149 research outputs found

    Dynamic State Estimation of Microgrid With Imperfect Data Communication

    Get PDF
    Dynamic state estimation of power systems is essential for wide area control purposes. In this thesis, we present the results of dynamic state estimation for a grid-connected microgrid including two synchronous generators and three loads. The Unscented Kalman filter (UKF) and the Extended Kalman filter (EKF) are implemented using a classical generator model connected to a Thevenin equivalent of the remainder of the microgrid. The model is used to estimate the six states variables of the generator; namely, rotor angle, speed variant, d- and q- axis transient voltages, d-axis damper flux, and q-axis second damper flux. Both real power and reactive power are used as measurements in our state estimation algorithm. The estimation results are compared with the true values to demonstrate the accuracy of the state estimator. In addition to data loss or delay, sensor measurements may include outliers that distort state estimation. We utilized the Generalized Maximum Likelihood-extended Kalman filter (GM-EKF), as a robust estimator, which exhibits good tracking capabilities suppressing the effects of bad data (outliers). We also used two methods of state estimation on UKF to deal with bad data. Simulation results obtained from the UKFs are compared with those of GM-EKF. We present simulation results at a high frequency of 1 kHz of state estimation for different scenarios that include normal operation, fault at Point of Common Coupling (PCC), loss of generator, and loss of load. We also developed a scheme to use delayed data in Kalman filter estimation and used it to simulate the effect of data loss and/or delay in the communication system of the microgrid. For the same scenarios, we also present simulation results at 50 Hz, which is compatible with Phasor Measurement Units (PMU), including bad data as well as data loss or delay. Our results demonstrate that while both filters successfully detect bad data, the UKF methods provide better estimates than those of the GM-EKF

    Distributed fusion filter over lossy wireless sensor networks with the presence of non-Gaussian noise

    Full text link
    The information transmission between nodes in a wireless sensor networks (WSNs) often causes packet loss due to denial-of-service (DoS) attack, energy limitations, and environmental factors, and the information that is successfully transmitted can also be contaminated by non-Gaussian noise. The presence of these two factors poses a challenge for distributed state estimation (DSE) over WSNs. In this paper, a generalized packet drop model is proposed to describe the packet loss phenomenon caused by DoS attacks and other factors. Moreover, a modified maximum correntropy Kalman filter is given, and it is extended to distributed form (DM-MCKF). In addition, a distributed modified maximum correntropy Kalman filter incorporating the generalized data packet drop (DM-MCKF-DPD) algorithm is provided to implement DSE with the presence of both non-Gaussian noise pollution and packet drop. A sufficient condition to ensure the convergence of the fixed-point iterative process of the DM-MCKF-DPD algorithm is presented and the computational complexity of the DM-MCKF-DPD algorithm is analyzed. Finally, the effectiveness and feasibility of the proposed algorithms are verified by simulations

    Proposta de estimador não linear intermitente para sistemas de controle via rede sem fio

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia de Automação e Sistemas, Florianópolis, 2013.Nesta tese, é tratado do problema de estimação em Sistemas de Controle Via Rede sem fio. Um dos principais desafios em redes sem fio é a perda de pacote induzida pela rede, pois impactará no desempenho do sistema, podendo causar a sua instabilidade. O filtro de Kalman unscented, é utilizado para tratar o problema de estimação nesta tese, em que as propriedades estatísticas de convergência do filtro de Kalman unscented são analisadas, mostrando a existência de um valor crítico para a chegada de observações em torno do qual a covariância do erro de estimação diverge. Inicialmente, as equações do filtro de Kalman unscented são redefinidas quando o sistema de controle via rede está sujeito a perdas de pacotes, logo em seguida, é apresentado o teorema que mostra a existência de um valor crítico para a taxa de chegada de pacotes, em torno da qual a covariância do erro de estimação diverge. Finalmente, o método proposto é aplicado em um sistema de teleoperação, uma vez que este tipo de sistema utiliza um rede de comunicação para interligar seus componentes, sendo assim, um exemplo de aplicação real de um sistema de controle que utiliza uma rede de comunicação para interligar seus componentes.Abstract : This thesis, the problem of estimation in a wireless networked control systems is treated. One of themain challenges in wireless networks is packet loss induced by the network as impact on system performance and may cause instability. The unscented Kalman filter, is used to treat the estimation problem in this thesis, where the statistical properties of convergence of the unscented Kalman filter are analyzed, showing the existence of a critical value for the arrival of observations around which the covariance of the estimation error diverges. Initially, the equations of the unscented Kalman filter are redefined to a networked control system with packet losses, for this system is presented the theorem that shows a critical value for the rate of packet loss, around the covariance estimation error diverge. Finally, the proposed method is applied to a teleoperation system, since this type of system uses a communication network for interconnecting components, and thus a real application example of a control system utilizing a communication network to interconnect their components

