integration has potential to create issues with electricity affordability and reliable
access. From this, rethinking electricity market systems to ameliorate these issues
is certainly consistent with resource-neutral energy directives, however it is also of
interest to consider systems which prioritise renewable generation (and compensa-
tion for renewable generation) atleast as much as on a neutral basis. Furthermore,
considering the design systems to support renewable generation without sacrificing
other qualities (such as reliability and safety, etc) is of interest anyway, particularly
as the intermittency of renewable generation is a primary objection against action on
climate change anyway. [Shrader-Frechette, 2017]

There is much that could be further said about Climate Change and energy policy
that is genuinely worth saying and beyond our current scope of investigation. This
is true, as our focus is on the more abstract and generative question about how elec-
tricity should be valued and traded, on a broad level, as might flexibly incorporate
these and other relevant political factors.

2.3 A summary on our philosophy of distributive justice

There is wide range of perspectives on distributive justice which we can only begin
to survey in this chapter. And there are many other positions that we could address,
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including conceptions of fairness as issuing from envy-freeness, ideas of fairness
defined by equal share of social surplus, and all the various ways these viewpoints
can intersect.

Moral considerations are at the heart of the question of how electricity and mon-
etary payments should be distributed. Unfortunately questions such as these do not
have analytically demonstrable answers, but we can make judgements by consider-
ing the various flavours of moral ideas which people might assert. Particularly we
summarise some of the various conceptions of Equality, Formal Equality, and Equal-
ity concerned with social freedoms. Additionally we frame some of the concepts of
Efficiency particularly as it is contrast against Equality. And highlight the ways in
which morality can be defined in relation to various normative reference points, with
consideration of the concept of envy minimisation.

We focus particularly on these factors as our further developments relate directly
to them. Ultimately our solution obeys formal equality principles, maximises ef-
ficiency, and is formalised by reference to normative reference points defined by
idealised competition – see chapter 4.
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Chapter 3

Existing solutions

In the previous chapter we discussed some of the philosophy surrounding distribu-
tive justice, and in this chapter we discuss some of the various ways those ideas have
been made quantitatively precise.

In this chapter we consider some of the relevant formulations of the ways in
which moral ideas about distribution have been mathemetised, primarily because our
later developments extends from them and also ultimately contrasts against them.

We consider the following formulations:

• in section 3.1, we consider the Vickrey-Clarke-Groves (VCG) mechanism,

• in section 3.2, we consider Locational Marginal Pricing (LMP),

• in section 3.3, we consider the Core and the Shapley Value,

• in section 3.4, we consider Nash’s bargaining solution concepts.

• in section 3.5, we consider mathematical considerations associated with the
concept of envy-freeness.

These different approaches stem from different moral considerations and have
specific context and unique properties; we will introduce and discuss each of them
in turn. In the next chapter 4 we attempt a new synthesis which brings many of these
conceptual elements together.
Let us begin with the VCG mechanism.

3.1 VCG

In section 2.2.5 we briefly presented the idea that people might be rewarded in pro-
portion to their contribution to social welfare, above their absence, individually.
While this idea may be simple, its mathematisation has some surprising features.
The most direct mathemetisation of this idea is the Vickrey-Clarke-Groves (VCG)
mechanism with Clark pivot.

The VCG mechanism (with Clark pivot) is an allocation process where each player
is payed ‘transferable utility’ (or money) equal to the impact that their presence has
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upon others (ie. their externality) in the decision process which selects an outcome
that maximises the sum of utility. Let us explain with some mathematics:

3.1.1 The minimal VCG process - with Clark pivot

If we frame the VCG process as a bidding process of n agents over a possible set
of outcomes X. We assume that every agent i has a valuation (or utility) vi for any
outcome in X:

vi : X → R≥0

The VCG bidding process asks every agent i for their valuations and calculates the
outcome that maximises the sum of the reported valuations:

x∗ = argmax
x∈X

n

∑
i=1

vi(x)

This outcome is implemented and the process pays each agent i the utility value di
(which may be positive or negative):

di(v) = ∑
j 6=i

vj(x∗)−max
x′∈X

∑
j 6=i

vj(x′) (3.1)

This value di is the value that the player’s presence adds to the utility of others minus
the sum of the other player’s utility which would have been obtained in the player’s
absence - ie. the player’s externality. In this equation the sum of other player’s
utility which would have been obtained in the player’s absence maxx′∈X ∑j 6=i vj(x′) is
a special term called the ’Clark pivot’, and in section 3.1.3.1 we discuss alternatives
to this term.

Example. Consider a set of outcomes X = {A, B, C} and three agents with valuations

v1(A) = 2
v1(B) = 4
v1(C) = 3

v2(A) = 4.5
v2(B) = 2
v2(C) = 1

v3(A) = 2
v3(B) = 1
v3(C) = 5

In this context x∗ = C is implemented (as ∑n
i=1 vi(C) = 9 is the largest)

And: d1 = 6− 6.5 = −0.5 d2 = 8− 8 = 0 d3 = 4− 6.5 = −2.5

3.1.2 Discussion about VCG

The VCG mechanism with Clark pivot might be seen as an straightforward way of
assigning an outcome and allocating ethical payments; if a player’s presence adds to
the utility of others then they are positively compensated, and if a player’s influence
detracts from the utility of others then they are penalised in proportion. Since the
set of possible outcomes X are arbitrary it is possible to consider the application of
the VCG mechanism in a wide variety of contexts. However VCG has some par-
ticular advantages and disadvantages. The first and most notable property is that
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VCG mechanisms have been demonstrated by Roberts [1979]; Lavi et al. [2008] to be
truthful or incentive compatible, in the sense that that no single player can positively
gain by misreporting their valuations in the event that all other players are truthfully
reporting their valuations, and in the event that the utility of the agents is quasilin-
ear. An agent’s utility is quasilinear if their utility is equal to their valuation of the
outcome plus any transfers they receive, and hence their utility ui has form:

ui = di(v) + vi

In this way if VCG’s incentive compatibility induces the players not to bid strategi-
cally then it can reduce a potential overhead of their participation, and potentially
eliminates a source of instability in the resulting system.

Another interesting property is called individual rationality, in that no agent (as-
suming quasilinear utility) will ever be left with a net negative utility. Particularly
if the utility of zero is regarded as the utility of non-participation, then individually
rational means that everybody is left being better-off (or atleast not worse-off) by par-
ticipating than they would be otherwise. Hence individual rationality is a possible
articulation of ethical euvolentary negotiation (see chapter 2.2.5).

It is also worth noting that VCG mechanisms are also efficient in the sense that the
process actualises the utilitarian socially optimal solution x∗(v) ∈ X.

However, more negative features of VCG exist, one primary drawback of this
mechanism is that it is not budget balanced, in that it is possible that the amount of
utility that is transferred between the players might not sum to zero. Because of
this an implementation of VCG might require regular budget injection to maintain
and/or produce a budget surplus, hence sapping money from between the partici-
pants (see example). As VCG may produce a budget surplus it is thus easy to note
that the maximum amount of utility is not being given to the participants, and hence
VCG is not efficient in the sense of maximising utility for the participants (see section
2.2.4).

Although VCG has a very positive property by being incentive compatible, it has
some additional drawbacks and criticisms as noted by various authors [Shoham and
Leyton-Brown, 2009; Rothkopf, 2007], particularly:

• The fact that VCG’s truthfull equilibrium is a weak-equilibrium, and a player
can misreport their valuations to harm others

• If generating or submitting a valuation in a VCG mechanism incurs some cost,
over not participating, then it is no longer individually rational

• If the externalities and social optima x∗ are not solved exactly, but only approx-
imately, then this will destroy the truthfulness property of VCG.

• If any players are budget-constrained (eg. they cannot afford to pay their true
valuations for particular outcomes), then the truthfulness property is destroyed.

• If VCG mechanism does succeed in incentivising players to submit their true
valuations, this is potentially has privacy and information disclosure issues.
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• VCG is not completely immune from the possibility of cheating: by groups
of players, by players submitting multiple bids under many names, or players
who know that strategies in a series of VCG auctions may not be incentive
compatible. etc.

• VCG may (depending on context) also have higher computational complexity
than other mechanisms.

Though some of these drawbacks and criticisms can be ameliorated, the VCG
mechanism is widely discussed as potential mechanism in various real-world con-
texts, as we consider in section 3.1.4.

As VCG has positive and negative features, it is possible to ask if there are sim-
ilar mechanisms which avoid some of the negative features. But it is unfortunate,
that some of these properties (incentive compatible, individually rational, budget
balanced, and efficiency) are known to be impossible to combine in the general case
(where there are a plurality of outcomes and the valuations are unrestricted), and
these impossibility theorems are a feature in the study of Mechanism Design.

3.1.3 Mechanism Design, is there a better VCG?

The VCG mechanism is a cornerstone example in the field of Mechanism Design,
and there exist many good sources giving extended discussions on the field - such
as Vohra [2011]. But generally, Mechanism Design conducts the analysis of systems
which select social outcomes based upon the result of strategic interactions of multi-
ple parties with divergent interests.

One of the features of Mechanism Design that the VCG mechanism illustrates, is
the potential for considering and apprehending the way in which a system is likely to
behave between rational individually strategising agents. This possibility extends be-
yond VCG, as it has been discovered that any system which is implemented between
strategising agents can be altered such as to make it incentive compatible for them;
this is called the revelation principle - see Gibbard [1973] [Vohra, 2011, Chapter 2.3].
The revelation principle has various formulations, but generally, for any system there
will some Nash equilibria in the interaction between the agents, and consequently
an incentive compatible mechanism can be constructed by asking the agents for their
true valuations and then implementing the corresponding Nash equilibria directly.
Unfortunately, it is sometimes the case that the Nash equilibria between strategising
agents may not coincide with what is socially optimal for them; and the general dif-
ficulty of designing systems where the socially optimal outcome is always a Nash
equilibrium is rendered in some of the famous impossibility theorems in Mechanism
Design.

Some of the primary historic impossibility proofs in Mechanism Design concern
voting and social choice systems, and notably include Arrow’s impossibility theo-
rem, and the Gibbard-Satterthwaite theorem. But the difficulty does not necessarily
recede even if monetary compensations between parties are included into considera-
tion, such as per the Myerson-Satterthwaite theorem. Another impossibility theorem
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was also proven by Green and Laffont [1979] to the effect of proving that there is
no easy alternative to VCG - a mechanism which is incentive compatible, has un-
restricted player preferences, has individual rationality, and implements a socially
optimal outcome, in the case of quasilinear utilities.

In the evolving field of Mechanism Design there are several avenues of mitigating
some of the impossibilities.

One of the main problems in applying VCG to electricity networks is the fact that
it is not budget-balanced, and this raises a question of where the budget surplus/d-
eficit should be channelled to/from. Particularly if the money should be directed
back to the participants in the electricity network, then it would destroy the incentive
compatibility that was part of the scheme in the first place. This is a direct con-
sequence of the impossibility result of Green and Laffont [1979] and hence we are
constrained to consider mechanisms which are suboptimal in relation to these qual-
ities (budget balance, incentive compatibility, individually rational, and efficiency).
However it is also shown by Yi and Li [2016] that there are no mechanisms which
allow bounded deviations from the efficiency, incentive compatibility and budget-
balance.

Thus a search for a better alternative than VCG needs to outright sacrifice or
substitute some of these desirable properties.

Although we cannot go into too much detail about the field of Mechanism De-
sign in this chapter (and the different kinds of impossibility theorems and kinds of
incentive compatibility), we can highlight some interesting options.

3.1.3.1 Redistribution in Groves mechanisms

One potential avenue of averting the impossibility result is to discard the assumption
that the player’s valuation over outcomes are unrestricted, and recognise that some
of the budget surplus/deficit can be redistributed without destroying the incentive
compatibility property.

To frame this approach, we must make a technical distinction between a Groves
mechanism and its particular instance - in the VCG mechanism. A Groves mecha-
nism is exactly the same as the VCG mechanism except instead of paying players per
equation 3.1, instead it pays them per:

di(v) = ∑
j 6=i

vj(x∗)− C−i (3.2)

where C−i is some function that is independent of i’s reported preferences. In this
context it is notable that the VCG mechanism is a special case of a Groves mechanism
[Groves, 1973] where C−i = maxx′∈X ∑j 6=i vj(x′). Groves mechanisms are a class of
mechanisms which include VCG, and are categorically incentive compatible.

The challenge therefore is to derive optimal functions C−i which minimise the
budget surplus/deficit while maintaining individual rationality in the context of re-
stricted player valuations. For this purpose there has been significant discussion
about deriving these C−i functions, also known as ‘VCG redistribution’ rules.
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One of the first to propose such a rule was Cavallo [2006], who showed that
much of the VCG surplus can be redistributed in a process of allocating a single
physical object exclusively to one party (called ‘All-Or-Nothing’ games), where it
can be naturally assumed that any party has a utility of zero if they do not receive
the physical object. This redistribution was possible primarily because there exists a
simple constraint on player valuations - ie. not receiving the object has utility of zero.
Similarly in other situations where there are restrictions on the players’ valuation over
the outcomes, there is the potential for deriving different VCG redistribution rules.

However there are some difficulties with this approach, particularly it is known
that even with VCG redistribution rules there will almost always be some remaining
budget surplus, and even then the process of deriving optimal redistribution rules
can be a difficult task — even to the point where neural networks have been employed
to approximate such functions (see Manisha et al. [2018]).

3.1.3.2 Sacrificing efficiency with budget sinks

Another avenue of averting the impossibility result is to sacrifice efficiency of out-
come selection. One of the simplest such schemes is given by Boi Faltings [2004, 2011]
who proceeds about the process of designing a non-Pareto optimal VCG mechanism
by splitting the population into two groups. In this scheme, the VCG outcome from
the first group is selected irrespective of the preferences in the second group and
where the second group (the ‘sink’) receives the budget surplus from the VCG mech-
anism applied to the first group. This mechanism constitutes a budget balanced
VCG-type mechanism which can be made more regular (suggested by Guo et al.
[2011]) by randomly selecting an individual as the ‘sink’, and splitting the budget
surplus between the parties evenly without knowledge of who will be selected.

This kind of method of developing non-Pareto optimal VCG mechanisms has
been the subject of investigation by Nath and Sandholm [2019], and the process is
proven to necessarily need a ‘sink’, although this such a sink can be randomly se-
lected. Notwithstanding it is expected that such a mechanism of randomly assigning
a sacrificial ‘sink’ could potentially be ethically dangerous; potentially falling afoul
of Formal Equality ideas (see section 2.2.2) as one member (or group of members)
would be randomly singled out to equalise the budget surplus/deficit.

3.1.4 Applications of VCG to electricity systems

VCG has properties that make it attractive from from a theoretical standpoint, par-
ticularly its incentive compatability property brings the promise of alleviating the
cost and potential system instability inherent between strategising agents that can be
manifest in cases of market collapse. Additionally it has a straightforward ethical
interpretation, that is, as a policy of compensation for externality. These advantages
have led VCG to be often discussed, but its weaknesses have led to its being report-
edly seldom implemented in practice, including in the context of electricity networks
[Ausubel and Milgrom, 2006; Fabra et al., 2002].
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In these discussions the primary difference between proposals of VCG applica-
tion is the context of the events&bids to which it is applied. Thus VCG has been
considered as a mechanism for allocating physical and monetary outcomes in vari-
ous contexts within electricity networks by various authors:

• VCG-like schemes have been considered as means of extracting truthfull pref-
erences and allocating costings for demand across electric vehicle charging sta-
tions [Ligao et al., 2020]

• VCG has been considered as a mechanism to determine compensation and
induce truthfull information about consumer’s inconvenience functions to de-
mand response aggregators in demand response (DR) programs [Nekouei et al.,
2015]

• VCG has been contrasted with other auction mechanisms in auctions for de-
mand curtailment contracts under network uncertainty [Heinrich et al., 2021]

• VCG has been considered as a possible auction mechanism for renewable en-
ergy aggregators to purchase and reward variable renewable energy generators
for providing and truthfully reporting the distribution of their energy supply
[Tang and Jain, 2011]

• VCG has been considered as a mechanism for allocating wholesale dispatch of
electricity generation and consumption across a network:

– such as between multiple network nodes with AC/DC links [Wang et al.,
2020; Tang and Jain, 2013],

– between multiple auctions for the supply of timely generation and ancil-
lary services in a network [Greve and Pollitt, 2016; Wang et al., 2022; Sessa
et al., 2017]

– as a means of allocating power and payments between generators and
storage providers (such as EV owners) across stretches of time [Satchi-
danandan and Dahleh, 2021; Valogianni, 2015; Xu and Low, 2017]

– and/or all these at once [Seklos et al., 2020]

In this way there are many possible context of VCG’s application, however there
are also some interesting innovations on VCG in the electricity context, such as: VCG
qualities can be improved is by considering mechanisms where VCG (or approxi-
mately VCG) payments are also in the Core (see Section 3.3.1) thus offering increased
robustness properties against coalition strategising [Sessa et al., 2017; Karaca, 2020;
Karaca and Kamgarpour, 2017]. Additionally there is specific VCG redistribution
mechanisms discussed in the electricity context, particularly: such as using deep-
learning to derive VCG redistribution rules in the context of EV bidding into a local
energy market, as considered by Qian et al. [2022], or as a means of redistribution to
minimise budget imbalance, such as described by Exizidis et al. [2019].
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3.1.5 Summary and discussion of VCG

The VCG mechanism frames a elegant ethical schema for distributive payments and
is directly applicable to electricity systems. Although it is incentive compatible, the
primary practical draw-back to such a system is that it is not budget-balanced. Unfor-
tunately there is no easily implementable system that is like VCG which is incentive
compatible and budget-balanced without forcing participants to potentially trade at
a loss.

Notwithstanding it is a possible scheme for the trading of electricity and electric
resources, and in the following chapter we will compare the allocations of power/-
money in randomly generated networks under VCG against other schemes.

One of the most central features about VCG, is that it is one of the most direct
expressions of marginal payments - in that each participant is payed the marginal
difference their presence causes to the well-being of the other participants in a utility
maximising process. This marginal difference consideration is shared by two other
solutions of this chapter, particularly Locational Marginal Pricing (LMP) (section 3.2)
and Shapley Value (section 3.3.2).

One of the most notable qualities of VCG is that when it is scaled up to large
numbers of participants (and no specific participants are particularly influential) then
VCG often limits to another solution concept called Locational Marginal Pricing,
which often is budget balanced — see Nath and Sandholm [2019]; Tanaka et al.
[2018].

3.2 Locational marginal pricing

In Section 2.2.5 we briefly considered the notion that the morality of a transaction
could be framed with respect to the normal market prices. There is potentially no
greater framework for describing nominal market pricing in economic thought more
influential than the concept of the margin or more specifically marginal pricing.

The idea that normal market trading should have any relation to moral trading
was seen in John Locke’s short essay Venditio where it is argued that a fair price for
something is simply its normal market price at its location.1 John Locke argues for
this thesis, by considering that negotiating above market price for a good would be
unethical primarily because any transaction would be taking advantage of ignorance
or special circumstances of the buyer. Conversely, negotiating below market price
for a good would only incentivise reselling and allow others to profit at the original
seller’s loss, or alternatively, that selling below market price only to those who are
needy is certainly a charity and hence cannot be required by justice. By these consid-
erations, justice only requires offering no more than the same nominal market price
for everybody.

While John Locke’s arguments may or may not be convincing, it is useful to
consider the transactions and pricing that would occur under idealised or norma-

1“... the market price at the place where he sells. Whosoever keeps to that in whatever he sells I
think is free from cheat, extortion and oppression, ...” [Locke and Wootton, 2003]
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tive euvoluntary trading as these prices might be considered moral in-themself (by
Locke’s argument), or provide a back-drop for the framing of more moral trading. In
section 3.4 we consider mathematical schemas used to describe idealised normative
bargaining between small numbers of participants, but in this section we describe
some economic theory that has been used to describe normalised trading between
large numbers of market participants.

Historic economic thought lends consideration to the idea that market prices can
be described by combinations of factors, not limited to, supply and demand func-
tions, market uncertainty, production costings and transport tariffs etc. and the com-
bination of these may be related to the pricing and subsequent trading of the goods.
However, the way in which these factors have been seen to influence (or define)
economic value has changed over time.

3.2.1 A brief summary on the history of value

In the history of economic thought, there was some general idea that the economic
value of something (and hence its normal market price) should, in some way, be
related to its usefulness in fulfilling human needs (however fickle or not) as things
which are utterly useless seldom fetch any price. But, above this, there was a diffi-
culty explaining how it was that things which were most useful to satisfying needs
often had little economic value, and things which were more useless were sometimes
most economically valuable. This apparent contradiction is known as the water-
diamond paradox, best put by Adam Smith:

“The word VALUE, it is to be observed, has two different meanings, ...
The things which have the greatest value in use have frequently little or
no value in exchange; ... Nothing is more useful than water; but it will
purchase scarce any thing; ... A diamond, on the contrary, has scarce any
value in use; but a very great quantity of other goods may frequently be
had in exchange for it.” [Adam Smith, 1776]

In answer to this, there was promoted the idea that economic value reflects labor,
as water is easy to procure but diamond is not so. This ‘labor theory of value’ was
held by many authors (including Adam Smith2, David Riccardo3, and many others)
but most notably by Karl Marx:

“It suffices to say that if supply and demand equilibrate each other, the
market prices of commodities will correspond with their natural prices,
that is to say with their values, as determined by the respective quantities
of labour required for their production” [Marx et al., 1965, Chapter 2]

2“The real price of every thing, what every thing really costs to the man who wants to acquire it, is
the toil and trouble of acquiring it.”Adam Smith [1776]

3“The value of a commodity, or the quantity of any other commodity for which it will exchange,
depends on the relative quantity of labour which is necessary for its production...”[Riccardo, 1817,
Section 1, Chapter 1]
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And this idea, that the quantity of labour should (in some way) define market
prices at market equilibrium, was subject to analysis and verification. But ultimately
the question of how to transform volumes of labour into competitive market prices
became a difficult problem known as the ‘Transformation Problem’.

However, the various utilitarians of the 19th century viewed utility not only as a
direction of moral efforts, but as a fundamental drive of human behaviour4, including
market behaviours such as price setting; and ultimately, this perspective yielded a
new explanation for economic value.

The utilitarian perspective sought to explain market dynamics in terms of peo-
ple’s efforts to maximise their own utility (or more practically, profit), and in this
context stable (and hence normal) market prices were associated with the equilib-
rium of those efforts. This perspective yielded a link between market dynamics with
the concept of the margin - or ‘marginalism’.

Although the concept of the margin was evidenced in some writings in the ear-
lier half of the 19th century (such as in the works of Jules Dupuit and Hermann
Heinrich Gossen), it took to the end of the century for the idea to become more thor-
oughly developed - see Stigler [1950]. Although there was much discussion about
the relationship between the labour theory of value and marginalism at the end of
the 19th century (such as reported by Steedman [2003]) ultimately marginalism was
adopted mainstream in the so-called ’marginal revolution’, which has been identified
(such as by Screpanti and Zamagni [1995]) as defining the beginning of neoclassical
economics.

The marginalist revolution saw that economic prices were not just equal to the
summation of normal production costs5 (ultimately depending on the value of labor),
but instead depended on the cost of production of the most marginal unit produced
to meet demand.

3.2.2 A sketch of marginalism

The idea of marginalism is best illustrated with a graph, in Figure 3.1 there is an illus-
tration of a hypothetical market for a particular economic good, with many suppliers
and many buyers. In the figure we have the plotted the ‘Supply curve’, identifying
how many units of the good could be sustainably supplied to the market if the units
sold for a particular price. And we also have the ‘Demand curve’, identifying how
many units of the good would natrually be sold depending on the price which the
goods sold at. So for instance, at $30 sale price per good, the market would be able
to reliably support the production of ∼ 7 goods, and the demand would be ∼ 23,
identifying a situation of unmet demand.

4for instance see Bentham: “Nature has placed mankind under the governance of two sovereign
masters, pain and pleasure. It is for them alone to point out what we ought to do, as well as to
determine what we shall do.”Bentham [1823]

5Such as promoted by Riccardo, “The real and ultimate regulator of the relative value of any two
commodities, is the cost of their production, and neither the respective quantities which may be pro-
duced, nor the competition amongst the purchasers.”Riccardo [1817]
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In this way, if the market is functioning ideally, then there is only one sensible
outcome: that the goods should be sold in the number (and therefore at the price),
that is at the intersection of the supply and demand curves - ie. the marginal price
point. For if there were more goods produced, then those excess units would be
unsold hence their production would be unprofitable, and if there were less goods
produced, then there would be unmet demand which would spur more production.
The graph shown might be indicative of a market for a finite resource (where in-
creasing supply costs more), and where there is decreasing demand with increasing
price.

Different sellers may choose different prices in a realistic market, however in this
idealised situation where everybody is selling at the marginal price point, if any small
individual seller tried to deviate from this price then it would be a disadvantageous
for them. For instance, If a seller tried to set a higher price than the marginal price
then it would result in a failure to sell, or if a seller set a lower price then it would only
result in less profit. In this way, the marginal price point identifies an equilibrium of
peoples utility (or profit) maximising efforts.

This kind of marginal analysis is a short sketch of the analysis and treatment
in modern microeconomic texts (such as Vohra [2020]). This marginalist analysis is
also widely regarded to resolve the water-diamond paradox, in that water is cheap
because its marginal unit is cheap to produce.

Over time the marginalist synthesis was developed more comprehensively in the
presence of many discussions and criticisms. Particular criticisms attack the aca-
demic assertion that market participants are psychologically driven by rational utility
maximisation (such as Stigler [1950])6, and the more pragmatic assertion that mar-
kets are approximately ideal and tend towards the stability of equilibrium (such as
Keen [2011])7.

Notwithstanding, one of the most notable features of this neoclassical analysis is
that the equilibrium marginal price point also maximises the sum of utility of those
that participate in the market. This can be seen from Figure 3.1 where all the buyers
who value the goods the most are provided from all the sellers who can supply those
goods at lowest cost up until the marginal point where no further trade is viable.

This point of utility maximisation is seen in Neoclassical analysis more generally,
where market equilibrium prices (at and/or between markets) occur at the point
of the maximisation of the sum of utility. Indeed, the process of mathematically
deriving these marginal prices developed into a kind of calculus, where the marginal
prices fall out as Lagrange multipliers in the process of maximising the sum of utility.

To see this, consider the curves in figure 3.1 where the Demand function is
D(x) = 40

1+(x/40)2 and the Supply function is S(x) = 20(x/40)2.

6individual traders may be partially driven by irrationality such as fear, ignorance, gambling
7as might be most directly witnessed in markets where is inherent uncertainty, notably in speculative

markets such as stocks, housing and crypto-currency
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Figure 3.1: The Demand and Supply curves of a hypothetical market.

From these functions8 we construct the utility of the buyers and sellers as:

Ud(x) =
∫ x

0

40
1 + (z/40)2 dz and Us(x) = −

∫ x

0
20
( z

40

)2
dz

In this context Ud(x) represents the sum of utilities of the buyers for x goods sold
to them9 and Us(x) represents the sum of costs suffered by the sellers for x goods
produced by them10.

If the amount of the goods bought is a and the amount supplied is b then we can
construct the utility function as U(a, b) = Ud(a) +Us(b) and to maximise this subject
to the conservation constraint a = b, we use lagrange’s method of multipliers, and
form lagrangian: L(a, b, λ) = Ud(a) + Us(b) + λ(b− a)

∂L
∂a

=
40

1 + (a/40)2 − λ = 0 thus: a = 40
√

40/λ− 1

∂L
∂b

= −20
(

b
40

)2

+ λ = 0 thus: b = 40
√

λ/20

8We could, more directly, observe that by solving S(x) = D(x) we get x = 40.
9The equation is an integration because, if x is zero, then the utility of the buyers is zero because

there are no goods transacted, if x is 1 we might imagine that the good goes to the buyer who values
it the most and whose utility is given the maximum leftmost point on the demand curve, if x is 2 then
the utility of the buyers is the sum utility of the one who values it the most and the second most, if x is
3 then it is the sum of utilities of the 3 most buyers, etc.

10The equation is an integration because, if x is zero, then there are no goods produced and no costs
to the sellers, if x is 1 then we might imagine that the good was produced by the cheapest seller, who’s
cost is given by the leftmost point on the supply curve, if x is 2 then the utiltiy is the sum of costs of
the two chepest sellers, etc.
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substituting into the constraint a = b gives λ = 20 and thus a = b = 40
In this way the Lagrange multiplier on the conservation constraint gives the marginal
price of the good - which is also called the ‘shadow price’.

The general development of the mathematics is slightly beyond our scope here,
but the general process is:

1. Formulate the utility function from all the market participants, including all
variables

2. Form an optimisation problem for utility maximisation with appropriate con-
servation constraints

3. Solve the optimisation problem, and record the Lagrange multipliers of the
conservation constraints as shadow prices.

This process, of using calculus to determine nominal prices has been proposed in the
electricity space - such as by Scott and Thiébaux [2015]; Tang and Jain [2013]; Parhizi
et al. [2017]; Tang and Jain [2015]. Particularly as the process of maximising utility on
an electricity grid is a well known problem called the ‘Optimal Power Flow’ problem
(OPF), where the power conservation constraint at each bus of the network, identifies
the marginal price of electrical power on that bus. This particular scheme is called
‘Locational Marginal Pricing’ (LMP); and we will investigate and compare against it
against other solutions in section 4.4.

Particularly, we note that LMP has been implemented for real-time-pricing of
transmission power in some existing electricity systems - such as reported by Wang
et al. [2015]; Holmberg and Lazarczyk [2012]. And that although LMP is like VCG
in that it is ultimately not budget balanced, unlike VCG there are specifically iden-
tifiable cases where budget imbalance occurs, particularly in the context of network
congestion - see Tang and Jain [2013].

3.2.3 Applications of Locational Marginal Pricing to electricity systems

In the historical context of power systems, one of contested and contrasted options
in electricity market structure was Discriminatory/Pay-As-Bid-Pricing and Unifor-
m/Marginal Pricing.[Wolfram, 1999; Ren and Galiana, 2004; Haghighat et al., 2012;
Griffin and Puller, 2009; Necoechea-Porras et al., 2021; Fabra et al., 2002] In the elec-
tricity market context, generator companies ‘bid’ into a system an offer consisting
of what amount of power/s they can supply and at what amount they expect to be
paid for the respective dispatch. This can occur in a day-ahead market structure,
where a central and Independent System Operator (ISO) collects bids and accepts
them to meet anticipated demand the following day. The primary question between
Pay-As-Bid and Marginal Pricing is if the generator companies who’s bids are ac-
cepted should simply be paid their monetary bid amount, or should directly be paid
the cost of the marginal unit of power dispatched.

While it may initially seem as if Pay-As-Bid pricing would be most reasonable,
it is demonstrated that strategic equilibrium in the bidding of generator companies
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should ideally yield the respective Marginal Pricing values anyway (as already in-
dicated in section 3.2.2 and demonstrated in Klemperer [1999]). In this way, the
question between Pay-As-Bid and Marginal Pricing is if the market operator should
shortcut the strategising of generator companies, and thus afford the marginal prices
directly.

This discussion between Pay-As-Bid-Pricing and Marginal Pricing was mostly
discussed throughout the deregulation process of electricity networks that occurred
in many countries throughout the 80’s to the 2000’s [Joskow, 2008], and was also
reconsidered in the aftermath of the California electricity crisis. [Kahn et al., 2001a,b]
However, in real terms, Marginal Pricing of some sort is more the commonly imple-
mented rule, as opposed to Pay-As-Bid, and a centralised Marginal Pricing rule is a
direct precursor to a locationally variant Marginal Pricing rule - that is, Locational
Marginal Pricing (LMP).

However with the implementation of LMP, there are additional factors that may
need to be addressed in practical settings, such as:

• LMP schemes can be considered to various levels of refinement, such as be-
tween zonal and nodal levels [Wang et al., 2015; Holmberg and Lazarczyk,
2012] where the degree of refinement and the boarders between zones poten-
tially have practical and social consequences, and influence computational dif-
ficulty in the calculation.

• LMP is inherently built upon an electrical network optimisation scheme which
potentially includes various elements of complexity. For instance, LMP prices
can be built upon a DC approximation model of electricity flow (it computa-
tionally the more simple), but in principle various AC models (and their relax-
ations) are possible candidates. [Wang and Hijazi, 2018]

• LMP method does not directly incorporate or account for discontinuous vari-
ables. This factor is most notable in the Unit Commitment (UC) stage of gener-
ators scheduling to meet demand, as generator state cannot always be continu-
ous (such as on/off state). For these discontinuous parameters, LMP prices can
be supplemented by side payment methods to support the dispatch of power.
There exists discussions about different schemes to calculate and organise these
side-payments. [Eldridge et al., 2020; Johnson et al., 1997]

• Locational Marginal Prices vary over time and between zones/nodes of the
network which are subject to congestion and whereby congestion rents are ex-
tracted. These congestion rents need to be redistributed and secondary markets
may be implemented for these as a consequence, notably Financial Transmis-
sion Rights (FTR) auction processes. Financial Transmission Rights are financial
instruments which ISOs offers to generator companies to hedge against LMP
volatility [Zakeri and Downward, 2010], these FTRs then alter the pricing land-
scape in electricity network context which then has potential secondary effects.
[Wu and Zheng, 2022]
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• LMP is static for a single timeframe and is not completely incentive compatible,
and these factors yield real world strategising in electricity markets [Hu et al.,
2005; Dungey et al., 2018], and this is most notably true around the mechanism
of revising bids or ‘rebidding’, over a finite time horizon [Scott and Thiébaux,
2019].

