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Abstract

This thesis presents a decentralized alternative to the centralized state-estimation

and control technologies used in current power systems. Power systems span over

vast geographical areas, and therefore require a robust and reliable communication

network for centralized estimation and control. The supervisory control and data

acquisition (SCADA) systems provide such a communication architecture and are

currently employed for centralized estimation and control of power systems in a

static manner. The SCADA systems operate at update rates which are not fast

enough to provide appropriate estimation or control of transient or dynamic events

occurring in power systems. Packet-switching based networked control system

(NCS) is a faster alternative to SCADA systems, but it suffers from some other

problems such as packet dropouts, random time delays and packet disordering. A

stability analysis framework for NCS in power systems has been presented in the

thesis considering these problems. Some other practical limitations and problems

associated with real-time centralized estimation and control are computational

bottlenecks, cyber threats and issues in acquiring system-wide parameters and

measurements.

The aforementioned problems can be solved by a decentralized methodology which

only requires local parameters and measurements for estimation and control of a

local unit in the system. The cumulative effect of control at all the units should be

such that the global oscillations and instabilities in the power system are controlled.

Such a decentralized methodology has been presented in the thesis. The method

for decentralization is based on a new concept of ‘pseudo-inputs’ in which some of

measurements are treated as inputs. Unscented Kalman filtering (UKF) is applied

on the decentralized system for dynamic state estimation (DSE). An extended lin-

ear quadratic regulator (ELQR) has been proposed for the optimal control of each

local unit such that the whole power system is stabilized and all the oscillations

are adequately damped. ELQR requires DSE as a prerequisite. The applicability

of integrated system for dynamic estimation and control has been demonstrated

on a model 16-machine 68-bus benchmark system.
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Tc time constant for the dummy rotor coil (usually 0.01) in s

Ttcsc time constant representing delay in firing sequence of a TCSC in s

Te electrical torque input in p.u.

Tm mechanical torque input in p.u.

Tr time constant of AVR’s filter in s

Tw PSS-washout time constant in s

Tx time constant of AVR-exciter in s

T ′
d0 d-axis transient time constant in s

T ′
q0 q-axis transient time constant in s

T ′′
d0 d-axis subtransient time constant in s

T ′′
q0 q-axis subtransient time constant in s

t system time in s

u a column vector of the inputs to the system

u′ a column vector of the pseudo-inputs to the system

ū inputs to the system which have suffered packet dropout

V a column vector of the bus voltages, Vτe
θτ , τ=1, 2, . . . , N ; in p.u.

V stator voltage magnitude in p.u.

Va AVR regulator voltage in p.u.

Vr AVR-filter voltage in p.u.

Vref AVR reference voltage in p.u.

Vss PSS output voltage in p.u.

Vssmax upper-limit value of Vss in p.u.

Vssmin lower-limit value of Vss in p.u.

Vw associated noise in V in p.u.

Vy measured value of V in p.u.

v a column vector of process noise in discrete form

v̄ a column vector of process noise in continuous form

v̂ mean of v

w a column vector of measurement noise
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ŵ mean of w

X augmented-state random variable

X− predicted augmented-state random variable

Xd d-axis synchronous reactance in p.u.

XL reactance of a line in p.u.

Xl armature leakage reactance in p.u.

Xq q-axis synchronous reactance in p.u.

X ′
d d-axis transient reactance in p.u.

X ′
q q-axis transient reactance in p.u.

X ′′
d d-axis subtransient reactance in p.u.

X ′′
q q-axis subtransient reactance in p.u.

X̂ estimated mean of X

X̂− estimated mean of X−

x column vector of the states

x− predicted state random variable

x̂ estimated mean of x

x̂− estimated mean of x−

Y bus admittance matrix in p.u.

y column vector of the observed measurements

ȳ observed measurements which have suffered packet dropout

y− predicted-measurement random variable

ŷ− estimated mean of y−

Za armature impedance (
√
Ra

2 +X ′′
d
2) in p.u.

z a column vector of noise in pseudo-inputs

ẑ mean of z



Chapter 1

Introduction

The electrical power systems are over 120 years old and they are a key infras-

tructural asset for socio-economic development of the world. As power systems

are considered to be the biggest and the most complex ‘machines’ ever built by

mankind, the control of these systems, so that they operate within their stability

margins, is an equally complex and challenging task. According to [1], stability

of a power system is defined as “the ability of the system, for a given initial op-

erating condition, to regain a state of operating equilibrium (or steady-state of

operation) after being subjected to a physical disturbance, with most system vari-

ables bounded so that practically the entire system remains intact.” As alternating

current (AC) of near-constant frequency is the most widely adopted standard for

generation and delivery of power using synchronous machines, the most important

criterion for steady-state operation is that all the synchronous machines in the sys-

tem remain in synchronism, or ‘in-step’. This synchronism of generators in power

systems is called rotor angle stability and is achieved using automatic generation

control (AGC) [2]. Another criterion which should be satisfied during steady-state

operation is that all the oscillations which develop after a small disturbance in

the system should be controlled and damped within a specified period of time.

This stability criterion is referred to as ‘small signal stability’. Traditionally, small

signal stability in power systems is achieved using automatic voltage regulators

(AVRs) and power system stabilizers (PSSs) [2].

The growth of power requirements in the last few decades has been quite fast, in

contrast to the slow and incremental nature of the evolution of power systems.

The grid interconnections have increased manifold and there is an assimilation

of more and varied (both centralized and decentralized) sources of energy into

20
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the grid. Deregulation has led to increased separation of power producers and

consumers, and there is an increased demand for not only power but also for high-

quality power. In order to meet these growing demands, power systems have not

only grown larger and more complex than ever (mainly due to large scale inter-

connections and integration of renewable sources of energy), but are increasingly

operating closer to their stability limits as well, as elaborated in [3]. The European

Network of Transmission System Operators for Electricity (ENTSO-E) intercon-

nected system is an example of a stressed power system which is being operated

more and more at its limits [3]. Small signal stability of such stressed systems is

increasingly becoming more difficult to achieve using traditional schemes based on

AVRs and PSSs. For instance, in some power blackout analyses the ineffective-

ness of the control of small signal stability was identified as an important link to

inception of the events leading to system-wide blackouts [4], [5].

It has been observed that under certain conditions, a small disturbance in a power

system can initiate spontaneous oscillations in the power-flows in the transmis-

sion lines. These oscillations grow in magnitude within few seconds if they are

undamped or poorly damped. This can lead to loss in synchronism of generators

or voltage collapse, ultimately resulting in system separations and blackouts. The

power blackout of August 10, 1996 in the Western Electricity Co-ordination Coun-

cil region is a famous example of blackouts caused by such oscillations [6], [7]. The

frequencies of these oscillations are in the range of 0.2 to 1.0 Hz, and as these

oscillations are not local to a particular generator and involve two or more groups

of generators (also known as areas), they are termed as inter-area oscillations [8],

[9]. The local control actions of AVRs and PSSs are insufficient to control interarea

oscillations, and therefore more global control schemes are needed to achieve small

signal stability in current power systems.

Today there is an increase in the research, development and investment in global

control schemes for power systems. Phasor measurement units (PMUs) and flexi-

ble AC transmission system (FACTS) are starting to form the core of such a global

control infrastructure for power systems. New techniques for dynamic state esti-

mation (DSE) and dynamic control are emerging which can not only strengthen

but potentially revolutionize this control infrastructure. There is also a require-

ment of reliable communication network to be in place which can deliver real-time

system-wide information to and from these devices and controllers. The next sec-

tion explores the state of the art and current research in power system estimation

and control.
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1.1 State of the art

1.1.1 Energy management system and SCADA

Energy management system (EMS) in a power system plays an important role

in system operation and control [10]. EMS has a host of network computation

functions such as static state estimation, optimal power flow, contingency analysis

etc. These drive scheduling and dispatch of load and generation in the time scale

of minutes to hours. Supervisory control and data acquisition (SCADA) forms

the heart of EMS and performs data acquisition, update of system status through

alarm processing and user interface updating, as well as execution of control ac-

tions [11]. Remote terminal units (RTUs) perform the role of sensors and actuators

in SCADA. Different types of telemetering and communication protocols are used

in SCADA (which vary with SCADA vendors), but majority of them use serial

communication based on DNP3.0 protocol [12]; and their update rates lie in the

range of 2-10 seconds [13], [14]. Although these rates are fast enough to provide the

traditional functions performed by EMS, they are not enough to deliver time criti-

cal measurements and control actions needed for dynamic estimation and control.

Besides communication systems, there are several other aspects of EMS/SCADA

(such as metering, security, visualization, database and control capabilities) which

need to be upgraded to meet the requirements of today’s power systems [15].

1.1.2 Phasor measurement units

An electrical quantity which has both phase and magnitude (for example bus

voltage, line current and line power) is called a phasor. A PMU is a device which

can accurately measure a phasor. This is done by time synchronization of all the

PMUs in the power system to an absolute time reference provided by the global

positioning system (GPS) [16], [17]. PMUs are capable of providing sampling rates

of over 600 Hz and time synchronization accuracy of ±0.2 µs [18]. The speed and

accuracy of measurement by PMUs has led to the development of several techniques

and algorithms for fast and reliable control and dynamic state estimation, which

will be more evident in the following subsections.
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1.1.3 Flexible AC transmission system

FACTS devices are static power-electronic devices installed in AC transmission

networks to increase power transfer capability, stability and controllability of the

networks through series and/or shunt compensation [19]. These devices can also be

employed for congestion management and loss optimization. Static synchronous

series compensator (SSSC) and thyristor-controlled series capacitor (TCSC) are

some of the FACTS devices which provide series compensation to reactance of the

lines to which they are connected, while static synchronous compensator (STAT-

COM) and static VAR compensator (SVC) are some FACTS devices which provide

shunt compensation to transmission lines. FACTS devices can also provide ade-

quate damping of interarea oscillations by acting as actuators in robust control

schemes and PMU based wide area control schemes [7], [19].

1.1.4 Wide-area measurements and wide-area control

Wide area measurement system (WAMS) refers to a measurement system com-

posed of strategically placed time synchronized sensors (which are PMUs) which

can monitor in real time the current status of a critical area. The critical area

can be a whole power system or a part of the system. The strategic locations are

decided in a way that the number of locations are minimized and the critical area

remains completely observable [20]. The measurements from WAMS are utilized

by the wide area control system (WACS) to control the transient and oscillatory

dynamics of system voltage and frequency [21]. A fast communication network

which can operate at update rates of 10-20 Hz is crucial for WAMS/WACS in or-

der to deliver measurements from sensors to control-center and control signals from

control-center to actuators (AVRs, PSSs and FACTS devices). As the communi-

cation requirements of WAMS/WACS are very high, at present WAMS/WACS

have only been implemented in small scale power systems. The WAMS/WACS

implemented by Bonneville Power Administration for the wide area stability and

voltage support of their power system is such an example [21]. A revamp of com-

munication architecture for power systems needs to be done in order to implement

WAMS/WACS on large scale power systems [22]-[24].
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1.1.5 Dynamic state estimation and dynamic control

DSE, which refers to the estimation of state variables representing oscillatory dy-

namics of a power system, can also be utilized for effective control of these dynam-

ics besides the aforementioned techniques of robust control and wide-area control.

With growing deployment of PMUs across the system, DSE algorithms have been

proposed by several research groups for the real time estimation of dynamic states

(typically machine load angle, acceleration, transient speed voltages etc.) using

Kalman filtering [25]-[31]. However, as all of these algorithms present a central-

ized approach to DSE, a reliable and fast communication network is needed to

bring system-wide measurements to a central location to implement these algo-

rithms. Thus, a slow communication network used in EMS/SCADA (with update

rates of 2-10 s) is a bottleneck for both WACS and DSE.

DSE forms an integral part of many dynamic control techniques proposed for

today’s power system. Algorithms based on real time dynamic security assessment

([32],[33]) and model predictive control ([34],[35]) are a few examples of such control

techniques.

1.2 Challenges to power system estimation and

control

The majority of control and monitoring tools in present power systems are provided

by EMSs and are based on steady state system model, which cannot capture

the dynamics of power system very well. This limitation is primarily due to the

dependency of EMSs on slow update rates of the SCADA systems. Therefore, the

state estimates of the system are updated in a time scale of ten seconds, and most

of the dynamic control schemes are local to a generator or a FACTS device and

are based on locally available information and measurements. The chief challenge

in implementing dynamic estimation and global control schemes is unavailability

of a fast, reliable and secure communication network.

Packet based communication is the most widely adopted communication technol-

ogy today, on which even the highly complex ‘Internet’ is based. There is an option

of using packet based communication network (instead of the slow and outdated

communication technology used in SCADA) for DSE, WAMS/WACS and dynamic

control in power systems. But this option also poses a question that whether the
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overall system will remain stable or not as packet based communication suffers

from problems such as packet dropout, packet disordering and time-delay.

Another option for implementing DSE, WAMS/WACS and dynamic control in

power systems is to implement them in a completely decentralized manner. This

means that the complete knowledge of states and controllability of the oscillatory

system dynamics are obtained at decentralized locations in the system using only

local information and measurements at those locations. This option remains an

important research challenge as finding a solution to this challenge would remove

the necessity of a fast and reliable communication network for dynamic estimation

and control. Presently, an algorithm for decentralized DSE is not available in

literature. Some algorithms for decentralized control of power systems are available

which are based on Lyapunov theory ([36]-[38]), but these algorithms assume a

simplistic model of power system and also require the knowledge of dynamic states

at the decentralized locations of control.

1.3 Research objectives

This research intends to answer the following two questions based on the afore-

mentioned challenges to dynamic estimation and control of power systems:

1. What is the effect on small-signal stability of a power system in which a

packet based communication network is included in its control loops (that

is, a communication network is used for the transmission of measurement

signals from sensors to a control center and for the transmission of control

signals from control center to actuators)?

2. Can the dynamic estimation and control of a power system be performed

in a decentralized manner so that the requirement of a fast and reliable

communication network is eliminated?

1.4 Research contributions and dissemination

The contributions of the research can be summarized as follows:
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1. A model of a networked controlled power system has been developed in which

the control loops of the system are closed using a packet based communication

network. The stability analysis of such a system has been performed under

an assumption that stochastic packet dropout is taking place in the network.

The lower limit on the probability of packet dropout has been computed

which guarantees specified stability margin of the system.

2. A new concept of ‘pseudo-inputs’ has been developed for decentralization

of power system equations. This concept, along with the concept of non-

linear unscented Kalman filtering, has been applied for decentralized dynamic

estimation of states and parameters of power systems.

3. An extended linear quadratic regulator has been developed for optimal con-

trol of a linear system in which both controllable inputs and uncontrollable

pseudo-inputs are present.

4. The concepts of decentralized DSE and extended linear quadratic regulator

have been integrated together for decentralized estimation and control of a

power system.

5. A benchmark 68-bus 16-machine system has been implemented in MATLAB.

The developed technique of decentralized estimation and control has been

successfully implemented and validated on the benchmark system.

The research work on decentralized parameter estimation was conducted jointly

with Dr. Mohd Aifaa bin Mohd Ariff, a colleague of the author in Imperial College

London. Mr. Ariff was the principal researcher in this work, and the author helped

him with the concepts of pseudo-inputs and unscented Kalman filtering and also

helped him with the implementation of these concepts in MATLAB. The theory

and results of this work are available in [39].

The complete research findings have been disseminated in the following papers,

posters and reports.

1.4.1 Journal papers

1. A. K. Singh, R. Singh, B. C. Pal, “Stability Analysis of Networked Control

in Smart Grids,” IEEE Transactions on Smart Grid, vol. PP, no. 99, pp.

1–10, May 2014.
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Abstract : A suitable networked control scheme and its stability analysis

framework have been developed for controlling inherent electromechanical

oscillatory dynamics observed in power systems. It is assumed that the feed-

back signals are obtained at locations away from the controller/actuator and

transmitted over a communication network with the help of phasor mea-

surement units (PMUs). Within the generic framework of networked control

system (NCS), the evolution of power system dynamics and associated con-

trol actions through a communication network have been modeled as a hybrid

system. The data delivery rate has been modeled as a stochastic process. The

closed-loop stability analysis framework has considered the limiting proba-

bility of data dropout in computing the stability margin. The contribution

is in quantifying allowable data-dropout limit for a specified closed loop per-

formance. The research findings are useful in specifying the requirement of

communication infrastructure and protocol for operating future smart grids.

2. A. K. Singh, B. C. Pal, “Decentralized Dynamic State Estimation in Power

Systems Using Unscented Transformation,” IEEE Transactions on Power

Systems, vol. 29, no. 2, pp. 794–804, Mar. 2014.

Abstract : This paper proposes a decentralized algorithm for real-time esti-

mation of the dynamic states of a power system. The scheme employs pha-

sor measurement units (PMUs) for the measurement of local signals at each

generation unit; and subsequent state estimation using unscented Kalman

filtering (UKF). The novelty of the scheme is that the state estimation at

one generation unit is independent from the estimation at other units, and

therefore the transmission of remote signals to a central estimator is not re-

quired. This in turn reduces the complexity of each distributed estimator;

and makes the estimation process highly efficient, accurate and easily imple-

mentable. The applicability of the proposed algorithm has been thoroughly

demonstrated on a representative model.

3. M. A. M. Ariff, B. C. Pal, A. K. Singh, “Estimating Dynamic Model Param-

eters for Adaptive Protection and Control in Power System,” IEEE Trans-

actions on Power Systems, vol. PP, no. 99, pp. 1–10, 2014.

Abstract : This paper presents a new approach in estimating important

parameters of power system transient stability model such as inertia constant

H and direct axis transient reactance x′d in real time. It uses a variation of

unscented Kalman filter (UKF) on the phasor measurement unit (PMU)

data. The accurate estimation of these parameters is very important for
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assessing the stability and tuning the adaptive protection system on power

swing relays. The effectiveness of the method is demonstrated in a simulated

data from 16-machine 68-bus system model. The paper also presents the

performance comparison between the UKF and EKF method in estimating

the parameters. The robustness of method is further validated in the presence

of noise that is likely to be in the PMU data in reality.

4. A. K. Singh, B. C. Pal, “Decentralized Control of Oscillatory Dynamics

in Power Systems using an Extended LQR,” IEEE Transactions on Power

Systems, 2014 (under second stage of review).

Abstract : This paper proposes a decentralized algorithm for real-time con-

trol of oscillatory dynamics in power systems. The algorithm integrates dy-

namic state estimation (DSE) with an extended linear quadratic regulator

(ELQR) for optimal control. The control for one generation unit only re-

quires measurements and parameters for that unit, and hence the control

at a unit remains completely independent of other units. The control gains

are updated in real-time, therefore the control scheme remains valid for any

operating condition. The applicability of the proposed algorithm has been

demonstrated on a representative power system model.

1.4.2 Conference posters

1. A. K. Singh, A. Majumdar, B. C. Pal, “Effect of Network Packet-Dropout

on the Control Performance of Power Systems,” IEEE Power and Energy

Society General Meeting ’12 - Student-poster, San Diego, USA, 21-25 July,

2012.

Abstract : With the introduction of wide area measurement system (WAMS)

and flexible AC transmission system (FACTS) in Power Technology, remote

signals need to be transmitted over distances as large as even hundreds of

kilometers to centralized or distributed controllers. The number of such

signals and controllers is bound to increase with an increase in the complexity

of power systems as they are going to operate closer to their operating limits

and also become larger by integration of more and varied sources of energy.

The introduction of a packet based network is soon going to be indispensable

for the communication of such a ‘smart’ grid. This poster aims to study the

effect of packet-dropout rate on the stability of such a networked controlled

power system, specifically on the stability of the damping control using a

thyristor controlled series capacitor (TCSC).
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2. A. K. Singh, B. C. Pal, “Distributed Data Fusion for State Estimation in

Cyber Physical Energy Systems,” IEEE Power and Energy Society General

Meeting ’13 - Student-poster, Vancouver, Canada, 21-25 Jul., 2013.

Abstract : This poster proposes an adaptive algorithm for dynamic state

estimation in cyber physical energy systems. The algorithm involves dis-

tributed estimation based on unscented Kalman filtering, and subsequent

multi-path data fusion of the local estimates. The distributed estimation

takes into account the inherent shortcomings of networked systems, viz.,

packet dropout, packet disordering and variable time delays. The multi-path

data fusion strategy endeavours to convert the highly stochastic and uncer-

tain packet delivery model of present day networks into a deterministic model

with very high packet delivery probabilities and fixed time delays. The com-

bined strategy of distributed estimation and multi-path data fusion has been

demonstrated on a representative 68-bus power system model.

1.4.3 IEEE Task Force reports

1. A. K. Singh, B. C. Pal, IEEE PES Task Force on Benchmark Systems for

Stability Controls–Report on the 68-Bus, 16-Machine, 5-Area System, ver.

2.0, 9 Jul. 2013 [Online]. http://www.sel.eesc.usp.br/ieee/

Abstract : The present report refers to a small-signal stability study carried

over the 68-Bus, 16-Machine, 5-Area System and validated on a widely known

software package: MATLAB-Simulink (ver. 2011b). The 68-bus system is

a reduced order equivalent of the inter-connected New England test system

(NETS) and New York power system (NYPS), with five geographical regions

out of which NETS and NYPS are represented by a group of generators

whereas, the power import from each of the three other neighboring areas are

approximated by equivalent generator models. This report has the objective

to show how the simulation of this system must be done using MATLAB

in order to get results that are comparable and exhibit a good match with

respect to the electromechanical modes with the ones presented in the PES

Task Force website on Benchmark Systems.

2. R. Ramos, L. Lima, N. Martins, I. Hiskens, B. Pal, D. Vowles, M. Gibbard, C.

Canizares, L. G. Lajoie, F. Marco, B. Tamimi, R. Kuiava, and A. K. Singh,

IEEE PES Task Force on Benchmark Systems for Stability Controls–Final

Report (Draft), ver. 9, 16 Jun. 2014.
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Abstract : This report describes the work by the members of the IEEE PES

Task Force (TF) on Benchmark Systems for Stability Controls. The following

sections present the objectives of the TF, the guidelines used to select the

benchmarks, a brief description of each benchmark system (so the reader can

select the most suitable system for the intended application), the input data

and results for each benchmark system and a set of conclusions.

1.5 Thesis organization

The organization of the rest of the thesis is as follows. In Chapter 2, a stability

analysis framework for packet-switching based networked control system (NCS) in

power systems is presented. Some practical limitations and problems associated

with real-time centralized estimation and control using NCS are also presented.

Chapter 3 presents the method for decentralization. This method is based on the

concept of pseudo-inputs in which some of measurements are treated as inputs.

Unscented Kalman filtering is then applied on the decentralized system for dynamic

state estimation. An extended linear quadratic regulator is proposed and developed

in Chapter 4 for the optimal control of a linear system with pseudo-inputs. In

Chapter 5, the developed regulator is used for decentralized control of each local

unit such that the whole power system is stabilized and all oscillations in the system

are adequately damped. Modeling and implementation details for MATLAB are

presented in the Appendices.



Chapter 2

Stability analysis of networked

control in power systems

This chapter addresses the first research question of the thesis: What is the effect

on small-signal stability of a power system in which a packet based communication

network is included in its control loops? Networked control system (NCS) approach

utilizing modern communication concepts is very appropriate in this context. An

NCS is defined as a system in which the control loops are closed through a real-

time communication network [40]. Networked control enables execution from long

distance by connecting cyberspace to physical space. It has been successfully ap-

plied in other technology areas such as space and terrestrial exploration, aircraft,

automobiles, factory automation and industrial process control. NCS offers many

advantages over traditional control architectures. Addition of new sensors, ac-

tuators or controllers in traditional control architectures can result in significant

increase in wiring and complexity of the control system, leading to increased costs

and reduced flexibility with each new component. Utilizing a communication net-

work for connecting these components can effectively reduce the complexity of

the system and maintenance costs, with nominal economical investments, as net-

worked controllers allow data to be shared efficiently. Furthermore, networked

control offers high flexibility as new control system components can be added with

little costs and without making significant structural changes to the system. The

advantages of NCS over traditional control systems have been elaborated in [40].

Packet-switching based communication networks are the most widely adopted sys-

tems for fast, economic and stable data transfer over both large and small dis-

tances through dynamic path allocation. They are in contrast to the traditional

31
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circuit-switching based networks in which a dedicated link is established between

the sending and the receiving ends. Circuit switching is not only inefficient and

costlier than packet-switching, but also the link failure rate increases for large

transmission distances, and the failure cannot be dynamically corrected, unlike

packet-switching [41]. This is the reason that most of the current research in NCS

is based on packet-switching technology. However, packet-switching based net-

works also suffer from some problems such as packet-dropout, network induced

delays and packet-disordering [40]. These factors can possibly degrade the per-

formance of the control of power system dynamics and small signal stability. As

explained in Chapter 1, in the context of interconnected power systems, the con-

trol of oscillatory stability is very time critical as uncontrolled oscillations in past

have led to several power blackouts. Therefore these factors need to be analyzed

thoroughly for assessing the suitability of the NCS approach to wide area control

of power systems.

