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ABSTRACT 

Mour, Ankur M.S.A.A., Purdue University, December 2013. A Mechanism Design Approach to 
Bandwidth Allocation in Tactical Data Networks. Major Professor: Daniel A. DeLaurentis. 
 
 
The defense sector is undergoing a phase of rapid technological advancement, in the pursuit of 

its goal of information superiority. This goal depends on a large network of complex 

interconnected systems – sensors, weapons, soldiers – linked through a maze of heterogeneous 

networks. The sheer scale and size of these networks prompt behaviors that go beyond 

conglomerations of systems or ‘system-of-systems’. The lack of a central locus and disjointed, 

competing interests among large clusters of systems makes this characteristic of an Ultra Large 

Scale (ULS) system. These traits of ULS systems challenge and undermine the fundamental 

assumptions of today’s software and system engineering approaches. In the absence of a 

centralized controller it is likely that system users may behave opportunistically to meet their 

local mission requirements, rather than the objectives of the system as a whole. In these 

settings, methods and tools based on economics and game theory (like Mechanism Design) are 

likely to play an important role in achieving globally optimal behavior, when the participants 

behave selfishly. Against this background, this thesis explores the potential of using 

computational mechanisms to govern the behavior of ultra-large-scale systems and achieve an 

optimal allocation of constrained computational resources 

 

Our research focusses on improving the quality and accuracy of the common operating picture 

through the efficient allocation of bandwidth in tactical data networks among self-interested 

actors, who may resort to strategic behavior dictated by self-interest. This research problem 

presents the kind of challenges we anticipate when we have to deal with ULS systems and, by 

addressing this problem, we hope to develop a methodology which will be applicable for ULS 

system of the future. We build upon the previous works which investigate the application of 
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auction-based mechanism design to dynamic, performance-critical and resource-constrained 

systems of interest to the defense community.  

 

In this thesis, we consider a scenario where a number of military platforms have been tasked 

with the goal of detecting and tracking targets. The sensors onboard a military platform have a 

partial and inaccurate view of the operating picture and need to make use of data transmitted 

from neighboring sensors in order to improve the accuracy of their own measurements. The 

communication takes place over tactical data networks with scarce bandwidth. The problem is 

compounded by the possibility that the local goals of military platforms might not be aligned 

with the global system goal. Such a scenario might occur in multi-flag, multi-platform military 

exercises, where the military commanders of each platform are more concerned with the well-

being of their own platform over others. Therefore there is a need to design a mechanism that 

efficiently allocates the flow of data within the network to ensure that the resulting global 

performance maximizes the information gain of the entire system, despite the self-interested 

actions of the individual actors. 

 

We propose a two-stage mechanism based on modified strictly-proper scoring rules, with 

unknown costs, whereby multiple sensor platforms can provide estimates of limited precisions 

and the center does not have to rely on knowledge of the actual outcome when calculating 

payments. In particular, our work emphasizes the importance of applying robust optimization 

techniques to deal with the uncertainty in the operating environment. We apply our robust 

optimization – based scoring rules algorithm to an agent-based model framework of the combat 

tactical data network, and analyze the results obtained. 

 

Through the work we hope to demonstrate how mechanism design, perched at the intersection 

of game theory and microeconomics, is aptly suited to address one set of challenges of the ULS 

system paradigm – challenges not amenable to traditional system engineering approaches. 
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CHAPTER 1. INTRODUCTION 

1.1 Motivation 

The current advances in technology have made real time information about the state of the 

world increasingly available. In the defense sector, this has translated into a race for information 

domination – to develop superior techniques to collect, fuse, analyze and exploit information to 

meet mission requirements. This goal depends on complex interconnected web of systems – 

thousands of platforms, sensors, decision makers, weapons and soldiers connected through a 

maze of heterogeneous networks. These systems will challenge our imaginations and push the 

boundaries of the very concept of today’s systems and systems of systems. They will be ultra-

large scale systems.  

 

“Our soldiers depend on software and will depend more on software in the future.  

The Army’s success depends on software and the software industry.  

We need better tools to meet future challenges, and neither industry nor  

government is working on how to do things light-years faster and cheaper. 

 How can future systems, which are likely to be a billion lines of code,  

be built reliably if we can’t even get today’s systems right?” 

— Asst. Sec Army Claude Bolton(2005) 

 

Independent parallel research was conducted in the UK and USA to elicit the characteristics and 

the challenges involved in developing, maintaining and managing such large-scale software-

intensive complex systems. In the UK, this effort was led by a consortium of British academics 

and industrial practitioners with a focus on the science and engineering of these so called 

“Large-Scale Complex Information Technology Systems (LSCITS).” Around the same time, a team 

led by Linda Northrop at the Software Engineering Institute (SEI) at Carnegie Mellon University
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published a report on the challenges associated in engineering these complex socio-technical 

ecosystems or “Ultra Large Scale Systems” (Northrop et al., 2006). 

 

The Software Engineering Institute (SEI) was funded to conduct a 12 month long investigation of 

Ultra Large Scale (ULS) systems software by the office of Assistant Secretary of the U. S. Army 

(Acquisition, Logistics, & Technology). SEI was tasked to come up with a proposed agenda to 

fund, coordinate, and conduct research for ULS systems. The ultimate goal was to the creation 

of a collaborative research network that would carry out the work towards solving the ULS 

system problem for the U. S. Department of Defense. 

 

The primary characteristic of ULS systems is ultra-large size on any imaginable dimension: 

 

• Lines of code 

• Amount of data stored, accessed, manipulated, and refined 

• Number of connections and interdependencies 

• Number of hardware elements 

• Number of computational elements 

• Number of system purposes and user perception of these purposes 

• Number of routine processes, interactions, and “emergent behaviors” 

• Number of (overlapping) policy domains and enforceable mechanisms 

• Number of people involved in some way 

 

These characteristics are not without precedent and can be increasingly seen in today’s systems 

of systems – the crucial difference is that these traits will dominate in ULS systems. The sheer 

scale of ULS systems will change everything. Two dimensions of scale can demonstrate this point: 

 

• The ULS systems will be developed by and serve a growing number of human users. The 

human participants in the system at any time may have disjointed and competing 

interests. Without an incentive to provide truthful information, users could be prone to 

distort and misreport their private information, if it is in their interest to do so, even if 

this deception comes at the expense of the whole system. 
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• ULS systems will be necessarily decentralized in a number of ways – decentralized data, 

development, evolution and operational control. In these settings, it is impractical to 

assume that an omnipresent decision maker can be constructed that knows enough 

about each of the users, parts and tasks, to impose an effective solution. For the sake of 

analogy, one can imagine the economic distortions like supply, price, forecasting etc. 

that are induced by central economies. As the economics diversify, there distortions can 

be expected to become more severe. 

 

1.2 Perspectives on ULS Systems 

One way to understand and gauge the sheer difference in scale between traditional systems and 

ULS systems is to think in terms of infrastructure – cities as opposed to individual buildings. The 

task of building the large systems of today is akin to constructing a large monolithic building. In 

stark contrast, ULS systems will operate at levels of complexity comparable to cities. At first 

glance it might seem that a city is nothing but a collection of a large number of buildings – this is 

not true. As Howard Rheingold said “Cities are places of massive information flows, networks, 

and conduits, and myriad transitory information exchanges” (Rheingold, 1993). Cities are not 

conceived or built by individual organizations, nor is it specified in advance by listing 

requirements; but rather a city emerges and evolves with time through the lightly regulated and 

coordinated actions of many individuals acting locally over time.  

 

The factors contributing to a city’s success include extensive infrastructures apart from 

individual buildings, along with myriad mechanisms that regulate local actions in a bid to 

maintain coherence in the absence of central control. These mechanisms include but are not 

limited to, communication services, government organizations, transportation systems and 

emergency services, distribution of consumer goods and utilities. Cities thrive on necessities – 

economic and cultural. The essence of a city emerges from global mechanisms and protocols 

designed to stimulate growth and evolution. 

 

In a similar vein, there is a need to shift perspective when we characterize ULS systems. Apart 

from the analogy of buildings and cities, another way to understand this desired change in 
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outlook is in terms of ecosystems—socio-technical ecosystems to be particular. Similar to a 

biological ecosystem, a ULS system will comprise of a capricious community of organizations, 

computing devices, and people, all interdependent and competing, with complex networked 

dependencies and intrinsic adaptive behavior in an evolving environment.  

 

Socio-technical ecosystems include people, organizations, and technologies at all levels with 

significant and often competing interdependencies: 

 

• Competition for resources. 

 

• Organizations and stakeholders responsible for setting policies (operational, acquisition 

and production policies) in a bid to encourage effective use of these scarce resources to 

achieve system objectives.  

 

• Services may vary based on how different automated subsystems and leaders choose to 

distribute available resources to missions, subject to various levels of importance. This 

distribution of resources needs to be optimized, by imposing appropriate incentives and 

rules.  

 

• A need to develop local and global indicators of Quality of Service (QoS) to determine if 

the incentives are working as intended. These QoS indicators may trigger necessary 

changes in policies and in element and system behavior.  

 

1.3 Systems-of-Systems vs. Ultra Large Scale Systems 

Some of the characteristics of ULS systems will be in common with today’s systems of systems 

(SoSs). Maier (1998) developed a list of characteristics that distinguish large monolithic systems 

from systems of systems: 

 

• Operational independence of elements: Constituent systems are useful in their own 

right and generally operate independent of other systems. 
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• Managerial independence of elements: Component systems are acquired and managed 

independently; they maintain their existence independent of the SoS. 

 

• Evolutionary development: An SoS is never completely, finally formed but constantly 

changes and comes into existence gradually. 

 

• Emergent behavior: Properties appear in an SoS that are not apparent (or predictable) 

from the constituent systems. 

 

• Geographic distribution: Components are distributed geographically such that their 

interactions are limited to information exchange rather than mass or energy exchange. 

 

DeLaurentis (2005) identified three traits with important implications for modeling SoS, above 

and beyond those provided by Maier.  

 

• Networks: Networks define the connectivity between independent systems in the SoS 

through rules of interaction. 

 

• Heterogeneity: Constituent systems are of significantly different nature, with different 

elementary dynamics that operate on different time scales. 

 

• Trans-domain: Effective study of SoS requires unifying knowledge across fields of study: 

engineering, economics, policy, operations etc. 

 

Maier expounds upon different classes of systems of systems based on their operational and 

managerial independence. Maier cites the Web and national economies as examples of virtual 

SoSs. What he defines as virtual SoS comes closest to our understanding of ULS systems: 

 

“Virtual systems lack a central management authority. Indeed, they lack a centrally agreed upon 

purpose for the system-of-systems. Large scale behavior emerges, and may be desirable, but the 

super-system must rely upon relatively invisible mechanisms to maintain it.” 

—Maier (1998) 
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The characteristics of SoS as outlined by Maier and DeLaurentis provide a good starting point to 

classify systems but are not so useful when it comes to understanding the underlying technical 

problems that characterize such systems. The sheer scale of ULS system is what endows them 

with most of their traits, and undermines today’s assumptions. These traits are as follows: 

 

Table 1-1 Characteristics of ULS systems and assumptions undermined 

Trait Description Today’s assumptions undermined 

Decentralization Decentralized in a variety of 

ways—decentralized data, 

development, evolution, and 

operational control. 

- All conflicts must be resolved 

centrally and uniformly. 

Inherently conflicting, 

unknowable, and 

diverse requirements 

Developed and used by a wide 

variety of stakeholders with 

different, conflicting, complex, 

and changing needs. 

- Requirements can be known in 

advance and change slowly. 

- Tradeoff decisions will be 

stable. 

Continuous evolution 

and deployment 

System will evolve not in phases, 

but continuously - new 

capabilities will be integrated and 

unused capabilities dropped, 

while system is operating. 

- System improvements are 

introduced at discrete 

intervals. 

Heterogeneous, 

inconsistent, and 

changing elements 

System doesn’t contain uniform 

homogenous parts – there are 

inconsistent misfits added 

continuously as system is 

extended and repaired. 

- Effect of a change can be 

predicted sufficiently well. 

- Configuration information is 

accurate and controllable. 

- Components and users are 

fairly homogeneous. 

Erosion of the 

people/system 

boundary 

People will not just be users of a 

ULS system; they will be 

elements of the system, affecting 

its overall emergent behavior. 

- Collective behavior of people 

is not of interest. 

- People are just users  

- Social interactions are not 

relevant. 

Normal failures Software and hardware failures 

will be norm rather than 

exception. 

- Failures will occur 

infrequently. 

- Defects can be removed. 

New paradigms for 

acquisition and policy 

The acquisition of a ULS system 

will be simultaneous with 

operation and require new 

methods for control. 

- A prime contractor is 

responsible for system 

development, operation, and 

evolution. 
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These highlighted characteristics are not all independent and most appear in even today’s 

systems and systems of systems; but in ULS systems, they dominate. Each of these 

characteristics derives from the consequences of scale changing everything and undermines the 

assumptions that underlie today’s software developers and acquirers. Each plays a hand in the 

complexity of designing ULS systems, validating their behavior, and evolving their capabilities.  

 

1.4 Addressing ULS Systems Challenges 

As mentioned earlier, the characteristics of ULS systems challenge and undermine the 

fundamental assumptions of today’s software engineering approaches. Current approaches to 

defining, developing, deploying, operating, acquiring, and evolving software-intensive systems 

are based on perspectives that are fundamentally ill-equipped to handle the characteristics 

arising from ultra-large scale. For the last few decades, engineering has been the all-pervasive 

metaphor for creating software systems. But in ULS systems, our concern is not just limited to 

software; indeed we are now dealing with a veritable ecosystem of people, organizations, 

governance, social interaction, hardware, and software. A purely engineering requirement 

driven perspective will no longer suffice as the dominant metaphor. The scale, decentralization, 

distribution, and heterogeneity of ULS systems will present challenges in effective design, 

evolution, management, control, monitoring and assessment of ULS systems. In order to 

address these challenges, we need to shift our perspective on how we characterize problems 

arising from scale. We need to develop empirical methods to bring about coherence in the 

context of complexity and scale. An exciting place to start is at the intersection of traditional 

software engineering and other disciplines which deal with human factors, such as, 

anthropology, biology, and microeconomics.  

 

“The older is not always a reliable model for the newer, the smaller for the larger,  

or the simpler for the more complex…Making something greater than any existing thing 

 necessarily involves going beyond experience.” 

—Petroski (2005) 

Pushing the Limits: New Adventures in Engineering 
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We discussed how in most cases ULS systems will lack a central locus of institutional control and 

the system participants at any time will have disjointed and competing interests.  In such 

settings it is highly likely that the system users may behave opportunistically to meet their local 

mission requirements, rather than the goals and objectives of the system as a whole. Hence 

there is a need to provide a basis for satisfying system-wide quality goals and simultaneously 

also satisfy individual goals and expectations of the various stakeholders. In such cases, methods 

and tools based on economics and game theory will play an important role in achieving globally 

optimal behavior, even when the participants behave selfishly.  

 

1.4.1 Mechanism Design 

The field of mechanism design lies at the intersection of economics and game theory and is 

concerned with designing mechanisms, protocols, and institutions that are mathematically 

proven to satisfy certain system-wide objectives under the assumption that individuals 

interacting through such institutions act in a self-interested manner and may hold private 

information that is relevant to a required decision. Mechanism design doesn’t take cooperation 

among agents as granted. Instead it induces cooperation as an emergent property of agents 

engaged in selfish, competitive economic behavior. This mirrors the metaphor of the invisible 

hand principle as conceived by Adam Smith which asserts that an individual’s self-interest is 

ultimately economically beneficial to society as a whole (Smith, 1863). Computational 

mechanism design puts mechanism design into a computational setting and includes both the 

use of computers to design mechanisms and the use of mechanisms to control computing. 

 

Mechanism design has its roots in microeconomics, where it is known as institution design and 

in game theory, where it is sometimes known as implementation theory. The research literature 

provides plenty of examples of mechanisms being put to practical use to achieve large-scale 

social objectives (Federico & Rahman, 2003; Hinz, 2003;Gerkey & Mataric, 2002). 

 

Auction – based computational mechanism design has recently begun to see its application in a 

host of areas. One well-documented use of computational mechanism falls under the umbrella 

of e-commerce, where it is used for allocating computational resources. Google uses an 

explicitly designed auction mechanism for allocating advertising space on Web pages, returned 
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from keyword searches, in order to generate the main chunk of their revenue (Edelman & 

Ostrovsky, 2007). Supply chain optimization is another subfield in e-commerce which uses 

computational mechanism design (R. R. Chen, Roundy, Zhang, & Janakiraman, 2005; Sandholm, 

1996). 

 

Mechanism design finds application in problems involving the allocation of scarce resources like 

network bandwidth, storage capacity and power among both human and computational entities 

that are inclined to resort to strategic behavior dictated by guile and self-interest. McMillan 

provides a discussion on the consequences of designing a defective mechanism, as in the case of 

the New Zealand radio spectrum auction, and the importance of getting the details of 

mechanism design right, like in the case of the U.S. public radio spectrum auction (McMillan, 

1994). As systems scale up in dimensions, interaction protocols resistant to strategic 

manipulation are needed that are capable of efficiently aggregating information from different 

parts of a system to facilitate global decision making.  

 

Our investigation focuses on the potential of using computational mechanisms to govern the 

behavior of ultra-large-scale systems and achieve an optimal allocation of computational 

resources. In our scenario computational systems can be viewed as pseudo-economies, with 

computational entities competing with each other for the use of scarce computational resources 

to satisfy their local mission goals. We investigate the application of mechanism design to 

dynamic, performance-critical and resource-constrained systems of interest to the defense 

community.  

 

1.5 Bandwidth Allocation in Tactical Data Networks 

ULS systems will have to support warfighters at all echelons who are engaged in information-

extensive activities and who must share constrained critical resources. Military group operations 

need all the air, ground and sea platforms participating in an operation, to work like a cohesive 

force.  There is an obligation for military systems to be interoperable with other systems - 

military or civilian. We define interoperability as a system’s ability to provide and accept services 

from other systems and use these exchanged services to operate efficiently and effectively.  The 



10 

 

1
0 

platforms in a group must share and exchange tactical data from their onboard sensors in order 

to establish and maintain a common operating picture of the tactical situation as shown in 

Figure 1-1. 

 

 

Figure 1-1 Bandwidth Allocation in Tactical Data Networks 

 

The exchange of tactical data among the military platforms is facilitated over a standardized 

radio network, known as a TActical Data Information Link (TADIL). TADILSs are used to transmit 

measurements pertaining to both the platform themselves and the targets. As per DISA 

(Defense Information Systems Agency) guidance the term TADIL has been officially replaced by 

the generic term Tactical Data Link (TDL). However, we shall continue to refer to them as TADILs 

given the legacy holdover. These tactical data information links are characterized by their 

standard message formats and transmission formats.  
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The sensors onboard military platforms have an incomplete and inaccurate view of the 

operating picture. This is partly because each sensor can only detect and track targets within a 

limited region of observation immediately surrounding itself. More importantly, the navigational 

systems onboard the military platforms provide the sensors with an imprecise estimate of its 

own location. The sensors estimate the position of the targets within its region of observation 

by making noisy measurements of the bearing and range of the target from itself. Thus the 

sensors need to use data transmitted from neighboring sensors, in order to improve the 

accuracy of their measurements. The fusion of the sensor’s own noisy information with the 

observations from a number of other sensors reduces the overall uncertainty in the 

measurements. However, the bandwidth in these tactical data networks is a scarce resource and 

the mission outcome can be significantly affected by decisions made in real time about which 

data to share. Ad-hoc Bandwidth allocation can have serious repercussions and can even 

jeopardize a mission.  

 

“When the supply of bandwidth becomes inadequate during combat, military operations 

officers have sometimes been forced to subjectively prioritize the transmission of messages. 

They do this by literally pulling the plug temporarily on some radio or computer  

switching equipment in order to free up enough bandwidth to allow the highest-priority 

messages to get through. This can delay, or cancel other messages or data transmissions,  

which are placed into in a lower priority.” 

—Wilson (2004) 

Network Centric Warfare: Background and Oversight Issues for Congress 

 

The track data exchanged among the military platforms over the TADIL encapsulates the 

processed radar data which represents artifacts such as airplanes, helicopters, missiles, ships, 

boats, submarines along with various other kinds of land, sea and air based vehicles. The shared 

tactical data is then used by each platform to create a Common Operational Picture (COP), the 

accuracy of which depends on a number of factors: 

 

• Gridlocking: Gridlock  is  a  technique  whereby remote tracks received  from  a  

designated  reference  unit  are compared to  local observed data to determine any  
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data registration  corrections. This entails eliminating or minimizing sensor alignment 

errors, navigational position errors, sensor biases among others. If gridlocking is not 

implemented to provide correlation between local and remote tracks, there is the 

possibility of remote tracks being painted multiple times and overlapping each other. 

  

• Track Correlation: Track correlation is the process of minimizing or eliminating the 

display of multiple tracks that represent the same artifact. Track correlation is a 

fundamental problem in distributed multi-target multi-sensor tracking system. It 

involves the selection of the most probable association between target tracks from a 

very large set of possibilities. 

 

• Reporting Responsibility (R2) Rules: The data link R2 rules permit only the unit with the 

best quality data (position, heading, velocity, etc.) to report a surveillance track on the 

link. This strategy prevents multiple track reports on the link for a single object, thus 

minimizing the data latency. The platform selected to provide the report for a track is 

said to have R2 for that track.  

 

The Reporting Responsibility (R2) rule is a minimal precedence based mechanism. It precludes 

any possibility of collaboration in building a common operating picture by disallowing the 

redundant reporting of a single object. Although R2 rules minimize data latency it also reduces 

the diversity of the source data. Redundant reporting of objects can play a critical role in 

resolving ambiguities. In the context of network bandwidth, the R2 approach can be regarded as 

an extreme minimalist approach.  

In our research we consider the minimalist approach characterized by TADILs, such as LINK-16, 

as our point of departure. We start with the premise that additional communication per 

network cycle can significantly improve the quality of the combined data and by enough to 

warrant the additional latency that comes from a longer network cycle time.  

 

In military settings, there are scenarios with multi-nation, multi-platform coalition exercises, 

where the military commanders of each platform may be concerned with the well-being of their 

own platform over others. Self-interested behavior can be a concern, even when operating 
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under a single flag, as platforms may overstate their need for scarce resources, like bandwidth. 

This need not be out of some malevolence; the platforms may be trying to do what they think is 

best, but may unknowingly use resources that would be more beneficial for other platforms. For 

example, soldiers have been known to overstate the precedence of messages with the intention 

of speeding up their delivery, but in doing so, they unintentionally saturate the network, 

reducing its effectiveness not only for them but also for others. When we allow the possibility of 

platforms to exhibit deceptive behavior to further their self-interests, the problem of bandwidth 

allocation becomes particularly complex and traditional system approaches of resource 

allocation are ill-equipped to address this problem. This is one of the exact challenges that we 

anticipate when we are dealing with Ultra Large Scale Systems, which will lack a central locus of 

operational or institutional control.  We use the case-study of a coalition military exercise with 

constrained bandwidth resources and self-interested actors, to address the challenge of 

designing a mechanism for optimal resource allocation. 

 

In our case study, the platform-sensors are individually owned by different stakeholders who 

may have conflicting goals and resort to strategic behavior marked by a combination of guile 

and self-interest, if it furthers their local goals. The sensors may end up operating in competitive 

rather than cooperative environments, and as such, may attempt to optimize their own gain 

from the network at a cost to the overall performance of the entire network. This is particularly 

true in networks where the bandwidth available for transmission of data among the sensors is 

limited. Individual platforms benefit from receiving data from other platforms but have no 

incentive for sharing it. Thus, we can expect a tendency for platforms to under-represent the 

quality of their data so that the bandwidth is allocated to the transmission of data by others.  

Thus, against this background we seek to design a mechanism which can efficiently allocate a 

finite bandwidth, beyond what is used in a conventional R2 approach, to enhance the common 

operating picture. We model the platform sensors as rational agents seeking to optimize their 

own utility and liable to deceptive behavior to further their objectives. Our goal is to design a 

mechanism that efficiently allocates the flow of data within the network to ensure that the 

resulting global performance maximizes the information gain of the entire system, despite the 

selfish actions of the individual sensors.  
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1.6 Research Problem 

The research problem is recapped and encapsulated as follows: 

 

We consider a scenario where a number of military platforms have been tasked with the goal of 

detecting and tracking targets. The sensors onboard a military platform have a partial and 

inaccurate operating picture and need to make use of data transmitted from neighboring 

sensors in order to improve the accuracy of their own measurements. The communication takes 

place over tactical data networks like Link 16, where the bandwidth is a scarce resource. The 

problem is compounded by the possibility that the military platforms may have conflicting goals 

and exhibit deceptive behavior to satisfy their local mission objectives, at the expense of the 

global system goal. Therefore there is a need to design a mechanism to optimally allocate the 

bandwidth in order to improve the quality of the common operating picture, despite the selfish 

actions of the individual platforms.  

 

The heart of the mechanism, which we need to design, resembles a portfolio optimization. The 

portfolio problem assumes that a portfolio needs to be constructed consisting of a set of stocks. 

Each of the stocks has a return and a risk value associated with it and the objective is to 

determine what fraction of wealth must be invested in each stock to maximize the portfolio 

value. In reference to our problem scenario, the stocks represent the observations made by the 

sensor agents. The return value of the stock can be regarded as the information content of each 

observation, while the total wealth available represents the bandwidth to be allocated on the 

tactical data link. Thus the objective is to determine which track information to select for 

transmission given the fixed additional bandwidth available to maximize the total information 

gain. The challenges of interdependent valuations, selfish behavior, constrained resources and 

dynamic uncertain environments dictate that our mechanism needs to go beyond a simple 

portfolio optimization as highlighted in Figure 1-2. 
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Figure 1-2 Research Framework 

 

 Participate – Since the sensor platforms are individually owned by different stakeholders, 

the mechanism needs to ensure that the platforms voluntarily participate in lieu of 

some incentive of participation.  

 

 Honest Reports – The sensor platforms may resort to strategic behavior to optimize 

their own gain from the network, at a cost to the overall performance of the entire 

network. In our problem domain, individual platforms benefit from receiving data from 

other platforms but have no incentive for sharing it. Thus, we can expect a tendency for 

platforms to under-represent the quality of their data so that the bandwidth is allocated 

to the transmission of data by others. The mechanism has to incentivize the platforms to 

truthfully reveal their track information. Without true input values, we can’t construct 

an optimal portfolio solution. 

 

 Interdependency - In tactical sensor networks, the observations made by the sensors 

are polluted by uncertainty and noise. Indeed, other sensor agents may possess 

information that would, if known to a particular sensor platform, affect the value it 
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assigns to the target. The mechanism must account for this information 

interdependency in the reported observations. 

 

 State of World – The mechanism should work e  ven when the center has no access to 

the true state of the world. The dynamic and uncertain nature of the operating 

environment means that the track data evolves between the time the information is 

reported and the time when the observation can be observed. Thus the center needs to 

evaluate the received reports without any knowledge of the true outcome. 

 

 Optimization under uncertainty - The mechanism need to take into the possibility that 

given the dynamic operating environment, there might be some uncertainty in the 

reported data. The optimal portfolio solution may be completely meaningless if it is not 

robust to data uncertainty. 

 

 Implementation - The mechanism has to ensure that once a target has been allocated to 

a platform, it invests all its resource to track the particular target. The optimal portfolio 

solution will fail if the participating platforms disregard their responsibility. 

 

Thus, our research objective is to develop a mechanism design – based approach which satisfies 

the elicited requirements and can efficiently allocate a finite bandwidth, beyond what is used in 

the R2 approach, to enhance the quality of the operating picture 

 

1.6.1 Research Contributions 

The research work described here builds upon the previous work (discussed in Chapter 2) but 

adds significantly to the complexity and fidelity of the problem settings. In particular, our work 

emphasizes the importance of applying robust optimization techniques when designing 

computational mechanisms. Against this background, our work makes the following 

contributions: 

 

1. We demonstrate how mechanism design, perched at the intersection of game theory 

and microeconomics, is aptly suited to address one set of the challenges of the ULS 
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system paradigm – challenges not amenable to traditional system engineering 

approaches.  

 

2. We identify the flaws and the shortcoming of auction-based mechanism design to 

address the problem of bandwidth allocation under the settings and show the viability 

of approaching the problem with an alternative approach within the Mechanism Design 

research domain, in the form of strictly proper scoring rules. 