• LMP is tacitly based on full and static information, and although there is some
attempt to integrate uncertainty into the marginal price mechanism itself Fang
et al. [2021]; Mieth and Dvorkin [2020], there is a broader discussion about
different ways to accommodate uncertainty from historical data into the design
and operation of electricity systems generally [Riaz et al., 2022]. In-practice the
value of short-term demand/supply uncertainty and imbalance is not reflected
in Locational Marginal Prices, but can be addressed via secondary ancillary
support markets - such as providing frequency stability.[Ela et al., 2016]

These considerations extend primarily from there being factors (discontinuous,
diachronic, probabilistic, etc.) that are outside of the Marginal Pricing calculus that
cannot (or are not often, or easily) incorporated, thus adding to the complexity of
LMP in real-world markets. Notwithstanding these considerations, LMP has partic-
ular advantages such as its ability to be computed and its linkage to economically
relevant rationale, that means that it is actually implemented over other schemes in
practice [Holmberg and Lazarczyk, 2012], and serves us as a benchmark to compare
other schemes against.

3.2.4 Summary and discussion of Locational Marginal Pricing

Locational Marginal Pricing is a historic example of an economic framework of in-
tegrating market conditions (supply and demand information) to give equilibrium
price points. It can be seen to provide a description of normal trading value, and
thence (perhaps) moral trading value.

Locational Marginal Pricing and VCG provide some of the most direct expres-
sions of Marginalism as a concept, and (as considered in section 3.1.5) one can limit to
the other for large markets. Particularly VCG rewards participants with economic in-
centives equal to their direct impact on group wellbeing above their absence, whereas
Locational Marginal Pricing can be seen as providing participants with economic in-
centives in proportion to their presence’s marginal (or incremental) impact on group
wellbeing.

With VCG it is directly considered what the notion of absence means, particularly
the direct difference the presence of a participant makes is in relation to the affect the
participant’s utility brings upon the social utility maximum. However the notion of
absence under LMP may be less clear; the marginal prices are the rate of incremen-
tal utility value of additional goods at the respective location, which in turn is the
incremental rate that each participant’s presence brings at that location.

In the following chapter 4, LMP and VCG are implemented and the differences
between the two can be witnessed.
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Both LMP and VCG root their concept of value in the idea of marginal contribu-
tion implicitly with respect to some notion of absence. However, in other contexts it
may not be clear what this means, in section 3.4 we outlay some solutions concepts
which which embrace this ambiguity.

However before we move to section 3.4, we notice that both LMP and VCG only
treat every player individually, but neglect any consideration of possible groups of
players and their influence. And so, in the next section 3.3 we consider solution
concepts which explicitly consider groups and their marginal contributions.

3.3 Cooperative game theory

In section 2.2.5 we considered the idea that groups of people could be afforded what
they could achieve ‘by themself’. And this idea is most directly articulated by the
Core of cooperative game theory. In that same section we also mentioned the idea
that people could be rewarded for their contribution under uncertainty about the
presence of other group members, and that this idea was most directly articulated by
the Shapley Value of cooperative game theory.

Both of these ideas directly or implicitly consider possible groups and how much
value each group has ‘by itself’, and this is directly the ground of cooperative game
theory.

The basic elements of a classic cooperative game are that there is a set of players
or individuals N = {1, 2, . . . n} and a function v : S ⊆ N → R with v(∅) = 0 called
the characteristic function. The characteristic function identifies in some sense the
‘worth’ or ‘value’ of any group of players (a ‘coalition’) which might be interpreted
in terms of utility or monetary value. In this context, one aim of cooperative game
theory is to develop schemes (or ‘solution concepts’) which split the wealth achieved
if everybody cooperated (that is v(N)) between all the players.

Fundamentally, this kind of analysis hinges on there being a clearly defined con-
cept and determination of the value of each possible group (ie. the characteristic
function), however it is not always the case that there is such a clearly defined no-
tion. Consider the words of Lloyd Shapley about the characteristic function:

“The idea is to capture in a single numerical index the potential worth of
each coalition of players...

With the characteristic function in hand, all questions of tactics, informa-
tion, physical transactions, etc., are left behind. The characteristic func-
tion is primarily a device for dividing the difficulties – for eliminating as
many distractions as possible in preparation for the confrontation with
the indeterminacy of what we have called the “n-person problem”. En-
grossed with this problem, many authors writing after von Neumann and
Morgenstern have begun by basing their solution concepts on the char-
acteristic function above, with no initial concern for the concrete rules of
the game, in strategic or extensive form.
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Unfortunately, not all games admit a clean separation between strategic
and coalitional questions, and for those that do not the characteristic func-
tion approach must be modified or abandoned.”
[Shapley and Shubik, 1973]

In this light, there exist situations where the ‘worth’ of a coalition may be ambigu-
ous such as where there are strategic considerations between possible coalitions, and
there is no uniquely defined value that members of a coalition could/would achieve.
However, some situations do cleanly admit a definable ‘worth’ for groups of indi-
viduals, for instance, the Characteristic function may identify the amount of money
that members of a coalition could, and unambiguously would, achieve by working
for themself irrespective of the actions of those not belonging to the coalition.

In these cases, if everybody works together to achieve some maximal sum of
money there are a set of possible ways the money can be divided between everybody.
One of the most natural divisions is that every subgroup should be given at least
more than they could feasibly achieve by working for by themself as a group. And
this is an allocation most naturally described by the Core.

3.3.1 The Core

The Core is an example solution concept for cooperative games, in that for any set
of players N = {1, 2, . . . n} and any characteristic function v : S ⊆ N → R with
v(∅) = 0, the Core is a set of possible payoff allocations to each of the players C(v)
in which each subgroup is given at least the value of the characteristic function for
that subgroup:

C(v) =

{
x ∈ Rn : ∑

i∈N
xi = v(N); ∑

i∈S
xi ≥ v(S), ∀S ⊆ N

}
The Core is the set of possible allocations such that for any group of individuals,

the sum allocated to the group is greater than what the group could achieve by
working by themself. The allocations in the Core might be seen to have a kind of
stability property - in that no coalition would have an incentive to leave the grand
coalition. One major drawback about the Core is that it does not determine a unique
outcome, but potentially a range of outcomes or potentially none at all, depending
on the cooperative game.

Indeed the Core may be empty, and in this case no solution can have the same
kind of desirable stability, however there are alternative allocations that minimise
this shortcoming. Most notably, the least-Core solution concept.

The least-Core solution concept is a particular instance of the strong ε Core which
is very similar to the Core, and is defined as follows:

Cε(v) =

{
x ∈ Rn : ∑

i∈N
xi = v(N); ∑

i∈S
xi ≥ v(S)− ε, ∀S ∈ N

}
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The strong ε core is the set of allocations in which each coalition is allocated atleast
their value minus some constant ε. The strong ε Core can be defined for positive and
negative ε values, it will certainly be non-empty for very large and positive ε values
and certainly be empty for very negative ε values. In this way we can consider
the limiting case between these two, the smallest value of ε in which the strong ε

Core is non-empty — and this is the least-core, see Maschler et al. [1979]. The least-
core is therefore always non-empty and may even identify a singular solution point,
which that can be said to identify the point of minimum ‘dissatisfaction’ between the
groups.

The Core is an intuitive solution concept in the context where the characteristic
function identifies the ‘worth’ of individuals and groups ‘by-themself’ and the dy-
namics are driven by this isolation mechanic. However in other cases the ‘worth’
identified by the characteristic function may be in the context of cooperation with
the others. And in this context the Core is not the only solution concept worth con-
sidering.

3.3.2 The Shapley Value

The Shapley Value is another specific and well known solution concept in cooperative
game theory. Particularly the Shapley Value allocates to each individual the average
contribution they would add across the possible coalitions to which they could join.

Particularly, for any coalition S which does not include a player i, then player
i’s marginal contribution is v(S ∪ {i})− v(S). If we average such contributions for
coalitions of size k:

v̂i,k =
1

(n−1
k )

∑
S⊆N\{i},|S|=k

(v(S ∪ {i})− v(S)) (3.3)

Then we have the average marginal contribution of player i to coalitions of size k,
and if we average this over coalitions of different size, we get the Shapley Value:

ϕi(〈N, v〉) = 1
n

n−1

∑
k=0

v̂i,k (3.4)

Or more directly as:

ϕi(〈N, v〉) = ∑
S⊂N,i/∈S

(n− |S| − 1)! |S|!
n!

(v(S ∪ {i})− v(S)) (3.5)

The Shapley Value is an averaging over a players marginal contributions, which is
thus a unique allocation for any cooperative game.

The Shapley Value for a player can also be formulated as being the expected
marginal contribution across all join ordering processes. So for instance, if we let
π(N) denote the set of all ordered permutations of the player set N and if we denote
Prei(O) as the set of predecessors of player i’s addition in that ordering O ∈ π(N).
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Then the Shapley Value can be expressed as the average marginal contribution across
orderings, see Weber [1988]:

ϕi(〈N, v〉) = 1
n! ∑

O∈π(N)

v(Prei(O) ∪ {i})− v(Prei(O)) (3.6)

In this way the Shapley Value for a player can be directly expressed as the average
marginal contribution across possible join order processes.

The Shapley Value has perhaps some moral intuition behind it - rewarding each
person in proportion to what they would add across any ordering that the coalition
could form. But more than that, the Shapley Value has been derived from different
sets of quite intuitive axioms. For instance:

• Efficiency: That the total dividend is broken up, ∑i ϕ(〈N, v〉)i = v(N)

• Symmetry: If two players i and j are substitutes and contribute the same to all
coalitions, such that if v(S ∪ i) = v(S ∪ j) ∀S ⊆ N \ {i, j}, then ϕ(〈N, v〉)i =
ϕ(〈N, v〉)j

• Dummy Player: A player i is a dummy player if the amount that i contributes
to any coalition is the amount that i is able to achieve alone (i.e. v(S ∪ {i})−
v(S) = v({i}) ∀S ⊆ N \ {i}) then ϕ(〈N, v〉)i = v({i})

• Additivity: That for any two games, the imputation for the two together is
the sum of the imputations in each, for any v1 and v2, ϕ(〈N, v1 + v2〉) =
ϕ(〈N, v1〉) + ϕ(〈N, v2〉)

These axioms might seem pretty reasonable and they lead uniquely to the Shapley
Value allocation - per Shapley [1953]; additionally there are other possible sets of
axioms which also lead to the Shapley Value aswell. These axioms (particularly
Efficiency and Symmetry axioms) relate directly to morally relevant points raised in
the philosophy chapter 2 (Efficiency and formal equality conditions respectively).

In considering the Shapley Value, there is the additional question of when the
Shapley Value is in the Core - and thus has that particular stability that would dis-
incentivise any subgroup from leaving. One example case where the Shapley Value
is always in the Core is the case of Convex cooperative games, see [Chakravarty
et al., 2014, Chapter 6]: A cooperative game is convex if the value that two coali-
tions together has is greater than the value of their parts minus the value of their
intersection, ie. iff:

∀S, T ⊂ N v(S ∪ T) ≥ v(S) + v(T)− v(S ∩ T) (3.7)

Which is potentially a common condition in which each coalition is informally ‘greater
than the sum of its parts’. We consider an example:

Example. Consider player set N = {1, 2, 3} with characteristic function:
v(S) = (∏i∈S i)− 1 (ie. the multiplication of their player numbers minus one).11

11We are assuming that the product over an empty set is one.
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Solve for the Shapley Value, and show that it is efficient and also in the core.

Solution. To calculate the Shapley Value for player C, we consider the marginal
contributions it can make to other coalitions:
v({C})− v(∅) = 2− 0 = 2, v({C, A})− v({A}) = 2− 0 = 2
v({C, B})− v({B}) = 5− 1 = 4, v({C, A, B})− v({A, B}) = 5− 1 = 4
Thus the Shapley Value for player C is: ϕC = 1

3

(
2 + 1

2 (2 + 4) + 4
)
= 3, and contiuing

for the other players gives: ϕA = 0, ϕB = 2
The Shapley Value is efficient as: ϕA + ϕB + ϕC = 5 = v({A, B, C})
and also in the Core, as it is true that:
ϕA + ϕB = 2 ≥ v({A, B}) = 1
ϕA + ϕC = 3 ≥ v({A, C}) = 2
ϕB + ϕC = 5 ≥ v({B, C}) = 5
It is also simple enough to verify that the cooperative game is convex.

3.3.3 Summary and applications to electricity systems

Cooperative game theory concepts centre on the consideration of groups and how
reward or surplus utility should be divided among members, and particularly the
Shapley Value is most famous.

Indeed the Shapley Value has been considered as a potential mechanism for pric-
ing in the various facets of electricity system operation. Such as:

• Credits in demand response participation [O’Brien et al., 2015; Khalid et al.,
2019; Wang et al., 2019]

• Compensation for the aggregation of power [Perez-Diaz et al., 2018; Baeyens
et al., 2013]

• Allocating transmission costs and losses [Tan and Lie, 2002; Sharma and Ab-
hyankar, 2017]

• Dividing profits for retailers and [Acuña et al., 2018; Wang et al., 2019]

• Allocating surplus and savings in microgrids [Wu et al., 2017; Lo Prete and
Hobbs, 2016]

• Sharing costs in distribution and embedded networks [Chapman et al., 2017;
Chiş and Koivunen, 2019; Bremer and Sonnenschein, 2013; Lee et al., 2014; Han
et al., 2019; Azuatalam et al., 2019]

In each of these cases, the primary difference is the context of application and the
specific way in which the characteristic function is constructed.

The Shapley Value has notable strengths and weaknesses, particularly the sim-
plicity of its axioms have obvious appeal, and similar to LMP and VCG it is a more
expansive marginalist approach (as it is expressible the an average over a larger
range of marginal contributions by equations 3.4 or 3.6). However a primary draw-
back of the Shapley Value in practice is the difficulty of computing it as calculating
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all of the marginal contributions of all players to the 2n − 1 possible coalitions is
identified as being rapidly difficult to scale to sizes of participants on realistic net-
works. This drawback has attracted attention and attempts at remediation, such as
employing techniques of sample-bassed approximations (see citations in Section 6.6)
or approaches that employ techniques like player clustering Han et al. [2019].

Shapley Value approaches may or may-not suffer other disadvantages depend-
ing on context, such as being incentive incompatable, privacy preserving, or having
envy-freeness, however the primary weakness of the Shapley Value approach is that
it only applies when there is a coherent conception of a characteristic function. That
is, (as identified in the quote by Lloyd Shapley at the beginning of this section 3.3) co-
operative game theory is most applicable when the ‘worth’ or ‘value’ of a coalition is
unambiguous, and when specific strategic considerations between the coalitions are
unimportant (or are otherwise accounted for). Unfortunately in a meshed electricity
network with a confluence of electricity details and a range of strategies available to
each of the participants, such a notion of ‘worth’ may not be very obvious. Thus in
the next section 3.4 we consider some solution concepts which apply in circumstances
where it is not easy to describe the ‘worth’ or ‘value’ of a coalition of players; where
strategic considerations between them are important and it is not easy to make sense
of a characteristic function. Particularly, we describe bargaining solution concepts.

3.4 Bargaining solution concepts

In our discussion of Locational Marginal Pricing in section 3.2, we considered one
way of describing normalised pricing in large markets. However in this section we
consider some of the various ways of describing normalised pricing among a small
number of market participants where their individual strategic options are relevant.

Particularly, we consider the situation where there are a small numbers of market
participants negotiating over a set of possible outcomes. In this context we consider
the question about what the likely outcome of an idealised bargaining process would
be.

We begin with one of the most historic classes of bargaining solution concepts,
particularly Nash bargaining with endogenous disagreement outcome.

3.4.1 Nash bargaining with exogenous disagreement point

A bargaining solution concept applies in a situation where there are a number of
parties (or agents, or market participants) and a space of possible outcomes which
those agents can reach by bargaining and which each of them may value differently.
In this context, a bargaining solution concept identifies an outcome, which may be
interpreted as one which the agents ‘will’ (or ‘should’) reach. Perhaps the most
famous bargaining solution concept is called the Nash-bargaining solution concept.

Nash bargaining was introduced by John Nash [Nash, 1950] as an axiomatic
approach to predict the normal result of idealised bargaining over potential out-
comes. It is defined over a set of potential outcomes F where each of the players
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P = {p1, p2, . . . } value the outcomes differently with utilities up∈P( f ) for f ∈ F. Ad-
ditionally there is a privileged outcome called the ‘disagreement’ outcome d which
represents the event of the negotiation between the players breaking down, and
which any player can unilaterally implement.

Nash identified that in this case there is a unique solution satisfying some very
intuitive axioms:

• Invariant to affine transformations: that the solution should not change if the
utilities of any of the players are scaled (by some positive factor) or offset, ie
that they are invariant under the set of affine transformations

• Pareto optimality: That there will not exist another solution point that is weakly
better than the solution for all players, and strongly better for atleast one player.

• Independence of irrelevant alternatives (IIA): If any subset of potential outcomes
does not feature the solution point or the disagreement point, then it could be
removed from consideration without affecting the solution.

• Symmetry: The solution is invariant with regards to the ordering of the players.

Nash identified that this solution maximises the product of utilities above the utility
of the disagreement point:

nash(F, d) = argmax
( f≥d)∈F

∏
p∈P

(up( f )− up(d)) (3.8)

In many cases of physical bargaining (which might involve alternating offers etc.)
the ‘disagreement outcome’ is seen (such as by Nash [1953]) to be often naturally
dictated by the context of the bargaining process - such as the event of quitting in the
context of a wage-negotiation or of walking-away from a potential sale - and can be
seen as the point of ‘threat’ from which the bargaining process proceeds.

There has been much work since Nash published his famous paper [Nash, 1950]
investigating other and/or similar solution concepts, and these bargaining solutions
(such as Kalai and Smorodinsky [1975]; Balakrishnan et al. [2011]; Anbarci et al.
[2002]) often relate to different axioms (most often rejecting axiom IIA) and privilege
different points in the bargaining process.

One objection to the Nash bargaining solution is that it may not be considered
natural or a reliable description of real-world bargaining. Although there does ex-
ist evolutionary models suggesting that Nash bargaining might naturally emerge in
some social dynamics (such as modelled by Cho and Matsui [2013]), there also exists
experimental work by Kroll et al. [2014] finding that real behaviour between humans
exhibits ambiguity even in the case when the disagreement point is naturally given
by the setting.

However in other cases (such as in an electricity network) a singular disagreement
outcome may not be very clearly given by the context to begin with. And so for a
Nash bargaining solution concept to be applied, a disagreement outcome must be
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chosen from the set of possible outcomes, which leads to the question of how this
should be done.

3.4.2 Nash bargaining with endogenous disagreement point

In John Nash’s paper “Two-person cooperative games" [Nash, 1953], He explicitly ad-
dresses the consideration of the agents choosing a disagreement point between them-
selves in a prior stage in the bargaining process.

Particularly he considers a game specifically between two players, who reach a
cooperative outcome in a series of stages of negotiations. He considers that each
of the players has a space of mixed strategies Si in a normal form game, and for
each possible pair of mixed strategies that the players might execute, each receives
an immediate payoff p1(s1, s2) and p2(s1, s2) respectively (s1 ∈ S1, s2 ∈ S2). He also
considers that there is a set B of possible payoffs for the players if they cooperate,
which may be bigger than the set of payoffs in the normal form game.
ie. ∀s1 ∈ S1, s2 ∈ S2 (p1(s1, s2), p2(s1, s2)) ∈ B

Nash then considers a specific negotiation process:

1. Each player i chooses a mixed strategy ti ∈ Si that will be used if the two cannot
come to an agreement - this is the threat.

2. The players inform each other of their threats.

3. Each player i decides upon a ‘demand’ di which is an amount of utility which
they will not accept less than, without triggering the chosen threat.

4. If there is a point (u1, u2) in B such that u1 ≥ d1, and u2 ≥ d2 (ie. if there is a
possible way the demands can be mutually satisifed), then the pay-off to each
player i is di. Otherwise, the pay-off to each player i is given by the result of
their threats, pi(tl , t2).

This process encodes a process that includes two choices for the players, first,
they must choose a ‘threat’ strategy ti which they will be forced to execute if they
cannot reach further agreement, and secondly they need to choose a ‘demand’ di of
the utility which they would like to receive from the negotiation. If it so happens that
it is possible for the players to have their demands mutually met then they receive
the utility associated with their demand, otherwise they receive the utility given by
the actualisation of their threats.

Nash identifies that a natural choice of compatible demands in the second part
of the game occurs at the maximising of the Nash product (Equation 3.8) above a
disagreement point determined by the execution of threat strategies (as elucidated
in the previous section 3.4.1) Nash then identifies that in light of this result for the
second part of the game there exists a unique set of optimal choice of threats ti for
the two players in the first part of the game; which is a Nash equilibrium of them
with respect to the subsequent maximisation of the Nash product.

Nash also identifies this result via axioms:
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1. For each game (S1, S2, B) there is a unique solution (v1, v2) ∈ B

2. If (u1, u2) is in B and u1 ≥ v1 and u2 ≥ v2 then (u1, u2) = (v1, v2)

3. That order preserving linear transformation of utilities do not change the solu-
tion. ie. for games with all utilities scaled (ie u′1 = a1u1 + b1, u′2 = a2u2 + b2 for
a1, a2 ≥ 0) result in solution (v′1, v′2) where v′1 = a1v1 + b1 and v′2 = a2v2 + b2.

4. The solution does not depend on which player is player ‘one’, ie. all functions
are symmetrical

5. If points from B are removed except (v1, v2) and the points (p1(s1, s2), p2(s1, s2))
for all strategies s1 ∈ S1, s2 ∈ S2 then the new game yields the same solution.

6. A restriction of strategies for a player cannot increase his/her resulting payoffs,
ie. for S′1 ⊂ S1 then v1(S′1, S2, B) ≤ v1(S1, S2, B)

7. There exists single (unmixed) strategies such that player one’s value wont in-
crease, ie. there exists s1, s2 such that v1(s1, s2, B) ≤ v1(S1, S2, B)

These axioms are very similar to, but perhaps a little less obvious than Nash’s
game with exogenous disagreement point (as given in the previous subsection 3.4.1).
Let us consider an example game for the calculation of Nash bargaining with en-
dogenous disagreement point:

Example. Consider the matrix representation of the strategic normal-form game be-
tween two players (a row player and column player respectively):[

2, 1 −1,−2
−2,−1 1, 2

]
(3.9)

What is the Nash bargaining solution for this game, if the set of possible payoffs is
only that which can be attained by mixed strategies?

Solution. We consider the space of possible payoffs between the players in the game
for mixed strategies (see shaded region in figure 3.2) and note that if the pure strategy
payoff (−1,−2) within the shaded region was chosen as the threat point by the
players (highlighted by a black point; corresponding to the payoff in game row 1
& column 2), then the subsequent payoff to the players would be (2, 1), since it is
the point within the shaded region that maximises the product of utilities above
(−1,−2) (per equation 3.8). We also observe that the (−1,−2) is a Nash equilibrium
as a choice of threat point, as if the column player chose the alternate column 1
instead, then the threat point would be (2, 1) which would effect the same outcome,
and if the row player chose the alternate row 2 then the threat point would be (1, 2)
which would be worse for the row player. In this way it is seen that (2, 1) is the Nash
bargaining solution for this game.
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Figure 3.2: The potential outcomes for the TU example game (Equation 3.9), shown
in blue, with a red Pareto frontier for transferrable utility, and nash product maximi-
sation over a black threat point.

This illustrative example comes directly from the papers of Kohlberg and Ney-
man [2017, 2015], where it is explained that Nash’s solution concept has a particu-
larly simple form in games where utility is transferable (TU) (as has been identified
multiple times Kohlberg and Neyman [2017]; Shapley [1984]; Kohlberg and Neyman
[2015]).12 The approach involves converting the normal form game (3.9) into a zero
sum game by calculating the player advantage in payoffs, and our example zero sum
game matrix is given by (3.10). If d is the minimax value of the zero sum game, and if
s is the maximum sum of utility achievable in the normal form game, then the Nash
bargaining solution is ( 1

2 s + 1
2 d, 1

2 s− 1
2 d).[

1 1
−1 −1

]
(3.10)

Solution (TU approach). From (3.9) we see that the maximum sum of utility achiev-
able between the players s = 3. Then we compute the minimax value of the zero
sum game (3.10), d = 1 Which indicates that the row player has a greater threat
power. The Nash bargaining solution between the two players gives them utility as
( 1

2 s + 1
2 d, 1

2 s− 1
2 d) = (2, 1)

It may seem to be a bit difficult to see how these two approaches are related
at first glance. However, it can be realised that in the context of selecting a threat
point (for a TU game), all that matters is the player’s payoff advantage over their
opponent. This fact can be seen by inspection of Figure 3.2, where maximising the

12It also coincides with the ‘coco-value’ in the case of complete information [Kalai and Kalai, 2013,
2010].
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Nash product over a threat point places the final payoff point directly above and to
the right (on the Pareto frontier) at a 45 degree angle. In this context, the threat point
only matters to the players insofar as it serves to moves the resulting payoff point
along the Pareto frontier. The Pareto frontier defines the sum of player payoffs to be
distributed, and hence the threat point only defines the difference of how much is
distributed to one player over another - ie. their payoff advantage. We also note that
for these bargaining solution concepts, that there is a way in which an ‘individual
rationality’ property can be guaranteed, specifically, if both players have the ability to
unilatterally implement zero utility for themself, then any disagreement point must
be in the first quadrant, guaranteeing non-negative final utility for both parties.

3.4.3 Discussion of Nash bargaining concepts

In this section we considered some bargaining solution concepts, particularly Nash’s
bargaining solution concept which gives an outcome that implicitly incorporates all
the possible influences which the players can bear upon each other. The solution
concept for games of transferable utility (TU) depend primarily on the minimax of
payoff advantages between the players. In this way payoff advantage is considered
as a measure of the strength of a player’s bargaining position.

Nash’s bargaining solution was principally suited for 2 players, however some
extensions of it to many players have been developed. In the following Chapter 4
we develop these extensions of Nash’s bargaining solution concept into a scheme
applicable to electricity networks called the GNK value.

However, the contemplation of Nash bargaining solutions leads to the question
of whether ‘threat’ strategies should (or would) naturally play a role in the division
of resources - such as in an electricity system.

Nash bargaining solutions are a primary example of a solution concept that ex-
plicitly considers the direct selection of possible ’threat’ strategies for the players,
and how these might bear on the result of cooperative negotiations. This considera-
tion contrasts against the LMP, VCG and Shapley Value concepts where the implicit
reference point for each player may be interpreted as an articulation of their absence
from cooperation - which may also be interpreted as a ’threat’. However, unlike these
other concepts, Nash bargaining with endogenous disagreement point removes any
ambiguity and explicitly selects the point that would correspond to a failure of co-
operation.

The moral ideas surrounding proportionality (per section 2.2.5) suggest that mon-
etary compensation should be defined in relation to reference point/s, and Nash bar-
gaining is one example solution concept that explicitly selects such a reference point;
the question therefore is whether this selection process is the right one.

Nash bargaining attempt to mathematically identify outcomes that are a cooper-
ative result underpinned by perfect competition under equilibrium, and hence can
potentially serve as a description of normalised and idealised trading; In more real-
istic contexts, the selection of moral reference points may be influenced by a range
of moral or practical factors, and we can ask, when an equilibrium of ‘threat’ strate-
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gies would bear practical relevance. Particularly it is identified by Nash that the role
of threats in negotiations depends on a dynamic about their ability to be plausibly
enforced.

“A common device in negotiation is the threat ... If one considers the
process of making a threat, one sees that its elements are as follows: A
threatens B by convincing B that if B does not act in compliance with
A’s demands, then A will follow a certain policy T. Supposing A and B
to be rational beings, it is essential for the success of the threat that A
be compelled to carry out his threat T if B fails to comply. Otherwise it
will have little meaning. For, in general, to execute the threat will not be
something A would want to do, just of itself.” [Nash, 1953]

In this light, it is pertinent to consider where threats do and do not play a role in
real-world negotiations (such as discussed in Anbarci et al. [2002]) and subsequently
to consider whether or not threat dynamics could or should be manifest in electricity
systems. In the following Chapter 4 we explore this question by developing a direct
extension of Nash’s bargaining solution concept into a scheme applicable to electric-
ity networks called the GNK value, and apply it to electricity systems to witness its
features.

3.5 Envy-Free systems

In Section 2.2.6 we introduced the concept of envy-freeness at a conceptual level;
envy-freeness is a general condition of allocation where every person prefers their
own bundle of allocated resources to that allocated to everyone else. However there
are multiple questions in-practice in allocating resources in an envy-free manner, and
one of the primary questions is what the bundles of resources are.

In the most simple case, that of the simple divisible homogeneous good that is
valued monotonically by all players, the only envy-free allocation is an equal allo-
cation of the good between all participants, which is not naturally an outcome that
maximises utilitarian efficiency, but is potentially straightforward to implement and
has an obvious egalitarian appeal. [Feige and Tennenholtz, 2014] Adding transfer-
able utility transactions to the bundles allows envy-free allocation of equal utilities
to all participants.

For practical purposes, the bundles of resources can include more interesting
elements, for instance, in the context of the supply of homogeneous Electricity to
consumers, adding uncertainty over the supply creates more complex case, where
ex-ante envy-freeness can be considered.[Bürmann et al., 2020] Or as another exam-
ple the authors of Tushar et al. [2017] consider envy free allocations in the context of
selling homogeneous electricity surplus, together with a convex pressure to sell pa-
rameter α per player. Another electricity example application of envy-free concepts is
in the allocation and evaluation of load-shedding algorithms [Oluwasuji et al., 2019]
where maximum envy difference is considered as a target for minimisation and a
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metric of evaluating performance. In these contexts optimising for envy-freeness can
impart utilitarian social cost, the so called ‘price of envy-freeness’ [Bertsimas et al.,
2011].

In these these and other electricity contexts, the envy-freeness condition can act
as a constraint on possible allocations reducing them to a set of consistent possibil-
ities, then there is a secondary question about which of these is most appropriate
to be implemented. Such as (per previous examples) may be Pareto efficient, utility
maximising, or maximising the wellbeing of the worst off; particularly, there is an ex-
tant body of literature examining Pareto-efficient envy-free allocation (PEEF) [Weller,
1985; Cole and Tao, 2021; Varian, 1974],

Another dimension of envy-free allocation in practice, is the degree to which
the respective envy-free allocation is truthful or incentive compatible for the partici-
pants. The consideration of true strategy-proof envy-freeness was first considered
in the context of cake-cutting [Chen et al., 2013], but further investigation has estab-
lished several restricted impossibility proofs surrounding the concept under various
conditions [Bei et al., 2017; Aziz and Ye, 2014; Kurokawa et al., 2013] A secondary
question is thus, how likely are envy-free allocation mechanisms likely to perform
under strategising agents, and then specifically in such conditions as may be present
in electricity contexts.

Another dimension is which specific conception of envy-freeness is most appro-
priate in practice. So for instance, should allocation optimise envy-relations between
all consumers or between local consumers (such as graph envy-free conditions - see
Section 2.2.6), or how should envy-relations be considered between resource bun-
dles and consumer which by happenstance cannot feasibly consume them, should
measures be envy-free or only envy-minimising and if-so at what cost to social or
utilitarian efficiency. In this way there is a range of social possibilities in designing
envy-free systems in practice.

Unfortunately, at this stage, there is no well established singular way of trading
resources such as electrical energy that is envy-free, quite as much as envy-freeness
is a desirable property sometimes witness in various mechanisms that are sometimes
discussed in an electricity context. An implementation of the envy-free condition
in electricity systems may or may not have other advantages and drawbacks, such
as incentive compatibility, budget-balance, Pareto-efficiency, and may or may not be
computable and scalable to the sizes of realistic networks (particularly as computa-
tion difficulty is potential drawback, as identified in section 2.2.6).

3.6 Comparison & summary

In this chapter we have explored five different ways in which ethical ideas about dis-
tribution can be mathematised, and each of them have different features and encode
different moral perspectives.

Specifically we have introduced and illustrated the Vickrey-Clarke-Groves (VCG)
mechanism, Locational Marginal Pricing (LMP), the Shapley Value, and Nash bar-
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gaining solution concepts, and envy-free applications. Each of the ideas embody
different rules and respect different moral reference points.