    Decentralized estimation and control for power systems

    Get PDF
    This thesis presents a decentralized alternative to the centralized state-estimation and control technologies used in current power systems. Power systems span over vast geographical areas, and therefore require a robust and reliable communication network for centralized estimation and control. The supervisory control and data acquisition (SCADA) systems provide such a communication architecture and are currently employed for centralized estimation and control of power systems in a static manner. The SCADA systems operate at update rates which are not fast enough to provide appropriate estimation or control of transient or dynamic events occurring in power systems. Packet-switching based networked control system (NCS) is a faster alternative to SCADA systems, but it suffers from some other problems such as packet dropouts, random time delays and packet disordering. A stability analysis framework for NCS in power systems has been presented in the thesis considering these problems. Some other practical limitations and problems associated with real-time centralized estimation and control are computational bottlenecks, cyber threats and issues in acquiring system-wide parameters and measurements. The aforementioned problems can be solved by a decentralized methodology which only requires local parameters and measurements for estimation and control of a local unit in the system. The cumulative effect of control at all the units should be such that the global oscillations and instabilities in the power system are controlled. Such a decentralized methodology has been presented in the thesis. The method for decentralization is based on a new concept of `pseudo-inputs' in which some of the measurements are treated as inputs. Unscented Kalman filtering (UKF) is applied on the decentralized system for dynamic state estimation (DSE). An extended linear quadratic regulator (ELQR) has been proposed for the optimal control of each local unit such that the whole power system is stabilized and all the oscillations are adequately damped. ELQR requires DSE as a prerequisite. The applicability of integrated system for dynamic estimation and control has been demonstrated on a model 16-machine 68-bus benchmark system

    Composite Disturbance Filtering: A Novel State Estimation Scheme for Systems With Multi-Source, Heterogeneous, and Isomeric Disturbances

    Full text link
    State estimation has long been a fundamental problem in signal processing and control areas. The main challenge is to design filters with ability to reject or attenuate various disturbances. With the arrival of big data era, the disturbances of complicated systems are physically multi-source, mathematically heterogenous, affecting the system dynamics via isomeric (additive, multiplicative and recessive) channels, and deeply coupled with each other. In traditional filtering schemes, the multi-source heterogenous disturbances are usually simplified as a lumped one so that the "single" disturbance can be either rejected or attenuated. Since the pioneering work in 2012, a novel state estimation methodology called {\it composite disturbance filtering} (CDF) has been proposed, which deals with the multi-source, heterogenous, and isomeric disturbances based on their specific characteristics. With the CDF, enhanced anti-disturbance capability can be achieved via refined quantification, effective separation, and simultaneous rejection and attenuation of the disturbances. In this paper, an overview of the CDF scheme is provided, which includes the basic principle, general design procedure, application scenarios (e.g. alignment, localization and navigation), and future research directions. In summary, it is expected that the CDF offers an effective tool for state estimation, especially in the presence of multi-source heterogeneous disturbances

    Distributed estimation over a low-cost sensor network: a review of state-of-the-art

    Get PDF
    Proliferation of low-cost, lightweight, and power efficient sensors and advances in networked systems enable the employment of multiple sensors. Distributed estimation provides a scalable and fault-robust fusion framework with a peer-to-peer communication architecture. For this reason, there seems to be a real need for a critical review of existing and, more importantly, recent advances in the domain of distributed estimation over a low-cost sensor network. This paper presents a comprehensive review of the state-of-the-art solutions in this research area, exploring their characteristics, advantages, and challenging issues. Additionally, several open problems and future avenues of research are highlighted

    State Estimation with Unconventional and Networked Measurements

    Get PDF
    This dissertation consists of two main parts. One is about state estimation with two types of unconventional measurements and the other is about two types of network-induced state estimation problems. The two types of unconventional measurements considered are noise-free measurements and set measurements. State estimation with them has numerous real supports. For state estimation with noisy and noise-free measurements, two sequential forms of the batch linear minimum mean-squared error (LMMSE) estimator are obtained to reduce the computational complexity. Inspired by the estimation with quantized measurements developed by Curry [28], under a Gaussian assumption, the minimum mean-squared error (MMSE) state estimator with point measurements and set measurements of any shape is proposed by discretizing continuous set measurements. State estimation under constraints, which are special cases of the more general framework, has some interesting properties. It is found that under certain conditions, although constraints are indispensable in the evolution of the state, update by treating them as measurements is redundant in filtering. The two types of network-induced estimation problems considered are optimal state estimation in the presence of multiple packet dropouts and optimal distributed estimation fusion with transformed data. An alternative form of LMMSE estimation in the presence of multiple packet dropouts, which can overcome the shortcomings of two existing ones, is proposed first. Then under a Gaussian assumption, the MMSE estimation is also obtained based on a hard decision by comparing the measurements at two consecutive time instants. It is pointed out that if this comparison is legitimate, our simple MMSE solution largely nullifies existing work on this problem. By taking linear transformation of the raw measurements received by each sensor, two optimal distributed fusion algorithms are proposed. In terms of optimality, communication and computational requirements, three nice properties make them attractive
    corecore