 

3. We develop a standalone application framework by utilizing Purdue’s Agent Based 

Modeling tool DAF (Discrete Agent Framework) that provides a unique insight into the 

application of computational mechanism design in decision making. 

 

1.7 Thesis Structure 

The remainder of this thesis progresses as follows: 

 In Chapter 2 we highlight and discuss the relevant literature to address trust in Multi-

Agent Systems (MASs). We examine different prevalent approaches to trust and provide 

an introduction to the game theoretic approach to Mechanism Design. We then discuss 

the notion of trust within the mechanism design literature and focus on auction based 

models for truth elicitation. 

 

 In Chapter 3, we provide a description of the Multi-Agent System framework we employ 

to address the research problem.  We introduce the agent-based modeling tool Discrete 

Agent Framework (DAF) and describe the agent-based model created in DAF to emulate 

the combat tactical data network and construct the common operating picture. 

 

 In Chapter 4, we introduce the concept of scoring rules and how scoring rules can be 

used as a methodology to address the shortcomings of auction-based mechanism design. 

We describe and analyze our scoring rules – based two-stage mechanism with unknown 

costs whereby multiple sensor platforms can provide estimates of limited precisions and 
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the center does not have to rely on knowledge of the actual outcome when calculating 

payments.  

 

 In Chapter 5, we present the concept of robust optimization and provide the Bertsimas-

Sim formulation of the robust portfolio optimization problem that we adopt for our 

research problem.   

 

 In Chapter 6, we investigate the application of our modified strictly proper scoring rules 

based mechanism to the agent-based model of the tactical data network. The effects of 

the lack of access to true outcome, deceptive behavior on the part of the agents and the 

protection level of the robust optimization are evaluated and studied. 

 

 In Chapter 7, we summarize the key findings from this work and discuss the potential 

avenues of future research to extend the scope of the current work. 
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CHAPTER 2. LITERATURE REVIEW 

Trust is a fundamental concern in ultra-large-scale systems. Trust is the willingness of  a party to 

be vulnerable to the actions of another party based on the expectation that the other will 

perform a particular action important to the trustor, irrespective of the ability to monitor or 

control the other party (Mayer, Davis, & Schoorman, 1995). In ULS systems it is necessary to 

ensure that trust exists at the heart of all interactions between the system participants. Trust in 

the mechanism motivates agents to honestly reveal their private information to other agents in 

the system, which is instrumental to achieving the global objective. In this chapter, we discuss 

how trust can be addressed in Multi-agent systems. We examine two different prevalent 

approaches to trust - at the individual level and at the system level. We provide an introduction 

to the game theoretic approach to Mechanism Design and present the important possibility and 

impossibility results in literature. We then discuss the notion of trust within the mechanism 

design literature and focus on auction based models for truth elicitation. 

 

2.1 Trust 

The proliferation of narrow intra-disciplinary definitions of trust and the multiple interpretations 

of trust in everyday life, have led to literature confusion regarding the meaning of trust 

(McKnight & Chervany, 2002). Bigley & Pearce (1998) chronicled the different uses of the word 

trust showing both how various definitions are similar and how they diverge. McKnight & 

Chervany (2002) have defined inter-personal disposition to trust constructs from psychology and 

economics as well as institution-based trust constructs from sociology. 

 

 Trust-related behavior indicates that a person voluntarily depends on another person 

with a feeling of relative security, even though negative consequences are possible 

(Lewis & Weigert, 1985). In the context of Ultra Large Scale systems, we use the
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information-sharing construct of trust-related behavior. Information sharing represents 

trust-related behavior because it makes one vulnerable to the actions of the trustee 

with respect to the information (Mishra, 1996). 

 

 However, the object of trust may involve situations and structures instead of people. 

Institution – based trust means one believes, with feelings of relative security, that 

favorable conditions are in place that are conducive to situational success in a risky 

endeavor or aspect of one’s life (Shapiro, 1987). We adopt the structural assurance sub-

construct of institution – based trust.  Structural Assurance means one securely believes 

that protective structure - guarantees, contracts, regulations, promises, legal recourse, 

processes, or procedures - are in place that are conducive to situational success. 

 

ULS systems will, in many cases, lack a central locus of operational or institutional control and 

the participants in the system, at any time, will have disjointed and competing interests.  In such 

settings, it is highly plausible that the system users may behave opportunistically to meet their 

own local mission requirements, irrespective of the goals and objectives of other participants or 

the system as a whole. Thus, when devising a mechanism or protocol for such systems, one 

needs to ensure that the actions undertaken by the agents along with the allocation of 

resources, result in both system and individual level goals being satisfied. The construction of 

such a mechanism becomes difficult as participating agents are free to choose what information 

to convey to other agents, which agent to interact with, and when to interact with the 

environment and other agents. Maximization of an agent’s individual utility is dependent on 

receiving perfect information of the environment, including information on other agents. 

However this desired state of perfect information is nearly impossible to achieve within practical 

contexts, due to limiting computational capabilities, storage capacities, and network bandwidth.  

In such uncertain environments, it becomes necessary for agents to have to be able to trust 

each other in their interactions within MAS. 

 

Trust models can be broadly divided into two different levels: 
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 Individual level trust models – Agents are endowed with reasoning ability to form 

opinions on the honesty and reliability of their counterparts. 

 

 System level trust models – Designing protocols and mechanisms whereby agents are 

forced to be truthful by the rules of engagement.  

 

The two approaches are not necessarily disparate and may, in fact, be viewed as complementary. 

Individual level trust models cannot possibly reconcile with the inherent uncertainty in the MAS 

and must rely on system-level trust models to reduce this uncertainty. On the other hand, in 

system-level trust models, there is an intrinsic tradeoff between trust and efficiency and thus 

the decision making process on the part of the agent can be guided using individual level trust 

models. 

 

2.2 Individual – level Trust Models 

Individual level trust models aim to guide the decision making process of an agent in deciding on 

how, when, and whom to interact with. In these models, an agent has two alternatives when 

attempting to choose which agent to trust. First, it has the option to directly interact with the 

other agents in order to draw their inferences after several encounters. Direct interaction leads 

us to consider methods by which agents can learn or evolve better strategies to deal with 

honest and dishonest agents, such that payoffs are maximized in the long run. The second 

alternative is to interact with other entities indirectly by referring to third-party information in 

order to make a decision. This invariably requires agents to develop methods to reliably acquire 

and reason about the information gathered from other agents. In addition, the elements of both 

these approaches can be combined in order to introduce more theoretical foundations based on 

a probability theory framework. We can also take a higher level view of trust in the form of 

socio-cognitive models which involves taking the knowledge of motivations of other agents for 

granted and proposes ways to reason about these motivations. 
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2.2.1 Learning Models 

In learning models, we consider trust as an emergent property that comes from direct 

interactions among agents. We assume that agents interact with one another multiple times 

rather than through one - shot interaction. It is further assumed that agents have an incentive to 

defect (Dasgupta, 2000). Trust is achieved on the basis of consistency in performing according to 

agreed - upon exchanges. Although defection could result in higher payoffs for the defecting 

party and loss of utility to the other party, it reduces the possibility of future interactions since 

the losing agent would typically attempt to avoid risking future utility losses. 

 

An often cited example that features defection is the Axelrod’s tournament revolving around 

the Prisoners’ Dilemma (Axelrod, 1980). The Prisoner’s Dilemma is a game involving two 

prisoners, in two different rooms, having to separately choose between two moves, either 

"cooperate" or "defect". We can summarize the game situation through  

Table 2-1. 

 
Table 2-1 Prisoners' Dilemma 

 Prisoner B cooperates Prisoner B defects 

Prisoner A cooperates Each serves 5 years 
Prisoner A: 10 years 

Prisoner B:  goes free 

Prisoner A defects 
Prisoner B: 10 years 

Prisoner A: goes free 
Each serves 5 years 

 

The tournament is of N step prisoners' dilemma in which participants have to choose their 

mutual strategy again and again, and retain memory of their previous encounters. Within 

controlled settings, the most successful deterministic strategy is ‘tit-for-tat’ which simply 

cooperates on the first iteration of the game and after that, the player does what his or her 

opponent did on the previous move. If two agents adopt tit-for-tat they end up with the highest 

payoffs compared to all other strategies. However, when faced with other selfish strategies, tit-

for-tat does not get the maximum payoff, as it loses on the first encounter. 
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Wu & Sun (2001) showed that if agents are allowed to adapt to their environment, they could 

use reinforcement learning to elicit trustworthiness. Agents learn from their current actions, and 

choose their next state to maximize the feedback or utility that they receive from their actions. 

In the case of multi-agent bidding, they clearly demonstrate that the evolution of strategies 

facilitate the isolation of malicious agents from good agents who are keen to cooperate. 

However, while strictly applying to the bidding context, their model does not take into account 

the fact that there might be some short-term utility loss in cooperating with third parties.  

 

In this context, Sen & Sajja (2002) addressed some of these issues and showed how reciprocity 

can emerge when the agents learn to predict that they will receive future benefits if they 

cooperate. They demonstrate that collaborating liars have more to gain after a few iterations in 

environments with large numbers of philanthropic agents. However this necessitates the 

presence of large numbers of agent interaction, to build the requisite trust. Mui, Mohtashemi, & 

Halberstadt (2002) took this notion forward and designed a probabilistic trust model which 

could identify the minimum number of encounters needed to elicit trust. In the cases where this 

probabilistic threshold is unreachable, we need to resort to other techniques to establish trust.  

 

Up to this point, all the above learning and evolutionary models of multi-agent strategic 

interactions assume that agents have complete and perfect information about each and every 

entity in the MAS. This is clearly a utopian scenario and it is highly unlikely that these strict 

assumptions will translate to real-life scenarios where agents have a partial and incomplete view 

of the common operating picture. In real-life scenarios, agents do not have the option to adapt 

and refine their strategy through multiple encounters or evaluating all the possible actions 

available. Hence we need to look at other individual-level trust models which are more 

amenable to real-world scenarios. 

 

2.2.2 Reputation Models 

In scenarios where there is a lack of prior information about an agent’s incentives and there are 

limited interactions among agents, reputation models are another way to achieve trust. 

Reputation can be defined as the opinion or view of someone about something. We distinguish 

between trust and reputation in the sense that trust is derived from direct interactions while 
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reputation is acquired from the environment or other agents and ultimately leads to trust. In 

MAS, reputation is particularly useful when there are a large number of interacting agents. 

Reputation models are prevalent in online markets and services, stock-trading and auctions 

which enable agents to refer to third party information to guide their decision making.  

 

The research on reputation models can be broadly divided into two different areas: retrieval of 

ratings and aggregation of ratings from other agents. Both these approaches borrow the 

concept of a social network from sociology which draws an analogy between the arrangement 

of agents in networks and that of humans in societies. An agent can act as a reputation source 

by validating the result of an interaction between agents, and transmitting the relevant 

information (like performance ratings) through this network of social relationships, thus giving 

rise to the concept of reputation. 

 

In this vein, Yu and Singh tackle the problem of retrieving ratings from a social network through 

the use of referrals (Yu & Singh, 2000), propose a method of representing a social network 

(Singh, Yu, & Venkatraman, 2001) and then present ways to aggregate the information through 

the network (Yu & Singh, 2003). In a MAS referral network, agents can act as referral – providers 

or referral – followers. Aggregation of ratings from other agents is another field of interest 

within the reputation trust domain. For example, on websites like eBay, ratings of +1 or −1 value 

along with textual information get aggregated to generate overall rating. Such simplistic 

accumulation may give rise to problems when some agents either do not return ratings or when 

they do, manipulate the system by misreporting their information. Yu and Singh’s model 

demonstrates the power of referrals through the Dempster Shater’s theory of evidence (Shafer, 

1976) in aggregating information obtained from referrals while coping with the lack of 

information (Yu & Singh, 2002). Schillo, Funk, & Rovatsos (2000) developed a model that 

demonstrated how agents can cope with lying witnesses in their environment and use witness 

information to reason effectively against lying agents. 

 

However, all the reputation models we discussed here tend to simplify direct interactions and 

often fail to contextualize such interactions relative to the witnesses and other interacting 

agents. All these approaches require knowledge about the result of the interaction after it is 
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finished, which might not be possible within the highly uncertain environment that the ULS 

systems operate in. In particular, requiring precise information about the state of the world 

after an interaction is complete is often not feasible as agents may not have access to the 

information in order to evaluate the referrals. 

 

2.2.3 Socio Cognitive Models 

One of the common shortcomings of the two methods for modeling individual trust that we 

discussed in the previous sections, is that they rely on the outcomes of interactions to assess 

trustworthiness of an agent. However, there are other subjective considerations that go into this 

analysis, which if considered, would provide a more holistic analysis of the traits of the agents in 

the network (Dasgupta, 2000; Gambetta, 1990). For example, an agent can use the supplies and 

skill-set available to their counterparts to subjectively assess if it can indeed use these to carry 

out an agreed task. 

 

Castelfranchi & Falcone (1998, 2000) and Falcone & Castelfranchi (2001) underline the 

advantages of employing a cognitive view of trust rather than just a narrow quantitative view. 

They operate within the context of task delegation where an agent   seeks to delegate a task to 

another agent Y. Agent   needs to gauge the trustworthiness of agent   by taking into account 

the different beliefs it has regarding the motivations of agent   – Competence belief, 

Willingness belief, Persistence belief and Motivation belief. But their approach is inspired by 

human beings, who do not always act rationally as opposed to the agents in MAS which are 

assumed to be rational entities. Braynov & Sandholm (2002) address this issue by employing a 

rational approach to model an opponent’s trust within the context of non-enforceable 

contracts. They clearly show that in those instances where one agent can precisely estimate the 

trust of its counterpart, it leads to maximum utility gain and trade between the agents while an 

incorrect estimation of the same trust, leads to inefficient resource allocation, and hence loss of 

utility for the two agents. 

 

The socio-cognitive approach is a comparatively newer method to modeling individual level 

trust, which takes a high-level view of the field. However, this approach is lacking in the rational 

grounding which learning and reputation models exhibit. If we were to consider these three 
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modes together rather than in isolation, they could contribute to provide an integrated holistic 

evaluation of trust at the individual level. However, given the limited computational capacities 

of the participating agents it might not be feasible gather information from all possible sources 

in the environment or to take into account all factors contributing to the trust in their 

counterparts.  

 

2.2.4 Probabilistic Trust Models 

One of the common characteristics of the individual trust models - learning and reputation 

based as well as the socio-cognitive - that we have discussed so far, is that none of them have a 

sound foundation in statistics. Probabilistic Trust models address this issue by continuing this 

trend of combining elements from both learning and reputation models, but based on the 

theoretical foundations of a probability theory framework. 

 

Ismail & Josang (2002) proposed using beta probability density functions to combine feedback 

from the users on an online system that provides reputation ratings, by having members rate 

the performance of the other members in the community. Yuan & Sung (2004) proposed a 

model that can take into account both public reputations as well as the accounts of private 

interaction. Jones, Janicke, & Cau (2009) proposed a methodology of combining multiple models 

of individual trust by suggesting the use of ‘trust communities’. These communities would 

facilitate sets of agents combining their personal observations and generating higher quality 

collective information.  

 

However, even these probabilistic – based trust models inherently assume that agents will 

always invest all the resources at their disposal in generating and providing feedback regarding 

their experiences, which violates our requirement of selfish behavior. Secondly, they assume 

that the operating conditions of the agents would always be conducive for agents to report their 

observations, which rational and self-interested agents may decide against, to save resources 

such as bandwidth or power. Thirdly, protocols that use multiple trust models would not be able 

to continuously monitor the evolving parameters of the dynamic environment that characterizes 

ULS systems. Finally, even these individual trust models fail to take into account elements of 

outcome uncertainty, by its reliance on precise knowledge of the common operating picture 
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once an interaction is over. In conclusion, although the probabilistic trust models can be viewed 

as a step in the right direction, as they are more robust than the other individual trust models, 

they are still a long way from addressing our key research requirements.  

 

Given these limitations and shortcomings, it is more prudent to generate protocols and 

mechanisms that, instead, force the agents to be trustworthy in all their interactions. In this way, 

these rules of engagement can compensate for the limited scope of individual-level trust models. 

   

2.3 System – level Trust Models 

In the context of Ultra-Large Scale systems, it is clear that we need a more systematic approach 

to induce trust that focuses on the design of protocols and mechanisms to guide the interactions 

among agents. Such mechanisms can be diverse and include auctions, voting, contract nets, 

bargaining and market mechanisms, to name some. We need to dictate certain rules of 

engagement that prevent deception and collusion between participants, and enable an agent to 

trust one another. These rules endeavor to provide desirable global properties such as investing 

sufficient resources to complete their allocated task and truthfully reporting their observations. 

For our purposes, trust and truthful reporting are closely related as we assume that a sensor 

successfully executes its task when it invests necessary resources in generating an observation 

and truthfully reports them to other agents. 

 

The rules of engagement and the constraints on interactions can be imposed in different ways. 

In our research we concern ourselves with two distinct approaches. First, by devising truth 

eliciting interaction protocols; protocols which guarantee that agents are always better off by 

being truthful and stand to gain no additional utility by deception. Second by developing 

reputation mechanisms to foster trust; mechanism that spread an agent’s reputation of being 

truthful or a liar throughout the system. We will take a look at both these approaches in the 

section below. 
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2.3.1 Truth-elicitation Protocols 

Truth-eliciting interaction protocols have garnered a lot of attention, and a number of different 

protocols and mechanisms have been devised over the years. These protocols seek to prevent 

agents from colluding or manipulating the system by imposing constraints dictating the 

interaction among agents and the information shared during such interactions. An agent stands 

to gain no additional utility by colluding or lying, if it adheres to the afore-mentioned protocols. 

The most widely used mechanism in literature is auctions, which introduce trust in the Multi-

agent systems from different perspectives.   The most common single-sided auctions include the 

English auction, Dutch auction, First price and Second price auctions. In this section we shall 

confine our discussion to the first three types of auction and discuss Second Price auctions, after 

we have introduced the concept of Mechanism Design. 

 

The English auction is perhaps the most widely known kind of auction and has been historically 

used in famous auction houses like Christie’s and Sotheby’s (McCabe, Rassenti, & Smith, 1990). 

The auctioneer starts off the auction by announcing an opening bid, and each bidder is free to 

raise their bid until no bidder is willing to raise the bid any further, thus ending the auction. The 

item gets sold to the highest bidder at a price equal to his or her bid. The English auction is 

technically an open ascending price auction as opposed to a Dutch auction which is an open 

descending price auction. The Dutch auction is the antithesis of English auctions, whereby the 

auctioneer begins with a high asking price, and subsequently lowers it until some participant is 

willing to accept the last price announced by the auctioneer. The item gets sold to the highest 

bidder at a price equal to the last announced price.  The first-priced auction is a sealed bid 

auction, and hence different from the two open auctions described before, as it involves agents 

submitting their bids with no knowledge of others’ bids. In this type of auction all bidders 

simultaneously submit sealed bids so that no bidder knows the bid of any other participant. The 

highest bidder wins the auction and pays the price they submitted.  

 

The Dutch and English auctions induce truthful elicitation on the auctioneer’s part since the bids 

are made publicly and the winner and the winning price are all public information. However, 

none of the three auctions ensure that bidders reveal their true valuation for the objects on 

auction. The dominant strategy in Dutch and First-price-sealed-bid auctions is to either reveal or 
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bid a lower valuation, and in case of the English Auction, the dominant strategy is to bid only a 

small amount more than the current highest bid till one’s true valuation is reached. Also the 

single-sided auctions are susceptive to bidder collusion, since agents can collaborate to cheat 

the mechanism by sharing information about their bids.  For example in English auctions, the 

bidders and auctioneer may collude to artificially inflate the ask price thereby forcing the bids to 

go really high. In a similar vein, bidders may collude to withhold their bids in a Dutch auction 

until the ask price hits rock bottom.  

 

Cryptographic techniques have been proposed as a security mechanism to prevent bidder 

collusion in auctions, though it can also result in increased computational costs (Brandt & others, 

2002; Brandt, 2001). The auctions also disregard the possibility of multiple encounters among 

agents. As we discussed in Section 2.2.1 trustworthy behavior can be induced if agents 

understand that they stand to lose utility in future interactions or prevented from engaging in 

future interactions. However, open multi-agent systems allow agents to move about and 

interact with other agents in the system. This allows malicious agents to move from group to 

group and exploit trustworthy agents as they move around. Hence there is a need to make 

agents share their ratings of their opponents with the other agents in the system, to prevent 

malicious agents from exploiting the openness of MASs. 

 

2.3.2 Reputation Mechanisms 

In Section 2.2.2 we discussed how reputation models can make agents share their ratings of 

their counterparts, which can then be gathered and aggregated to be shared with other agents 

in the system. However the reputation models at the individual trust level fail to account for the 

selfishness of the participating agents and that the agents will share information only if it is in 

their best interests. Reputation Mechanisms seek to remedy this shortcoming by modeling 

agents’ reputation at the system level. Reputation mechanisms induce truthful ratings from 

agents, store and aggregate the ratings, and then publicize these ratings, all at the system level.  

 

Zacharia & Maes (2000) outline the essential traits for good system-level reputation 

mechanisms and present two reputation systems, SPORAS and HISTOS, for online communities 

like forums, mailing lists and chat-rooms. In their proposed mechanism SPORAS, the reputation 
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of the new agents entering the system is set at a minimum value and as these agents receive 

ratings, their reputation value subsequently increases. HISTOS, the enhancement to SPORAS, 

also takes into account group dynamics and the reputation of each agent depends on how that 

agent rates other agents. More importantly, both these reputation mechanisms are robust to 

collusion. However, neither of these systems penalizes agents deliberately subverting the 

system by giving false good reports in an attempt to build good reputation since positive ratings 

are valued more. 

 

Jurca & Faltings (2003a, 2003b) address this shortcoming and induce truthfulness by making side 

payments to agents when they share feedback, thereby making it rational for them to share 

reputation information. Agents can sell or even purchase reports to and from the information 

agents in the system. They seek to make their model robust to lying witnesses by having 

information agents pay one agent for reports only if they match the next report given by 

another agent. However, what they gain in robustness is lost through bidder-collusion as all the 

entities can collude to lie in their reports. Dellarocas (2002) introduced a more realistic feedback 

mechanism called Good Will Hunting, which is specifically tailored for trading environments. The 

mechanism induces sellers to reveal the true quality of their goods through the threat of biased 

future reporting of quality of goods to be sold. Buyers are given rebates on future transactions 

to induce truthful reporting. Their framework oversimplifies the trading model and does not 

account for buyers colluding to sabotage a seller’s reputation. 

 

Faced with these shortcomings, we shift our focus to a more fundamental approach that 

guarantees incentive compatibility (truthful reporting) and individual rationality (voluntary 

participation) through certain payment schemes. This is achievable through the application of 

techniques from the field of mechanism design, which we will expound upon in the next section. 

 

2.4 Mechanism Design 

Mechanism Design, a sub-field of microeconomics and game theory, concerns itself with the 

design of mechanisms, protocols, and institutions that are mathematically proven to satisfy 

certain system-wide objectives. It assumes that individuals interacting through such institutions 
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act in a self-interested manner and may hold private information that is relevant to a required 

decision. Mechanism Design has been used to design protocols for different areas: 

 

• Peer-to-peer systems (M. Chen, Yang, & Liu, 2004) 

• Sensor fusion (Dang, Dash, Rogers, & Jennings, 2006) 

• Network routing (Holzman & others, 2003)  

• Electricity markets (Federico & Rahman, 2003; Hinz, 2003) 

•            Allocating network capacity (Anderson, Kelly, & Steinberg, 2006; Anshelevich et al., 2004) 

•        Allocating processor cycles for scientific computing on worldwide grid (M. Chen et al., 

2004) 

• Allocating tasks for autonomous robots (Gerkey & Mataric, 2002) 

 

This section presents traditional Mechanism Design, which aims to satisfy certain economic 

criteria (such as efficiently allocating resources, maximizing revenues or having a fair system) 

given the setting of selfish agents in interactive decision making. 

 

2.4.1 Basic Definitions 

We start by introducing the basic concepts of Game Theory, which is intimately linked with 

mechanism design. Game Theory concerns itself with the study of the strategic interactions in a 

system of self-interested agents. 

 

Consider a set of N individual agents                   . Each agent is characterized by its type 

         from a set of possible types    which determines the preferences of an agent over 

different outcomes of a game. Although     represents private information available only to  , 

we assume, as it is standard, that it is drawn from a commonly known joint distribution. An 

agent's preferences over outcomes     , for a set   of outcomes, can then be expressed in 

terms of a utility function that is parameterized on the type. These utility functions represent 

the Von Neumann – Morgenstern utility functions which we discuss in detail in Section 4.1.1. Let 

  (    ) denote the utility of agent   for outcome      , given type    . Agent    prefers 

outcome    over    when   (     )      (     )  
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The fundamental concept of agent choice in game theory is expressed as a strategy, which is 

defined as follows. 

 

Strategy  

 

A strategy is a complete contingent plan, or decision rule, that defines the action an agent will 

select in every distinguishable state of the world.   (  ) denotes the strategy of agent   given 

type   , where    is the set of all possible strategies available to an agent. Formally, a strategy 

for agent   is a mapping from    to    (         ), where   , is the message set for agent  , 

and includes any messages that the agent communicates. 

 

Strategy Profile 

 

A strategy profile is a vector of the strategies available to an agent   based on its type. 

  (  )     denotes the strategy of agent   given type   , where    is the set of all possible 

strategies available to an agent.                       , where   is the set of joint 

messages. 

 

Utility 

 

The utility    (              ) of agent   given its type    and the strategy profile   

(           ) selected by each agent, determines its base preferences over different outcomes 

in the world. In our work we focus only on quasi-linear utility as it ensures that agents can 

transfer utility through monetary side payments.  

 

An agent’s utility function is known to other agents in the system and represents a preference 

relation over different pairs of outcomes given the type   . In game theory the fundamental 

model of agent rationality is based on maximization of expected utility. Given the agent’s 

preferences    over outcomes, and its beliefs about other agents’ strategies, it will always select 

a strategy that maximizes its expected utility. 
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2.4.2 Solution Concepts 

Computing the equilibrium outcome of any game with two or more rational agents depends on 

the structure and the assumptions about the preferences of the agents and the information 

available to each agent. Our goal is to design a mechanism so that certain desired system-wide 

properties (e.g. truthfulness, efficiency, and fairness) emerge as an equilibrium outcome from 

the interaction among the sensor platforms. Game Theory provides an array of different 

solution concepts. Each solution concept differs in the assumptions about agent rationality and 

the knowledge each agent has regarding the preferences of all the other agents in the system. 

We highlight these concepts below: 

 

Nash Equilibrium 

 

The Nash equilibrium states that in equilibrium, every agent will select a strategy to maximize its 

own utility given the strategy of every other agent. A strategy profile   (           )  is in 

Nash equilibrium if every agent maximizes its expected utility, for every i, 

 

    (   (  )    (   )   )       (   
 (  )    (   )   ) 

 
(2.1)  

 ∀   
      . 

 

Game theorists have been using the Nash equilibrium as one of the fundamental solution 

concepts. However, the Nash solution concept is very restrictive because of the assumptions 

imposed on the information available to each agent as well as each agent’s beliefs about other 

agents. Each agent must have the same common perfect information about the preferences of 

every other agent in the model and all agents must select the same Nash equilibrium. Nash 

equilibrium doesn’t hold in games with multiple equilibriums.  

 

Dominant Strategy Equilibrium 

 

The Dominant Strategy Equilibrium is a stronger solution concept which states that in 

equilibrium, every agent will have the same utility-maximizing strategy irrespective of the 
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strategies of all other agents. A strategy    is a dominant strategy if it weakly maximizes the 

agent's expected utility for all possible strategies of other agents, 

 

    (   (  )    (   )   )       (   
 (  )    (   )   ) (2.2)  

∀   
      ,             

 

Unlike the Nash solution concept which makes strong assumptions about the information 

available to agents about each other, dominant-strategy equilibrium makes no such 

assumptions. This makes dominant strategy a robust solution concept. In fact it doesn’t even 

require agents to believe that others will choose its own optimal strategy in a rational manner. 

Hence, it is understandable why dominant strategy implementations of social choice functions 

are preferable over Nash implementations, in the context of mechanism design. 