And as identified by the philosophy of the previous chapter, none of these solu-
tions are simply right or wrong per sei; but each have their features and limitations,
and hence have arenas where they are potentially more suitable than others. We
note that the approaches discussed in this chapter can encode different ways of valu-
ing resources in their context. Because these different approaches are defined in a
generalised context and thus can apply to many different contexts within electric-
ity network systems. Additionally, because of these approaches beging defined in a
generalised context, each of them can be adaptable to any relevent set of quirks or
facets of the system to which they are applied, and thus sensitive to any confluence
of elctrical system considerations. The broad issues facing real-world electricity sys-
tems (such as detailed in Chapter 1) may or may not be reduced or exacurbated by
any of approaches applied to particular electrical system subproblem. However in
the next chapter we attempt to create a entirely new approach to the valuation of
resources such as may be relevent to electricity systems.

One particularly interesting feature of the Nash-bargaining solution is that it con-
siders the minimax payoff advantage as a measure of competitive strength between
participants, and it allocates utility accordingly. However the Nash bargaining so-
lution is limited to two players, as for three (or more) players there may not exist a
unique zero-sum minimax value. In the following chapter 4 we construct an exten-
sion of Nash bargaining solution called the GNK value, that is built around Shapley
Value axioms; and compare it to LMP and VCG in the context of the immediate
generation/consumption of electrical power on electricity networks.
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Chapter 4

The GNK value: A new solution

In the previous chapter we introduced several different solution concepts, each stem-
ming from different ethical principles and perspectives. In this chapter we detail a
new approach that combines some of the features of the solution concepts outlaid
in the previous chapter. The primary motivation for this new solution, is to attempt
to distil the intuition behind the Nash bargaining solution concepts (per section 3.4)
into a description of total allocation that is suitable for arbitrary number of players
- rather than just two. Our solution extends the work of others to the space of gen-
eralised non-cooperative games, which are then suitable for application in various
electrical network contexts.

Our solution relates to many of the concepts of the previous chapter: where
we have a fundamentally coalitional scheme (per Coalitional Game Theory), that
rewards based upon disagreement points (Bargaining Theory), which is partially
informed by how much individual’s participation influences the group’s wellbeing
(reminiscent of VCG), and attempts to describe normative trading between large
numbers of participants (Marginalism).

We call our new solution concept the Generalized Neyman and Kohlberg Value or
GNK value for short, and is computed and directly compared against other solutions
concepts of the previous chapter in the context of electricity allocation. By this com-
parison it is seen that the different solution concepts give different outcomes, and we
discuss these differences in light of our ethical considerations (from Chapter 2).

The material from this chapter extends from work which was originally submitted
to AAMAS, and was accepted as an extended abstract:

“The Generalized N&K Value: An Axiomatic Mechanism for Electricity Trading”
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS) 2018 (accessible: ifaamas.org/Proceedings/aamas2018/pdfs/p1883.pdf)

This chapter consists of the following parts:

• In sections 4.1 and 4.2, we introduce and define the GNK value, relating it to
historical roots and similar solution concepts.

• In section 4.3, we consider how the GNK value can be computed to derive
financial and electrical outcomes on a DC electricity network, against LMP and
VCG.

65



66 The GNK value: A new solution

• In section 4.4, we point-by-point discuss the features GNK, LMP and VCG as
they are expressed in the context of an example electricity network.

We identify that the GNK value is difficult to compute for large numbers of play-
ers, and so in the next chapter 5 we address and consider the GNK value at scale
against ethical criteria.

4.1 Introduction to the GNK value

How should we model ideal competition? In the two player case, existing bargaining
solutions (such as Nash’s) seem rather difficult to surpass as they describe a singular
and axiomatic outcome that is both cooperatively Pareto optimal and also accounts
for anti-cooperative strategising.

In the context of Nash bargaining with endogenous disagreement point (per sec-
tion 3.4.2), the disagreement point was interpreted as a unique point defined by a
minimax equilibrium in the payoff-advantage of strategies. However there exists a
problem extending this scheme directly to three or more players, as there may not
exist a unique minimax equilibrium in payoff-advantages for strategies in a game of
more than two players. The question then is how to logically and consistently ex-
tend Nash’s bargaining solution with endogenous disagreement point to an arbitrary
number of players.

While it may be possible to arbitrarily choose one of those possible minimax
equilibria in a 3+ person game as the disagreement point, instead we consider all
the possible divisions of players between two groups and then consider all the two-
player minimax payoff advantages between them. We then integrate this information
via Shapley Value axioms to form a unique outcome, that does not depend on any
arbitrary choice. In this way our new solution allocates outcomes in proportion to
the aggregate leverage that all the individuals - and groups of individuals - could hy-
pothetically posses in bargaining for outcomes they desire. In the following sections
of this chapter (sections 4.2 to 4.3) we give all the details of this process.

The fundamental idea behind our approach was first detailed by Harsanyi [1963].
So far as we know, Harsanyi’s solution concepts have never been applied to elec-
tricity networks, as there exists a particular problem in doing so, particularly that
Harsanyi’s solution concepts apply to non-cooperative games but cannot apply to
generalised non-cooperative games. The details of this problem and our novel rem-
edy are given in following section 4.2.2.

But briefly, in electricity network contexts the mutual interactions of participants
can be limited by the physical constraint of the network, for instance: network partic-
ipants cannot simply draw or push power to/from the network without restraint, as
doing so would lead to damage to the network. And these limitations on the space of
possible mutual actions is best modelled by a generalised non-cooperative game, and
unfortunately in the context of such a generalised game there is no unique minimax
point between two players. Our principle and novel development in this chapter is
the provision of a remedy, such that Harsanyi’s solution can then be applied. The
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remedy is to take the expected outcome on a coin-flip on who chooses actions first
in the minimax strategies - and as we shall see - this turns out to be a unique value
that satisfies all required properties, and thus leads to a coherent outcome.

The resulting outcome we call the Generalized Neyman and Kohlberg Value or the
GNK value for short, as Harsanyi’s solution was also axiomatically derived by Kohlberg
and Neyman [2017, 2018]. This solution concept is shown to apply for all transferable
utility (TU) generalised non-cooperative games, and directly equivalent to the Nash
bargaining with endogenous disagreement point under transferable utility (TU) be-
tween two players (such as per section 3.4.1, as in the example in that section).

The GNK value is thus flexible enough to extend to many contexts, but we focus
particularly on the specific case of allocating monetary payments over Optimal Power
Flow (OPF) instances under the DC approximation - as we will explain.

Let us derive the GNK value (in section 4.2) before giving details of its application
to DC networks (in section 4.3), discussing it (section 4.4) and scaling it (section 5).

4.2 Deriving the GNK value

We begin by presenting the axiomatic foundations of the GNK value, in a similar
manner as Kohlberg and Neyman [2017]’s exposition. We begin by defining the
GNK value to be the integration of threat values between possible coalitions; defined
via Shapley Value axioms. We then describe the threat or advantage of a coalition v(S)
in the context of a generalized non-cooperative game (which is our key point of novelty
in the solution concept). And then we clarify how the GNK value relates to other
prominent solution concepts in non-cooperative games.

4.2.1 Axiomatic foundations and the Value

We begin by considering Kohlberg and Neyman [2018]’s coalitional game of threats,
which is a coalitional game defined by a pair 〈N, v〉 in which:

• N = {1, . . . , n} is a finite set of players or agents, and

• v : 2N → R is a characteristic function with

v(S) = −v(N \ S) ∀S ⊆ N. (4.1)

The intuition for (4.1) is that the characteristic function of this game is a measure of
the strength of the bargaining position (the ‘threat’ or ‘advantage’) that a coalition,
S, has over its complement, N \ S. This contrasts with classical cooperative game
theory games, where the characteristic function v(∅) = 0 and equation 4.1 does not
generally hold (see section 3.3).

Neyman and Kohlberg’s key result was to prove that if D is the set of all such
games, then there exists a unique mapping ϕ : D → Rn that satisfies the following
four axioms:
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• Efficiency: ∑i ϕ(〈N, v〉)i = v(N) (4.2)

• Symmetry: If two players i and j are substitutes, such that if
v(S ∪ i) = v(S ∪ j) ∀S ⊆ N \ {i, j}, then ϕ(〈N, v〉)i = ϕ(〈N, v〉)j

• Null Player: If a player i is a null player (i.e. v(S ∪ i) = v(S) ∀S ⊆ N) then
ϕ(〈N, v〉)i = 0

• Additivity: for any v1 and v2, ϕ(〈N, v1 + v2〉) = ϕ(〈N, v1〉) + ϕ(〈N, v2〉)

Letting agent i’s element of ϕ be denoted by ϕi, this mapping is:

ϕi(〈N, v〉) = 1
n

n

∑
k=1

vi,k =
1
n

n

∑
k=1

1
(n−1

k−1)
∑

S:i∈S
|S|=k

v(S) (4.3)

Where vi,k is the average value of v(S) for all coalitions of size k that include i.
This mapping gives a distribution of the total surplus v(N) among the players, and
Kohlberg and Neyman [2018] appropriately call this unique mapping the ‘Shapley
Value’ of the game of threats as it mirrors the classic Shapley Value of cooperative
game theory.

Indeed Kohlberg and Neyman [2018] have shown that for any game of threats
〈N, v〉 there is a classic cooperative game 〈N, v′〉 where the two Shapley Values are
the same. It is possible to map a game of threats v to a cooperative game v′ via
relation:

v′(S) =
1
2

v(S) +
1
2

v(N) (4.4)

A central question in Kohlberg and Neyman [2018]’s coalitional game of threats,
is what the ‘threat’ of a coalition of players v(S) should be (such as on an electricity
network), and one way of considering this is in relation to the actions that the coali-
tion could exert and their consequences (positive and negative) over other players;
such as may be described in non-cooperative game theory.

4.2.2 Defining threats in games with general action spaces

In this subsection we define the characteristic function v(S), in the context of a gener-
alized non-cooperative game. A generalised non-cooperative game is a game where the
strategies available to one player may be restricted by the strategy choice of others.
Such games were introduced by Debreu [1952] and the problem of finding equilibria
in such games has been a topic of further research [Facchinei and Kanzow, 2007;
Fischer et al., 2014].

In more detail, a generalised non-cooperative game consists of a triplet G =
〈N, A, u〉 in which:

• N = {1, . . . , n} is a finite set of players,

• A ⊆ ∏i∈N Ai is a set of all possible joint strategies, where Ai denotes the set of
strategies available to player i ∈ N, and A is a subset of their product space
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• {ui(a) : A → R}i∈N is a set of functions of each player’s payoff/utility when
joint strategy a ∈ A is executed.

In this context, we wish to describe the payoff ‘threat’ or ‘advantage’ v(S) of a
coalition S ⊆ N (letting AS = ∏i∈S Ai), taking into account the constraints that apply
to the joint action space. A key contribution in our research is the following construc-
tion of the coalitional game of threat’s characteristic function. Denoting (x, y) ∈ A
as a partition of a joint action between two coalitions S and N \ S, the characteristic
function for the game of threats with generalised action spaces is given by:

v(S) =
1
2

min
y∈AN\S

s.t.∃x,(x,y)∈A

max
x∈AS

s.t.(x,y)∈A

(
∑
i∈S

ui(x, y)− ∑
i∈N\S

ui(x, y)

)

+
1
2

max
x∈AS

s.t.∃y,(x,y)∈A

min
y∈AN\S

s.t.(x,y)∈A

(
∑
i∈S

ui(x, y)− ∑
i∈N\S

ui(x, y)

)
(4.5)

The requisite condition v(S) = −v(N \ S), as given in (4.1), is immediately sat-
isfied irrespective of the structure of strategy space A, insofar as the max and min
terms are defined. Thus, (4.5) is a feasible representation of the competitive advan-
tage (or threat) that a coalition has over its complement in a generalised strategy
space. With the characteristic function (4.5), the formulation of ϕ (per (4.3)) defines
the GNK value. This is a novel extension of existing work to the space of generalised
games (see Section 4.2.4).

4.2.3 Understanding the GNK value

In the characteristic function (4.5), the inner term:

∑
i∈S

ui(x, y)− ∑
i∈N\S

ui(x, y)

is the sum of payoffs that the coalition S receives, minus the sum of payoffs that the
complement N \ S receives, under the joint strategy (x, y) ∈ A, we call this the payoff
advantage to S.

The first line of v(S) in (4.5) is half the payoff advantage achieved if, the players
in S collectively choose their strategies to maximise the payoff advantage knowing
that the players in N \ S will subsequently choose their strategies to minimise it -
and thus this dynamic constitutes a bilevel optimisation problem. Then the second
line of (4.5) is an additional half of the payoff advantage achieved if the ordering of
choice were reversed, with N \ S choosing first. In this way, (4.5) can be interpreted
as the expectation of Nash equilibrium payoff advantage of S over its complement
under a fair coin-toss of who chooses their strategies first.

In this formulation v(N) = maxa∈A(∑i∈N ui(a)) is the maximum achievable sum
of payoffs that the players can achieve, and the GNK value ϕ, splits all of this amount
between the players (by the efficiency axiom). The allocation of utility that the
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GNK value allocates can be realised by having the players execute the strategies
that achieve this maximal sum, and then enacting appropriate utility transfers be-
tween the players. In this way the GNK value can be seen as a method of allocating
a Pareto optimal outcome and budget-balanced payments between players, to attain
utility proportional to their competitive advantages.

4.2.4 Relation to other solution concepts

The GNK value is closely related to several other solution concepts, and even equiv-
alent to them under certain conditions.

Most immediately, the GNK value is identical to Kohlberg and Neyman [2017]’s
Value when the strategy space A represents a mixed strategy game that is not gen-
eralised; that is when the strategy space, A, is an unconstrained combination of
strategies for all agents (ie. A = ∏i∈N Ai). To see this, we observe that the two halves
of (4.5) are equal in the absence of joint action constraints (via direct application of
von Neumann’s minimax theorem1), and hence the characteristic value reduces to
that used in Neyman and Kohlberg’s original definition:

vo(S) = max
x∈AS

min
y∈AN\S

(
∑
i∈S

ui(x, y)− ∑
i∈N\S

ui(x, y)

)
. (4.6)

That is, Neyman and Kohlberg’s Value is the formulation of ϕ (per (4.3)) with vo(S)
(per (4.6)). Unfortunately Neyman and Kohlberg’s Value cannot be directly applied
to generalised games because the required condition vo(S) = −vo(N \ S) can fail to
hold in that case.

Neyman and Kohlberg’s Value (and the GNK value) are also directly conceptually
related to Harsanyi [1963]’s solution in this context, while in the 2-player context, it
is identical to Kalai and Kalai [2013, 2010]’s coco-value in the context of complete
information and also identical to Nash [1953]’s bargaining solution in the context of
transferable utility (see Kohlberg and Neyman [2017], or section 3.4.2). It also shares
a conceptual similarity with Aumann [1961]’s α and β core solution concepts, and
von Neumann and Morgenstern [1944]’s historic formulation :

vm(S) = max
x∈AS

min
y∈AN\S

∑
i∈S

ui(x, y). (4.7)

In this way the GNK value can be seen as a conceptual continuation of historic so-
lution concepts, and can be judged according to how well it derives outcomes in
application contexts.

As a simple example demonstration, it is possible to see how the GNK value is
identical to Nash bargaining in the context of transferable utility games (such as in
the example matrix game 3.9 of section 3.4.2), we calculate all the terms v(S) for
coalitions of players 1 and 2, particularly:

1see Lemma 1 of Kohlberg and Neyman [2017]
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v({1, 2}) =max max
[

3 −3
−3 3

]
= 3

v({1}) =1
2

min max
[

1 1
−1 −1

]
+

1
2

max min
[

1 −1
1 −1

]
= 1

v({2}) =1
2

min max
[

1 −1
1 −1

]
+

1
2

max min
[

1 1
−1 −1

]
= −1

v(∅) =−max max
[

3 −3
−3 3

]
= −3

From this:
ϕ1(〈N, v〉) = 1

2
(v({1, 2}) + v({1})) = 1

2
(3 + 1) = 2

ϕ2(〈N, v〉) = 1
2
(v({1, 2}) + v({2})) = 1

2
(3− 1) = 1

Which matches exactly the result in section 3.4.2. In section 3.4.2 we considered
that the minimax in the payoff advantage matrix (ie. d in that section) was the
nash equilibrium point of threat in bargaining between the players in choosing a
subsequent point on the Pareto frontier (see Figure 3.2) that divides the maximum
possible sum revenue (ie s in that section). The GNK value also directly encodes this
same logic as v({1}) = −v({2}) is the minimax in the payoff advantage between
the player (in this ungeneralised game), and v({1, 2}) is the maximum sum revenue
which is split. This result is the same as we would get by the coco-value, and working
with Neyman and Kohlberg’s value (equation 4.6).

In the following section we describe the setup for an application and evaluation
of the GNK value in the context of DC-approximated electrical networks.

4.3 GNK value computation on DC powerflows

Because of its flexibility the GNK value has the potential to be used in a large range
of different contexts, however in this section we focus solely on the development of
a simple case — the pricing of the immediate consumption and generation of power
on a meshed network under DC approximation, where all participants have linear
utilities over their own power. Although this construction simplifies away some key
technical problems in power networks, it allows us to clarify the analysis of the GNK
value and its features.

In this section, we consider the DC network model, discuss how to calculate the
GNK value as well as LMP and VCG for it, before in the next section 4.4 we discuss
the features of these mechanisms with an example.
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4.3.1 Network model

We begin by setting out the elements of an electricity network under DC approxima-
tion:

• A set of buses B with, for all i ∈ B:

– Power consumption at each bus pi, and

– A bus voltage phase-angle θi,

• Lines C ⊆ B× B, with, for all (i, j) ∈ C:

– Line susceptance bi,j, and

– Power flow pi,j (power from bus i to j), with pi,j = −pj,i.

In this context, the DC approximated powerflow constraints (per Wang and Hijazi
[2018]) are expressed as follows:

DC-powerflow

Variables: pi∈B, θi∈B, p(i,j)∈C

constraints: pl
i ≤ pi ≤ pu

i

pl
i,j ≤ pi,j ≤ pu

i,j

pj = ∑
(i,j)∈C

pi,j

pi,j = −bi,j(θi − θj)

(4.8)

where pl
i , pu

i , pl
i,j, pu

i,j are the upper and lower bounds on power consumption/gen-
eration and line limits, respectively.

We can eliminate redundant variables, such as θi and pi,j, and to ease presentation,
and use the abstract functions hj and gk (for indices j, k) to represent the remaining
linear functions:

DC-powerflow

Variables: pi∈B

constraints: hj(p1, p2, . . . ) = 0 ∀j

gk(p1, p2, . . . ) ≤ 0 ∀k

(4.9)

In this DC powerflow network the participants on each bus are treated as players
in a game. For simplicity, we have one player per bus (i.e. N = B), and the power
consumption of that bus is the respective player’s strategy space (i.e. Ai = [pl

i , pu
i ]).

Then the DC constraints define the space of jointly executable strategies — forming
the generalised strategy space A.

We further assume that there is a linear utility (or payoff) associated with the
power consumption of each player, denoted ui(pi) for player i, which makes all the
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components of a generalised game.2 We now consider how to calculate the GNK
value against LMP and VCG for such a generalised game.

4.3.2 Computing the GNK value

The GNK value is difficult to solve because of the bilevel structure of (4.5) which
must be computed for each of the possible coalitions of network participants. Even
though we have modelled our example network with a set of linear utility functions
and linear constraints (as given in section 4.3.1), equation (4.5) is still quite difficult
to solve as it constitutes a linear bilevel program (LBP) which are a class of problems
known by to be NP-hard. [Sinha et al., 2018; Ben-Ayed and Blair, 1990]

There exist a range of techniques which can be used to solve LBPs, such as sum-
marised by Sinha et al. [2018]; Dempe [2018]. Some of the many methods include:
vertex enumeration processes [Bialas and Karwan, 1984; Shi et al., 2005a; Liu and
Spencer, 1995]; penalty method schemes [Kleinert and Schmidt, 2021; Önal, 1993;
Dempe, 1987]; cutting plane approaches [Marcotte, 1998]; branch-and-bound/cut
methods [Shi et al., 2005b; Hansen et al., 1992; Audet et al., 2007]; and approximating
algorithms [Pineda et al., 2018; He et al., 2014; Wang et al., 2007].

One well known way of addressing LBPs involves converting the inner optimi-
sation constraints into KKT conditions (introduced by Kuhn and Tucker [1951]), and
then converting the complementarity conditions into disjunctive constraints with bi-
nary variables - see Fortuny-Amat and McCarl [1981]; Pineda et al. [2018]. In this
way, a bilevel program is converted into a mixed integer linear program, which is
then directly amenable to standard optimisation software. This method was chosen,
and the SCIP Optimisation Suite was employed to compute the GNK value for an
example network as described in the next section 4.4.

KKT conditions are a well known set of algebraic tests which imply that the
function under consideration is locally optimal (maximal or alternatively minimal)
with respect to its variables under a set of constraint functions (with some regularity
assumptions on those functions). KKT are well documented, and extend the method
of Lagrange multipliers.

Specifically for maximising an objective function f (x) subject to multiple con-
straints:

gk(x) ≤ 0 (4.10)

hj(x) = 0 (4.11)

Then x∗ is a local maximum if the following KKT conditions are true:

∇ f (x∗)−∑
k

λk∇gk(x∗)−∑
j

µk∇hk(x∗) = 0 (4.12)

2the Linear utility assumption simplifies the mathematics, as it makes the objective function linear,
intuitively consumers should value consuming more power more, and generators cost producing more
power more with some gradient.
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and equations 4.10 and 4.11 hold for x∗, and for all i that λi ≥ 0 and λigi(x∗) = 0.
By KKT conditions, we can convert the DC powerflow constraints given by equa-

tions 4.9 into a set of equations for maximising an objective function f (pi∈B):

∀i
∂ f
∂pi

(pi∈B) = ∑
j

µj
∂hj

∂pi
(pi∈B) + ∑

k
λk

∂gk

∂pi
(pi∈B) (4.13)

∀j hj(pi∈B) = 0 (4.14)

∀k gk(pi∈B) ≤ 0 (4.15)

∀k λk ≥ 0 (4.16)

∀k λkgk(pi∈B) = 0 (4.17)

Hence the reformulation of our LBPs in equation 4.5 involves transforming the
inner maximisation/minimisation constraints into KKT conditions. The sets of vari-
able values which satisfy the KKT conditions are called KKT points, if we denote
the set of values of an maximised objective function f (pi∈B) at the KKT points as
KKT ( f (pi∈B)). Then reformulation of the inner part of (4.5) to involve KKT condi-
tions is as follows:

v(S) =
1
2

max
pi

i∈S

min

[
−KKT

(
−∑

i∈S
ui(x, y) + ∑

i∈N\S
ui(x, y)

)]
+

1
2

min
pi

i/∈S

max

[
KKT

(
∑
i∈S

ui(x, y)− ∑
i∈N\S

ui(x, y)

)] (4.18)

By reformulating the inner maximisations/minimisations of (4.5) in this way we
replaced the inner minimisations/maximisations in the space (x, y) ∈ A with min-
imisations/maximisations over KKT points in the same space.

As the constraints under DC-approximation are linear and hence define a convex
polygon, and as the functions ui(pi) are linear (per the assumption of linear utility
in section 4.3.1), then there will only be a single maximum/minimum value of these
inner minimisations/maximisations - which will be the global maximum/minimum
value.3 In this way the inner maximisation (minimisation) over the KKT points can
be ignored.

It was also realised that a binary reformulation of the complementary slackness
conditions (equation 4.17) would increase computational efficiency, and so we trans-
formed these complementarity constraints into disjunctive binary constraints.

Specifically, for each complementary slackness condition λkgk(pi∈B) = 0 we in-

3as linear optimisation problem has a unique solution, although there may be multiple points which
attain this maximum/minimum value
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troduced a binary variable Zk to indicate whether λk or gk(pi∈B) was zero and then
introduced large numbers λ̄k and gk such as to make the complementary slackness
condition equivalent to: (1−Zk)λ̄k ≥ λk ≥ 0 and gkZk ≤ gk(pi∈B) ≤ 0. Where λ̄k and
gk are the estimated upper and lower bounds on the KKT multipliers and constraint
functions respectively.

the resulting KKT conditions for maximising and objective function f (pi∈B) under
this complementary slackness conditions are as follows:

∀i
∂ f
∂pi

(pi∈B) = ∑
j

µj
∂hj

∂pi
(pi∈B) + ∑

k
λk

∂gk

∂pi
(pi∈B) (4.19)

∀j hj(pi∈B) = 0 (4.20)

∀k gk(pi∈B) ≤ 0 (4.21)

∀k (1− Zk)λ̄k ≥ λk ≥ 0 (4.22)

∀k gkZk ≤ gk(pi∈B) ≤ 0 (4.23)

if we denote the set of values of an maximised objective function f (pi∈B) that
satisfy these new KKT conditions KKT( f (pi∈B)). Then reformulation of the inner
part of (4.5) to involve KKT conditions is as follows:

The resulting reformulation is as follows:

v(S) =
1
2

max
pi

i∈S

[
−KKT

(
−∑

i∈S
ui(x, y) + ∑

i∈N\S
ui(x, y)

)]
+

1
2

min
pi

i/∈S

[
KKT

(
∑
i∈S

ui(x, y)− ∑
i∈N\S

ui(x, y)

)] (4.24)

This reformulation renders the LBP into a mixed integer program which is di-
rectly amenable for calculation by optimisation solvers, and the SCIP optimisation
suite was used in our case.

4.3.3 Computing the LMP transfers

Computing the Locational Marginal Price (LMP) transfers for DC electricity networks
is a process described in various literature - such as by Scott and Thiébaux [2015];
Tang and Jain [2013].

Particularly we consider optimising the sum of utility: ∑i∈B ui(pi) subject to the
DC powerflow constraints in equations 4.8. In this context the power conservation
constraints on each bus are the constraints pj = ∑(i,j)∈C pi,j, and the lagrange mul-
tipliers associated with these constraints are the marginal prices for power on each
of the respective busses. This process is an application of the more general marginal
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price calculation procedure discussed previously in section 3.2.2. We utilised the
SCIP optimisation suite4.

4.3.4 Computing the VCG imputations

From section 3.1 the VCG payment that a participant makes is the difference between
the sum of other’s utility at the social optimum point x∗, and the utility that others
would have if the participant were not present and the optimisation were only over
the remaining participants, as seen in equation 3.1.

In this way the socially optimum value x∗ needs to be computed, and then addi-
tionally an additional optimisation problem for each player - where we assume that
the excluded participant has power zero pi = 0. Thus in our context, equation 3.1
becomes:

di = argmax
∑j uj(pj)

∑
j 6=i

uj(pj)− argmax
∑j 6=i uj(pj),pi=0

∑
j 6=i

uj(pj) (4.25)

The first term in this equation is the sum of utilities at the point which maximises
the sum of utilities minus the player i. The second term in this equation is the sum
of other’s utilities (ie. excluding player i) at the point which maximises the sum of
other’s utilities in the context that the players power is zero. The first part of the
equation is common to all player’s contributions di, but the second negative part is
unique for each. In this way, if there are n participants, there are n + 1 comparable
OPF optimisation problems which need to be solved to calculate VCG payments. The
SCIP optimisation suite was used solving these optimisation problems.

4.3.5 Computing the Shapley Value imputations

From section 3.3.2 the Shapley Value utility imputations that a participant receives
is the average marginal contribution that it adds to a characteristic function under
ambiguity of the join ordering. In this way we need to consider a characteristic
function in the context of DC networks:

vshap(S) = max ∑
j

uj(pj) s.t. ∀i /∈ S pi = 0

This characteristic function describes the utility that a coalition could achieve by
themselves, absent any consumption/generation from those not in the coalition - it
is one possible way of creating a characteristic function for DC networks.

The utilities under the Shapley Value (by efficiency axiom) sum to give the value
of the grand coalition vshap(N) which occurs at the optimal operating point x∗. Thus
the Shapley Value can be implementing by enacting electrical outcomes described
by x∗ and conducting budget balanced utility transfers between participants. To
calculate the Shapley Value imputations, the maximal sum of utilities under OPF for
all the possible 2n− 1 coalitions need computed, and the SCIP optimisation suite was
used for these calculations.

4development reported by Maher et al. [2017]
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Busses: B = {1, 2, 3, 4, 5}

Lines:
C = {(1, 2), (1, 3),
(1, 4), (3, 5)}

Susceptances:
b1,2 = −1 b1,3 = −1
b1,4 = −1 b3,5 = −1

Line Limits:

pl
1,2 = −70 pu

1,2 = 70
pl

1,3 = −140 pu
1,3 = 140

pl
1,4 = −70 pu

1,4 = 70
pl

3,5 = −70 pu
3,5 = 70

Power Limits:

pl
1 = free pu

1 = 0
pl

2 = 0 pu
2 = 100

pl
3 = 0 pu

3 = 100
pl

4 = 0 pu
4 = 100

pl
5 = 0 pu

5 = 100

Utilities:

u1(p1) = 0.2p1
u2(p2) = 1.9p2
u3(p3) = 1.8p3
u4(p4) = 1.7p4
u5(p5) = 1.6p5

Table 4.1: Paramters for the example 5-bus
system. Note pl

1 is left free to allow for
a parameter search over it, for analysis of
the GNK and LMP values.

1

2
3

4

5

Figure 4.1: Line diagram for the ex-
ample 5-bus electricity system.

4.4 Some features of GNK, in context of an example

In the previous section 4.3 we detailed a procedure to calculate the financial pay-
ments and dispatched powers under the GNK value as well as LMP, VCG and Shap-
ley Value, so that now we can compute and compare them with an example. In
this section we are thus able to witness and discuss the characteristics of the GNK
value, in the context of an example 5-bus network shown in Figure 4.1, with param-
eters given in Table 4.1. In this example we calculate and subsequently consider the
features of the GNK value against LMP, VCG and Shapley Value against parame-
ter pl

1 (the generator capacity in the network). The results of these calculations of
the financial payments are plotted against pl

1 in Figures 4.2d, 4.3b, 4.3d and 4.4b for
GNK, LMP, VCG and Shapley Value respectively. Which in addition to the utilities
derived from power consumption/generation (Figure 4.2b) form the post payment
utility imputations as Figures 4.2c, 4.3a, 4.3c and 4.4a.

In Figure 4.2a, increasing the generator capacity from 0 shows that power is ini-
tially consumed entirely by the consumer at bus 2, who uses all pl

1kW of power and
values it at a rate of 1.9 units of utility. This continues until the power constraint
on line (1,2) binds, at 70kW. Then the consumer at bus 3 begins to be supplied with
power, who values it at a rate of 1.8 units of utility until its consumption is max-



78 The GNK value: A new solution

0 100 200 300 400
−300

−200

−100

0

100

1

2

3

4
5

(a) Load or generation power, pi.
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(b) Pre-transfer utility, ui(pi).
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(c) Utilities, post transfers, under the GNK
value, ϕ(〈N, v〉)i.
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(d) Transfers under the GNK value,
ϕi(〈N, v〉)− ui(pi).

Figure 4.2: For the Power levels (figure 4.2a), and utilities or costs for power (figure
4.2b), the GNK value and transfers under the GNK value. All x-axes are the system
generation capacity, −pl

1
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(a) utilities, post transfers, under LMP.
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(b) Transfers under LMP.
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(c) utilities, post transfers, under VCG.
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(d) Transfers under VCG.

Figure 4.3: The utilities and transfers under LMP, as well as the utilities and transfers
under VCG for the example network. All x-axes are the system generation capacity,
−pl

1
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(a) utilities, post transfers, under Shapley
Value.
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(b) Transfers under Shapley Value.

Figure 4.4: The utilities and transfers under Shapley Value for the example network.
All x-axes are the system generation capacity, −pl

1

imised at 100kW. This dynamic is then repeated for the agent with the next-highest
marginal utility for power (given by the utility function coefficients in Table 4.1), until
the respective line constraints are also met.

In the interval of the first 70 units of generator capacity (ie. pl
1 ∈ [0,−70]), the

LMP price for this power, for both the generator at bus 1 and the consumer at bus 2, is
given by its marginal value 1.9 (as the line constraint is not active). This corresponds
to the slope of the black line in Figure 4.3b (or 4.2b) over this interval. More generally,
the full set of the LMP transfers plotted in Figure 4.3b are given by the Lagrange
multiplier for power conservation in the OPF optimisation multiplied by the power
consumed at that bus, and that as the generation capacity increases the marginal
price of power changes, and the gradients of the lines change in discrete steps as the
utility functions in the example network are linear.

Additionally, the VCG payments are plotted against pl
1 in Figures 4.3d and re-

sulting utilities in Figure 4.3c. The VCG payments are similar to the LMP payments,
except that instead of payment proportional to the marginal unit of electricity, each
player is compensated at his/her marginal cost of their participation. VCG takes
into account the marginal effect that each of the player’s participation has upon each
other at the social optimum

In contrast VCG and LMP, the GNK value takes into account the full bargaining
position of each agent and also every possible coalition of agents when determining
transfers, which are based on the utilities (or costs, in the case of the generator) of
all agents in the system, and not just the marginal value of participation or electrical
supply. The GNK value is plotted against pl

1 for our example in Figure 4.2c, and the
resulting transfers (GNK value less utility) are plotted in Figure 4.2d.