Over the past decade, substantial research has been undertaken to model NCS

and study the effects of packet-dropout and time delays on the control design

and the stability of the NCS ([42], [43], [44] and [45]), but this research is not

reflected in the power system literature. In most of the literatures relating to

power systems, it is assumed that the transmission of signals to and from the

central control unit occurs over an ideal, lossless and delay-free communication

network. A few exceptions to this are [46], [47] and [48]. In [46] the effect of

network induced time-delays has been considered using a WAMS based state-

feedback control methodology. In [47] an estimation of distribution algorithm

based speed control of networked DC motor system has been studied; and in

[48] the effect of communication-bandwidth constraints on the stability of WAMS

based power system control has been studied. But all these papers have other

limitations. For instance, in [46] it is not explained how the various system states

(such as the rotor angle, rotor velocity and transient voltages) are estimated before

using them for state-feedback; and also the power system model considered in the

paper is too simplistic to represent actual power system dynamics. In [47] only a

local network based control of a single dc-motor system is considered instead of

considering the networked control of a complete power-system. In [48], the chief

problems associated with networked-control, which are packet-loss and delay, are

not considered. This chapter has made an attempt to address the aforementioned

limitations by analyzing the effects of packet-dropout on the oscillatory stability

response of a networked controlled power system (NCPS).
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A rigorous model for a NCPS is presented in Section 2.1. Section 2.2 presents

LMI based stability analysis of the developed NCPS, and derives the probability

threshold of the packet-dropout rate while guaranteeing specified level of damping

of the NCPS. A case study of a representative 68-bus New-England/New-York

inter-connected NCPS model has been presented in Section 2.3. In the case study,

the inter-area oscillations in the power system are controlled using feedback signals

which are transmitted over a communication network. Section 2.4 presents the

limitations of the developed NCPS model and Section 2.5 summarizes the chapter.

2.1 NCPS Modeling with Output-feedback

A block diagram of the output-feedback controlled NCPS is shown in Fig. 2.1. The

model is described as hybrid continuous-discrete system in which power system is

the continuous, while networked-controller is the discrete part. The NCPS model

is hybrid in one other sense that the power system is deterministic while the

networked controller is stochastic in nature.
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Figure 2.1: A reduced model of the NCPS

In Fig. 2.1, the block ‘Power System’ represents the open-loop power system,

oscillatory dynamics of which need to be controlled. To this effect, real-power

deviations in some of the lines are measured in real-time using current transform-

ers (CTs) and potential transformers (PTs) [49], and represented by y(t) in the

block diagram. These are then sampled at the sampling rate of the communication

network using digital devices such as phasor measurement units (PMUs) and in-

telligent electronic devices (IEDs) and then sent over the communication network

as discrete data-packets, y(k). User datagram protocol (UDP) is used for packet
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transmission, and packet-loss occurs during transmission. The final data which is

received at the control unit after packet loss is given by ȳ(k). The control unit

consists of a LQG controller, which is a combination of a Kalman filter and a linear

quadratic regulator (LQR). Kalman filter uses linearized, discretized and reduced

power system model and the output data-packets arriving at the controller, ȳ(k),

to estimate the states, x̂(k). The state estimates are then multiplied by the LQR

gain to produce the control signals u(k), which are then sent over the communica-

tion network to the actuators. The packets arrive at discrete to analog converters

(DACs), which are zero-order-hold devices and convert the discrete control signals

after packet-loss, ū(k), into continuous control signals, ū(t). These continuous sig-

nals control the actuators, which are the FACTS devices, more commonly known

as FACTS controllers. The inputs u(t) to the power system are the percentage

compensations provided by the FACTS controllers to control the power-flow in

the lines on which the FACTS controllers are installed. All the variables in the

model have been expressed in per unit (p.u.), except the time variables which are

expressed in s. A detailed description of each component of the NCPS model is

presented as follows.

2.1.1 Power system

An interconnected power system is represented through important components

such as the generators, their excitation systems, power system stabilizers (PSS),

FACTS controllers such as a thyristor controlled series capacitor (TCSC), loads

and transmission network [50] as shown in Fig. 2.2.

The dynamics of the system is modeled using a set of non-linear differential and

algebraic equations (DAEs) ([51] and [50]). The state space representation of the

system is obtained through linearization of the DAEs around an initial operat-

ing point. The order of the system is reduced to speed up the controller design

algorithm and also to reduce the order of the controller. On applying balanced

model reduction based on singular value decomposition, as given in [52], only the

unstable and/or poorly damped electromechanical modes of the power system are

retained in the reduced model. The reduced model is written as:

∆ẋ (t) = AR∆x (t) +BR∆u (t) (2.1)
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Figure 2.2: Details of the power system in the NCPS

∆y (t) = CR∆x (t) (2.2)

AR ∈ R
m×m,BR ∈ R

m×p and CR ∈ R
q×m are the reduced state space matrices

and x ∈ R
m,u ∈ R

p and y ∈ R
q are the vectors of state variables, inputs and

outputs, respectively. It should be noted that after balanced reduction of the full

model, only the state variables and the state matrices get reduced in order; the

inputs u and the outputs y remain same as in the original full model. Also, out of

the various possible measurable outputs (which are the line-powers in the context

of NCPS), only those outputs are selected in y which have high observability of

the unstable and/or poorly damped electromechanical modes of the power system.

2.1.2 Sensors and actuators

The sensors (in the context of NCPS, they are CTs, PTs and PMUs) send the

feedback signals to the controller over the communication network at a regular

interval of T0, which is the sampling period of the communication network. The

discrete to analog converters (DACs) convert the discrete control signals after

packet-loss into continuous control signals. The DACs are event-driven zero-order-

hold (ZOH) devices, each one of which holds the input to the power system in a

given cycle. In the next cycle it holds its previous value if there is no new input due

to packet drop, otherwise it holds the new input. The outputs of the DACs control

the FACTS controllers, which are the actuators; and the inputs u(t) to the power
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system are the percentage compensations provided by the FACTS controllers. For

the (k + 1)th time cycle, (2.1) reduces to:

∆ẋ (t) = AR∆x (t) +BR∆u (kT0) ; 0 ≤ t− kT0 < T0 (2.3)

Solving (2.3) with initial condition (∆x (kT0) ,∆u (kT0)) and a constant input

∆u (kT0) [53], we get:

∆x ((k + 1)T0) = A∆x (kT0) +B∆u (kT0) ; (2.4)

A = eART0 ;B = A−1
R

(
eART0 − I

)
BR (2.5)

Denoting ∆x (kT0) as xk, ∆u (kT0) as ūk (where ūk is the uncertain input after

packet dropout), ∆y (kT0) as yk, CR as C, and also including a white Gaussian

measurement noise vk and a white Gaussian process noise wk in the model, we

get:

xk+1 = Axk +Būk +wk; yk = Cxk + vk (2.6)

2.1.3 Communication protocol, packet delay and packet

dropout

In the model design process two classes of communication protocols have been

considered. In transmission control protocol (TCP)-like protocols the acknowledg-

ments that the receiver received the packets are sent back to the sender, while in

user datagram protocol (UDP)-like protocols they are not sent. In TCP-like case,

unlike in the UDP-like case, the lost packets can be re-sent because of the availabil-

ity of the acknowledgments. So the separation principle, as explained in [54], holds

only in the case of TCP-like protocols, and hence the controller and the estimator

can be designed independently [55]. In UDP-like case no known optimal regulator

exists and one can design a suboptimal solution based on a Kalman-like estimator

and a LQG-like state feedback controller, as shown in Fig. 2.1. Although UDP-like

protocol results in a sub-optimal solution, it is preferred over a TCP-like protocol

as it may be extremely difficult to both analyze and implement a TCP-like control

scheme [55]. In this chapter, a UDP-like scheme has been used. The time delays
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and dropouts of packets have been modeled such that a packet is assumed to be

lost, unless its time-delay is less than the sampling interval of the system. This

fact is one of the factors while deciding the sampling duration, the other factor

being the type of control needed, as explained in Section 2.3.2.1. If a packet is

lost, the output of the receiver is held at the last successfully received packet.

The packet loss over the network usually follows a random process. In the present

analysis an independent Bernoulli process has been used to model the packet loss

[55]. The input ūk at the actuator and ȳk at the estimator are modeled as:

ūk = αkuk; ȳk = βkyk (2.7)

αk = diag (α1
k, α

2
k, ..., α

p
k) is a stationary diagonal binary random matrix, in which

the value of αi
k is equal to one with a probability pui, indicating that the i

th compo-

nent of uk is delivered; while its value is equal to zero with a probability (1− pui),
indicating that the component is lost (Fig. 2.3). Similarly, βk = diag (β1

k , β
2
k , ..., β

q
k)

is the stationary diagonal binary random matrix for the delivery indication of yk.

pui is termed as the packet delivery probability (PDP) of the ith input channel,

while pyi is the PDP of the ith output channel.

0 1(1-pui)

(1-pui)
pui

pui

Figure 2.3: Markov chain for the ith input-channel’s delivery indication

Remark : The assumption of an independent Bernoulli packet loss model is not valid

when the communication channel is congested. In a congested channel the packet

loss occurs in bursts, and follows a two-state Markov chain model, also known as

Gilbert model [56]. Fig. 2.4 shows this model, where ‘1’ represents the state of

packet delivery and ‘0’ represents the state of packet loss; and the probability of

transition from state ‘0’ to state ‘1’ is p and the probability of transition from state

‘1’ to state ‘0’ is q. When p is equal to (1 − q), this model reduces to Bernoulli

model.

The drawback of using Gilbert model in stability analysis is that this model is not

a memory-less model, which means that the probability of packet delivery depends

on the current channel state, and it fluctuates between p and (1− q) depending on
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Figure 2.4: Markov chain for Gilbert process

whether the current channel state is ‘0’ or ‘1’, respectively. Mathematical repre-

sentation of such a fluctuating probability of packet delivery becomes practically

infeasible. A practical alternative for approximating Gilbert model with Bernoulli

model can be to set the communication channel’s probability of packet delivery as p

if p < (1−q), and as (1−q) if (1−q) ≤ p. Thus, the approximated Bernoulli model

represents the worst case scenario of packet delivery performance given by Gilbert

model, as the smaller probability of the two possible packet delivery probabilities

from Gilbert model is assumed to be the constant packet delivery probability in

the approximated Bernoulli model.

2.1.4 Controller

For an open-loop LTI system given by (2.6), whose input ūk is defined by (2.7),

the quadratic cost function J is given by:

J =
1

N
E

{
xT
NQxN +

N−1∑

k=1

[
xT
kQxk + uT

kαkRαkuk

]}
(2.8)

where N is the number of samples, E is the expectation value, T denotes the trans-

pose of a vector or a matrix, Q is a positive definite matrix denoting state costs,

R is a positive semi-definite matrix denoting input costs and it is assumed that

the full state information of the LTI system is available (we get this information

from the state-estimator). Minimizing J with respect to uk results in the following

Riccati-like difference equation, as explained in [57]:
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Mk+1 = ATMkA+Q

−ATMkBE[α](R+ E[αBTMkBα])−1
E[α]BTMkA (2.9)

where M0 is Q and E[α] is the expectation value of αk (subscript k is removed

in E[α] as αk is stationary). If we obtain a steady state solution M = M∞ for

(2.9) as k → ∞ then the LTI open-loop system is infinite horizon stabilizable in

mean-square sense, provided the pair (A,B) is controllable; the pair (A,Q1/2) is

observable, where Q = (Q1/2)TQ1/2. The infinite horizon control policy for such

a system is a state feedback policy, given by:

uk = Lx̂k; L = −(R+ E[αBTMBα])−1
E[α]BTMA (2.10)

where x̂k is the estimated state, and L is the LQG gain.

2.1.5 Estimator

The controller uses the output from the state estimator to generate the control

command which is sent over the network to the actuator in the power system.

The estimator uses the information vector, which consists of the control command

and the intermittent plant output delivered to the estimator via the network, to

generate a best estimate of the state of the system. It was shown in [58] that even in

the case of intermittent observations, Kalman filter is still the best linear estimator

for LTI systems with stationary Gaussian noise processes, provided that only time

update is performed when a measurement packet is dropped. When a measurement

is received, both the time and measurement update steps are performed. The

filtering equations for such a closed-loop system, using (2.10), are:

2.1.5.1 Prediction step

x̂–
k = A′x̂k−1; A

′ = (A+BE[α]L) (2.11)

P –
xk = A′Px(k−1)A

′T + Pvk (2.12)
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2.1.5.2 Estimation step

x̂k = x̂–
k +Kkβk(yk −Cx̂–

k) (2.13)

Pxk = P –
xk −KkβkCP –

xk (2.14)

Kk = P –
xkC

T [CP –
xkC

T + Pwk]
−1 (2.15)

For the kth sample, x̂–
k is the estimated mean of the predicted states, P –

xk is the

predicted-state covariance matrix, x̂k is the estimated mean of the states, Pxk

is the state covariance matrix, Pwk is the covariance matrix of wk, Pvk is the

covariance matrix of vk, Kk is the Kalman gain. The equations are valid if and

only if (A′,C) is observable and (A′,P
1/2
vk ) is controllable. In (2.11) the estimator

takes the closed loop state-space matrix A′ as (A+BE[α]L) as it can at best have

an estimate of the packet dropout rate of the network because it does not receive

the acknowledgments of the control packets it sends out to the power system.

2.2 Closed-loop stability and damping response

The closed loop model of the NCPS can be summarized as follows, using (2.6)-

(2.15):

xk+1 = Axk +BαkLx̂k +wk; (2.16)

x̂k+1 = A′x̂k +Kk+1βk+1(yk+1 −CA′x̂k) (2.17)

yk+1 = C(Axk +BαkLx̂k +wk) + vk+1 (2.18)

A steady state solution for Pxk in (2.14), and hence for Kk, may or may not exist

for given αk and βk, even if the conditions for the existence of steady state solution

for a standard Kalman filter hold; but a steady state estimate K = E[K∞] for the



Chapter 2. Stability analysis of networked control in power systems 41

Kalman gain may be obtained by iteratively solving (2.12), (2.14) and (2.15) after

substituting βk with its expected value E[β]. This is the sub-optimal Kalman gain

which is used for deriving the condition for mean square stability and adequate

damping of the developed NCPS. Writing (2.16)-(2.18) in composite form, after

replacing Kk+1 with its steady state estimate K, we get:

[
xk+1

x̂k+1

]
=

[
Im

Kβk+1C

]
wk +

[
0m×q

Kβk+1

]
vk+1

+

[
A BαkL

Kβk+1CA A′ +Kβk+1C(BαkL−A′)

]

︸ ︷︷ ︸
A(αk,βk+1)

[
xk

x̂k

]
(2.19)

The presence of αk and βk+1 in (2.19) makes it a jump linear system (JLS): a

system whose state matrices vary randomly with αk and βk+1. The framework of

a JLS and its stability analysis are described in [59] and [60]. A brief overview of

the criterion for the stability and the damping in mean square sense of the NCPS

has been presented in the next section.

2.2.1 Stability analysis framework of a jump linear system

Let Si be a set of all the subsets of {1, 2, 3, ..., i}. Let r ∈ Sp be a set of indices

of all those input delivery indicators whose values are one, i.e. r = {i, such that

(s.t.) αi
k = 1}. E.g., for a 2 input system (p=2), r can either be ∅ (both the

inputs failed to deliver), or {1} (only 1st input delivered), or {2} (only 2nd input

delivered), or {1, 2} (both the inputs delivered). Similarly, let s ∈ Sq be a set of

indices of successful output delivery indicators. As each input delivery indicator

αi
k has two modes (0 or 1) and αi

ks are p in total, αk has 2p modes. Any mode of

αk is expressed as Tp(r), r ∈ Sp, where Tp(r) is a p × p diagonal matrix whose

(i, i)th element is 1 if i ∈ r, else it is 0. Similarly, βk+1 has 2
q modes, and any mode

is expressed as Tq(s), s ∈ Sq, where Tq(s) is a q× q diagonal matrix whose (i, i)th

element is 1 if i ∈ s, else it is 0. The probability distributions of Tp(r), r ∈ Sp and

Tq(s), s ∈ Sq are given by:

P p(r) = P [αk = Tp(r)] =
∏

i∈r

pui
∏

i/∈r

1− pui (2.20)
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P q(s) = P [βk+1 = Tq(s)] =
∏

i∈s

pyi
∏

i/∈s

1− pyi (2.21)

P p(r) is the resultant probability of data delivery for any combination of input to

the plant by the channel characterized by Tp(r). Similarly P q(s) is the resultant

probability of data delivery for any combination of plant output channel mode

characterized by Tq(s).

As A(αk,βk+1) in (2.19) is a function of αk and βk+1, it may be re-expressed as

A(r, s) in (2.22):

A(r, s) =

[
A BTp(r)L

KTq(s)CA A′ +KTq(s)C(BTp(r)L−A′)

]
(2.22)

As the value of A(r, s) depends on the values of r and s, it can take any value

in a given sample out of the possible 2p+q values, with a corresponding overall

probability distribution P p(r)P q(s). The NCPS in (2.19) is said to be mean-square

stable if limk→∞ E

∥∥∥ xk

x̂k

∥∥∥
2

= 0, starting with any state
[
x0

x̂0

]
. Mean-square stability

and damping response of (2.19) can be checked using the following inequalities

formed with linear combination of symmetric matrices, which are known as linear

matrix inequalities (LMIs):

2.2.1.1 LMIs for mean-square stability

The criterion for the stability of discrete-time JLS in [59] is applied to obtain the

condition for the mean-square stability of the NCPS in (2.22). The satisfaction

of the criterion requires the existence of positive definite matrices Pr,s, ∀r ∈ Sp,

∀s ∈ Sq, such that:

Pr,s > A(r, s)


P p(r)P q(s)

∑

r′∈Sp,s′∈Sq

Pr′,s′


A(r, s)T (2.23)

There are in total 2p+q LMIs in (2.23).
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2.2.1.2 LMIs for adequate damping response

The concept of D-stability [61] has been used to study the adequate damping

response of the developed NCPS. This is very practical and useful in the context

of power oscillation damping. If D is a sub-region of the complex left half plane,

and all the closed loop poles of a dynamical system ẋ = Ax lie in D, then the

system and its state transition matrix A are called D-stable. When D is the

entire left-half plane, then D-stability reduces to asymptotic stability. For damping

control analysis, the D-region of interest is D(Θ) of complex numbers (x+ jy) s.t.

|y/x| < | tanΘ| (Fig. 2.5). Thus a specified and required damping of inter-area

modes becomes an important criterion for NCS design and analysis.

�

�

2

��

1 �1 �2

� �⁄

� tan �

0

Figure 2.5: D-stability region for damping control of a continuous system

Confining the closed loop poles of the system to the region shown in Fig. 2.5 ensures

a minimum damping ratio ζ0 = cosΘ. This in turn bounds the decay rate and

the settling time for the corresponding oscillatory inter-area modes of the system.

Power systems usually require an operating constraint that all the disturbances in

the system should settle to less than a fixed percent (usually 15%) of the maximum

overshoot within a few seconds (usually 10−15s) of the start of the disturbance to

the system [7]. As the inter-area modes usually lie in the frequency range 0.2−1.0

Hz, they have longer settling times and lower decay rates than other modes. In

this chapter, the margin for D-stability is taken as a minimum damping ratio of

0.1 for all the closed-loop interarea modes, as a damping ratio of 0.1 corresponds

to a setting time of 15s for a modal frequency of 0.2 Hz.

Lemma 2.1. The closed-loop NCPS in (2.19) is expected to have all of its equiva-

lent continuous-time poles with damping ratios ζ > cosΘ if and only if there exist

positive definite matrices Qr,s, ∀r ∈ Sp, ∀s ∈ Sq, such that:
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(W ⊗ Ac(r, s))Qr,s +Qr,s(W ⊗ Ac(r, s))
T

+ (P p(r)P q(s)− 1)Qr,s + P p(r)P q(s)(
∑

r′∈Sp,s′∈Sq ,r′ 6=r,s′ 6=s

Qr′,s′) < 0 (2.24)

where, Ac(r, s) = ln(A(r, s))/T0,W =

[
sinΘ cosΘ

− cosΘ sinΘ

]
, (2.25)

ln is the natural logarithm of a square matrix and T0 is the sampling-period of the

NCPS.

Proof : The damping-region of interest D(Θ) shown in Fig. 2.5 is applicable only to

the continuous-time representation of a dynamic system; the discrete-time equiva-

lent of this region is a logarithmic spiral and is very difficult to represent using ma-

trices and LMIs. We therefore consider the continuous-time equivalent of A(r, s)

which is given by (2.24) as Ac(r, s). Using [62] we know that a dynamic system

ẋ = Ax is D-stable in the region D(Θ) if and only if W ⊗A is asymptotically sta-

ble. This holds because the eigenvalues of W are e±j(π
2
−Θ). The eigenvalues of the

Kronecker product of 2 matrices are the product of the eigenvalues of individual

matrices. Hence, the eigenvalues of W ⊗A are two sets of eigenvalues of A, one

set rotated by an angle (π
2
−Θ) and another one by −(π

2
−Θ). All those eigenvalues

of A which lie outside D(Θ) get rotated into the right half plane in W ⊗A, and

hence W ⊗A is asymptotically stable if and only if none of the eigenvalues of A lie

outside D(Θ), i.e. if and only if A is adequately damped. So, the asymptotic sta-

bility of W ⊗Ac(r, s) implies D-stability of Ac(r, s). As Ac(r, s) is a jump-linear

mode of the stochastic system in (2.19) with a modal probability of P p(r)P q(s),

the matrix W ⊗ Ac(r, s) is also a modal matrix of same probability as Ac(r, s);

and the mean-square stability of W ⊗ Ac(r, s) [59] (given by (2.24)) implies the

D-stability of Ac(r, s) in a mean square sense, i.e. its electro-mechanical modes

are expected to have ζ > cosΘ. �

Remark: It should be noted that an additional pole-placement constraint which is

desired (besides the constraint of a minimum damping ratio) is that the real part

of each mode should be less than a specified minimum value (usually −0.1), so that
none of the modes are very close to the imaginary axis. This constraint is relevant

to the modes which have very small modal frequencies (in the range of 0.0− 0.16

Hz) as the real parts of only these modes can be greater than −0.1 even if they

satisfy the constraint of a minimum damping ratio of 0.1. Thus, this additional



Chapter 2. Stability analysis of networked control in power systems 45

constraint has been relaxed in the aforementioned stability analysis, as the analysis

focuses on interarea modes (which have modal frequencies greater than 0.2 Hz).

Another reason for relaxing the constraint is that it is mathematically difficult to

include an additional constraint in the above lemma.

Remark: If all the channels have same characteristics, their PDPs become equal

to each other (pui = pyi = py0∀i). The marginal packet delivery probability

(MPDP), such that the NCPS remains properly damped ∀py0 >MPDP, is given

by sup {γ > 0, s.t. LMIs in (2.24) remain feasible, ∀py0 ∈ [γ, 1]}.

2.2.2 Physical significance of the developed LMIs

The physical meaning of the mathematical result given by the developed LMIs will

be better understood using the concepts of observability and controllability. As

mentioned in Section 2.1.1, the output measurements have high observability of

the unstable and/or poorly damped electromechanical modes of the power system.

The LQG controller requires the knowledge of these measurements and the state

matrices to correctly estimate the states, which are then multiplied by the LQR

gain to get the control input for the power system. The LQG controller requires

the knowledge of these measurements and the state matrices in order to correctly

estimate the states, which are then multiplied with the LQR gain to get the con-

trol input for the power system. The closed loop system is properly stabilized

and damped, provided the packet delivery rate is 100%. The decrease in packet

delivery rate from 100% results in the loss of the output measurements in the

communication network. The measurements which finally arrive at the controller

after packet loss have an overall decrease in their observability for a given period

of time, and the controller estimates the states with decreased accuracy. For a

packet delivery rate of zero percent, none of the measurements arrive at the LQG

controller, and thus the observability is zero, and controller cannot estimate the

states at all.

This concept of probabilistic observability will be better understood with an exam-

ple. For example, if there are two measurements which are sent over the network

then there are four possibilities in a given time sample: (1) none of the measure-

ments arrive, (2) only first measurement arrives, (3) only second measurement

arrives, and (4) both the measurements arrive. Each of these four possibilities has

a probability associated with it depending on the packet delivery rates of the two

communication channels. The overall observability of the arriving measurements
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depends on these four probabilities, and is thus a probabilistic quantity in itself.

For q measurements, there are 2q possibilities, and the overall observability will

depend on all of these possibilities. Similar analogy applies for the controllability

of the power system by the control inputs sent over the communication network,

and thus the overall controllability is also a probabilistic quantity. The stability

and the D-stability of the closed loop system depend on these probabilistic observ-

ability and controllability, and are written in mathematical forms as (2.23) and

(2.24), respectively.

2.3 Case study: 68-bus 16-machine 5-area NCPS

2.3.1 System description

A 16-machine, 68 bus model test system [63], shown in Fig. 2.6, has been used for

the case study.
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Figure 2.6: Line diagram of the 16-machine, 68-bus, 5-area NCPS

This is a reduced order equivalent of the interconnected New England test system

(NETS) and New York power system (NYPS) of 1970s. NETS and NYPS are



Chapter 2. Stability analysis of networked control in power systems 47

represented by a group of generators, while the power import from each of the

three other neighboring areas are approximated by equivalent generator models

(G14 to G16). NYPS needs to import around 1.5 GW from Area 5, for which a

TCSC is installed on the 18-50 tie-line. Percentage compensation of the TCSC

needs to be dynamically controlled to control the reactance of the tie-line. A

detailed system description is available in Appendix D, which is used to simulate

the NCPS model in MATLAB SIMULINK. Fully non-linear sub-transient model

of power system is used for simulation.