 

Bayesian-Nash equilibrium 

 

The Bayesian-Nash Equilibrium states that in equilibrium, every agent selects an expected utility 

– maximizing strategy in equilibrium with the other agents’ expected-utility maximizing 

strategies. A strategy profile   (   ( )   ( )     ( ))  is in Bayesian- Nash equilibrium if for 

every agent   and all preferences         

 

    (   (  )    ( )   )       (   
 (  )    ( )   ) 

 

(2.3)  

∀   
 ( )     ( ) and    denotes the expected utility over distribution of agent types  ( ) 

 

Bayesian-Nash is a stronger solution concept than the Nash equilibrium but weaker as 

compared to dominant strategy equilibrium, even though it makes reasonable assumptions 

about agent information.  

 

Looking ahead to mechanism design, we can declare the preferable ordering of the different 

implementation concepts                                . An ideal mechanism is 
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one which provides agents with a dominant strategy and implements a solution to the multi-

agent distributed optimization problem. 

 

2.4.3 Social Choice Function 

The social choice function allows the selection of the optimal outcome given agent types and 

thus satisfies the system-wide goal of the mechanism. Social choice function             

          chooses an outcome  ( )    , given types   (          ). The mechanism 

design problem is to implement the solution to the SCF. 

 

The social choice function selects an alternative from a set of alternatives, given everyone’s 

preferences. The goal of the mechanism design is to implement a social choice function that 

satisfies certain desired properties. For instance, in our research problem a good choice of the 

social choice function can be a function that maximizes the total utility of all the sensor 

platforms and the information gain of the common operating picture, when allocating the 

bandwidth. 

 

In our discussion we shall assume that agents have quasi-linear utility functions and are risk-

neutral. A quasi-linear utility function for agent   with type   can be defined as 

 

   (    )     (    )      

 

(2.4)  

where outcome   defines a choice       from a discrete choice set and a payment    by the 

agent, with valuation function   ( )   

 

With quasi-linear agent preferences we can separate the outcome of a social choice function 

into a choice  ( )     and a payment  ( ) made by each agent  :  

 

  ( )  ( ( )   ( )   ( )      ( )) 

 

(2.5)  

for preferences   (          ) 
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2.4.3.1 Properties of SCF 

 

 Pareto Optimality: A social choice function is said to be Pareto optimal or efficient if it 

implements outcomes for which no alternative outcome is strongly preferred by at least 

one agent, and weakly preferred by all other agents. SCF  ( ) is Pareto Optimal if for 

every  ́   ( ) , and all preferences   (          )  

 

   ( ́   )     (    )  

                  ( ́   )     (    )  

(2.6)  

 

 Allocative Efficiency: Allocative efficiency maximizes the total value over all agents. 

Social choice function  ( )  ( ( )  ( )) is allocatively efficient if for all preferences 

  (          )  

 

 

∑  ( ( )   )

 

   

   ∑  ( ́   )

 

   

  (2.7)  

for all       

 

 Budget Balanced: Budget Balance implies there are no net transfers in or out of the 

system. Social choice function  ( )  ( ( )  ( ))  is budget balanced if for all 

preferences   (          )  

 

 

∑  

 

   

   (2.8)  

 

 Weak Budget Balanced: Weak Budget Balance implies there can be a net payment 

made from agents to the mechanism, but no net payment from the mechanism to the 

agents. 
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∑  

 

   

   

 

(2.9)  

A mechanism     (            ( )) defines the set of strategies    available to each 

agent, and an outcome rule                   , such that  ( )  is the outcome 

implemented by the mechanism for strategy profiles   (          ) 

 

Given mechanism M with outcome function  ( ), we say that a mechanism implements social 

choice function  ( ) if the outcome computed with equilibrium agent strategies is a solution to 

the social choice function for all possible agent preferences. 

 

A mechanism has property   if it implements a social choice function with property  .  

 

 Ex-post Pareto optimal: Mechanism   is Ex-post Pareto optimal if it implements a 

Pareto optimal social choice function  ( ) over specific agent types. 

 

 Ex-ante Pareto optimal: Mechanism   is Ex-ante Pareto optimal if there is no outcome 

that at least one agent strictly prefers and all other agents weakly prefer in expectation. 

 

 Efficient mechanism: Mechanism   is efficient if it implements an allocatively-efficient 

social choice function  ( ). 

 

 Ex-post Budget Balanced: Mechanism   is Ex-post Budget Balanced if the equilibrium 

net transfers to the mechanism are non-negative for all agent preferences, every time. 

 

 Ex-ante Budget Balanced: Mechanism   is Ex-ante Budget Balanced if the equilibrium 

net transfers to the mechanism are balanced in expectation for a distribution over agent 

preferences. 

 

 Individual Rationality (IR): Mechanism   is said to be individually rational if the agents 

participate in the mechanism voluntarily in lieu of some incentive of participation. 
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Depending on which mechanism stage the agent chooses to participate in, there are 

three individually rational strategy profiles. 

 

 Ex-post Individual Rationality: In this strategy profile   ( )  agents choose 

whether to stay or leave after announcing their types and learning an outcome 

from the set of feasible outcomes. If  ̅(  ) is the utility for opting out, then in an 

ex-post IR mechanism:  

 

    (  (  (  )    ( ))   )     ̅(  )   

 

(2.10)  

∀        and          where                                  

 

 Interim Individual Rationality: In this strategy profile  ( )  agents choose 

whether to stay or leave after announcing their types but before the outcome is 

calculated 

 

 

 (  | )       (  (  (  )    ( ))   )     ̅(  )  (2.11)  

 

 Ex-ante Individual Rationality: In this strategy profile  ( ) an agent must make 

its decision before knowing its type, therefore it must know the types’ prior 

distribution 

 

 

 (  )       (  (  (  )    ( ))   )     ( ̅(  ))   (2.12)  

 

An ex-post IR strategy profile satisfies both the interim and ex-ante conditions. Interim 

IR is a stronger profile as opposed to ex-ante, as the agents in interim IR agree to 
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participate after learning their types, while the agents in the ex-ante IR don’t have 

access to this information when they decide to participate in the mechanism. 

 

One last important mechanism property, defined for direct-revelation mechanisms, is incentive-

compatibility. 

 

2.4.4 Direct Revelation Mechanism 

A direct-revelation mechanism     (               ( )) restricts the strategy set         

for all i, and has outcome rule                  which selects an outcome  ( ̂) based on 

reported preferences  ̂  (  ̂   ̂     ̂ )  In other words, in a direct-revelation mechanism, the 

strategy of agent   is to report its type  ̂     (  ), based on its actual preferences    

 

2.4.4.1 Incentive Compatible Mechanism 

A mechanism is incentive compatible if it truthfully implements a social choice function. For 

direct revelation mechanisms, the social choice function  ( ) is truthfully implementable, if the 

mechanism has equilibrium  ( )      in which  (  )      for all         . We can distinguish 

between three different equilibrium strategy profiles: 

 

 Dominant Strategy Incentive Compatibility: A direct revelation mechanism   is 

dominant strategy incentive compatible (or strategy proof) if truth revelation is a 

dominant strategy equilibrium. 

 

 Ex-post Nash Incentive Compatibility: A direct revelation mechanism   is Ex-post Nash 

incentive compatible if truth revelation is ex-post Nash equilibrium. 

 

 Bayesian Nash Incentive Compatibility: A direct revelation mechanism   is Bayesian 

Nash incentive compatible if truth revelation is an Bayesian Nash equilibrium of the 

game induced by the mechanism 
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The revelation principle is the cornerstone of mechanism design and this principle is defined for 

direct mechanisms in conjunction with incentive compatibility. According to the revelation 

principle, any mechanism can be transformed into an equivalent incentive-compatible direct-

revelation mechanism, under weak conditions, such that it implements the same social-choice 

function. This leads to the central possibility and impossibility results of mechanism design. 

 

2.4.4.2 Dominant Strategy Revelation Principle 

Suppose there exists a mechanism (direct or otherwise)   that implements the social-choice 

function  ( ) in dominant strategies. Then  ( ) is truthfully implementable in dominant strategy 

(strategy-proof mechanism). 

 

The revelation principle implies that we just need to restrict attention to truth-revealing direct-

revelation mechanisms.  The significance of dominant-strategy revelation principle can be 

understood when we are tasked to identify which social choice functions are implementable in 

dominant strategies. According to the revelation principle we need only to identify those 

functions  ( )  for which truth-revelation is a dominant strategy for agents in a direct-revelation 

mechanism with outcome rule  ( )    ( ) . 

 

We provide a discussion on the key impossibility and possibility results within the Mechanism 

Design literature in Appendix A. The possibility result most pertinent to our research is the 

Vickrey-Clarke-Groves (VCG) Mechanism which is individually rational, incentive compatible and 

allocatively efficient (but not budget-balanced). In fact, the VCG mechanism is the only family of 

mechanisms that implement an efficient and individually-rational SCF where truth-telling is a 

dominant strategy, amongst direct-revelation mechanisms. The VCG mechanism achieves its 

strategy-proofness through its payment scheme whereby an agent’s utility is aligned with that 

agent’s marginal contribution to the mechanism. 

 

We will now turn our attention to reviewing different auction-based mechanisms. We have 

already discussed and rejected three single-sided auctions earlier – English, Dutch and First Price. 

In the next discussion we briefly discuss the Second-Price sealed bid auction introduced earlier. 
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We then turn to the more generic and popular family of mechanisms- the VCG mechanism and 

highlight the shortcomings of this mechanism, with respect to our research. We also review the 

various modified-VCG auction-based mechanisms proposed in literature. 

 

2.5 Trust in Mechanism Design 

The sealed-bid second-price auction is also known as Vickrey auction. Vickrey auction is a special 

case of the family of VCG mechanisms, for allocating one item. It is identical to the sealed first-

price auction in that all bidders submit sealed bids individually but the winner pays the second-

highest bid rather than their highest winning bid. We can express this for the case, with bids    

and    indicating the first- and second- highest bids respectively. In Vickrey auction the item is 

sold to the item with the highest bid (  ), for a price computed as    (      )      i.e. the 

second-highest bid. 

 

The Vickrey auctions helps in understanding the intuition behind the strategy-proofness of the 

VCG mechanisms. In the Vickrey auction revealing one’s true valuation is a dominant strategy as 

one’s bid only dictates the range of prices one is willing to accept, not the actual price it will 

have to pay. The price that an agent pays remains independent of its bid price. Thus in case an 

agent knows the second-highest bid, it can still bid it’s true value because it just has to pay 

enough to out-bid the other agent. The mechanism is weak budget-balance because the second-

highest bid price is always non-negative, and the mechanism is individually-rational as the 

second-highest bid price is not more than the highest bid price, which in equilibrium, is equal to 

the winning bidder's value. 

 

Yet in the context of this research, the VCG mechanism has several shortcomings: 

 

1. The VCG auction induces truth elicitation on the part of bidders, but not the 

auctioneer :- 

The VCG auction cannot prevent the auctioneer from lying, as the auctioneer could ask for a 

higher price than the second price. The bidders have no access to the sealed and private bids of 

the others and the winner has no option but to pay the requested price. M. Hsu & Soo (2002) 
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address this drawback by randomly delegating one of the bidders to be the auctioneer and use a 

public blackboard to publish the agents’ bids. This blackboard serves the purpose of allowing the 

first and second highest bidders to verify the results, but introduces complexity to the 

mechanism and compromises the robustness of the network. Yokoo & Suzuki (2004) have 

proposed an encryption method that guarantees secure bidding without endangering the 

privacy of bids. However it introduces significant latency in the communication as it involves 

multiple overlays of calculations and is not ideal for real-time networks. 

 

2. VCG mechanism assumes that the bidder’s valuations are not interdependent on 

others’ valuations :- 

In tactical sensor networks, the observations made by the sensor agents are polluted by 

uncertainty and noise. As a result, individual sensors have a limited and partial view of the 

common operating picture. Indeed, other sensor agents may possess information that would, if 

known to a particular bidder, affect the value he assigns to the object. The resulting information 

structure is one of interdependent values (Krishna, 2002). A naïve extension of the VCG 

mechanism is known not to work in the case of interdependent valuations. 

 

In the last decade, auctions based on interdependent valuations have garnered significant 

attention among researchers.  Some of the most relevant work include (Dasgupta & Maskin, 

2000; Jehiel & Moldovanu, 2001; Krishna, 2002).  

 

Krishna (2002) looked at direct mechanisms for a number of scenarios: single and multiple items, 

two and more buyers as well as single dimensional and multi-dimensional signals. For the base 

scenario of multi-bidders single-item with single-dimensional signals, he showed the existence 

of efficient allocations. In this direct mechanism, the bidding agents would submit their 

interdependent valuation functions along with their private signals to a central auctioneer. If 

these valuations satisfied certain conditions, the auctioneer would be able to decide the 

efficient allocation of the item and the payment scheme was devised to incentivize the agents to 

reveal their signals truthfully. In the case of multi-items and multi-dimensional signals, efficient 

allocations could not be achieved. Krishna concluded that the problems associated with 
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interdependent valuations do not arise from the multiplicity of the items per se but rather from 

the multiplicity of the dimension of the signals received by the bidders.   

 

Dasgupta & Maskin (2000) approached the problem of interdependent valuation in the case of 

single item and single-dimensional signals, from a different perspective. In their mechanism the 

agents, instead of submitting their valuation functions and observed signals to the auctioneer, 

would instead make contingent bids – bidder A would submit a range of bids that specified its 

bid when bidder B bid a particular value and so forth. This makes the bidding process complex 

for the case of single item, which becomes even more complex when multiple items need to be 

allocated. This ends up complicating the mechanism because instead of just revealing their 

valuation function and signals as in Krishna’s mechanism, the agents now have to submit bids 

based on what other agents might bid. 

 

Krishna postulated that it is the multiplicity of the dimension of the signals which leads to 

inefficient allocations in direct mechanisms. Jehiel & Moldovanu (2001) took this notion forward 

and showed that it is not only VCG mechanisms that are affected by this particular shortcoming. 

Instead, in an interdependent valuation setting, no one-stage mechanism could achieve both 

efficiency and incentive compatibility for procurement of estimates from multiple sources. 

 

Mezzetti (2004) addressed this challenge to a certain extent and showed that an efficient 

allocation with multidimensional types is possible, if (a) values are privately realized by the 

agents once an allocation is made and (b) two-stage mechanisms can be adopted in which the 

payments are made contingent on realized values reported in a second stage. Mezzetti designed 

a two-stage mechanism: in the first stage the agents would submit their reports to the 

auctioneer, who would in turn determine the allocation of the items among the bidding agents. 

In the second stage the agents observe their payments and receive the final transfers from the 

auctioneer. However the equilibrium relies on agents correctly reporting their realized values – 

this poses an issue for our research scenario, as the agents will have a tendency to under-report 

the quality of their data, so that the bandwidth is allocated to the other agents in the scenario 

for the transmission of their data. 
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Klein et al. (2008) addressed this pertinent issue of under-reporting valuation. They assume 

since the auctioneer (or the trusted center in their case) is located within the network and is 

capable of observing the quality of the data broadcasted, the trusted center could infer for each 

agent, its value from the realized outcome. Although their mechanism deals with agents’ under-

reporting the quality of their information, it has no means of handling agents degrading their 

measurements and reporting data of poor quality.  What this translates into is that the agents 

can get away with investing few or none of its resources in generating the information, which it 

can subsequently report truthfully thereby subverting the allocative efficiency of the mechanism. 

Another drawback is that the payments made to the agents are based on the realized outcome, 

rather than the expected one. Thus their proposed mechanism cannot handle selfish behavior 

on the part of the agents nor the uncertainty that characterizes the ULS system environment.  

 

3. VCG mechanism can’t ensure budget-balance 

 

VCG mechanisms are not budget-balanced and cannot operate without intervention. It needs 

funds to be regularly deposited with the auctioneer in order to maintain wealth for the agents. 

Although budget balance is not one of our research objectives, it is a desirable property for the 

mechanism to operate independently without relying on external sources or intervention. 

 

Cavallo (2006) proposed a redistribution mechanism to achieve budget balance in a modified 

VCG mechanism. This redistribution mechanism is applied once the center computes the 

allocation of single or multiple items among two or more bidders, in order to achieve budget 

balance asymptotically. For the case of ten or more agents it can achieve redistribution of more 

than 70% of the VCG surplus. Petcu, Faltings, & Parkes (2006) proposed two distributed 

mechanisms to achieve different degrees of budget balance: redistributing the VCG tax to attain 

weak budget balance and achieving exact budget balance at the expense of optimality. In fact, 

sacrificing optimality or individual rationality for budget-balance is a natural consequence of the 

impossibility results (Appendix A). However, within the framework proposed by Petcu et al. 

(2006) the agents are assumed to have precise and perfect valuations, which do not hold up in 

operating environment characterized by uncertainty.  
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In conclusion, we have reviewed several auction-models that relate to our research problem, 

and pointed out the inherent flaws that characterize auction-based mechanisms. Thus we need 

to shift our focus from the realms of auction based models, to another promising alternative 

approach within the Mechanism Design research domain, in the form of strictly proper scoring 

rules.    
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CHAPTER 3. MULTI-AGENT SYSTEMS FRAMEWORK 

In this chapter, we provide an overview of the Multi-Agent System framework used to generate 

the surrogate model for our research problem.  We introduce the agent-based modeling tool 

Discrete Agent Framework (DAF), developed at Purdue, and describe the agent-based model 

framework created in DAF to emulate the combat tactical data network and construct the 

common operating picture. 

 

3.1 Multi-Agent System Framework 

We need to generate a surrogate model for the real world which exhibits the necessary fidelity 

and complexity to study the application of mechanism design in a practical context. To this end, 

we use the Multi-Agent System framework to model the tactical data network dynamics, and 

incentivized interactions between participating agents and the resultant quality of information 

gained due to fusion of sensor data. The model goes a long way in helping us translate the 

research problem and objectives into real-world settings and eliciting the requirements of the 

desired mechanism.  

 

Over the past few decades, the field of Multi-Agent System (MAS) has garnered quite a lot of 

attention in science and engineering. It has become particularly important in different aspects of 

computer science, like robotics, distributed systems and artificial life and intelligence. The field 

of MAS is uniquely suited to account for operational independence of agents, along with 

phenomena related to free will, competition, consensus, communication, belief, knowledge and 

deception. It is an ideal framework to model the decentralization, uncertainty, evolution, and 

heterogeneity that characterize ultra large scale systems.  
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3.1.1 Agent Characteristics 

Before we can proceed further with our discussion on MAS, it is necessary to define what we 

mean by the terms ‘agent’ and ‘multi-agent system’.  Wooldridge (2009) gave a definition that is 

oft-cited: “an agent is a computer system that is situated in some environment, and that is 

capable of autonomous action in the environment in order to meet its design objective”. Russell, 

Norvig, Canny, Malik, & Edwards (1995) define an agent as “anything that can perceive its 

environment through sensors and act upon that environment through actuators”. Ferber (1999) 

floated the notion of a minimal common definition which is widely accepted as the most 

detailed and definitive description of an agent: 

 

 

The definition as provided by Ferber (1999) in (a) - (i) represent a set of notional behaviors, 

namely, autonomy, communication, intentionality, reactivity, flexibility, learning and self-

actuation. Each of the terms in this definition is significant. Agents exhibit a host of different 

properties and characteristics, which enable us to classify agents using different schemes. We 

discuss some of these distinguishing properties next. 

 

An agent is a physical or virtual entity 

 

a) which is capable of acting in an environment, 

b) which can communicate directly with other agents, 

c) which is driven by a set of tendencies (in form of individual objectives or of a 

satisfaction / survival function which it tries to optimize), 

d) which possesses resources of its own, 

e) which is capable of perceiving its environment (but to a limited extent), 

f) which has only a partial representation of this environment (and perhaps none at all), 

g) which possesses skills and can offer services, 

h) which may be able to reproduce itself, 

i) whose behavior tends towards satisfying its objectives, taking account of the resources 

and skills available to it and depending on its perception, its representations and the 

communications it receives. 
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Autonomy 

 

Perhaps, the most important and defining characteristic of an agent is the capability to act 

autonomously. By autonomous, we mean the agents are directed by a set of inherent 

tendencies and not by external commands originating from another agent or a user. In fact, 

agents are free to accede to, or, reject requests from other agents. Agents are not passive 

entities, merely responding to its environment and other agents; but are actively initiating 

actions to achieve certain individual goals or optimize certain satisfaction or survival functions.  

 

Adaptive/Reactive 

 

An adaptive agent has the ability to learn from past experiences and modify or adapt its 

behavior based on its accumulated experiences. By extension of adaptability, agents require 

some memory in order to store and learn from experiences. An agent may have predefined rules 

or some abstract complex mechanism that allows it to adapt to its environment. The concept of 

adaption is applicable in both the individual and group cases for agents. 

 

Reactive agents, on the other hand, are directed by their individual goals and satisfaction or 

survival functions and are incapable of adapting to its environment. Reactive agents have no 

representation of their environment or of other agents, and no sentience to adapt to changing 

environment. Nevertheless, reactive agents are interesting in that they can constitute groups or 

colonies, which are capable of adapting to their environment. 

 

Goal-Oriented/Utility-based 

 

An agent may be goal oriented which indicates that its actions are directed towards achieving a 

given or computed goal. Goal oriented agents don’t have any utility or objective functions to 

optimize but have motivation mechanisms pushing them towards accomplishing a goal.  

Utility – based agents have predefined satisfaction or survival functions which it attempts to 

optimize. A goal specifies a crude distinction between success and failure while utility functions 

tend to be more generic and provide a measure of success for a given state. Utility – based 
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agents have to make decisions comparing choice between conflicting goals, and choice between 

likelihood of success and importance of goal. 

 

Physical / Virtual 

 

Physical entities are agents which act in the real world. It can take the form of physical objects 

like aircrafts or robots. Virtual entities, such as software modules, have no physical presence in 

the real world. 

 

Social 

 

An agent is social if it is capable of dynamically interacting with other agents in the system. 

Agents are endowed with the ability to distinguish the features of the agents with which they 

communicate. The designer may explicitly model the communication protocols, which define 

the rules of interaction with other agents as well as the environment. 

 

Agents may exhibit a host of different characteristics apart from the ones encompassed in 

Ferber’s minimal definition. Agents may be mobile, capable of transporting itself from one 

machine to other. Agents explicitly designed to collect, classify and filter information are called 

info-gathering agents. Agents may have character, i.e. a believable personality and emotional 

state. Agents are temporally continuous and run as a continuous process. Some agents which 

require assistant users are termed as interface agents.  

 

Various schemes exist for agent classification: Agents may be classified according to the tasks 

they perform, or the range and sensitivity of their senses, or their control structure, or how 

much internal sate they possess, or the environment, in which they operate, or the range and 

effectiveness of their actions. And, there are many, many more such classification schemes we 

can choose from. 

 

In modeling languages, like Unified Modeling Language (UML), agent classification is important 

as it provides a basis for representing the common underlying features and/or capabilities for 
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each and every agent. Odell, Nodine, & Levy (2005) describe UML constructs for classifying 

agents based on the capabilities that they have from their physical implementation (Agent 

Physical Classifiers) and from their current activities (Agent Role Classifiers). 

 

 Agent Physical Classifier: It defines the sets of core, or primitive, features that all agents 

possess. Every agent must be classified according to some fixed Physical Classifier. 

 

 Agent Role Classifier: It classifies agents according to the roles they are capable of 

playing at any given time. Agents can change roles over time (dynamic classification) 

and be associated with multiple roles at the same point in time (multiple classifications). 

 

Franklin & Graesser (1997) have provided a hierarchical classification of agents based on the 

properties of an agent. We highlight some of the important agent characteristics, relevant to our 

research problem, with the aid of an interactive flowchart in Figure 3-1. 

 

 

Figure 3-1 Classification of Agents 
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3.1.2 Multi-Agent Systems 

Multi-agents systems are even harder to define than agents. ‘Multi-agent system’ is commonly 

used as an umbrella term for different types of systems, because of its application in different 

fields. Once again we fall back to the minimalist definition as provided by Ferber (1999). 

 

 

 

Given the different definitions and fields of applications, there exist a plethora of different terms 

for the same methodology.  Whereas most authors refer to these models as multi agent models, 

others talk about agent-based models. Similarly, the terms multi-agent simulation and Agent-

Based Modeling (ABM) are used interchangeably.  

 

Vlassis (2007) lists six fundamental aspects of MAS that distinguishes it from single agent 

systems. We present these fundamental traits with a short description of each, in Table 3-1 . We 

capture how our research problem of bandwidth allocation in tactical defense scenarios and by 

extension, Ultra Large Scale (ULS) systems, exhibits these characteristics as well. 

The term ‘multi-agent system’ (MAS) is applied to a system comprising the following 

elements: 

 

a) An environment, E, that is, a space which generally has a volume. 

b) A set of objectives, O. These objects are situated, that is to say, it is possible at a 

given moment to associate any object with a position in E. These objects are passive, 

that is, they can be perceived, created, destroyed and modified by the agents. 

c) An assembly of agents, A, which are specific objects (A ⊆ O), representing the active 

entities of the system. 

d) An assembly of relations, R, which link objects (and thus agents) to each other. 

e) An assembly of operations, Op, making it possible for the agents of A to perceive, 

produce, consume, transform and manipulate objects from O. 

f) Operators with the task of representing the application of these operations and the 

reaction of the world to this attempt at modification, which we shall call the laws of 

the universe. 
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Table 3-1 Fundamental Characteristics of MAS 

Characteristic Description Research problem 

Agent Design 

Includes heterogeneous agents 

whose characteristics and behaviors 

vary in their extent or sophistication. 

Consists of heterogeneous agents like 

targets, sensor platforms etc. which 

affect all functional aspects from 

perception to decision making. 

Environment 

Unlike the static environment of 

single-agent systems, MAS 

environment appears dynamic from 

the agent’s point of view due of the 

presence of multiple agents. 

The military platforms in our research 

problem operate in an uncertain and 

dynamically evolving environment, 

which is a primary characteristic of 

ULS systems. 

Perception 

Agents have only a partial 

representation of their environment 

and have no overall perception of 

what is happening. 

The sensors onboard the military 

platforms have an incomplete and 

inaccurate view of the operating 

picture and have to fuse their 

perceptions to improve the accuracy 

of information. 

Control 

In MAS the control is decentralized 

for reasons of robustness.  

Coordinating the actions of the 

agents is a challenge, which is the 

subject of game theory. 

The sensor platforms make their own 

decisions independently, and the 

mechanism coordinates the actions 

of the multiple agents. 

Knowledge 

Common-knowledge which indicates 

how much one knows about the 

current world, and what every agent 

knows that every other agent know 

about and so on. 

The solution concept of the game 

theoretic formulation depends on the 

common knowledge. The revelation 

principle in MD lets us restrict our 

attention to strategy-free 

mechanisms. 

Communication 

Agents can both receive and 

transmit messages, which allows for 

coordination and negotiation. 

Rules of interaction are specified in 

the form of protocols and message 

formats, like Link 16. 
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Weiss (1999) provides a comprehensive and detailed overview of the architecture of multi-agent 

systems with the potential ranges of their attributes. We encapsulate the highlights in Table 3-2: 

 

Table 3-2 MAS architecture attributes 

 Attribute Range and Types 

Agents 

Number Two or more 

Uniformity Homogenous/Heterogeneous 

Goals Contradictory/Complementary 

Architecture Reactive/Deliberative 

Abilities Simple/ Complex 

Interactions 

Frequency Low/High 

Persistence Short/Long term 

Level Signal passing/knowledge intensive 

Pattern Decentralized / Hierarchical 

Variability Fixed/Dynamic 

Purpose Competitive/ Cooperative 

Environment 

Predictability Foreseeable/Unforeseeable 

Accessibility Limited/Unlimited 

Dynamics Fixed/Variable 

Diversity Poor/Rich 

Resource availability Restricted/Sufficient 

 

3.1.3 Short History of MAS 

Compiling a concise, definitive history of MAS is a challenging task given that the roots of this 

methodology are immersed in a host of different disciplines. For a more detailed analysis of the 

same, the interested reader should peruse Bousquet & Le Page, 2004; Ferber, 1999; Wooldridge, 

2009. 

 

Originally, the roots of MAS stem from the field of Artificial Intelligence (AI) where it first 

appeared in mid-nineteenth century but didn’t garner much attention until the mid-1980s. The 
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AI community was more focused on single agent: its autonomy and its environment. Bousquet & 

Le Page (2004) credit the field of Distributed Artificial Intelligence (DAI) as the root of MAS. 