In contrast to VCG, LMP and GNK, the Shapley Value exhibits character traits
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that are similar to LMP and VCG, particularly as the Shapley value is composed
of many more marginal contributions than those ones inherent to VCG, which is in
turn proportional to the marginalism inherent in LMP. Furthermore it has a superfi-
cial similarity to the GNK value as they both extend from the same axioms - either
exhibited in section 4.2.1, or by conversion to Shapley value by equation 4.4 thus
having exactly the same axioms as in section 3.3.2. The Shapley Value results are
plotted against pl

1 for our example in Figure 4.4a, and the resulting transfers (GNK
value less utility) are plotted in Figure 4.4b.

From these graphs we can witness some of the qualities of the GNK value against
LMP and VCG and the Shapley Value:

The GNK value, VCG and Shapley Value imputations are continuous in the pa-
rameters of the network

The GNK value has some evident continuity properties, as can be seen from equation
4.5, in which the minimax characteristic function, v(S), always changes continuously
with the utility functions u. This continuity property is proven in the Appendix A,
together with some associated monotonicity properties. This continuity is similarly
witnessed in VCG imputations, but notably not in the context of LMP payments.

It is seen that LMP features discontinuous changes in financial transfers and this
can clearly be seen from the jagged edges in Figure 4.3b, where the payments re-
ceived by generator 1 drop sharply with increasing generator capacity. This happens
because the change in generator capacity is changing the parameters of the network
itself and its feasibility region, which yields discontinuous changes in network op-
erating point, and thus marginal prices. This dynamic under LMP might be seen to
lead to a somewhat perverse incentive to produce less power than what is socially
optimal, and in contrast, the utilities under the GNK value (Figure 4.2c), VCG (Figure
4.3c) and Shapley Value (Figure 4.4a) which feature no such drops or discontinuities.
In a power systems context under LMP, these discontinuities are known to occur pre-
cisely in the event of network congestion which is one known cause of the volatility
experienced in electricity markets - see Hadsell and Shawky [2006]. In contrast, the
post-payment utilities under the GNK value and VCG are always continuous with
network parameters.

The GNK and Shapley Value payments are always budget balanced

The transactions under VCG are not necessarily budget-balanced and can yield a
surplus or deficit, and transactions under LMP can yield a budget surplus (they
are weakly budget balanced Wu et al. [1996][Fact 4]), whereas payments under the
GNK value and Shapley Value are strongly budget-balanced and result in no surplus
or deficit. This is an outcome of the GNK value’s axiomatic derivation, as given
by equation (4.2), which is reflective of the Shapley Value axioms, per section 3.3.2.
Under LMP, each participant is credited or debited at the effective rate of supply
for their location but there is no guarantees that the total payments should add to
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zero. This can be seen by inspecting the region x > 300 in Figure 4.3b, where
generator 1 is credited $56 while the consumers are debited at $133.0, $160.0, $119.0,
and $64.0 respectively, leading to a budget surplus of $420. The surplus of $420
comes particularly from the existence of congestion in the example network which
is well known to introduce so-called ‘congestion-rents’. Additionally VCG payments
are known not to be budget balanced generally and may yield a surplus or deficit
depending on various conditions, as considered in section 3.1.

The GNK value (but not VCG or LMP) can offset those that do not receive or
generate power

The GNK value can allocate payments between parties such that the consumers that
receive power compensate those that are excluded from receiving it. This can be seen
from Figures 4.2a and 4.2c particularly in the region where x < 50. In this region
there is only sufficient power to supply consumer 2 (who has the highest utility for
that power) whereas consumers 3, 4 and 5 who would otherwise be in a position to
receive that power are compensated such as to be barely worse off (as can be seen
from 4.2c).

For instance at x = 50, generator 1 produces 50kW which is consumed entirely
by consumer 2; the utilities of the participants before transfers are: −10, 95, 0, 0, 0
respectively (which can be seen from Figure 4.2b). However under the GNK value,
consumer 2 must pay both the generator and also the other consumers for its right-
of-way to consumption.

The utilities after the transfers of the participants are: 0.5, 23.83, 21.33, 20.08, 19.25
respectively (which can be seen from Figure 4.2c). In a power systems context, this
is likely to be seen as a desirable quality as it may correspond to people’s intuitions
about the fair allocation of resources. For example, distribution network feeders that
have a high penetration of PV systems have been identified by Carvalho et al. [2008]
to experience voltage rise problems at times of high-supply/low-demand, particu-
larly at the feeder extremities. In these settings, the inverters of PV owners at the
bottom are unable to inject their power into the network and also typically get no
compensation for essentially a forced curtailment of their electricity generation.

In this context under LMP, curtailed generators that dont inject their power get
no reward, and under VCG curtailed generators will only be allocated utility if their
presence or absence would make a difference to the network operating point, which
is not assured. Under Shapley Value, it is witnessed that there is some rather small
offset for those that do not receive power, though this is mostly determined by
marginal coalitional considerations that exclude most other consumers.

The GNK value is not incentive compatible

Unlike VCG, the GNK value, LMP and Shapley Value are not incentive compatible in
the sense that is often referred-to in Mechanism Design (see Section 3.1). Specifically,
the payments between parties are potentially subject to strategic manipulation if the
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agents are freely able to report their utility. In the GNK value this can be seen
in (4.5), or more easily in its reduced form, (4.6), where the payoff advantage of a
coalition v(S) is based on its reported utilities in minimax strategies which may not
be actualised; the same consideration holds for the Shapley Value. Because of this
consideration, misreporting the utilities of these unactualised events may change the
v(S) and hence the GNK value itself. Additionally, LMP is known not to be incentive
compatible, and there is further work to understand exactly how consequential this
would likely be - such as by Scott and Thiébaux [2019]. In section 5.4.5 we continue
discussion about this point.

The GNK value and Shapley Value are computationally difficult

The GNK value is more difficult than the Shapley Value, which is more difficult than
VCG, which is more difficult than LMP, to compute. This can be seen via (4.3) where
calculating the GNK value exactly requires calculating v(S) for all the 2n− 1 possible
coalitions S, and each calculation of v(s) is an NP-hard bilevel optimisation problem.
The Shapley Value also requires calculating vshape(S) for all the 2n − 1 possible coali-
tions S, but the calculation of vshape(S) is not necessarily NP-hard problem, as DC
OPF problem can be a linear optimisation. Conversely VCG calculation for n agents
requires n + 1 OPF optimisations (which are potentially linear in the DC case) per
equation 4.25, where as LMP calculation requires exactly one OPF optimisation (as
identified in section 4.3.3).

The computational difficulty of the GNK value is reflected in a later Figure 5.2
where it is seen that even using sampling to approximate the GNK value to sufficient
accuracy is witnessed to be a double-exponentially complex process.

4.5 Summary

In this Chapter we have introduced the GNK value from its axioms and we have
considered its conceptual inheritance from other solution concepts. In order to apply
the GNK value to the pricing of immediate power generation and consumption in
small DC networks we formally introduced the elements of the DC network and
have detailed a computation methodology for the GNK value in that context. We
then compared the GNK against LMP, VCG and Shapley Value on a small example
network to examine their features, particularly we identified that the GNK value has
some nice budget-balance and continuity properties, however we also realised that
the GNK is not incentive compatable and that it is difficult to calculate for larger
electricity networks.

In the next chapter we consider the ways in which the computational difficultly of
calculating the GNK value on larger networks can be ameliorated. The two primary
techniques to ameliorate this difficulty are principally by sampling, and also by the
adoption of a proxy for the inner optimisations. We discuss these to directions in the
next chapter 5 before actually applying these techniques for an application of GNK
to larger network in section 5.3 where we discuss in section 5.4.



84 The GNK value: A new solution



Chapter 5

Evaluating the GNK value at scale

In the previous chapter we introduced the GNK value and detailed a procedure to
calculate it for the context of small DC networks. However it was quickly identified to
be quite difficult to calculate for larger networks with many players. In this chapter
we address this weakness by outlaying two specific ways to remedy this problem.
Firstly, we consider possible sampling processes to approximate the summation of
the many terms inherent to the GNK value (particularly the summation over all
exponentially many coalitions in equation 4.3). Secondly, we consider a proxy inplace
of the minimax optimisations at the heart of the GNK value (per equation 4.5).

Using these two remedies it is seen that it is possible to calculate the GNK value
on networks upto size of about 100 nodes within 10 minutes of runtime on a desktop
PC. Because of this freedom, we are able to compare the features of GNK against LMP
and VCG on networks of this size, and we do so with an example, before making
a more thorough discussion of the GNK value against the ethical considerations
identified in chapter 2.

This chapter is composed of the following sections:

• In section 5.1 we describe and employ sampling techniques to reduce the num-
ber of minimax optimisations that need to be conducted to approximate the
GNK value to sufficient accuracy.

• In section 5.2 we introduce a polynomial-time computable proxy inplace of the
minimax optimisations in the characteristic function (4.5) of the GNK value.

• In section 5.3 we calculate the GNK value against LMP and VCG for a larger
DC network, and discuss some features

• in section 5.4 we conclude our discussion of the GNK value by comparing it
against ethical criteria identified in chapter 2.

After this chapter we delve into the details of the sampling techniques that were
developed and tested throughout this research, particularly the SEBM method in
Section 6.4, which was evaluated as a method to sample the GNK value (alongside
others) in Section 5.1.

85
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5.1 Sampling techniques

To compute the GNK value to a required accuracy, not all of the minimax optimi-
sations v(S) need to be performed (per equation 4.5), as sampling techniques may
be used to approximate the sum. We consider two different approaches for bias free
sampling of the GNK value:

1. By the inspection of equation 4.3, we see that the GNK value of any player i is
an average over vi,k, and that by randomly sampling coalitions of size k which
include i we can sample for estimations of each vi,k.

2. By utilizing equation 4.4 we convert the problem into a standard cooperative
game, where we can then compute the GNK value via the many existing sam-
pling techniques developed for approximating the Shapley Value.

The first of these two is an uncomplicated approach consisting of randomly gen-
erating coalitions S ⊂ N, and then approximating vi,k by averaging the appropriate
v(S), which are then averaged to approximate the GNK value ϕ via equation 4.3. We
denote this method ‘Simple’.

The second of these two approaches is more complicated, since it involves con-
verting the problem into a cooperative game and then a selecting a technique to sam-
ple the Shapley Value. Some of the possible techniques include: Neyman Sampling
(‘Neyman’) [Castro et al., 2017; Neyman, 1938], sampling to minimize a Hoeffding-
type inequality (‘Hoeffding’) [Maleki et al., 2013], as well as a random stratified
join-order sampling method (‘Join’) [Castro et al., 2017], and unstratified random
join-order sampling ‘ApproShapley’ (‘Appro’) [Castro et al., 2009]. We consider these
alongside our own developed method, the Stratified Finite Empirical Bernstein Sam-
pling method (‘SEBM’) (as developed in Section 6.4 of Chapter 6).

We compare the performance of these sampling approaches in section 5.1.2, but
first we will summarise some of the differences between the Shapley Value sampling
techniques first.

5.1.1 Differences in sampling approaches

All the Shapley Value sampling technique sample over marginal contributions in
slightly different ways; but primarily, they differ in whether they employ stratified
sampling or not.

Stratified sampling is a well established statistical methodology to estimate a
mean value of a population, by breaking it into subpopulations and sampling them
independently to create an estimate of the means of each of the subpopulations to be
weighted as an estimate for the whole population - for an introduction to it please
consult Section 6.1. In this context, if a technique uses stratified sampling to approxi-
mate the shapley Value, then it samples the subpopulations of marginal contributions
by player i to coalitions of size k, and from these they estimate of the mean of these
subpopulations v̂i,k (ie. approximating the terms of (3.3) and then using (3.4)), and
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Method Stratified Join-Order Sampling Choice
Appro No Yes random
Join Yes Yes random
Hoeffding Yes No Hoeffding-type inequality
Neyman Yes No by variance of the strata
SEBM Yes No speciality inequality

Table 5.1: Different Shapley Value sampling methods and their features

these estimates are weighted to form an estimation of the Shapley Value itself. Con-
versely, for those techniques which do not employ stratified sampling, then they
directly approximate the Shapley Value via equation (3.6).

Secondarily the techniques differ in whether or not they sample by a join-order
process or not. Sampling over marginal contributions involves calculating the dif-
ference between v(S) and v(S ∪ {i}) for various players i and coalitions S, and one
particularly easy way of doing this is to start with the empty coalition ∅ and gen-
erate a permutation of players that sequentially join the coalition and each make a
marginal contribution in turn, in this way n + 1 evaluations of v(S) can be used to
calculate n marginal contributions. Conversely, if they do not use a join-order pro-
cess, then the methods randomly select coalitions S and player i and calculate the
marginal contribution v(S ∪ {i})− v(S), thus taking two evaluations of v(S) for one
marginal contribution sample point.

Between the methods, as shown in Table 5.1: Appro randomly samples in join
orders without stratification, Join randomly samples in join orders with stratification,
Hoeffding samples with stratification and without join orders, to minimise a sum
of Hoeffding-type concentration inequalities on each of the estimates v̂i,k, Neyman

samples with stratification without join orders to the sample each v̂i,k proportional to
the sample variance of the marginal contributions which make up each, and SEBM
samples with stratification without join orders to sample v̂i,k in order to maximally
reduce a complicated concentration inequality on the resultant estimated Shapley
Value itself.

The full details about each of the methods can be found in their respective source
documents [Castro et al., 2017; Maleki et al., 2013; Castro et al., 2009] (and Chapter 6).
We note that the methods that use join order sampling exploit the specific marginal
nature of the Shapley Value, and hence are not compared against other methods of
stratified sampling in Section 6.5. The performance of using these different methods
is evaluated in the next section 5.1.2.

5.1.2 Sampling the GNK value at scale

To analyse the performance of approximating the GNK with different sampling tech-
niques we calculated the average absolute error in the approximated GNK value for
randomly generated electricity networks. We used a known process of generating
pseudo random meshed networks of buses and lines reminiscent of real electricity
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networks. The particular algorithm is called the ‘Simple minimum-distance graph’
method as expounded by Hines et al. [2010] and is given as Algorithm 1.

Algorithm 1 Simple minimum-distance graph algorithm

Require: number of nodes N, number of links m
Require: natural numbers ni, such that ∀ i ni ≤ i and also ∑N

i=1 ni = m
M = ∅ is set of nodes
for a = 1 : N do

Randomly generate planar coordinates for node index a, (xa, ya) with uniform
distribution
Ma = ∅ is set of links for node index a
for k = 1 : na do

select a novel b ∈ M to minimise the Euclidean distance to node index a:
minb (xa − xb)

2 + (ya − yb)
2 s.t (a, b) /∈ Ma

Add the link a-to-b:
Ma = Ma ∪ {(a, b)}
Mb = Mb ∪ {(b, a)}

end for
Add the node a:

M = M ∪ {(xa, ya)},
end for
Output M and Ma

Using this algorithm we considered networks which were randomly generated to
have 10 nodes with 12 lines between them, which was sufficiently small enough for
it to be possible to solve the GNK value exactly. In each of these randomly generated
networks, each line had randomly generated line limits (uniformly between 20 and
300kW) and each node was randomly assigned to be either a generator or consumer
of electricity (probability of being a consumer begin 80%) with a randomly gener-
ated linear utility function (uniformly between 0.1 and 2.1 $ per kW) with randomly
generated consumption/generation limits (uniformly between 10 and 200kW).1

By computing the exact GNK value for these networks we were then able to com-
pute the average absolute error achieved by each of the different sampling methods
for different sample budgets. For a given budget, all the algorithms called for the
computation of different numbers of the bilevel optimisations v(S) (per equation 4.5).
And by plotting the average absolute error achieved against the number of unique
optimisations called, we can see the performance of the sampling methods as shown
in Figure 5.1.

From this graph it is seen that the methods which utilised stratification (Hoeffding,
Neyman, SEBM and Join) generally performed better than those that did not use
stratification (particularly Simple and Appro). And particularly that the Join method,
which utilises stratification and join-order sampling is quite effective over a range of
situations.

1All sourcecode for these experiments found at: https://github.com/Markopolo141/Thesis_code

https://github.com/Markopolo141/Thesis_code
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Figure 5.1: The average absolute error in the sample approximated GNK value for
different sampling methods across randomly generated 10-bus networks.



90 Evaluating the GNK value at scale

On this graph, the sampling methods which utilised stratification were warm-
started with a budget of 200 samples (two from each strata), as methods like Neyman

required atleast two samples per stratum minimum (totalling 200) for a bias-free
estimate of the variances which they run on. Conversely Simple and Appro were
able to be run with a smaller sample budget. It is noted that the methods Hoeffding,
Neyman, SEBM and Join perform exactly the same at 200 samples, as they each have
two samples per stratum and no extra budget for any difference in logic to operate
on. It was also recognised that because of our 10 bus networks, there are only 1024
unique optimisations v(S) that can be called, and hence the x-axis stops at 1024. Each
of the methods were run multiple times with increasing sample budget allowances,
up until a point where the computation time became prohibitive, particularly some of
the methods which used sampling without replacement would only call a stochastic
number of unique optimisations, and hence it became time-prohibitive to sample to
perfect accuracy utilising them.

5.1.3 Selection of sampling method

From the Figure 5.1 we witnessed that Join was seen to be reasonably effective and
it was chosen for all further analysis. The reason for this superiority is the additional
power of sampling with stratification and by join-orders. As already stated, by using
join orders, it is possible to calculate n marginal contributions using n+ 1 evaluations
of v(S) as opposed to taking two evaluations of v(S) for one marginal contribution
sample point. This simple factor outweighed the advantage of the extra sophisti-
cation associated with SEBM and Neyman methods, which did not use join-order
sampling - even though SEBM was seen to be more performant for larger sample
budgets. We note that the SEBM method is developed in Section 6.4 of subsequent
Chapter 6.

Another advantage that was witnessed in utilising the Join method was that it
didn’t have the computational overhead of using the formulas present in the SEBM
method, and additionally the join-order sampling allowed each new optimisation
that was called to be warm-started by the previous one as each new addition to the
coalition would yield an optimisation similar to the previous one. These factors made
Join appear as a simpler and more effective method for our purposes.

To evaluate the performance of the Join method in approximating the GNK value
for larger networks, we generated random networks of different sizes (with param-
eters given in section 5.1.2) and estimated the GNK value using 8 simultaneous es-
timations, and timed how long it took for the average magnitude of error between
these estimations to reach an one percent of each other. A scatter plot of the run-time
performance of Join in approximating the GNK value for variously sized random
networks by this process was generated and the results are shown in Figure 5.2.

From this figure it is witnessed that the GNK value appears to be doubly ex-
ponentially complex to approximate by sampling and quickly becomes intractable
for networks consisting of more than 16 busses. This double-exponential complexity
was somewhat expected as solving the GNK value exactly is identified as a calcu-
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Figure 5.2: Execution times in approximating the GNK value on a selection of ran-
domly generated example networks of different sizes, to 0.01 average magnitude of
the error (relative to the magnitude of the estimated GNK value), between 8 indepen-
dent estimations using Join method, with 20 seconds of validation time. The dashed
curve 20 + exp(exp(n/6.2)) indicates double exponential complexity

lation that involves exponentially many (per equation 4.3) NP-hard computations
(per equation 4.5). In light of this realisation we sought to make simplifications to
the GNK value’s inner optimisations (equation 4.5) to ease this intractability. Specif-
ically we considered a polynomial-time computable proxy inplace of the minimax
optimisations in the characteristic function (4.5) of the GNK value.

5.2 Sampling a modified GNK value (M-GNK) at scale

Given the intractable nature of the GNK value for large networks, we considered a
proxy inplace of the minimax optimisations of the characteristic function that define
the GNK value (equation 4.5). Particularly we considered a relaxation:
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)]
(5.1)

Where ε is a sufficiently small positive value, and where all the DC power con-
straints noted to apply in both argmax.2

Rather than equation (4.5), this equation (5.1) encapsulates the expected payoff
advantage of the coalition under a 50:50 coinflip of who goes first, where in each
case the leader chooses the powerflows that strictly prioritise their own utility and
then the follower’s utility is maximised secondarily, we call this proxy GNK value
the ‘M-GNK value’.3 This expression encodes much of the same dynamic as the orig-
inal expression (equation 4.5) but avoids much of the adversarial strategic counter-
considerations that make the original expression NP-hard, as the leader is unwilling
to sacrifice their utility to harm the follower’s utility and vice versa.

This proxy replaces the two-part NP-hard bilevel problems of equation 4.5, into
two-part single-level linear programming problems. This transformation makes the
M-GNK value much easier to compute at scale, but potentially at the cost of being
a less perfect description of idealised minimax bargaining - even though no axioms
(from section 4.2.1) would be lost. Thus, the use of this proxy might potentially see
the introduction of artefacts - we discuss the similarity and the resulting numerical
differences between the original GNK and M-GNK in section 5.4.5.

Some of the runtime statistics of sampling this M-GNK value with Join sampling
for randomly generated network sizes (with parameters, and generated by the al-
gorithm of section 5.1.2) are shown in Figure 5.3. From the figure it is seen that it
is readily possible to calculate to about one percent accuracy this M-GNK value in
three minutes of runtime for networks of up to the size of about 50 nodes, and with
ten minutes of runtime up to about 80 nodes.4

2using such an ε forces the optimiser to optimise one factor in the objective function strictly over the
other, if the ε is too large in its context then the optimiser will likely do this imperfectly, and if the ε is
too small then rounding issues can potentially occur in optimiser software, ε should be chosen to be as
small as not to induce rounding issues in the solver

3This dynamic is evident for sufficiently small ε in the formula, but the same dynamic could also be
achieved more directly by a two stage optimisation process.

4 All calculations were performed on an Dell Optiplex 9020, with Intel i7 quad core 3.6GHz proces-
sor, and all source-code available at:
github.com/Markopolo141/The_Generalized_N-K_Value

https://github.com/Markopolo141/The_Generalized_N-K_Value
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Figure 5.3: Average magnitude of error relative to the magnitude of the estimated M-
GNK value between 8 independent simultaneous estimations on randomly generated
networks of different sizes, for 3 and 10 minutes runtime on a desktop computer.

Using this ability to calculate the M-GNK value for larger networks, we can now
consider the features of the M-GNK value in comparison with LMP and VCG for
larger networks.

5.3 Results and evaluation of the GNK value at scale

In this section we consider and discuss some of the behaviour exhibited by the M-
GNK value against VCG, LMP and Shapley Value for randomly generated larger
networks. Particularly in Figures 5.4, and 5.5-5.8 we show the results of these tech-
niques applied to an example 90 bus network (generated by algorithm 1), consisting
of a 50-50 split of small consumers and small generators of electricity. In in this
randomly generated networks (given by algorithm in section 5.1.2), there was no
constriction on power line limits, and each node has a randomly generated linear
utility function (uniformly between 0.1 and 2.1 $ per kW) with randomly generated
consumption/generation limits (uniformly between 1 and 15kW). For this randomly
generated network we were able to calculate the GNK value, as well as LMP and
VCG, and from these calculations we were able to see some of the distinct features
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Figure 5.4: Node-line diagram for the example randomly
generated 90-bus system, showing a 50-50 mix of small
generators (black) and consumers (white)

of these techniques when applied to a large number of players.5

The most immediate result is that LMP and VCG are nearly identical (Figures
5.5 and 5.6) while it is noticed that the Shapley Value exhibits a very similar but
slightly offset shape (see axes of Figure 5.8) and the GNK is distinctly different (5.7).
The similarity between VCG and LMP can be explained by a variety of means, but
a most informal explanation is that both LMP and VCG implement the same elec-
trical outcome, and allocate payments in proportional to marginal differences about
the socially optimal point. The confluence between VCG and LMP is not only wit-
nessed by us, but also has been noted in a more general settings where there are
many small participants [Nath and Sandholm, 2019; Tanaka et al., 2018] (see section
3.1.5).The similarity between the Shapley Value and LMP/VCG can be considered as
an indication that the final marginal contribution in forming the grand coalition is
most significant, whereas most other marginal contributions balance out between the
players.

In Figures 5.5, 5.6 and 5.8 we see that there are no negative utility imputations, but
that positive utility is allocated to those generators who are able to provide power
the cheapest, and those consumers who value power the greatest (high x-value &
low y-value, and low x-value & high y-value respectively). This is because the LMP
creates prices for power such that the cheapest generators are scheduled to create
power which is consumed by the most desiring consumers up until a marginal point
where any further dispatch/consumption would be unmotivated, and because VCG
schemes allocate non-negative utilities by their axiomatic construction (per axiom of

5All sourcecode for these experiments found at: https://github.com/Markopolo141/Thesis_code

https://github.com/Markopolo141/Thesis_code
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individual rationality). From these graphs we straightforwardly identify those con-
sumers/generators which generate/receive power as they are rewarded with positive
utility.

Conversely we notice in Figure 5.7 a completely different result for the M-GNK
value, particularly that the M-GNK imputes utility to those consumers who do not
receive power (as already noted in section 4.4), but furthermore, it allocates negative
net utility to all but the cheapest generators, even those who generate power at the
socially optimal point (as identified by the previous paragraph as those generators
who have positive imputation under LMP, in Figure 5.5), and this dynamic is not
particularly easy to explain.

One primary explanation, lies in considering the average additional playoff ad-
vantage to a coalition of a high-cost generator. Particularly, if we consider the taking
of a 50-50 coin flip about whether the coalition or its complement chooses their strate-
gies first, and if the coalition goes first, then the generator will be idle (bringing no
benefit to the coalition), whereas if the complement goes first, then it potentially
will get dispatched (hence causing a loss to the coalition) because the complement
will choose to consume power and power-constraints must be obeyed, giving them
a greater pay off advantage. Hence the high-cost generator only brings negative
payoff-advantage which is reflected in the M-GNK value.

Or more succinctly, the way in which the generators get allocated negative utility
is that they are targets of being forced to generate at their own deficit since power-
conservation constraints must be obeyed, and this dynamic becomes a negotiating
lever, in the selection of threat points. This consideration works reversely for con-
sumers, who can only consume at a positive utility to them, thus they are at a bar-
gaining advantage which is then reflected in the positive utility they are rewarded
with under M-GNK.

This behaviour in the context of large networks was somewhat unexpected; and
we summarise the consequences in the following section 5.4.

5.4 Discussion and conclusion

To consider the social and ethical value of the GNK value we must loop back to con-
sider some of the topics explored in Chapter 2. Particularly we briefly considered
some moral elements about the distribution of resources, including Equality, Effi-
ciency, and the various normative reference points which may be pertinent. We will
consider the GNK in light of each of these in turn.

5.4.1 Efficiency

It is easy to realise that the GNK value is axiomatically efficient, specifically in terms
of maximising the sum of utility, by axiom (equation 4.2); and as it is efficient in this
regard it is also therefore Pareto optimal. The way this efficiency is implemented is
that the GNK designates the electrical outcome which maximises the sum of utility,
and issues budget-balanced utility transfers between the players. Neither LMP or
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VCG has a similar efficiency claim, as both allocate payments between network par-
ticipants are not necessarily budget balanced. However in order to consider whether
this axiomatic efficiency is actually a good thing we need to consider it in terms of
what is socially good.

While there are different and potentially competing philosophical notions of what
social ’efficiency’ should mean, the maximisation of the sum of utility is a very clas-
sical notion. The implementation of the GNK value assumes that utility is transfer-
able, and the easiest way of comprehending this is in terms of utility as measured
by money. And hence, in this context the maximisation of utility might be seen as
corresponding to the maximisation of the monetary value of outcomes.

However it is worth noting that this might not be socially desirable, as there may
be some sense in thinking that maximising utility via monetary measurement could
potentially be prone to social problems, specifically as there exists some agreement
of the diminishing value for money itself, in that the rich are made only a little better
off by an amount of money, that would be more appreciated by the poor.

The GNK value allocates the utilitarian outcome, however it is not necessarily
required that utility be measured in money (even though this is the easiest interpre-
tation). It is also possible to note that there exist non-transferable-utility (NTU) mod-
ifications - such as also considered by Kohlberg and Neyman [2015] - which could
be modified to yield a NTU GNK value. Such solution concepts could be utilised
where utility is not directly transferable and which could incorporate non-linear util-
ities over possible monetary transactions, potentially resulting in more egalitarian
outcomes.

The potential for modifying the GNK value for application in NTU settings in
order to account for different efficiency measures is a topic of potential future inves-
tigation.

5.4.2 Formal-equality

All the techniques considered (GNK, VCG and LMP, etc.) satisfy formal-equality, as
they only treat different participants differently in relation to specific morally relevant
characteristics — particularly their utility preferences, and how their presence and
actions can affect the utility of others. In the electricity context, this involves the
utility of electricity and capacity to deliver/generate electricity at their location in
relation to the utility of that electricity for others.

However, whetherornot these qualify as morally warranted bases for differential
treatment is the subject of a wider discussion, particularly as differential treatment
gives rise to differential incentives. For instance, the idea of people being afforded
different effective prices for electricity depending on the location of their electrical
influence may be regarded as being ethically unfair to some people (especially per-
haps between close neighbours whose grid connections are electrically different),
however a negation of this also destroy any incentive for people to install additional
generation capacity in electrically advantageous locations.

Differential treatment can be seen as the mirror image of differential incentives,
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and a comprehensive reflection of the incentives that would be given under LMP
against VCG and GNK are beyond the scope of our consideration. However we can
speculate that there exists a primary difference between VCG and LMP (which give
similar results) and GNK, in that LMP and VCG incentivise behaviour that could
affect the network operating point; particularly affecting only those generators/con-
sumers which would (or do) generate or consume power at the network operating
point. Wherease GNK is more comprehensive in its consideration, as it affords utility
for every possible way that the network could degenerate into adversarial competi-
tion; thus we might speculate that the GNK value (or something similar to it) might
incentives robustness in the network.

5.4.3 Heterogeneity of normative points

The essential feature of the GNK value is that it is an extension of bargaining solu-
tion concepts to multiple players over the restricted strategy space of a generalised
non-cooperative games. The GNK value inherits the assumption from Nash bar-
gaining that the minimax of the zero-sum game is the point which is/should-be the
disagreement point between any two coalitions for the system, and that all coalitions
are equally weighted - however this construction can be questioned.

Firstly, the GNK can be seen to assign equal weight for every possible coalition
that could form, irrespective of the likelihood that such coalitions would actually
form in competition. It may be possible to construct a weighted GNK value to ac-
count for differential likelihoods of different coalitions forming, but that is a remain-
ing further consideration.

Secondly, the minimax of the zero-sum game identifies a point of maximum
strategising to gain payoff advantage specifically over the opponent, irrespective of
the absolute payoff to the player. And in this way minimax of the zero-sum game
identifies a point of maximally engaged competition between the players. Against
this consideration, it is good to note, that while the GNK (and Nash bargaining solu-
tion concepts) can be viewed as a description of perfect competition between individ-
uals, it can also directly account for the possibility that that groups (or subgroups) of
players may be altruistic; in that altruism may be accounted for by a player’s utility
function including terms associated with positive utility for others.

However this might not be sufficient, and the GNK value contrasts against other
similar solutions over non-cooperative games (as briefly mentioned in section 4.2.4)
such von Neumann and Morgenstern’s solution (per equation 4.7), where the char-
acteristic function is identified as minimax payoff, not minimax payoff advantage.
In this way von Neumann and Morgenstern’s characteristic function can be consid-
ered as descriptive of a point of less totally engaged competition between coalitions
- which might be more appropriate or pertinent for electricity networks. Von Neu-
mann and Morgenstern’s characteristic function is not the only alternative way that
the characteristic function could be constructed, but unfortunately these alternative
constructions would not necessarily yield Nash bargaining solution in the two player
case.
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Figure 5.9: The cummulative frequency of a player obtaining an imputed M-GNK
utility within a certain proportion with the GNK solution, for randomly generated
network instances for each network size (4 to 13 players). The error is the propor-
tionate utility difference, normalised by total player utlity.
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5.4.4 Wider equality

In the development of this research it was hoped that the GNK value would ulti-
mately be witnessed to have a similar individual rationality property as VCG. Par-
ticularly that no participant should be allocated less than zero utility, which might
be interpreted as being what they would get if they did not participate in the mech-
anism. The ethical importance of individual rationality cannot easily be overstated,
particularly as a primary notion of ethical exchange is the concept of ‘euvoluntary’
exchange (see section 2.2.5) which is (at least) where every party is not left worse-off
for participating.

However, it is evident that GNK seems to violate this property, as it is possible
for participants to be allocated with less utility than zero. We would expect that
this particular absence of a guarantee for participants would be a major hindrance to
GNK’s application in electricity systems; hence an ethical failing.