2.3.2 Simulation results and discussion

2.3.2.1 Operating condition 1 (base case)

For the first case of system operation (total tie-line flow between NETS and NYPS

= 700MW, no line outages), the damping and the frequency of the three poorly

damped modes of the linearized system were computed. The normalized partic-

ipation factors (P.F.) of all the states in these modes were also calculated and

arranged in decreasing order [7]. Table 2.1 gives the normalized P.F. of the top

four states in these modes. As one can see in Table 2.1, the three poorly damped

modes are indeed the inter-area modes as they have strong participation from the

electro-dynamical modes of all the three generators G14, G15 and G16, which

model the power generation in three different areas.

Table 2.1: Normalized participation factors of the top 4 states in the 3 modes

Mode 1, ζ = 0.020, f =
0.394Hz

Mode 2, ζ = 0.041, f =
0.505Hz

Mode 3, ζ = 0.032, f =
0.598Hz

State P.F. State P.F. State P.F.
δ16 1.000 Slip15 1.000 Slip14 1.000

Slip16 0.999 δ15 0.999 δ14 0.999
δ15 0.936 Slip14 0.727 Slip6 0.493

Slip15 0.935 δ14 0.726 δ6 0.492

The open loop system response confirmed that the other electromechanical modes

including one inter-area mode of the system settled in less than 10 seconds and

hence they have been left from the consideration of providing additional damping.

The remote feedback signals were chosen based on modal observability analysis [64]

for various active line power signals. For the fixed location of actuator, the modal

controllability does not change so modal residue is related to modal observability
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by a scale factor. Table 2.2 gives the normalized residues of top 3 active power

flows in the 3 inter-area modes. There are other means of robust signal selection

to obtain the best signal(s) out of all the available signals, as described in [65], [66]

and [67], to guarantee effectiveness of the signals for various operating scenarios.

Table 2.2: Normalized residues of the active power-flows in the 3 modes

Mode 1, ζ = 0.020, f =
0.394Hz

Mode 2, ζ = 0.041, f =
0.505Hz

Mode 3, ζ = 0.032, f =
0.598Hz

Signal Residue Signal Residue Signal Residue
P13−17 1.000 P16−18 1.000 P13−17 1.000
P51−45 0.773 P14−41 0.760 P17−36 0.698
P51−50 0.665 P42−18 0.727 P43−17 0.600

The signals P13−17 (having highest residues for modes 1 and 3) and P16−18 (having

highest residue for mode 2) have been selected as output signals (Here P13−17

denotes the active power flow in the line from bus number 13 to bus number 17).

With these two signals as output and ∆kc−ss, (the control signal of the TCSC) as

the input, the open-loop system was linearized to find the state space matrices.

System order was reduced (Section 2.1.1) to the lowest possible order such that

the reduced system still remained a very good approximation of the full system in

the frequency range of 0.2-1.0 Hz, and thus a reduced seventh order system was

obtained. Table 2.3, which compares frequencies and damping ratios of the three

modes for the full and the reduced systems, and Fig. 2.7, which shows frequency

response of both the full and the reduced systems, prove that the reduced system

is a good approximation of the full system in the frequency range of 0.2-1.0 Hz.

Table 2.3: Comparison of modes for the full vs. the reduced system

Frequency (in Hz) Damping Ratio

Mode Full System Reduced System Full System Reduced System
Mode 1 0.394 0.394 0.020 0.020
Mode 2 0.505 0.500 0.041 0.046
Mode 3 0.598 0.598 0.032 0.034

Remark: Deciding the sampling period: The controller needs to observe the

system in the range of 0.2-1.0 Hz; hence the minimum required sampling frequency

is 2.0 Hz (i.e. a maximum allowed sampling period of 0.5 s) according to the

Nyquist−Shannon sampling theorem. This upper limit of sampling period is also

the threshold requirement for average time delay of the packets, as if the average

delay is more than this upper limit, then the packet loss rate will be very high and
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Figure 2.7: Frequency response of the full vs. the reduced system

the network would not support the communication needs of the system. In the

case study, a conservative sampling period of T0 = 0.1 s was assumed.

The packet loss in the path of the input and output signals was modeled as a

Bernoulli’s process. So, αk = α1
k, while βk+1 = diag(β1

k+1, β
2
k+1), in (2.7). The

steady state controller gain for the reduced system was found using the results of

Section 2.1.4 and the modified Kalman filter was modeled using the principle de-

scribed in Section 2.1.5. Simulation was started and after one second a disturbance

was created in the NCPS model by a three-phase fault and immediate outage of

one of the tie lines between buses 53-54.

The open loop system is a minimum-phase system (which means that all of its
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zeros and poles are in the left half plane); thus it was required to check only the

damping response of the system for various packet drop rates. For αk, Sp =

{∅, {1}}, and Tp(r) has two modes, T1(∅) and T1({1}). For βk, q = 2 and Sq =

{∅, {1}, {2}, {1, 2}}, and Tq(s) has four modes viz. T2(∅), T2({1}), T2({2}) and

T2({1, 2}). The corresponding jump state matrices A(r, s) are A(∅, ∅), A(∅, {1}),
A(∅, {2}), A(∅, {1, 2}), A({1}, ∅), A({1}, {1}), A({1}, {2}) and A({1}, {1, 2}), and
their probabilities of occurrences are (1 − pu1)(1 − py1)(1 − py2), (1 − pu1)py1(1 −
py2), (1 − pu1)(1 − py1)py2, (1 − pu1)py1py2, pu1(1 − py1)(1 − py2), pu1py1(1 − py2),
pu1(1 − py1)py2, and pu1py1py2, respectively. Using these parameters, eight pairs

of LMIs in (2.24) were obtained. Θ was taken as 84.3 degrees corresponding to

10% damping line, as shown in Fig. 2.5. Assuming same network characteristics

for all the network-channels, i.e. pu1 = py1 = py2 = py, the feasibility of the LMI’s

was checked for various values of py using LMI toolbox in MATLAB. The toolbox

returned a minimum feasible value of py = 0.81, i.e. the LMIs were feasible for

0.81 < py < 1.0.

As data loss is a random process, multiple simulations were performed for a given

value of marginal PDP. Fig. 2.8 shows the rotor slip response for G16 for 100

simulations at a marginal PDP of 0.81. The mean value of rotor-slip for the 100

simulations has also been plotted in Fig. 2.8. In rest of the plots in the case study

only the mean-value of multiple simulations has been shown.
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Figure 2.8: Rotor-slip response for G16 at operating point 1

System response using a classical damping controller (assuming a perfect commu-

nication link in its control loop, with infinite sampling rate and zero packet loss)

has been shown for comparison in Fig. 2.9. Corresponding values of control signal

have also been shown in Fig. 2.10. The transfer function for the classical power
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oscillation damping (POD) controller has been evaluated using the theory and

results given in [68], and it is as follows:

∆kc-ss = P13-17 × (-0.738)

[
1 + 0.138s

1 + 0.725s

]2
+ P16-18 × 0.925

[
1 + 0.182s

1 + 0.949s

]2
(2.26)
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Figure 2.10: Comparison of control signals at operating point 1

The rotor-slip response of G16 for the first operating point was also found for four

other values of py, as shown in Fig. 2.11.

Remark : It should be understood that it is not the sole purpose of Fig. 2.9 (and

subsequent figures) to show that the performance of the networked controller is
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Figure 2.11: Rotor-slip response for various packet delivery probabilities (PDPs)

better than the classical damping controller. Rather, its another important pur-

pose is to show that the performance of the networked control with communication

packet-dropout, even with marginal PDP, is comparable to the performance of clas-

sical control in which an ideal, lossless and delay-free communication network is

assumed. Fig. 2.12 shows the comparison of the performance of networked control

with that of classical control, when in both the cases an ideal communication net-

work is assumed (that is PDP=1). It can be clearly verified from the figure that

the performance of networked control is much better than classical control when

ideal network conditions are assumed for both the cases. Also, a metric which is

used to assess the control effort required by a control method is the 2-norm of the

output from the controller, or ‖u‖2. The control effort for classical control is 0.32

p.u., while for networked control (with PDP=1) it is 0.25 p.u. Thus networked

control at 100% packet delivery rate is better than classical control, and it can

damp the oscillations in a smaller amount of time, even when the control effort

required by networked control is decreased by 22 % as compared to the control

effort required by classical control.

2.3.2.2 Operating condition 2

In the second operating condition (total tie-line flow between NETS and NYPS

= 900MW, no line outages), the open-loop system becomes unstable after the

line-outage, unlike the first operating condition. This is due to the presence of an

unstable mode with negative damping ratio in the system. Therefore we can apply
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Figure 2.12: Classical vs. networked control, with assumption of an ideal network

the LMI analysis (Section 2.2.1.1) to find the marginal PDP which can ensure

closed-loop stability of the NCPS. It was found that the stability of the NCPS

under this operating condition was ensured at a marginal PDP of 0.24, while the

adequate damping of the system was ensured at a marginal PDP of 0.87 (using

Section 2.2.1.2). The slip response of G16 has been shown at both of these marginal

PDPs in Fig. 2.13.
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Figure 2.13: Rotor-slip response for G16 at operating point 2

It is evident in Fig. 2.9 and Fig. 2.11, for T0 = 0.1 s and PDPs more than or equal

to 0.81, the inter-area modes of the system are properly damped. Similarly, it

may be observed from Fig. 2.13 that the system in second operating condition is
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stabilized at the marginal PDP of 0.24 while adequately damped at the marginal

PDP of 0.87. So the results of the LMI analysis stand verified. It is also clear from

Fig. 2.9 and Fig. 2.13 that the performance of the networked controller is better

than the classical damping controller, at realistic packet delivery qualities that can

be easily delivered by present day telecom networks.

2.3.2.3 Effect of sampling period

Next, the effect of sampling period on the marginal delivery probability for D-

stability is being investigated. Fig. 2.14 shows the plot of the marginal delivery

probability versus sampling period.
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Figure 2.14: Marginal delivery probability vs. sampling period

One can easily infer from Fig. 2.14 that higher sampling period requires increase

in py to guarantee feasibility. This is in line with the expectation that a packet

has to be delivered with higher probability with an increase in sampling time.

2.3.2.4 Robustness

The robustness of the NCPS has been checked by obtaining the probabilities of

marginal packet delivery for various operating conditions as listed in Table 2.4.

In Table 2.4, serial number 1 (S.No.1) was considered the base case of operation.

For each operating condition, the control scheme was required to be updated to

give a corresponding LQG gain and reduced-order state space matrices for the
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Table 2.4: Marginal packet delivery probability vs. operating point

S.No. Total tie-line flow (MW) Line-outage Marginal PDP
1. 700 no-outage 0.81
2. 700 60-61 0.83
3. 700 27-53 0.81
4. 100 no-outage 0.79
5. 900 no-outage 0.87
6. 100 27-53 0.79

Kalman filter. The stability performance of the NCPS was also studied with a

constant control scheme, i.e. the control scheme obtained for the base case was

used for all the operating conditions. Fig. 2.15 shows the rotor-slip response for 3

operating conditions with such constant control scheme.

It is clear from Table 2.4 and Fig. 2.15 that the NCPS is D-stable for various oper-

ating points, even with a constant control scheme, at a feasible delivery probability

of 0.85.

2.4 Limitations

The NCPS model developed in this chapter is a rigorous and generalized model,

but it still suffers from limitations. Some of its limitations are as follows.

1. The time-delay model of the packets is integrated in the packet dropout

model, as any packet with delay more than one sampling period is assumed to

be dropped while rest of the packets are deemed to be delivered successfully.

A more accurate model for NCPS would have been the one in which the

time-delays and the packet dropouts are modeled independently.

2. The model is only valid as long as the operating conditions don’t change

significantly from the operating point at which the system is linearized. For

instance, if a generator goes out of service then the transmission system

operator (TSO) should get this information in real-time so that the system

model and control gains are accordingly updated.

3. Linearization of the system at an operating point is non-trivial, and requires

an exact knowledge of steady-state state values and system-wide parameters.
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Figure 2.15: Rotor-slip response for various operating points at py = 0.85
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2.5 Summary

This chapter has made an attempt to analyze the stability effects of introducing

a packet-based communication network in the control loops of a power system.

A Kalman filtering and linear quadratic Gaussian (LQG) based optimal control

scheme for damping oscillatory dynamics has been adopted as the centralized es-

timation and control scheme. The random loss in the delivery of the packets has

been modeled as a stochastic process. Using the developed linear matrix inequal-

ities, the lower limit on the probability of packet delivery has been computed

which guarantees specified damping. It was found that under varying operating

conditions the performance of the NCPS was robust.

The main contribution of this research study lies in the development of a general-

ized framework to assess the stability and damping of a NCPS. It also presents a

formal approach for finding the minimum network requirements in terms of packet

delivery quality, so that the specified stability and damping margins can be ensured

for any operating condition of a power system. Specifically, the contributions may

be summarized as follows.

1. A detailed characterization of packet transmission process and the probabil-

ity of packet loss have been considered in the framework of NCS for power

system control.

2. A practical output-feedback methodology has been used for control (instead

of state-feedback), and the signals which are required to be transmitted to the

control unit are measurable line-power signals. Also, a detailed and realistic

sub-transient power system model has been used.

3. The optimal control scheme which has been used for centralized control can

be easily integrated with the WAMS or FACTS devices already present in

the system.

The research findings show that although the NCPS framework has limitations,

it still has a good potential to guarantee small signal stability margin for modern

power systems.



Chapter 3

Decentralized dynamic state

estimation in power systems

It was stated in the last chapter that update-rates of communication networks

which are used in present day power systems are not as fast as those assumed in

the NCPS model. Therefore, the networked control model of the last chapter can

only be applied to future power systems in which faster communication networks

replace the existing ones. This leads to the second research question, Can the

dynamic estimation and control of a power system be performed in a decentralized

manner so that the requirement of a fast and reliable communication network is

eliminated? This and the next two chapters address this research question. This

chapter proposes a decentralized algorithm for DSE, which eliminates the require-

ment of a communication network for dynamic estimation in power systems.

Past studies in DSE are mostly based on linear schemes [26]-[27]. These schemes

involve linearization of system’s differential and algebraic equations (DAEs), fol-

lowed by calculation of Jacobian matrices. Linearization introduces approxima-

tion errors, which may become significant over time, especially for a complex and

high-order power system [30]. Moreover, calculation of Jacobian matrices is com-

putationally expensive, as it has to be done at every iteration of the algorithm.

The drawbacks of linear schemes have been addressed in more recent research pa-

pers which propose application of unscented transformation to eliminate lineariza-

tion and calculation of Jacobians [28]-[31]. In [28], an unscented Kalman filter

(UKF) based algorithm has been proposed for DSE of a synchronous machine

connected to an infinite bus (also called as single machine infinite bus (SMIB)

system). [29] performs DSE of a SMIB system using an extended particle filter. A

58
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SMIB system is an ideal approximation of a real power system. This limitation has

been addressed in [30], which proposes a centralized UKF algorithm for DSE of a

multi-machine power system. This algorithm requires that remote signals from all

the machines in the system are transmitted to a central location. This method has

its own limitations that many of the signals required for estimation, such as rotor

speed and state variables of excitation system, are difficult to measure. Even if

these signals are measured somehow, it is difficult to ensure their transmission to

a central location at a high sampling rate. Unless these problems are dealt with,

these methods may not be applied to a practical system.

The rest of the chapter is organized as follows. The problem statement and an

overview of the proposed scheme are given in Section 3.1. Section 3.2 presents a

description of discrete DAEs for power system while the concept of decentralization

is explained in Section 3.3. Theory of unscented Kalman filter and algorithm for

decentralized DSE are given in Section 3.4. Section 3.5 presents case study of a 68-

bus test model and Section 3.6 presents algorithm for bad-data detection. Section

3.7 summarizes the chapter.

3.1 Problem statement and methodology in brief

It is assumed that the power system is represented using a set of continuous-time

non-linear DAEs, given by (3.1):

ẋ(t) = ḡ[x(t),u(t)] + v̄(t); y(t) = h[x(t),u(t)] +w(t) (3.1)

After sampling (3.1) at a sampling period T0, one gets:

x(kT0)− x((k − 1)T0)

T0
= ḡ[x((k − 1)T0),u((k − 1)T0)] + v̄((k − 1)T0); (3.2)

y(kT0) = h[x(kT0),u(kT0)] +w(kT0) (3.3)

Rewriting kT0 as k and (k − 1)T0 as k − 1, (3.3) gets converted into discrete form

given by (3.5)-(3.6).
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x(k) = x(k − 1) + T0ḡ[x(k − 1),u(k − 1)] + T0v̄(k − 1) (3.4)

⇒ x(k) = g[x(k − 1),u(k − 1)] + v(k − 1); (3.5)

y(k) = h[x(k),u(k)] +w(k) (3.6)

In state estimation the state x(k) is treated as a random variable with an estimated

mean x̂(k) and an estimated covariance Px(k).

v(k) and w(k) are assumed to be white Gaussian noises. The constant covariance

matrices for the noises are denoted as Pv for v(k) and Pw for w(k).

Remark : Although white Gaussian noises have been used in this chapter, other

types of noises may also be used (such as colored noises) as unscented Kalman

filter remains applicable in wide variety of noise models, as shown in [39].

3.1.1 Problem statement

Find X̂(k) and PX(k), given X̂(k− 1), PX(k− 1), g, h, u(k− 1), u(k), y(k), Pv

and Pw, under constraints that:

the algorithm is decentralized, that is, the algorithm for one generation unit

should work independently from the algorithms for other units; and

only those measurements may be used which are easily measurable using

PMUs, and are locally available.

Stating the problem in simpler terms, an iterative algorithm for finding real-time

estimates of the mean and covariance of the states needs to be devised, provided

the system DAEs, the inputs, the local PMU measurements, and all the noise

covariances are available. The algorithm should be such that the estimation process

for each generation unit remains independent of other units.
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3.1.2 Methodology

A block diagram of the system and the proposed decentralized methodology for

finding a solution for the aforementioned problem statement is shown in Fig. 3.1.
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Figure 3.1: System block-diagram and an overview of the methodology

Each generation unit is equipped with a PMU responsible for measuring various

phasors associated with that unit, specifically voltage and current phasors. Power

systems usually operate at a near constant system frequency of 50 or 60 Hz, and

thus all the measured signals from the system have a fundamental harmonic com-

ponent which is equal to the system frequency. Assuming that other harmonics

are present in relatively small quantities, when the measured signals are sampled

at more than twice the system frequency, the sampling does not lead to any loss in

information in the signals, as per Nyquist-Shannon sampling theorem. PMUs pro-

vide sampling rates of over 600 Hz [17]; and hence they are capable of preserving

signal-information for state estimation purpose.

Any measuring device in a system (such as a PMU) has finite accuracy. This finite

accuracy for a given measurement represented in the model as a white-Gaussian

noise superimposed over correct value of the signal. Each noise is assumed to

have a zero mean and a standard deviation equal to accuracy of the corresponding

measurement. The sampled measurements, along with their noise variances, are

sent from PMU to a local estimator. The estimator is located in the vicinity



Chapter 3. Decentralized dynamic state estimation in power systems 62

of PMU and hence communication requirements are assumed to be easily met.

DSE is performed at the estimator using non-linear unscented transformation in

association with Kalman-like filtering. Estimates of all the dynamic states of the

machine are then sent to local and/or central control centers for taking control

decisions.

3.2 Power system modeling and discrete DAEs

Discrete DAEs of the power system derived using continuous time DAEs given in

[7] (and also in Appendix A), and a brief description of the various components of

the system are as follows:

3.2.1 Generators

Each generator in the system has been represented using sub-transient model [50].

Slow dynamics of speed-governor have been ignored as they have practically no

influence on the fast small-signal oscillatory dynamics of a power system [2]. Thus,

mechanical torque, Tm, has been treated as a constant parameter. If Tm and other

parameters for the machine (such as H and D) are not known, they may be

estimated in real-time using the parameter estimation algorithm given in [39] or

[69]. Discrete DAEs for the ith generator are given by (3.7)-(3.18).

δi(k + 1) = δi(k) + T0ωb(ωi(k)− 1); (3.7)

ωi(k + 1) = ωi(k) +
T0
2Hi

(Tmi − Tei(k)−Di (ωi(k)− 1)) ; (3.8)

E ′
qi(k + 1) = E ′

qi(k) +
T0
T ′
d0i

[Efdi(k)− E ′
qi(k)

+ (Xdi −X ′
di){Kd1iIdi(k) +Kd2i

Ψ1di(k)− E ′
qi(k)

X ′
di −Xli

}]; (3.9)
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E ′
di(k + 1) = E ′

di(k)−
T0
T ′
q0i

[E ′
di(k)

+ (Xqi −X ′
qi){Kq1iIqi(k) +Kq2i

Ψ2qi(k) + E ′
di(k)

X ′
qi −Xli

}]; (3.10)

Ψ2qi(k + 1) = Ψ2qi(k) +
T0
T ′′
q0i

[Iqi(k)(X
′
qi −Xli)− E ′

di(k)−Ψ2qi(k)]; (3.11)

Ψ1di(k + 1) = Ψ1di(k) +
T0
T ′′
d0i

[Idi(k)(X
′
di −Xli) + E ′

qi(k)−Ψ1di(k)]; (3.12)

E ′
dci(k + 1) = E ′

dci(k) +
T0
Tci

((X ′′
di −X ′′

qi)Iqi(k)− E ′
dci(k)); (3.13)

where Tei(k), Idi(k) and Iqi(k) are algebraic functions of E ′
di(k), E

′
qi(k), Ψ1di(k),

Ψ2qi(k), E
′
dci(k), Vi(k), θi(k) and δi(k), and are given by:

Tei(k) = Kq1iE
′
di(k)Idi(k) +Kd1iE

′
qi(k)Iqi(k) +Kd2iΨ1di(k)Iqi(k)

−Kq2iΨ2qi(k)Idi(k) + (X ′′
di −X ′′

qi)Idi(k)Iqi(k); (3.14)

Idi(k) = [Rai{E ′
di(k)Kq1i −Ψ2qi(k)Kq2i + E ′

dci(k)− Vdi(k)}
−X ′′

di{E ′
qi(k)Kd1i +Ψ1di(k)Kd2i − Vqi(k)}]/Z2

ai; (3.15)

Iqi(k) = [Rai{E ′
qi(k)Kd1i +Ψ1di(k)Kd2i − Vqi(k)}
+X ′′

di{E ′
di(k)Kq1i −Ψ2qi(k)Kq2i + E ′

dci(k)− Vdi(k)}]/Z2
ai; (3.16)

where, Vdi(k) = −Vi(k) sin(δi(k)− θi(k)); (3.17)
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Vqi(k) = Vi(k) cos(δi(k)− θi(k)); i = 1, 2, . . . ,M. (3.18)

3.2.2 Excitation systems

Each generation unit may be excited manually or by using an automatic voltage

regulator (AVR). Two types of AVRs have been considered in the case study.

Discrete DAEs for IEEE-DC1A type of AVR are given by (3.19)-(3.21), while

for IEEE-ST1A type of AVR they are given by (3.22)-(3.23). In case of manual

excitation, the field excitation voltage, Efd, is equal to a constant reference, Vref .

Vri(k + 1) = Vri(k) +
T0
Tri

[Vi(k)− Vri(k)]; (3.19)

Vai(k + 1) = Vai(k) +
T0
Tai

[Kai(Vrefi + Vssi(k)− Vri(k))− Vai(k)]; (3.20)

Efdi(k + 1) = Efdi(k)−
T0
Txi

[Efdi(k)(Kxi + Axie
BxiEfdi(k))− Vai(k)];

Efdmini ≤ Efdi(k + 1) ≤ Efdmaxi; i = 1, 2, . . . ,M. (3.21)

Vri(k + 1) = Vri(k) +
T0
Tri

[Vi(k)− Vri(k)]; (3.22)

Efdi(k + 1) = [Kai(Vrefi + Vssi(k + 1)− Vri(k + 1))];

Efdmini ≤ Efdi(k + 1) ≤ Efdmaxi; i = 1, 2, . . . ,M. (3.23)

3.2.3 Power system stabilizer (PSS)

A PSS is used to provide supplementary damping control to the local modes of a

generation unit. Transfer function of PSS for the ith generation unit, as considered

in the case study, is given as follows.
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Vssi = Kpss(ωi − 1)
(sTwi)

(1 + sTwi)

(1 + sT11i)

(1 + sT12i)

(1 + sT21i)

(1 + sT22i)
(3.24)

The discrete form of this transfer function is given by (3.25)-(3.31).

Ps1i(k + 1) = Ps1i(k) +
T0
Twi

P ′
s1i(k); (3.25)

Ps2i(k + 1) = Ps2i(k) +
T0
T12i

P ′
s2i(k); (3.26)

Ps3i(k + 1) = Ps3i(k) +
T0
T22i

P ′
s3i(k); (3.27)

where, P ′
s1i(k) = Kpssi(ωi(k)− 1)− Ps1i(k); (3.28)

P ′
s2i(k) = P ′

s1i(k)− Ps2i(k); (3.29)

P ′
s3i(k) = P ′

s1i(k) +
T11i − T12i

T12i
P ′
s2i(k)− Ps3i(k); (3.30)

and, Vssi(k) = P ′
s1i(k) +

T11i − T12i
T12i

P ′
s2i(k) +

T21i − T22i
T22i

P ′
s3i(k);

Vssmini ≤ Vssi(k + 1) ≤ Vssmaxi; i = 1, 2, . . . ,M. (3.31)

3.2.4 Network model

Network current balance equations for the generator buses are given by (3.32),

while power-balance equations for the non-generator buses are given by (3.33).