Researchers like Huhns & Stephens (1999) focused more on the organization of multiple agent 

interactions. The later researchers took inspiration from biology and created hybrid 

architectures based on reactive and reasoning behavior. Langton (1989) worked on the Artificial 

Life theory, a field based on physics and the general context of the sciences of complexity. 

Research of MAS moved independently and simultaneously until about the early 1990s.With the 

advent of the internet and electronic commerce, the interest in MAS skyrocketed in the mid-

1990s and at the same time researchers started to reformulate certain questions in the social 

and natural sciences, based on MAS. All in all, the history of multi-agent systems was influenced 

by their multidisciplinary nature and has influences from computer science, natural sciences, 

cognitive psychology, sociology, linguistics and other social sciences. 

 

3.1.4 Applications of MAS 

Ferber (1999) differentiates the applications of Multi-Agent Systems into five main categories as 

depicted in Figure 3-2. 

 

Figure 3-2 Applications of MAS 
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3.2 Agent – Based Modeling  

Agent-Based Modeling (ABM) or Multi-agent simulation is a powerful simulation modeling 

technique where a system is modeled as a collection of autonomous agents. ABM is a relatively 

new approach to modeling the dynamics of complex systems and complex adaptive systems. 

The ABM mindset advocates modeling a system from the perspective of individual constituent 

entities. By modeling systems from ground-up, the range of diversity of attributes and behaviors 

among the heterogeneous agents give rise to organization and behavior of the system. Even a 

simple ABM with few agents and interaction rules, can give rise to complex behavioral patterns. 

Unanticipated and non-programmed patterns, behaviors, and structures emerge from agent 

interactions and provide valuable information of the system the ABM sought to emulate. ABM 

provides a methodology to model social systems with autonomous adaptive rational agents, 

which are not amenable to rigorous mathematical modeling. 

 

ABMs can be characterized by four constructs (Jiang & Gimblett, 2002): 

 

 Agents:  Set of all simulated heterogeneous behavioral entities. 

 Objects:  Set of all represented passive entities that do not react to stimuli. 

 Environment: Topological space where agents and objects are located and signals 

propagated. 

 Communications:  Set of all possible communications between entities. 

 

3.2.1 Benefits of ABM 

Bonabeau (2002) captures the benefits of ABM over other modeling techniques in three concise 

statements: ABM captures emergent phenomena; ABM provides natural description of the 

system; and ABM is flexible. 

 

1. Emergence:- 

Perhaps, the biggest advantage of ABM is its unique ability to capture non-intuitive emergent 

phenomena resulting from the interaction among agents. The guiding principle behind 

emergent phenomena is the same as that behind system-of-systems: “The whole is more than a 
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sum of its constituent parts.” Emergence can be counterintuitive: a traffic jam moving in a 

different direction opposite to the cars that cause it. Conway’s Game of Life (Conway, 1970) 

provides an example of emergent behavior. The properties of emergence are decoupled from 

the properties of the agent or its interactions and this makes them difficult to predict. ABM is 

typically used whenever there is a potential for emergent phenomena: individual behavior is 

non-linear and is characterized by thresholds or non-linear coupling and exhibits non-markovian 

behavior or hysteresis.  ABM is particularly suited to capture systems where aggregation will 

simply not work. Aggregate differential equations assume global homogenous behavior and 

tend to even out fluctuations. However under certain conditions, these fluctuations can be 

amplified and show significant deviation from the predicted aggregate behavior.  

 

2. Natural Description:- 

ABM is the most natural technique for modeling systems composed of behavioral actors. The 

ABM is not an abstract holistic overview description of a system – ABM simulates a system from 

the perspective of the actions of the individual constituent entities. ABM should be used when 

systems are more naturally described through activities rather than processes, or when 

describing the complex individual behavior of agents renders the different equations as 

intractable. 

 

3. Flexibility:- 

With ABM, one doesn’t need to know the exact agent complexity and description ahead of time. 

ABM exhibits flexibility in multiple dimensions. One can change the number of agents in the 

simulation, and the levels of description or complexity. ABM also provides a natural framework 

to work with the agent behavior, rules of interaction, agent rationality and adaptivity and others. 

The main intuition behind using ABM is not to optimize but rather seek the adaptive nature of 

agent rules and behavior.   
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3.2.2 Use Cases of ABM 

Axtell (2000) argues that there exist three distinct uses of ABM techniques. We illustrate each of 

these use cases with the help of examples provided in the original paper: 

 

1. Models that can be formulated and completely solved  

This usage is closest conceptually to traditional simulation in operations research. This use arises 

when a social process can be explicitly formulated in the form of soluble equations. If these 

equations can be solved numerically, then the ABM acts as a Monte-Carlo analysis and if they 

are soluble analytically, the ABM acts as a tool for presenting the mathematical results. 

 

For example, consider the classical OR simulation of a bank teller line. This is a queuing model 

and no general analytical solution is known for arbitrary distributions of arrivals and service 

times. Therefore, the queuing process is commonly simulated via the Monte Carlo method and 

distributions of waiting times and server utilization result. However, this is completely equivalent 

to actually instantiating a population of agents, giving them heterogeneous arrival times 

according to some distribution, and then running the agent-based and studying the queue 

lengths that emerge, over time building up the entire waiting time distribution function. 

 

2. Models that are partially soluble 

The most important use of agent models is for this class of problem where one can describe the 

system process using mathematical equations, but they are not completely soluble. In this case 

the ABM serves as a way to gain insight into the functioning of the model. It can shed light on 

solution structure and properties of the model. What’s more, once a model has been created it 

not only provides information about the stability or the equilibria of the solution but rather 

entire trajectories of the solution. Furthermore, the computational model can be used to test 

dependence of the results on assumptions and values of parameters and even provide counter-

examples. 

 

In models of traffic, important output statistics are the distributions of jams by size and lifetime. 

Agent-based models have been created to study the dynamic aspects of traffic e.g., Nagel & 
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Rasmussen (1994). These models are capable of reproducing real world data with high fidelity 

(Casti, 1997). In particular, on crowded roads it is known that local flow-rate data can be highly 

non-stationary. Differential equation (fluid mechanical) models of traffic have a difficult time of 

capturing this feature of the data, as well as faithfully representing other transient and 

dynamical properties of real world traffic. However, these phenomena do emerge in large-scale, 

massively parallel (i.e., agent) computational models of traffic. Additionally, the jamming 

distributions that arise in these models display a kind of universality also seen in statistical 

physics. That is, the macro-statistics of the systems are relatively insensitive to the agent 

specifications, i.e., many reasonable models of driving behavior produce the same distribution of 

traffic jams! 

 

3. Models that are intractable 

When a social process model is either apparently or provably intractable, then trying to express 

the same through a mathematical framework is an exercise in futility. In such instances, ABM is 

the only available technique for systematic analysis and a viable substitute for formal 

mathematical analysis.  

 

For example, it is well-known that there does not exist closed form solutions to certain relatively 

simple differential equations in terms of elementary functions. When a problem is intractable in 

this way it has nothing to do with its complexity. Rather, it is an artifact of the limited 

explorations undertaken to date in the infinite library of functions. In such circumstances one 

makes recourse to numerical solution. But there are also instances in which numerical solution 

would appear to be essentially intractable, not in the sense of being impossible but merely not 

useful. This occurs when governing equations are highly nonlinear. When such circumstances 

arise in computational physics, particle models can sometimes be advantageous. The same is 

true of agent-based computational models in the social sciences: if it is hard to make any real 

progress solely by analytical manipulation, agent models may prove useful. 

 

In each of these three cases, ABM can assist with: 

 

 Visual output and symbolic check of the mathematical solutions 
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 Introduce bounded rationality, and study sensitivity of solutions 

 Explain system dynamics and observed phenomena 

 

3.2.3 Applications of ABM 

Agent-based modeling has been used in quite a variety of application ranging from physical 

sciences to social sciences, from biological sciences to management sciences.  Bonabeau (2002) 

delineates the application areas of ABM into four distinct categories using real-world examples: 

 

1. Organizations: Organizational design and operational risk. 

2. Markets: Strategic simulation, stock market and software agents. 

3. Diffusion: Innovation diffusion and adoption dynamics. 

4. Flows: Traffic, customer, and evacuation flow management. 

Our discussions indicate that ABM is uniquely suited to model ultra-large-scale, decentralized 

systems as it provides a natural framework for describing systems comprising of autonomous 

rational and self-interested agents interacting with each other in a dynamic and uncertain 

environment.  

 

3.3 ABM as a Tool for Modeling ULS systems 

Agent-based modeling is an important tool for the engineering of large-scale decentralized 

complex systems. ABM is increasingly the tool of choice for modeling systems as well as system-

of-systems, as it provides systems engineers the means to investigate alternative architectures 

and gain an understanding of the impact of the behaviors of individual systems on emergent 

behaviors. We believe that these properties make ABM an ideal tool to analyze ULS systems as 

well. 

 

3.3.1 Brief Literature Review 

The recent increase in availability of software packages for agent-based simulation and the 

increased understanding that agent-based modeling is well suited for modeling complex 

decentralized systems has resulted in many applications of agent-based modeling. Kilicay-Ergin 

& Dagli (2008) describe the use of AnyLogic agent-based simulation software to model the 
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behavior of alternative system architectures for financial markets. J. Hsu, Price, Clymer, Garcia-Jr, 

& Gonzalez (2009) describe using OpEMCSS software to simulate the behavior of a complex 

adaptive system that they call the World Model. Giachetti, Marcelli, Cifuentes, & Rojas (2013) 

describe a simulation that uses Java-based CybelePro software to model the performance of a 

human-robot team as an agent-based system. 

 

3.3.2 Comparison of ABM to Other Approaches 

Various methods and tools for simulation of complex processes exist; however, they primarily 

fall into the main categories of equation-based system dynamics, discrete event simulation, and 

agent-based modeling. The following section provides comparative discussion on the differences 

between agent-based models and the other methods. 

 

System dynamics is defined as the “the study of information-feedback characteristics of 

industrial activity to show how organizational structure, amplification (in policies), and time 

delays (in decisions and actions) interact to influence the success of the enterprise” (Jay, 1958). 

Typically, system dynamics represents an aggregate level of performance as continuous 

differential equations. Analysts employ these models support strategic-level decision-making 

and to develop an overarching view of long-term trends in the dynamics of an enterprise. 

System dynamics has been widely used across a range of applications that range from socio-

economic to engineering systems, and aims to reduce complex behaviors to their most 

aggregate forms assuming that adequate, structured representations of the behaviors exist.  

 

Borshchev & Filippov (2004) and Schieritz & Milling (2003) provide a comprehensive comparison 

of simulations that use systems dynamics versus simulations that use agent-based modeling. 

System dynamics focuses on a top-down, aggregate modeling that typically uses continuous-

form representations (feedback loops) of system processes; agent-based models are based on 

discrete agent-specific logic rules that take a bottom-up approach to simulation. Agent-based 

modeling provides a means of connecting micro-level behaviors to the macro level of a system 

whereas systems dynamics link system structures to system behavior. The main difference is in 

the ability of agent-based models to capture emergent behaviors. The agent-based setting 
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allows flexible interactions between individual agents, which results in non-intuitive dynamic 

modes being generated. System dynamics reduces the possibility of exploring emergent 

phenomena due to the natural filtering of these modes that occurs through enforcement of 

aggregate equations over populations of individuals within the system, and the establishment of 

a rigid flow structure. 

 

Discrete Event Simulation is a method used to model real world processes as a series of 

interconnected discrete events that are functional processes. These processes are typically at 

the low- to mid-level state of abstraction in the hierarchy of interconnected systems and do not 

consider performance characteristics of the individual elements that execute these processes 

themselves. The focus of a process-centric simulation here is naturally well suited to 

applications where processes are the critical aspect of analysis such as in healthcare (e.g., 

patient flow), manufacturing (e.g., production floor processes layout), and logistics (e.g., 

distribution processes at a hub).  

 

As with the system dynamics approach, the discrete event simulation approach is a top-down 

approach that models aggregate behaviors of processes. While discrete methods use a powerful 

and intuitive representation of processes in a system, they are mainly intended to model and 

represent finite interactions where the underlying structure of the process is already known. 

They share the focus with systems dynamics of modeling top-down characteristics of a system 

and assume pre-defined structures and aggregations of macro behaviors. In contrast, agent-

based models are able to more generally represent individual entities that drive the discrete 

events and allow for possible emergent behaviors that are not otherwise apparent from the 

aggregated discrete dynamics of a system.  

 

3.3.3 DAFApproach to ABM 

Purdue University developed the Discrete Agent Framework (DAF) for agent-based modeling in 

2010 to enable easy application in multiple domains. Developed in object-oriented MATLAB, this 

engine provides the foundation to build agent-based simulation models to explore various 

architecture configurations for large scale complex interconnected systems and evaluate their 
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performance. DAF also enables coordinated development, verification, and validation of the 

system architecture through selective failure simulation.  

 

DAF allows the modeling effort to focus on the systems architecture itself, reducing the 

computational modeling overhead. The first major application of DAF was through a sponsored 

research initiative of the Missile Defense Agency of the US Department of Defense to examine 

and model a Ballistic Missile Defense System (BMDS) by simulating it as a collection of functions 

(executed by agents). 

 

DAF views system architecture as a collection of agents that are connected by communication 

links. In practice, each agent in DAF is an in-code application of a formal model developed from 

research and of communication links that emulate real or proposed communication standards. 

This approach allows a DAF user to follow Maier’s communication-centric architecting approach 

(Maier, 1998) by using the different possibilities of linking these agents as a means to distinguish 

one architecture from another. DAF can be used to generate and evaluate a wide variety of 

architectures by defining the functional capabilities and behaviors of agents and the 

communication links between agents. A representative implementation of DAF involves 

generating architecture alternatives, then simulating them to identify the configuration that 

provided the best balance of efficiency and reliability.  

 

There are certainly many agent-based modeling packages available and each provides many 

combinations of capability, ease-of-use, and availability. For example, NetLogo is a Java-based 

package that provides multi-platform complex system simulation, but also comes with a large 

database of sample models and implementations (Wilensky, 1999). SWARM is another open 

source Objective C/Java-driven simulation system for modeling complex systems through 

discrete event simulation. Initial development work on the SWARM system indicates that an 

object-oriented development environment is ideal for building agent-based simulations (Minar, 

Burkhart, Langton, & Askenazi, 1996). The primary differentiator between DAF and other 

packages is that DAF is MATLAB-based, and as a result, any DAF application can utilize the many 

mathematical, statistical, and visualization tools built into MATLAB or the many supported and 

third-party toolboxes associated with MATLAB. Additionally, the widespread use of MATLAB in 
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research and industry reduces the time required to learn how to use DAF and the time to apply 

it to a particular project. 

 

What makes DAF an ideal tool for emulating tactical data links for our research problem is that 

the standard communication protocols such as TCP (Transmission Control Protocol), SDP 

(Session Description Protocol) and UDP (User Datagram Protocol) have already been modeled in 

DAF.  Anticipating the need of modeling communication protocols for a reliable and accurate 

simulation, the developers of DAF created Communication Agent or “comms” agent. The comms 

agent serves as a middle-man between two agents and forwards messages from sender to 

destination based on the latency corresponding to a communication protocol. Figure 3-3 

illustrates the placement of the communication agent in an architecture, where the dotted line 

indicates the communication link without a comms agent. 

 

While the comms agent facilitates the implementation of communication latency in message 

passing, it also provides the ability to model adverse effects of cyber-attacks and impact of 

encryption. 

 

 

Figure 3-3 Communication architecture in DAF 
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The current implementation of the communications agent supports three different 

communications protocols: TCP, UDP, and SDP. These three standards model different levels of 

message delivery guarantees and latency. A comparison of the three modeled protocols is 

provided in Table 3-3: 

 

Table 3-3 Default Protocols in DAF 

Protocols Description Pros Cons 

TCP 
Re-transmits message 

until delivered 

Guaranteed message 

delivery (no packet loss) 
High latency 

UDP 
Does not re-transmit 

message 
Low latency 

Unreliable message 

delivery (high packet loss) 

SDP 
Re-transmits message 

‘n’ times (1<n<∞) 

Lower packet loss than UDP 

and lower latency than TCP 

Higher packet loss than TCP 

and higher latency than 

UDP 

 

The communications agent also provides the ability to model the physical link type that exists in 

the real world, such as satellite communications and fiber optic cable. This is advantageous since 

link type determines bandwidth, distance-based link latency, and probability of link loss. Table 

3-4 below provides a brief comparison of the three supported link types. 

 

Table 3-4 Default Links in DAF 

Link type Link latency (ms) Bandwidth 

Fiber link 0.5 - 12.5 1 Gbps 

Wireless line-of-sight 0.1 - 2.2 1400 Kbps 

SATCOM 250 1400 Kbps 

 

DAF is uniquely suited for modeling the elementary functionality of Link 16 communication 

protocol between agents, as it applies to our problem scenario. We can plug in the appropriate 

values of bandwidth, latency, and probability of link loss to model the characteristics of Link 16.  
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3.4 Research Framework 

We develop an agent-based simulation model framework within DAF to capture the 

performance of a group of military platforms tasked with the goal of detecting and tracking 

targets. Figure 3-4 captures the paper model of the ABM featuring three distinct categories of 

agents: targets, sensor platforms and the trusted center (auctioneer).  

 

The sensors onboard the military platforms can detect and classify targets within its region of 

observation. The platforms transmit the measurements from their sensors to the trusted center, 

which allocates the targets among the platforms for tracking. Each platform then broadcasts its 

observations over the tactical data link to all other platforms in the simulation. 

 

We will highlight the key concepts of platform behavior and interaction, by examining the 

research application framework, one step at a time. 

 

 

Figure 3-4 Paper Model of the agent-based simulation 
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3.4.1 Agents  

1. Targets: 

The targets are a heterogeneous group of autonomous agents that continuously traverse the 

simulation map.   At the start of simulation the targets are randomly distributed and then move 

around the map, according to their inherent dynamics. These autonomous agents have different 

speeds, destinations, sizes as well as affiliations. Not all target tracks are enemy agents: the 

simulation features an eclectic mix of friendly, neutral and hostile agents. The sensors onboard 

the military platforms track all the targets, but assigns higher priority to tracking the hostile 

targets. Keeping in mind the evolving nature of the ULSS environment, current targets may leave 

the simulation and new targets may enter at any time.  

 

2. Sensor Platforms: 

The military platforms are equipped with onboard sensors with a fixed spherical observation 

and classification sensor envelopes. The platforms can detect any target within the observation 

radius, with a predefined probability of detection. However at this distance, it is not possible for 

the platforms to classify the targets. When the targets are within the smaller classification radius, 

the platforms can categorize the targets as friendly, neutral or hostile entities. 

 

Each sensor platform transmits its own position as well as the track data observed by the 

onboard sensors over the tactical data link. However, the platforms are doing this from their 

own frame of reference and not accounting for navigation errors, radar orientation, and so on. 

Thus there are errors associated with each platform’s own position information as well as the 

track data. We can visualize this as an elliptical region around a target’s true position, which is 

computed by taking into account the covariance associated with the radar, navigation and 

bearing errors.    
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Figure 3-5 Reduction in Uncertainty due to data fusion 
 

Figure 3-5 illustrates the importance of sensor fusion. The left side of the figure indicates the 

position of the target as estimated by one sensor platform. The elliptical region denotes the 

range and bearing errors associated with the sensor measurements. When this estimate is fused 

with the position estimate provided by another sensor platform, the region of uncertainty is 

reduced (shaded region on the right) and it is possible to predict the target position with higher 

accuracy. This demonstrates the shortcoming of using Reporting Responsibility (R2) mechanism, 

which doesn’t allow for redundant reporting of a single object.  

 

One of the sensor platforms in the simulation is assigned the role of the “Grid Reference Unit.” 

Generally speaking, in Navy tactical networks the Aegis Class ships play the role of the GRU, as it 

possesses the highest quality track data. The GRU’s coordinate system is adopted as the truth 

and the GRU almost universally is assigned the reporting responsibility (R2) for any track within 

its classification radius. Since we are operating in an environment with endemic uncertainty, the 

role of GRU may be played by different platform agents, at different points in the simulation. 

 

3. Auctioneer: 

 

The role of the auctioneer or the Network Control Station is assigned to a virtual agent. The 

auctioneer receives the tactical data over the network from each sensor platform. In the 

Position  

of target  

 

Range & 

Bearing 

Error  

 

Error after 

sensor 

fusion 
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minimalist R2 approach, the auctioneer indicates to each sensor platform when it has a transmit 

opportunity, and the communication proceeds in a round-robin fashion. The time it takes to 

complete one such round of communication is calculated as the Network Cycle Time (NCT). 

After each platform transmits its measurements, the auctioneer distributes the reporting 

responsibility for each target within the observation region, among the platforms in the 

simulation. The platform selected to provide the report for a track is said to have R2 for that 

track. At the next transmit opportunity it is the task of the platform to broadcast its R2 data. 

 

3.4.2 Communication Network 

Link 16 has been the designated DoD primary tactical data link since October 1994 and is 

assumed as the baseline for our application framework. The official NATO Standardization 

Agreement (STANAG) 5516 Edition 3, defines the specifications for Link 16, and as such is the 

governing document with respect to Link 16 network management, messages and procedures 

(STANAG, 1999). A detailed discussion on Link 16 has been included in Appendix B. 

 

Zhao-xiong, Xing, Xue-min, & Jing-lun (2010) have modeled the Link 16 architecture using NS-2, 

Zhao, Chen, & Lu (2008) simulate the tactical data link in QualNet, Yu, Kuang, Wang, & Liu (2005) 

use OPNET, while Cruz (2004) use NETWARS to study the performance of Link 16. However 

these models are computationally expensive and are not suited in our application framework, as 

our emphasis is on the mechanism design aspect of the problem, and not, on the data links. 

Hence we use the in-built communication agent within DAF in order to emulate the TADIL. In his 

thesis, Stinson (2003) captures the performance of Internet Protocol over Link 16 and provides 

comparison of Link 16 parameters with legacy TADILs. We use his work as the reference for 

creating a Link 16 communication agent in DAF, with corresponding values for bandwidth, 

latency and probability of link loss. 

 

3.4.3 Information Valuation Metric 

In order to facilitate the selection of sensors with the highest quality target observation, we 

adopt the information valuation metric as used by Rogers, Dash, Jennings, Reece, & Roberts 

(2006). In more detail, each sensor has an imprecise estimate of its own global coordinate 
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position expressed as a joint Gaussian estimate with mean (   ) and covariance   . The center 

makes imprecise measurements of the range and bearing to multiple targets within its region of 

interest. For a single target at (     ), the sensor makes a noisy measurement of range with 

mean   and variance   
   and bearing with mean   and variance   

 . We can calculate the total 

uncertainty in the global coordinate position of the target, in terms of the covariance matrix   

given by: 

 

 

     (  
   

        
)           
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   (
  
  

       
  
)  

 (         )   (
√(    )

   (    )
 

      (
    
    

)
) 

(3.1)  

   is the Jacobian of the observation model  . 

 

The information content can then be computed as the trace of the inverse of their covariance 

matrix: 

 

     (        ) (3.2)  

 

The information valuation metric is additive when two independent observations are fused 

together. Thus given the information content of another sensor’s observation of the same target, 

the total information content of the fused observations can be computed by simply adding the 

two information valuation measures. The more precise the measurement, the smaller the 

covariance ellipse, and consequently the greater the information content of the covariance 

matrix. The representation can now be extended to any given number and distribution of 

targets, allowing the sensors to value the information content of their observations.  
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3.4.4 Bandwidth Allocation Using R2 Rules 

At the start of the simulation, the auctioneer indicates to the first sensor platform that it now 

has the opportunity to transmit its own position and the track data of all the targets in its region 

of observation.  The communication proceeds in a round-robin fashion and each platform gets 

the opportunity to transmit its own measurements. The time taken to complete one such round 

of transmission is denoted as Network Cycle Time (NCT). Once all the platforms have finished 

transmitting, the auctioneer analyzes the received messages. The auctioneer distributes the 

reporting responsibility for each target among the platforms in the simulation, by taking into 

account the following parameters: 

 

 The designated GRU platform 

 The information content for each target position 

 The classification of the targets as hostile or otherwise 

 

Once the auctioneer finishes allocating the targets among the platform, it broadcasts the final 

allocation to all the sensor platforms. At the next transmit opportunity it is the responsibility of 

the platforms to transmit the R2 data of its assigned targets to all the other platforms in the 

simulation. The Reporting Responsibility rule assumes that once a target has been assigned to a 

platform, the platform will invest all the resources at its disposal, to track that particular target. 

However, this assumption may not hold, if we allow for platform agents to act in a selfish and 

self-interested manner. The R2 assignment is repeated after a predefined number of cycles. 

Since the track information doesn’t change very often, we only assign targets to the platforms 

after 10-15 cycles. When any platform loses a track for which it has R2, an auction is initiated in 

the next transmission cycle, to assign that track to a different platform.  

 

3.4.5 Auctioning Additional Bandwidth 

By its very nature, the Reporting Responsibility (R2) rule is an extreme minimalist mechanism. By 

using R2 rule, the total network cycle time is reduced to its minimum. However it precludes any 

possibility of collaboration in building a common operating picture by disallowing the redundant 

reporting of a single object. When a track is not transmitted, we lose the opportunity to fuse its 
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data. Hence we need a mechanism which allows for the recovery of the highest gain in 

information for a given quantum of additional bandwidth.  

 

The total additional bandwidth to be allocated can be computed at the start of each auction 

cycle in terms of Network Cycle Time.  For instance, let the NCT for the transmission of R2 data 

be     seconds, and we decide to allocate some additional bandwidth among the sensor 

platforms to increase the NCT to     seconds. These additional     –            seconds can be 

used to transmit additional track data and fuse it with the existing R2 data. The latency 

introduced by the increase in Network Cycle Time will be offset by the gain in information 

content. The mechanism will allocate additional bandwidth corresponding to the increase in 

NCT to maximize the gain in information.  

 

We need to find which track information to select for transmission given the fixed additional 

bandwidth available to maximize the total information gain. However, our mechanism needs to 

go beyond a simple portfolio problem and satisfy the requirements as captured in Table 3-5. 

 

Table 3-5 Mechanism Requirements 

Properties Mechanism Requirements 

Individual Rationality 
The mechanism should ensure that the platforms voluntarily 

participate in the mechanism. 

Incentive Compatibility 
The mechanism has to incentivize the sensor platforms to 

truthfully reveal their track information. 

Interdependency 
The mechanism must account for the information 

interdependency in the reported observations. 

Uncertainty 
The mechanism needs to take into account that there might be 

some uncertainty in the reported data.  

Implementation 
The mechanism has to ensure the platform invests all its resource 

to track the assigned targets.  

Lack of access to outcome 
The mechanism should work even when the center has no access 

to the true state of the world. 
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Hence as mechanism designers, we need to design a protocol that will ensure that each sensor 

platform voluntarily participates in the mechanism, truthfully reports their interdependent data, 

which the auctioneer can implement in an uncertain environment without any access to the 

true outcome, and the sensor platforms will then honestly execute their responsibilities. We 

shall introduce our mechanism, which satisfies the six requirements elicited above, over the 

next two chapters. 
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CHAPTER 4. SCORING RULES 

In this chapter we discuss the Von Neumann–Morgenstern utility theorem and motivate the use 

of scoring rules in decision making under uncertainty.  We then introduce the concept of strictly 

proper scoring rules and highlight the various instances of implementation of scoring rules 

within the Mechanism Design Literature. We discuss and analyze four different instantiations of 

modified strictly proper scoring rules, viz. Quadratic, Spherical, Logarithmic and Parametric 

family. We finally introduce our proposed mechanism and discuss its economic properties. 

 

4.1 Decision Making Under Uncertainty 

In their seminal work “Theory of Games and Economic Behavior” Neumann & Morgenstern 

(1944) provided the basis for modern-day game theory. The Von Neumann - Morgenstern utility 

theory provides the foundation for using utilities to represent preferences.  