In the designing of the GNK value it was hoped that individual rationality would
be a property which would be present for larger networks, particularly as it was
suspected in section 3.4.2 that if it was possible for players to unilaterally implement
an outcome which guaranteed them a utility of zero, then they would be guaranteed
a non-negative net utility. However in our GNK application to electricity networks,
the enforcement of the power conservation constraints (per equation 4.8) seems to
have disallowed this eventuality.

For instance, under GNK value in the context of our generalised game mod-
elling DC networks, the power conservation constraint causes the incorporation of
unrealistic bargaining manoeuvres, such as participants extortionately threatening to
oversupply others. It is very possible that alterations to the GNK value, and simi-
lar types of Shapley Value structures over non-cooperative game solutions could be
made to amend this issue.

It may be possible, for instance, to reconsider the electrical interaction between
participants, perhaps by allowing player’s action space to be selection of voltage
level at their location, rather than directly their power input/output; however in this
context power line limits would be manifest as non-linear constraints on the opti-
misation problem, subsequently making computation more difficult. Alternatively,
it might also be possible to implement blackout costs to participants to curtail the
possibility of unrealistic bargaining manoeuvres in the GNK value logic.

In these cases, it might be possible to give participants actions to guarantee them-
self a disagreement point which affords them a zero utility, and hence potentially
restore individual rationality to the resultant GNK value; however these investiga-
tions are a topic for future research.

At a broader level of consideration, it is interesting how perfect competition may
or may not coincide with what is equal and ethical. The question of when and where
these coincide, and particularly if they might coincide in the context of electricity net-
works, was part of the motivation of this research. Unfortunately our investigations
demonstrated that the most direct application of the GNK value would be expected
to fail wider social equality considerations.
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5.4.5 Future work and possible extensions

One primary question is how much the behaviour exhibited in Figure 5.7 is entirely
the result of us using a modified characteristic function, per the M-GNK value (equa-
tion 5.1), over the more original characteristic function of the GNK value (equation
4.5). In order to investigate this question, the error of using this modification across
randomly generated networks was calculated and shown in Figure 5.9. This graph
shows the cumulative probability of the difference in payments between the GNK
and M-GNK - and shows for instance, that 60% of participants could expect to re-
ceive within 10% what they would have between GNK and M-GNK values, and that
this similarity increases for larger network sizes.

From this graph it is noticed that the GNK and M-GNK values feature similarity
which seems to increase with the size of the network under consideration — although
for computational reasons, it is increasingly difficult to confirm for networks with a
size greater than 13 nodes. This limited observation coincides with expectations that
the possible strategic counter-considerations that are discarded by using equation 5.1
over equation 4.5 become less relevant in the context of larger networks; but such
a claim warrants further investigation. But further investigation on the degree of
similarity and/or difference between GNK and M-GNK is warranted.

Another observation, is that while the GNK remains soluble for networks of less
than 13 nodes and the M-GNK value remains soluble for up to 80 node networks (to
about 1% accuracy, as per Figure 5.3), however these numbers might still be regarded
as being too small for real-world electrical network modelling. Larger networks are
expected to be tractable for the M-GNK value with more computing power and/or
execution time, however further methodological improvements may be necessary to
make the GNK value (or anything similar to it) capable of bearing on larger and real
world networks. Some possible avenues of investigation include employing further
approximations such as player clustering (such as implemented by Han et al. [2019]),
or transforming the problem into a non-atomic form, similar to non-atomic Shapley
Value.

Another outstanding question, is what the likely outcome would be, under GNK,
in the context of strategising network participants. So, while VCG has some explicit
consideration of the strategising of individual agents, and LMP is identified to be
largely identical to it in the context of large numbers of small players, the conse-
quences of agents strategising under GNK is not considered here. As the GNK is not
incentive incompatible and also quite complex, this issue constitutes both a major
consideration and a difficult question. While there does exist some work on similar
(but more complex) solution concepts like GNK that are incentive compatible (such
as presented by Myerson [1980]; Salamanca [2019]) their investigation and evaluation
in the context of electricity networks remain a topic for further investigation.

The GNK value and similar measures are by the generality of their construction
potentially applicable to more than the contexts in which we have applied them in
these chapters, and many of the issues of real electricity markets raised in Chapter 1,
may be alleviated by measures such as these. The actual details of their application
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in those spaces, is potentially valuable future work.

5.4.6 Summary Outcome

Throughout this research program we have undertaken an investigation into the
space of possible mechanisms for valuing electricity. Most particularly, we inves-
tigated the space of possible mechanisms which can be bring into account all the
possible confluences of electrical system details, as well as all the possible leverages
and counter considerations which could play in an idealised negotiation between all
parties about such an electricity system. A mechanism which considered the unre-
stricted span of possible considerations and counterconsiderations between electrical
system participants and the system, was seen to be an important quality as it is
understood that the future smart grid will encompass a host of differing electrical
situations with a range of smart devices, and the way in which the value of these
devices and the electricity they consume/generate will be determined is in need of
an answer.

The original research question was:
How should electricity be valued and traded?

We have identified (in Chapter 2) that such a question is not easy to answer
and has strong ethical undertones, making a comprehensively demonstrable answer
impossible in principle, but an object of important investigation notwithstanding. To
investigate, we covered some existing solution concepts (in Chapter 3) such as Nash’s
axiomatic bargaining, Cooperative game theory topics such as the core and Shapley
Value, the VCG mechanism from mechanism design and marginal pricing theory.
And from this investigation we attempted to take the best features of these concepts
and synthesise a genuinely novel solution for the pricing of electrical resources on
electricity networks, in Chapter 4, which we then evaluated at scale in this chapter.

Our new GNK solution is essentially rooted in bargaining perspective, reward-
ing participants for the advantage they might have in competition with all others,
and it was hoped that an idealised bargaining solution like this, would yield the
kinds of arrangements that people with divergent interests would freely and natu-
rally negotiate towards. In this way, we hoped it would ascribe economic value to
electricity resources in the most natural way; however this process ultimately yielded
a disappointing result.

The GNK value extended from the Shapley Value axioms, and as such it inherits
the NP-hard computational difficulty associated with the Shapley Value. However,
through investigation into sampling techniques and in utilising a particular proxy
for the minimax-optimisations, we were able to extend the GNK value from being
intractable for ∼ 14 bus nodal networks to being computable for about 80 − 100
bus nodal networks, for a desktop computer. This was seen as an accomplishment,
particularly as if the GNK value were calculated exactly for a 100 sized nodal network
it would involve ∼ 2100 optimisation terms.
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Through the process of considering the different ways that the GNK value could
be sampled we developed some of our own complicated techniques which proved to
be competitive against existing methods for sampling the Shapley Value and hence
the GNK value. This novel method extended from a consideration of of possible
concentration inequality which which could be developed specifically for stratified
sampling. We developed novel and tailored concentration inequalities for stratified
sampling, and this formed the basis of our new method. The development of this
new concentration inequality (SEBB) and sampling methodology (SEBM) is detailed
in the next chapter. In the next chapter we delve into the details of the sampling
techniques that were developed and tested throughout this research, particularly the
SEBM method in Section 6.4, which was evaluated as a method to sample the GNK
value (alongside others) in Section 5.1.
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Chapter 6

Stratified sampling

In the previous chapter we introduced the GNK value and recognised that it could
be approximated by a stratified sampling process (section 5.1). Accordingly, in this
chapter we investigate the different possible rules for choosing samples from strata
in the context of stratified sampling.

We review the orthodox solution to the problem which is called Neyman alloca-
tion, and show how it is equivalent to minimising a concentration inequality called
Chebyshev’s ineqality. We then turn our attention to two different approaches to
developing novel concentration inequalities for stratified sampling, whose minimisa-
tion yields new stratified sampling methods. These new sampling methodologies are
then tested for their performance in the context of synthetic sample data sets, and in
the context of sampling the Shapley Value of cooperative games.

The structure of this Chapter is as follows:

1. In section 6.1, we give a review of relevant background information and tech-
niques, particularly addressing the recent innovation of Empirical Bernstein
Bounds (EBBs).

2. In section 6.2, of this chapter we show how EBBs can be bound together to
create concentration inequalities appropriate for Stratified Sampling and give
an algorithm for choosing samples to minimise these bounds.

3. In section 6.3 of this chapter we derive a unique and stronger EBB, for the
purposes of evaluation in the context of stratified sampling.

4. In section 6.4, we provide multi-part derivations of complicated concentration
inequalities specifically tailored for the purposes of stratified sampling, and
give an algorithm for choosing samples to minimise these inequalities.

5. In section 6.5, we give the performance results of various methods of stratified
sampling in the context of synthetic data sets

6. In section 6.6, we give performance results of approximating the Shapley Value
for various cooperative games.

7. In section 6.7 we give discussion to the derivations and results,
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8. in section 6.8 and talk briefly about future work about a multidimensional strat-
ified sampling EBB, and conclude.

The work and development from the second and third section most directly re-
flects published material: “An Engineered Empirical Bernstein Bound”,
European Conference on Machine Learning (ECML-PKDD) 2019
(accessible: ecmlpkdd2019.org/downloads/paper/435.pdf)
The work and development from the fourth and fifth section most directly reflect
published material: “Approximating the Shapley Value Using Stratified Empirical
Bernstein Sampling”, IJCAI 2021
(accessible: ijcai.org/proceedings/2021/0011.pdf)

6.1 Introduction and background

Stratified sampling is a well known example of a process of selecting samples to most
accurately estimate an average over weighted sample averages. Particularly stratified
random sampling is a process of estimating the average over a population by break-
ing a population into mutually-exclusive subgroups and sampling them randomly.
Such stratified sampling has been identified to lead to improved reliability in esti-
mation over simple random sampling of the population by Neyman [1938]; Wright
[2012] particularly when:

• The population is divisible into strata, in which there is less variance in each
stratum than across them all

• When the size of the strata are known or reasonably estimated

• When sampling selectively from each strata is possible

The concept of stratified random sampling is easily illustrated, for instance, to
poll the population of a country’s support for a particular government policy, it
is possible to sample the different demographic regions within the country. For in-
stance, if regions A,B and C contain 10%, 40% and 50% of a population, and sampling
of these regions reliably show support levels of 2%, 70% and 30%, respectively, then
it is possible to discern that 43.2% of the total population supports the policy.

Our primary investigative question of this chapter is this: when we have a popu-
lation decomposed into strata of known sizes which we can selectively sample from,
how do we choose samples from the strata to get the most accuracy in the final
population estimate?

For instance, if we sample primarily from a single stratum, we would likely have
a very good estimate of the average for that one stratum, but no accuracy in estimate
for the others, leading to a weak estimate of the population average. Conversely, if
we choose to take the same number of samples from all the strata, some of the strata
might be far smaller or have far less variance than others, resulting in those strata
being oversampled.

http://ecmlpkdd2019.org/downloads/paper/435.pdf
https://www.ijcai.org/proceedings/2021/0011.pdf
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This question has been considered before, and the most direct historical answer
to the question is called Neyman allocation or sampling [Neyman, 1938]. The principle
of Neyman sampling is that it seeks the minimise the weighted variance of the pop-
ulation estimate assuming knowledge of the variances of the strata, and it can most
directly be interpreted as a process of minimising Chebyschev’s inequality.

6.1.1 Neyman allocation

Neyman allocation identifies that in order to minimise the variance in the final esti-
mate of the population, that sampling should be directly in proportion to the stratum
variances multiplied by their sizes. We present Neyman allocation rule with its proof
to illustrate the connection with allocation rule with a concentration inequality:

Theorem 1 (Neyman allocation). For m strata, of sizes Ni, with variance σ2
i . For a sample

budget n, and there is a choice how much to sample from each strata ni, in which sampling is
done with replacement (ie. all samples are independent and identically distributed) Then the
selection of ni which minimises the variance of our population estimate µ is:

ni =
nNiσi

∑j Njσj

Proof. For any independant random variables X and Y (and for any a, b ∈ R),
Var(aX + bY) = a2Var(X) + b2Var(Y).
So, if Xi,j are the random variable of the jth sample from the ith stratum, then:

µ̂ =
m

∑
i=1

Ni

∑k Nk

1
ni

ni

∑
j=1

Xi,j and hence Var(µ̂) =
1

(∑k Nk)
2

m

∑
i=1

N2
i

ni
σ2

i (6.1)

To minimise the variance of our estimate Var(µ) by selecting ni subject to the con-
straint that ∑m

i=1 ni = n, we form the Lagrangian (with Lagrange multiplier λ):

L = Var(µ̂) + λ

(
m

∑
i=1

ni − n

)
=

m

∑
i=1

(
N2

i σ2
i

ni (∑k Nk)
2 + λ

(
ni −

n
m

))

Hence for any i solving for ∂L
∂ni

= 0 leads to: ni =
Niσi

λ ∑k Nk
and using ∑m

i=1 ni = n, to
eliminate λ gives the result

This allocation rule begs the question of why we would specifically want to min-
imise the variance of our population mean estimate. And the primary reason is that
that the variance of an estimate bounds the probability of error in the estimate, and
this can be seen most directly by Chebyshev’s inequality.

Theorem 2 (Chebyshev’s inequality). for any random variable — in this case µ̂ is a
random variable — with variance Var(µ̂) then the error of µ̂ from its mean is probability
bounded:

P

(
|µ̂− µ| ≥ k

√
Var(µ̂)

)
≤ 1

k2
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Thus if µ is the true population mean, then the error in our stratified estimate of
the population mean µ̂ is probability bounded by the variance of it. So, for instance,
Chebyshev’s inequality guarantees that there will always be less than a 25% chance
that the error in our estimate of the population mean will be more than twice the
square root of its variance. In this context, Chebyshev’s is an example of a concentra-
tion inequality, as it provides probability bounds on the concentration of the estimate
around its mean value.

An additional and perhaps more intuitive angle by which Neyman allocation may
be seen to be appropriate, is that if sufficiently large numbers of samples have been
taken then the sample means of the strata will tend to be Gaussian distributed by
the Central Limit Theorem. In this context the strata means have a distribution that
is entirely characterised by their mean and variance, and hence so too therefore is
the population mean. In this context the variance of the sampled population mean
is the only parameter controlling the error, and minimising it directly translates into
improved accuracy.

One primary limitation of using Neyman allocation, is that is presupposes knowl-
edge of the variances of the strata, which usually aren’t available beforehand or in
practice. One relatively easy way of going around this problem is to go through a
process to estimate the variances of the strata, perhaps as a prior step, and then using
this knowledge with Neyman allocation to choose further samples. And while this
idea certainly works, it leaves open the question about how much sampling should
be done to estimate the strata variances against how much sampling should be left
to sample by those estimated variances.

Neyman allocation is an orthodox sampling rule which directly extends from
minimising a specific concentration inequality that unfortunately depends on known
variances. It is therefore suitable to ask if there are alternative concentration inequal-
ities which do not depend on known variances, which can be minimised to form
novel sampling rules for stratified sampling.

6.1.2 Concentration inequalities and Chernoff bounds

In order to consider what alternative concentration inequalities exist, we need to turn
to the space of concentration inequalities generally.

Neyman allocation implicitly minimises Chebyshev’s inequality, but Chebyshev’s
inequality is one example of many concentration inequalities. Concentration inequal-
ities are applied in a range of data science contexts for a variety of prediction, ma-
chine learning and hypothesis testing tasks, including: change detection [Kifer et al.,
2004; Bhaduri et al., 2017] and classification [Rehman et al., 2012] in data streams;
outlier analysis in large databases [Aggarwal, 2015]; online optimisation [Flaxman
et al., 2005; Agarwal et al., 2010]; online prediction and learning problems [Mnih
et al., 2008; Thomas et al., 2015; Maurer and Pontil, 2009], and in settings with bandit
feedback [Auer et al., 2003; Audibert and Bubeck, 2009; Tran-Thanh et al., 2012].

There are many famous concentration inequalities such as Chebyshev’s inequal-
ity [Bienaymé, 1853], Bernstein’s inequalities [Bernstein, 1924], Hoeffding’s inequal-
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ities [Hoeffding, 1963] and Bennett’s inequalities [Bennett, 1962]. New analysis has
yielded a wider range of concentration inequalities and methods of generating them.
In particular, various innovations concern the concentration of more-general func-
tions of random variables, such as the Efron-Stein [Efron and Stein, 1981] and entropy
methods [Boucheron et al., 2003].

Recently, concentration inequalities have been developed which do not rely on
variance information, but incorporate uncertainty about variance information via the
sample variance, these bounds are sometimes called Empirical Bernstein Bounds (EBB).
These concentration inequalities describe the likely difference of a sample mean from
the population mean in terms of the sample variance, some of the first EBBs given in
literature are:

Theorem 3 (Maurer and Pontil [2009]). Let X be a real-valued random variable that is
bounded a ≤ X ≤ b, with D = b− a. Then for x1, x2, . . . , xn independent samples of X the
mean µ̂ = 1

n ∑n
i=1 xi and sample variance σ̂2 = 1

n ∑n
i=1(xi − µ̂)2 are probability bounded by

t for any t > 0:

P

(
µ− µ̂ ≥

√
2σ̂2 log(2/t)

n
+

7D log(2/t)
3(n− 1)

)
≤ t (6.2)

Theorem 4 (Audibert et al. [2007]). In exactly the same context as in Theorem 3

P

(
µ− µ̂ ≥

√
2σ̂2 log(3/t)

2n
+

3D log(3/t)
2n

)
≤ t. (6.3)

The derivation of these EBBs are of interest, because they illustrate how it is pos-
sible to derive concentration inequalities which involve variance information but do
not depend directly on the variance itself, and which might be extended to develop
alternative methods of stratified sampling. Unfortunately these EBBs cannot directly
be used to minimise the error in the aggregated population estimate, as the aggre-
gated population estimate does not itself have a sample variance. But in later section
6.2.1 we will show how these types of inequalities can be modified and subsequently
minimised to create new methods of sample selection in stratified random sampling.

In section 6.3 we will also show how it is possible to derive stronger EBBs, thus
we introduce some of the components used in the process of deriving EBBs.

6.1.3 Components of concentration inequality derivations

One of the more famous concentration inequalities is Hoeffding’s Inequality which is
one of a class of concentration inequalities called Chernoff bounds.

Lemma 1 (Chernoff Bound). If µ̂ is sample mean of n independent and identically dis-
tributed samples of random variable X then for any s > 0 and t:

P(µ̂ ≥ t) ≤ E [exp(sX)]n exp(−snt)
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Proof of Chernoff Bound - Lemma 1.

P(µ̂ ≥ t) = P

(
exp

(
s

n

∑
i=1

xi

)
≥ exp(snt)

)

≤ E

[
exp

(
s

n

∑
i=1

xi

)]
exp(−snt) ≤ E [exp (sX)]n exp(−snt)

using Markov’s inequality and the i.i.d of the samples, respectively.

Here we have given the general form of Chernoff bounds for the sample mean
of random variable, parameterised by a choice of s > 0 and t. Using this kind of
lemma, many well-known examples of Chernoff bounds follow from the derivation
of upper bounds for E [exp(sX)], also known as the moment generating function.

For any upper bound E[exp(sX)] ≤ g(s) then P(µ̂ > t) ≤ gn(s) exp(−snt) is an
upper bound for the deviation of the sample mean, which can then be subsequently
minimised with s, forming a concentration inequality; in this way a Chernoff concen-
tration inequality can be deduced from a bound on the moment-generating-function.
Hoeffding’s inequality [Hoeffding, 1963] is an illustrative example of this process of
deriving a Chernoff bound (which we will do in many times in this chapter), and we
give a short refactored proof of this process:

Theorem 5 (Hoeffding’s inequality for mean zero). Let X be a real-valued random vari-
able that is bounded a ≤ X ≤ b, with a mean µ of zero. Then for D = b− a and any t > 0,
the mean µ̂ of n independent samples of X is probability bounded by:

P(µ̂ ≥ t) ≤ exp
(
−2nt2

D2

)
(6.4)

Proof. If X has a probability density function f (x), then we can linearise exp(sx) as:

E[exp(sX)] =
∫ b

a
f (x) exp(sx)dx ≤

∫ b

a
f (x)

(
x− a
b− a

exp(sb) +
b− x
b− a

exp(sa)
)

dx

(6.5)
Using the fact that the mean µ =

∫ b
a f (x)xdx = 0 thus:

E[exp(sX)] ≤ 1
sb− sa

(sb exp(sa)− sa exp(sb)) (6.6)

Given the fact that for any κ > 0, γ < 0:

κ exp(γ)− γ exp(κ)
κ − γ

≤ exp
(

1
8
(κ − γ)2

)
(6.7)

thus:

E[exp(sX)] ≤ exp
(

1
8

s2(b− a)2
)

(6.8)
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Applying our Chernoff bound lemma 1 we get:

P(µ̂ ≥ t) ≤ exp
(

1
8

s2(b− a)2n− snt
)

And minimising with respect to s yields the required result.

The most limiting feature of the derivation is the requirement that the mean is
zero however this is immaterial and is used to simplify the derivation, as any statistic
can be shifted such that its expectation value becomes zero, hence:

Theorem 6 (Hoeffding’s inequality). Let X be a real-valued random variable that is
bounded a ≤ X ≤ b. Then for D = b − a and any t > 0, the mean µ̂ of n independent
samples of X is probability bounded by:

P(µ̂− µ ≥ t) ≤ exp
(
−2nt2

D2

)
(6.9)

Alternatively by rearranging:

P

(
µ̂− µ ≥

√
D2 log(1/t)

2n

)
≤ t (6.10)

In this way Hoeffding’s inequality is a rather friendly result that states that the
concentration of sample mean is probability bounded by a Gaussian function, and
this might be seen as an intuitive corollary of the Central Limit Theorem. We pro-
vide the derivation of Hoeffding’s inequality to illustrate the technique of deriving
Chernoff bounds. Additionally we will utilise Equation 6.8 in further derivations -
also called Hoeffding’s Lemma:

Lemma 2 (Hoeffding’s Lemma). Let X be a real-valued random variable that is bounded
a ≤ X ≤ b, with a mean µ of zero, then for D = b− a and any s > 0:

E[exp(sX)] ≤ exp
(

1
8

s2D2
)

This process of deriving and minimising a bound for the moment-generating-
function will be used repeatedly to create novel concentration inequalities in sections
6.2 and 6.4.

6.1.3.1 A further note Chernoff bounds, sampling with or without replacement

In many cases, the derivation of concentration inequalities assume that the values
that the samples take are independently from each other. This most naturally cor-
responds to the schema of sampling with replacement, rather than sampling without
replacement. However Chernoff probability bounds that assume independence of
the samples are also suitable to the case of sampling without replacement, this is due
to a result shown by Hoeffding [1963]:
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Lemma 3 (Hoeffding’s reduction). let X = (x1, . . . , xn) be a finite population of n real
points, let X1, . . . , Xn denote random samples without replacement from X and Y1, . . . , Yn

denote random samples with replacement from X. If f : R → R is continuous and convex,
then:

E [ f (∑n
i=1 Xi)] ≤ E [ f (∑n

i=1 Yi)]

Using the continuous and convex function f (x) = exp(sx) it can be seen via
the construction of Chernoff bounds (Theorem 1) that this result implies that all
Chernoff bounds developed for sampling with replacement also hold for sampling
without replacement.

6.1.4 Other general probability lemmas

There are further lemmas that are necessary for the further derivations for this chap-
ter. The first lemma is an often-used and rather weak result used to fuse simple
statements of probability (provided with proof for completeness of information):

Lemma 4 (Probability Union). For any random variables a, b and c:

P(a > c) ≤ P(a > b) + P(b > c)

Proof of Probability Union - Lemma 4. For events A and B

P(A ∪ B) ≤ P(A) + P(B)

hence for events a > b and b > c:

P((a > b) ∪ (b > c)) ≤ P(a > b) + P(b > c)

If a > c, then (a > b) ∪ (b > c) is true irrespective of b, so:

P(a > c) ≤ P((a > b) ∪ (b > c))

This relationship is a well known and useful tool for settings where the proba-
bility relationship between a and c is unknown but the relationship between a and
some b, and also between that b and c is known. Although this relationship is quite
useful, it is known to be a very weak relationship, as it holds with equality (ie.
P(a > c) = P(a > b) + P(b > c)) only if P((a > b) ∩ (b > c)) = 0.

Note also, that the same proof method for probability union also works straight-
forwardly for various substitutions of the ≥ symbol for the > in the inner inequali-
ties, with the exception that: P(a ≥ c) ≤ P(a > b) + P(b > c) may be false.1

1ie. In the context of lemma 4 the following inequalities can be proven by much the same logic
P(a > c) ≤ P(a ≥ c) ≤ P(a ≥ b) + P(b > c) and P(a > c) ≤ P(a ≥ c) ≤ P(a ≥ b) + P(b ≥ c),
however care must be taken because P(a ≥ c) ≤ P(a > b) + P(b > c) may not be true
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A second Lemma is a straightforward and commonly known result of algebra
that relates the sample squares about the mean and the mean squared, to the sample
variance (provided with proof for completeness of information).

Lemma 5 (Variance Decomposition). For n samples xi, sample mean µ̂ = 1
n ∑i xi, sample

variance σ̂2 = 1
n−1 ∑i(xi − µ̂)2, and average of sample squares σ̂2

0 = 1
n ∑i x2

i , the following
relationship holds:

σ̂2
0 = µ̂2 +

n− 1
n

σ̂2

Proof of Variance Decomposition - Lemma 5. By expanding σ̂2 into parts:

σ̂2 =
1

n− 1 ∑
i

(
xi −

1
n ∑

j
xj

)2

=
1

n− 1

(
∑

i
x2

i −
1
n ∑

i,j
xixj

)
=

n
n− 1

(
σ̂2

0 − µ̂2)

This lemma will prove to be important to us, as we will use it as a means of
constructing probability bounds on the error of the sample variance σ̂2 in terms of
the error of the mean squared µ̂2 and error of the average sample squares σ̂2

0 . Once
constructed, integrating these probability bounds then allows us to eliminate the
variance σ2 from our equations, which is an essential part of deriving our new EBBs
(such as per equations 6.18 and 6.27).

6.2 Stratified sampling by union of unstratified probability
bounds

The minimisation of existing EBBs (such as Theorems 3 and 4) cannot be directly be
used as a method of choosing samples in stratified sampling, since the population
mean estimate does not have a sample variance but only the strata have sample vari-
ances. Such EBBs can be applied as a bound for the mean of an individual stratum
but cannot bind the aggregation of the mean estimates of all the strata. In this section,
we show that these EBBs can be combined by probability unions to create a bound
for the error of the stratified mean estimate, which can then be minimised to create
new stratified sampling methodologies. The combined probability bound will not
depend on the variance of the strata, but only depend on the sample variances of the
strata. And thus the resulting sampling methodologies will implicitly be sensitive to
the variances of the strata but not requiring foreknowledge of them - unlike Neyman
sampling.

6.2.1 Stratified sampling via EBBs and sequential unions

To create a bound on the error in stratified sampling from EBBs, it is necessary to use
probability unions to bind the EBBs together. We derive the following two theorems
7 and 8 that give derivations on the error, and the absolute error, of the stratified
mean estimator.
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Theorem 7. If we have m strata of sizes Ni. If we have taken ni samples Xi,1, Xi,2, . . . , Xi,ni

from each stratum, resulting in a stratum sample mean µ̂i =
1
ni

∑ni
j=1 Xi,j and stratum sample

variance σ̂2
i = 1

ni
∑ni

j=1(Xi,j − µ̂i)
2. If the error in the sample mean of a stratum is bounded

by an Empirical Bernstein Bound: P(µ̂i − µi ≥ Z(ni, Di, σ̂2
i , t)) ≤ t

Then the error in our stratified estimation of the population mean itself is probability bounded:

P

(
µ̂− µ ≥

m

∑
i=1

Ni

∑k Nk
Z(ni, Di, σ̂2

i , t/m)

)
≤ t

Proof. We begin by considering that the stratified mean estimate is given by:

µ̂ =
m

∑
i=1

Ni

∑k Nk
µ̂i and thus: µ̂− µ =

m

∑
i=1

Ni

∑k Nk
(µ̂i − µi)

Thence because we can scale (by positive factor) the inside of the EBB inequality (for
any j ∈ {1, . . . , m}):

P

(
Nj

∑k Nk
(µ̂j − µj) ≥

Nj

∑k Nk
Z(nj, Dj, σ̂2

j , t)
)
≤ t (6.11)

adding identical terms to both sides of the inner inequality gives:

P

 m

∑
i=1

Ni

∑k Nk
(µ̂i − µi) ≥

Nj

∑k Nk
Z(nj, Dj, σ̂2

j , t) +
m

∑
i=1
i 6=j

Ni

∑k Nk
(µ̂i − µi)

 ≤ t (6.12)

now since equation 6.11 also holds for any l ∈ {1, . . . , m} other j then:

P

(
Nl

∑k Nk
(µ̂l − µl) ≥

Nl

∑k Nk
Z(nl , Dl , σ̂2

l , t)
)
≤ t

hence by adding terms to both sides of the inner inequality:

P


Nj

∑k Nk
Z(nj, Dj, σ̂2

j , t)
+∑m

i=1
i 6=j

Ni
∑k Nk

(µ̂i − µi)
≥

Nj

∑k Nk
Z(nj, Dj, σ̂2

j , t)+
Nl

∑k Nk
Z(nl , Dl , σ̂2

l , t)+

∑m
i=1
i 6=j
i 6=l

Ni
∑k Nk

(µ̂i − µi)

 ≤ t (6.13)

Applying probability union (lemma 4) to equations 6.12 and 6.13 gives:

P

µ̂− µ ≥

Nj

∑k Nk
Z(nj, Dj, σ̂2

j , t)+
Nl

∑k Nk
Z(nl , Dl , σ̂2

l , t)+

∑m
i=1
i 6=j
i 6=l

Ni
∑k Nk

(µ̂i − µi)

 ≤ 2t
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We can repeat this process of taking equation 6.11 for a new index q 6= j 6= l, adding
appropriate terms to the inner inequality and using probability union lemma 4, gives:

P


µ̂− µ ≥

Nq

∑k Nk
Z(nq, Dq, σ̂2

q , t)+
Nj

∑k Nk
Z(nj, Dj, σ̂2

j , t)+
Nl

∑k Nk
Z(nl , Dl , σ̂2

l , t)+

∑m
i=1
i 6=j
i 6=l
i 6=q

Ni
∑k Nk

(µ̂i − µi)


≤ 3t

and so on, and ultimately gives:

P

(
µ̂− µ ≥

m

∑
i=1

Ni

∑k Nk
Z(ni, Di, σ̂2

i , t)

)
≤ mt

And scaling t gives result.

The result of this novel proof is an inequality bounding the error of the stratified
mean estimate by the number of samples and the width and sample variance of each
of the strata. If instead of the error, we are concerned about the absolute error of the
stratified estimate |µ̂− µ| then by a similar procedure (inspired by the utilisation of
the triangle inequality in the proofs of Maleki et al. [2013]) we can derive a similar
probability bound:

Theorem 8. In the same context of the statement of theorem 7 the absolute error of the
stratified estimation is probability bounded:

P

(
|µ̂− µ| ≥

m

∑
i=1

Ni

∑k Nk
Z(ni, Di, σ̂2

i , t/2m)

)
≤ t

Proof. If P(µ̂i − µi ≥ Z(ni, Di, σ̂2
i , t)) ≤ t then P(|µ̂i − µi| ≥ Z(ni, Di, σ̂2

i , t)) ≤ 2t.
Then by repeated application of probability unions (similar to that process used in
the proof of theorem 7) we get:

P

(
m

∑
i=1

Ni

∑k Nk
|µ̂i − µi| ≥

m

∑
i=1

Ni

∑k Nk
Z(ni, Di, σ̂2

i , t)

)
≤ 2mt (6.14)

Now, via the triangle inequality:

µ̂− µ =
m

∑
i=1

Ni

∑k Nk
(µ̂i − µi) implies |µ̂− µ| ≤

m

∑
i=1

Ni

∑k Nk
|µ̂i − µi|
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then P(|µ̂− µ| > ∑m
i=1

Ni
∑k Nk
|µ̂i − µi|) ≤ 0 and by probability union with (6.14):

P

(
|µ̂− µ| ≥

m

∑
i=1

Ni

∑k Nk
Z(ni, Di, σ̂2

i , t)

)
≤ 2mt

And the result follows by scaling t.

These two theorems make clear that sampling to minimise either the error or the
absolute error, essentially amounts to minimising the same target. It is possible to
apply these theorems with a choice of EBB to create a bound for the stratified mean
error, which can then be minimised by choosing appropriate sample numbers.

This method is made clear in pseudocode in technically-novel algorithm 2. Where
a scan is conducted over the possible strata in lines 4-10, and the improvement that
would be offered by taking an additional sample from the stratum’s respective EBB
is calculated. The strata that gives the most reduction of its EBB for a prospective
additional sample is chosen to have an additional sample taken, and its sample vari-
ance is recalculated in lines 11-13; this process repeats until the sample budget is
exhausted.

