70 research outputs found

    Sliding Mode Control

    Get PDF
    The main objective of this monograph is to present a broad range of well worked out, recent application studies as well as theoretical contributions in the field of sliding mode control system analysis and design. The contributions presented here include new theoretical developments as well as successful applications of variable structure controllers primarily in the field of power electronics, electric drives and motion steering systems. They enrich the current state of the art, and motivate and encourage new ideas and solutions in the sliding mode control area

    DECENTRALIZED ROBUST NONLINEAR MODEL PREDICTIVE CONTROLLER FOR UNMANNED AERIAL SYSTEMS

    Get PDF
    The nonlinear and unsteady nature of aircraft aerodynamics together with limited practical range of controls and state variables make the use of the linear control theory inadequate especially in the presence of external disturbances, such as wind. In the classical approach, aircraft are controlled by multiple inner and outer loops, designed separately and sequentially. For unmanned aerial systems in particular, control technology must evolve to a point where autonomy is extended to the entire mission flight envelope. This requires advanced controllers that have sufficient robustness, track complex trajectories, and use all the vehicles control capabilities at higher levels of accuracy. In this work, a robust nonlinear model predictive controller is designed to command and control an unmanned aerial system to track complex tight trajectories in the presence of internal and external perturbance. The Flight System developed in this work achieves the above performance by using: 1 A nonlinear guidance algorithm that enables the vehicle to follow an arbitrary trajectory shaped by moving points; 2 A formulation that embeds the guidance logic and trajectory information in the aircraft model, avoiding cross coupling and control degradation; 3 An artificial neural network, designed to adaptively estimate and provide aerodynamic and propulsive forces in real-time; and 4 A mixed sensitivity approach that enhances the robustness for a nonlinear model predictive controller overcoming the effect of un-modeled dynamics, external disturbances such as wind, and measurement additive perturbations, such as noise and biases. These elements have been integrated and tested in simulation and with previously stored flight test data and shown to be feasible

    Improved quantification of perfusion in patients with cerebrovascular disease.

    Get PDF
    In recent years measurements of cerebral perfusion using bolus-tracking MRI have become common clinical practice in the diagnosis and management of patients with stroke and cerebrovascular disease. An active area of research is the development of methods to identify brain tissue that is at risk of irreversible damage, but amenable to salvage using reperfusion treatments, such as thrombolysis. However, the specificity and sensitivity of these methods are limited by the inaccuracies in the perfusion data. Accurate measurements of perfusion are difficult to obtain, especially in patients with cerebrovascular diseases. In particular, if the bolus of MR contrast is delayed and/or dispersed due to cerebral arterial abnormalities, perfusion is likely to be underestimated using the standard analysis techniques. The potential for such underestimation is often overlooked when using the perfusion maps to assess stroke patients. Since thrombolysis can increase the risk of haemorrhage, a misidentification of 'at-risk' tissue has potentially dangerous clinical implications. This thesis presents several methodologies which aim to improve the accuracy and interpretation of the analysed bolus-tracking data. Two novel data analysis techniques are proposed, which enable the identification of brain regions where delay and dispersion of the bolus are likely to bias the perfusion measurements. In this way true hypoperfusion can be distinguished from erroneously low perfusion estimates. The size of the perfusion measurement errors are investigated in vivo, and a parameterised characterisation of the bolus delay and dispersion is obtained. Such information is valuable for the interpretation of in vivo data, and for further investigation into the effects of abnormal vasculature on perfusion estimates. Finally, methodology is presented to minimise the perfusion measurement errors prevalent in patients with cerebrovascular diseases. The in vivo application of this method highlights the dangers of interpreting perfusion values independently of the bolus delay and dispersion

    Identification et caractérisation des conditions aux limites pour des simulations biomécaniques patient-spécifiques

    Get PDF
    The purpose of the work is to find a way to estimate the boundary conditions of the liver. They play an essential role in forming the predictive capacity of the biomechanical model, but are presented mainly by ligaments, vessels, and surrounding organs, the properties of which are "patient specific" and cannot be measured reliably. We propose to present the boundary conditions as nonlinear springs and estimate their parameters. Firstly, we create a generalized initial approximation using the constitutive law available in the literature and a statistical atlas, obtained from a set of models with segmented ligaments. Then, we correct the approximation based on the nonlinear Kalman filtering approach, which assimilates data obtained from a modality during surgical intervention. To assess the approach, we performed experiments for both synthetic and real data. The results show a certain improvement in simulation accuracy for the cases with estimated boundaries.L'objectif de ce travail est trouvé un moyen d'estimer les conditions aux limites du foie. Elles jouent un rôle essentiel dans la capacité de prédiction du modèle biomécanique, mais sont principalement présentées par les ligaments, les vaisseaux et les organes environnants, dont les propriétés sont "spécifiques au patient" et ne peuvent être mesurées fidèlement. Nous proposons de présenter ces conditions comme des ressorts non linéaires et d'estimer ses paramètres. D’abord, nous créons une approximation initiale en utilisant la loi constitutive disponible dans la littérature et un atlas statistique obtenu à partir des modèles avec des ligaments segmentés. Après, nous la corrigeons basée sur le filtrage de Kalman non linéaire, qui assimile les données acquises d'une modalité pendant la chirurgie. Pour évaluation, nous avons réalisé des expériences avec des données synthétiques et réelles. Les résultats montrent une amélioration de la précision pour les cas avec des limites estimées

    Proceedings of the NASA Conference on Space Telerobotics, volume 1

    Get PDF
    The theme of the Conference was man-machine collaboration in space. Topics addressed include: redundant manipulators; man-machine systems; telerobot architecture; remote sensing and planning; navigation; neural networks; fundamental AI research; and reasoning under uncertainty
    • …
    corecore