 

4.1.1 Von Neumann - Morgenstern Utilities 

We focus on the preferences of a player over a set of outcomes denoted by  . For any two 

outcomes         , we can express the player’s preferences over the two outcomes in the 

form of binary relationships: 

 

        : Outcome   is weakly preferred to    

        : Outcome   is strictly preferred to    

        : Outcome   is equally preferred as    

 

For the set of outcomes                 we can associate a probability distribution (lottery) 

                             such that 
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                        ∑    

 

   

 (4.1)  

 

We are now in a position to highlight the six axioms of Utility Theory as enunciated by Von 

Neumann and Morgenstern. 

 

1. Completeness 

The completeness property induces an ordering on   using the preference relations: 

 

∀                                       (4.2)  

2. Transitivity 

The transitivity property assumes that preference is consistent across any three 

outcomes: 

 

∀                                            (4.3)  

3. Substitutability 

The Substitutability property dictates the conditions for substitutability of outcomes 

over which the player has equal preference. Thus if        , the player is indifferent to 

lotteries                             and                             as long as 

 

 

  ∑    

 

   

 (4.4)  

4. Continuity 

The property of continuity states that the upper and lower contour sets of a preference 

relation over lotteries is closed.  

 
∀                                    

                                     
(4.5)  
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5. Decomposability 

The decomposability property dictates the condition under which the player is 

indifferent between two or more lotteries. Let    be a lottery over   and   (  ) denote 

the probability that    is selected by  . Then according to the decomposability property 

the player is indifferent between two lotteries   and    if, 

 

   (  )      (  ) ∀                (4.6)  

6. Monotonicity 

The property of monotonicity means that a lottery which assigns a higher probability to  

the player’s preferred outcome is preferred to one which assigns a lower probability to 

its preferred outcome, as long as the other outcomes remain unchanged.   

 
∀                                       

                                          
(4.7)  

 

Von Neumann - Morgenstern Theorem 

Given a set of outcomes    and a preference relation   on   that satisfies completeness, 

transitivity, substitutability, decomposability, monotonicity and continuity, there exists a utility 

function          with the following properties: 

 

  (  )    (  )             

 (                             )   ∑   (  )

 

   

 
(4.8)  

 

4.1.2 Expected Utility Theory 

The expected utility values i.e. the weighted sums obtained by adding the utility values of 

outcomes multiplied by their respective probabilities, is the key to decision-making. A rational 

decision maker chooses between risky or uncertain lotteries by comparing their expected utility 

values. The expected utility theory approach to decision making under uncertainty rests on the 

assumption that all uncertainty can be expressed in terms of numerical probabilities (De Groot, 
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1970; Neumann & Morgenstern, 1944; L. Savage, 1972). According to Von Neumann and 

Morgenstern, these probabilities were "objective" and derived from relative "frequencies in the 

long run." 

 

"Probability has often been visualized as a subjective concept more or less 

 in the nature of estimation. Since we propose to use it in constructing an individual,  

numerical estimation of utility, the above view of probability would not serve our purpose. 

 The simplest procedure is, therefore, to insist upon the alternative, perfectly well founded 

interpretation of probability as frequency in the long run." 

- Neumann & Morgenstern (1944) 

 

However, in most real-world contexts it is not possible to objectively assign probabilities to 

uncertain events due to the lack of data. A formal decision analysis can only be undertaken if the 

decision maker constructs a subjective probability distribution reflecting his beliefs about the 

relative likelihoods of the concerned event (De Finetti, 1937; Ramsey, 1931). 

 

"According to the subjective, or personal, interpretation of probability, the probability 

 that a person assigns to a possible outcome or some process represents his own judgment 

of the likelihood that the outcome will be obtained. This judgment will be based on that 

person's beliefs and information about the process. Another person, who may have different 

beliefs or different information, may assign a different probability to the same outcome." 

- De Groot (1970) 

 

One of the fundamental concerns with the use of subjective probabilities in decision-making 

scenarios is the inability to determine if the probability quoted by a person actually corresponds 

to the person’s belief or judgment. Scoring rules provide a technique to encourage assessors to 

declare their subjective probabilities in accordance with their judgments, by rewarding or 

penalizing the assessor.  Scoring Rules involve awarding the assessors with a score based on the 

assessor’s stated probabilities and the actual event that transpires. Thus scoring rules play a 

twin role in probability assessment and probability evaluation. In probability assessment, scoring 

rules encourage the assessor to be ‘honest’, i.e., to make his statements correspond to his 
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judgments. In probability evaluation, scoring rules are used to evaluate the goodness of the 

probabilities.  

 

4.2 Strictly Proper Scoring Rules 

Scoring Rules have been proposed as a methodology to address the shortcomings of auction-

based mechanism design in probability assessment and evaluation. Scoring rules were 

introduced independently by Brier (1950), De Finetti (1962) and Good (1952) for the purpose of 

expected value maximization. Recently, many researchers have used scoring rules as a viable 

mechanism to address the challenges of interdependent valuations in systems with self-

interested participating actors. 

 

Scoring rules are used to assess the accuracy of probabilistic forecasts, by awarding a score 

based on the forecast and the event that materializes. Much of the methodology of scoring rules 

was developed by atmospheric scientists for use for evaluating the accuracy of forecasts 

(Peterson, Snapper, & Murphy, 1972). Meteorologists frequently need to make observations 

about a current event or forecasts about events that will happen in the future. These forecasts 

or observations are probabilistic estimates, which need to be evaluated based on the actual 

event that transpires. Scoring Rules provide a method to evaluate the probabilistic forecasts, 

assign a numerical score to the forecasters, and rank competing forecast techniques. This set of 

tasks is often referred to as forecast verification.  

 

Although forecast verification is not directly relevant to our research problem, it provides us 

with a framework wherein the agents are encouraged to make careful assessments and to be 

honest (Garthwaite, Kadane, & O’hagan, 2005). The agents are awarded based on the accuracy 

of their reported observations. The closer the observation value to the actual value, the higher 

the score assigned to the agent. A rational agent which seeks to maximize its utility is 

incentivized to invest its resources in making accurate high-quality assessments and reporting 

them truthfully.  
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In this section, we discuss the background on scoring rules and the mathematical formulations 

involved. We talk about how scoring rules have been used in the literature as reputation 

mechanisms and the four most popular continuous scoring rules. 

 

4.2.1 Background on Strictly Proper Scoring Rules 

Gneiting & Raftery (2004) provided a formal definition of scoring rules, which highlight the 

difference between proper and strictly proper scoring rules.   

 

Let us consider a case where the forecaster quotes the predictive distribution   and the event   

materializes. The forecaster’s reward is denoted by the function  (   ) which can take values in 

the extended real line     (    ). Suppose, then, that the forecaster's best judgment is the 

distributional forecast Q and the expected value of  (    )      ( (   )) is written as  (   ). 

As apparent, the forecaster has no incentive to predict any     , and is encouraged to quote 

his true belief      . If  (   )     (   ) with equality, if and only if      , the scoring 

rule is said to be                . If  (   )     (   ) for all P and Q, the scoring rule is said 

to be       . 

 

To put this definition into perspective, a strictly proper scoring rule is the one in which the 

forecaster can maximize his score by reporting exactly his or her true beliefs about the situation. 

In the case of a proper scoring rule, although the forecaster gets the maximum score by 

reporting his or her true beliefs, it may be possible to get the same score by reporting 

something else. In our work, we are interested in strictly proper scoring rules.  

 

L. J. Savage (1971) and Schervish (1989) provided representations that characterize scoring rules 

for probabilistic forecasts of categorical and binary variables. Let us consider the sample space 

           consisting of   mutually exclusive events, and represent the probabilistic 

forecast with the vector (          ). We consider the convex class   

 

 
      (          )                 

                            
(4.9)  
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We can now define the scoring rule   as a collection of   functions, 

 

 (   )                         (4.10)  

Thus, when the forecaster quotes the probability vector   and the event   transpires, the 

forecaster is awarded a score of  (    )  Before proceeding forward with Savage’s Theorem, we 

need to define a couple of concepts: 

 

1. Regular Scoring Rule: 

 

A scoring rule   for categorical forecasts is regular if  (   )  is real-valued for   

        , except possibly that  (   )      if       . 

 

2. Sub-gradient of a Convex function: 

 

If        is a convex function, the vector   ( )   (   
 
( )     ( )     

 
 ( ) )is 

called the sub-gradient of   at the point       if 

 

 ( )   ( )     ( )       (4.11)  

for all      , where       denotes the standard scalar product. We assume that the 

components of   ( ) are real-valued, except that we permit     ( )      if       

 

 

 

 

 

 

 

 

 

 𝑥  𝑥  

𝐺(𝑥) 

𝐺(𝑥 )  𝐻 
𝑇(𝑦   𝑥 ) 

𝐺(𝑥 )  𝐻 
𝑇(𝑦  𝑥 ) 

𝐺(𝑥 )  𝐻 
𝑇(𝑦  𝑥 ) 

Figure 4-1 Sub-gradient of a Convex function at two distinct points 
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At the point    , the convex function  ( )  is differentiable and    (which is the 

derivative of   at   ) is the unique sub-gradient at     At the point   ,  ( ) is not 

differentiable. At   , the function  ( ) has many sub-gradients: two sub-gradients    

and    are shown in Figure 4-1. 

 

Savage’s Theorem: 

A regular scoring rule S for categorical forecasts is strictly proper if and only if 

 

 (   )    ( )    ( )          ( )  (4.12)  

              where         is a (strictly) convex function and   ( ) is a sub-gradient 

of G at the point p, for all         

 

Rephrasing this, a regular scoring rule   is strictly proper if and only if the expected score 

function  ( )     (   ) is strictly convex on    and the vector with components  (   ) for 

          is a sub-gradient of   at the point  , for all        . 

 

The classic case of           forecast is more revealing. We restrict the sample space to 

        and the probability forecast is          for      The scoring rule can then be 

reduced to a pair of functions 

 

 (   )                (   )            (4.13)  

Thus  (   ) represents the score if the forecaster assigns the probability   to an event which 

actually transpires, and  (   ) is the score if the forecaster quotes probability   and the event 

does not materialize. According to the theorem, every strictly proper scoring rule can be 

represented in the form: 

 
 (   )    ( )   (    )  ( )    

 (   )    ( )     ( )  
(4.14)  
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where            is a strictly convex function and   ( ) is a sub-gradient of G at the point 

          The sub-gradient   ( )  is real-valued, except that we permit   ( )      and 

  ( )       For the case when G is differentiable, then   ( ) is unique and equals the 

derivative of   at  . 

 

We encapsulate the three most popular scoring rules (Quadratic, Spherical and Logarithmic) for 

both the categorical case and binary case in Table 4-1. 

 

Table 4-1 Popular Scoring Rules 

Scoring Rule 
Categorical Binary 

 ( )  (   )  ( )  (   )  (   ) 

Quadratic ∑   
   

 

   
 

  ∑   
 

 

   

        

       
       

   
     

Spherical ( ∑   
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(    
  

    )
   
 

 
(       )
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 (      )
 
 

 ( 
 
 ⁄ )

 
  ( 

 
 ⁄ )

(      )
 
 

 

Logarithmic ∑       
 

   
      

     ( 

  )   (   ) 
      (   ) 

 

For our research problem, the use of binary or categorical strictly proper scoring rules is not 

applicable as the distributed information is represented by continuous distributions. Hence, we 

derive the continuous counterpart for the binary quadratic, spherical and logarithmic scoring 

rules in Table 4-2. We replace the discrete probability value   with the probability density 

function  ( ) of the continuous random variable  . 

 

Table 4-2 Scoring Rules for continuous variables 

 Quadratic Spherical Logarithmic 

Scoring Rule 

 ( ( )) 
  ( )   ∫  ( )   

 

  

 
 ( )

(∫  ( )   
 

  
)   

    ( ) 
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The Quadratic or the Brier rule, which was rigorously described by Selten (1998), is a special 

case of a parametric scoring rule. The parametric scoring rule, which is included within the 

power rule family, can be denoted by, 

 

   ( )    (   )∑     
 

   
 (4.15)  

where   is a real number such that      . For        the parametric scoring rule becomes the 

quadratic rule. 

 

We shall restrict our discussion to these four scoring rules – quadratic, spherical, logarithmic and 

parametric – as we can analytically derive and express their expected values, in closed forms in 

the latter half of this chapter. In Chapter 6 we shall discuss the results of applying the scoring 

rules to the research application framework. 

 

4.2.2 Applications of Strictly Proper Scoring Rules 

In the last four decades, strictly proper scoring rules have found application in quite a few fields: 

 

 Accounting (Wright, 1988) 

 Bayesian statistics (L. J. Savage, 1971) 

 Business (Holstein, 1972) 

 Climate Prediction (Gneiting & Raftery, 2005; Palmer, 2002) 

 Computer (Miller, Pratt, Zeckhauser, & Johnson, 2007) 

 Education (Echternacht, 1972) 

 Finance (Shiller, Kon-Ya, & Tsutsui, 1996) 

 Macroeconomic forecasting (Garratt, Lee, Pesaran, & Shin, 2003) 

 Medicine (Spiegelhalter, 1986) 

 Politics (Tetlock, 2005) 

 Psychology (McClelland & Bolger, 1994) 

 Stochastic finance (Duffie & Pan, 1997) 

 Others  (Church et al., 2006; Hanson, 2002; Prelec, 2004) 
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Miller et al. (2007) have proposed the use of strictly proper scoring rules in order to get agents 

to truthfully report a probabilistic estimate and then commit costly resources into generating 

the observations. In their scoring rules – based mechanism, agents provided a rating for a 

product or service, and their score is calculated based on how close its rating is to the expected 

ratings provided by other agents in the system. In this mechanism, each agent will seek to 

honestly report their observations to maximize their expected utility, provided the other agents 

are also truthful. This makes it a Nash equilibrium solution. Jurca & Faltings (2005) have also 

used continuous scoring rules in their reputation mechanism, in which they divide the agents 

into pairs of two and have them rate each other. However in both these mechanisms, truthful 

reporting by the agents is not a unique equilibrium strategy and other Nash equilibria might 

exist which do not have the desired properties. Although computing all the Nash equilibria in 

any mechanism is notoriously difficult, we can still say that there exist multiple Nash equilibria in 

which the agents can collude to provide dishonest feedback. In their later work, Jurca & Faltings 

(2007) introduced a small group of agents which will always be truthful and thus prevent 

collusion among agents. All the agents’ reports are rated against one of these trusted agents’ 

reports and the payments are designed such that an agent maximizes its utility by reporting 

honestly. This eliminates the undesired Nash equilibria and truthful reporting becomes a unique 

equilibrium. However their solution still leaves much to desire, as it compromises the network 

robustness.   

 

Proper scoring rules have also been used to address the principal-agent problem (Grossman & 

Hart, 1983; Rogerson, 1985) which features a contractor interested in purchasing information 

and a contractee who is selected to supply that information. Zohar & Rosenschein (2008) 

proposed two different mechanisms to address this problem, but they base it on the unrealistic 

assumption that there is a common probability distribution among agents, and that this 

distribution expresses ‘close’ notions of the governing probability distributions. Another 

common drawback of all the schemes we have discussed so far is that they all assume that the 

cost of generating information is public information. But in our problem, the cost is a function of 

the accuracy of the information, and is a private value known only to each individual agent.  

Hence none of the discussed approaches are applicable to our work. 
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Despite the various shortcomings, the proper scoring rules still address some of the issues we 

encountered with auction-based mechanism.  

 

 Truth-elicitation is induced among agents, even without access to information about the 

realized outcome. This is achieved by utilizing the reports submitted by other agents, to 

compute the payment to a particular agent.  

 

 Agents are no longer restricted to report only discrete probability distributions, like the 

probability of success or failure and can now even submit continuous probability 

distributions. Hence the lack of consistency and interoperability of observations can be 

addressed by modeling the reported observations as continuous distributions. 

 

4.2.3 Application of Strictly Proper Scoring Rules in Mechanism Design 

We demonstrate the features of strictly proper scoring rules through a practical application 

similar to our desired implementation scenario. We follow the methodology as laid out by Miller 

et al. (2007) wherein we relax the assumption that the costs involved in generating an 

observation is a private value known only to each individual agent. Instead, we assume that 

these costs are known to the auctioneer. 

 

As we discussed earlier, one of the highlights of the strictly proper scoring rules, is that we can 

model the agent’s reported observations as continuous distributions. This removes the 

ambiguity in the reported observations by applying standard distributions like the Gaussian 

distribution. Hence we model the agent’s noisy private measurement,  , as Gaussian random 

variable, 

 

     (   
 
 ⁄ ) (4.16)  

where,    is the true state of the observable and   is the precision of the observation. 

 

One of the drawbacks of the auction-based MD was that it did not account for agents not 

investing all their available resources in generating the observations. Miller et al. combat this 
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issue through the introduction of scaling parameters. They show that the affine transformation 

of the scoring rules, does not affect the inherent properties of the scoring rules, like, incentive 

compatibility. Since the costs are known to the auctioneer, the scaling parameters can be 

selected to incentivize an agent to generate and then report the observations. 

 

If we denote the scoring rule by the function  (      ) and the expected score as  ̅( ) then we 

can formulate the expected payment as 

 

 ̅( )     ̅( )     (4.17)  

where α and β are the scaling parameters. 

 

Thus the expected utility of the agent can be calculated as 

 

 ̅( )     ̅( )      ( ) (4.18)  

where  ( ) is the cost of generating an observation with precision    

 

We can now select the parameter α to maximize the agent’s expected utility when it generates 

and reports truthfully its observation with precision   . 

 
  ̅

  
|          

  ( )

  ̅( )
 (4.19)  

The next desired property is individual rationality, i.e. ensuring that the agent will always derive 

a non-negative utility by participating in the mechanism. Thus we select the remaining 

parameter β in a way which ensures that the agent will be willing to incur the cost of producing 

a forecast, since the expected utility is always positive. Since the auctioneer knows the costs 

involved in generating an observation, we can make the agents indifferent between generating 

an observation or not, by equating 

 

  ̅(  )            (  )   
  (  )

  ̅(  )
 ̅(  ) (4.20)  
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We can now compare the four different scoring rules – quadratic, spherical, logarithmic and 

parametric - by replacing the general probability density functions, with Gaussian distributions. 

We also calculate the expected values along with the parameter expressions for the strictly 

proper scoring rules.  

 

Table 4-3 Scoring Rules for Gaussian distributions 

 Quadratic Spherical Logarithmic Parametric 
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where   represents the Gaussian distribution  (     
 
 ⁄ ) 

 

An important property of strictly proper scoring rules is the concavity of the expected scoring 

rule function. This concavity will form the basis of the proofs we present in the next section. 

However, this property does not hold for any or all continuous strictly proper scoring rules, as 

we can deduce for the parametric scoring family. For values of       the second derivative of 

 ̅( ) is positive and hence the expected score function becomes convex.  

 

 ̅  ( )   
(   )(   )

 √   
(
  

 
)

(   )
 ⁄

 (4.21)  
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A convex expected scoring rule does not incentivize an agent to produce the observation at the 

given precision    Hence the parameter   is restricted to the space (   ). 

 

4.3 Proposed Mechanism 

Having established the background of scaled strictly proper scoring rules, we can now use the 

methodology as outlined by Miller et al.. We first enumerate the deficiencies of the scoring rules 

discussed so far, and the need for a different mechanism to address these deficiencies. 

 

1. Unknown Costs 

In the previous section, we stated that the common drawback of all the continuous strictly 

proper scoring rules we discussed, is that they all assume that the cost of generating 

information is public information.  We ourselves assumed that these costs are known to the 

auctioneer in order to derive the analytical expressions for quadratic, spherical, logarithmic and 

parametric rules.  

 

However, in our research problem, the costs of generation of an observation, represents the 

private information known only to each individual agent. These costs represent the amount of 

resources and time the sensors invest in generating their information as well as the 

technological capacity of the sensors. Hence we need to develop a mechanism which can deal 

with the lack of knowledge of the costs involved. 

 

2. Multiple sources of information 

The reporting responsibility (R2) rules permit only one agent with the best quality observation to 

report a surveillance track on the data link. However, it is plausible that there might be instances 

when no one agent can generate track data of the required precision value. In our research 

framework we calculate the precision values using the information valuation metric discussed in 

Section 3.4.3. This might occur due to the lack of resources available to an agent to generate the 

observation for a given track. In such settings, it is prudent to fuse information from multiple 

sources in order to generate real-world data of sufficient accuracy. Thus there is a need for the 
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mechanism to be able to operate in an environment where the agents have limitations in the 

values of the information content they can provide.  

 

3. Uncertainty in environment 

The R2 rules assume that once a target has been assigned to a platform, the platform will invest 

all the resources at its disposal, to track that particular target. The strictly proper scoring rules 

methodology addresses this issue by awarding the agents based on how close their observation 

value is to the actual value that is observed once the event transpires. Hence, the closer the 

observation value to the actual value, the higher the score assigned to the agent. But ULS 

systems operate in dynamic and uncertain environment which constantly evolves between the 

time the information is reported, and the time when the observation can be observed.   Hence, 

we need a mechanism that accounts for such uncertainties where the center is unable to 

evaluate the received reports.  

 

With these requirements in mind we adopt a modified version of the two-stage mechanism 

proposed by Papakonstantinou, Rogers, Gerding, & Jennings (2011) based on continuous strictly 

proper scoring rules. In the first stage, the trusted center (auctioneer) elicits the unknown costs 

of the agents and preselects a subset of agents that can provide the information at the lowest 

costs. In the next stage the preselected agents are induced to reveal their observation, using a 

payment scheme based on the fused reported estimates rather than the true outcome. Through 

appropriately scaled and modified strictly proper scoring rules, the mechanism induces the 

agents to deploy the resources at their disposal into generating the data at the required 

information content level and then reporting the data honestly. 

 

4.3.1 Setting up the Mechanism 

We set up the background of our model against which we describe the two-stage mechanism. 

First, we discuss the problem of eliciting information from multiple sources and then evaluating 

that information, without knowledge of the outcome.  We show how the modified strictly 

proper scoring rules, handle the lack of knowledge of the outcome while preserving the 

property of incentive compatibility. We shall also describe the assumptions of the mechanism 

that are critical to its application to our model. 
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4.3.1.1 MAS Model 

We consider a scenario with   rational agents that are capable of producing a noisy and 

inaccurate observation    with a precision   . There is a limit on the maximum precision that an 

agent can provide, represented as   
   Thus the precision of the agent’s observation can lie 

anywhere between   and   
 . The trusted center collects and fuses these observations, to obtain 

a required precision denoted by   . There is no additional utility derived if the precision exceeds 

  . The agent’s private observations are modeled as Gaussian variable       (   
 
  
⁄ ) where 

   represents the true state of the world. This value is unknown to the agents and the trusted 

center. 

 

We use the methodology proposed by DeGroot & Schervish (2002) to fuse the information from 

two or more sources. If there are   unbiased and conditional independent estimates 

{              with precision values {              they can be fused into a single estimate 

( ̅  
 ̅
⁄ ) where  ̅ is the mean and  ̅ is the precision. 

 

 ̅   
     
 
   

   
 
   

               ̅   ∑   
 

   
  (4.22)  

 

The fusion of the sensor information ensures that the fused precision is higher than any of the 

individual sensor’s precision  ̅      . However care must be taken to ensure that the agents 

report their observations truthfully, as fusion of misreported estimates with truthful estimates 

will, in fact, degrade the quality of the information of the state of the world. Hence, the agents 

must be given incentives to honestly report their observations, even when the center has no 

access to the true state of the world to evaluate the reported observations. As we specified 

earlier, the traditional strictly proper scoring rules are unequipped to cope with the center’s lack 

of knowledge, and hence we introduce the modified scoring rules proposed by 

Papakonstantinou, Rogers, Gerding, & Jennings (2011). 
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4.3.1.2 Modified Scoring Rules 

In the modified strictly proper scoring rules, the trusted center fuses the observations from all 

the other agents and excludes the agent whose reported observation is being evaluated.  Thus 

using the same k unbiased and conditional independent estimates we introduced earlier, we 

fuse    probabilistic estimates                             with precision values 

{                            into a single estimate ( ̅   
 
 ̅  
⁄ ) where  ̅   is the mean and  ̅   

is the precision. 

 

 ̅     
     
   
   

   
 
   

               ̅    ∑   
   

   
  (4.23)  

 

An agent seeking to maximize its utility will need to consider, its belief about the observations of 

all the other agents in the system, when reporting its own observation. The expected scoring 

rule for an agent   which is denoted by  ̅( ̅        )is not maximized at   ̂     but rather at 

  ̂        ̅  .We can denote this mathematically as 

 

  ̅( ̅     ̂   ̂)   

   ∫   ( ̅      
 
  
⁄   

 ̅  
⁄ )

 

  
 ( ̅   | ( ̅    ̂ 

 
  ̂
⁄ ))  ̅                                         

(4.24)  

 

where  (  ̅      
 
  
⁄   

 ̅  
⁄ ) represents the distribution of true estimate by agent   and 

 ( ̅    ̂ 
 
  ̂
⁄ ) represents the distribution of reported estimate of agent  . The expected score 

of agent   is maximized at   ̂       ̅   , since at this value of the reported precision, the two 

Gaussian distributions are identical. 

 

We have stated that an agent  ’s utility is maximized when it reports its precision   ̂       ̅  . 

However, the precision of the observations generated by the other agents is a private value, and 

is not accessible to agent  . But the trusted center has access to both         ̅   and hence the 

center can modify the scoring rule such that the agent   only reports    but its payment is 
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calculated using        ̅  .Thus we introduce the concept of modified scoring rule 

 ( ̅     ̂   ̂   ̅  ) whose expected value can be expressed as 

 

 
 ̅( ̅     ̂   ̂   ̅  )   ∫   ( ̅      

 
  
⁄   

 ̅  
⁄ )

 

  

  

                                           ( ̅   | ( ̅    ̂ 
 
  ̂
⁄   

  ̅  
⁄ ))  ̅   

(4.25)  

 

We can easily show how the modified scoring rules induce truthful elicitation as a Nash 

equilibrium solution. We recall the definition of a strictly proper scoring rule, which states that 

for a scoring rule function  (   ) its expected value is maximized when      . In our 

expected value formulation,   and   represent the reported and true Gaussian distribution of 

the probability estimates.  Thus, 

 

  ( ̅     
 
  
⁄   

 ̅  
⁄ )     ( ̅    ̂ 

 
  ̂
⁄   

  ̅  
⁄ ) 

   ̂                      ̂      

 

(4.26)  

Thus, based on our modified strictly proper scoring rule, an agent can maximize its expected 

score and by extension, its expected payment by truthfully its observations, assuming that the 

other agents in the system also honestly report their observations. This makes truthful 

revelation a Nash equilibrium and the optimal strategy for all the agents in the system. 

 

4.3.1.3 Assumptions 

The cost of generating an observation represents the private information known only to each 

individual agent, and is denoted as  ( ). The cost is a function of the precision of the 

observations. We make two critical assumptions regarding the cost function: 

 

1. The cost function is convex, i.e.    ( )    . This is a realistic assumption in all instances, 

where increasing precisions lead to diminishing returns. We assume the cost functions 
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to be linear which guarantees convexity. This mechanism will be equally valid for non-

linear cost functions as well, provided we ensure that the cost functions are convex. 

 

2. Although each agent can have different cost functions, we assume that the different 

cost functions, and the derivatives thereof, do not cross. What this indicates, is that the 

ordering of the cost functions and their derivates, is preserved over all precisions. 

 

These assumptions are critical to proving the individual rationality as well as incentive 

compatibility of the mechanisms. Papakonstantinou, Rogers, Gerding, & Jennings (2008) have 

shown that no mechanism based on strictly proper scoring rules can achieve these two 

economic properties without these assumptions being satisfied for the private cost functions.  

 

4.3.2 Proposed Mechanism 

Jehiel & Moldovanu (2001) showed that in an interdependent valuation setting, no standard 

one-stage mechanism could achieve both efficiency and incentive compatibility for the 

procurement of estimates from multiple sources. Mezzetti (2004) addressed this challenge to a 

certain extent and showed that an efficient allocation with multidimensional types is possible, if 

(a) values are privately realized by the agents once an allocation is made and (b) two-stage 

mechanisms can be adopted in which the payments are made contingent on realized values 

reported in a second stage.  

 

In accordance with Mezzetti (2004), we design a two-stage mechanism based on modified 

scaled strictly proper scoring rules. In the first stage, the center preselects   of the   available 

agents based on the reported cost functions and then identifies a subset of the   preselected 

agents to generate the observations. In the second stage, the center announces the payment 

scheme based on scoring rules, which incentivize the agents to truthfully generate and report 

their observations to the center. 