Algorithm 2 Stratified Error bound reduction algorithm by unionised EBBs - by The-
orem 8
Require: probability t, number of strata N, initial sample numbers mi, initial stratum

sample variances σ̂2
i , widths Di, maximum sample budget B, for an EBB per the

following form: P(µ̂i − µi ≥ Z(mi, Di, σ̂2
i , t)) ≤ t

1: while ∑k mk < B do
2: beststrata← −1
3: bestimprovement← 0
4: for i = 1 to N do
5: improvement← ni

∑k nk

(
Z(mi, Di, σ̂2

i , t)− Z(mi + 1, Di, σ̂2
i , t)

)
6: if improvement > bestimprovement then
7: beststrata← i
8: bestimprovement← improvement
9: end if

10: end for
11: take an extra sample from strata: beststrata
12: mbeststrata ← mbeststrata + 1
13: recalculate σ̂2

beststrata
14: end while

The numerical performance of this process in the context of stratified sampling
is shown in section 6.5. In the next section we derive and numerically generate a
stronger EBB for application in the context of these theorems for stratified sampling.
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6.3 The derivation of a stronger EBB

There are various EBBs which place variance-sensitive bounds on the mean, and it
remains an outstanding task is to see how much these EBBs can be improved; we
take inspiration from the work of Maurer and Pontil [2009] to develop a new and
stronger EBB. However, due to its analytic intractability, we complete the derivation
by discussing how to numerically determine the bound.

In this section, we derive two Chernoff bounds, for the sample mean and the
mean of sample squares, (Theorem 7 and Lemma 10, respectively). These are fused
using a probability union (Theorem 4) and variance decomposition (Theorem 5) to
derive a bound for the sample variance. This bound is then used to derive our new
EBB, as presented in Theorem 11.

Within this section there are multiple parts:

1. subsection 6.3.1 presents and provides a derivation of Bennett’s inequality

2. subsection 6.3.2 presents and derives a Chernoff bound on the error of the
sample squares

3. subsection 6.3.3 shows how these two can be used to create a bound on the
sample variance

4. subsection 6.3.4 shows how a bound on the sample variance and a bound on
the mean can be used to derive an EBB

5. subsection 6.3.5 we give details on the numerical determination of a new EBB
using all appropriate elements, and present a numerically fitted symbolic en-
velope over the numerical determinations.

6.3.1 A presentation of Bennett’s inequality

Our first part of the derivation of our new EBB is a Chernoff bound on the sample
mean called Bennett’s inequality. This bound is not new and was derived by Hoeffding
[1963] and Bennett [1962] and has subsequently been a subject of discussion and
many further developments; it is known to be quite strong [Bentkus and Juškevičius,
2008; Pinelis, 2014; Talagrand, 1995]; We derive and present a refactored summary
proof of Bennett’s inequality as the theorem 9, whose proof involves the use of an
intermediate theorem 6. We present it here in a way conducive to the manipulation
we will subsequently perform with it (modifying it into proof of Theorem 8).

Theorem 9 (Bennett’s inequality). Let X be a real-valued random variable with a mean of
zero and variance σ2, that is bounded a ≤ X ≤ b. Then for t > 0, the mean µ̂ of n samples
of X is probability bounded by:

P(µ̂ ≥ t) ≤ Hn
1

(
σ2

b2 ,
t
b

)
, (6.15)
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where:

Hn
1

(
σ2

b2 ,
t
b

)
=

( σ2

b2

σ2

b2 +
t
b

) σ2

b2 +
t
b (

1− t
b

) t
b−1


n

σ2
b2 +1

Proof. As random variable X is bounded a ≤ X ≤ b, for any s > 0, by Lemma 6, there
exist parameters α, β, γ such that, αs2X2 + βsX + γ ≥ exp(sX) is always satisfied,
hence for these we have:

E [exp(sX)] ≤ E[αs2X2 + βsX + γ] ≤ αs2 E[X2] + γ ≤ αs2σ2 + γ

≤ (σ2 exp(sb) + b2 exp(−sσ2/b))(σ2 + b2)−1

Hence by application of lemma 1:

P(µ̂ ≥ t) ≤ (σ2 exp(sb) + b2 exp(−sσ2/b))n((σ2 + b2) exp(st))−n

minimising with respect to s completes the proof, minimum s occurs at:

s =
b

σ2 + b2 log
(

b(σ2 + tb)
σ2(b− t)

)

Lemma 6 (Parabola Fitting). For b > 0, a < b and z > 0, there exists an α, β, γ such that:
αx2 + βx + γ ≥ exp(x) for all a ≤ x ≤ b, and:

zα + γ = (z exp(b) + b2 exp(−z/b))(z + b2)−1

Proof. A example parabola αx2 + βx + γ which that satisfies these requirements tan-
gentially touches the exponential curve at one point (at x = f < b) and intersects it
at another (at x = b), as illustrated in Figure 6.1. Thus the parabola’s intersection at
x = b and its tangential intersection at x = f can be written in matrix algebra:α

β

γ

 =

b2 b 1
f 2 f 1
2 f 1 0

−1 exp(b)
exp( f )
exp( f )


This gives our parabola parameters α, β, γ, in terms of f and b, hence:

zα + γ = (((z + f b− b)( f − b− 1)− b)e f + ( f 2 + z)eb)(b− f )−2

Minimizing with respect to f occurs at f = −z
b and gives the result.

The derivation of Bennett’s inequality is separated into two parts as the above
Lemma 6 will also be reused to derive a weaker but more mathematically manipu-
latable inequality later (as Lemma 8).
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The essential difference between Bennett’s inequality and Hoeffding’s inequality
is the fitting of a parabola instead of a linear term over the exponential function. And
this second order parabolic term makes Bennett’s inequality sensitive to the variance
of the distribution whereas Hoeffding’s inequality is not. Bennett’s inequality pro-
vides a probability bound for the difference of the sample mean from the true mean
given the variance, however the true variance is not often known in practice.

6.3.2 A Chernoff bound on the sample squares

As already stated, the variance is often unknown in practice, but can only be es-
timated via the sample variance statistic. In order to derive a bound for the error
between the sample variance and the variance we derived a concentration inequality
for the sample squares to use in conjunction with the variance decomposition Lemma
5. The following novel concentration inequality was derived:

Lemma 7 (Sample square bound). Let X be a real-valued random variable with a mean of
zero and variance σ2, that is bounded a ≤ X ≤ b, if d = max(b,−a) then for y > 0, the
mean of sample squares σ̂2

0 = 1
n ∑i x2

i is probability bounded:

P(σ2 − σ̂2
0 > y) ≤ Hn

2

(
σ2

d2 ,
y
d2

)
, (6.16)

where:

Hn
2

(
σ2

d2 ,
y
d2

)
=

( 1− σ2

d2

1 + y
d2 − σ2

d2

)1+ y
d2−

σ2

d2
(

σ2

d2

σ2

d2 − y
d2

) σ2

d2 −
y

d2


n

Proof. There exist parameters α, γ such for all a ≤ X ≤ b that αX2 + γ ≥ exp(−qX2)
whence:

E[exp(−qX2)] ≤ E[αx2 + γ] ≤ ασ2 + γ

x

ex

αx2 + βx + γ

a f b

Figure 6.1: A parabola parametarised
by touching and intercepting points
f , b above an exponential curve for all
a ≤ x ≤ b

x
e−qx2

g(x)
a b

Figure 6.2: g(x) = (e−qd2 − 1)d−2x2 +

1 over function f (x) = e−qx2
for all

a ≤ x ≤ b where d = max(b,−a)



120 Stratified sampling

With d = max(b,−a), we choose (see Fig 6.2) α = (exp(−qd2)− 1)d−2 and γ = 1
Then applying lemma 1 to the mean of the negated sample squares gives:

P(−σ̂2
0 ≥ t) ≤

(
σ2

d2 exp(−qd2) + 1− σ2

d2

)n

exp(−qnt)

Substituting t for y − σ2 and minimising with q completes the proof, minimum q
occurs at:

q =
1
d2 log

(
σ2(−σ2 + d2 + y)
(σ2 − d2)(y− σ2)

)

Note that the application of this inequality (and thence the domain of function
Hn

2 ) are only sensibly considered in certain settings, such as when: (i) it is defined
for a < 0 < b (because otherwise the mean could not be zero), and (ii) σ2 ≤ −ab ≤
(b− a)2/4 by Popoviciu’s inequality2 (as it is not possible for the variance to be larger
given the width of the data bounds).

6.3.3 A new bound on the sample variance

By Theorem 9 and Lemma 7 we have a probability bound on the mean squared and
a probability bound on the sample squares, and from these it is possible to create
novel a bound on the sample variance using lemma 5, as follows:

Theorem 10 (Sample Variance Bound). For a random variable that is bounded a ≤ X ≤ b
with variance σ2 and a mean of zero, if d = max(b,−a) then for w > 0, the sample variance
σ̂2 of n samples is probability bounded by:

P(σ2 − σ̂2 > w) ≤ Hn
3 (a, b, w, σ2), (6.17)

where:

Hn
3 (a, b, w, σ2) = min

φ∈[0,1]


Hn

1

(
σ2

b2 ,
√

φ( n−1
n w+ 1

n σ2)
b

)
+Hn

1

(
σ2

a2 , −
√

φ( n−1
n w+ 1

n σ2)
a

)
+Hn

2

(
σ2

d2 , (1−φ)( n−1
n w+ 1

n σ2)

d2

)


Proof. By Lemmas 7 and 5:

P

(
σ2 − σ̂2 >

n
n− 1

(
µ̂2 + y− 1

n
σ2
))
≤ Hn

2

(
σ2

d2 ,
y
d2

)
(6.18)

2see Sharma et al. [2010]
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By inspection of equation 6.15 we can convert to a double-sided version:

P(µ̂2 ≥ r2) = P(µ̂ ≥ r) + P(µ̂ ≤ −r) ≤ Hn
1

(
σ2

b2 ,
r
b

)
+ Hn

1

(
σ2

a2 ,
−r
a

)
(6.19)

Also, by manipulating the inner inequality of this equation:

P

(
n

n− 1

(
µ̂2 + y− 1

n
σ2
)
≥ n

n− 1

(
r2 + y− 1

n
σ2
))
≤ Hn

1

(
σ2

b2 ,
r
b

)
+ Hn

1

(
σ2

a2 ,
−r
a

)
(6.20)

Applying lemma 4 to the equations 6.20 and 6.18 gives:

P

(
σ2 − σ̂2 >

n
n− 1

(
r2 + y− 1

n
σ2
))
≤ Hn

2

(
σ2

d2 ,
y
d2

)
+ Hn

1

(
σ2

b2 ,
r
b

)
+ Hn

1

(
σ2

a2 ,
−r
a

)
For a choice of parameter w = n

n−1

(
r2 + y− 1

n σ2) there is a range of possible r, y > 0
which we can parameterise by value φ, such that 0 ≤ φ ≤ 1:

y(φ) = (1− φ)

(
n− 1

n
w +

1
n

σ2
)

and r(φ)2 = φ

(
n− 1

n
w +

1
n

σ2
)

Thus:

P
(
σ2 − σ̂2 > w

)
≤ Hn

2

(
σ2

d2 ,
y(φ)

d2

)
+ Hn

1

(
σ2

b2 ,
r(φ)

b

)
+ Hn

1

(
σ2

a2 ,
−r(φ)

a

)
The result of this proof follows by taking the minimum over φ.

The use of this Theorem 10 (and thus implicitly the domain of function Hn
3 ) is

subject to the same restrictions as Lemma 7 (and its domain as Hn
2 ); specifically that

it is defined for a < 0 and b > 0 and for σ2 ≤ −ab; as otherwise the configuration is
senseless.

6.3.4 Generalised EBB creation process

Theorem 9 presents a bound for the sample mean given the variance, and Theorem 10
presents a probability bound for the error of the sample variance from the variance.
The task remaining is to create a new EBB by binding these two together. To combine
these two theorems to create a bound for the sample mean given the sample variance,
we give a theorem that is representative of a slightly improved derivation process
than that followed by Maurer and Pontil [2009], where they use this process to create
their EBB.

Before beginning this theorem, we need to introduce some notation to ease pre-
sentation. For a function f with ordered inputs, we denote the inverse of f with
respect to its ith input (counting from one) as f−(i), assuming it exists. We sum-
marily denote probability bounds on the differences of the sample mean from the
mean, and the sample variance from the variance, by P(µ̂ − µ > t) ≤ h(σ2, t) and
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P(σ2 − σ̂2 > w) ≤ f (σ2, w), respectively. And note that functions h and f may have
additional arguments not limited to σ2 and t, and σ2 and w, respectively; but that
these are not considered in the theorem and proof for brevity.

Theorem 11 (Essential EBB). For probability bounds P(µ̂−µ > t) ≤ h(σ2, t) and P(σ2−
σ̂2 > w) ≤ f (σ2, w), if f−(2) and h−(2) both exist, and also if h−(2) is monotonically
increasing in its first argument, so that we can define:

z(σ2, w) = σ2 − f−(2)
(
σ2, w

)
If z−(1) exists and is monotonic increasing in its first argument, then for any x ∈ [0, y], the
following relationship holds:

P
(

µ̂− µ > h−(2)
(

z−(1)
(
σ̂2, y− x

)
, x
))
≤ y

Proof. Substituting w for f−(2)(σ2, w) gives:

w ≥ P
(

σ2 − σ̂2 > f−(2)
(
σ2, w

))
≥ P

(
z
(
σ2, w

)
> σ̂2)

≥ P
(

σ2 > z−(1)
(
σ̂2, w

))
≥ P

(
h−2 (σ2, t

)
> h−(2)

(
z−(1)

(
σ̂2, w

)
, t
))

Substituting t for h−(2)(σ2, t) gives:

P
(

µ̂− µ > h−(2)
(
σ2, t

))
≤ t.

Applying probability union (lemma 4) gives:

P
(

µ̂− µ > h−(2)
(

z−(1)
(
σ̂2, w

)
, t
))
≤ t + w.

Letting y = t + w and x = y− w completes the proof.

The result of this Theorem is an Empricial Bernstein Bound. And our novel
EBB is completed by substituting h(σ2, t) = Hn

1

(
σ2/b2, t/b

)
(from Theorem 9) and

f (σ2, w) = Hn
3
(
a, b, w, σ2) (from Theorem 10) into Theorem 11. In this process care

was taken in applying this theorem that all the assumptions hold, the necessary
inverses exist, and that the domains of the functions were propagated through the
analysis.

6.3.5 Numerical determination

The Empirical Bernstein Bound described in the previous subsection 6.3.4 consists
of inversions and compositions of functions H1 and H3 from theorems 9 and 10,
is identified to be challenging to analytically determine but much more possible to
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numerically determine. Calculating this EBB numericaly consisted of three primary
parts:

1. Computating function f (σ2, w) = Hn
3 (a, b, y, σ2)

2. Verifying the assumptions of Theorem 11 hold for h(σ2, t) = H1 and f (σ2, w) =
H3

3. Calculating the subsequent result of Theorem 11

First, the function f (σ2, w) = Hn
3 (a, b, w, σ2) (per Theorem 10) was identified as

the solution to an optimisation problem that solves for the minima of an objective
function subject to constraint φ ∈ [0, 1]. Despite its complexity, solutions of this sort
can be found quickly using a single variable parameter sweep.

Second, it was necessary to verify the assumptions that h−(2), f−(2) and z−(1)

exist and that z−(1) and f−(2) are monotonically increasing in their first argument.
It was easy to note that h(σ2, t) = Hn

1

(
σ2/b2, t/b

)
is a closed-form function that

is monotonically decreasing from 1 to 0 on the second argument, so h−(2) exists
and is monotonically increasing in its first argument. However the remaining of
these assumptions are more difficult to verify. For any function, the values that the
function takes can be plotted as an array of points and the values that the inverse
of that function takes can be determined by conducting coordinate swapping on
those points. The values of f (σ2, w) = Hn

3 (a, b, w, σ2) were computed and were seen
to be monotonically decreasing in its second argument confirming that f−(2) exists.
The function z(σ2, w) = σ2 − f−(2)

(
σ2, w

)
is then a manipulation on the coordinate

swapped points of f (σ2, w) = Hn
3 (a, b, w, σ2). By coordinate swapping again, z−(1)

was seen to be a regular function monotonically increasing on its first argument,
hence satisfying assumptions.

Third, to numerically calculate the result of Theorem 11 the functions h−(2) and
z−(1) were numerically evaluated by direct parameter searches and then composed
as: h−(2)(z−(1)(σ̂2, y− x), x) - which was the inner part of the expression of the new
EBB parameterised by x explicitly and also a, b implicitly. However we typically don’t
know the values of a and b, but instead know the mean is somewhere within a finite
interval of width D = b− a, in this context was taken the worst case values of a and
b consistent with a given D, and then the best x ∈ [0, y] was taken subject to all other
bounds.

Throughout this three stage process the new EBB was numerically determined by
a series of coordinate manipulations and mundane parameter searches.3 For the ease
of this application of our EBB, we hand-tuned an envelope of our EBB’s probability
0.5 bound, where the process of creating such an expression involved plotting the
numerical data, and manually fitting a symbolic expression above the data:

P

µ− µ̂ ≥ D√
n

min

√2 log 2,

 3
5

√
min

[
1, σ̂2

D2 +
25
n

]
+ ln

(
max

[
1, n

(
1− σ̂2

D2

)])−4

 / 0.5 (6.21)

3sourcecode available at:
https://github.com/Markopolo141/Engineered-Empirical-Bernstein-Bound

https://github.com/Markopolo141/Engineered-Empirical-Bernstein-Bound
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The strength of this new EBB against existing EBBs are discussed in section 6.7,
and the performance of this new EBB in the context of stratified sampling is reported
in section 6.5. We now turn away from the subject matter of the unionisation of EBBs
for stratified sampling (in the previous section 6.2) and the creation of a new EBB
for this purpose in this section, to the creation of a completely novel bound directly
tailored for stratified sampling.

6.4 Stratified sampling by a stratified probability bound

In the previous section we considered different possible EBBs as a way of bounding
the error in the context of stratified random sampling, and for this purpose developed
a new EBB. This process of using EBBs involved binding EBBs applied to different
strata together using union bounds to create a bound on the stratified sample mean
error (via Theorem 7).

What is worth noting is that this process of binding EBBs together by probability
unions is expected to result in a rather weak bound and that this weakness is ex-
pected to increase with larger numbers of strata as there are more probability unions
needed to bind it together. It is noted that the triangle equality |A + B| ≤ |A|+ |B|,
is only an equality in the event that the elements A and B are of the same sign, and
in the context of theorems 7 and 8 the bound for the error is developed by effectively
assuming all the errors of the estimates of the strata are additive - which is the worst
case. Whereas by assumption, the errors in the strata estimates are independent of
each other and hence a overestimation in one stratum estimate is likely to be some-
what countered by an underestimation in another. By using this knowledge stronger
bounds can be created, and in this section we do just that. We have created an em-
pirical (ie. depending on sample variances) concentration inequality specifically for
stratified random sampling.

The resulting concentration inequality gives an analytic bound on the error of the
stratified mean and explicitly considers the sample variances, data widths, sample
numbers, and any additional weights on the strata; and includes factors specifically
for strata sampled with and/or without replacement.

We proceed with the derivation of this new bound and method in a series of
stages:

1. in subsection 6.4.1 we outlay some lemmas which are the building blocks of
further derivations in this section, these are new upper bounds are for the mo-
ment generating function of samples and sample squares, as well as the sample
means depending on whether sampling is done with or without replacement.

2. in subsection 6.4.2 we use these elements to begin the derivation of the new
bound, called the Stratified Empirical Bernstein Bound (SEBB)

3. in subsection 6.4.3 we additionally derive a variant of the SEBB which uses
Chebyshev’s inequality
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4. in subsection 6.4.4 we describe the algorithm of choosing samples in stratified
sampling to minimise the new SEBB bound.

After these subsections, in the next section 6.5 we consider the numerical perfor-
mance of minimising these new bounds in the context of stratified sampling. Let us
begin with the elements in these new derivations. We note in this section, all proofs
and demonstrations are our own, and are novel, except where otherwise explicitly
noted.

6.4.1 Some new bounds on the moment generating function

To begin the derivation of our new concentration inequality for stratified random
sampling, we build upon some of the results of the previous sections. Specifically
we utilise three upper bounds for various moment generating functions. The first
of which has already been given in the previous section, and is Hoeffding’s lemma -
Lemma 2. The other two are given here, and are bounds strongly related to Theorems
9 and 7 respectively.

The first of these other two upper bounds is very much like Hoeffding’s Lemma,
except it involves additional information about the variance of the random variable.

Lemma 8. For a random variable X that is bounded on an interval a ≤ X ≤ b with
D = b− a and variance σ2, and any s > 0:

E [exp(s(X−E[x]))] ≤ exp
((

D2

17
+

σ2

2

)
s2
)

Proof. We assume without loss of generality that X is centred to have a mean of zero.
Then we construct an upper bound for E [exp(sX)] in terms of D by a parabola over
exp(sX) for the permitted values of X in the same way as in the proof of Theorem 9.
By Lemma 6 there exists an α, β, γ such that αs2X2 + βsX + γ ≥ exp(sX), and for all
a ≤ X ≤ b, hence:

E [exp(sX)] ≤ E[αs2X2 + βsX + γ] = αs2 E[X2] + γ = αs2σ2 + γ

Where it follows that:

E [exp(sX)] ≤
(

σ2

b2 exp
(

s
(

b +
σ2

b

))
+ 1
)

exp
(
− sσ2

b

)(
σ2

b2 + 1
)−1

.

This relationship is exactly as in Theorem 9, now we do something slightly different
- the expression in (6.22) is monotonically increasing with b, and D > b, therefore
substituting D for b gives:

log(E [exp(sX)]) ≤ log
(

σ2

D2 exp
(

s
(

D +
σ2

D

))
+ 1
)
− sσ2

D
− log

(
σ2

D2 + 1
)

(6.22)
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Because it is true that for any κ, x ≥ 0, that:

log(κ exp(x) + 1) ≤ log(κ + 1) +
xκ

κ + 1
+ x2

1
17 +

κ
2

(κ + 1)2 (6.23)

Thus letting κ = σ2

D2 and x = s(D + σ2/D) if follows that:

log(E [exp(sX)]) ≤
(

D2

17
+

σ2

2

)
s2 (6.24)

We note that this process of fitting a parabola over the exponential function is
exactly the same process as used to derive Bennett’s inequality (Theorem 9), but that
we derive a weakened result from that same approach.

The next lemma that we present, is similar to the former, however this time we
consider the random variable X2 instead of X, and present a weakened bound on
the moment generating function of it via a similar process as was used to derive
Theorem 7:

Lemma 9. Let X be a random variable of finite support on an interval a ≤ X ≤ b, with
D = b− a and variance σ2 = E[(X−E[x])2] = E[X2]−E[X]2. Then for any q > 0:

E[exp(q(σ2 − (X−E[X])2))] ≤ exp
(

1
2

σ2q2D2
)

Proof. We assume without loss of generality (and for ease of presentation) that X is
centred to have a mean of zero. We construct an upper bound for E

[
exp(−qX2)

]
in

terms of D by a parabola over exp(−qX2) for the permitted values of X.

For an α, γ such that αX2 + γ ≥ exp(−qX2) then:

E[exp(−qX2)] ≤ ασ2 + γ.

If d = max(b,−a) we can choose γ = 1 and α = (exp(−qd2)− 1)d−2 (see figure 6.2),
Thus:

E[exp(−qX2)] ≤ σ2

d2 exp(−qd2)− σ2

d2 + 1 ≤ σ2

D2 exp(−qD2)− σ2

D2 + 1

≤ exp
(

log
(

σ2

D2 exp(−qD2)− σ2

D2 + 1
))

Given that for any 0 ≤ κ ≤ 0.5 and x ≤ 0 that:

log (κ exp(x)− κ + 1) ≤ κx +
1
2

κ(1− κ)x2

Letting κ = σ2

D2 and x = −qD2, which is valid by Popoviciu’s inequality (see Sharma
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et al. [2010]) σ2 ≤ D2/4, then:

E[exp(−qX2)] ≤ exp
(

1
2

σ2q2(D2 − σ2)− σ2q
)
≤ exp

(
1
2

σ2q2D2 − σ2q
)

and the result follows by multiplying by exp(qσ2).

The inequalities above, Lemmas 8 and 9, as well as Lemma 2, are used in the
derivation of our stratified sampling concentration inequality in Section 6.4.2. One of
the primary reasons for utilising these weakened bounds on the moment generating
function is that they make the subsequent mathematics far more tractable. However
in order to use these moment generating functions we need to explicitly describe the
difference between the moment generating functions of individual random variables
(which these are) and the moment generating function of the sample mean of them.

6.4.1.1 Some bounds on the moment generating function of sample means

In order to use the previous bounds on the moment generating function we need a
relationship between the moment generating function of a random variable, and the
moment generating function of the average of samples of that random variable. To do
this we state two further inequalities, where the first one (Lemma 10) is most appro-
priate for sampling average is taken with replacement, and the second (Lemma 11)
can optionally be used in the context that the sampling average is without replace-
ment - and may (or may not) give a tighter result.

We first state a lemma that is essentially is a formalisation of the process we are
familiar with in the last section (see Lemma 1):

Lemma 10 (Replacement Bound). Let X be a random variable that is bounded a ≤ X ≤ b
with a mean of zero, with D = b− a and variance σ2. Let χm = 1

m ∑m
i=1 Xi be the average

of m independently drawn (with replacement) samples of this random variable. If there exists
an α, β ≥ 0 such that for any s > 0 that E[exp(sX)] ≤ exp((αD2 + βσ2)s2) then:

E[exp(sχm)] ≤ exp(αs2D2 1
m + βs2σ2 1

m ) = exp((αD2Ωn
m + βσ2Ψn

m)s2)

where Ωn
m = Ψn

m = 1
m

Proof. By the independence of samples, we have:

E[exp(sχm)] = E

[
exp

(
s
m

m

∑
i=1

Xi

)]
=

m

∏
i=1

E
[
exp

( s
m

X
)]

Thus:

E[exp(sχm)] ≤ exp

(
s2

m2

m

∑
i=1

(
αD2 + βσ2))

For the case of sampling without replacement, there is an alternative result that
can be directly substituted, given in Lemma 11, below, which can be tighter in certain
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cases. Before this, particular note must be made that the inequality above, Lemma 10
can be used in the context of either sampling with or without replacement. In con-
trast, Lemma 11 can only be used when sampling without replacement. This distinc-
tion was shown to be true by Hoeffding [1963], and is rooted in an already presented
Lemma 3.

We now state Lemma 11, an inequality regarding the moment generating function
of the average of samples taken specifically without replacement. When the sampling
takes place without replacement the inequality of Lemma 10 can potentially be tight-
ened to take advantage of the finite size of the population. This inequality extends
an important martingale inequality from Bardenet and Maillard [2015]:

Lemma 11 (Martingale Bound). For finite data x1, x2, . . . xn that is bounded a ≤ xi ≤ b,
and has a mean of zero and variance σ2 = 1

n ∑n
i=1 x2

i , denote X1, X2, . . . , Xn the random
variables corresponding to the data sequentially drawn randomly without replacement, and
χm the average of the first m of them. If for any random variable Z with a mean of zero such
that a ≤ Z ≤ b and D = b− a, with variance σ2

Z that there exists an α, β ≥ 0 such that for
any s > 0 that E[exp(sZ)] ≤ exp((αD2 + βσ2

Z)s
2) then:

E[exp(sχm)] ≤ exp

(
αs2D2

n−1

∑
k=m

1
k2 + βs2σ2

n−1

∑
k=m

n
k2(k + 1)

)
≤ exp((αD2Ω̄n

m + βσ2Ψ̄n
m)s

2)

where Ω̄n
m = ∑n−1

k=m
1
k2 ≈ (m+1)(1−m/n)

m2 and Ψ̄n
m = ∑n−1

k=m
n

k2(k+1) ≈
n+1−m

m2 .

Proof. Observe that:

χm =
1
m

m

∑
i=1

Xi = χm+1 +
1
m
(χm+1 − Xm+1)

= (χm − χm+1) + (χm+1 − χm+2) + · · ·+ (χn−1 − χn)

=
1
m
(χm+1 − Xm+1) +

1
m + 1

(χm+2 − Xm+2) + · · ·+
1

n− 1
(χn − Xn).

Then because:

exp(sχm) =
n−1

∏
k=m

exp
( s

k
(χk+1 − Xk+1)

)
,

we also have that:

E[exp(sχm)] = E

[
n−1

∏
k=m

E
[
exp

( s
k
(χk+1 − Xk+1)

)
|χk+1 . . . χn

]]

by repeated application of the Law of total expectation. Since:

E[Xk+1|χk+1 . . . χn] = χk+1,

then χk+1 − Xk+1 is a random variable with a mean of zero bounded within width
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D, and it also has a variance given by:

σ2
k+1 =

nσ2 −∑n
j=k+1 X2

j

n− (n− k− 1)
− χ2

k ≤
nσ2

k + 1
(6.25)

by application of Lemma 5. Therefore:

E[exp(sχm)] ≤ exp

(
n−1

∑
k=m

(
αD2 + β

nσ2

k + 1

)
s2

k2

)

This martingale result relates the moment generating function bound of the av-
erage of finite variables relative to their mean, to the moment generating function
bounds of the differences of the incremental averages relative to their mean. We note
that this result could potentially be made much stronger by working around the use
of Equation (6.25), but this comes at a cost of increased mathematical complexity.

Since Lemmas 11 and 10 share a common form, and because of Hoeffding’s re-
duction (Lemma 3), all the derivations that follow that invoke Lemma 10 have direct
analogues using Lemma 11 for the context of sampling without replacement. Note,
however, that the bound without replacement (Lemma 11) may or may not be tighter
than the bound with replacement (Lemma 10). However, the process of substituting
one for the other can be done judiciously on a case-by-case basis to create the tightest
possible bound. All the numerical results in Section 6.5 (that are relevant to sampling
without replacement) have been produced with this judicious choice conducted.

6.4.2 The Stratified finite Empirical Bernstein Bound (SEBB)

In this section we derive a novel probability bound for the error of the stratified
random sampling estimate, and use it to define a sequential stratified sampling algo-
rithm. Before this, we begin by precisely defining the context of our derivations, to
which our bound applies.

Definition 1 (Problem context).

• Let a population consist of n number of strata,

• where ni is the total number of data points in the ith stratum.

• All values in a stratum are bound within a finite support of width Di.

• the mean of the ith stratum is µi, and its variance σ2
i .

• the random variables corresponding to the samples drawn from the i stratum are:
Xi,1, Xi,2, . . . , Xi,ni

• for each stratum mi samples are taken

• forming the sample mean of each stratum: χi,mi =
1

mi
∑mi

j=1 Xi,j
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• the biased sample variance of each stratum: σ̂2
i = 1

mi
∑mi

j (Xi,j − χi,mi)
2

• the unbiased sample variance of each stratum: ˆ̂σ2
i = miσ̂

2
i /(mi − 1)

• we consider the average of the means of the strata as weighted by constant positive
factors {τi}i∈{1,...,n}

• And throughout the derivation we also use temporary arbitrary positive variables {θi}i∈{1,...,n}

The bound is now developed in four theorems, which build on each other in se-
quence:

1. in subsubsection 6.4.2.1 Theorem 12 develops a concentration inequality for the
error in the stratified population mean estimate ∑n

i=1 τiχi,mi in the context of the
knowledge of stratum variances.

2. in subsubsection 6.4.2.2 Theorem 13 is a concentration inequality of the differ-
ence between the stratum variances and sample variances in the context the
sum of knowledge of the squared stratum mean errors.

3. in subsubsection 6.4.2.3 Theorem 14 is an inequality directly that binds the sum
of sample squared stratum mean errors.

4. in subsubsection 6.4.2.4 Theorem 15 combines the three previous theorems to-
gether using two union bounds to create a concentration inequality for the error
in the stratified population mean estimate given the sample variances.

6.4.2.1 A bound on the sample mean assuming variances

In a similar way to what was done in the previous section, to derive an Empirical
Bernstein Bound we begin with a derivation of a probability bound on the error of
the sample mean of a random variable in terms of the random variable’s variance.
In the previous section the bound in question was the venerable Bennett’s inequality
(Theorem 9) however in this section we consider a more relaxed and similar version
of it which is more easy for us to manipulate, and in this case the random variable
in question is the weighted mean ∑n

i=1 τiχi,mi .
This is probability bound on the absolute error of the weighted stratified sample

means about the weighted strata means, which we call a variance-assisted SEBB
(stratified empirical Bernstein bound).