(Iqi(k) + jIdi(k))e
jδi(k) = Ii(k)e

jφi(k) = Yi(k)V (k) +
PLi(k)− jQLi(k)

Vi(k)e−jθi(k)
;

where Yi(k) is the i
th row of Y (k), and i = 1, 2, . . . ,M. (3.32)
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(PLi(k)− jQLi(k)) + Vi(k)e
−jθi(k)(Yi(k)V (k)) = 0;

where Yi(k) is the i
th row of Y (k), and i = (M + 1), (M + 2), . . . , N0. (3.33)

3.3 Pseudo inputs and decentralization of DAEs

A generation unit consists of a generator, its AVR and PSS when present. The

DAEs for a unit, given by (3.7)-(3.31), are coupled to the DAEs for other units

through the network equations, given by (3.32)-(3.33). Inputs to the power system

come in form of system-disturbances, such as load changes, line-faults and genera-

tion failures. If it is provided that none of the dynamic states are directly measured,

a centralized state estimation scheme would require real-time information about

all system-wide disturbances, besides an information of line parameters, parame-

ters for all the generation units and system-wide PMU measurements. Obtaining

such real-time information is practically not feasible. A decentralized scheme of

estimation is the only practical alternative.

An inspection of (3.7)-(3.31) would reveal that the ith generation unit’s I, φ and

the dynamic states for the (k + 1)th sample are explicit functions of V, θ and

the dynamic states for the kth sample. This inspection leads to an idea which

forms the basis of the decentralized estimation scheme: if V and θ are treated as

inputs, rather than as measurements, and I and φ are treated as outputs (i.e. as

normal measurements), then the dynamic equations for one generation unit can

be decoupled from the dynamic equations for other units. This idea of ‘pseudo-

inputs’ forms the central theme of rest of the thesis and is also the most important

contribution of the thesis. It must be noted here that this representation is not

unique, and the DAEs can be rearranged in such a way that V and θ become the

outputs, and I and φ become the inputs. The idea is, therefore, to use one of the

pair of measurements as an input pair, and the other pair as an output pair. In

this chapter the pair of V and θ is treated as the input pair.

The idea of pseudo-inputs may be better understood with a simpler model of a

power system. Classical model of a power system in discrete form is given by the

following DAEs for the ith machine.

δi(k + 1) = δi(k) + T0ωb(ωi(k)− 1); (3.34)
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ωi(k + 1) = ωi(k) +
T0
2Hi

(Tmi − Tei(k)−Di (ωi(k)− 1)) ; (3.35)

where, Tei(k) = E ′
qiIi(k) cos(δi(k)− φi(k)) =

E ′
qi

x′d
Vi(k) sin(δi(k)− θi(k)); (3.36)

and (V, θ) and (I, φ) are related as: Ii(k)e
jφi(k) =

E ′
qie

jδi(k) − Vi(k)ejθi(k)
jx′d

(3.37)

E ′
qi is treated as a constant parameter in the classical model. The various bus

voltages and currents in the system are coupled by the same network equations as

in the sub-transient model (that is, by (3.32)-(3.33)). In the centralized method of

dynamic state estimation (such as in [30]), the central estimator requires complete

system model and a real-time knowledge of all the changes/disturbances occurring

in the system. When a disturbance occurs, the estimator predicts the new states

of all the machines (in state prediction step) and the new voltages and currents of

all the buses (in measurement prediction step) by incorporating the disturbance

in the complete system model. The predicted values are then corrected using the

measured values of bus voltages and currents in Kalman-update step, and thus

new state estimates are generated.

In the proposed decentralized method of dynamic state estimation, each ma-

chine has its own estimator. Each decentralized estimator treats one of the pairs

of (V, θ) and (I, φ) as input and the other pair as normal measurement, and

hence requires only equations (3.34)-(3.36) for state prediction and (3.37) for mea-

surement prediction. If the pair (V, θ) is used as pseudo-input, then Tei(k) =

(E ′
qi/x

′
d)Vi(k) sin(δi(k)−θi(k)) is used in the state prediction step and Ii(k)e

jφi(k) =

(E ′
qie

jδi(k) − Vi(k)ejθi(k))/(jx′d) is used in measurement prediction step. Otherwise,

if the pair (I, φ) is used as pseudo-input then Tei(k) = E ′
qiIi(k) cos(δi(k)−φi(k)) is

used in the state prediction step and Vi(k)e
jθi(k) = E ′

qie
jδi(k)−jx′dIi(k)ejφi(k) is used

in the measurement prediction step. Thus the network equations (3.32)-(3.33) are

not required, and the machine equations are decoupled.

Physical significance of the above idea of decentralization may be understood by

going deeper into the physics of power system dynamics. Any change or distur-

bance which takes place at one point in a large-scale power system is propagated
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quickly throughout the system. This is because the propagation of disturbances

takes place over an electromechanical traveling wave which travels at a high speed

and takes less than a second to propagate changes throughout all the bus voltages

and currents in the system (as elaborated in the chapter on ‘Electromechanical

Wave Propagation’ in [16]). These changes in voltage and current levels are in fact

responsible for initiating slower small-signal oscillatory dynamics of devices which

are connected to the buses. Therefore, just the knowledge of local bus voltage and

current is sufficient to predict and estimate the dynamics of the devices that are

connected to that local bus; and in our case this device is a synchronous generator.

But this knowledge of local voltage and current must be complete (both magni-

tude and phase are required), and this makes the synchronization of various PMU

devices through the GPS satellites crucial to the estimation process. This synchro-

nization of PMUs may also be considered as an indirect coordination between the

decentralized estimators.

The idea of decoupling by treating V and θ as inputs leads to a problem: only

measured values of V and θ are available (given by Vy and θy, respectively), instead

of their actual values, and hence they have associated noises, given by Vw and θw,

respectively. One way of including these noises in the DAEs is to model them as

input noises [75]. But this would require linearization and would therefore defeat

the purpose of unscented transformation and non-linear filtering. Another way of

including the measurement noises is to redefine the values of V and θ according

to (3.38), based on the fact that the actual inputs are equal to the differences of

their measured values and the associated noises.

Vi(k) = Vyi(k)− Vwi(k); θi(k) = θyi(k)− θwi(k); (3.38)

If the expressions for Vi(k) and θi(k) from (3.38) are used in (3.7)-(3.31), the

resultant DAEs give the decentralized process model for the ith generation unit,

which is written in the following form, with xi as the vector of the dynamic states,

and gi as the corresponding state functions:

xi(k) = gi[xi(k − 1),u′

i(k − 1), zi(k − 1)] + vi(k − 1); i = 1, 2, . . . ,M (3.39)

In the above model, u′

i(k − 1) acts as a pseudo-input vector and zi(k − 1) is its

noise. u′

i(k − 1) and zi(k − 1) are given as:
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u′

i(k − 1) = [Vyi(k − 1), θyi(k − 1)]T ; (3.40)

zi(k − 1) = [Vwi(k − 1), θwi(k − 1)]T ; i = 1, 2, . . . ,M (3.41)

Vwi and θwi are white noises with zero mean and constant standard deviations

given by σVwi
and σθwi

, respectively. Thus, the mean and covariance of zi(k − 1)

also remain constant for each sample; and, for i = 1, 2, . . . ,M , they are given by:

ẑi(k − 1) = 02×1;Pzi(k − 1) = Pzi = diag{σVwi

2
, σθwi

2} (3.42)

If x̂i(k− 1) and Pxi(k− 1) are the estimates of mean and covariance of xi(k− 1);

and Pxzi(k − 1) is the cross-correlation between xi(k − 1) and zi(k − 1); and if

xi(k−1) is augmented with zi(k−1) to give Xi(k−1) = [xi(k−1)T , zi(k−1)T ]T ,

the estimates of mean and covariance of Xi(k − 1), for i = 1, 2, . . . ,M , are given

by:

X̂i(k − 1) =

[
x̂i(k − 1)

ẑi(k − 1)

]
; (3.43)

PXi(k − 1) =

[
Pxi(k − 1) Pxzi(k − 1)T

Pxzi(k − 1) Pzi(k − 1)

]
(3.44)

The augmented state X(k) is also a random variable with an estimated mean

X̂(k) and an estimated covariance PX(k). Rewriting (3.39) in the augmented

state form, one gets:

Xi(k) = gi[Xi(k − 1),u′

i(k − 1)] +

[
vi(k − 1)

02×1

]
; i = 1, 2, . . . ,M (3.45)

Measurement equations for measured magnitude, Iyi, and measured phase, φyi, of

the stator current of the ith unit are (using (3.32)):

Iyi(k) =
√
(Iqi(k))2 + (Idi(k))2 + Iwi(k); (3.46)
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φyi(k) = arg{Iqi(k) + jIdi(k)}+ δi(k) + φwi(k); i = 1, 2, . . . ,M (3.47)

In (3.46), Iqi(k) and Idi(k) are given by (3.18) after replacing the expressions

of Vi(k) and θi(k) from (3.38). Writing [Iyi, φyi]
T as the output vector yi, the

corresponding measurement functions (given by (3.46), (3.38) and (3.18)) as hi,

and [Iwi, φwi]
T as the output-noise vector wi, the measurement model comes out

as:

yi(k) = hi[Xi(k),u
′

i(k)] +wi(k); i = 1, 2, . . . ,M. (3.48)

The mean and covariance of wi(k), for i = 1, 2, . . . ,M , are:

ŵi(k) = 02×1; Pwi(k) = Pwi = diag{σIwi

2, σφwi

2} (3.49)

The aggregate model for the ith unit, given by (3.45) and (3.48), is the decentralized

equivalent of (3.5)-(3.6).

3.4 Unscented Kalman filter

Unscented transformation was proposed by J. K. Uhlmann as a general method for

approximating nonlinear transformations of probability distributions [71] . Based

on an idea that it is easier to approximate a probability distribution than to ap-

proximate a non-linear function; this method is used to find consistent, efficient

and unbiased estimates of mean and covariance of a random variable undergoing

a non-linear transformation [72]. If the non-linear transformation given by (3.45)

is applied to X(k − 1) (the suffix i has been ignored), then the estimated mean

and covariance of the resultant state X(k) are derived in four steps:

3.4.1 Generation of sigma points

The first step is to generate a set of points, called as sigma points, whose sample

mean and covariance are same as that of X(k − 1). If the dimension of X(k − 1)

is n, then just 2n sigma points, χl(k − 1), l = 1, 2, . . . , 2n, need to be generated
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to capture its distribution [71]. The following algorithm is used for generation of

the sigma points [28]:

χl(k − 1) = X̂(k − 1) + (
√
nPX(k − 1))l, l = 1, 2, . . . , n; (3.50)

χl(k − 1) = X̂(k − 1)− (
√
nPX(k − 1))l, l = (n+ 1), (n+ 2), . . . , 2n (3.51)

Here, (
√
nPX(k − 1))

l
is the lth column of lower triangular matrix

√
nPX(k − 1)

obtained by Cholesky decomposition, which is given by:

nPX(k − 1) =
√
nPX(k − 1)

√
nPX(k − 1)

T
(3.52)

3.4.2 State prediction

In second step predicted-state sigma points are generated, which are given by

χ−
l (k)= g[χl(k − 1),u′(k − 1)], l = 1, 2, . . . , 2n. Sample mean of these points is

equal to X̂−(k), while sum of augmented Pv and sample covariance of these points

is equal to P−
X (k). Here, X̂−(k) and P−

X (k) are estimated mean and estimated

covariance, respectively, of a predicted-state random variable, X−(k).

3.4.3 Measurement prediction

The third step is to generate predicted-measurement sigma points, which are given

by γ−
l (k) = h[χ−

l (k),u
′(k)], l = 1, 2, . . . , 2n. Sample mean of these points is equal

to ŷ−(k), while sum of Pw and sample covariance of these points is equal to P−
y (k).

Here, ŷ−(k) and P−
y (k) are estimated mean and estimated covariance, respectively,

of a predicted-measurement random variable, y−(k). Cross-correlation between

the predicted-state sigma points and the predicted-measurement sigma points is

equal to P−
Xy(k), which is taken as estimated cross-correlation between X−(k) and

y−(k).
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3.4.4 Kalman update

The final step is to find X̂(k) and PX(k) using the normal Kalman filter equations

[73]:

K(k) = P−
Xy(k)(P

−
y (k))

−1
; (3.53)

X̂(k) = X̂−(k) +K(k)(y(k)− ŷ−(k)) (3.54)

PX(k) = P−
X (k)−K(k)[P−

Xy(k)]
T (3.55)

The above four steps constitute the UKF. As stated in the beginning of this chap-

ter, the superiority of UKF has been established over other non-linear filters, such

as extended Kalman filter [74].

Coming back to power systems, the aggregate model for one generation unit, given

by (3.48) and (3.45), is completely independent from other units. Thus, the four

steps of UKF may be directly applied to the ith aggregate model to give its filtering

algorithm, summarized as follows.
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Algorithm 1: Decentralized DSE for the ith generation unit

Begin Find gi, hi, Pzi and Pwi according to (3.45), (3.48), (3.42) and (3.49),

respectively. Find Pvi. Let mi denote the total number of states to be estimated

for the unit. Denote ni = mi + 2. Denote the steady-state values of x̂i as x0i.

While (k ≥ 1)

{ STEP 1: Initialize

if (k = 1) then initialize x̂i(0) = x0i, ẑi(0) = 02×1, Pxi(0) = Pvi, Pxzi(0) =

02×mi
, Pzi(0) = Pzi in (3.43) to get PXi(0) and X̂i(0).

else reinitialize ẑi(k − 1) = 02×1 and Pzi(k − 1) = Pzi, leaving rest of the

elements in X̂i(k − 1) and PXi(k − 1) unchanged.

STEP 2: Generate sigma points

χil(k − 1) = X̂i(k − 1) + (
√
niPXi(k − 1))

l
, l=1,2,. . . ,ni

χil(k − 1) = X̂i(k − 1)− (
√
niPXi(k − 1))

l
, l = (ni + 1), (ni + 2), . . . , 2ni

STEP 3: Predict states

χ−
il (k) = gi[χil(k − 1),u′

i(k − 1)], l=1,. . . ,2ni; X̂−
i (k) =

1
2ni

∑2ni

l=1χ
−
il (k)

P−
Xi(k) =

1
2ni

∑2ni

l=1[χ
−
il (k)− X̂−

i (k)][χ
−
il (k)− X̂−

i (k)]
T +

[
Pvi 0m×2

02×m 02×2

]

STEP 4: Predict measurements

γ−
il (k) = hi[χ

−
il (k),u

′

i(k)], l=1,2,. . . ,2ni; ŷ−
i (k) =

1
2ni

∑2ni

l=1γ
−
il (k)

P−
yi (k) =

1
2ni

∑2ni

l=1[γ
−
il (k)− ŷ−

i (k)][γ
−
il (k)− ŷ−

i (k)]
T + Pwi

P−
Xyi(k) =

1
2ni

∑2ni

l=1[χ
−
il (k)− X̂−

i (k)][γ
−
il (k)− ŷ−

i (k)]
T

STEP 5: Kalman update

Ki(k) = P−
Xyi(k)(P

−
yi (k))

−1
; X̂i(k) = X̂−

i (k) +Ki(k)(yi(k)− ŷ−
i (k))

PXi(k) = P−
Xi(k)−Ki(k)[P

−
Xyi(k)]

T

STEP 6: Output and time update

output X̂i(k) and PXi(k)

k ← (k + 1) }



Chapter 3. Decentralized dynamic state estimation in power systems 74

Start

Is k=1?

Initialize state vector and 
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No
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Figure 3.2: Flow chart for the steps of decentralized DSE
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3.5 Case study: 68 bus test system

The 16-machine, 68-bus test system, shown in Fig. 3.3, has been used for the case

study. This system is similar to the one used in last chapter, the only difference

being the absence of networked control and of any FACTS device in the system.
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Figure 3.3: Line diagram of the 16-machine, 68-bus, power system model

A detailed system description is available in [7], which is used to simulate the

system in MATLAB on a personal computer with Intel Core 2 Duo, 2.0 GHz CPU

and 2 GB RAM.

There are three types of generation units in the test system. The first eight units in

the system are of type 1 : with IEEE-DC1A type of AVR, and without a PSS. The

ninth unit is of type 2 : with IEEE-ST1A type of AVR, and with a PSS installed.

The rest of the units are of type 3 : with manual excitation, and without a PSS.

The state vectors for the ith unit in the test system, according to these three types,

are:

xi = [δi, ωi, E
′
qi, E

′
di, ψ2qi, ψ1di, Vri, Vai, Efdi]

T , i = 1, 2, . . . , 8; (3.56)
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x9 = [δ9, ω9, E
′
q9, E

′
d9, ψ2q9, ψ1d9, Vr9, Ps1,9, Ps2,9, Ps3,9]

T ; (3.57)

xi = [δi, ωi, E
′
qi, E

′
di, ψ2qi, ψ1di]

T , i = 10, 11, . . . , 16. (3.58)

In the time-domain simulation, the actual values of V, θ, I and φ were sampled at

120 Hz (T0=8.33 ms), as system frequency is taken to be 60 Hz for the 68-bus test

system and 120 Hz is the Nyquist sampling-frequency for this system frequency.

3.5.1 Noise variances

3.5.1.1 Measurement noise

All of the PMUs in the power system are time synchronized to an absolute time

reference provided by GPS. IEEE standard for synchrophasor measurements for

power systems specifies a basic time synchronization accuracy of ±0.2 µs [18]. At
50 Hz, this translates to a phase-measurement accuracy of around ±0.06 mrad.

Thus, PMUs are expected to have an accuracy of around ±0.1 mrad for phase

measurements. Accuracy of PMUs in magnitude measurements is limited by accu-

racy of CTs and PTs (also called as instrument transformers). PMUs do not get

measurements directly from field, instead they use analog values of current and

voltage waveforms provided by CTs and PTs, respectively. These values are time-

stamped by PMUs to an absolute reference provided by GPS in order to generate

the sampled current and voltage phasors [16]. The waveforms provided by the in-

strument transformers have errors in both magnitude and phase, but the error in

phase can be accurately compensated and calibrated out using digital signal pro-

cessing (DSP) techniques [76]. The errors in magnitude of the waveforms provided

by the instrument transformers are limited by accuracy class of these instruments.

There are two main standards according to which instrument transformers are de-

signed: IEC 60044 [77] and IEEE C57.13 [78]. Both of these standards specify

accuracies in the range of ±0.1% to ±0.3% for the measurement of voltage and

current magnitudes using modern CTs and PTs.

Thus, noises in the generated phase measurements were assumed to have standard

deviation of 0.1 mrad (or 10−4 rad), while noises in the generated magnitude

measurements were assumed to have standard deviation of 0.1% (or 10−3 p.u.),

and hence σθw0
= σφw0

= 10−4 rad, and σVw0
= σIw0

= 10−3 p.u. The ‘0’ in
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σVw0
, σθw0

, σIw0
and σφw0

denotes that these are base-case values. The variances

for the generated noises for all the units were made equal to the base-case values,

and hence Pzi = Pz0 = diag{10−6, 10−8} and Pwi = Pw0 = diag{10−6, 10−8};
i = 1, 2, . . . , 16, from (3.42), (3.49).

White Gaussian noises with aforementioned variances were added to the sampled

values of the actual signals in order to generate measurements. Fig. 3.4 shows the

generated Vy and θy for the 13th unit.
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Figure 3.4: Generated measurements for V and θ for the 13th generation unit

3.5.1.2 Process noise

Process noise needs to be included in a model due to modeling approximations and

model integration errors. It is not as straight forward to find process noise variances

as it is to find measurement noise variances. This is because it is difficult to

obtain errors due to unmodeled dynamics, modeling approximations and parameter
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uncertainties, and combine them with integration errors of the discrete model

used by the state estimator. A practical and robust way of finding process noise

variances is to estimate them using a perturbation observer [79], but this method

is not required for finding process noise variances in the case study.

In the case study, as power system is simulated using known subtransient DAEs

and discrete forms of the same DAEs are used by the estimator, modeling errors

are absent. The only errors which are present are due to the discretization of the

DAEs in the state estimator. As the DAEs are discretized according to Euler’s

first-order approximation, the discretization error in state x is T 2
0 ẍ/2 (also known

as local truncation error of Euler’s method [80]), where T0 is the step size or

sampling period of discretization. Noting that ẍ ≈ ∆(∆x)/T 2
0 , standard deviation

(SD) of process noise in x(k) is taken to be max{|∆(∆x(k))|}/2, excluding any

sudden changes during faults or other such disturbances.

Here ∆x(k) = x(k)−x(k−1), ∆(∆x(k)) = ∆x(k)−∆x(k−1) = x(k)−2x(k−1)+
x(k−2), 3 ≤ k ≤ N , andN is the total number of samples for which the system was

simulated (for example, for a 15s simulation N = (15s)× (120Hz) = 1800). This

expression for process noise variance may be better understood with an example.

Fig. 3.5 shows the state changes in δ and ω for the 13th unit.

It can be observed from the figure that max{|∆(∆δ13(k))|}/2 is 6 × 10−4, and

max{|∆(∆ω13(k))|}/2 is 6 × 10−6. Hence variances of noises in δ13 and ω13 are

taken as 3.6× 10−7 and 3.6× 10−11, respectively. This technique was used to find

Pvi for all the machines. For the three different types of machines in the system

Pvi was found to be:

Pvi = diag{1.6× 10−7, 1.6× 10−11, 4× 10−10, 4× 10−10, 9× 10−10, 2.5× 10−9,

3.6× 10−9, 4× 10−6, 2.5× 10−7}, i = 1, 2, . . . , 8; (3.59)

Pv9 = diag{1.6× 10−7, 1.6× 10−11, 4× 10−8, 4× 10−10, 9× 10−10, 2.5× 10−9,

3.6× 10−9, 1× 10−12, 2.5× 10−9, 1.6× 10−9}; (3.60)

Pvi = diag{3.6× 10−7, 3.6× 10−11, 6.4× 10−11, 1.6× 10−9, 2.5× 10−9, 9× 10−10},
i = 10, 11, . . . , 16. (3.61)
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Figure 3.5: State changes in δ and ω for the 13th generation unit

3.5.2 Simulation results and discussion

In the start of the simulation, the system was operating in a steady condition.

Then at t = 1s, a disturbance was created by a three-phase fault and the fault

was cleared after 0.18s by outage (or opening) of one of the tie-lines between

buses 53-54. The ith decentralized UKF algorithm, as given in Section 3.4, was

running along with the simulation of the ith unit. The generated measurements

from each unit were given as input to the corresponding UKF. The simulated

states, along with their real-time estimated values, have been plotted for each unit.

Corresponding estimation errors for various states have also been plotted. Due to

space-constraints, plots for only three units (of different types) have been shown:

unit 3 of type 1 (Fig. 3.6, Fig. 3.8 and Fig. 3.10, and corresponding errors in Fig. 3.7,

Fig. 3.9 and Fig. 3.11, respectively), unit 9 of type 2 (Fig. B.1, Fig. B.3 and Fig. B.5,

and corresponding errors in Fig. B.2, Fig. B.4 and Fig. B.6, respectively), and unit
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13 of type 3 (Fig. B.7 and Fig. B.9, and corresponding errors in Fig. B.8 and

Fig. B.10, respectively). The plots for unit 9 and unit 13 are given in Appendix B.

3.5.2.1 Estimation accuracy

It can be seen in Fig. 3.6 - Fig. 3.11 and Fig. B.1 - Fig. B.10 that for every

dynamic state, the plot of estimated values almost coincides with those of the

simulated values and maximum estimation error in a state remains within 2% of

maximum deviation in the state (not considering the errors during and just after

a disturbance). Thus, it is evident that the decentralized UKF scheme generates

accurate estimates of all the dynamic states of a generating unit. As all the gen-

erator states have been estimated with high accuracies, they can be reliably used

for further control and security decisions.

3.5.2.2 Computational feasibility

The proposed algorithm was tested on two more standard IEEE test systems to

assess its scalability. As the measurements are updated every 8.33 ms (T0 = 8.33

ms), a single iteration of the algorithm should not require more than 8.33 ms,

otherwise the algorithm would not run in real-time. The average time for one

iteration has been tabulated in Table 3.1 for the three test systems. A centralized

scheme for DSE (given in [30]) was also implemented on all the test systems, and

the corresponding average iteration times have been tabulated in Table 3.1. It can

be inferred from Table 3.1 that the computational speed of the proposed decentral-

ized algorithm is very fast and it remains independent of size of the system, while

the centralized algorithm becomes slow and infeasible for large systems (68-bus

and 145-bus systems).

Table 3.1: Comparison of computational speeds

Average computational time for one iteration (in ms)
Test system Decentralized algorithm Centralized algorithm
IEEE 30-bus 0.33 1.45
IEEE 68-bus 0.33 12.4
IEEE 145-bus 0.33 139
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Figure 3.6: Estimated vs simulated values for δ, ω and E′
q of the 3rd unit
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Figure 3.11: Estimation errors for Vr3, Va3 and Efd3 of the 3rd unit
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3.5.2.3 Sensitivity to noise

The robustness of the proposed algorithm to higher noise variances was also tested.

For this, the variances Pzi and Pwi were varied in multiples of tens of their base-

case values, Pz0 and Pw0, and the effect on estimation-accuracy was observed.