 

In the first step (Step 1.1) of the first stage of the mechanism, the center requests all agents in 

the system to report their cost functions and to reveal its private maximum information content. 

In practice, the center only needs the cost function and the derivatives of the cost function at 
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the reported maximum information content value. However for the sake of convenience, the 

agents are asked to reveal their entire cost functions. In the next step (Step 1.2) the center 

preselects   agents from the   available agents through one single reverse (   )   auction 

(i.e. an auction where the highest M bidders win and pay a uniform price determined by the 

(   )   price).  Ideally the center should divide all the available agents into groups of   

agents, and then initiate (   )   multiple price auctions (     ) to pre-select   agents. 

However, we make use of the result from Papakonstantinou, Rogers, Gerding, & Jennings (2010) 

which states that for linear cost function settings, the center can minimize its expected payment 

by setting       and      .  

 

In the second stage, each of the agents selected in the first stage are asked to produce their 

observations at their reported maximum information content levels. The center announces the 

modified strictly proper scoring rule with parameters    and   . For an agent  , these 

parameters are formulated based on the fused reported information content of every agents 

apart from   and the cost associated with the single reverse (   )   auction, from the first 

stage. In Step 2.2, each of the selected agents produce and report their observations to the 

center, which in turn, calculates the payments based on the modified strictly proper scoring 

rule   ( ̅̅     ̂   ̂   ̅  )  

 

Having outlined the mechanism, in detail, we now proceed to state the properties of the 

mechanism which induce the agents to reveal their cost functions and their maximum 

information content values honestly and subsequently produce and truthfully report their 

observations to the center. 

 

4.3.3 Economic Properties of the Mechanism 

We discuss the economic properties of the modified strictly proper scoring rules based 

mechanism design algorithm. The interested reader is directed to Papakonstantinou et al. (2008, 

2010, 2011) for the proofs of the same. 
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1. First Stage 

 

1.1. The trusted center asks     agents to report their cost functions  ̂ ( ) and their 

maximum information content  ̂ 
 , for all agents              

 

1.2. The center selects   (      ) agents with the lowest costs, associates these 

agents with the (   )   cost and discards the rest of the agents. 

 

2. Second Stage 

 

2.1. The center asks agent  , selected in Step 1.2,  to generate the observations and 

presents it with a modified strictly proper scoring rule with parameters   and    

 

 
     

     ( ̂ 
 )

 ̅ ( ̂ 
   ̅  )

 

        ( ̂ 
 )   

     ( ̂ 
 )

 ̅ ( ̂ 
   ̅  )

 ̅( ̂ 
   ̅  ) 

(4.27)  

 

where      is the (   )    cost identified in stage 1.2 and  ̅  is the fused 

information content values of all agents that are asked to generate observations, 

except agent  . 

 

2.2. Each of these agents will produce an estimate    with information content    and 

report ( ̂    ̂ ) to the center which issues the payment 

 

  ( ̅     ̂   ̂   ̅  )        ( ̅     ̂   ̂   ̅  )       (4.28)  
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1. The mechanism is incentive compatible with respect to the agents’ reported costs. 

 

Truthful reporting of the cost function of an agent in the first stage is a weakly dominant 

strategy. This is valid in both cases when an agent’s misreporting effects or does not effects 

whether it is preselected or not. If the agent was pre-selected by misreporting but would not 

have been if it was truthful, we can show that the expected utility is strictly negative. On the 

other hand, if the agent was not pre-selected by misreporting but would have been if it was 

truthful, the agent’s utility becomes zero and hence it has no incentive to misreport its cost 

function.  

 

2. The mechanism is interim individually rational. 

 

The mechanism is interim individually rational. What this means is that the expected utility is 

non-negative, but there might be instances when there is a wide-discrepancy between the 

agent’s actual reported precision and the maximum estimated precision, which results in 

negative payment. Technically we could make the mechanism ex-post individually rational by 

setting a very high value for   but this would violate the incentive compatibility property.  

 

3. Truthful reporting of the maximum precisions and estimates is a Nash equilibrium, 

with the reported maximum precision being the actual precision of the estimate. 

 

We proved in Section 4.2.1 how for the modified strictly proper scoring rules, truthful revelation 

is a Nash equilibrium and the optimal strategy for all the agents in the system. A preselected 

agent’s utility is maximized when it reports the actual precision of its produced estimate as its 

maximum precision, given that all other agents do the same. Thus an agent will truthfully report 

its maximum precision, and then produce an estimate of precision equal to its reported 

precision, and report the estimated precision truthfully.  
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4. The probability of achieving the required precision by the center increases as M 

increases. 

The number of pre-selected agents   is a variable and can be adjusted by the designer. There 

exists a trade-off between the expected payment made by the center, and the probability of 

achieving the required precision. We can show that for any distributions of the reported 

precisions, the probability of achieving the required precision increases, as the number of pre-

selected agents increase. 

 

5. There can be no incentive compatible mechanism regarding the agents’ cost functions 

revealed when the cost functions overlap. 

 

This property follows from the convexity of the cost functions, which implies that if the true 

costs of an agent making the prediction is higher than the costs used for scaling the scoring 

function, then the agent’s utility will always be negative. Thus when the cost functions overlap, 

an agent will be able to do better by misreporting and losing, rather than by truthfully reporting 

and winning. Hence in order to preserve the incentive compatibility, we need the cost functions 

to not cross each other at any point. 

 

6. In a setting with linear cost functions, for a given probability of achieving   , the 

center minimizes its expected total payment when       and       

This result is valid for the cases when we assume that the cost functions of the agents are linear 

functions of the precision. Since we associate the (   )   cost with the group of   agents 

selected, we can show that the expected value of the (   )   cost is lowest in expectations 

when       and      . This, by extension, ensures that the total expected payment made 

by the center is minimized. However, this result only holds in the case of linear cost functions. If 

we have non-linear cost function, we will need to iteratively preselect the agents. This is done by 

first dividing the N agents into groups of n, and then conducting multiple reverse (   )   

price auctions to preselect the M agents.  
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7. The sum of the expected agents’ payments is independent of the knowledge of the 

actual outcome 

This property compares the mechanism with the unknown outcome to the one where the actual 

outcome is known, and concludes that in both the cases the total expected payment made by 

the center is the same. Hence, the lack of knowledge of the actual outcome for the mechanisms 

has no impact on the expected payments.  

 

4.4 Next Steps 

In this chapter, we proposed a mechanism based on the modified scaled strictly proper scoring 

rules which overcomes the shortcomings of the auction-based mechanism design and addresses 

five out of the six requirements we highlighted in Chapter 3. Specifically the mechanism is 

individually rational and incentive compatible and works in uncertain and dynamic environment, 

where the costs of generating observations are private values unknown to the center and the 

true outcome cannot be observed by either the agents or the center. The mechanism 

incentivizes the agents to truthfully reveal their interdependent track information and the 

center then fuses different observations to increase the accuracy of the common operating 

picture. The strictly proper scoring rules ensure that an agent’s payment is dependent on the 

accuracy of its reported observations, and hence guarantees that the agent will invest all its 

resources in generating the observations. 

 

The proposed mechanism is instrumental in selecting the agents to provide observations for a 

single target, above and beyond, those reported by R2. However, in our multi-agent system 

there are numerous targets but only a limited bandwidth to transmit the additional information 

on the target positions. Thus we need a methodology to decide which targets to select in order 

to ensure that we obtain the highest gain in information for a given quantum of additional 

bandwidth, given the inherent uncertainty in the reported data. In the next chapter we develop 

and propose a robust optimization technique, which can optimize the track selection, in 

uncertain and evolving environments. 
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CHAPTER 5. ROBUST OPTIMIZATION APPROACH 

In this chapter, we provide a robust optimization formulation to decide which sensor-target pair 

should be selected for transmission, given the inherent uncertainty in the reported data. We 

discuss the various robust techniques in literature and present the highlights of the Bertsimas - 

Sim linear optimization framework which we adopt for our problem. Finally, we outline the final 

steps of our modified scaled strictly proper scoring rules mechanism, which is formulated as a 

robust zero-one portfolio optimization problem. 

 

5.1 Introduction 

The modified scaled strictly proper scoring rules mechanism selects a set of agents to provide 

observations for a single target, above and beyond, those reported by R2. Since there are 

numerous targets in the system, we end up with different sets of sensor agents for each target. 

However we can only allocate a limited bandwidth for transmitting information over the tactical 

data network. Hence, we need a methodology to decide which sensor-target pair should be 

selected for transmission to ensure that we can obtain the highest gain in information for a 

given quantum of additional bandwidth. The problem is compounded by the inherent 

uncertainty in the information content of the observations. Deterministic optimization 

techniques that rely on nominal data, no longer work in these settings. Robust techniques 

provide an attractive choice in addressing the feasibility and optimality of the optimization 

solution, given the data uncertainty. 

 

 Traditionally problems in mathematically programming are solved under the assumption that 

the input data is precisely known and invariant. However, in reality, the input data, in most 

cases, may be different from those assumed, which makes the original optimal solution, sub-

optimal or even infeasible. In such scenarios, it is prudent to design solution approaches that are 
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“robust” and immune to uncertainty in the input data. Robust optimization is a technique that is 

specifically designed to handle data uncertainty and produce near-optimal, feasible and robust 

solutions, under several data realizations.  

 

Robust optimization differs significantly from methods like stochastic programming, which 

requires the assumption of knowledge of the input data distributions. In stochastic 

programming approach, the uncertain parameters are replaced with the expected values of the 

parameters, and the new nominal problem is then solved. Robust optimization is also different 

from the dynamic programming approach, which models the uncertain parameters as random 

variables. The dynamic programming approach suffers from the curse of dimensionality and 

assumes the distributions of the uncertain parameters are available. Bertsimas & Thiele (2006) 

showed that the robust optimization techniques lead to high-quality solutions and often 

outperform their  dynamic programming-based counterparts. 

 

5.2 A Brief History 

The origin of stochastic linear programming, or linear programming under uncertainty, can be 

traced back to two seminal papers written independently by Dantzig (1955) and Beale (1955). 

Dantzig’s work was inspired by an earlier paper he coauthored in which he proposes that linear 

programming methods should be extended to include the case of uncertain demands for the 

problem of optimal allocation of a carrier fleet to airline routes to meet an anticipated demand 

distribution (Ferguson & Dantzig, 1954). 

 

"In retrospect, it is interesting to note that the original problem that started my research  

is still outstanding -- namely the problem of planning or scheduling dynamically over time, 

particularly planning dynamically under uncertainty. If such a problem could be successfully 

solved it could eventually through better planning contribute to the 

 well-being and stability of the world." 

-George Dantzig (1991) 

 

A robust approach to addressing linear optimization problems with uncertainty in the input data 

was proposed in the early 1970s. The robust optimization approach accepts near-optimal 



100 

 

1
0

0
 

solutions for nominal values of the input data to ensure that the solution obtained continues to 

be feasible and near-optimal, when the data changes. 

 

The first inroads were made by Soyster (1973) who proposed a linear optimization model that 

optimizes the model for the worst-case realizations of the data elements. In other words, each 

data element was assumed to take its most extreme value to ensure that the solution was 

always feasible, albeit at the cost of optimality. 

 

Ben-Tal & Nemirovski (2000) argued that the Soyster’s model produces solutions that are too 

conservative and sacrifices too much optimality just to ensure the solution robustness. They 

address the issue of over-conservatism by proposing the use of ellipsoidal uncertainties, which 

solves the robust counterparts of the linear problems in the form of conic quadratic problems. 

However this approach has practical drawbacks as it leads to non-linear, although convex, 

models, which are computationally expensive to solve. The biggest drawback to the Ben-

Tal/Nemirovski approach is that it does not extend well to integer formulations. When the 

decision variables are enforced to be integers, the problem becomes a nonlinear optimization 

problem, which is inherently non-convex and extremely difficult to optimize efficiently. This 

makes the formulation especially ill-suited for discrete optimization problems, like our portfolio 

problem.  

 

Bertsimas & Sim (2004) proposed a new approach for robust linear optimization which retains a 

linear framework, and at the same time, provides deterministic and probabilistic guarantees 

against constraint violations. Their methodology is based on the premise, that only a small 

subset of data elements takes their worst-case values at the same time. They argue that 

robustness comes at a certain associated cost, and they provide a parameter   to control the 

degree of robustness of the solution. The parameter   guarantees a feasible solution for 

instances in which fewer than   parameters take their worst-case values. The approach even 

provides a probabilistic guarantee, that if more than    parameters change, the robust solution 

will still be feasible to a high degree of probability. Since their robust formulation retains the 

linear nature of the problem, it can be extended to discrete optimization problems, like 
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knapsack and portfolio problems. For these reasons, we shall adopt the Bertsimas - Sim 

approach, for addressing our research problem. 

 

5.3 Linear Programming Problems 

Let us consider a standard nominal linear optimization problem: 

 

 maximize:      

subject to:       

                                     

(5.1)  

 

Here                denote the objective function coefficients; the matrix   and the vector   

represent the data in the constraints imposed on the decision variables               
 . 

The vector   is a feasible solution if it satisifies the constraints imposed by   and  . We assume 

that the data uncertainty only effects the matrix  , since we can always change the objective 

function to maximize  , then incorporate the new constraint           into the existing 

constraint       .  

 

Each entry of the constraint matrix A,      is modeled as a symmetric variable  ̃   . We do not 

assume any probability distribution for the random variable  ̃   but restrict it to only take values 

in the interval         ̂         ̂    . Specifically     denotes the nominal mean value of the 

distribution and  ̂   is the half-interval of  ̃  . Associated with the uncertain data  ̃  , we define 

another random variable  ̃   ( ̃        )   ̂    which obeys an unknown but uniform 

distribution, taking values in the range       . We let    represent the set of coefficients in row   

subject to parameter uncertainty, i.e.,   ̃           takes value from the symmetric distribution. 

 

5.3.1 Soyster’s Approach 

Thus, under this uncertainty model, we can present Soyster’s robust formulation as follows: 
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 maximize:      

subject to:              ̂                                 ∀  

                                                                                      ∀            

                                       

                                    

 

(5.2)  

The robust optimal solution    of this formulation will remain feasible for every possible 

realizations of  ̃  . It can be seen that the Soyster’s approach is the most conservative in practice, 

in the sense that the use of the worst-case values results in far-from optimal solutions, for many 

realizations of  ̃    

 

5.3.2 Robust Approach of Ben-Tal and Nemirovski 

Ben-Tal & Nemirovski (2000) propose the following formulation 

 

 maximize:      

subject to:              ̂               √  ̂  
    

 
        

                                                                                                      ∀  

                                                                                ∀                    

                                       

                                    

(5.3)  

 

This model is less conservative than Soyster’s model. The authors have proved that in this 

formulation, the probability of the     constraint being violated is at most     (   
   ) . 

However the non-linearity of the model makes it a less than desirable approach for solving 

discrete optimization problems. 

 

5.3.3 Robust Approach of Bertsimas and Sim 

Bertsimas and Sim (2002) introduce a parameter   , not necessarily integer, that can take values 

in the interval    |  | . Intuitively speaking, it is unlikely that all |  | coefficients will assume its 

worst-case value. The formulation provides protection against the case when up to ⌊  ⌋ of these 



103 

 

1
0

3
 

coefficients are allowed to assume their extreme values and one coefficient     is allowed to 

change by (    ⌊  ⌋) ̂  . The corresponding robust non-linear formulation can be written as  

 

 maximize:      

subject to:      
         |  ⊆    |  | ⌊  ⌋              

{  ̂            

                             (   ⌊  ⌋) ̂      }                                ∀  

                                                                                       ∀  

                                       

                                    

(5.4)  

 

In the above formulation    represents the set of uncertain parameters that take their extreme 

values such that |  |  ⌊  ⌋, for the     constraint. The second term in the     constraint is a 

protection function, which uses the parameter     to offer various levels of protection.    

  represents the deterministic case while     |  | reduces the formulation to Sosyster’s 

method. 

 

Bertsimas & Sim (2004) prove that the non-linear formulation can be reformulated as a linear 

optimization model. 

 

 maximize:      

subject to:                                            ∀   

                                      ̂                                     ∀          

                                                           ∀             

                                                                                           ∀   

                                                                                    ∀          

                                                                                                  ∀   

                                                                                        ∀  

(5.5)  

 

Thus, the Bertsiamas and Sim is as flexible as the one proposed by Ben-Tal & Nemirovski (1998, 

1999, 2000), El Ghaoui & Lebret (1997), El Ghaoui, Oustry, & Lebret (1998) among others. Since 
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the robust optimization form preserves the linearity of the problem, it is computationally more 

tractable than non-linear problem formulations. This is especially true for discrete optimization 

problems. Their formulation provides probabilistic guarantees of the feasibility of the 

constraints when more than Γ coefficients take their worst value. Bertsiamas and Sim also 

provide the corresponding mathematical formulation when the data are correlated, i.e., there 

are finite number of sources of data uncertainty that affects all the data. They report numerical 

results for portfolio optimization problem, knapsack problem, supply chain management 

problem and network flow problem. 

 

Marla (2007) has provided a discussion of the advantages and disadvantages of the Bertsimas - 

Sim problem. 

 

Advantages: 

 

1. It is applicable to linear and integer programs. 

 

2. Linear integer programs retain their linearity, but contain more variables, thereby 

minimally degrading the tractability of the problem.  

 

3. The formulation does not make any assumptions regarding the probability distributions 

of the uncertain data; it captures uncertainty through symmetric bounds of variation 

alone. 

 

4. The ‘level of robustness’ can be adjusted by varying the parameter  , thereby providing 

measures of the changes in the planned objective function with changes in the 

protection level.  

 

5. The correlated - data model can capture simple correlations between uncertain data in 

one constraint equation, but not across constraint equations. 
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Limitations: 

 

1. The problem does not provide any guidelines for choosing  , which means that the 

problem has to be resolved multiple times for different values of   , for each  . For large 

scale problems, this may pose computational challenges. 

 

2. It assumes symmetric bounded distribution about the nominal values for the uncertain 

parameters. 

 

3. The model has no provision to account for known probability distributions. 

 

4. The probability bounds for constraint violation can only be derived for each constraint 

and not for the system as a whole.  

 

5.4 Robust Optimization Framework for the Proposed Mechanism 

The Bertsimas Sim framework is well-suited to address our research problem, despite the cited 

drawbacks. Since we are working under a single bandwidth constraint, we can change the 

protection level by varying   to determine the change in the cost of robustness as a function of 

the protection level. Also the probabilistic bound derived for the bandwidth constraint, would 

be applicable to the whole system. 

 

Thus we introduce the subsequent steps of the second stage to our mechanism, based on the 

Bertsimas Sim formulation of a robust portfolio problem. 

 



106 

 

1
0

6
 

 

 

5.5 Robust Portfolio Problem 

The portfolio problem assumes that a portfolio needs to be constructed consisting of a set of 

stocks. Each of the stocks has a return and a risk value associated with it and the objective of the 

problem is to determine the fraction of wealth that must be invested in each stock, to maximize 

the portfolio value.  

 

2. Second Stage (continued) 

 

2.3 For each target     , where   is the set of all targets in the system, the trusted center 

selects a set of agents    to report their observations ( ̂     ̂  ) to the center,      . 

For each observation  ̂  , the center calculates the nominal information content     

and the bound   ̂  .  

 

2.4 Based on the total NCT, the maximum limit of the NCT, and the time needed to 

transmit each observation, the center calculates the total number of target-agent 

pairs      to be selected for transmission. The center solves the portfolio optimization 

problem  

 

            

maximize:                       
 

subject to:                     
     

 

(5.6)  

2.5 The agents selected through the solution of the optimization problem, are asked to 

transmit the observations on their allocated target to each agent in the simulation, 

until the next auction process. 
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In reference to our research problem, the stocks represent the observations made by the sensor 

agents. The return value of the stock can be interpreted as the information content of each 

observation; the risk value indicates the uncertainty in the information content while the total 

wealth available for investment signifies the maximum bandwidth available for transmission on 

the tactical data link.  

 

We reformulate the traditional portfolio problem as zero-one portfolio problem where the 

decision to be made is whether a particular stock should be included in the portfolio or not. The 

portfolio problem that we need to optimize is the following discrete optimization problem: 

 

 
maximize:                         

 

subject to:                        
     

            

(5.7)  

where,  

   Set of targets in the system 

     Set of agents selected through the proper-scoring rules algorithm for target   

     Information content of the observation made by agent   of target   

      The total number of agent-target pairs that can selected for transmission 

    Binary decision variable, which takes value   if agent   is selected to transmit 

information of target   and   otherwise 

 

Regarding the uncertainty model for data, we assume that the information content is uncertain. 

In other words, we model the information content     as a random variable  ̃   that has a 

symmetric distribution in the interval        ̂          ̂   .     is the expected information 

gain, while  ̂  is a measure of the uncertainty of the information content.  

 

Using the Bertsimas Sim framework for reformulating the portfolio problem: 
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 maximize:          

subject to:                               (     ) 

∑    
           

      

                                        

 (     )      
       | ⊆  | | ⌊ ⌋          

 

   { ∑  ̂  
      

     (   ⌊ ⌋) ̂       } 

(5.8)  

 

In this setting, Γ is the level of protection that can be adjusted for the robust portfolio 

optimization. We can solve this linear discrete optimization problem through state-of-the-art LP 

solvers. For our research work, we use Gurobi Optimizer 5.5 to solve the problem at hand to 

optimality. 

 

5.6 Conclusion 

In this chapter, we have finished the formulation of the framework that we introduced in 

Chapter 4. The proposed mechanism, based on modified scaled strictly proper scoring rules, 

two-stage mechanisms and robust optimization, addresses all the six requirements we outlined 

at the end of Chapter 1 and Chapter 3. Specifically, we have designed a protocol that ensures 

that each agent participates and truthfully reports their interdependent track information, 

based on which the auctioneer can allocate targets to the agents by taking into account the 

uncertainty in the information content, and the selected agents invest their resources to 

generate and truthfully report the observations on their allocated targets. We are now in a 

position to apply our mechanism to the agent-based model described in Chapter 3, and discuss 

the numerical results and evaluate the performance of the mechanism.  
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CHAPTER 6. RESULTS 

In this chapter, we investigate the application of our modified strictly proper scoring rules based 

mechanism to the agent-based model of the tactical data network. We first discuss the 

Graphical-User Interface (GUI) of the ABM created in DAF (Discrete Agent Framework), and then 

study the behavior of the mechanism under different settings. The effects of the lack of access 

to true outcomes, deceptive behavior on the part of the sensor platforms and the protection 

level of the robust optimization is evaluated and studied. 

 

6.1 Agent-based Model GUI 

We develop an agent-based simulation model within DAF to capture the performance of a group 

of military platforms, tasked with the goal of detecting and tracking targets. At the core of the 

ABM is a track data generator that provides the raw track data. Each platform adjusts the raw 

data to reflect the position, heading, and affiliation and the error bounds as measured by the 

onboard sensors.  

 

Figure 6-1 highlights the main features of the DAF-based ABM Graphical-User Interface (GUI). 

The application framework provides significant dynamism and plenty of features that can be 

customized to generate unique scenarios. We first discuss these customizable features, located 

in the bottom left corner of Figure 6-1. 

 

1. Number of Targets  

The total number of initial targets to populate the scenario can be specified here. 

The selected targets have different origin and destination points, dynamics and 

affiliations – Hostile, Friendly or Neutral. 
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Figure 6-1 Application GUI 
 

2. Total Simulation Time  

This parameter allows the total time duration of the simulation to be specified.  

 

3. Auction Frequency 

Auction frequency can be varied from 2 to 20 cycles, where   means an auction is 

initiated every   cycles. Since the mechanism is implemented over two distinct 

stages spread over two transmission cycles, a minimum auction frequency of   

needs to be selected for a successful auction to be conducted. 

 

4. Auction Bandwidth 

This option allows for the selection of the maximum Net Cycle Time (NCT) or Tracks 

that can be auctioned. The baseline NCT required to transmit the R2 data depends 

on the number of tracks in the simulation as well as the configuration of the tracks 
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generated. The auction bandwidth represents the difference between maximum 

NCT and baseline NCT, which is auctioned for the transmission of additional track 

information to improve the quality of the common operating picture. 

 

5. Gamma 

Gamma indicates the protection level of the robust optimization framework that is 

used to select the subset of track information to be transmitted, over and above the 

R2 data. A higher value of gamma provides lower returns on uncertainty adjusted 

information value with lower probability of constraint violation while a lower value 

of gamma provides higher returns with more risk. 

 

6. Scoring Rule 

 

The simulation framework is designed to work with four different modified strictly 

proper scoring rules discussed in Chapter 5. We shall evaluate the expected and 

actual payments, variance of payments and utility values for the different scoring 

rules – Quadratic, Spherical, Logarithmic and Parametric. For the parametric scoring 

rule, an additional parameter has to be selected and the value of the parameter can 

lie in the interval (   )  

 

Once all the input values have been specified the simulation is executed by pressing the 

‘Animation’ button. The top-left window provides a real-time track display of the simulation 

scenario with four symmetrically positioned platforms and a distributed set of targets. The three 

windows on the right allow the study of the behavior of the mechanism for different scenarios. 

We simulate a demo scenario in the application GUI with the following inputs: 

 

 Number of Targets  =  16 units 

 Total Simulation Time   =  50 time steps 

 Auction Frequency  =  6 cycles 

 Auction Bandwidth  =  10 units 
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 Gamma    =  0 

 Scoring Rule   = Quadratic 

 

We provide a snapshot of the simulation in Figure 6-2, in order to discuss the highlights of the 

captured behavior. We start from the main runtime window, and then examine the different 

plots in the right from top to bottom. 

 

 

Figure 6-2 Snapshot of a simulation in progress 
 

 

 

Runtime Window NCT Window 

Information Window 

Payment Window 
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1. Runtime Window 

 

The main run-time simulation window displays the four platforms located symmetrically 

in the 50 – by - 50 miles region. The platforms are numbered 1, 2, 3 and 4 and the role 

of the Grid Reference Unit (GRU) is played by Platform 3. The GRU is typically the 

platform possessing the highest quality track data and the GRU almost universally is 

assigned the reporting responsibility (R2) for any track within its classification radius. The 

tracks are spread across the simulation map and are designated by small squares. The 

color of these squares indicates the sensor that has been assigned R2 for that particular 

track. For instance, the yellow tracks are being tracked by Platform 1, the green ones by 

Platform 2, the red targets by Platform 3 and Platform 4 is tracking the blue-colored 

tracks.  Since an auction has not yet been conducted, there is only a single platform 

tracking any target. 

 

2. NCT Window 

 

The top-right window shows the net cycle time against the current simulation time. In 

the first cycle, each platform sends the track information for all the targets within its 

observation region and this round of transmission corresponds to a higher NCT of 

approximately 3 seconds. Once the auctioneer assigns R2 of the tracks to the sensor 

platforms, the platforms only broadcast the track data for their assigned targets and the 

NCT drops to 2 seconds in the subsequent cycles. 

 

3. Information Window 

 

The middle window displays the information content of the tracks being transmitted. It 

shows three distinct information values: the maximum information achievable (dashed 

green line), the current information being transmitted (red line) and the baseline R2 

information (blue line). The information value is computed as a function of the 

covariance of track data as outlined in Section 3.4.3. The dashed green line includes 

redundant reporting on the targets that are not selected for transmission while the blue 
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and red lines overlap, since only the R2 information is being transmitted. The difference 

between the green and the blue lines indicates the loss in information that occurs for R2 

mechanism which doesn’t allow for redundant reporting of a single object. When a 

target is not transmitted, the opportunity to fuse its data is also lost. Hence the goal of 

the mechanism is to recover the maximum information for a given quantum of 

additional transmission time. 

 

4. Payment Window 

 

The payment and utility for each round of auction is displayed in the window at the 

bottom-right corner. The payments made to each platform are shown using the blue-

colored bars while the red bars indicate the utility values gained by each platform. 

These values are determined by the scoring rules selected and can take both positive 

and negative values depending on the reported maximum and actual information 

content values of the track data. Since the auction mechanism has not been conducted, 

no payments have been made to the platforms yet.  

 

The platforms continue to track and transmit information for the assigned targets. Once six 

transmission cycles have elapsed, an auction is initiated based on the input parameters. The 

auction mechanism follows the two stages as outlined in Chapters 4 and 5, and a snapshot of 

the post-auction simulation is captured in Figure 6-3. 