Theorem 12 (Variance-assisted SEBB). Assuming the context given in Definition 1, and
let Ωni

mi and Ψni
mi be given as in Lemma 10, then:

P

(∣∣∣∣∣ n

∑
i=1

τi(χi,mi − µi)

∣∣∣∣∣ ≥
√

4 log(2/t)
n

∑
i=1

(
1
17

D2
i Ωni

mi +
1
2

σ2
i Ψni

mi

)
τ2

i

)
≤ t (6.26)
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Proof. In a similar way as Lemma 1 we consider a bound for the weighted mean by
the moment generating function of the stratum means:

P

(
n

∑
i=1

τiχi,mi −
n

∑
i=1

τiµi ≥ t

)
≤ E

[
exp

(
n

∑
i=1

τis (χi,mi − µi)

)]
exp(−st)

=
n

∏
i=1

E [exp (τis (χi,mi − µi))] exp(−st)

This involves the assumption that the sampling -between- the strata is independent.
This form is sufficient for Lemma 10 with Lemma 8 to apply, resulting in a double-
sided tail bound:

P

(∣∣∣∣∣ n

∑
i=1

τi(χi,mi − µi)

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
n

∑
i=1

(
1

17
D2

i Ωni
mi
+

1
2

σ2
i Ψni

mi

)
τ2

i s2 − st

)

Minimizing with respect to s and rearranging gives result.

This particular bound assumes knowledge of the variances of the strata, and will
be used as a tool for selecting samples primarily for comparison with other sampling
methods (such as Neyman sampling) in Section 6.5.

It is a concentration inequality for the weighted stratum means, leading to the
more general question of what the weights should be. In most cases, the weights τi
can be considered as the probability weights τi = ni/(∑n

j=1 nj) of standard stratified
sampling. In this context this probability bound can be used as-is for a measure
of uncertainty in stratified random sampling if the true variances (or alternatively,
upper bounds on the true variances) of the strata are known. However the weights
may be assigned differently - and we will investigate such a case for the Shapley
Value in section 6.5.

The bound depends on a weighted sum of strata variances ∑n
i=1 σ2

i Ψni
mi τ

2
i , and in

most situations these values aren’t known. Hence to use this inequality we need to
consider the probable error between the weighted sum of strata variances and the
weighted sum of strata sample variances.

6.4.2.2 A bound on the sample variance in terms of sample error squares

To create a bound on the error between the strata variances and the strata sample
variances we develop a probability bound for the error estimate of the sum of vari-
ances (as weighted by arbitrary θi) in terms of the sample square errors (which will
also consequently be bounded), as follows:

Theorem 13. Assuming the context given in Definition 1. Then with Ψni
mi per Lemma 10:

P

(
n

∑
i=1

θi(σ
2
i − σ̂2

i − (µi − χi,mi)
2) ≥

√
2 log(1/y)

n

∑
i=1

σ2
i θ2

i D2
i Ψni

mi

)
≤ y (6.27)
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Proof. To create a probability bound for the sum of variances (weighted by arbitrary
positive θi), we consider the average square of samples about the strata means. Ap-
plying Lemma 1 gives:

P

(
n

∑
i=1

θi(σ
2
i −

1
mi

mi

∑
j=1

(Xi,j − µi)
2) ≥ y

)

≤ E

[
exp

(
n

∑
i=1

sθi

(
σ2 − 1

mi

mi

∑
j=1

(Xi,j − µi)
2

))]
exp(−sy)

≤ exp(−sy)
n

∏
i=1

E

[
exp

(
sθi

mi

mi

∑
j=1

(σ2 − (Xi,j − µi)
2)

)]

And this reason is by the assumption of the independence of the sampling -between-
the strata. This resulting form is sufficient for Lemma 10 with Lemma 9 to apply,
giving:

P

(
n

∑
i=1

θi(σ
2
i −

1
mi

mi

∑
j=1

(Xi,j − µi)
2) ≥ y

)
≤ exp

(
1
2

n

∑
i=1

σ2
i θ2

i s2D2
i Ψni

mi
− sy

)

Minimizing with respect to s, rearranging, and applying Lemma 5 gives result.

This inequality gives the probability bound between the arbitrarily (by θi) weighted
variances of the strata and also the same weighted (biased estimator) sample vari-
ances. However it also additionally involves the weighted square error of the sample
means as a complicating factor. Although the weighted square error of the sample
means may go to zero quickly as additional samples are taken, we nonetheless need
to develop another probability bound to incorporate the specific consideration of it.

6.4.2.3 A bound on weighted sample error squares

In the previous Theorem 13 the weighted sum of sample squares was a complicating
factor which we seek to bound and incorporate. The following probability inequality
bounds the weighted square error of the sample means directly:

Theorem 14. Assuming the context given in Definition 1. Then with Ωni
mi as in Lemma 10:

P

(
n

∑
i=1

θi(µi − χi,mi)
2 ≥ log(2n/r)

2

n

∑
i=1

θiD2
i Ωni

mi

)
≤ r (6.28)

Proof. We consider the weighted square error of the sample means, and by probabil-
ity complimentarity we know:

P

(
n

∑
i=1

θi(µi − χi,mi)
2 ≥ r

)
= 1−P

(
n

∑
i=1

θi(µi − χi,mi)
2 < r

)
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As the probability that sum of any random variables is less than r is obviously
greater than the probability that those random variables individual are all less than
specific values that sum to r hence, for ri such that ∑ ri = r:

P

(
n

∑
i=1

θi(µi − χi,mi)
2 ≥ r

)
≤ 1−

n

∏
i=1

P
(
θi(µi − χi,mi)

2 < ri
)

hence by probability complimentarities again:

P

(
n

∑
i=1

θi(µi − χi,mi)
2 ≥ r

)
≤

1−
n

∏
i=1

(
1−P

(
µi − χi,mi ≥

√
ri

θi

)
−P

(
χi,mi − µi ≥

√
ri

θi

))
And this is exactly the form which we want, in terms of the products of the error

in each of the strata sample means. Thus we can apply Lemma 1 together with
Lemmas 10 and 2, which gives:

P

(
n

∑
i=1

θi(µi − χi,mi)
2 ≥ r

)
≤ 1−

n

∏
i=1

(
1− 2 exp

(
− 2ri

θiD2
i Ωni

mi

))
Next, choosing ri to minimise the right hand side of this expression gives:

ri =
rθiD2

i Ωni
mi

∑j θjD2
j Ω

nj
mj

In this context, we therefore deduce that:

P

(
n

∑
i=1

θi(µi − χi,mi)
2 ≥ r

)
≤ 1−

n

∏
i=1

1− 2 exp

 −2r

∑j θjD2
j Ω

nj
mj


Using the fact that log(1 − (1 − exp(x))n) ≤ x + log(n) for any negative x, and
rearranging, gives the required result.

This theorem directly bounds the weighted square errors of the sample means
independently of any other specifically unknown factors.

6.4.2.4 The centerpiece of the SEBB

In the previous three theorems we have a bound on the stratified mean estimate in
terms of the variances, a bound on the variances in terms of the sample variances by
the sample square errors, and a bound on the sample square errors. In the next step
we combine all the inequalities of Equations (6.26), (6.27) and (6.28) from Theorems
12, 13 and 14 together, to complete our derivation of a probability bound for the error
in stratified sampling in terms of stratum sample variances - our SEBB.
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Theorem 15 (Stratified Empirical Bernstein Bound (SEBB)). Assuming the context given
in Definition 1. Then with Ωni

mi , Ψni
mi per Lemma 10:

P

(∣∣∣∣∣ n

∑
i=1

τi(χi,mi − µi)

∣∣∣∣∣ ≥
√

log(6/p)
(

α +
(√

β +
√

γ
)2
))
≤ p (6.29)

where:

α =
n

∑
i=1

4
17

Ωni
mi

D2
i τ2

i

β = log(3/p)
(

max
i

τ2
i Ψni

mi

2D2
i

)
γ =2

n

∑
i=1

τ2
i Ψni

mi
(mi − 1) ˆ̂σ2

i /mi + log(6n/p)∑
i

τ2
i D2

i Ωni
mi

Ψni
mi

+ log(3/p)
(

max
i

τ2
i Ψni

mi

2D2
i

)
.

Proof. By widening the bound of Equation (6.27) we get:

P

(
∑n

i=1 θiσ
2
i −∑n

i=1 θi(σ̂
2
i + (µi − χi,mi)

2) ≥√
2 log(1/y)(maxi θiD2

i Ψni
mi)∑n

i=1 θiσ
2
i

)
≤ y.

Completing the square gives for
√

∑n
i=1 θiσ

2
i gives:

P


√

n

∑
i=1

θiσ
2
i ≥

√
∑n

i=1 θi(σ̂
2
i + (µi − χi,mi)

2)

+ log(1/y)
2

(
maxi θiD2

i Ψni
mi

)
+
√

log(1/y)
2

(
maxi θiD2

i Ψni
mi

)
 ≤ y.

Combining with Equation (6.28) with a union bound (Lemma 4) gives:

P


√

n

∑
i=1

θiσ
2
i ≥

√√√√∑n
i=1 θiσ̂

2
i +

log(2n/r)
2 ∑i θiD2

i Ωni
mi

+ log(1/y)
2

(
maxi θiD2

i Ψni
mi

)
+
√

log(1/y)
2

(
maxi θiD2

i Ψni
mi

)
 ≤ y + r, (6.30)

which is a bound for the weighted sum variances in terms of the sample variances.
Letting θi =

1
2 τ2

i Ψni
mi and combining with (6.26) with a union bound (Lemma 4), and

then assigning r = t = y = p/3 and rewriting in terms of unbiased sample variance,
gives the result.

This completes the derivation of the SEBB. In Equation (6.29) of Theorem 15, we
have a concentration inequality for the sum of weighted strata sample mean errors
relative to the sample variances. In this context, the weights τi are flexible but would
naturally be probability weights proportional to strata size, τi = ni/(∑n

j=1 nj), in
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which case the inequality provides a concentration of measure in stratified random
sampling.

6.4.3 A Stratified Empirical Chebyshev Bound (SECB)

It is also possible to consider another strongly related bound on the error in stratified
sampling. Since the last Theorem 15 ultimately builds upon Theorem 12 which was
the embodiment of a simplification of Bennett’s inequality per Lemma 8. And since
we will ultimately compare performance of these bounds against Neyman sampling
which is conceptually built upon the minimisation of Chebyshev’s inequality (Theo-
rem 2) we will also consider and compare against a empirical Chebyshev’s inequality
for stratified sampling.

Theorem 16 (Stratified Empirical Chebyshev Bound (SECB)). Assuming the context
given in Definition 1. Then with Ωni

mi , Ψni
mi per Lemma 10:

P

(∣∣∣∣∣ n

∑
i=1

τi(χi,mi − µi)

∣∣∣∣∣ ≥
√

3
p

(√
α + β +

√
β
))
≤ p (6.31)

where:
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n

∑
i=1

τ2
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i /mi +
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i D2
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2
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Proof. We can use Chebyshev’s inequality (Theorem 2) for the strata sample estimator
giving:

P

∣∣∣∣∣ n

∑
i=1

τi(χi,mi − µi)

∣∣∣∣∣ ≥ 1√
k

√√√√Var

(
n

∑
i=1

τiχi,mi

) ≤ k

Which is a probability bound for the error of the stratum mean estimator in terms of
its variance. Whereby we can assume the independence of the sampling between the
strata and sampling with replacement, giving the decomposition of the variance of
the estimator (in a similar process to Equation 6.1), giving:

Var

(
n

∑
i=1

τiχi,mi

)
=

n

∑
i=1

τ2
i Var(χi,mi) =

n

∑
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i σ2

i
mi

Hence:
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τi(χi,mi − µi)

∣∣∣∣∣ ≥ 1√
k

√
n

∑
i=1

Ψni
mi τ

2
i σ2

i

)
≤ k

Which is a Chebyshev type inequality for the error of the stratum mean estimator in
terms of a sum of the stratum variances - and is very analogous to Equation 6.26 of
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Theorem 12. And since equation 6.30 (from the previous proof) is a general bound
for an arbitrary sum of the stratum variances we can combine with it (in the case of
setting θi = τ2

i Ψni
mi ) by a union bound (Lemma 4), giving:

P
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+

√
log(1/y)

2

(
maxi τ2

i D2
i Ψni

mi

2
)




≤ y+r + k

And setting r = k = y = p/3 and rewriting in terms of unbiased sample variance,
gives the result.

We will now turn to how minimising these bounds on the stratified sample mean
estimate (theorems 15 and 16) can be used as a method of choosing samples in the
context of stratified sampling. And afterwards, in the next section 6.5 we will com-
pare how all these methods work in actually sampling stratified data.

6.4.4 Sequential sampling using the stratified empirical bernstein method

In this section, we developed a concentration inequality to bound the error of the
sampling mean estimate in stratified random sampling, called the SEBB - as per
Theorem 15. The process of selecting additional samples to minimise this probability
bound on the error is introduced in this section. And we call it the stratified empirical
Bernstein method (SEBM).

The fundamental principle of the SEBM, is that it is an online method of choos-
ing additional samples which repeatedly scans through possible stratum for opti-
mum sample choice, and the strata which would result in the most reduction of the
SEBB bound is then recommended for additional sampling. The pseudo-code for this
process of sampling, is given as Algorithm 3.

Specifically, Algorithm 3 is a repetitive process involving a scan through the pos-
sible strata and then the selection of one stratum to sample from. The process of
scanning involves calculating the confidence bound width (SEBB) that would result
if an additional sample were to be taken from that stratum without changing its sam-
ple variance (line numbers 5-17 in Algorithm 3). The stratum that yields the smallest
confidence bound width in the context of an additional sample is then selected (line
18-21) and sampled (line 24), the sample variance of that stratum is updated (line
26); this process repeats until the maximum sample budget is reached (per the outer
loop, line 1). In this way the process attempts to iteratively minimise the SEBB in
expectation with each additional sample taken; and hence lead to potentially greater
accuracy in stratified sampling as a result.

The primary assumption that exists in this method’s selection calculus is that
it assumes that the sample variance of the strata would likely remain unchanged
for the taking of the additional sample from any strata. While this technically isn’t
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true, the unbiased sample variance is expected to be almost as likely to increase as
it is likely to decrease from the taking of an additional sample. Plus developing an
even more complicated probability bound that explicitly takes account of the likely
change in error of the stratified mean estimate due to the expected change in the
sample variance is beyond the scope of our investigation.

This SEBM method (Algorithm 3) requires the sample variances of all the strata
to be calculated. And accordingly, Algorithm 3 must be initialised with at least two
samples from each stratum so that sample variance can be calculated for it to be able
to function.

We also note that Algorithm 3 describes a process specific to the sampling without
replacement of all strata, and involves the calculation of the SEBB with the tightest
possible use cases of Lemmas 11 and 10. In particular, for any stratum i that is
sampled without replacement, any specific bound with an associated Ωni

mi and Ψni
mi

may be substituted for Ω̄ni
mi and Ψ̄ni

mi to potentially tighten the bound, and this cor-
responds to choice of Lemma 11 or Lemma 10 in the bound’s derivation. Since the
SEBB is a composition of such bounds with such choices throughout, there is a struc-
ture of valid pairs of substitutions Ω, Ψ for Ω̄, Ψ̄ in the optimal calculation of the
SEBB, which is shown in the steps 8-15 of Algorithm 3. The equivalent algorithm for
sampling with replacement simply is the same algorithm altered by replacing all use
of Ω̄, Ψ̄ with Ω, Ψ respectively.

Similarly it is elementary to modify the terms of Algorithn 3 to be amenable to
be minimising SECB bound (Theorem 16).

In the next section 6.5 we will compare how algorithms 2 and 3 work in actually
sampling stratified data.
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Algorithm 3 Stratified Empirical Bernstein Method (SEBM) algorithm, with replace-
ment
Require: probability p, strata number N, stratum sizes ni, initial sample numbers

mi, initial stratum sample variances ˆ̂σ2
i , weights τi, widths Di, maximum sample

budget B
1: while ∑i mi < B do
2: beststrata← −1
3: lowestbound← ∞
4: for k = 0 to N do
5: mk ← mk + 1
6: a← [0, 0], b← [0, 0], c← [0, 0], d← [0, 0]
7: for i = 0 to N do
8: a0 ← a0 + log(6N/p)D2

i Ψ̄ni
mi min(Ω̄ni

mi , Ωni
mi)τ

2

9: a1 ← a1 + log(6N/p)D2
i Ψni

mi min(Ω̄ni
mi , Ωni

mi)τ
2

10: b0 ← max(b0, log(3/p)D2
i Ψ̄ni

mi min(Ψ̄ni
mi , Ψni

mi)τ
2)

11: b1 ← max(b1, log(3/p)D2
i Ψni

mi min(Ψ̄ni
mi , Ψni

mi)τ
2)

12: c0 ← c0 + 2Ψ̄ni
mi((mi − 1) ˆ̂σ2

i /mi)τ
2

13: c1 ← c1 + 2Ψni
mi((mi − 1) ˆ̂σ2

i /mi)τ
2

14: d0 ← d0 +
4

17 D2
i Ω̄ni

mi τ
2

15: d1 ← d1 +
4
17 D2

i Ωni
mi τ

2

16: end for
17: boundwidth←

√
log(6/p)minj(dj + (

√
cj + aj + bj +

√
bj)2)

18: if boundwidth < lowestbound then
19: beststrata← k
20: lowestbound← boundwidth
21: end if
22: mk ← mk − 1
23: end for
24: take an extra sample from strata: beststrata
25: mbeststrata ← mbeststrata + 1
26: recalculate ˆ̂σ2

beststrata
27: end while
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6.5 Results and evaluation of methods

In this section, different schemes of sampling in the context of Stratified sampling are
compared in the context of synthetic data, primarily in the context of Beta-distributed
data, and also in a more specific Bernoulli-uniform data set. In the next subsection
6.6 we consider the effectiveness of these different methods of sampling specifically
to approximate the Shapley Value in the context of various cooperative games. The
results and analysis of these methods are discussed in the following discussion sec-
tion 6.7.4

6.5.1 Benchmarks algorithms

We outline a range of benchmark algorithms used to evaluate the performance of
various methods in the context of synthetic data sets. Then Section 6.5.2 describes
two synthetic data sets and reports on the resulting distribution of errors under our
benchmarks algorithms.

In the numerical evaluations for synthetic data, we compare the following sam-
pling methods:

• SEBM (Stratified empirical Bernstein method, without replacement): our SEBM
method (per Algorithm 3) of iteratively choosing samples from strata to min-
imise the SEBB, given in Equation (6.29). An initial sample of two data points
from each strata is used to initialise the sample variances of each, with addi-
tional samples made to maximally minimise the inequality at each step. All
samples are drawn without replacement.

• SEBM-W (Stratified empirical Bernstein method with replacement): as above,
with the exception that all samples are drawn with replacement, and con-
sequently the inequality does not utilise the martingale inequality given in
Lemma 11.

• Simple (Simple random sampling, without replacement): simple random sam-
pling from the population irrespective of strata without replacement.

• Simple-W (Simple random sampling with replacement): simple random sam-
pling from the population irrespective of strata with replacement.

• Ney (Neyman sampling, without replacement): the method of maximally choos-
ing samples without replacement from strata proportional to the strata variance
(via Theorem 1).

• Ney-W (Neyman sampling with replacement): the method of choosing samples
with replacement proportional to the strata variance (via Theorem 1).

4Sourcecode for all the experiments in this paper are available at:
https://github.com/Markopolo141/Stratified_Empirical_Bernstein_Sampling

https://github.com/Markopolo141/Stratified_Empirical_Bernstein_Sampling
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• SEBM* (Stratified empirical Bernstein method with variance assistance): the
method of iteratively choosing samples without replacement from strata to min-
imise Equation (6.26), utilizing martingale Lemma 11.

• SEBM*-W (Stratified empirical Bernstein method with variance assistance): the
method of iteratively choosing samples with replacement from strata to min-
imise Equation (6.26).

• SECM (Stratified empirical Chernoff method): the method of iteratively choos-
ing samples from strata without replacement to minimize the SECB, given in
Equation (6.31). An initial sample of two data points from each strata is used to
initialise the sample variances of each, with additional samples made to max-
imally minimize the inequality at each step. All samples are drawn without
replacement.

• Hoeffding (Unionised EBBs with Hoeffding’s inequality): The method of sam-
pling with replacement to minimise probability bound of Theorem 8 applied
with Hoeffding’s inequality (Theorem 6)

• Audibert (Unionised EBBs with Audibert et.al’s EBB): The method of sampling
with replacement to minimise probability bound of Theorem 8 applied with
Audibert et.al’s EBB (Theorem 4)

• Maurer (Unionised EBBs with Maurer & Pontil’s EBB): The method of sam-
pling with replacement to minimise probability bound of Theorem 8 applied
with Maurer & Pontil’s EBB (Theorem 3)

• EEBB (Unionised EBBs with our Engineered EBB): The method of sampling to
with replacement to minimise the probability bound of Theorem 8 applied with
our fitted EBB (Equation 6.21)

• Random (stratified sampling with random samples from strata): The process
of stratified sampling with replacement, choosing random numbers of samples
from each of the strata.

We consider that the three methods (Ney,Ney-W and SEBM*) are built apon the
assumption of known variances for the strata, which are supplied to them, so that
they may serve as a comparrison with the performance which would be possible for
various methods which such information. Additionally we note that for all other
methods (where appropriate) we selected for minimising a 50% confidence interval
(i.e. constant p = 0.5 and t = 0.5).

The differences between these methods provide comparisons of different algorith-
mic factors, such as the dynamics of sampling: with and without replacement; with
stratification and without; between our method and Neyman sampling, and; with
and without perfect knowledge of stratum variances. For these methods, we con-
sider the effectiveness of sampling Beta distributed data and for a case of uniform-
and-Bernoulli data.
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6.5.2 Synthetic data

The most immediate way to compare the effectiveness of our method(s) is to gen-
erate sets of synthetic data, and then numerically examine the distribution of errors
generated by the different methods of choosing samples. In this section, we describe
two types of synthetic data sets used in this evaluation, namely:

1. Beta distributed stratum data, which are intended reflect possible real-world
data, and

2. a particular form of uniform and Bernoulli distributed stratum data, where our
sampling method (SEBM) was expected to perform poorly.

6.5.2.1 Beta-distributed data

The first pool of synthetic data have between 5 and 21 strata, with the number of
strata drawn with uniform probability, and each strata sub-population has sizes rang-
ing from 10 to 201, also drawn uniformly. The data values in each strata are drawn
from Beta distributions, with classic probability density function:

φ(x){α,β} =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1

with α and β parameters drawn uniformly between 0 and 4 for each stratum, and Γ
is the gamma function.

Figures 6.3 and 6.4 compare the distribution of absolute errors achieved by each
of the sampling methods over 5000 rounds of these data sets. Each panel presents
the results that the methods achieve for a given budget of samples, expressed as a
multiple of the number of strata (noting that data sets where the sampling budget
exceeded the volume of data were excluded). From the plots in Figures 6.3 and 6.4,
we can see that our sampling technique (SEBM and SEBM-W) performs comparably
to Neyman sampling (Ney and Ney-W) despite not having access to knowledge of
stratum variances. Also, there is a notable similarity between SEBM* and SEBM. As
expected, sampling without replacement always performs better than sampling with
replacement for the same method, and this difference is magnified as the number
of samples grows large in comparison to the population size. Finally, simple ran-
dom sampling almost always performs worst, because it fails to take advantage of
any variance information. These results and their interpretation are discussed and
detailed in Section 6.7 along with results from the other test cases discussed below.

6.5.2.2 A uniform and Bernoulli distribution

We also to examine data distributions in which our sampling method (SEBM) per-
forms poorly, particularly compared to Neyman sampling (Ney). For this purpose,
a data-set with two strata is generated, with each stratum containing 1000 points.
The data in the first stratum is uniform continuous data in range [0, 1], while the
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Figure 6.3: The distribution of numerical absolute errors across 5000 rounds of Beta-
distributed data, for different methods of stratified sampling with replacement, for
a sample budget of 10N, 50N, 100N and 150N samples where N number of strata.
Whiskers show the 9th and 91st percentiles.
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Figure 6.4: The distribution of numerical absolute errors across 5000 rounds of Beta-
distributed data, for different methods of stratified sampling without replacement, for
a sample budget of 10N, 50N, 100N and 150N samples where N number of strata.
Whiskers show the 9th and 91st percentiles.
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data in the second is Bernoulli distributed, with all zeros except for a specified small
number a of data points, with value 1. For this problem, we conduct stratified ran-
dom sampling with a budget of 300 samples, comparing the SEBM*, SEBM and Ney

methods. The average error returned by the methods across 20,000 realisations of
this problem, plotted against the number of successes a, are shown as a graph in
Figure 6.6. This figure demonstrates that SEBM and SEBM* perform poorly when a
is small. This under-performance is not simply a result of the SEBM method over-
sampling in a process of learning the stratum variances (which was the intended
demonstration), but the under-performance was present in SEBM* as well. The rea-
sons for this under-performance are discussed in in more detail in Section 6.7.2. But
before this discussion, we also considered the approximation of the Shapley Value as
an example application of our stratified sampling method.
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Figure 6.5: Average error of three stratified random sampling methods for the
uniform-Bernoulli data sets of Section 6.5.2.2, plotted against success parameter a,
across 20,000 rounds.

6.6 Shapley Value approximation

The Shapley Value is a cornerstone measure in cooperative game theory (introduced
in section 3.3.2). It is an axiomatic approach to allocating a divisible reward or cost
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between participants where there is a clearly defined notion of how much surplus
or profit a coalition of participants could achieve by themselves. It has many appli-
cations, including analysing the power of voting blocks in weighted voting games
[Bachrach et al., 2009], in cost and surplus division problems [Aziz et al., 2016; Chap-
man et al., 2017], and as a measure of network centrality [Michalak et al., 2013]. But
primarily, is useful to us as a method of allocating financial payments in electricity
network contexts (see section 4.2.1).

Though the Shapley Value is conceptually simple, its use is hampered by the fact
that its total expression involves exponentially many evaluations of the characteris-
tic function (there are n× 2n−1 possible marginal contributions between n players).
However, since the Shapley Value is expressible as an average over averages by Equa-
tion (3.4), it is possible to approximate these inner averages via sampling techniques,
and then these averages are naturally stratified by coalition size, forming an instance
of stratified sampling. For a given inner average in the Shapley Value expression,
we approximate such an average by randomly selecting marginal contributions, cal-
culating the sample average. Thus the question then becomes how many samples
should we compute for each strata to attain the best estimate of the Shapley Value.

In previously published literature, other techniques have been used to allocate
samples in this context of Shapley Value sampling approximation, particularly simple
sampling [Castro et al., 2009], Neyman allocation [Castro et al., 2017; O’Brien et al.,
2015], and allocation to minimise Hoeffding’s inequality [Maleki et al., 2013].

We assess the benefits of using our bound by comparing its performance to the
approaches above in the context of some example cooperative games, with results
analysed in Section 6.7. The example games are described below:

Example Game 1 (Airport Game). An n = 15 player game with characteristic function:

v(S) = max
i∈S

wi

where w = {w1, . . . , w15} = {1, 1, 2, 2, 2, 3, 4, 5, 5, 5, 7, 8, 8, 8, 10}. The maximum marginal
contribution is 10, so we assign Di = 10 for all i.

Example Game 2 (Voting Game). An n = 15 player game with characteristic function:

v(S) =

{
1, if ∑i∈S wi > ∑j∈N wj/2

0, otherwise

where w = {w1, . . . , w15} = {1, 3, 3, 6, 12, 16, 17, 19, 19, 19, 21, 22, 23, 24, 29}. The maxi-
mum marginal contribution is 1, so we assign Di = 1 for all i.

Example Game 3 (Simple Reward Division). An n = 15 player game with characteristic
function:

v(S) =
1
2

(
∑
i∈S

wi

100

)2
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where w = {w1, . . . , w15} = {45, 41, 27, 26, 25, 21, 13, 13, 12, 12, 11, 11, 10, 10, 10}
The maximum marginal contribution is 1.19025, so we assign Di = 1.19025 for all i.

Example Game 4 (Complex Reward Division). An n = 15 player game with character-
istic function:

v(S) =

(
∑
i∈S

wi

50

)2

−
⌊(

∑
i∈S

wi

50

)2⌋
where w = {w1, . . . , w15} = {45, 41, 27, 26, 25, 21, 13, 13, 12, 12, 11, 11, 10, 10, 10}
In this game, we assign Di = 2 for all i.

For each game, we compute the exact Shapley Value, and then the average ab-
solute errors in the approximated Shapley Value for a given budget m of marginal-
contribution samples across multiple computational runs. The results are shown in
Table 6.5, where the average absolute error in the Shapley Value is computed by
sampling with Maleki’s method [Maleki et al., 2013] is denoted eMa, esim is Castro’s
stratified simple sampling method [Castro et al., 2009], eCa is Castro’s Neyman sam-
pling method [Castro et al., 2017], and eSEBM is the error associated with our method,
SEBM. The results in Table 6.5 show that our method performs well across the bench-
marks. A discussion of all of the results is considered in the next section.

6.7 Discussion

This section contains discussion of all the parts of this chapter, particularly the na-
ture of the techniques employed, the nature of the mechanisms discovered and the
experimental effectiveness of them in the context of synthetic data.

• in subsection 6.7.1 we discuss the nature and effectiveness of our derived EBB
from section 6.3.

• in subsection 6.7.2 we discuss the performance of our new SEBM method, in
the context of synthetic data

• in subsection 6.7.3 we discuss the performance of our SEBM method in the
context of sampling the Shapley Value.

• in subsection 6.8 we give indication of future work regarding the extension of
SEBB to multidimensional data, and conclude.

6.7.1 The effectiveness of our new EBB

In section 6.3 we went through the process of deriving an EBB using complex com-
ponents, thus yielding a requirement for its numerical determination. The resulting
numerical EBB was then fitted with a symbolic envelope for ease of use - per equation
6.21.
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Table 6.1: Airport Game Average Errors

m/n2 10 50 100 500 1000
eMa 298.4 133.1 99.64 41.96 29.26
esim 357.8 146.1 106.2 44.55 36.33
eCa 325.7 115.8 75.85 31.01 22.12
eSEBM 259.2 73.8 54.76 7.71 1.30

Table 6.2: Voting Game Average Errors

m/n2 10 50 100 500 1000
eMa 131.0 57.78 41.52 18.66 13.18
esim 145.7 59.72 40.31 17.56 12.84
eCa 142.1 47.35 31.05 14.08 9.800
eSEBM 122.8 47.44 33.18 8.55 1.995

Table 6.3: Simple Reward Division Game average errors

m/n2 10 50 100 500 1000
eMa 25.68 11.62 7.792 3.481 2.290
esim 22.10 9.045 6.218 2.642 1.938
eCa 22.37 8.925 6.692 2.727 1.940
eSEBM 19.25 7.044 5.158 1.183 0.2817

Table 6.4: Complex Reward Division Game average errors

m/n2 10 50 100 500 1000
eMa 276.1 118.9 87.00 40.15 27.44
esim 251.4 108.0 78.63 34.64 26.82
eCa 290.5 116.5 81.82 35.70 26.50
eSEBM 214.2 78.47 54.10 12.45 2.711

Table 6.5: Average absolute errors in the Shapley Value calculation across all players
in the four cooperative games (units in 10−4), for the different sampling schemes with
different sampling budgets m per number of strata (with n2 = 152 for all). lowest
error results are boldened.
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It is interesting to compare the strength of the new EBB against other EBBs, partic-
ularly we considered that most of the elements in our new EBB were improvements
upon the process used in the derivation of Maurer and Pontil’s EBB.

And so we compared our EBB directly with Maurer and Pontil [2009]’s EBB given
by theorem 3 as:

P

(
µ− µ̂ ≥

√
2σ̂2 log(2/t)

n
+

7D log(2/t)
3(n− 1)

)
≤ t

We felt that it would only be fair to compare our EBB to Maurer and Pontil’s EBB
if they had applied Popoviciu’s inequality as an appropriate domain restriction and
carried it through their derivation, as we did to our own EBB. Specifically, this is the
domain where:

1
2
>

√
σ̂2

D
+

√
2 log(2/t)

n− 1

We plotted the improvement our EBB offers in this domain, as shown in Figure 6.6.
In this plot, a probability 0.5 bound is shown to shrink by approximately one

third. And we observed that our refinement of Maurer and Pontil’s EBB was uni-
formly tighter across a large range of values.

While this may be an interesting result, we also sought to put this in perspective
with what could ideally be achieved. And so we conducted a comparison about the
further improvement over our EBB that might be achieved with perfect information
about the variance; specifically that, Bennett’s inequality is used assuming σ̂2 =
σ2. The improvement that Bennett’s inequality (with perfect variance information)
has over our EBB is plotted in Figure 6.7, which shows that when the variance is
small, uncertainty about the variance is the most detrimental to an EBB, such as
ours. However, it is witnessed that loosely going from our EBB to perfect variance
information shrinks the bound by about another third. In this way (although the
results are loose) we can witness that our EBB provides approximately a half-way
mark from existing state-of-the-art EBBs to an impossible ideal of having perfect
variance information.

The purpose of developing a stronger EBB was to see if it could be used to im-
prove the selection of samples in the context of stratified sampling (particularly of the
Shapley Value) over other EBBs. It was expected that the better and more tight the
EBBs used, the more likely it would be that iteratively choosing samples to minimise
such a bound would produce better sample choices and thus yield better estimate of
the population mean.