Fig. 3.12 shows the effect of variations in noise-variances on the estimation of ω for

the type 2 of generation unit, and Fig. 3.13 shows the corresponding estimation

errors. The plots have been shown for a portion of the total simulation time for

clarity.
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Figure 3.12: Effect of noise variances on the accuracy of estimation

It is evident from Fig. 3.12 and Fig. 3.13 that the algorithm is robust, with mi-

nor errors in estimated values, even when the noise-variances are hundred times

their base-case values. When the noise-variances are thousand times the base-case

variances, the estimated states have significant errors and deviations, and hence

become unusable.
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Figure 3.13: Effect of noise variances on estimation errors

3.6 Bad-data detection

PMU signals not only suffer from noise, but they are also prone to gross errors; and

therefore a bad-data detection algorithm is required for the proposed decentralized

estimator. Bad data detection in UKF is based on the fact that the ratio between

the deviation of actual measurement from the predicted measurement and the

expected standard deviation of the predicted measurement remains bounded in a

narrow band in the absence of any bad data; and this ratio is called as normalized

innovation ratio [30], [31]. Mathematically, this fact may be stated using (3.62)

and (3.63), where λyi,1 and λyi,2 are the normalized innovation ratios for the two

measurements yi,1 = Iyi and yi,2 = φyi, respectively (Recall that yi = [Iyi, φyi]
T );

ŷ−
i = [ŷ−i,1, ŷ

−
i,2]

T ; P−
yi,1 is the first diagonal element of P−

yi ; and P
−
yi,2 is the second
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diagonal element of P−
yi .

λyi,1 < λ0; where λyi,1 =
|yi,1 − ŷ−i,1|√

P−
yi,1

(3.62)

λyi,2 < λ0; where λyi,2 =
|yi,2 − ŷ−i,2|√

P−
yi,2

(3.63)

λ0 depends on type of the system, and it may be found using off-line simulations

[30], [31]. For the system in case study, λ0 was found to be 10. Hence, a mea-

surement is labeled as a bad measurement if its normalized innovation ratio comes

out to be more than λ0 in a given sample, and is thus discarded and the actual

measurement is assumed to be same as the predicted measurement for that sample.

The above technique for bad data detection would have worked flawlessly if there

wasn’t any bad data present in the states or input. But since pseudo-inputs are

used in the decentralized UKF algorithm, which are in reality measurements, bad-

data may also be present in these pseudo-inputs. Innovation ratios are not defined

for pseudo-inputs, and hence we cannot directly detect bad-data in them; but

an indirect method may be used to do so. This method is based on the fact

that the predicted measurements are influenced by bad-data in the pseudo-inputs

but the actual measurements remain independent of these bad-data, and hence

in the case of bad-data in pseudo-inputs no correlation exists between the actual

measurements and the predicted measurements. In other words, if bad data is

introduced in one or more pseudo-input(s) in a given sample, then both ŷ−
i and

P−
yi would change significantly from their correct values, and this change will be

completely uncorrelated with yi, even if bad data is present in yi as well (assuming

that all the bad-data are introduced randomly and independently), and thus the

values of both λyi,1 and λyi,2 are expected to exceed λ0 in such an event. Thus,

we need to modify the technique in the previous paragraph, and discard all the

pseudo-inputs if both λyi,1 and λyi,2 exceed λ0 in a given sample, and use the

latest uncorrupted pseudo-inputs instead. Thus, the bad-data detection for the

kth sample takes place according to the following algorithm.
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Algorithm 2: Bad-data detection in the ith generation unit

STEP 1:

Perform the first four steps of Algorithm 1.

STEP 2:

Find λyi,1 and λyi,2 according to (3.62) and (3.63), respectively.

STEP 3:

if λyi,1 < λ0 and λyi,2 < λ0 then goto STEP 5

else

if λyi,1 > λ0 and λyi,2 < λ0 then yi,1 = ŷ−i,1, goto STEP 5

else

if λyi,1 < λ0 and λyi,2 > λ0 then yi,2 = ŷ−i,2, goto STEP 5

else

if λyi,1 > λ0 and λyi,2 > λ0 then discard u′

i
and again perform the first four

steps of Algorithm 1 using the latest uncorrupted value of u′

i
. Again find

λyi,1 and λyi,2 according to (3.62) and (3.63), respectively.

STEP 4:

if λyi,1 < λ0 and λyi,2 < λ0 then goto STEP 5

else

if λyi,1 > λ0 and λyi,2 < λ0 then yi,1 = ŷ−i,1, goto STEP 5

else

if λyi,1 < λ0 and λyi,2 > λ0 then yi,2 = ŷ−i,2, goto STEP 5

else

if λyi,1 > λ0 and λyi,2 > λ0 then yi,1 = ŷ−i,1 and yi,2 = ŷ−i,2.

STEP 5:

Perform the last two steps of Algorithm 1.
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Figure 3.14: Flowchart for bad data detection
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A bad-data detector based on Algorithm 2 was implemented and integrated in

the decentralized UKF algorithm. Values of λyi,1 and λyi,2 , and estimated rotor

velocity for i = 13, have been shown for three cases, all in Fig. 3.15:
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Figure 3.15: Bad-data detection

1. Bad-data present only in one of the measurements: In this case bad-data

is introduced in the measurement φy13 of magnitude +0.4 p.u. (i.e. the

measured value of φy13 is 0.01 p.u. above its true value), at time t = 5s. It
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may be observed that the bad-data detector effectively handles this anomaly,

and there is no effect on λy13,1 , and the estimation process remains unaffected.

2. Bad-data present only in one of the pseudo-inputs: In this case bad-data is

introduced in the pseudo-input Vy13 of magnitude +0.2, at time t = 10s.

It may be observed that both λy13,1 and λy13,2 become unbounded, but the

bad-data detector effectively handles this anomaly as well, as the estimation

process remains unaffected.

3. Bad-data present simultaneously in one of the measurements and in one

of the pseudo-inputs: In this case bad-data is introduced in the measure-

ment φy13 of magnitude +0.4 p.u., and another bad-data is introduced in

the pseudo-input Vy13 of magnitude +0.2 p.u., both at t = 15s. It may be

observed that both λy13,1 and λy13,2 become unbounded, as in previous case,

but the bad-data detector effectively handles this anomaly as well.

Thus, the proposed two-stage bad data detector successfully filters out bad-data

in all the three possible cases. This bad-data detector is another important con-

tribution of the thesis.

3.7 Summary

A scheme for decentralized estimation of the dynamic states of a power system has

been proposed in this chapter. The scheme preserves non-linearity in the system

and improves efficiency over other non-linear filters through unscented Kalman

filtering. The basic idea of decentralization in the scheme is based on treating some

of the measured signals as pseudo inputs. The advantages of the proposed scheme

over the centralized schemes have been presented in terms of speed, feasibility,

simplicity and high accuracy. The scheme is also robust to moderately-high noise

levels and gross errors in measurement signals.

The key advantages of the proposed scheme may be summarized as follows:

1. The signals required for estimation (which are the generator voltage and

current) are easy to measure using PMUs.

2. Each distributed estimator has to estimate only local states of the corre-

sponding generation unit. Therefore the estimator is very fast and its speed
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remains independent of the size of the system, unlike a centralized scheme.

This is the biggest advantage over a centralized scheme as for a large power

system, the number of states a central estimator has to estimate is very large,

requiring huge computational capacity for real-time estimation.

3. Remote signals need not be transmitted; therefore the estimation process

is not affected by network problems such as transmission delays and losses.

Also, the signal sampling rates are not limited by network bandwidth.

4. State estimation for one generation unit is completely independent from es-

timation for other units. Thus, errors in estimation remain isolated and are

easier to pin-point than in a centralized estimation scheme.

5. PMUs only need to be installed at each generation unit, and most power

stations are likely to have installation of PMUs.

The proposed scheme should serve as a highly practical method of dynamic state

estimation for dynamic control and dynamic security assessment in modern power

systems.



Chapter 4

Extended linear quadratic

regulator

This chapter aims to provide a decentralized control law using dynamic state esti-

mates which were obtained in the last chapter. The control law should be such that

it minimizes the state deviation costs and the required control effort. The theory

of optimal control of dynamic systems is appropriate in this context, as it involves

cost effective operation of a system by optimizing the sum of costs associated with

system states and control inputs. Also, linear control is the most developed and

widely adopted technology for ensuring small-signal stability in power systems (as

a non-linear power system can be approximated with a linear equivalent if devia-

tions from equilibrium point are small). Therefore, this chapter focuses on linear

optimal control theory.

The particular case of optimal control in which dynamics of a system are described

by linear differential equations, and cost is a quadratic function of states and

control-effort, is called linear quadratic (LQ) problem [53], [81]. Solution to the

LQ problem is provided by linear quadratic regulator (LQR), which is a state

feedback controller [73].

The decentralized DAEs used in the last chapter involved pseudo-inputs. As

pseudo-inputs are actually measurements, they can neither be disabled nor be

manipulated, unlike traditional inputs given to a system. Pseudo-inputs are very

similar to exogenous inputs found in control literature. Some examples of dynamic

systems with exogenous inputs can be found in [82], [83] and [84]. Pseudo-inputs

will be referred to as exogenous inputs in this chapter in order to develop a gener-

alized framework for control of linear systems with such inputs.

95
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The problem of optimal control of LTI systems with exogenous inputs has been

termed as the extended linear quadratic (ELQ) problem in this chapter. It is

assumed in the LQR solution that all of the inputs given to the system are normal

inputs, which means that each of the input can be manipulated by the controller.

The ELQ problem cannot be addressed by the LQR solution, as the exogenous

inputs can neither be avoided nor be changed. So, they alter the dynamic behaviour

of the system and the associated costs. A solution for the ELQ problem will need to

incorporate feedback terms corresponding to the exogenous inputs. As a solution

to the ELQ problem, or a related problem, is not available in the control literature,

the objective of this chapter is to clearly state the ELQ problem and to provide

its solution.

Rest of the chapter is organized as follows. Section 4.1 formally states the ELQ

problem. Section 4.2 explains the classical LQR solution, while Section 4.3 de-

scribes the ELQ problem and its solution. This solution is demonstrated on an

example LTI system in Section 4.4; and Section 4.5 concludes the chapter.

4.1 Problem statement

Some preliminary definitions:

Definition 1: A ‘normal input’ given to an LTI system is an input whose magnitude

can be decided and changed as per any required control scheme. This is the input

in the traditional sense system theory.

Definition 2: An ‘exogenous input’ given to an LTI system is an input which

cannot be removed from the system and whose magnitude cannot be decided or

changed. This input is an unavoidable quantity which cannot be used as a control

input in corrective actions.

Using the above two definitions, the ELQ problem is stated as follows:

For a discrete-time open-loop LTI system in which both normal and exogenous

inputs are present, find an optimal control law such that the sum of the quadratic

costs associated with the system states, the exogenous inputs and the normal inputs

is minimized.
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Thus, the aim of the ELQ problem is to control the system via its normal inputs

under the constraints of exogenous inputs.

4.2 Classical LQR control (without exogenous

inputs)

A discrete-time open-loop LTI system without any exogenous input is represented

by the following equation:

xk+1 = Axk +Buk (4.1)

The quadratic cost function for (4.1) for N samples is given by:

J =
∑N−1

k=0
[xT

kQxk + uT
kRuk] where Q ≥ 0, R > 0 (4.2)

Minimizing J with respect to uk gives the following LQR solution:

uk = −Fkxk, k = 0, 1, . . . , (N − 1), uN = 0; (4.3)

Fk−1 = (R+BTPkB)
−1
BTPkA, PN = Q, (4.4)

and, Pk−1 = Q+AT [Pk − PkB(R+BTPkB)
−1
BTPk]A (4.5)

If N is finite then the above optimal control policy is called as finite horizon LQR;

otherwise it is infinite horizon LQR. Moreover, Pk and Fk for the infinite horizon

case are bounded and have a steady-state solution if and only if the pair (A,B) is

stabilizable, and the steady-state solution is found by solving the following discrete-

time algebraic Riccati equation (ARE):

P = Q+AT [P − PB(R+BTPB)
−1
BTP ]A; (4.6)

F = (R+BTPB)
−1
BTPA (4.7)
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4.3 Extended LQR (ELQR) control (with exoge-

nous inputs)

A discrete-time open-loop LTI system with both normal and exogenous inputs is

given by the following equation:

xk+1 = Axk +Buk +B′u′
k (4.8)

The discrete system equation in (4.8) has an extra term (corresponding to the

exogenous inputs) as compared to the system given by (4.1). Thus the quadratic-

cost for this system gets modified. For N samples it is given by:

J ′ =
∑N−1

k=0
[xT

kQxk + uT
kRuk + u′T

k R′u′
k],

where, Q ≥ 0, R > 0, R′ ≥ 0; (4.9)

The optimal control policy for (4.8) can be found by minimizing J ′ in (4.9) with

respect to uk, and has been rigorously derived, giving the following theorem:

Theorem 4.1. For an LTI system with exogenous inputs or pseudo-inputs (as

given by (4.8)), provided u′
k = 0 ∀ k ≥ N , the optimal control policy for 0 ≤ k < N

is given by (4.10)-(4.13) (and for k ≥ N,uk = 0).

uk = −(Fkxk +Gku
′
k +G′

k); (4.10)

Gk = Fk(Pk −Q)−1
Sk, G′

k = Fk(Pk −Q)−1
S′

k; (4.11)

SN = 0,S′
N = 0,Sk = (A−BFk)

T (Pk+1B
′ + Sk+1), (4.12)

S′
k = (A−BFk)

T (Sk+1(u
′
k+1 − u′

k) + S′
k+1) (4.13)

Fk and Pk remain same as the LQR case (given by (4.4)-(4.5)).
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Proof. A preliminary modification needs to be done in the system given by (4.8)

for the derivation of Theorem 4.1, by adding a constant exogenous input at the

end of the column vector u′
k, as:

xk+1 = Axk +Buk +B1vk; where, vk =

[
u′

k

1

]
, B1 =

[
B′ 0m×1

]
; (4.14)

Also, vk = Ekvk−1,

where, Ek =

[
Ir ∆u′

k

01×r 1

]
, and, ∆u′

k = u′
k − u′

k−1; (4.15)

B1vk =
[
B′ 0m×1

][u′
k

1

]
= B′u′

k + 0m×1 = B′u′
k (4.16)

Here m is the number of elements in xk and r is the number of elements in u′
k.

It should be understood that because of (4.16), the above modification has no

effect on the dynamics of the original system. The modification is needed to get

an iterative expression for the optimal control policy. On its own, u′
k cannot be

expressed in terms of u′
k−1. But when a new pseudo-input vector vk is defined by

appending a constant value 1 at the end of u′
k, then vk can be expressed in terms

of vk−1 using (4.15). The quadratic-cost for the modified system (given by (4.14))

for N samples is given by:

J ′ =
∑N−1

k=0
[xT

kQxk + uT
kRuk + vT

k R1vk], (4.17)

where, R1 =

[
R′ 0r×1

01×r 0

]
,Q ≥ 0,R > 0,R′ ≥ 0 (4.18)

vT
k R1vk =

[
u′T

k 1
][ R′ 0r×1

01×r 0

][
u′

k

1

]
= u′T

k R′u′
k (4.19)

Equation (4.19) and the definition of R1 (given by (4.18)) ensure that the constant

exogenous input in vk has zero cost, so that the quadratic-costs for the modified
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system and the original system (as given by (4.17) and (4.9), respectively) are

identical.

As it is given that u′
k = 0 ∀ k ≥ N , and the system reaches its final steady state,

xN , at k = N , hence the optimal input required is uk = 0 ∀ k ≥ N . The optimal

cost for k = N is therefore J ′opt
N = xT

NQxN = xT
NPNxN . The combined quadratic

cost for k = N − 1 and k = N , provided that the cost for k = N is optimal (which

is J ′opt
N ), is given by J ′

N−1 as:

J ′

N−1 = xT
N−1QxN−1 + uT

N−1RuN−1 + vT
N−1R1vN−1 + J

′opt
N (4.20)

Substituting J
′opt
N = xT

NPNxN and xN = AxN−1 +BuN−1 +B1vN−1 in (4.20):

J ′

N−1 = xT
N−1QxN−1 + uT

N−1RuN−1 + vT
N−1R1vN−1

+ (AxN−1 +BuN−1 +B1vN−1)
TPN(AxN−1 +BuN−1 +B1vN−1) (4.21)

Finding the partial derivative of J ′

N−1 in above equation with respect to uN−1,

∂J ′

N−1/∂uN−1 comes as:

∂J ′

N−1/∂uN−1 = 2[RuN−1 +BTPN(AxN−1 +BuN−1 +B1vN−1)] (4.22)

∵ ∂J ′

N−1/∂uN−1 = 0, for uN−1 = u
opt
N−1, (4.23)

∴ Ru
opt
N−1 +BTPN(AxN−1 +Bu

opt
N−1 +B1vN−1) = 0, (4.24)

⇒ u
opt
N−1 = −(FN−1xN−1 +HN−1vN−1), (4.25)

where, FN−1 = (R+BTPNB)
−1
BTPNA, (4.26)
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HN−1 = (R+BTPNB)
−1
BTPNB1 (4.27)

Also, as ∂2J ′

N−1/(∂uN−1)
2 = (R + BTPNB) > 0 (as R > 0,PN ≥ 0) , and

J ′

N−1 is quadratic function of uN−1, thus, u
opt
N−1 gives global minimum for J ′

N−1.

Substituting u
opt
N−1 from (4.25) for uN−1 in (4.20):

J
′opt
N−1 = xT

N−1PN−1xN−1 + 2xT
N−1UN−1vN−1 + vT

N−1WN−1vN−1; (4.28)

where, PN−1 = Q+ F T
N−1RFN−1 + (A−BFN−1)

T
PN(A−BFN−1), (4.29)

UN−1 = F T
N−1RHN−1 + (A−BFN−1)

T
PN(B1 −BHN−1), (4.30)

WN−1 = R1 +HT
N−1RHN−1 + (B1 −BHN−1)

T
PN(B1 −BHN−1) (4.31)

Again, the combined quadratic cost for k = (N − 2), (N − 1) and N , provided

that the combined cost for k = (N − 1) and N is optimal (which is J ′opt
N−1), is given

by J ′

N−2 = xT
N−2QxN−2 + uT

N−2RuN−2 + vT
N−2R1vN−2 + J

′opt
N−1, and following the

same aforementioned steps applied to find J
′opt
N−1, the values of uopt

N−2 and J
′opt
N−2

come as:

u
opt
N−2 = −(FN−2xN−2 +HN−2vN−2), (4.32)

where, FN−2 = (R+BTPN−1B)
−1
BTPN−1A, (4.33)

HN−2 = (R+BTPN−1B)
−1
BT (PN−1B1 +UN−1EN−1); (4.34)

J
′opt
N−2 = xT

N−2PN−2xN−2 + 2xT
N−2UN−2vN−2 + vT

N−2WN−2vN−2, (4.35)
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where, PN−2 = (A−BFN−2)
T
PN−1(A−BFN−2) + F T

N−2RFN−2 +Q, (4.36)

UN−2 = (A−BFN−2)
T
PN−1(B1 −BHN−2)

+ (A−BFN−2)
T
UN−1EN−1 + F T

N−2RHN−2, (4.37)

WN−2 = (B1 −BHN−2)
T [PN−1(B1 −BHN−2) +UN−1EN−1]

+ET
N−1WN−1EN−1 +HT

N−2RHN−2 +R1 (4.38)

Next, when the terms uopt
N−3 and J

′opt
N−3 are evaluated, their expressions are similar

to (4.32) and (4.35), respectively, with the only change that N − 2 is replaced by

N − 3, and N − 1 is replaced by N − 2. Similar expressions come for the rest of

u
opt
k and J

′opt
k (that is for k < N−3). Thus, using initial conditions UN = 0m×(r+1)

and PN = Q, and applying induction for k < N , the optimal cost for J ′ in (4.17)

comes as J
′opt
0 (and is found by iteratively evaluating the sequence J

′opt
N , J ′opt

N−1,

. . . , J ′opt
1 , J ′opt

0 ) and the corresponding optimal control policy required to arrive

at this optimal cost is given by:

u
opt
k = −(Fkxk +Hkvk), 0 ≤ k < N ; (4.39)

where, Fk = (R+BTPk+1B)
−1
BTPk+1A (4.40)

Hk = (R+BTPk+1B)
−1
BT (Pk+1B1 +Uk+1Ek+1) (4.41)

Pk = Q+ F T
k RFk + (A−BFk)

T
Pk+1(A−BFk) (4.42)

Uk = F T
k RHk + (A−BFk)

T [Pk+1(B1 −BHk) +Uk+1Ek+1] (4.43)
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It may be noted that Wk has no role in deciding u
opt
k . Also, Pk (using (4.42)) can

be rewritten as:

Pk = Q+ F T
k (R+BTPk+1B)Fk − F T

k BTPk+1A+ATPk+1(A−BFk) (4.44)

∵ F T
k (R+BTPk+1B)Fk = F T

k BTPk+1A (from (4.40)) (4.45)

∴ Pk = Q+ATPk+1(A−BFk), (4.46)

Substituting Fk from (4.40) in (4.46) gives:

Pk = Q+AT (Pk+1B(R+BTPk+1B)
−1
BTPk+1)A (4.47)

Similarly, Uk (using (4.43)) can be rewritten as:

Uk = (A−BFk)
T (Pk+1B1 +Uk+1Ek+1)

+ F T
k (R+BTPk+1B)Hk −ATPk+1BHk, (4.48)

∵ F T
k (R+BTPk+1B)Hk = ATPk+1BHk (using (4.40)), (4.49)

∴ Uk = (A−BFk)
T (Pk+1B1 +Uk+1Ek+1) (4.50)

Also, from (4.46):

(A−BFk)
T = (Pk −Q)A−1P−1

k+1 (4.51)

Substituting (A−BFk)
T from (4.51) in (4.50):

Uk = (Pk −Q)A−1(B1 + P−1
k+1Uk+1Ek+1) (4.52)
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Using (4.40), Hk in (4.41) can be rewritten as:

Hk = FkA
−1(B1 + P−1

k+1Uk+1Ek+1); (4.53)

and using (4.52) ⇒Hk = Fk(Pk −Q)−1
Uk (4.54)

Partitioning Uk in (4.50) as
[
Sk S′

k

]
,Sk ∈ R

m×r,S′
k ∈ R

m×1:

[
Sk S′

k

]
= (A−BFk)

T (Pk+1B1 +
[
Sk+1 S′

k+1

]
Ek+1) (4.55)

⇒
[
Sk S′

k

]
= (A−BFk)

T (Pk+1

[
B′ 0m×1

]

+
[
Sk+1 S′

k+1

][ Ir ∆u′
k+1

01×r 1

]
) (4.56)

⇒ Sk = (A−BFk)
T (Pk+1B

′ + Sk+1), and, (4.57)

S′
k = (A−BFk)

T (Sk+1(u
′
k+1 − u′

k) + S′
k+1) (4.58)

Partitioning Hk in (4.39) as
[
Gk G′

k

]
,Gk ∈ R

p×r,G′
k ∈ R

p×1, where p is the

number of elements in uk:

u
opt
k = −

(
Fkxk +

[
Gk G′

k

][u′
k

1

])
, (4.59)

⇒ u
opt
k = −(Fkxk +Gku

′
k +G′

k) (4.60)

and using (4.54),
[
Gk G′

k

]
= Fk(Pk −Q)−1

[
Sk S′

k

]

⇒ Gk = Fk(Pk −Q)−1
Sk; G′

k = Fk(Pk −Q)−1
S′

k (4.61)

Hence, with (4.40), (4.47), (4.57)-(4.61), Theorem 4.1 stands proved.�



Chapter 4. Extended linear quadratic regulator 105

The optimal control solution in Theorem 4.1 has been termed as the extended

linear quadratic regulator (ELQR) solution and it is an original contribution of

the thesis. If the pair (A,B) is stabilizable, then infinite horizon solutions for Pk,

Fk, Gk and Sk exist, and are given by F , P as in (4.6)-(4.7), and S, G as in

(4.64)-(4.66).

S = (A−BF )T (PB′ + S) = (P −Q)A−1(B′ + P−1S), (4.62)

(this is because (A−BF )T = (P −Q)A−1P−1 from (4.51)) (4.63)

⇒ S = (A(P −Q)−1 − P−1)
−1
B′ (4.64)

G = F (P −Q)−1
S, substituting S from (4.64): (4.65)

⇒ G = F (A− P−1(P −Q))
−1
B′ (4.66)

Although the terms Fk and Pk for the ELQR case remain same as the LQR case,

this needs to be mathematically derived and hence the above derivation is impor-

tant. The terms Gk and Sk are independent of the sequence of u′
k, and hence they

can be easily calculated if A, B, B′, Q and R are known. On the other hand, the

terms G′
k and S′

k require the knowledge of the sequence of u′
k for all the future

and present samples.