 

The main run-time simulation window now shows multiple targets being tracked by one or more 

platforms. Three of these targets are being tracked by three sensors while four targets are being 

tracked by two sensors. Since we specified the auction bandwidth parameter input 

corresponding to ten units, the mechanism selects ten additional transmission tracks. This 

selection is based on a host of factors – the information value, the track affiliation, protection 

level gamma and the uncertainty in the information values. 
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Figure 6-3 Outputs of the simulation 

 

The Net Cycle Time window shows a peak corresponding to the time when the auction 

mechanism was executed. In the first stage of the mechanism each platform transmits the 

maximum information content values as well as its cost functions for all the targets in its 

observation region to the center. This results in the first peak corresponding to a NCT of     

seconds. Once the remaining stages of the mechanism have been executed, a small subset of 

ten tracks is selected for transmission and the NCT comes down to   seconds. 

 

The Information window shows the divergence of the three different metrics used to measure 

information content of the tracks being transmitted. In the first stage of the auction, all sensor 

platforms transmit the maximum information values for all targets within their detection radius 

Runtime Window NCT Window 

Information Window 

WindowWindow 

Payment Window 

Maximum 

Info 

Transmitted 

Info 

R2 Info 

Payment 

Utility 
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and the dashed green line corresponding to the maximum available information shoots up. 

However the transmitted information (red line) and the R2 information (blue line) continue at 

the baseline level. Once the second stage of the mechanism has been executed, the transmitted 

information spikes to a higher level corresponding to the selected subset of targets. The 

difference between the red and blue lines indicates the track information recovered as a result 

of the auction mechanism.  

 

The payment window shows the reimbursement handed out to the participating platforms in 

the auction mechanism. The utility is measured as difference of the payment and the costs 

incurred for generating and reporting the track data. An interesting facet of the simulation is the 

effect of the mechanism on the platform that has been assigned the role of GRU. As apparent 

from Figure 6-3 the Sensor Platform 3 (the designated GRU) has payment and utility values of 

zero. This asymmetry can be attributed to the fact that the GRU universally is assigned the 

reporting responsibility (R2) for any track within its classification radius. Hence it cannot 

contribute any additional track data towards the auction mechanism which makes it a perpetual 

receiver of non - R2 track information from the other sensor platforms. This represents a 

seemingly anomalous yet correct real world behavior representation (Klein et al., 2008). 

 

6.2 Sensitivity Analysis 

The simulation framework exhibits significant dynamism by offering various parameters which 

can be adjusted to vary the characteristics of the simulation scenario. The trade-space obtained 

by assuming different initial conditions can be inexhaustibly large and hence for the sake of 

expediency, we fix the values of certain parameters. In all the following simulations, the number 

of initial targets in the simulation is fixed at sixteen, the auction bandwidth is assigned the 

maximum value of forty-eight, the auction frequency is maintained at six cycles and the 

simulation is carried out for fifty time steps. We assume the cost as a linear function of 

information content, represented as   ( )       , where the value of    is selected from a 

uniform distribution     (      ). This allows us to focus our discussion on the variables of 

interest – scoring rules, protection levels and the maximum number of preselected sensor 

platforms M.  
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6.2.1 Maximum Number of Preselected Sensor Platforms (M) 

In the first stage of the proposed mechanism, the trusted center requests all sensor platforms in 

the simulation to report their cost functions and to reveal their private maximum information 

content. The center then preselects   sensor platforms from the   available sensor platforms 

with the lowest cost functions through one single reverse (   )   auction. In our simulation 

scenario, since there are four sensor platforms and the R2 tracks have already been pre-assigned, 

there are only       sensor platforms available for selection for transmitting non – R2 track 

data. Thus   can take three distinct integer values          . The number of pre-selected 

sensor platforms   dictates the maximum number of sensor platforms that can track any one 

target. For example, for      , a maximum of   platforms can be assigned to one target, one 

for R2-track data and two for non-R2 track information.  

 

We first observe the impact of M on the total information flow in the simulation and the net 

cycle time. The results are shown in Figure 6-4. 

 

Figure 6-4 represents the variation of the transmitted information and the net cycle time as the 

maximum number of pre-selected platforms ( ) is varied from 1 to 3. The baseline case of R2 is 

represented using the blue diamonds; the maximum information case is represented using the 

green triangles, while the red squares represent the case corresponding to the subset of 

selected track data. For      , only one platform can be selected to transmit the non - R2 track 

data for each target. The average net cycle time corresponding to this scenario is       seconds 

and located approximately midway between the baseline value (      seconds) and the 

maximum value (      seconds). In the next scenario   is fixed as   and thus two platforms can 

be selected per target for non – R2 track data transmission. In this instance, the transmitted 

information value is much closer to the maximum achievable situational awareness, though it 

also corresponds to a higher average net cycle time of       seconds. When M is fixed at  , it is 

possible to achieve the highest possible gain in the overall Common Operating Picture (COP) 

quality. This case corresponds to the highest mean NCT of       seconds. 
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Figure 6-4 Information and Network Cycle Time for different values of M 
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The selection of the value of   is dictated by a tradeoff between information content and 

information latency. Increasing the value of   allows additional track data to be transmitted 

over the tactical data network, though it also results in increased latency between successive 

track updates. A few guiding factors that should be taken into consideration when choosing   

are listed below: 

 

1. The gain in the information for a given quantum of NCT 

2. The total expected payment made by the center 

 

We capture the interaction of these factors with the number of pre-selected sensor platforms in 

Figure 6-5. 

 

Figure 6-5(a) shows how the additional gain in the information flow per second of increase in 

the Net Cycle Time changes with the maximum number of pre-selected sensor platforms. 

      results in the highest recovery of non - R2 track information for a given quantum of 

extra NCT. This value goes down for the case      , indicating that the increase in the 

transmitted information is marginal as compared to the extra latency induced in the network. 

For the case when all the sensor platforms are allowed to track a single target, the gain in the 

information content per quantum of bandwidth improves slightly, but does not reach the value 

corresponding to       . However as the error bounds indicate, there is considerable 

uncertainty associated with these values as the gain in information per unit second is dependent 

on the distribution of the targets over the simulation map. Thus caution must be exercised when 

using this as a metric for selecting the value of  . 

 

Figure 6-5 (b) plots the expected total payment made by the center against the maximum 

number of pre-selected sensor platforms. We consider the payments made under different 

scoring rules – Quadratic, Spherical, Logarithmic and the limiting cases of the Parametric 

(     and    ). For the sake of clarity we omit the standard errors and plot only the mean 

values of the expected payment. The variance of the expected payment will be discussed in 

greater depth in the next section.  
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Figure 6-5 (a) Gain in Information per second of NCT vs. M (b) Expected Total Payment vs. M 

 

From the graph in Figure 6-5(b) we can observe that by setting        the center minimizes its 

expected payment as it directly chooses the sensor platform with the lowest cost function. This 

case represents a lower payment bound for the mechanism for each instance of the 

implemented scoring rule, because the center selects the parameters   and   to ensure that the 

expected utility of the platforms is only slightly greater than  . Logarithmic scoring rule and the 

limiting case of the Parametric scoring rule (    ) results in the lowest expected payment for 

every value of M, while the other limiting case of the Parametric scoring rule (   ) results in 

the highest expected payment. If the cost distributions and maximum information content 
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values are known a priori, the value of   can be selected through multiple simulations. But it is 

unreasonable to expect that these distributions will be public knowledge in a real-world 

scenario. It is, therefore, prudent to select the highest value of M which ensures that the 

mechanism captures the highest possible gain in the overall common operating picture quality, 

even if it results in the center incurring the highest expected payment. 

 

6.2.2 Scoring Rules 

In this section, we turn our attention to the different scoring rules. Specifically, we empirically 

evaluate the parametric scoring rule and compare it to the quadratic, spherical and logarithmic 

scoring rule, for the parameter space of      (    ). We discuss how the parametric scoring 

rule converges to one of the other scoring rules for different values of the parameter  , along 

with the advantages and disadvantages of the various scoring rules. 

 

In order to facilitate the discussion on the comparison of the four scoring rules, we generate the 

plots of the total expected payment made by the center, the variance of the payment and the 

minimum payment for the parameter space of     (    ). We present these results in Figure 

6-6. 

 

Figure 6-6 illustrates that the payment scheme based on the logarithmic scoring rule results in 

the center making the lowest expected payments to the sensor platforms. The logarithmic 

scoring rule also results in the lowest variance in the payments made by the center. This would 

seem to indicate that the logarithmic scoring rule enjoys a significant advantage over the 

quadratic and spherical scoring rules.  

 

Another distinctive trait that can be observed in Figure 6-6 is that the expected payment and the 

payment variance that results from the logarithmic, spherical and quadratic scoring rules is the 

same as those based on the parametric scoring rule, for values of the parameter      ,   

 .5 and      respectively. Thus for     , the expected payment and the variance of the 

payment based on the parametric scoring rule are asymptotically equal to the expected 

payment and the payment variance of the logarithmic scoring rule. Furthermore the same 

results apply for       and the spherical scoring rule, where the expected payment and the 
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Figure 6-6 (a) Expected Payment (b) Variance of Payment (c) Minimum Payment vs. Different 
Scoring Rules 
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variance of the payment made by the center is the same. When    , the values of the 

expected payment and the payment variance for the parametric scoring rule converges to the 

corresponding values obtained from the quadratic scoring rule. This result serves as a validation 

for the analytical derivation where the parametric scoring rule takes the same expression for the 

expected payments as the logarithmic, spherical and quadratic scoring rules, for values of the 

parameter      ,    .5 and     respectively. 

 

Hence the parametric scoring rule seems to share the advantages exhibited by the logarithmic 

scoring rule. However the parametric scoring rule enjoys a significant edge when we consider 

the lower bounds on the payments. To analyze this result further, we consider the analytical 

expressions for the parametric and logarithmic scoring rule we obtained in Chapter 4. 
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(6.1)  

 

In the modified scaled strictly proper scoring rules, the trusted center fuses the observations 

from all the other sensor platforms and excludes the sensor platform whose reported 

observation is being evaluated.  Thus if the reported observations of the evaluated sensor 

platform is far from those reported by the other sensor platforms, then the probability 

distribution function of the platform goes to    (i.e.  ( ̅       
    ̅  

  
)   ) . In the 

logarithmic case, the scoring rule approaches negative infinity and thus the logarithmic scoring 
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rule does not have a finite lower bound of the payment. In the case of parametric scoring rule as 

    , the scoring rule goes to 0 as the probability distribution function goes to 0. The payment 

based on the parametric scoring rule also does not have a finite lower bound, since the 

coefficient of the scoring rule function approaches negative infinity when       Therefore 

both the logarithmic scoring rule and the limiting case of the parametric scoring rule family 

results in large negative payments when the sensor platforms produce imprecise observations. 

Nevertheless, if the parameter is chosen judiciously, the effect of the platform’s imprecise 

estimate can be minimized for the parametric scoring rule family.  

 

Figure 6-6 plots the lower bounds of the payment of the parametric scoring rule for the 

parameter space   (     ) against the spherical and quadratic scoring rule. The logarithmic 

scoring rule and the limiting case of the parameter scoring rule family (    ) does not have a 

finite lower bound and hence are omitted from the figure. It can be observed that the minimum 

payments increase for the family of parametric scoring rules as the value of the parameter 

increases. For     , the lower bound is similar for the quadratic and the parametric scoring 

rule, like we saw in the case of expected payments and the variance of payment. But the same is 

not true for       and the spherical rule, as the lower bound on the payment for the spherical 

scoring rule is higher than that of the quadratic rule. 

 

The selection of an appropriate value of   for the parametric scoring rule is, hence, dictated by a 

tradeoff between expected payment, variance of the payment and the lower bound on the 

payment. From the simulations, a value of              appears to be a judicious compromise 

between the different factors. This set of parameter values produces low expected payments 

and variance of payments which are close to the ones obtained from the logarithmic scoring rule, 

and at the same time, imposes a finite lower bound on the minimum payments. The exact 

choice of the parameter will depend on the overall objectives of the mechanism and the 

mechanism designer.  

 

6.2.3 Protection Level 

This section illustrates the robustness of the performance of the simulation for different values 

of the protection level. In all the preceding results the value of the conservation parameter, 
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Gamma, was assumed to be zero and the nominal values of the information content was used 

for all computations. In this scenario, we model the information as a random variable with a 

symmetric distribution where the uncertainty is calculated as the difference between the 

estimated and the actual information content.  We use the same inputs for the application 

framework as in the previous sections, except for the Auction Bandwidth which is decreased to 

18 units. The motivation behind this is to observe how the composition of the portfolio of the 

selected sensor-target pairs changes with the protection level. This case study is indifferent to 

the choice of the scoring rule, as our interest lies solely with the expected information flow and 

the probability of achieving this expected information flow. We expect to see similar results for 

different values of M (maximum number of preselected sensor platforms) and the various 

scoring rules, as the portfolio optimization problem only takes in the distribution of the 

information valuation measures as input. 

 

We first solve the robust portfolio optimization problem using the Bertsimas-Sim formulation as 

outlined in Section 5.5 for different values of protection level ( ).  

 

Figure 6-7(a) shows the expected information flow and the uncertainty-adjusted information 

flow in the mechanism for different values of Gamma. The uncertainty-adjusted information is 

the value of the objective function that the Bertsimas-Sim framework seeks to optimize. It 

represents the difference between the expected information flow and the uncertainty function 

when at most   variables are allowed to take their worst values. The graph illustrates the phase 

transitions that occur as the value of   increase. 

 

 For      , both the expected information flow and the uncertainty adjusted 

information flow are insensitive to the protection level. This can be attributed to the 

difference between the total number of target-sensor pairs available for selection 

(    ) and the maximum auction bandwidth (    ). In this phase, the solution 

indicates that the worst information values will be taken by the target-sensor pairs 

which are not a part of the solution portfolio. 
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 For        , the uncertainty adjusted information flow decreases as the protection 

level increases. In this phase, the number of sensor platforms that report observed 

information content values different from their estimated information content values is 

allowed to increase with  . Once the value of gamma becomes equal to the total 

number of target-sensor pairs available for selection (   )  the uncertainty adjusted 

information reaches its minimum value and doesn’t decrease any further. 

 

 For        , the expected information flow shows sudden phase transitions for 

values of                    These transition points for the expected information 

flow coincides with the protection levels where the composition of the portfolio 

changes.  

 

 For      , the portfolio is composed of target-sensor pairs with the largest 

uncertainty-adjusted information values. This represents the ultra-conservative solution 

given by Soyster’s method and for this phase both the expected and uncertainty-

adjusted returns are insensitive to increase in  . 

 

As we discussed in Chapter 5, one of the main attractions of the Bertsimas-Sim framework for 

discrete robust optimization problem is that it provides probabilistic bounds of constraint 

violation. The formulation provides a theoretical bound on the fraction of portfolios with 

information flow values which will fall below the robust solution of the uncertainty adjusted 

information value. We plot this probability of underperforming as a function of the protection 

level   in 

Figure 6-7(b). For low protection levels, the probability of the portfolio solution falling below the 

robust solution is quite high. As the protection levels increase the probability of 

underperforming decreases by several orders of magnitude. 
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Figure 6-7 (a) Information, (b) Probability of Underperforming vs. Protection level 
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Figure 6-8 (a) Minimum, Expected and Maximum information Flow vs. Protection Level (b) 
Information vs. Probability of Underperforming 
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In Figure 6-8 we present the aggregated result of the simulations indicating the trade-off 

between the portfolio return (information flow) and the risk (probability of underperforming). 

Figure 6-8(a) plots the values of the maximum, expected and minimum information flow against 

the protection level. As the value of   increases, the maximum and expected information flow 

values decreases, whilst the minimum values increase. Figure 6-8(b) shows the same results 

captured in Figure 6-8(a) of the expected information flow and the uncertainty-adjusted 

information, but against the associated risk, instead of  . Hence the figure accurately captures 

the tradeoff between risk and return. 

 

The robust optimization formulation provides the center with a methodology to decide which 

sensor-target pair to select for transmission in a robust fashion that provides a deterministic 

guarantee of obtaining the highest gain in information for a given quantum of additional 

bandwidth. Moreover it endows the auction center with the flexibility to adjust the level of 

conservatism of the robust solutions in terms of probabilistic limits of underperformance of the 

selected sensor platforms for track data transmission. 

 

6.3 Empirical Evaluation of Lack of Access to Outcome 

We now turn our attention to the impact of the lack of access to outcome when determining the 

payments made to the platforms by the center. As we discussed in Section 4.2 for real-world 

scenarios operating in dynamic and uncertain environments, the state of the world changes 

between the time the information is reported and the time when the observation can be 

observed. Nevertheless in our simulation framework we can create a scenario where the center 

has access to information on all the tracks in the simulation. The center can use this information 

to evaluate the observations reported by the sensor platforms. This scenario allows us to 

examine the penalty that the center has to incur in the pre-selected sensor platform’s payments 

as a consequence of its inaccessibility to the true outcome.  

 

In 

Figure 6-9 we calculate the total expected payment and the variance in the total payment made 

by the center for each of the four scoring rules. For the case of the parametric scoring rule, we 

restrict our attention to the parameter space              we selected earlier in the chapter. 
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We only consider the case of     , as we obtain the same trend in the results for a higher 

number of pre-selected platforms. 

 

Figure 6-9(a) illustrates the two cases, the one where the center has access to the true 

outcomes and the other where the center uses the fused estimates to calculate the payments, 

using different markers. For both these cases, the total expected payment that the platforms 

expect to derive is the same. The lack of knowledge of the actual outcome of the mechanism 

has no impact on the expected payments. This result is valid for each of the four scoring rules – 

quadratic, spherical, logarithmic and parametric. This is in accordance with the economic 

property of the modified strictly proper scoring rules based mechanism design algorithm that 

was outlined in Section 4.2.3. The center does not incur any penalty on the expected payments 

for its lack of access to the true outcome. Papakonstantinou et al. (2011) have explained this 

seemingly anomalous behavior as a consequence of the modified strictly proper scoring rules 

mechanism itself. The property of incentive compatibility of the mechanism mandates that a 

pre-selected sensor platform’s expected payment is equivalent to the cost used for scaling the 

scoring rules.  

 

The lack of knowledge of the actual outcome does, however, have an impact on the variance of 

the total payment as demonstrated in  

Figure 6-9(b). The variance of the payments is lower in the case where the center has access to 

the true outcomes as compared to the case where the center uses the fused estimates to 

calculate the payments. This is observed for all the different classes of scoring rules. The higher 

variance in the total payments can be attributed to the increased variance of the platforms’ 

reported estimates. Thus the uncertainty introduced in the mechanism due to the lack of access 

to the real-world outcome introduces externalities in the payments made by the center. In spite 

of this drawback, the modified strictly proper scoring rules mechanism provides a robust 

framework which can adapt to the dynamic and evolving environment that characterizes tactical 

operations. 
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Figure 6-9 (a) Expected Total Payment and (b) variance of Total payment vs. Different Scoring 

Rules 
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6.4 Empirical Validation of Incentive Compatibility 

In this section, we investigate the behavior of the mechanism when one of the sensor platforms 

resorts to deceptive behavior. Specifically we allow one of the sensor platforms to over-report 

its maximum information content values and the quality of its observed track data. This scenario 

allows us to extend our study of the robustness of the mechanism beyond information 

uncertainty, to cases when the underlying assumption of sensor platform rationality is violated.  

 

In Section 4.2.3.1, a formal argument was provided for the incentive compatibility property of 

the modified strictly proper scoring rules in this mechanism. Thus an agent seeking to maximize 

its utility would truthfully report its maximum precision, and then produce an estimate of 

precision equal to its reported precision, and report the estimated precision truthfully ,assuming, 

of course that the sensor platform is rational. Notwithstanding the formal argument, it is 

instructive to study the stability of the mechanism when the underlying assumption of sensor 

platform rationality is violated, as it provides empirical validation of incentive compatibility. 

 

In this set of scenarios, we assume that Sensor Platform 4 inflates the information valuation 

metric values for all the reported targets by a factor of 5. This would lead to the auctioneer 

awarding more tracks to Sensor platform 4, both R2 and non - R2. We compare the payments 

received by Sensor Platform 4 as well as the other platforms, with the corresponding truthful 

case when all sensor platforms honestly report their track data. The results of this comparison 

are shown in 

Figure 6-10. 

 

Figure 6-10 shows the payments received by the sensor platforms for both the truthful reporting 

and over-reporting scenarios, under different scoring rules. The over-reporting of the track data 

quality by Platform 4 ensures that it gets reporting responsibility for an increased number of 

targets. This would imply that the payment received by Platform 4 would decrease. However the 

results show that for all the four instances of the scoring rule, Platform 4 ends up receiving a 

negative payment, which is equivalent to making a payment. The over-reporting has no impact 

on Sensor Platform 3’s payment as it acts as the Grid Reference Unit in both the cases. The GRU 

is assigned the reporting responsibility (R2) for all tracks within its classification radius, and 
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neither receives nor makes any payments to the center. The other two sensor platforms in the 

mechanism also experience a decrease in the payment due to the deceptive behavior exhibited 

by Platform 4. This is an intuitive outcome as the lack of the access to the true outcome for the 

center results in each platform’s payment being dependent on the observations of all the other 

platforms in the application framework, including the lying ones. The utility loss due to the 

dishonest reporting by the Platform 4 is presented in Table 6-1. 

 

Table 6-1 Decrease in Utility Values for different scoring rules 

 Decrease in Utility Values 

Sensor 

Platform1 

Sensor 

Platform 2 

Sensor 

Platform 3 

Sensor 

Platform 4 

Quadratic 42.28 20.75 0 86.51 

Spherical 41.40 19.80 0 83.89 

Logarithmic 27.65 10.95 0 69.26 

Parametric (k = 1.1) 29.34 12.65 0 70.64 

 

An interesting point to note in Table 6.1 is that the drop in utility experienced by Platform 4 is 

much higher than what the other platforms experience. This is different from “spiteful bidding’ 

which is a well - documented susceptibility of the Vickrey – Clarke - Groves mechanism (Brandt, 

Sandholm, & Shoham, 2005). Spiteful bidding occurs when an agent lies about the quality of its 

track data and accepts a decrease in its utility, if the utility of some other honest agent 

decreases more severely than its own. Our proposed scoring rule mechanism addresses this 

shortcoming of spiteful bidding by imposing higher penalties on the sensor platform which 

resorts to deceitful behavior.   

 

The sensor platform 4 is worse-off in the over-reporting case than it would have been had it 

honestly reported its observations. This result serves as an empirical validation for the 

theoretical argument given for incentive compatibility in Chapter 4.  
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Figure 6-10 Payment to all sensor platforms for the case when Platform Sensor 4 over-reports 
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6.5 Conclusions 

In conclusion, we have successfully applied our proposed robust-optimization based strictly 

proper-scoring rules algorithm to the research application framework. The standalone 

application framework boasts of significant dynamism and customizable features that allows for 

the generation of unique scenarios. Depending on the overall objectives of the mechanism, the 

designer can choose the number of pre–selected sensor platforms, the scoring rules and the 

protection level so as to best recover the most valuable information for a given quantum of 

extra bandwidth. We also show that the center does not incur any penalty on the expected 

payments for its lack of access to the true outcome and that it is in the best interest of the 

sensor platform to honestly produce an estimate of its maximum information content and 

report the estimated information content truthfully.  
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CHAPTER 7. CONCLUSIONS AND FUTURE WORK 

We summarize the contributions of the research towards developing a mechanism design 

framework for bandwidth allocation in tactical data networks in this chapter. We capture the 

highlights of the motivation behind the problem, the use of scoring rules within the mechanism 

design domain to address the problem, creating an agent-based application framework and the 

results of applying the robust optimization scoring rules mechanism to the research application 

framework. We highlight some of the other areas of application for our proposed mechanism, 

beyond the tactical data exchange environment. Finally, we discuss some possible avenues of 

future research to extend the scope of the current work. 

 

7.1 Summary 

The goal of this thesis was to explore the potential of using computational mechanisms to 

govern the behavior of ultra-large-scale systems and achieve an optimal allocation of 

constrained computational resources. We asserted that the advances in technology have fueled 

the race for information dominance in the defense sector, which relies on complex 

interconnected web of systems to meet its objectives. The sheer scale and size of these systems 

prompt behaviors that go beyond conglomerations of systems or ‘system-of-systems’, and 

provide the first glimpse of the Ultra Large Scale (ULS) systems of the future.  

 

We highlighted how the dominant characteristics of these ULS systems challenge and 

undermine the fundamental assumptions of today’s software and system engineering 

approaches. In most cases ULS systems will lack a central locus of institutional control and 

system users may behave opportunistically to meet their local mission requirements, rather 

than the goals of the system as a whole. We thus motivated the need to provide a basis for 

satisfying system-wide quality goals and simultaneously also satisfy the individual goals and 

expectations of the various stakeholders. In such cases, methods and tools based on. 
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economics and game theory will play an important role in achieving globally optimal behavior, 

even when the participants behave selfishly.  

 

We introduced one such method Mechanism Design, which lies at the intersection of 

microeconomics and game theory. The field of mechanism design concerns itself with the design 

of protocols and institutions that are mathematically proven to satisfy certain system-wide 

objectives. It assumes that the individuals interacting through such institutions are capable of 

acting in a self-interested manner and may hold private information relevant to satisfying the 

system objective. Mechanism design has been widely used in problems involving the allocation 

of scarce resources among both human and computational entities which are inclined to resort 

to strategic behavior. 

 

In our work, we focused on dynamic, performance-critical and resource-constrained systems of 

interest to the defense community. Specifically we considered a scenario where a number of 

military platforms have been tasked with the goal of detecting and tracking targets. Military 

platforms need to share and exchange tactical data from their onboard sensors, in order to 

establish and maintain a common operating picture of the tactical situation. This exchange of 

tactical data is facilitated over standardized radio networks, known as tactical data information 

links (TADILs), which have limited bandwidth. Our objective is to improve the quality and 

accuracy of the common operating picture through the efficient allocation of a finite amount of 

bandwidth in the tactical data networks. The problem is compounded by the possibility that the 

local goals of military platforms might not be aligned with the global system goal. Such a 

scenario might occur in multi-flag, multi-platform military exercises, where the military 

commanders of each platform are more concerned with the well-being of their own platform 

over others. Therefore there is a need to design a mechanism that efficiently allocates the flow 

of data within the network to ensure that the resulting global performance maximizes the 

information gain of the entire system, despite the self-interested actions of the individual actors. 

This research problem presents the kind of challenges we anticipate when we have to deal with 

ULS systems and by addressing this problem, we sought to develop a methodology which will be 

applicable for ULS systems of the future. 
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Information sharing is dictated by the Reporting Responsibility (R2) rule which is used to select 

the military platform with the best quality data (position, velocity, etc.) to report a surveillance 

track on the TADIL. By its very nature, the Reporting Responsibility (R2) rule is an extreme 

minimalist mechanism which precludes any possibility of collaboration by disallowing the 

redundant reporting of a single object. We emphasized the need for a mechanism which would 

allow for the recovery of the highest gain in information for a given quantum of additional 

bandwidth. The heart of this mechanism would resemble a portfolio optimization problem 

where the objective would be to select sensor – target pairs that maximize the information gain, 

given the bandwidth constraint.  However our mechanism would need to go beyond a simple 

portfolio problem and handle the requirements of Incentive Compatibility, Individual Rationality, 

Interdependency, Information Uncertainty, Implementation and Lack of knowledge of the true 

state of the world.  

 

In order to address the challenges of unknown costs, selfish behavior, constrained resources and 

dynamic environments, we decided to formulate the problem as a multi-agent systems (MAS) 

problem. We stressed on the need to generate a surrogate model for the real-world operation 

which exhibits the necessary fidelity and complexity to study the application of mechanism 

design in a practical context. To this end, we leveraged the Discrete – Agent Framework (DAF) 

developed at Purdue University in order to design a Multi-Agent System application framework. 

This framework allows us to capture the performance of a group of military platforms tasked 

with the goal of detecting and tracking targets. We emulated the elementary functionality of 

Link 16 communication protocol that is used as the tactical data network in the simulation. 