And while it is evident that the EBB we produced was tighter than Maurer and
Pontil’s EBB, the actual resulting performance difference in selecting samples (as
seen between EEBB and Maurer in Table 6.3) is surprisingly marginal; so marginal
in fact, it was comparable to the performance of using unioned Hoeffding bounds
- the Hoeffding method. We continue discussion of this surprising result in the
context of all the other methods in the next section 6.7.2.
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Figure 6.6: The percent reduction of the 0.5 probability bound, that going from Mau-
rer and Pontil’s EBB to our EBB would achieve, for various n, in the domain valid for
their EBB.
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Figure 6.7: The percent reduction in the 0.5 probability bound that going from our
EBB to using Bennett’s inequality (perfect variance information, σ̂2 = σ2) achieves,
for n = 50, 75, 100, 150, 200, 300, 500, 1000.
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6.7.2 Discussion of stratified sampling results

The results for our different sampling methods are shown across Figures 6.3,6.4 and
6.6, with the main observation that most of the techniques performed well and sim-
ilar to Neyman sampling, and that our sampling technique (including SEBM (or
SEBM-W) and SECM) performed competitively to Neyman sampling (Ney or Ney-
W) despite not having access to knowledge of strata variances.

It is also observed that Neyman sampling was ultimately the most accurate, for
reasons that were hinted in section 6.1.1. Particularly that if sufficient samples have
been taken then the sample means of the strata will tend to approximately be Gaus-
sian distributed by the Central Limit Theorem. In this context the strata means have
a distribution that is entirely characterised by their mean and variance, and hence so
too is the population mean estimate. Thus the variance of the sampled population
mean is the only parameter determining its error, and minimising it directly trans-
lates into improved accuracy. The fact that the variances of the strata are the only
parameters determining the error in the stratified sampling process is most directly
exploited by Neyman allocation but is more obscured in SEBM* allocation method-
ology (as it is based only on a simplification of Bennett’s inequality), thus leading to
slightly worse results, particularly in Figure 6.6.

However this mode of explanation is perhaps the underlying reason for the sim-
ilarity in performance of many of the other methods as well, particularly that after
sufficiently many samples have been taken the sample means of all of the strata
become Gaussian distributed and the performance of the methods then depend pri-
marily on how effectively they estimate the variances of the strata and then allocate
accordingly. Perhaps in our Beta synthetic data there was not sufficient spread of data
variances for it to make significant difference how effectively this variance estimation
and allocation was done.

Conversely the Bernoulli-uniform synthetic data was specifically designed to cre-
ate a significant spread in variance between the strata. And the results (plotted in
6.6) reveal the design to amplify the detriment in stratified sampling that uncertainty
about the variances would yield. In this context Neyman sampling is very efficient
as it samples based on perfect variance information, and reversely our method SEBM
performs worse as it extends from minimising only a simplification of Bennett’s in-
equality under uncertainty of the variance - this is most evident in figure 6.6. Because
of this uncertainty about the variance, the more infrequent the Bernoulli outlier, the
more likely that the methods without variance information would over-sample the
Bernoulli stratum - which they did. The relative inefficiency of the SECM method
is also interesting, particularly as it sought to minimise Chebyshev’s inequality for
the stratified sampling, and under perfect variance information would be identical to
Neyman sampling. The implication in this context is that the inefficiency of utilising
these methods primarily extends from uncertainty about the variances of the strata
and how to integrate it.

From between Figures 6.3 and 6.4 we observe that sampling without replacement
always performs better than sampling with replacement for the same method, and
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this improvement is magnified as the number of samples grows large relative to the
size of the population. At the same time, simple Random sampling almost always
performs worst, because it fails to take advantage of any variance information, and
Simple sampling performs even worse as it fails to take into account data stratifica-
tion, these results are as expected. Therefore from the Figures 6.3 and 6.4 we see
that the primary increase in performance comes from employing stratified sampling
over simple sampling, sampling without replacement over sampling with replace-
ment, and then using some method that is more intelligent than randomly selecting
samples (ie. Random method) and preferably using stratum variance information to
get close to the ideal of Neyman sampling.

Aside from comparing the different performances of these bounds as a target for
minimisation by selective sampling, it also was seen to be productive to consider
them on their own - simply as bounds on the stratified mean error. Particularly we
can see a range of different strengths of the bounds in Figure 6.8.

In Figure 6.8 we have plotted the bound widths of the various probability bounds
of this paper in the context of the Beta-distributed data we considered in section
6.5.2.1 achieved after a sample budget n = 50N samples allocated using Ney-W
method. In this graph we considered the following bounds for the error:

• Ney-B The bound attained using knowledge of the variances of the strata us-
ing Chebyshev’s inequality (Theorem 2) in conjunction with the additivity of
variance rule (Equation 6.1)

• SEBB* The bound of Theorem 12 with variance knowledge of the variances, also
using sampling without replacement sharpening (Theorem 11) where optimal.

• SEBB*-W The bound of Theorem 12 with variance knowledge of the variances,
not using sampling without replacement sharpening (Theorem 11).

• SECB The bound of Theorem 16, which utilises Chebyshev’s inequality together
with our probability bound on error deviation.

• SEBB The bound of Theorem 15, using sampling without replacement sharp-
ening (Theorem 11) where optimal.

• SEBB-W The bound of Theorem 15, not sampling without replacement sharp-
ening (Theorem 11).

• Hoeffding-B The bound attained by Hoeffding’s inequality (Theorem 6) for
the strata, unioned together (via Theorem 8) to create a bound on the stratified
sampling error.

• Audibert-B The bound attained by Audibert et.al’s EBB inequality (Theorem
4) for the strata, unioned together (via Theorem 8) to create a bound on the
stratified sampling error.
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Figure 6.8: Different probability bound widths for the Beta-distributed data (per
section 6.5.2.1) at the point of sample budget n = 50N for Ney sampling method (see
section 6.7 for descriptions of the bounds) against the actual distribution of errors on
the data

• Maurer-B The bound attained by Maurer and Pontil’s EBB inequality (Theo-
rem 3) for the strata, unioned together (via Theorem 8) to create a bound on
the stratified sampling error.

Particularly we see from Figure 6.8 that tightest bounds are given by those meth-
ods which are rooted in perfect variance information, and the widest bounds are
given by those methods which utilise probability unions to bind EBBs together (via
Theorem 8). What is most notable is the dissimilarity between the widths of the
bounds and their effectiveness as a target for sampling minimisation; as choosing
samples to minimise a probability bound is sensitive to the shape of the bound, not
its magnitude. Also comparing this Figure 6.8, with Figures 6.3,6.4 we can see that
the width of the bounds are much wider than the magnitudes of the error which are
actually achieved; and this is quite expected, as analytic concentration inequalities
function as conservative confidence intervals on the error of sampling.

6.7.3 Discussion of Shapley Value results

In considering the comparison of approaches to approximating the Shapley Value,
our sampling method (SEBM, with error eSEBM) shows improved performance on
almost all accounts, as shown in Table 6.5. This was particularly the case in the con-
text of large sample budgets, as our method sampled without replacement, while the
other methods sampled with replacement. And we also note that our method’s per-
formance could potentially be further improved by selecting more refined Di values
in the context of our example games.
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We attribute our methods success in estimating the Shapley Value primarily to
the design decisions used in the creation of those other methods. Particularly we
note that Castro’s Neyman sampling method (with error eCa) deploys about half
the samples learning about the variance and the other half using a Neyman style
allocation. The choice of allocating half the samples was identified as a default by
Castro with the acknowledgement that the proportion should be treated as a tunable
parameter depending on the particular context of the cooperative game. However, to
make a fair comparison did not tune any such parameters for any of the methods.

In the process of generating these results one of the major effects that was wit-
nessed in our sampling method (SEBM) was the computational overhead of itera-
tively minimising (one sample at a time) our inequality (equation 6.29) in the context
of our simple example games. Although we acknowledged and expected a compu-
tational overhead, we designed our method with the intention of using it to approxi-
mate the GNK value (per section 5.1), where each additional sample requires running
an optimisation problem, and in this context a computational overhead about which
sample to choose was deemed less relevant.

One primary limitation of our method(s) is that it rests on assumption of known
data widths Di (and in the case of sampling-without-replacement, also on strata sizes
Ni), which may not be exactly known in practice. One way to overcome this may be
to use our method with a reliable overestimate these parameters (by expert opinion
or otherwise) and such estimation may itself open consideration of other probability
bounds and/or sampling methods. Conversely, it might also be advisable to run
our method with an underestimate of the data widths, as in-practice the sampling
process is fundamentally sensitive to the shape of the inequality and not necessarily
its magnitude or accuracy as a bound.

6.8 Conclusion and Summary: applications of a multidimen-
sional extension

It was noticed that our SEBB can be extended to multidimensional data by a sim-
ple modification. Specifically, instead of considering data that is single-valued, we
consider data points that are vectors.

Formally, for n strata of finite data points which are all vectors of size M, let ni
be the number of data points in the ith stratum. Let the data in the ith stratum have
a mean vector values µi (with µi,j for the jth component of the vector), which are
value bounded within a finite width Di,j, and have vector value variances σ2

i,j. Given
this, let Xi,1, Xi,2, . . . , Xi,ni (where Xi,k,j is the jth component, of the kth vector from
stratum i) be vector random variables corresponding to those data values randomly
and sequentially drawn (with or without) replacement. Denote the average of the first
mi of these random variables from the ith stratum by χi,mi =

1
mi

∑mi
k=1 Xi,k (with χi,mi ,j

being the jth component of that vector average). Let ˆ̂σ2
i,j =

i
mi−1 ∑mi

k=1(Xi,k,j − χi,mi ,j)
2

be the unbiased sample variance of the first mi of these random variables in the jth
component. As before, we assume weights τi for each stratum.
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In this context we have the following theorem:

Theorem 17 (Vector SEBM bound). In the context above, then with Ωni
mi , Ψni

mi per Lemma 10:

P

∑M
j=1
(
∑n

i=1 τi(χi,mi ,j − µi,j)
)2 ≥

log(6/p)∑M
j=1

(
αni

mi ,j
+
(√

βni
mi ,j

+
√

γni
mi ,j

)2
) ≤ Mp (6.32)

where:
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Proof. Squaring (6.29) and applying it specifically to the jth component of all the
vectors gives:

P

(
(∑n

i=1 τi(χi,mi − µi))
2

log(6/p)
≥ αj +

(√
β j +

√
γj

)2
)
≤ p

Taking a series of union bounds (Lemma 4) over j gives result.

The left hand side of the inequality in (6.32) is the square Euclidean distance
between our weighted stratified sample vector estimate ∑n

i=1 τiχi,mi and the true mean
stratified vector ∑n

i=1 τiµi. In this context, an example sampling process might consist
of sampling to maximally minimise the right hand side of the inequality (similar to
our SEBM process, described in Section 6.4.4). This formulation can be applied to
more involved computational tasks that involve approximating averages over large
sets of data with multiple features or auxiliary variables.

Potentially the application of our multi-dimensional extension of the SEBB to a
range of tasks (such as neural network minibatch smart sampling) could be quite
rewarding.

6.8.1 Chapter Summary

Stratified sampling is a well known example of a statistical process of estimating a
population mean by breaking it into strata, and then sampling the mean of each of
the strata. Our primary investigative question of this chapter was how best to choose
samples from the strata to get most accuracy in the final population estimate. To
do this investigation we considered different means of estimating the error in the
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final population estimate - these took the form of analytically derived concentration
inequalities. These concentration inequalities were developed and then the process of
sampling to minimise them formed a sampling methodology, which was evaluated.

In the first part of this chapter, Section 6.1, we introduced the problem of stratified
sampling, and a few statistical lemmas. Afterwards we considered different possible
EBBs as a way of bounding the error in the context of stratified random sampling,
and for this purpose developed a new EBB, in Sections 6.2 and 6.3. This process of
using EBBs involved binding EBBs applied to different strata together using union
bounds to create a bound on the stratified sample mean error (via Theorems 7 or 8).

From this investigation we learned that it was possible to create stronger bounds
for stratified sampling (which dont use as many union bounds as there are strata),
which in the next part of this chapter we developed, in Section 6.4. These sam-
pling methodologies were then evaluated on synthetic data sets in Section 6.5, and
discussed in Section 6.7.

Our resulting concentration inequality (SEBB) gives an analytic bound on the er-
ror of the stratified mean and explicitly considers the sample variances, data widths,
sample numbers, and any additional weights on the strata; and includes factors
specifically for strata sampled with and/or without replacement. It is complex and
tailored specifically to stratified sampling, and performs well in the sampling of syn-
thetic data sets.

The relevance of this new method of doing stratified sampling, has wider rele-
vance, but also relevance to sampling the Shapley Value (or solution concepts similar
to it such as the GNK value, as in Section 5.1) in electricity network contexts.
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Chapter 7

Conclusion

Throughout this thesis we have considered the research question: ‘how should elec-
tricity be valued and traded?’ which we introduced in Chapter 1. We introduced this
question by considering the various ways in which the changing nature of electricity
supply and demand is provoking a discussion of different possible market structures
to address emerging problems. In that chapter we considered particular problems
that are emerging and the different possible market structures proposed to address
them, particularly:

1. How the integration of intermittent renewable generation is making it more
likely that more expensive generators set the marginal price points in the net-
work, and how demand response aggregators could mitigate this issue by mak-
ing demand more elastic. (section 1.1)

2. We considered how intermittent renewable generators are replacing traditional
power generators with frequency-stabilising inertia, and how DERs such as
batteries and EVs may provide rapid response storage of electricity to offset
this issue, possibly aggregated as VPPs bidding into capacity markets. (section
1.2)

3. We also mentioned how DERs are making consumers less dependant on the
grid itself, which may manifest in an untapped capability of consumers (as
‘prosumers’) to support each other and the grid on distribution level energy
networks, such as in a possible P2P energy management scheme. (section 1.3)

We introduced these examples to highlight the importance of the research ques-
tion with its generality. Particularly, The first point raises the question of how
demand-elasticity should be valued, traded and/or aggregated. This dynamic in
electricity markets is not often seen in other markets for other goods; where there is
recognisable value attached to -not- consuming a respective good in order to avert
changes in the marginal price point/s of the market.

The research question is further highlighted in the second point where stochas-
tic intermittency in supply and demand creates value for capacity (for generation
and/or consumption and/or the lack thereof) for frequency correction across small
timescales. We considered that one of the proposed mechanisms to address this issue
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is the addition of DERs such as EVs into the network, however this can also poten-
tially incorporate additional complexity in coordination and value. Electric vehicles
(EVs) have constraints across-time on their consumption or generation capacity, sub-
ject to user needs and battery capacity, and this intersects with uncertain needs of the
network including other EVs and their charging requirements and availability; how
should electricity supply/demand from resources be traded in a stochastic environ-
ment with diachronic constraints on resource availability?

In our third point it is seen that electricity supply and consumption are also
increasingly going to be (or potentially, effectively be) on distribution level energy
networks between prosumers, and such interactions will have to be constrained by
the requirements of those networks. Such local network requirements include such
factors as line-voltage limits that may depending on network topology and connec-
tion point, real and reactive power supply and balancing, and considerations on
stochastic and anticipated local demands and supply.

Between these considerations the question ‘how should electricity be valued and
traded?’ - especially if such a question is considered holistically, becomes quite diffi-
cult to answer. Currently, the Australian system consists of a patchwork of markets,
such as: spot, day-ahead, and ancillary markets, and these address the current re-
quirements of electricity supply to consumers. However, the upcoming changes are
anticipated to stretch the current system, and such pressures may be solved by fur-
ther patching the current system, such as by including additional market structures
(eg. introducing a two-sided market structure), or changing/reforming those existing
ones (eg. passing regulations treating DER aggregators as if they were generators) -
see references in section 1.1.

However there is the potential to approach the problem more holistically, and
attempt a more general answer that incorporates all possible factors and electrical
system details and constraints, to determine the operating point and transactions
between all the parties of the system.

In this thesis, we considered a background of general approaches to allocation,
in Chapter 3 we considered VCG, LMP, Shapley Value, Bargaining theory and Envy-
freeness rules. What is notable about these approaches is that they have varying
levels of flexibility in the systems in which they can be made to apply to. We con-
sidered them as they may be extensible to the electricity system context and give
different and general answers that account for any range of possible electricity sys-
tem considerations in application, and we gave some detail about how these methods
they have been considered in such contexts.

Each of these approaches have features, quirks and issues, and are situated within
a wider discussion and academic context. However we saw one of the more common
features between them was the broad notion of marginal differences. Most artic-
ulated in LMP, the marginalism principle accords participants in proportion to the
marginal difference they make to the operating point of the system; conversely in
VCG, the principle accords participants according to the difference they make to the
operating point of the system, which is also often marginal. The Shapley Value prin-
ciple accords participants in proportion to the difference they make to the operating
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point of the system in expectation under uncertainty of the contribution of others.
This marginal difference is defined with reference to eventualities about what would
otherwise happen, and this is most directly associated with the concept of the ‘threat’
point/s in bargaining theory.

From these approaches in Chapter 3 we can trace an idea that the value of an
electrical resource should be -in some way- related to the value difference that its
presence could make in the presence of other resources. We attempted to distil this
notion by extending Nash Bargaining theory with Shapley Value axioms to many
players, resulting in the development of the GNK value, presented in Chapter 4.

The GNK value was developed as an extension of Nash Bargaining solution con-
cept to many players, taking into consideration the leverage in zero-sum bargaining
between all possible pairs of coalitions and the difference the inclusion of a specific
resource would make in that context. In this way the GNK value aggregates all the
possible strategic considerations and counter-considerations of marginal differences
an the context of ideal competition between all parties. The GNK was designed to be
extensible to a generalised strategy space, and thus applicable to any context where
there is discernible strategies, agents and known valuations over outcomes. In Chap-
ter 4 we introduced the GNK value by its setting and axioms, and gave an example
application to small electricity networks under DC approximation. We compared the
GNK value against LMP, VCG and Shapley Value in a small-scale electricity context
and witnessed the differences in the outcome between them, which we articulated
on a point-by-point basis. We identified that one primary obstacle in the application
of the GNK value and Shapley Value to electricity networks was the computational
complexity involved in their calculation, which the next Chapter 5 addresses. In
Chapter 5 we considered two different techniques which could scale the GNK to
larger sized networks, particularly using sampling techniques and a proxy inplace of
the GNK’s inner terms. We compared different sampling techniques, and developed
our own novel sampling technique for sample-approximating the GNK and Shapley
Values called the Stratified Empirical Bernstein Method (SEBM) in Chapter 6. We also
provided a discussion of the merits of the GNK value against ethical criteria identi-
fied in our philosophy Chapter 2 against the results witnessed on a larger randomly
generated network.

From our discussion in section 5.4 we considered the central failing of the GNK
value, that of not preserving the ideal of ‘individual rationality’, meaning that the
GNK value can leave individuals at a loss for their participation. This quality was
identified as being axiomatic in the derivation of the VCG mechanism, but was not
part of the derivation of the GNK value in favour of other characteristics, particularly
having continuum with the Nash bargaining solution and the possession of Shapley
Value axioms. It was hoped that the GNK would be seen to posses individual ratio-
nality at scale, but unfortunately this was not witnessed.

In chapter 2 we began by introducing the philosophy surrounding distributive
justice in which we acknowledged the vagaries surrounding ethics itself, and the
inherent ethical nature of the research question: ‘how should electricity be valued
and traded?’. We considered different ethical notions and ideals that are discussed
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in literature in relation to electricity systems, including: Equality, Equity, Efficiency,
Freedom, Proportionality, the minimisation of Envy, and the context of environmen-
talism. Ultimately we feel that the GNK value did not satisfy many of those ideals,
and our research serves as a negative result of a particular kind of approach to this
hard social problem. It is possible to contend that if we had started with a better
footing, defined with more concrete aim and goals, we would have arrived at a more
satisfying conclusion. However the proper question of how electricity should be
traded has inherent vagueness, and there are many possible ways to miss a vague
target:

“Far better an approximate answer to the right question, which is often
vague, than an exact answer to the wrong question, which can always be
made precise.” Tukey [1962]

In considering our approach at a broader level, it is interesting how perfect and
idealised competition may or may not coincide with what is equal and ethical. The
question of when and where these coincide, and particularly if they might coincide
in the context of electricity networks, was a primary motivation of our research.

The GNK value is not only an extension of Nash bargaining solution concepts,
developed and extended in game-theory literature from von Neumann to Neyman
& Kohlberg, but also extends this work to the space of generalised games, such as
may exist in the context of applied electricity networks. In this way we make a
contribution to game-theory generally.

Furthermore, the statistics we develop in Chapter 6 genuinely extends knowledge
about (and the use of) empirical concentration inequalities, which are quite recently
discussed and applied in various spheres. However it also extends empirical concen-
tration inequalities from the realm of simple random sampling to that of stratified
random sampling and this new domain involves more complexity and structure. In
this domain the Stratified Empirical Bernstein Bound (SEBB) is unique, it is an empir-
ically guided concentration inequality tailored to the historic and familiar Stratified
Sampling domain.

Through our work we have provided a unique interpretation of the Shapley Value
axioms in the electricity domain, and the techniques employed in Chapter 5 demon-
strate the potential of computing with these axioms to larger networks. As already
stated, we view it as an accomplishment that it is possible to reasonably approxi-
mate the GNK value for 100-bus nodal networks, whereas if it were to be calculated
exactly would involve a prohibitive ∼ 2100 optimisation terms.

In concluding this research there are still outstanding questions which could
prove to be fruitful future research directions, these include:

• Considering game-theoretic measures (VCG, GNK, Shapley Value, Bargaining,
etc.) to more directly address real-world situations such as those alluded to in
Chapter 1, such as involving the coordination of EV in networks with stochastic
demand and network and frequency constraints, and the evaluation of them in
such contexts.
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• Further analysis could be conducted analysing how all the different mecha-
nisms for financial valuation of electricity resources would potentially yield
incentives to change the structure of the electricity network itself (and hence
the value of the resources therein) - particularly if measures that only compen-
sate resources that can impact the network operating point (ie. under LMP and
VCG) would create network fragility, whereas those which reward resources
that do not, might lead to network changes overly reinforce robustness.

• The further examination of the relationship between GNK and M-GNK values,
and/or the substitution of other measures of ‘threat’ between parties on an elec-
tricity network context. Particularly to see if such measures can be established
to restore the ‘individual rationality’ property.

• The evaluation and extension of measures such as the GNK value to situations
involving strategising agents. Particularly modifications which would give ‘in-
centive compatibility’ property, such as surrounding the existing extensions
and discussion of Myerson [1980]; Salamanca [2019].

• The extension of computational techniques to the GNK/Shapley Value mea-
sures to make them computable to even larger electricity networks, Some pos-
sible avenues of investigation include employing further approximations such
as player clustering (such as implemented by Han et al. [2019]), or transforming
the problem into a non-atomic form, similar to non-atomic Shapley Value.

• Improvement and experimentation on the concentration inequalities for strat-
ified random sampling methodology. The bounds on the moment generating
functions that we developed in Section 6.4 use various loosening approxima-
tions, and hence stronger and/or more representative bounds could be devel-
oped at the cost of greater mathematical complexity. Alternatively, an approach
utilising entropic [Boucheron et al., 2003] or Efron-Stein inequalities [Efron and
Stein, 1981] could yield different and potentially tighter results.

• The Stratified Empirical Bernstein Method (SEBM) has a significant computa-
tion overhead - as noted in section 6.7.3 which may be minimised by simplifi-
cations to the the algorithm and/or the mathematics to make it more useful.

• In section 5.1.3 the Join method outperformed other methods because of the
advantage in leveraging join-orders to minimise the number of optimisations
that needed to be performed for a datapoint in the stratified sampling scheme,
potentially SEBM could be modified to take advantage of this as well.

• Extension of the Stratified Empirical Bernstein Bound (SEBB) to even more
practical situations. Particularly the concentration inequality was derived on
the assumption of given and known strata and strata sizes, which does not nec-
essarily correspond to situations encountered by practising statisticians, where
the sizes of strata may in some cases only estimated and/or where the strata
divisions are flexible and/or constructed from preliminary surveys.
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Appendix A

Some continuity and monotonicity
properties of the GNK value

From inspection of equations 4.5 and 4.3 it defined that the GNK value is a summa-
tion over maximum of minimum terms and it should be rather evident that there is
present some nice continuity properties:

Theorem 18 (GNK continuous with utilities). For utility functions ui(x, y) if we consider
any bounded perturbations ε∆i(x, y) then the GNK value is continuous with ε.

Proof. To demonstrate that the GNK value is continuous with change in utility func-
tions we consider that for all (x, y) ∈ A we consider any set of utility perturbing
functions ∆i(x, y) with a magnitude max(x,y)∈A,i∈N |∆i(x, y)| = d. For any coalition
S, if we consider that advantage v(S) with the original utility functions as vu(S) and
with the perturbed utility function multiplied by a parameter ε as vu+ε∆(S) then we
can realise that:

−nεd ≤ vu(S)− vu+ε∆(S) ≤ nεd

Therefore for any individual i ∈ N the average over the advantage terms v(S) for
coalitions which include i of size k is similarly bounded.

−nεd ≤ 1
(n−1

k−1)
∑

S:i∈S
|S|=k

vu(S)−
1

(n−1
k−1)

∑
S:i∈S
|S|=k

vu+ε∆(S) ≤ nεd

Therefore the average of these terms over sizes k = 1 . . . n is also bounded.

−nεd ≤ 1
n

n

∑
k=1

1
(n−1

k−1)
∑

S:i∈S
|S|=k

vu(S)−
1
n

n

∑
k=1

1
(n−1

k−1)
∑

S:i∈S
|S|=k

vu+ε∆(S) ≤ nεd

Which is the difference in the GNK value for an individual i between the perturbed
and unperturbed utility function. Thus for any prospective utility perturbation ∆
with a magnitude d there is a δ (= nεd) such that there exists a perturbation factor ε,
such that if the utility functions are ε perturbed then the GNK value is δ bounded.

This continuity property for utilities is potentially nice in that participants in
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a system under GNK, can be be assured that regardless of their bids, that small
difference in their utility bids will not yield large differences in their utility payoff,
this adds regularity and predictability to the system. Conversely for a potential
operator of such a hypothetical GNK system, that this continuity property may add
to the predictability of the system.

The GNK also has elementary monotonicity properties that are partially inherited
from its relation to the Shapley Value.

Theorem 19 (GNK is monotonic). If we consider advantage functions v and v′ and the
GNK value with those advantage function ϕv

i and ϕv′
i . Then for any individual i ∈ N, if all

coalitions S such that i ∈ S it is true that v′(S) ≥ v(S) then ϕv′
i ≥ ϕv

i .

Proof.

ϕv
i =

1
n

n

∑
k=1

1
(n−1

k−1)
∑

S:i∈S
|S|=k

v(S) ≤ 1
n

n

∑
k=1

1
(n−1

k−1)
∑

S:i∈S
|S|=k

v′(S) = ϕv′
i

This monotonicity property ensures that individuals which have uniformly higher
payoff advantages are afforded more utility under the GNK, which is a basic regular-
ity reminiscent of the logic of the GNK value itself. Particularly, as the GNK value is
an articulation of a bargaining solution concept, then individuals who have greater
leverage in negotiation will (or should) have an outcome more favourable to them.
Conversely, we could imagine the potential absurdity of a system opposite were true,
in that individuals with greater leverage in bargaining would be afforded less.

In considering this monotonicity property, we can ask what changes in strategies
and/or utility functions and network constraints yield this kind of monotonicity
condition. The most direct case is shift invariance, which is inherited from Nash
bargaining roots Nash [1953] and directly stated as an axiom in the case of the ‘coco’
value Kalai and Kalai [2013].

Theorem 20 (GNK is shift invariant). For any two utility profiles u1
i (x, y) and u2

i (x, y),
and GNK defined by these utility profiles ϕ1

i and ϕ2
i . Then for any individual i ∈ N, if

u2
i (x, y) = u1

i (x, y) + c for some constant c, and for all j 6= i that u2
i (x, y) = u1

i (x, y), then
ϕ2

i = ϕ1
i + c

Proof. If we consider advantage functions v1 and v2 defined by utility functions
u1

i (x, y) and u2
i (x, y) then for any coalition S including individual i:

v2(S) =
1
2

min
y∈AN\S

s.t.(x,y)∈A

 max
x∈AS

s.t.∃y,(x,y)∈A

(
∑
i∈S

u1
i (x, y) + c− ∑

i∈N\S
u2

i (x, y)

)
+

1
2

max
x∈AS

s.t.(x,y)∈A

 min
y∈AN\S

s.t.∃x,(x,y)∈A

(
∑
i∈S

u1
i (x, y) + c− ∑

i∈N\S
u2

i (x, y)

)
= v1(S) + c
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The above step simply brings the additive constant out the front of the max and
min terms. Therefore for every coalition S which includes individual i of size k,
v2(S) = v1(S) + c, therefore the average of these values over such coalitions has a
similar relation.

1
(n−1

k−1)
∑

S:i∈S
|S|=k

v2(S) =
1

(n−1
k−1)

∑
S:i∈S
|S|=k

v1(S) + c

therefore the average of these averages over sizes of coalitions k = 1 . . . n is again
similar:

1
n

n

∑
k=1

1
(n−1

k−1)
∑

S:i∈S
|S|=k

v2(S) =
1
n

n

∑
k=1

1
(n−1

k−1)
∑

S:i∈S
|S|=k

v2(S) + c

which is to say that ϕ2
i = ϕ2

i + c.

Shift invariance is important but not particularly interesting property. It more-
or-less identifies that a participant who affords a higher utility should be rewarded
with a GNK value which is that same degree higher. This Shift invariance relation
is essentially consistent with the idea that utility functions are invariant to affine
transformation, more particularly translation. If a participant modifies his/her utility
function by an offset, this GNK value will afford that individual with exactly the
same physical outcomes and utility transfers to give them a net utility that is that
same extent offset. This shift invariance property is good sanity check on a minimally
sufficient bargaining solution concept.

So instead we also consider a very similar monotonicity property with regards to
any utility perturbation that non-decreases a player’s utility.

Theorem 21 (GNK is monotonic with increasing player utility). For any two utility
profiles u1

i (x, y) and u2
i (x, y), and GNK values defined by these utility profiles: ϕ1

i and ϕ2
i .

Then for any individual i ∈ N, if u2
i (x, y) = u1

i (x, y) + f (x, y) for some non-negative
function f , and for all j 6= i that u2

j (x, y) = u1
j (x, y), then ϕ2

i ≥ ϕ1
i

Proof. If we consider advantage functions v1 and v2 defined by utility functions
u1

i (x, y) and u2
i (x, y) then for any coalition S including individual i:

v2(S) =
1
2

min
y∈AN\S

s.t.(x,y)∈A

 max
x∈AS

s.t.∃y,(x,y)∈A

(
∑
i∈S

u1
i (x, y) + f (x, y)− ∑

i∈N\S
u2

i (x, y)

)
+

1
2

max
x∈AS

s.t.(x,y)∈A

 min
y∈AN\S

s.t.∃x,(x,y)∈A

(
∑
i∈S

u1
i (x, y) + f (x, y)− ∑

i∈N\S
u2

i (x, y)

)
= v1(S) + c

If we pull out the inner maximisation and minimisation for the perturbed and un-
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perturbed problems respectively, ie:

g1(y) = max
x∈AS

s.t.∃y,(x,y)∈A

(
∑
i∈S

u1
i (x, y) + f (x, y)− ∑

i∈N\S
u2

i (x, y)

)

g2(y) = max
x∈AS

s.t.∃y,(x,y)∈A

(
∑
i∈S

u1
i (x, y)− ∑

i∈N\S
u2

i (x, y)

)

h1(x) = min
y∈AN\S

s.t.∃x,(x,y)∈A

(
∑
i∈S

u1
i (x, y) + f (x, y)− ∑

i∈N\S
u2

i (x, y)

)

h2(x) = min
y∈AN\S

s.t.∃x,(x,y)∈A

(
∑
i∈S

u1
i (x, y)− ∑

i∈N\S
u2

i (x, y)

)

Now since f (x, y) is non-negative therefore g1(y) ≥ g2(y) and h1(x) ≥ h2(x)
irrespective of x and y. therefore

min
y∈AN\S

s.t.(x,y)∈A

g1(y) ≥ min
y∈AN\S

s.t.(x,y)∈A

g2(y)

max
x∈AS

s.t.(x,y)∈A

h1(x) ≥ max
x∈AS

s.t.(x,y)∈A

h2(x)

and
v2(S) ≥ v1(S)

And the result that ϕ2
i ≥ ϕ1

i follows by monotonicity (theorem 19).

This monotonicity property in Theorem 21 most directly encodes the idea that
the GNK value is monotone with player utilities, particularly if a players utility by
some arbitrary non-negative function then their GNK value should also. it is more
general in its application than the shift invariance established by Theorem 20. and is
most directly relevant to the logic of the GNK value, that players with a greater payoff
advantage will be afforded more utility, and thus if a players utility increases in some
way, so too should the GNK value. Contrastingly we could imagine a system where
the opposite is true, in that if a player has a higher utility for a specific outcome that
the system would afford them less, would be less intuitive.
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