4.4 Implementation example: Control of a third-

order LTI system

The ELQR control can be implemented on any system whose equations can be

reduced to the form given by (4.8). An illustrative examples has been presented

as follows, in which a simple third-order LTI system is controlled using the ELQR

methodology.
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4.4.1 System description

The various state-space matrices of the test system, whose equation is given by

(4.8), are as follows:

A =




1.4 0.2 −0.1
−0.2 0.8 −0.3
0.1 0.1 0.9


,B =



0.1 0.8

1.1 0.3

0.9 0.5


and B′ =



1.2

0.1

0.2


 (4.67)

Hence, the above system has three states, two normal inputs and one exogenous

input. Initially, all the states and inputs are zero, that is, x0 = 03×1, u0 = 02×1,

and u′
0 = 0. For k ≥ 1, the exogenous input is applied as follows:

u′
k = (0.95)k, k ≥ 1 (4.68)

As u′
k in (4.68) is an exponentially decreasing function of time-sample, and it

becomes zero only when k →∞, therefore the infinite horizon case of ELQR needs

to be used to optimally control this system. Using equations (4.6),(4.7),(4.64)

and (4.66), and cost weighting matrices Q and R as I3 and I2, respectively, the

following infinite horizon values of P , F , S and G are evaluated (rounded-off to

two decimal places):

P =




3.60 0.55 −1.26
0.55 2.28 −2.37
−1.26 −2.37 6.32


,F =

[
−0.42 0.11 0.60

1.14 0.12 0.05

]
, (4.69)

S =




6.11

5.46

−11.95


, and G =

[
−1.48
1.62

]
(4.70)

Also, S′
k can be evaluated by substituting P and S for Pk (or Pk+1) and Sk,

respectively, in (4.13), and solving for S′
k iteratively. S′

k is then substituted in

(4.11) to find G′
k. The final solutions for S′

k and G′
k are given as (rounded-off to

two decimal places):
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S′
k =



−0.67
−1.11
2.46


× (0.95)k =



−0.67
−1.11
2.46


u′

k, and, G
′
k =

[
0.27

−0.02

]
u′

k (4.71)

4.4.2 Results and discussion

Substituting the values of F , G, and G′
k from (4.70) and (4.71) in (4.10), the

optimal control policy for ELQR comes as:

uk = −
[
−0.42 0.11 0.60

1.14 0.12 0.05

]
xk −

[
−1.48
1.62

]
u′

k −
[
0.27

−0.02

]
u′

k (4.72)

= −
[
−0.42 0.11 0.60

1.14 0.12 0.05

]
xk −

[
−1.21
1.60

]
u′

k (4.73)

The classical LQR control is also applied on the test system for performance com-

parison with ELQR control, and as only the state-feedback gain F is required for

classical LQR, and it is same as the state-feedback gain for ELQR control, the

classical LQR control policy comes as:

u
LQR
k = −

[
−0.42 0.11 0.60

1.14 0.12 0.05

]
xk (4.74)

The weighted norms of the states and the control-inputs (given by xT
kQxk and

uT
kRuk, respectively) can be used as measures of control performance of a control

method. These weighted norms are also the quadratic costs associated with the

control method for the kth sample, as can be inferred from the constituent terms

of J ′ in (4.9). The cost associated with the exogenous inputs, given by u′T
k R′u′

k

remains independent of the control method. This is because u′
k is not dependent

on the control method.

The test system has been simulated in MATLAB, and the weighted norms of

states and control inputs have been plotted in Fig. 4.1. It should be noted that

xT
kQxk = xT

kxk and uT
kRuk = uT

kuk for the test system.

Table 4.1 presents a comparison of quadratic costs associated with the states and

the control-inputs for the two methods.
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Figure 4.1: Control performance comparison of ELQR with classical LQR

Table 4.1: Comparison of quadratic costs

Quadratic costs (p.u.) ELQR Classical LQR
State-deviation cost (

∑
xT
kQxk) 11.76 54.97

Control-effort (
∑

uT
kRuk) 33.28 79.37

Total cost 45.04 134.34
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It may be inferred from Fig. 4.1 and Table 4.1 that ELQR is much more efficient

than classical LQR in presence of exogenous inputs, and for the test system the

total quadratic cost for the states and the control-inputs is reduced by 66.5% as

compared to the classical LQR control.

4.5 Summary

A control scheme has been presented for the optimal control of a special case of

LTI systems in which both normal and exogenous inputs are present. The scheme

is termed as extended LQR, and it is shown to be significantly more cost effective

than the classical LQR scheme. The applicability of the scheme has been shown

on a simple model LTI system.



Chapter 5

Decentralized control of power

systems using ELQR

This chapter integrates decentralized DSE and ELQR control scheme developed in

the last two chapters and uses them to control and to provide adequate damping to

the small signal oscillatory dynamics observed in power systems. The integrated

control scheme is completely decentralized. It is a practical alternative to the

centralized approach to dynamic system identification and control.

Centralized approach of control of power systems using traditional LQR control

scheme has been reported by many research groups ([85], [86], [87], [88]). However

this approach, just like every other centralized approach, needs strong and fast

communication network to transmit information and data to control center. As

power systems still lack in such a communication infrastructure (as elaborated

in first two chapters), the centralized approach remains more theoretical than

being practical. This chapter aims to address this limitation using the integrated

decentralized control scheme.

Rest of the chapter is organized as follows. Section II describes the architecture of

the problem formulation. Section III explains the concept used for decentralization,

while Section IV briefly explains DSE. The control methodology is detailed in

Section V; and Section VI describes the results on a power system model. Section

VII concludes the chapter.

110
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5.1 Proposed architecture of control

Electromechanical oscillations in power network are global in nature as they involve

large number of generators, loads and significant part of the network. As every

generator contributes to these oscillations in varying degrees, each of them can

provide suitable control to dampen them out. In the proposed architecture of

control, the dynamic states that are obtained for every individual generator from

local PMUs measurements would be utilized to design a controller that contributes

to the overall damping of the system-wide oscillations besides any local oscillation.

The combined efforts of all the decentralized controllers must produce the desired

response of the system at all operating conditions.

An overview of the complete system is given in Fig. 5.1. In the proposed architec-

ture, each machine is assumed to have a PMU at its terminal that feeds voltage

and current phasors to the dynamic state estimator which works on the algorithm

presented in Chapter 3. The state estimates and the measurements are then sent

to the local controller, which works on a modified version of the ELQR algorithm

(presented in Chapter 4) to calculate an optimal control signal for the AVR, which

in turn controls the excitation of the machine, thereby closing the control loop.

The control gains are updated after a small interval (say after every second), so

that the control law remains robust to any operating condition. Functionally even

though dynamic state estimator and controller are two components, they can be

implemented in the same location. The output from PSS can also be combined

with the output of ELQR, but it is not required as such. It should be understood

here that a PSS is not necessary when there is an ELQR in the system, and hence

an ELQR can completely replace a PSS.

It may be noted here that the ELQR controller behaves like a PSS as its output

signal directly controls the excitation system of the machine, but there is a funda-

mental difference between the two. The control-gains of the ELQR controller are

updated in real-time so that the controller works for any operating point of the

system, while the control-gain and phase compensator time constants for the PSS

are obtained offline for a particular operating condition (or a finite set of operat-

ing conditions) using model based design and then implemented through electronic

hardware and/or software.

PMUs form an essential part of the proposed schemes of estimation and control,

and although their functioning has been briefly described in Chapter 3 in Sections
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Figure 5.1: Overview of the system and the methodology

3.1.2 and 3.5.1.1, their effects on control performance still needs to be considered

and have been described as follows.

Effects of PMU dynamics on controller performance: The dynamic response

of a PMU depends on the combined response of its constituent components,

which are the analog and digital filters and the sampler. The waveforms

produced by instrument transformers are processed by the filters for surge

suppression and anti-aliasing filtering in order to filter-out high frequency

transients generated during faults and switching operations. There is also

an issue of possible aliasing effects due to inadequate sampling rates of the

sampler for higher swing frequencies in the network. This issue is rectified by

using a decimation filter or a simple averaging-filter. Using these functions,

PMUs measure the phasors accurately (provided the instrument transformers

and GPS satellites are accurate) for both oscillatory and steady state modes

of operation for all practical power systems [16]. Thus, PMU dynamics have

no effect on controller performance.

Effects of PMU accuracy on controller performance: The accuracy of PMUs

is dependent on the instrument transformers and GPS satellites on which



Chapter 5. Decentralized control of power systems using ELQR 113

they rely for waveform acquisition and time-synchronization, respectively.

The waveforms provided by the instrument transformers have errors in both

magnitude and phase, but the error in phase can be accurately compen-

sated and calibrated out using digital signal processing (DSP) techniques

[76]. Hence the errors in phase are limited only by the time synchronization

accuracy of GPS. The errors in magnitude of these phasors are limited by

accuracy class of the instrument transformers used. These errors in phasors

obtained by PMUs can be represented by noises of finite variances, and large

errors are considered as bad-data. These noises and bad-data can be filtered-

out from the dynamic state estimates in the state estimation stage, as shown

in Chapter 3, and have negligible effect on controller performance, as also

demonstrated in Section 5.4.6.

5.2 Decentralization of control

As explained in previous chapters, the dynamic behavior of a power system is mod-

eled using a set of continuous-time non-linear differential and algebraic equations

(DAEs), which may be written as:

ẋc(t) = g(xc(t),uc(t),yc(t));yc(t) = h(xc(t),uc(t)); (5.1)

⇒ ẋc(t) = g(xc(t),uc(t),h(xc(t),uc(t))) (5.2)

The subscript c in the above equation stands for continuous-time. A central control

scheme which tunes itself in real-time requires complete knowledge of the differen-

tial function g, the various states xc, inputs uc and either the algebraic quantities

yc or the algebraic function h. Obtaining such information centrally in real-time

is very difficult. However, the local states for the generation unit can be obtained

locally in real-time using decentralized dynamic state estimation. The equation

for a single unit is written in a standard form as (5.3):

ẋci(t) = gi(xci(t),uci(t),u
′
ci(t)); where uci = Vssi, (5.3)

xci = [δi ωi E
′
di E

′
qi Ψ1di Ψ2qi E

′
dci Vri]

T
,u′

ci = [Vi θi]
T . (5.4)
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Similar excitation systems (specifically static excitation) have been assumed for

all the machines in above equations so that each machine contributes similarly

in the net control effort. The subscript i in the above equation stands for the

ith generation unit. uci, which constitutes Vssi, is the control input to AVR of

the ith unit. u′
ci, which constitutes Vi and θi (the stator voltage phasors), is the

pseudo-input vector for the ith unit, as explained in Chapter 3.

The multimachine dynamic model given by (5.1)-(5.3) is formulated considering

reference angle for a rotational system. Thus, each δi and θi is defined with respect

to a suitable reference angle, which can either be the rotor angle of a particular

reference machine, or can be the center of inertia angle, δCOI . This fact is illus-

trated in detail in [50]. But doing this would require the knowledge of rotor angle

of the reference machine (or worse, the knowledge of rotor angles of all the ma-

chines, in case of δCOI) at each decentralized location, and would therefore defeat

the purpose of decentralization. A way of dealing with this problem is by defining

a new state αi = (δi − θi). As δi and θi have a common reference angle, it gets

cancelled in the definition of αi. The dynamic equation of αi is given by:

α̇i = (δ̇i − θ̇i) = ωB(ωi − fi) (5.5)

After incorporating αi in xci in (5.3), and replacing the pseudo-input θi with its

time derivative in p.u., fi, (5.3) gets redefined to:

ẋci(t) = gi(xci(t),uci(t),u
′
ci(t)); where uci = Vssi, (5.6)

xci = [αi ωi E
′
di E

′
qi Ψ1di Ψ2qi E

′
dci Vri]

T
,u′

ci = [Vi fi]
T . (5.7)

The non-linear equation given by (5.6) needs to be linearized before it can be

used in a linear controller. Linearizing (5.6) about an operating point given by

(xci(t0),uci(t0),u
′
ci(t0)):

∆ẋci(t) = Aci∆xci(t) +Bci∆uci(t) +B′
ci∆u′

ci(t); (5.8)

where, Aci =
∂gi(t0)

∂xci(t0)
,Bci =

∂gi(t0)

∂uci(t0)
,B′

ci =
∂gi(t0)

∂u′
ci(t0)

, (5.9)
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∆xci(t) = xci(t)− xci(t0), ∆uci(t) = uci(t)− uci(t0), (5.10)

∆u′
ci(t) = u′

ci(t)− u′
ci(t0), and t ≥ t0 (5.11)

Appendix A gives the details of the differential and algebraic functions which

constitute gi and Appendix C gives the details of Aci, Bci and B′
ci.

Remark : It should be understood that (5.8) remains valid for any operating point

of the system, as long as the operating point remains close to an equilibrium point.

As (5.8) is used in calculating the ELQR control gains (as explained in subsequent

sections), the ELQR control gains also remain valid for every operating point of the

system which comes under small-signal dynamic behaviour of power systems. The

only exception to this fact takes place during a contigency (such as a system fault)

during which some of the system states may become transiently unbounded, and

the system equations can no longer be linearized. Therefore, before linearization

and update of control gains it should be checked whether every machine state is

within safe operating limits and if not, control gains from the previous sample

should be used.

Discretizing (5.8) at a sampling period T0 (T0 is the sampling period of the dynamic

state estimator) gives (see [53]):

xi(k+1) = Aixik +Biuik +B′
iu

′
ik; (5.12)

where, xik=∆xci(kT0), uik=∆uci(kT0), u
′
ik=∆u′

ci(kT0), (5.13)

Ai = eAciT0 ,Bi = A−1
ci (Ai − I)Bci,B

′
i = A−1

ci (Ai − I)B′
ci (5.14)

Writing (5.12) in simplified form by dropping suffix i:

xk+1 = Axk +Buk +B′u′
k (5.15)

Remark : The frequencies of the electromechanical modes of a machine lie in the

range of 1.5-3.0 Hz [51]. As the ELQR controllers need to control and properly
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damp these modes, the minimum required sampling frequency for the controller

is 6.0 Hz according to the Nyquist-Shannon sampling theorem (i.e. a maximum

allowed sampling period of 0.17 s). This upper limit is also the threshold require-

ment for the sampling period. The lower limit is decided by the rate at which

the dynamic states are provided to the controllers, which is given by T0. As it is

desired that the controllers operate at the fastest update rate possible, T0 is also

used as the sampling period for finding the discrete model and the control laws.

Remark : It should also be noted that the PMUs are required not only for DSE,

but also for the ELQR control. The ELQR requires the dynamic state estimates

provided by DSE and the phasor measurements provided by the PMU for the

calculation of control gains, as shown in Fig. 5.1.

5.3 Integrated ELQR control

The discrete equation in (5.15) has an extra term (corresponding to the pseudo-

inputs) as compared to the general discrete-time LTI system given by (4.1). It

should be understood that the extra term u′
k cannot be absorbed in uk as u′

k is

an exogenous input while uk is a normal control input. Thus the optimal control

policy for (5.15) gets modified from traditional LQR to ELQR (Theorem 4.1), as

explained in the last chapter.

The terms Gk and Sk in Theorem 4.1 remain independent of the sequence of u′
k,

and hence they can be easily calculated if A, B, B′, Q and R are known. On

the other hand, the terms G′
k and S′

k require the knowledge of the sequence of

u′
k for all the future and present samples, hence they cannot be calculated for a

practical power system as only the past and present values of the sequence of u′
k

are available. Moreover, using offline values of the pseudo-inputs (which are V

and θ) it was found that G′
k has very small contribution in the control law given

by Theorem 4.1. Thus, while implementing ELQR, G′
k is ignored and only the

optimal gains Fk and Gk are calculated in real-time. Also, Theorem 4.1 requires

that u′
k = 0 ∀ k ≥ N . This condition can be taken into account if N → ∞, that

is, if no limit is imposed on the time within which the power system comes to a

steady state. As N →∞ is the infinite horizon case, the final decentralized control

policy (using Theorem 4.1), after including suffix i for the ith unit (whose equation

is given by (5.12)), is written as:
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uik = −(Fixik +Giu
′
ik); k ≥ 0, Qi ≥ 0, Ri > 0; (5.16)

Fi = (Ri +BT
i PiBi)

−1
BT

i PiAi, (5.17)

Pi = Qi +AT
i [Pi − PiBi(Ri +BT

i PiBi)
−1
BT

i Pi]Ai; (5.18)

Gi = Fi(Ai − Pi
−1(Pi −Qi))

−1
B′

i (5.19)

5.3.1 Damping control

The stable response of power system requires that all the electromechanical modes

in the system should have damping ratios more than a certain percentage (typ-

ically more than ten percent). This can be achieved by ensuring that each unit

provides a minimum damping to the intra-plant mode it observes, and the col-

lective damping efforts of all the units leads to damping of all the intra-area and

inter-area oscillations in the system. This constraint implies that the electrome-

chanical poles observed at a unit should lie within a conic-section in the left half

of the s-plane. In z-plane, the conic-section maps to a logarithmic-spiral [89], and

hence the discrete-domain poles should lie within the spiral. But confining the

closed-loop poles within a logarithmic spiral is not practical; rather, a practical

alternative is to substitute the spiral with a disk, and confine the closed-loop poles

of the system within that disk. It is this technique that has been used in this paper

for damping control.

Using Theorem 4.1 in Chapter 4 and Theorem 2 in [90] it can be shown that the

decentralized control policy of ELQR for confining the closed-loop poles within

a disk of radius r and center (β, 0) remains same as in (5.16)-(5.19) except that

Ai, Bi and B′
i are replaced by (Ai − βI)/r, Bi/r and B′

i/r, respectively. This

technique requires a circle which coincides with the logarithmic spiral at the points

where the electromechanical poles should lie. As electromechanical poles have high

participation from the states of δ and ω, there is only one pair of electromechanical

intra-plant mode for a machine (as each machine has only one pair of δ and ω). Let

the modal-frequency of this intra-plant mode be fm and let the minimum damping

ratio to which this mode needs to be damped be dmin. Since it is desired that
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the substituting circle should exactly coincide with the logarithmic spiral at the

point corresponding to (fm, dmin), hence the substituting circle should intersect the

spiral at this point and it should also be inside the spiral. This can only happen

when the circle is tangential to the spiral at this point from within the spiral. This

substitution of spiral with a circle can be better understood from Fig. 5.2.
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Figure 5.2: Circle substituting a logarithmic spiral

In Fig. 5.2, the blue-dotted spiral corresponds to a constant damping-ratio of

dmin = 0.15 (only upper half has been shown, lower half will be its mirror-image),

the red-dashed line corresponds to a constant frequency of fm = 1.69Hz (this is

the modal frequency of the intra-plant mode of the 9th machine; all the calculations

for this machine have been shown in the case study in Section 5.4) and the black-

solid curve is the substituting circle. All the curves are inside the unity circle. The

substituting circle should be tangent at the point where the constant frequency line

intersects the constant damping ratio spiral. The black-solid curve denotes this

tangential circle. For clarity, the right sub-figure in Fig. 5.2 shows the magnified

version of the region enclosed by the small rectangle in the left sub-figure. This

substituting circle ensures a damping ratio of more than or equal to dmin for all the

poles of the machine, as the circle is completely inside the spiral, and the damping

ratio of dmin is exactly ensured for the intra-plant mode of modal frequency fm as

the circle will be tangential to the spiral at the point corresponding to (fm, dmin).

Thus, the parameters of this circle can be used in deriving the modified ELQR law

for damping the intra-plant modes. Using coordinate geometry, the parameters r

and β for the circle for given fm and dmin are found as follows.
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β = R(cos θm −
sin θm
M

), r =
√
R2 + β2 − 2βR cos θm;

where, R = e−dmθm , dm = cot(cos−1 dmin), θm = 2πfmT0,

and M = (sin θm + dm cos θm)/(cos θm − dm sin θm) (5.20)

5.4 Case study

5.4.1 System Description

The test system remains same as the one used in Chapter 3 (Fig. 3.3). As explained

in Appendix D, this system has four inter-area modes in the range 0.2-1.0 Hz, three

of which are poorly damped with damping ratios less than 10%.

Each machine in the system is assumed to be equipped with excitation system

controller, a PSS, a dynamic state estimator, and an ELQR controller. PSS control

is used only for comparison, that is, in one case only ELQR is working and in second

case only PSS is working. They are not working together in any case. The control

case when only PSS is working has been termed as ‘PSS control’, while the case

when only ELQR is working has been termed as ‘ELQR control’.

The matrices Q and R are positive semi-definite and positive definite matrices,

respectively, and their values depend on how costs/penalties are assigned to the

deviations of the states and inputs, respectively, from their steady state values. In

the case study it is desired that the sum of the squares of deviations for all the states

and all the inputs for a machine is minimized for all the time samples, so that all

the state and input deviations get uniform penalties in the control law. Hence the

state cost for the ith machine is taken as
∑N−1

k=0 (
∑7

j=1 |xijk|
2) for the seven states

of the ith machine. Since
∑7

j=1 |xijk|
2 = xT

ikxik = xT
ikI7xik, hence Q = I7 for each

machine (I7 is an identity matrix of order 7). Similarly, control cost is
∑N−1

k=0 (|uik|
2)

(as there is only one control-input); and since |uik|2 = uikuik = uik.1.uik, hence

R = 1.

The state estimator provides estimates every 8.33 ms, while the state matrices

and the control gains of the ELQR are updated every second. As an example, the

complete calculation process for finding the control gains for one of the machines
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(the 9th machine) at t = 0 has been shown as follows. The calculation process

remains same for rest of the machines in the system.

The constant parameters for the 9th machine, using the data for the 68-bus system

from Appendix D, are:

Xl = 0.0298 p.u.; Ra = 0 p.u.; Xd = 0.2106 p.u.; X ′
d = 0.057 p.u.; X ′

d = 0.045

p.u.; Xq = 0.205 p.u.; X ′
q = 0.05 p.u.; X ′

q = 0.045 p.u.; T ′
d0 = 4.79 s; T ′′

d0 = 0.05 s;

T ′
q0 = 1.96 s; T ′′

q0 = 0.035 s; D = 14 p.u.; H = 34.5 s; ωB = 376.99 rad/s; Ka = 10

p.u.; Tr = 0.01 s

The values of the states and algebraic variables for the 9th machine at t = 0, found

using DSE, are:

α = 0.950 rad; ω = 1 p.u.; E ′
d = −0.630 p.u.; E ′

q = 0.978 p.u.; Ψ1d = 0.796 p.u.;

Ψ2q = 0.713 p.u.; E ′
dc = 0 p.u.; Vr = 1.025 p.u.; Efd = 2.005 p.u.; Id = −6.687

p.u.; Iq = 4.067 p.u.; Vd = −0.834 p.u.; Vq = 0.596 p.u.; Te = 8 p.u.

As X ′′
d = X ′′

q for all the machines of the 68-bus system, E ′
dc remains constant

(equal to zero) and can be eliminated from the DAEs and the linearized equations

in Appendix A. Thus, there are effectively seven dynamic states for each machine

in the system. The following system matrices are found for the 9th machine after

substituting the above values of parameters and states into the expressions for Ac,

Bc and B′
c in Appendix A and eliminating expressions corresponding to E ′

dc:

Bc =




0

0

0

2.088

0

0

0




;B′
c =




0 −376.9
−0.113 0

−1.076 0

0.232 0

7.034 0

10.43 0

100 0




; (5.21)

Ac =




0 376.9 0 0 0 0 0

−0.347 −0.203 −0.145 −0.150 −0.118 0.048 0

−0.789 0 −2.474 0 0 −0.642 0

−0.332 0 0 −0.951 0.344 0 −2.088
−10.08 0 0 13.24 −25.33 0 0

7.649 0 −18.92 0 0 −31.75 0

0 0 0 0 0 0 −100




(5.22)
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The discrete forms of above matrices, using (4.9) (T0 = 0.00833 s), come as:

B =




0

0

0

0.017

0.001

0

0




;B′ =




−0.002 −3.137
−0.001 0.004

−0.009 0.010

−0.004 0.004

0.053 0.123

0.077 −0.092
0.565 0




; (5.23)

A =




0.996 3.134 −0.002 −0.002 −0.001 0.001 0

−0.003 0.994 −0.001 −0.001 −0.001 0.000 0

−0.007 −0.010 0.980 0 0 −0.005 0

−0.003 −0.004 0 0.992 0.003 0 −0.012
−0.076 −0.123 0 0.099 0.810 0 −0.001
0.056 0.092 −0.137 0 0 0.768 0

0 0 0 0 0 0 0.435




(5.24)

Using the above value of A, the intra-plant modes are found as −0.895± 10.617.

The modal frequency for this pair of modes is fm = 10.617/(2π) = 1.69Hz. Finally,

using equations (5.16)-(5.19) after replacing A, B and B′ with (A− βI)/r, B/r
and B′/r, respectively (as explained in Section 5.3.1); taking r = 0.411, β = 0.581

(which are found using (5.20), after taking fm = 1.69Hz and dmin = 0.15) and

taking Q and R as identity matrices, the gain matrices F and G for the 9th

machine are found to be:

F =
[
2.448 −20.524 2.143 3.378 0.288 −0.110 −0.070

]
; (5.25)

G =
[
0.098 12.316

]
(5.26)

At each unit, a washout filter with time constant of 10s is also applied to the

ELQR output signal. This ensures that the steady-state output of the ELQR

is zero to allow operation of the system at off-nominal frequency. The output

signal from the ELQR can also get unbounded transiently during contingencies;

therefore its output is limited just like a PSS, with |Vss| < 0.01p.u.. Although the

parameters for the AVR, PSS and the washout filter can be tuned individually

for each machine in the system, in the case study standard parameters have been
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used as given in Appendix D. This is done so that the performance of the ELQR

methodology is evaluated in a standard framework. The system is simulated in

MATLAB Simulink. Level-2 S-functions are used for dynamic update of state

matrices and control-gains.

5.4.2 Control performance

In the simulation, the system starts from steady state, and then a balanced three

phase fault is applied in one of the tie-lines between buses 53-54 followed by im-

mediate outage of this tie-line. Fig. 5.3 shows the plots of relative rotor speed

between machines 13-16 and the power flow in inter-area tie-lines between buses

60-61 for two cases. In first case each machine is controlled using PSS control,

while in second case each machine is controlled using ELQR control. Table 5.1

shows the modal frequencies and damping ratios for the four poorly damped inter-

area modes. It can be observed that although the modal frequencies for the ELQR

case decrease as compared to the case of without control, this decrease is strongly

compensated by the increase in damping ratios of these modes, and all the modes

are damped to damping ratios of 10% or more. Similar improvement in damp-

ing performance is not observed for the case of PSS control. Thus, Fig. 5.3 and

Table 5.1 show that the control and damping performance of ELQR control is

significantly better than PSS control.