 

When agents operate in evolving uncertain environments, it becomes imperative for trust to 

exist at the heart of all interactions between the agents. We discussed how trust can be 

addressed in multi-agent systems using two different prevalent approaches - at the individual 

level and at the system level. After considering learning and reputation trust models, socio-

cognitive and probabilistic trust models, and various truth-elicitation protocols we concluded 

that they fail to adequately address all our research requirements. We then shifted our 

attention to the more fundamental approach of mechanism design which guarantees incentive 

compatibility (truthful reporting) and individual rationality (voluntary participation) through 
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certain payment schemes. We highlighted the drawbacks of the most popular auction-based 

mechanisms - the Vickrey-Clarke-Groves (VCG) mechanism. Hence we changed our focus from 

the realms of auction based models, to another promising alternative approach within the 

Mechanism Design research domain, in the form of strictly proper scoring rules.   

 

Scoring Rules have been traditionally used to assess the accuracy of probabilistic forecasts, by 

awarding a score based on the forecast and the actual outcome. We restricted our attention to 

strictly proper scoring rules in which agents can maximize their score and payment by truthfully 

reporting their private observations or probabilistic estimates. Strictly proper scoring rules were 

scaled through the introduction of appropriate scaling parameters to ensure that agents are 

motivated to invest all their available resources in generating the observations.  

 

We adopted a modified version of the two-stage mechanism based on continuous strictly proper 

scoring rules, proposed by Papakonstantinou et al. (2011). In the first stage, the trusted center 

(auctioneer) elicits the unknown costs of the agents and preselects a subset of agents that could 

provide the information at the lowest costs. In the next stage the preselected agents are 

induced to reveal their observations, using a payment scheme based on the fused reported 

estimates rather than the true outcome. The mechanism is individually rational and incentive 

compatible and works in uncertain and dynamic environments, where the costs of generating 

observations are private values unknown to the center and the true outcome cannot be 

observed by either the agents or the center. Through appropriately scaled and modified strictly 

proper scoring rules, the mechanism ensures that an agent’s payment is dependent on the 

accuracy of its reported observations, and hence guarantees that the agent will invest all its 

resources in generating the observations. We tackled the problem of uncertainty in the 

information content of the observations by formulating it as a robust portfolio optimization 

problem. We adopted the Bertsimas-Sim linear framework to solve the portfolio problem, which 

provides a protection level parameter    to control the degree of robustness of the solution.   

 

We thus designed a mechanism that ensures that each sensor platform truthfully reports their 

track information, based on which the auctioneer can allocate targets to the sensor agents by 

taking into account the uncertainty in the information content, and the selected sensor agents 



140 

 

1
4

0
 

invest their resources to generate and truthfully report the observations on the allocated targets. 

We applied our modified scaled strictly proper scoring rules based mechanism to the ABM 

framework to study the behavior of the mechanism under different settings. 

 

We computed the transmitted information and the corresponding Network Cycle Time (NCT), as 

the maximum number of pre-selected agents ( ) is varied from   to  . We showed that the 

choice of the parameter   is dictated by a tradeoff between information content and 

information latency as well as a tradeoff between the total expected payment and the marginal 

information gain per second of NCT. We asserted that it is prudent to select the highest value of 

M which ensures that the mechanism captures the highest possible gain in the overall common 

operating picture quality, even if it results in the center incurring the highest expected payment.  

 

We empirically evaluated the parametric soring rule and compared it to the quadratic, spherical 

and parametric scoring rule, for the parameter space of     (    ). We discussed how the 

parametric scoring rule converges to one of the other scoring rules for different values of the 

parameter  . The logarithmic scoring rule resulted in the lowest expected payment and 

payment variance, but it did not have a finite lower bound on the payment. The parametric 

scoring rule shared the same advantages and disadvantages of logarithmic scoring rule, but the 

effect of the platform’s imprecise estimate could be minimized for the parametric scoring rule 

family by choosing the parameter   carefully. We argued that a parameter value of   

           appears a judicious compromise as it retains the low expected payments and variance 

of payments of the logarithmic scoring rule, and at the same time, imposes a finite lower bound 

on the minimum payments. 

 

We also analyzed the effect of the protection level ( ) on the robust optimization framework. A 

higher value of   provides a lower uncertainty adjusted information value with correspondingly 

lower risks while a lower value of   provides higher returns with more risk. The robust 

optimization formulation provides the center with a methodology to decide which sensor-target 

pair to select for transmission and also provides a deterministic guarantee of obtaining the 

highest gain in information for a given quantum of additional bandwidth. 
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The impact of the lack of access to the outcome when determining the payments was also 

determined. We proved empirically that the center does not incur any penalty on the expected 

payments for its lack of access to the true outcome. The lack of knowledge of the actual 

outcome does, however, have an impact on the variance of the total payment. The variance of 

the payments is lower in the case where the center has access to the true outcomes as 

compared to the case where the center uses the fused estimates to calculate the payments. 

 

We extended our study of the robustness of the mechanism beyond information uncertainty, to 

cases when the underlying assumption of agent rationality is violated. Specifically we allowed 

one of the sensor platforms to over-report its maximum information content values and the 

quality of its observed track data. We showed that when a sensor platform over-reports its 

information content it experiences a decrease in utility and that a sensor platform is always 

better off by honestly reporting its observations. This result served as an empirical validation of 

the incentive compatibility property of the mechanism.  

 

7.2 Applications 

Although we have studied the application of computational mechanism design for bandwidth 

allocation in tactical data links, the empirical aspects of the research work suggest that the 

applicability of the proposed mechanism goes beyond tactical data links. In fact, the intended 

goal of this work was to study the potential of using computational mechanism design to 

develop a methodology to handle the anticipated challenges of ULS system of the future. The 

proposed framework is envisioned as application agnostic and with minor tweaks, should be 

amenable to any setting which involves exchange of information or services between buyers 

and sellers.  Some of these settings include environmental monitoring sensor networks, citizen 

sensor networks, electronic product contract manufacturing and e-commerce applications. 

 

Sensor Networks have been touted as one of the most promising technologies for the next few 

decades (Chong & Kumar, 2003; Lesser, Ortiz, & Tambe, 2003; Srivastava, Culler, & Estrin, 2004). 

The emergence of small inexpensive sensors based on Microelectromechanical system (MEMS) 

has resulted in a boom in the development of small experimental sensor networks. These 

networks have found ubiquitous use for a wide range of real world applications which include 
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monitoring remote or hostile environments (Martinez, Hart, & Ong, 2004), predicting floods in 

river estuaries (De Roure, 2005), radiation monitoring (Nemzek, Dreicer, Torney, & Warnock, 

2004), etc. One example of such applications is the GlacsWeb project which involves the use of 

hundreds of tiny battery powered sensors embedded into the ice of the Briksdalsbreen glacier in 

Norway (Martinez et al., 2004). These sensors are capable of measuring pressure, temperature 

and orientation of the glacier ice.  A base-station polls the sensors at fixed intervals and each 

sensor forwards their measurements using low power radio-based transmission. The data gets 

aggregated further at reference stations and sent over standard internet protocols for analysis. 

The sensors have a partial and inaccurate view of their operating environment and face 

constrained power and bandwidth capabilities. In such hostile environments, neither the base 

nor the reference stations have access to the true outcome or the ground truth. There is a 

possibility of selfish behavior emerging among these sensors where the local goals of preserving 

their own battery power may conflict with the global objective of information aggregation. 

Again, a trade-off between taking measurements and communicating these measurements is 

bound to surface.  

 

Another increasingly common trend is the emergence of the so-called “smart cities” which 

leverage the information and communication network infrastructure to take an edge in urban 

competitiveness. Wireless sensor networks, especially citizen sensor networks, are one of the 

few technologies that are fuelling smart cities. Citizen sensor networks allow citizens to register 

and connect their mobile devices, in real-time, to feed data into open online information 

databases (Goodchild, 2007; Sheth, 2009). The information can range from observations of 

actual events like measuring noise or environmental parameters to probabilistic estimates of 

weather or traffic forecasts. Examples include Xively, NoiseTube, Wikisensing which facilitate 

online collaboration between users (Maisonneuve, Stevens, Niessen, & Steels, 2009; Silva, 

Ghanem, & Guo, 2012; Yamanoue, Oda, & Shimozono, 2013). The developers or information-

buyers can connect to these databases and build apps based on the data. As high speed mobile 

internet and smartphones proliferate, the citizens sensor networks are expected to find 

increasingly commercial applications. Thus we can expect the information providers, whose 

contributions are currently voluntary and altruistic, to take a more self-interested turn. In fact 

this trend can already be observed in traffic monitoring services like Inrix and TrafficCast which 
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aggregate the information from citizen sensor networks and sell it at a fee (Sadri & Gossain, 

2010; Schrank, Lomax, & Turner, 2010). Citizen sensor networks foreshadow some of the key 

characteristics of ULS systems and there is a high probability of participants exhibiting self-

interested behavior as citizen sensor networks become commercialized.  

 

Another field where Mechanism Design has found significant application is that of e-commerce. 

Given that our scoring rules mechanism handles the exchange of information between buyers 

and sellers, it is easily extendable to e-commerce applications. Online forums, markets, and 

communities typically employ ratings–based or rankings–based mechanisms for evaluating 

items or services. The large scale nature of such systems, the inherent competitiveness and the 

financial opportunities involved makes the emergence of selfish behavior among users a realistic 

possibility. Another field of interest is the electronic product contract manufacturing which has 

become a US $100 billion business worldwide (Deshpande, Schwarz, Atallah, Blanton, & Frikken, 

2011). Mechanism Design is used to facilitate the selection of contract manufacturers by 

Original Equipment Manufacturer (OEM), and to determine which party is in charge of 

procurement of the individual components that make up the OEM’s product. Given the self-

interested nature of the participants, the lack of access to the true costs and the uncertainty 

involved in development schedules and budgets, we could employ the scoring-rules mechanism 

within the Secure Price Masking (SPM) algorithm to address these highlighted issues.  

 

7.3 Future Work 

In this section we highlight a few areas of future research which represent a small sample of the 

various avenues that can be explored within the context of scoring rules in mechanism design. 

Some of these lines of research are critical to ensure wider applicability of the mechanism to 

address similar problems in some of the application areas discussed in the previous section. 

 

1. Auctioneer Trust 

Apart from open-auctions like the Dutch and the English auctions, the various auctions 

discussed in Chapter 2 (e.g. the second-price auction and the VCG auction) are susceptible to 

manipulation on the part of the auctioneer. In the first stage of the proposed mechanism, the 

center conducts a reverse (   ) price auction to choose the set of pre-selected agents and 
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then uses the (   )   cost in order to determine the scaling parameters for the different 

scoring rules. Since the cost functions represent the private information known only to each of 

the sensor platforms, the auctioneer can exploit its knowledge of the cost functions to take 

advantage of the mechanism. Hypothetically speaking, the center may use a lower cost function 

that the (   )   cost when designing the scoring rules and calculating the payments. This is 

similar to the VCG auction we discussed earlier where the auctioneer could ask for a higher price 

than the second-highest bid from the auction winner. In Chapter 2, we discussed two 

approaches that have been proposed in literature to address this particular shortcoming. The 

first was the public blackboard mechanism proposed by M. Hsu & Soo (2002) which we deemed 

as unsuitable for our research problem, as it assumed that information sellers can also act as 

information buyers.  Yokoo & Suzuki (2004) proposed the use of encrypted protocols for the 

transmission of information between the agents and the center, which introduces significant 

latency in the communication as it involves multiple overlays of calculations and renders it 

unsuitable for real-time applications. Brandt (2001) and Brandt & others (2002) devised a 

collusion proof auction mechanism which ensures the privacy and correctness of any (   )   

price auction by distributing the calculation of the selling price between the individual buyers 

using some cryptographic techniques. Although the protocol is computationally expensive for a 

large number of agents, it could prove a good starting point for future research.  Thus extending 

the notion of trust within the mechanism, from the agents to the center, could count as one of 

the possible areas of future work. 

 

2. Virtual Currency 

The scoring-rules based mechanism rewards each platform for transmitting information on the 

tracks in the scenario. The payment is in terms of virtual currency and there is a need for 

understanding the full implications of the use of virtual currencies as a means to incentivize the 

agents to be truthful in the observations.  

 

“We are interested in social engineering for machines. We want to understand the kinds of 

negotiation protocols, and punitive and incentive mechanisms that would cause individual 

designers to build machines that act in particular ways. Since we assume that the agents’ 

designers are basically interested in their own goals, we want to find interaction techniques  
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that are ‘stable’, that make it worthwhile for the agent designer not to have  

machine deviate from the target behavior.” 

- Rosenschein & Zlotkin (1995) 

In our research application framework of military group operations, there are two primary 

sources of incentives: 

 Utility: The military platforms are modeled as rational agents seeking to maximize their 

own utilities. The payments made to the military platforms in the mechanism must have 

some real-world implications. This can take the form of after-action rewards like 

promotion or paid vacation, to motivate the platforms to invest all the resources at their 

disposal in generating the observations. 

 

 Survivability: The survival of an individual military platform is inextricably linked to the 

survival of the entire group. This inherent logic also serves as a source of incentive for 

each platform to invest its resources in tracking the targets assigned to it and then 

reporting these observations truthfully.  

We need to understand the role of virtual currency in the context of social institutions and to 

elicit user preferences in order to ensure that the payment scheme embedded in the 

mechanism is practical and proper.   

 

3. Dynamic Environments 

There is a need to evaluate the applicability of the mechanism to more dynamic application 

frameworks. For our research application, we treated the problem as a sequence of static 

events changing from cycle-to-cycle. Use case scenarios might arise where more than one 

network cycle needs to be taken into account for planning across multiple periods. We did not 

account for situations where readings from past cycles are good approximations for the current 

cycle which might lead to multiple simultaneous network cycles, and adding extra complexity to 

the problem. Further research is necessary to assess the applicability of the mechanism in such 

environments. 
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4. Bidder Collusion 

We argued that ULS systems operate in dynamic and uncertain environment that is constantly 

evolving.  The state of the world changes between the time the information is reported and the 

time when the observation can be evaluated.  In the absence of access to the true outcome, the 

auction center relies on the fused estimate obtained from the agents themselves in order to 

evaluate their reported observations. This makes the mechanism susceptible to collusion among 

the agents. Jurca & Faltings (2007) showed that bidder collusion is an expected outcome of any 

mechanism which calculates the payments made to an agent based on other agents’ reported 

observations.  They propose introducing a small group of agents which will always be truthful 

and thus prevent collusion among agents, eliminating the undesired Nash equilibria. We showed 

the infeasibility of their solution within the context of our research problem as it introduces 

additional complexity and contradicts the envisioned use of the mechanism in networks where 

the center has no external means of evaluating the agent’s observations. Designing an incentive 

–compatible mechanism which is robust to collusion among agents is a promising area for future 

research. 
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Appendix A   Possibility and Impossibility Results in Mechanism Design 

Appendix A briefly covers some of the key impossibility results and possibility results in 

Mechanism Design. Impossibility results prove the impossibility of implementing specific Social 

Choice Functions (SCFs) under particular solution concepts. Possibility results discuss two 

mechanisms which achieve different sets of the SCF properties. 

 

The basic approach to show impossibility is through a conflict across the assumptions and 

conditions – we first assume direct-revelation and incentive-compatibility, then we express the 

desiderata of an outcome rule as a bunch of mathematical conditions and finally we show a 

conflict across the conditions. 

 

Impossibility results are dictated by conditions on the assumptions about the environment, the 

agent preferences as well as the equilibrium solution concept. Hence it is necessary to introduce 

and define some new concepts. 

 

 Dictatorial SCF: A social-choice function is said to be dictatorial if one or more agents 

always receive its most-preferred or one of its most-preferred alternatives. 

 

 General Preferences: Preferences    are general when they establish a complete and 

transitive preference ordering on outcomes.  An ordering is complete if for all        

  , we have          or           (or both).  An ordering is transitive if for 

all              , if          and          then        . 

 

 Coalition-Proof Mechanisms: A mechanism   can be caled coalition-proof if truth 

revelation is a dominant strategy for any agent coalition, where the coalition is allowed 

to make side-payments and even redistribute items once the mechanism is over. 

 

 General Environment: A general environment is the environment in which there is a 

discrete set of possible outcomes   and agents have general preferences. 
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 Simple Exchange Environment: A simple exchange environment is the environment in 

which there the sellers selling single units of the same good. 

 

We are now in a position to describe the three main impossibility results. 

 

Gibbard-Satterthwaite Impossibility Theorem 

The Gibbard-Satterthwaite Impossibility Theorem (Satterthwaite, 1975) states that - 

 

In a setting consisting of 

 

 agents with general utility preferences 

 a finite set of outcomes  , with more than 3 possible outcomes (i.e. |   |   ) 

 

a social-choice function is dominant-strategy implementable if and only if it is dictatorial. 

 

The above theorem is limiting in many respects because when coupled with the revelation 

principle, it implies no mechanism can be implemented based on dominant strategy given the 

general conditions. Great care must be exercised when interpreting impossibility results such as 

Gibbard-Satterthwaite, as they do not necessarily continue to hold in restricted environments. 

Thus one way to circumvent this impossibility result is to impose restrictions on agents, 

environment and solution concepts: 

 

 Simple exchange environment 

 Additional constraints on agent preferences (e.g. quasi-linear utility) 

 Weaker implementation concepts, e.g. Bayesian-Nash implementation 

 

Hurwicz Impossibility Theorem 

The Hurwicz Impossibility Theorem (Hurwicz, 1973) states that - 
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There does not exist any incentive-compatible mechanism that implements a SCF that is efficient 

and budget-balanced in dominant strategy equilibrium, even with quasi-linear preferences. 

 

This result is equally constraining, as it implies that for dominant strategy solutions we can’t 

attain both allocative efficiency and budget- balance in a simple exchange economy. Thus we 

need to sacrifice some desired property, and this is usually implemented in the following 

manner: 

 

 Sacrifice strong budget-balance to achieve strategy-proofness, efficiency and weak 

budget- balance via the Vickrey-Clarke-Groves mechanisms. 

 

 Use a weaker implementation concept, Bayesian-Nash equilibrium, so as to achieve 

budget balance, efficiency and incentive compatibility via d’Aspremont-Gerard-Varet-

Arrow (dAGVA) mechanism. 

 

However, one can’t achieve all the desiderata – incentive compatibility, budget-balance, 

efficiency and individual rationality – in the dAGVA mechanism due to the Myerson-

Satterthwaite Impossibility Theorem. 

 

Myerson-Satterthwaite Impossibility Theorem 

The Myerson-Satterthwaite Impossibility Theorem (Myerson & Satterthwaite, 1983) states that - 

 

There does not exist any mechanism that implements a SCF that is efficient, budget-balanced 

and individually rational in Bayesian-Nash strategy equilibrium, even with quasi-linear 

preferences. 

 

What the theorem translates into is we can only achieve at most two of desired properties – 

Efficiency, Individual Rationality, and Budget Balance - in a market with quasi-linear agent 

preferences, even with Bayesian-Nash implementation. 
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In our quest to design auction-based mechanism designs, the impossibility results severely 

restrict the available options - we can either opt for the VCG mechanism which allows us achieve 

efficiency, incentive-compatibility and individual rationality under dominant strategies or the 

alternative is to select a weaker solution concept of Bayesian-Nash equilibrium so as to achieve 

budget-balance at the expense of individual rationality via the dAGVA mechanism.  

 

Possibility Results 

We will now turn our attention to the possibility results and present two mechanisms –Vickrey-

Clarke-Groves (VCG) and dAGVA that achieve different sets of the SCF. The mechanisms are 

similar in that both achieve incentive-compatibility and efficiency. However, whilst the VCG 

mechanism is individually-rational but not budget-balanced, the dAGVA mechanism is budget-

balanced but not individually-rational. 

 

Vickrey-Clarke-Groves Mechanism 

In their seminal work Clarke (1971), Groves (1973) and Vickrey (1961) presented a family of 

direct mechanisms, called the Vickrey-Clarke-Groves mechanisms, for problems in which agents’ 

preferences are quasi-linear. The VCG mechanism implements an efficient and individually-

rational SCF where truth-telling is a dominant strategy. 

 

The VCG mechanisms are the only allocatively-efficient and strategy-proof mechanisms for 

agents with quasi-linear preferences and general valuation functions, amongst all direct-

revelation mechanisms. 

 

The outcome function of the VCG mechanism is specified by an allocation rule   and a payment 

function  . The VCG auction typically proceeds as outlined below: 

 

1. The auctioneer lists the set of items   for sale. 

2. Each agent   will reports its valuation function   (    ) for all the allocations        in 

the set of all possible sets of the items in  . 
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3. Each agent   will reports its type  ̂  as well. 

4. The auctioneer will subsequently find the efficient allocation by solving the following 

equation: 

 

 ̂        
      

∑  (  

      

  ̂ ) (A.1)  

5. Finally the auctioneer will compute the transfer    from each agent as: 

 

    [   
      

∑   (   ̂ ) 

       

]   [ ∑   ( ̂
   ̂ ) 

       

] 

 

(A.2)  

 

The VCG mechanism achieves its strategy-proofness through its payment scheme. This scheme 

squarely aligns the utility attained by an agent with that agent’s marginal contribution to the 

mechanism. We can calculate the utility an agent derives with the efficient allocation and 

payment scheme: 

 

   (   ̂ )     ( ̂
    )     ( ̂

   ̂ ) 

    ( ̂
    )   [   

      
∑   (   ̂ ) 

       

]

  [ ∑   ( ̂
   ̂ ) 

       

] 

(A.3)  

 

Thus the VCG scheme, in essence, internalizes the externality, by aligning an agent’s private goal 

of maximizing its local incentive with the global system goal of efficient allocation. Hence it is it 

the best interest of an agent given its own true preferences and the reports of other agents, for 

the mechanism to select the best system-wide solution. 
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But the VCG mechanism is not budget balanced. When implemented in an auction setting, the 

VCG mechanism results in a surplus for the auctioneer. Budget balance is an important criteria, 

and the dAGVA mechanism achieves budget-balance but at the expense of individual rationality. 

 

dAGVA Mechanism 

The dAGVA also known as the “expected Groves" mechanism, was proposed by Arrow (1977) 

and d Aspremont & Gérard–Varet (1982). The dAGVA mechanism circumvents the Hurwicz 

impossibility and achieves efficiency and budget-balance but in Bayesian-Nash equilibrium and 

not dominant-strategy equilibrium. The dAGVA mechanism is not individual-rational, as is 

apparent from the Myerson - Satterthwaite impossibility theorem. 

 

The dAGVA mechanism is ex-ante individual-rational, Bayesian-Nash incentive-compatible, 

efficient and (strong) budget-balanced with quasi-linear agent preferences. 

 

The allocation rule in dAGVA is the same as in the VCG mechanism but differs crucially in its 

payment scheme. In more detail, the dAGVA mechanism proceeds as follows: 

 

1. The auctioneer lists the set of items   for sale. 

2. Each agent   will reports its valuation function   (    ) for all the allocation       . 

3.  Each agent i will reports its type  ̂  as well. 

4. The auctioneer will subsequently find the efficient allocation by solving the following 

equation: 

 

 ̂        
      

∑  (  

      

  ̂ ) (A.4)  

5. It also computes each transfer    from each agent as: 

 

     ( ̂  )        [         
∑   ( ( ̂     )  ̂ ) 

       

] (A.5)  
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The expected utility derived by an agent derives can be expressed as: 

 

   (   ̂ )         [         
  ( ( ̂     )  ̂ ]     ( ̂  ̂ ) 

                         [         
∑  ( ( ̂     )  ̂ ) 

      

]    ( ̂  )  

(A.6)  

 

The first term, in the above equation, is the expected total value for agents       when they tell 

the truth and agent   announces type  ̂  while   ( ̂  )  is an arbitrary function on the types of 

agents. The dAGVA mechanism makes it possible to choose the   ( ̂  )  function in such a way 

so as to satisfy budget-balance, i.e.            which implies: 

 

 

∑ (  ( ̂  )        [         
∑   ( ( ̂     )  ̂ ) 

       

])   
      

 (A.7)  

 

One possible choice of   ( ̂  ) could be the average of the negative part of the transfer of all 

the other agents. 

 

   ( ̂  )

  
 

| |   
 ∑ (      [         

∑   ( ( ̂     )  ̂ ) 

       

])
       

 
(A.8)  

 

The properties of incentive compatibility¸ efficiency and budget- balance make the dAGVA 

mechanism seem like an attractive option. However, the dAGVA mechanism has quite a few 

drawbacks: 

 

 It fails to satisfy the individual rationality constraint  

 Bayesian-Nash is a weaker solution concept than dominant-strategy  

 It puts too much emphasis on agent information-revelation 
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The results of our discussion of possibility and impossibility results have been surmised in Table 

A-1: 

Table A-1 Main possibility and impossibility results in Mechanism Design 

Result Name Preferences 
Solution 

Concept 
Environment 

Effic-

iency 

Budget 

Balance 

Individual 

Rationality 

Gibbard 

Satterthwaite 
General Dominant General No No No 

Hurwicz Quasi-linear Dominant 
Simple 

Exchange 
No No -- 

Myerson 

Satterthwaite 
Quasi-linear 

Bayesian-

Nash 

Simple 

Exchange 
No No No 

 

VCG Quasi-linear Dominant 
Simple 

Exchange 
Yes No Yes 

dAGVA Quasi-linear 
Bayesian-

Nash 

Simple 

Exchange 
Yes Yes No 
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Appendix B   Link 16  

Tactical data links involve transmissions of bit-oriented digital information which are exchanged 

via data links known as Tactical Digital Information Links (TADIL).  TADIL J, also known as Link 16, 

has been the designated DoD primary tactical data link since October 1994 and is assumed as 

the baseline for the current work. This section highlights the key concepts involved with TADILs 

and specifically, TADIL J. 

 

TADIL J is a communication, navigation, and identification system that supports information 

exchange between tactical command, control, communications, computers, and intelligence 

(C4I) systems. The radio transmission and reception component of TADIL J is the Joint Tactical 

Information Distribution System (JTIDS) or its successor, the Multifunctional Information 

Distribution System (MIDS). This high-capacity, ultra high frequency (UHF), line of sight (LOS), 

frequency hopping data communications terminals provide secure, jam-resistant voice and 

digital data exchange.  

 

JTIDS/MIDS terminals operate on the principal of time division multiple access (TDMA), wherein 

time slots are allocated among all TADIL J network participants for the transmission and 

reception of data. TDMA eliminates the requirement for a net control station (NCS) by providing 

nodeless communication network architecture. There are 1536 time slots in a 12 second frame, 

after which the pattern of time slots repeats. A platform transmits specific message types, such 

as position, voice, surveillance, electronic warfare, etc., on the time slots assigned to that 

platform and message type; these assignments have network-wide significance as the intended 

receivers must have those same time slots available to receive from that transmitter. If a 

platform is receiving signals from multiple transmitters during the same time slot, it will 

correctly decode the transmission from the strongest transmitter and discard the rest. 

 

The above description fits many different types of TDMA systems but Link 16 adds unique 

features on top of this basic architecture which impact the survivability problem. Transmissions 

are fast frequency-hopped over a range of different frequencies at a high rate, with a different 

frequency hopping pattern in each time slot. The frequency hopping pattern is controlled by 

three variables, a crypto key, a net number, and the time of day (as represented by specific time 
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slot identifiers). The net number makes Link 16 more flexible than a basic TDMA system as it 

allows different platforms to transmit on the same time slot, but different net number, without 

interfering; this is referred to as multi-netting. For example, platform A can transmit voice on a 

given slot using net 1 while platform B transmits surveillance on the same time slot but using net 

2. The two transmissions will not interfere because, with different net numbers, they will be 

transmitted using different frequency hopping patterns. However, on a given time slot, a 

platform can only send or receive from a single net; multi-netting is used primarily to allow non-

overlapping communities of interest to use the same time slots, freeing other time slots for 

communication needs shared by all platforms. 

Figure B-1 Link 16 Architecture 

A Link 16 time slot can be assigned to transmit, receive, or relay. A relay assignment means that 

the time slot will retransmit information received (or transmitted) on a previous time slot, 

designated at the time the network is designed. Relay functionality allows Link 16 networks to 

extend over large geographical areas, even though the range of frequencies used by Link 16 limit 

its direct transmissions to Line-Of-Sight (LOS) receivers, a distance that varies with aircraft 

altitude. Platforms with relay assignments allow recipients to overcome LOS constraints and 

receive data from distant platforms, or from platforms such as low-flying aircraft, that may be 

masked by terrain. 
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