Table 5.1: Modal analysis for the four inter-area modes

Without PSS ELQR WADC
control control control control

Mode-1 frequency (Hz) 0.39 0.44 0.31 0.44
Mode-1 damping ratio (%) 2.1 14.8 21.9 20.6
Mode-2 frequency (Hz) 0.52 0.54 0.47 0.52

Mode-2 damping ratio (%) 2.7 7.1 10.9 17.2
Mode-3 frequency (Hz) 0.60 0.63 0.54 0.66

Mode-3 damping ratio (%) 1.9 7.0 12.1 11.4
Mode-4 frequency (Hz) 0.79 0.81 0.76 0.80

Mode-4 damping ratio (%) 4.8 7.0 10.5 12.8

5.4.3 Robustness to different operating conditions

As the state matrices and control-gains are updated every second and get adapted

to the current system conditions, the control remains valid for any operating point.
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Figure 5.3: Dynamic performance of PSS control vs ELQR control

The power flow in line 60-61 has been shown for three operating cases. The total

power flow from the area NETS to the area NYPS is varied in the three cases, which

is 700MW for the first case (Fig. 5.3, second plot), 100MW for the second case

(Fig. 5.4, first plot), and 900MW for the third case (Fig. 5.4, second plot). It can

be observed that ELQR control remains robust in varying operating conditions.

5.4.4 Control efforts and state costs

Fig. 5.5 shows the 13th unit’s control signal (which is Vss13) for PSS control and

ELQR control. It can be seen that ELQR has a lower magnitude for the control

signal than PSS control. But, the value of control signal for a unit (or even for

all the units, if each unit is considered separately), is inconclusive. Better metrics

for evaluating the quality of a control method are control efforts and state costs

associated with that method. Table 5.2 presents a comparison of total cost given by
∑m

i=1

∑N−1
k=0 {uT

ikuik + xT
ikxik}, which is the sum of control efforts (or the control-

cost =
∑m

i=1

∑N−1
k=0 {uT

ikuik}) and state-costs ( =
∑m

i=1

∑N−1
k=0 {xT

ikxik}). Three
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Figure 5.4: Dynamic performance for different operating conditions

more operating cases are shown in Table 5.2 in which the faulted tie-line has been

changed. It can be observed that although the control-costs for PSS control and

ELQR control are similar, the state-costs are reduced by an average of 28.2% and

total costs are reduced by an average of 24.3% for ELQR control as compared to

PSS control.

5.4.5 Comparison with centralized wide-area based control

A wide-area damping control (WADC) based control given in [20] has also been

used for comparison with the proposed scheme. In this scheme, wide-area signals

which have high observability of the intra-area and inter-area electromechanical

modes are used to control excitation systems of several machines which have high

controllability of those modes. The control signal Vss is used for this purpose,
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Figure 5.5: Comparison of the values of control signal for unit 13

Table 5.2: Comparison of total costs

Operating condition: Total cost (state-cost Total cost (state-cost
interarea powerflow + control-cost) for + control-cost) for
and faulted tie-line PSS control (p.u.) ELQR control (p.u.)
700 MW, 53-54 2.244 (1.908 + 0.336) 1.679 (1.391 + 0.288)
100 MW, 53-54 0.360 (0.312 + 0.048) 0.214 (0.165 + 0.049)
900 MW, 53-54 3.732 (3.228 + 0.504) 2.951 (2.491 + 0.460)
700 MW, 27-53 0.212 (0.192 + 0.020) 0.184 (0.155 + 0.029)
100 MW, 27-53 0.148 (0.132 + 0.016) 0.102 (0.084 + 0.018)
900 MW, 27-53 0.259 (0.228 + 0.031) 0.221 (0.191 + 0.030)

which is same as the control signal used by a PSS or a ELQR. The design of

the centralized WADC controller is done using the linearized and reduced model

of the whole system and its tuning is based on mixed H2/H∞ optimization with

pole placement constraints as detailed in [20]. Seven power flow signals are used

as output measurements and they are P13−17, P16−18, P3−62, P9−29, P15−42, P10−31

and P20−19. Each one of these signals has highest observability of one or more

intra-area/inter-area modes of the system. Using these signals and the designed

controller, control inputs (Vss) are sent to the excitation system of each machine in

the system. It is possible to select only some machines for wide-area control, but

as all the machines are controlled in decentralized ELQR, in centralized WADC

also all of the 16 machines have been selected for uniformity in comparison. Com-

parisons of time-domain simulation, modal response and control/state costs are

shown in Figure 5.6, Table 5.1 and Table 5.3, respectively.

It can be observed from Figure 5.6 and Table 5.1 that the damping performance
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Figure 5.6: Oscillation damping comparison for WADC and ELQR

Table 5.3: Comparison of total costs for WADC vs ELQR

Operating condition: Total cost (state-cost Total cost (state-cost
interarea powerflow + control-cost) for + control-cost) for
and faulted tie-line WADC control (p.u.) ELQR control (p.u.)
700 MW, 53-54 2.580 (2.424 + 0.156) 1.679 (1.391 + 0.288)
100 MW, 53-54 0.372 (0.348 + 0.024) 0.214 (0.165 + 0.049)
900 MW, 53-54 4.440 (4.164 + 0.276) 2.951 (2.491 + 0.460)
700 MW, 27-53 0.276 (0.264 + 0.012) 0.184 (0.155 + 0.029)
100 MW, 27-53 0.184 (0.180 + 0.004) 0.102 (0.084 + 0.018)
900 MW, 27-53 0.312 (0.298 + 0.014) 0.221 (0.191 + 0.030)

of ELQR control and WADC are comparable, and WADC gives better damping

ratios to the second and fourth inter-area modes, while ELQR control gives better

damping to the first and third modes. The costs (as shown in Table 5.3), are not

as uniformly distributed between state costs and control efforts as in the case of

ELQR control, and thus the total costs are higher for WADC than ELQR control.

This is expected as mixed H2/H∞ optimization is not as optimal as ELQR control

as far as net quadratic costs are concerned. Thus, it can be concluded that the

proposed scheme performs at par (or even better than) an established wide-area

based centralized damping control method. Considering the facts that WADC

requires information of the whole system for controller design and requires a fast

and reliable communication network for transmission of measurements and control

signals, decentralized ELQR is a better choice over centralized WADC.
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5.4.6 Effect of noise/bad-data on control performance

ELQR control is affected by noise and bad-data in the measurements, but the effect

is too small to make any impact on the control performance. All the aforemen-

tioned results of the case study have been obtained considering noise and bad-data

in the measurements. For comparison, results have also been obtained without

considering any noise or bad-data in the measurements, and the costs are shown

in Table 5.4.

Table 5.4: Comparison of total cost with and without noise/bad-data

Condition: Total cost with noise Total cost without noise
interarea flow, (state-cost+control-cost) (state-cost+control-cost)
faulted tie-line for ELQR control (p.u.) for ELQR control (p.u.)
700 MW, 53-54 1.679 (1.391 + 0.288) 1.675 (1.390 + 0.285)
100 MW, 53-54 0.214 (0.165 + 0.049) 0.212 (0.164 + 0.048)
900 MW, 53-54 2.951 (2.491 + 0.460) 2.947 (2.490 + 0.457)
700 MW, 27-53 0.184 (0.155 + 0.029) 0.183 (0.154 + 0.029)
100 MW, 27-53 0.102 (0.084 + 0.018) 0.102 (0.084 + 0.018)
900 MW, 27-53 0.221 (0.191 + 0.030) 0.220 (0.190 + 0.030)

It can be observed from Table 5.4 that the results of case study remain almost

same with and without noise in the measurements, and the state-costs differ by

an average of 0.2% and control costs differ by an average of 0.5%. First reason

for such a small change is that majority of the contribution in the ELQR control

output comes from the seven state estimates from which noise and bad-data have

been filtered out. Secondly, the level of noise in the measurements is very small:

the standard deviation of the noise in magnitude measurements is 0.1% of true

values and in phase measurements it is 0.1 mrad, for both voltage and current

signals. These noise levels are as per IEC 60044/IEEE C57.13 standards for CTs

and PTs and IEEE C37.118.1-2011 standard for PMUs as explained in Chapter 3.

Such a small level of noise implies that the measurements deviate very little from

their true values. Lastly, bad-data in the measurements is detected, removed and

replaced with latest correct-data using the bad-data detection algorithm given in

Chapter 3. Thus, noise and bad-data have negligible impact on the ELQR control

performance.
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5.4.7 Computational feasibility

The complete simulation of the power system, along with the dynamic estimators

and the ELQR controllers at each of the 16 machines, runs in real-time. In the

case study, a 30 s simulation takes an average running time of 5.5 s on a personal

computer with Intel Core 2 Duo, 2.0 GHz CPU and 2 GB RAM. Hence the compu-

tational requirements at one machine can be easily met for both DSE and ELQR

control.

5.5 Summary

A control scheme has been presented for the decentralized control of power system

dynamics. The scheme utilizes dynamic state estimation using local PMU mea-

surements and machine parameters, and employs the concept of pseudo-inputs

for decentralization. It is based on an extended version of linear quadratic regu-

lator which self-tunes in real-time to varying operating condition of the system.

The scheme is also computationally feasible and easily implementable. The main

advantages of this architecture are:

1. Besides being optimal, the control is completely decentralized and only local

measurements and machine parameters are needed, and hence communica-

tion requirements are minimized.

2. Computational requirements are less intensive; so can be easily met by a

personal computer.

3. Existing PMU in each decentralized location is adequate; no extra investment

is required.

4. The control law remains valid for any operating condition, and the control

gains are updated in real-time. This indirectly renders the control scheme

adaptive to current operating point.

5. The scheme can be seamlessly integrated with the control devices which are

already present, such as PSSs, FACTS controllers.

To summarize, research findings show that the integrated scheme which has been

proposed in this thesis is very practical for reliable estimation and control of the

power systems of the 21st century.



Chapter 6

Conclusion and future work

The work described in this thesis is concerned with the study and development of

decentralized methods for estimation and control in power systems. It has been

shown that the developed methods are practical for current power systems and

these methods have also been demonstrated on a benchmark power system model.

The work also has a wide scope for future research and extensions. The conclusions

of this thesis and recommendations for future work are presented as follows.

6.1 Thesis conclusions

The importance of robust control of power systems, so that they operate within

their stability margins, is undisputed in today’s age of growing power requirements

and bulky power system architecture. Having elaborated on the limitation of con-

trol and monitoring tools in present power systems, reliant on EMSs and steady

state analysis, this research has sought to address the constraint in dynamic esti-

mation and control of power systems, that is, the unavailability of a fast, reliable

and secure communication network. Specifically, this research has

1. studied the impact of introducing packet based communication network in

the control loops of power systems on the overall system stability, and

2. proposed a decentralized algorithm for dynamic state estimation and used the

estimates, thus obtained, to generate a decentralized control law. The inte-

grated control scheme has been demonstrated to be completely decentralized,

thereby providing a practical alternative for eliminating the requirement of

129
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a fast and reliable communication network necessary for centralized control

approach.

In analyzing the stability effects of introducing a packet-based communication

network in the control loops of a power system, this research has developed a

generalized framework to assess the effects of packet-dropout on the oscillatory

stability response of a networked controlled power system (NCPS). A formal ap-

proach has also been devised to compute the lower limit on the probability of

packet dropout to guarantee the specified damping and stability margins for any

operating condition of a power system.

The NCPS model, however, assumes applicability only with update-rates of faster

communication networks than that used in present day power-systems. Hence,

the research progresses to the next logical examination of performing the dynamic

estimation and control of power system in a decentralized manner, as an alterna-

tive for fast and reliable communication network. First, a scheme for decentralized

estimation of the dynamic states and parameters of a power system has been pro-

posed. The scheme rests on the new concept of treating some of the measured

signals as pseudo-inputs and utilizes unscented Kalman filtering for dynamic state

estimation of power systems. The feasibility, speed, simplicity and accuracy of the

proposed scheme over centralized schemes has been demonstrated. A comparison

of the results obtain clearly establishes the proposed method to be much advan-

tageous for dynamic state estimation for dynamic control and dynamic security

assessment in modern power systems. Next, the research proceeds to provide a

decentralized control law using the dynamic states obtained. A control scheme,

termed as extended linear quadratic regulator (ELQR), has been developed for the

optimal control of a linear system in which both traditional inputs and pseudo-

inputs are present. Demonstrating the applicability of the control scheme on a

simple model LTI system, the control law has been found to significantly minimize

the state deviation costs and the required control effort, over the classical LQR

scheme.

The concepts of decentralized DSE and ELQR are integrated for the ultimate

objective of decentralized estimation and control of a power system. The decen-

tralized estimation and control scheme has been successfully implemented and

validated on a benchmark 68-bus 16-machine system in MATLAB. The results

obtained and comparisons with centralized LQR control prove that the fully de-

centralized integrated control scheme is not only optimal, computationally feasible

and easily implementable, but also potentially dispenses with the communication
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requirements of the centralized control schemes. Thus, this research proposes

and successfully demonstrates a very practical and reliable estimation and control

scheme for the power systems of the 21st century.

6.2 Recommendations for future work

Although the results presented in the thesis have demonstrated the applicability

of the decentralized estimation and control schemes for power systems, the work

may be further developed in a number of ways:

6.2.1 Integration of renewable sources and HVDC

The power system model used in this thesis considers the most widely used compo-

nents in current power systems, namely synchronous machines, AC transmission

network (consisting of lines and transformers), FACTS devices and loads. New

distributed sources of energy, such as wind and solar, and new transmission tech-

nology of high voltage direct current (HVDC) are increasingly being integrated in

present power systems and are likely to form a significant part of future systems.

The technique of decentralized estimation and control is very relevant to these

stochastic and distributed sources of generation, and more research needs to be

undertaken to extend this technique to a unified power system model in which old

and new technologies of both generation and transmission are integrated together.

6.2.2 Eliminating PMUs from the decentralized DSE algo-

rithm

The decentralized DSE algorithm presented in this thesis relies on PMU measure-

ments for the estimation process. The reason for this is that both magnitude and

phase information of voltage and current signals are required in the filtering equa-

tions. PMUs provide the phase information using GPS synchronization, and hence

the presented DSE algorithm relies heavily on GPS synchronization. This is not

very desirable as DSE would fail if GPS synchronization fails. A challenging and

very useful extension to this method would involve finding a technique which only

requires voltage and current magnitudes and other locally measurable quantities

which do not require GPS synchronization.
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6.2.3 Development of model-less methods

The algorithms for decentralized estimation and control require the knowledge

of machine model and its parameters. If this knowledge is not accurate, or if

the parameters deviate from the values which are used in these methods (due to

factors such as operating temperature), then the state estimates and control law

would also deviate from their desired values. A solution to this problem is constant

monitoring of system parameters. Another solution is application of ‘model-less’

techniques, such as those given in [91], for development of decentralized estimation

and control algorithms.

6.2.4 Development of non-linear decentralized control al-

gorithms

Although the DSE algorithm which has been presented in the thesis is a non-linear

estimation algorithm, the control law still requires linearization of the non-linear

machine equations. This limits the applicability of the control law to small signal

stability which involves small disturbances from the steady state operating point.

Further research can be undertaken to develop non-linear control algorithms for

decentralized and real-time control of even large disturbances occurring in power

systems. This can involve application and development of traditional non-linear

techniques based on energy functions and Lyapunov theory [92], [36].

Thus, a lot of scope exists for further research and development in the area of

decentralized estimation and control of power systems, and the work undertaken

in this thesis is a step in this direction.



Appendix A

DAEs of a generating unit

The DAEs of a generating unit in a power system (that is, the equations of a

machine and its excitation system (assuming a static excitation system)) are given

as follows ([50], [51]).

ẋ = g(x,u,u′) = g, where u = Vss, u
′ = [V f ]T , (A.1)

x = [α ω E ′
d E

′
q Ψ1d Ψ2q E

′
dc Vr]

T
; or, x = [δ ω E ′

d E
′
q Ψ1d Ψ2q E

′
dc Vr]

T
(A.2)

In the definition of state vector x (in (A.2)) either α or δ can be taken as a state.

The vector g consists of eight functions corresponding to the eight states in x,

g = [gα gω gE′

d
gE′

q
gΨ1d

gΨ2q
gE′

dc
gVr

]T or g = [gδ gω gE′

d
gE′

q
gΨ1d

gΨ2q
gE′

dc
gVr

]T .

The DAEs for a generating unit are as follows:

α̇ = ωb(ω − f) = gα, (A.3)

δ̇ = ωb(ω − 1) = gδ, (A.4)

ω̇ = (Tm − Te −D(ω − 1))/(2H) = gω, (A.5)
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Ė ′
d = −(E ′

d + (Xq −X ′
q){Kq1Iq +Kq2

Ψ2q + E ′
d

X ′
q −Xl

})/T ′
q0 = gE′

d
, (A.6)

Ė ′
q = [Efd + (Xd −X ′

d){Kd1Id +Kd2

Ψ1d − E ′
q

X ′
d −Xl

} − E ′
q]/T

′
d0 = gE′

q
, (A.7)

Ψ̇1d = (E ′
q + (X ′

d −Xl)Id −Ψ1d)/T
′′
d0 = gΨ1d

, (A.8)

Ψ̇2q = (−E ′
d + (X ′

q −Xl)Iq −Ψ2q)/T
′′
q0 = gΨ2q

, (A.9)

Ė ′
dc = ((X ′′

d −X ′′
q )Iq − E ′

dc)/Tc = gE′

dc
, (A.10)

V̇r = (V − Vr)/Tr = gVr
; (A.11)

where, Efd = Ka(Vref + Vss − Vr), Efdmin ≤ Efd ≤ Efdmax, (A.12)

Id = (Ra(E
′
dKq1 −Ψ2qKq2 + E ′

dc − Vd)−X ′′
d (E

′
qKd1 +Ψ1dKd2 − Vq))/Z2

a , (A.13)

Iq = (Ra(E
′
qKd1 +Ψ1dKd2 − Vq) +X ′′

d (E
′
dKq1 −Ψ2qKq2 + E ′

dc − Vd))/Z2
a , (A.14)

Vd = −V sinα = −V sin(δ − θ), (A.15)

Vq = V cosα = V cos(δ − θ), (A.16)

Te = E ′
dIdKq1 + E ′

qIqKd1 +Ψ1dIqKd2 −Ψ2qIdKq2 + IdIq(X
′′
d −X ′′

q ). (A.17)
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If a DC1A type of excitation is used, then the eqautions change as follows:

V̇r = (V − Vr)/Tr, (A.18)

V̇a = [Ka(Vref + Vss − Vr)− Va]/Ta; (A.19)

Ėfd = −[Efd(Kx + Axe
BxEfd)− Va]/Tx; where Efdmin ≤ Efd ≤ Efdmax. (A.20)



Appendix B

Dynamic state estimation plots

for unit 9 and unit 13

The dynamic state estmation plots for the 9th and the 13th generating units are as

follows.
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Figure B.1: Estimated vs simulated values for δ, ω and E′
q of the 9th unit
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Figure B.2: Estimation errors for δ, ω and E′
q of the 9th unit
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Figure B.5: Estimated vs simulated values for Vr9 & PSS states of the 9th unit
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Figure B.6: Estimation errors for Vr9 & PSS states of the 9th unit
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Figure B.7: Estimated vs simulated values for δ, ω and E′
q of the 13th unit
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Figure B.8: Estimation errors for δ, ω and E′
q of the 13th unit
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Figure B.9: Estimated vs simulated values for E′
d, Ψ2q and Ψ1d of the 13th unit
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Figure B.10: Estimation errors for E′
d, Ψ2q and Ψ1d of the 13th unit



Appendix C

Details of state matrices used in

integrated ELQR

Linearizing (A.1) in Appendix A gives:

∆ẋ = A∆x+B∆u+B′∆u′, (C.1)

where, A =
∂g

∂x
,B =

∂g

∂u
,B′ =

∂g

∂u′
(C.2)

Next, some intermediate partial derivatives are calculated using the DAEs in Ap-

pendix A:

∂Id
∂α

=
V (Ra cosα−X ′′

d sinα)

Z2
a

, (C.3)

∂Iq
∂α

=
V (Ra sinα +X ′′

d cosα)

Z2
a

, (C.4)

∂Id
∂E ′

d

=
RaKq1

Z2
a

, (C.5)

∂Iq
∂E ′

d

=
X ′′

dKq1

Z2
a

, (C.6)

147



Appendix C. Details of state matrices used in integrated ELQR 148

∂Id
∂E ′

q

=
−X ′′

dKd1

Z2
a

, (C.7)

∂Iq
∂E ′

q

=
RaKd1

Z2
a

, (C.8)

∂Id
∂Ψ1d

=
−X ′′

dKd2

Z2
a

, (C.9)

∂Iq
∂Ψ1d

=
RaKd2

Z2
a

, (C.10)

∂Id
∂Ψ2q

=
−RaKq2

Z2
a

, (C.11)

∂Iq
∂Ψ2q

=
−X ′′

dKq2

Z2
a

, (C.12)

∂Id
∂E ′

dc

=
Ra

Z2
a

, (C.13)

∂Iq
∂E ′

dc

=
X ′′

d

Z2
a

, (C.14)

∂Te
∂Id

= E ′
dKq1 −Ψ2qKq2 − Iq(X ′′

d −X ′′
q ), (C.15)

∂Te
∂Iq

= E ′
qKd1 −Ψ1dKd2 − Id(X ′′

d −X ′′
q ), (C.16)

∂Id
∂V

=
Ra sinα +X ′′

d cosα

Z2
a

, (C.17)

∂Iq
∂V

=
−Ra cosα +X ′′

d sinα

Z2
a

(C.18)

Using (C.1), the DAEs in Appendix A and the above intermediate derivatives, the

various non-zero terms of A, B and B′ are given as:
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A1,2 =
∂gα
∂ω

= ωB (C.19)

A2,1 =
∂gω
∂α

=
−1
2H

(
∂Te
∂Id

∂Id
∂α

+
∂Te
∂Iq

∂Iq
∂α

)
(C.20)

A2,2 =
∂gω
∂ω

=
−D
2H

(C.21)

A2,3 =
∂gω
∂E ′

d

=
−1
2H

(
IdKq1 +

∂Te
∂Id

∂Id
∂E ′

d

+
∂Te
∂Iq

∂Iq
∂E ′

d

)
(C.22)

A2,4 =
∂gω
∂E ′

q

=
−1
2H

(
IqKd1 +

∂Te
∂Id

∂Id
∂E ′

q

+
∂Te
∂Iq

∂Iq
∂E ′

q

)
(C.23)

A2,5 =
∂gω
∂Ψ1d

=
−1
2H

(
IqKd2 +

∂Te
∂Id

∂Id
∂Ψ1d

+
∂Te
∂Iq

∂Iq
∂Ψ1d

)
(C.24)

A2,6 =
∂gω
∂Ψ2q

=
−1
2H

(
−IdKq2 +

∂Te
∂Id

∂Id
∂Ψ2q

+
∂Te
∂Iq

∂Iq
∂Ψ2q

)
(C.25)

A2,7 =
∂gω
∂E ′

dc

=
−1
2H

(
∂Te
∂Id

∂Id
∂E ′

dc

+
∂Te
∂Iq

∂Iq
∂E ′

dc

)
(C.26)

A3,1 =
∂gE′

d

∂α
=
−1
T ′
q0

(
(Xq −X ′

q)Kq1
∂Iq
∂α

)
(C.27)

A3,3 =
∂gE′

d

∂E ′
d

=
−1
T ′
q0

(
1 + (Xq −X ′

q)

(
Kq1

∂Iq
∂E ′

d

+
Kq2

X ′
q −Xl

))
(C.28)

A3,4 =
∂gE′

d

∂E ′
q

=
−1
T ′
q0

(
(Xq −X ′

q)Kq1
∂Iq
∂E ′

q

)
(C.29)

A3,5 =
∂gE′

d

∂Ψ1d

=
−1
T ′
q0

(
(Xq −X ′

q)Kq1
∂Iq
∂Ψ1d

)
(C.30)

A3,6 =
∂gE′

d

∂Ψ2q

=
−1
T ′
q0

(Xq −X ′
q)

(
Kq1

∂Iq
∂Ψ2q

+
Kq2

X ′
q −Xl

)
(C.31)
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A3,7 =
∂gE′

d

∂E ′
dc

=
−1
T ′
q0

(
(Xq −X ′

q)Kq1
∂Iq
∂E ′

dc

)
(C.32)

A4,1 =
∂gE′

q

∂α
=

1

T ′
d0

(
(Xd −X ′

d)Kd1
∂Id
∂α

)
(C.33)

A4,3 =
∂gE′

q

∂E ′
d

=
1

T ′
d0

(
(Xd −X ′

d)Kd1
∂Id
∂E ′

d

)
(C.34)

A4,4 =
∂gE′

q

∂E ′
q

=
−1
T ′
d0

(
1 + (Xd −X ′

d)

(
−Kd1

∂Id
∂E ′

q

+
Kd2

X ′
d −Xl

))
(C.35)

A4,5 =
∂gE′

q

∂Ψ1d

=
1

T ′
d0

(
(Xd −X ′

d)

(
Kd1

∂Id
∂Ψ1d

+
Kd2

X ′
d −Xl

))
(C.36)

A4,6 =
∂gE′

q

∂Ψ2q

=
1

T ′
d0

(
(Xd −X ′

d)Kd1
∂Id
∂Ψ2q

)
(C.37)

A4,7 =
∂gE′

q

∂E ′
dc

=
1

T ′
d0

(
(Xd −X ′

d)Kd1
∂Id
∂E ′

dc

)
(C.38)

A4,8 =
∂gE′

q

∂Vr
=
−Ka

T ′
d0

(C.39)

A5,1 =
∂gΨ1d

∂α
=
X ′

d −Xl

T ′′
d0

∂Id
∂α

(C.40)

A5,3 =
∂gΨ1d

∂E ′
d

=
1

T ′′
d0

(
(X ′

d −Xl)
∂Id
∂E ′

d

)
(C.41)

A5,4 =
∂gΨ1d

∂E ′
q

=
1

T ′′
d0

(
1 + (X ′

d −Xl)
∂Id
∂E ′

q

)
(C.42)

A5,5 =
∂gΨ1d

∂Ψ1d

=
1

T ′′
d0

(
(X ′

d −Xl)
∂Id
∂Ψ1d

− 1

)
(C.43)

A5,6 =
∂gΨ1d

∂Ψ2q

=
1

T ′′
d0

(
(X ′

d −Xl)
∂Id
∂Ψ2q

)
(C.44)



Appendix C. Details of state matrices used in integrated ELQR 151

A5,7 =
∂gΨ1d

∂E ′
dc

=
1

T ′′
d0

(
(X ′

d −Xl)
∂Id
∂E ′

dc

)
(C.45)

A6,1 =
∂gΨ2q

∂α
=
X ′

q −Xl

T ′′
q0

∂Iq
∂α

(C.46)

A6,3 =
∂gΨ2q

∂E ′
d

=
1

T ′′
q0

(
(X ′

q −Xl)
∂Iq
∂E ′

d

− 1

)
(C.47)

A6,4 =
∂gΨ2q

∂E ′
q

=
X ′

q −Xl

T ′′
q0

∂Iq
∂E ′

q

(C.48)

A6,5 =
∂gΨ2q

∂Ψ1d

=
X ′

q −Xl

T ′′
q0

∂Iq
∂Ψ1d

(C.49)

A6,6 =
∂gΨ2q

∂Ψ2q

=
1

T ′′
q0

(
(X ′

q −Xl)
∂Iq
∂Ψ2q

− 1

)
(C.50)

A6,7 =
∂gΨ2q

∂E ′
dc

=
X ′

q −Xl

T ′′
q0

∂Iq
∂E ′

dc

(C.51)

A7,1 =
∂gE′

dc

∂α
=
X ′′

d −X ′′
q

Tc

∂Iq
∂α

(C.52)

A7,3 =
∂gE′

dc

∂E ′
d

=
X ′′

d −X ′′
q

Tc

∂Iq
∂E ′

d

(C.53)

A7,4 =
∂gE′

dc

∂E ′
q

=
X ′′

d −X ′′
q

Tc

∂Iq
∂E ′

q

(C.54)

A7,5 =
∂gE′

dc

∂Ψ1d

=
X ′′

d −X ′′
q

Tc

∂Iq
∂Ψ1d

(C.55)

A7,6 =
∂gE′

dc

∂Ψ2q

=
X ′′

d −X ′′
q

Tc

∂Iq
∂Ψ2q

(C.56)
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A7,7 =
∂gE′

dc

∂E ′
dc

=
1

Tc

(
∂Iq
∂E ′

dc

(X ′′
d −X ′′

q )− 1

)
(C.57)

A8,8 =
∂gVr

∂Vr
=
−1
Tr

(C.58)

B4,1 =
∂gE′

q

∂Vss
=
Ka

T ′
d0

(C.59)

B′
1,2 =

∂gα
∂f

= −ωB (C.60)

B′
2,1 =

∂gω
∂V

=
−1
2H

(
∂Te
∂Id

∂Id
∂V

+
∂Te
∂Iq

∂Iq
∂V

)
(C.61)

B′
3,1 =

∂gE′

d

∂V
=
−(Xq −X ′

q)Kq1

T ′
q0

∂Iq
∂V

(C.62)

B′
4,1 =

∂gE′

q

∂V
=

(Xd −X ′
d)Kd1

T ′
d0

∂Id
∂V

(C.63)

B′
5,1 =

∂gΨ1d

∂V
=
X ′

d −Xl

T ′′
d0

∂Id
∂V

(C.64)

B′
6,1 =

∂gΨ2q

∂V
=
X ′

q −Xl

T ′′
q0

∂Iq
∂V

(C.65)

B′
7,1 =

∂gE′

dc

∂V
=
X ′′

d −X ′′
q

Tc

∂Iq
∂V

(C.66)

B′
8,1 =

∂gVr

∂V
=

1

Tr
(C.67)



Appendix D

Description of the 16-machine,

68-bus, 5-area test system

The 68-bus system (whose line diagram has been shown in Fig. 3.3) is a reduced

order equivalent of the interconnected New England test system (NETS) (contain-

ing G1 to G9) and New York power system (NYPS) (containing G10 to G13), with

five geographical regions out of which NETS and NYPS are represented by a group

of generators whereas, the power import from each of the three other neighboring

areas are approximated by equivalent generator models (G14 to G16).

There are three major tie-lines between NETS and NYPS (connecting buses 60-61,

53-54 and 27-53). All the three are double-circuit tie-lines. Generators G1 to G8

have DC excitation systems of type IEEE-DC1A; G9 has fast static excitation of

type IEEE-ST1A, while the rest of the generators have manual excitation. G9 is

also equipped with a PSS in order to damp a local mode. Data for the system has

been extracted from [63], and is given as follows.

D.1 System data

D.1.1 Bus data

Base MVA for the system is taken as 100 MVA. Table D.1 presents bus data for

the system. Bus type in last column has been denoted as 1 for swing bus, 2 for

generator bus (PV bus) and 3 for load bus (PQ bus).
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Table D.1: Bus data for the 68-bus system

Bus no. V (p.u.) PG (p.u.) QG (p.u.) PL (p.u.) QL (p.u.) Bus type

1 1.045 2.5 0 0 0 2

2 0.98 5.45 0 0 0 2

3 0.983 6.5 0 0 0 2

4 0.997 6.32 0 0 0 2

5 1.011 5.05 0 0 0 2

6 1.05 7 0 0 0 2

7 1.063 5.6 0 0 0 2

8 1.03 5.4 0 0 0 2

9 1.025 8 0 0 0 2

10 1.01 5 0 0 0 2

11 1 10 0 0 0 2

12 1.0156 13.5 0 0 0 2

13 1.011 35.91 0 0 0 2

14 1 17.85 0 0 0 2

15 1 10 0 0 0 2

16 1 40 0 0 0 1

17 1 0 0 60 3 3

18 1 0 0 24.7 1.23 3

19 1 0 0 0 0 3

20 1 0 0 6.8 1.03 3

21 1 0 0 2.74 1.15 3

22 1 0 0 0 0 3

23 1 0 0 2.48 0.85 3

24 1 0 0 3.09 -0.92 3

25 1 0 0 2.24 0.47 3

26 1 0 0 1.39 0.17 3

27 1 0 0 2.81 0.76 3

28 1 0 0 2.06 0.28 3

29 1 0 0 2.84 0.27 3

30 1 0 0 0 0 3

31 1 0 0 0 0 3

32 1 0 0 0 0 3

33 1 0 0 1.12 0 3

34 1 0 0 0 0 3

Continued on next page
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Table D.1 – continued from previous page

Bus no. V (p.u.) PG (p.u.) QG (p.u.) PL (p.u.) QL (p.u.) Bus type

35 1 0 0 0 0 3

36 1 0 0 1.02 -0.1946 3

37 1 0 0 0 0 3

38 1 0 0 0 0 3

39 1 0 0 2.67 0.126 3

40 1 0 0 0.6563 0.2353 3

41 1 0 0 10 2.5 3

42 1 0 0 11.5 2.5 3

43 1 0 0 0 0 3

44 1 0 0 2.6755 0.0484 3

45 1 0 0 2.08 0.21 3

46 1 0 0 1.507 0.285 3

47 1 0 0 2.0312 0.3259 3

48 1 0 0 2.412 0.022 3

49 1 0 0 1.64 0.29 3

50 1 0 0 1 -1.47 3

51 1 0 0 3.37 -1.22 3

52 1 0 0 1.58 0.3 3

53 1 0 0 2.527 1.1856 3

54 1 0 0 0 0 3

55 1 0 0 3.22 0.02 3

56 1 0 0 2 0.736 3

57 1 0 0 0 0 3

58 1 0 0 0 0 3

59 1 0 0 2.34 0.84 3

60 1 0 0 2.088 0.708 3

61 1 0 0 1.04 1.25 3

62 1 0 0 0 0 3

63 1 0 0 0 0 3

64 1 0 0 0.09 0.88 3

65 1 0 0 0 0 3

66 1 0 0 0 0 3

67 1 0 0 3.2 1.53 3

68 1 0 0 3.29 0.32 3
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D.1.2 Line data

Table D.2 presents line data for the system.

Table D.2: Line data for the 68-bus system

From bus To bus RL (p.u.) XL (p.u.) Line charging (p.u.) Tap ratio

1 54 0 0.0181 0 1.025

2 58 0 0.025 0 1.07

3 62 0 0.02 0 1.07

4 19 0.0007 0.0142 0 1.07

5 20 0.0009 0.018 0 1.009

6 22 0 0.0143 0 1.025

7 23 0.0005 0.0272 0 1

8 25 0.0006 0.0232 0 1.025

9 29 0.0008 0.0156 0 1.025

10 31 0 0.026 0 1.04

11 32 0 0.013 0 1.04

12 36 0 0.0075 0 1.04

13 17 0 0.0033 0 1.04

14 41 0 0.0015 0 1

15 42 0 0.0015 0 1

16 18 0 0.003 0 1

17 36 0.0005 0.0045 0.32 1

18 49 0.0076 0.1141 1.16 1

18 50 0.0012 0.0288 2.06 1

19 68 0.0016 0.0195 0.304 1

20 19 0.0007 0.0138 0 1.06

21 68 0.0008 0.0135 0.2548 1

22 21 0.0008 0.014 0.2565 1

23 22 0.0006 0.0096 0.1846 1

24 23 0.0022 0.035 0.361 1

24 68 0.0003 0.0059 0.068 1

25 54 0.007 0.0086 0.146 1

26 25 0.0032 0.0323 0.531 1

Continued on next page
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Table D.2 – continued from previous page

From bus To bus RL (p.u.) XL (p.u.) Line charging (p.u.) Tap ratio

27 37 0.0013 0.0173 0.3216 1

27 26 0.0014 0.0147 0.2396 1

28 26 0.0043 0.0474 0.7802 1

29 26 0.0057 0.0625 1.029 1

29 28 0.0014 0.0151 0.249 1

30 53 0.0008 0.0074 0.48 1

30 61 0.00095 0.00915 0.58 1

31 30 0.0013 0.0187 0.333 1

31 53 0.0016 0.0163 0.25 1

32 30 0.0024 0.0288 0.488 1

33 32 0.0008 0.0099 0.168 1

34 33 0.0011 0.0157 0.202 1

34 35 0.0001 0.0074 0 0.946

36 34 0.0033 0.0111 1.45 1

36 61 0.0011 0.0098 0.68 1

37 68 0.0007 0.0089 0.1342 1

38 31 0.0011 0.0147 0.247 1

38 33 0.0036 0.0444 0.693 1

40 41 0.006 0.084 3.15 1

40 48 0.002 0.022 1.28 1

41 42 0.004 0.06 2.25 1

42 18 0.004 0.06 2.25 1

43 17 0.0005 0.0276 0 1

44 39 0 0.0411 0 1

44 43 0.0001 0.0011 0 1

45 35 0.0007 0.0175 1.39 1

45 39 0 0.0839 0 1

45 44 0.0025 0.073 0 1

46 38 0.0022 0.0284 0.43 1

47 53 0.0013 0.0188 1.31 1

48 47 0.00125 0.0134 0.8 1

49 46 0.0018 0.0274 0.27 1

51 45 0.0004 0.0105 0.72 1

51 50 0.0009 0.0221 1.62 1

52 37 0.0007 0.0082 0.1319 1

Continued on next page
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Table D.2 – continued from previous page

From bus To bus RL (p.u.) XL (p.u.) Line charging (p.u.) Tap ratio

52 55 0.0011 0.0133 0.2138 1

54 53 0.0035 0.0411 0.6987 1

55 54 0.0013 0.0151 0.2572 1

56 55 0.0013 0.0213 0.2214 1

57 56 0.0008 0.0128 0.1342 1

58 57 0.0002 0.0026 0.0434 1

59 58 0.0006 0.0092 0.113 1

60 57 0.0008 0.0112 0.1476 1

60 59 0.0004 0.0046 0.078 1

61 60 0.0023 0.0363 0.3804 1

63 58 0.0007 0.0082 0.1389 1

63 62 0.0004 0.0043 0.0729 1

63 64 0.0016 0.0435 0 1.06

65 62 0.0004 0.0043 0.0729 1

65 64 0.0016 0.0435 0 1.06

66 56 0.0008 0.0129 0.1382 1

66 65 0.0009 0.0101 0.1723 1

67 66 0.0018 0.0217 0.366 1

68 67 0.0009 0.0094 0.171 1

27 53 0.032 0.32 0.41 1

D.1.3 Machine parameters

Tables D.3, D.4 and D.5 present parameters of the 16 machines in the system.

Table D.3: Machine data for the 68-bus system (A)

Machine no. Bus Base MVA Xl (p.u.) Ra (p.u.) H (s) D (p.u.)

1 1 100 0.0125 0 42 4

2 2 100 0.035 0 30.2 9.75

3 3 100 0.0304 0 35.8 10

4 4 100 0.0295 0 28.6 10

Continued on next page
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Table D.3 – continued from previous page

Machine no. Bus Base MVA Xl (p.u.) Ra (p.u.) H (s) D (p.u.)

5 5 100 0.027 0 26 3

6 6 100 0.0224 0 34.8 10

7 7 100 0.0322 0 26.4 8

8 8 100 0.028 0 24.3 9

9 9 100 0.0298 0 34.5 14

10 10 100 0.0199 0 31 5.56

11 11 100 0.0103 0 28.2 13.6

12 12 100 0.022 0 92.3 13.5

13 13 200 0.003 0 248 33

14 14 100 0.0017 0 300 100

15 15 100 0.0017 0 300 100

16 16 200 0.0041 0 225 50

Table D.4: Machine data for the 68-bus system (B)

Machine no. Xd (p.u.) X ′
d (p.u.) X ′′

d (p.u.) T ′
d0 (s) T ′′

d0 (s)

1 0.1 0.031 0.025 10.2 0.05

2 0.295 0.0697 0.05 6.56 0.05

3 0.2495 0.0531 0.045 5.7 0.05

4 0.262 0.0436 0.035 5.69 0.05

5 0.33 0.066 0.05 5.4 0.05

6 0.254 0.05 0.04 7.3 0.05

7 0.295 0.049 0.04 5.66 0.05

8 0.29 0.057 0.045 6.7 0.05

9 0.2106 0.057 0.045 4.79 0.05

10 0.169 0.0457 0.04 9.37 0.05

11 0.128 0.018 0.012 4.1 0.05

12 0.101 0.031 0.025 7.4 0.05

13 0.0296 0.0055 0.004 5.9 0.05

14 0.018 0.00285 0.0023 4.1 0.05

15 0.018 0.00285 0.0023 4.1 0.05

16 0.0356 0.0071 0.0055 7.8 0.05
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Table D.5: Machine data for the 68-bus system (C)

Machine no. Xq (p.u.) X ′
q (p.u.) X ′′

q (p.u.) T ′
q0 (s) T ′′

q0 (s)

1 0.069 0.028 0.025 1.5 0.035

2 0.282 0.06 0.05 1.5 0.035

3 0.237 0.05 0.045 1.5 0.035

4 0.258 0.04 0.035 1.5 0.035

5 0.31 0.06 0.05 0.44 0.035

6 0.241 0.045 0.04 0.4 0.035

7 0.292 0.045 0.04 1.5 0.035

8 0.28 0.05 0.045 0.41 0.035

9 0.205 0.05 0.045 1.96 0.035

10 0.115 0.045 0.04 1.5 0.035

11 0.123 0.015 0.012 1.5 0.035

12 0.095 0.028 0.025 1.5 0.035

13 0.0286 0.005 0.004 1.5 0.035

14 0.0173 0.0025 0.0023 1.5 0.035

15 0.0173 0.0025 0.0023 1.5 0.035

16 0.0334 0.006 0.0055 1.5 0.035

D.1.4 Excitation system parameters

IEEE-DC1A type of excitation system has following parameters:

Tr = 0.01 s,Ka = 40.0 p.u., Ta = 0.02 s,Kx = 1.0 p.u., Tx = 0.785 p.u.,

Ax = 0.07 p.u., Bx = 0.91 p.u., Efdmin = −10 p.u., Efdmax = 10 p.u.

IEEE-ST1A type of excitation system has following parameters:

Tr = 0.01 s,Ka = 200.0 p.u., Efdmin = −5 p.u., Efdmax = 5 p.u.
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D.1.5 PSS parameters

PSS has following parameters:

Kpss = 12 (p.u.), Tw = 10 p.u., T11 = 0.1 s, T12 = 0.2 s, T21 = 0.1 s,

T22 = 0.2 s, Vssmin = −0.05 p.u., Vssmax = 0.2 p.u.

D.1.6 TCSC parameters

TCSC (if present on a line) has following parameters:

Kc = 0.5 p.u.,Kcmin = 0.1 p.u.,Kcmax = 0.8 p.u., Ttcsc = 0.02 s.

D.2 System analysis

D.2.1 Load flow

Initial condition of the system is found by first finding the initial bus voltage

magnitudes and phases using load flow calculation, and then using these values to

find the steady state values of the system states using the DAEs given in Appendix

A. Table D.6 presents the results of load flow for the system.

Table D.6: Load flow for the 68-bus system

Bus no. V (p.u.) θ (degree) PG (p.u.) QG (p.u.) Bus type

1 1.045 -8.9563 2.5 1.96 2

2 0.98 -0.9835 5.45 0.7001 2

3 0.983 1.6129 6.5 0.8078 2

4 0.997 1.6683 6.32 0.0027 2

5 1.011 -0.6276 5.05 1.1657 2

6 1.05 3.8425 7 2.5449 2

7 1.063 6.0307 5.6 2.9083 2

8 1.03 -2.841 5.4 0.4907 2

Continued on next page
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Table D.6 – continued from previous page

Bus no. V (p.u.) θ (degree) PG (p.u.) QG (p.u.) Bus type

9 1.025 2.6524 8 0.5981 2

10 1.01 -9.6439 5 -0.131 2

11 1 -7.2245 10 0.0832 2

12 1.0156 -22.6313 13.5 2.8006 2

13 1.011 -28.6539 35.91 8.8504 2

14 1 10.962 17.85 0.4748 2

15 1 0.0168 10 0.7673 2

16 1 0 33.7953 0.9364 1

17 0.9499 -36.0269 0 0 3

18 1.0023 -5.8054 0 0 3

19 0.932 -4.2634 0 0 3

20 0.9806 -5.8744 0 0 3

21 0.9602 -7.0539 0 0 3

22 0.9937 -1.801 0 0 3

23 0.9961 -2.1606 0 0 3

24 0.9587 -9.8767 0 0 3

25 0.9981 -9.9995 0 0 3

26 0.9869 -11.0194 0 0 3

27 0.9679 -12.8571 0 0 3

28 0.9897 -7.4968 0 0 3

29 0.9921 -4.5464 0 0 3

30 0.9762 -19.71 0 0 3

31 0.9838 -17.464 0 0 3

32 0.9699 -15.2375 0 0 3

33 0.9738 -19.758 0 0 3

34 0.98 -26.1159 0 0 3

35 1.043 -27.0886 0 0 3

36 0.9606 -28.8273 0 0 3

37 0.9555 -11.788 0 0 3

38 0.989 -18.7593 0 0 3

39 0.9915 -39.2902 0 0 3

40 1.0442 -13.64 0 0 3

41 0.9996 9.4272 0 0 3

42 0.999 -0.8435 0 0 3

43 0.9765 -37.9088 0 0 3

Continued on next page
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Table D.6 – continued from previous page

Bus no. V (p.u.) θ (degree) PG (p.u.) QG (p.u.) Bus type

44 0.9775 -37.9863 0 0 3

45 1.0471 -29.3626 0 0 3

46 0.9903 -20.5314 0 0 3

47 1.0184 -19.4976 0 0 3

48 1.0337 -18.3761 0 0 3

49 0.9936 -19.8196 0 0 3

50 1.0602 -19.0521 0 0 3

51 1.0634 -27.2882 0 0 3

52 0.9545 -12.8334 0 0 3

53 0.9863 -18.9373 0 0 3

54 0.9857 -11.537 0 0 3

55 0.9571 -13.2179 0 0 3

56 0.9208 -11.9593 0 0 3

57 0.9102 -11.2129 0 0 3

58 0.909 -10.4023 0 0 3

59 0.9037 -13.311 0 0 3

60 0.9062 -14.0368 0 0 3

61 0.9556 -23.2222 0 0 3

62 0.9121 -7.3117 0 0 3

63 0.9096 -8.37 0 0 3

64 0.8367 -8.377 0 0 3

65 0.9128 -8.1847 0 0 3

66 0.9194 -10.1909 0 0 3

67 0.928 -11.4299 0 0 3

68 0.9483 -10.0712 0 0 3

D.2.2 Small signal analysis

For small signal analysis, the system is first linearized at t = 0 using the calculated

steady state values, and then state space matrices and eigenvalues for the linearized

system are found.
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D.2.2.1 Eigenvalues

Fig. D.1 shows the plot of the eigenvalues of the test system. The system is small

signal stable as all the eigenvalues have negative real parts, but with so many

eigenvalues outside the 10% damping line, the system is poorly damped.
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Figure D.1: Plot of the eigenvalues of the 68-bus system

D.2.2.2 Electromechanical modes

A detailed modal analysis of the modes (mode is another name for eigenvalue)

of the test system is required to find which machines have high participations in

them. It was found that all the poorly damped (damping ratio less than 10%)

modes of the test system have high participation from rotor angles and rotor

speeds of various machines. Such modes are called as electromechanical modes.

The electromechanical modes with frequencies in the range 0.1 to 1 Hz are the

interarea modes, while the rest of them are local machine modes. Table D.7 shows

the electromechanical modes for the test system. The top four modes in the table

are inter-area modes while the rest are local modes. For each mode the highest
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participating states are also tabulated in Table D.7 and arranged in increasing

order of normalized participation factors.

Table D.7: Electromechanical modes with normalized participation factors

No. Damping Ratio (%) Frequency (Hz) State PF State PF

1 0.486 0.391 δ13 1 ω15 0.93

2 1.476 0.516 δ14 1 ω16 0.63

3 1.827 0.587 δ13 1 ω13 0.738

4 3.343 0.779 δ15 1 ω15 0.755

5 4.772 0.993 δ2 1 ω2 0.992

6 5.036 1.079 δ12 1 ω12 0.984

7 4.245 1.124 δ1 1 ω1 0.992

8 5.766 1.153 δ6 1 ω6 0.998

9 5.952 1.187 δ2 1 ω2 1

10 3.732 1.234 δ10 1 ω10 0.992

11 0.759 1.343 δ9 1 ω9 0.803

12 7.122 1.468 δ8 1 ω8 1

13 8.097 1.488 δ4 1 ω4 1

14 7.582 1.505 δ7 1 ω7 1

15 5.299 1.771 δ11 1 ω11 0.993

D.2.2.3 Inter-area modes and mode shapes

The inter-area modes are named so because in these modes the participating ma-

chines divide into two groups, and the two groups oscillate against each other. If

the inter-area modes are poorly damped, or unstable, then the two groups may

lose synchronism completely and this leads to system breakdown. Also, as the

inter-area modes have low frequencies as compared to other modes, for a given

damping ratio they take much more time to die down than the other modes. A

10% or more damping ratio for all the inter-area modes gives an acceptable system

performance, and hence control methods are designed to give at least 10% damping

ratio to all the inter-area modes.

The phenomenon of all the machines dividing into two groups may be better un-

derstood by the help of mode shapes. Mode shapes are the polar plots of the
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eigenvectors of a mode corresponding to the desired states. In Matlab, ’feather’ or

’compass’ functions may be used for plotting the mode shapes. Fig. D.2 shows the

mode shapes of the inter-area modes, in which the eigenvectors (corresponding to

each machine’s rotor speed) of all the inter-area modes are plotted. The division

of machines into two opposing groups is evident in all the inter-area modes.
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Figure D.2: Mode shapes for inter-area modes



Appendix E

Level-2 S-function used in

integrated ELQR

Code for Level-2 S-function used for dynamic update of system matrices and con-

trol law for the integrated ELQR block is as follows:

1 function LQR Integrated(block)

2 %Level-2 MATLAB file S-Function for damped ELQR function.

3 setup(block);

4 %endfunction

5

6 function setup(block)

7

8 %% Register number of input and output ports

9 block.NumInputPorts = 4;%1st input=states, 2nd ...

input=pseudo-inputs, 3rd input=machine parameters, 4th ...

input=sampling period

10 block.NumOutputPorts = 2;%1st output= state gains, 2nd ...

output=pseudo-input gains

11 %% Setup functional port properties to dynamically inherited.

12 block.SetPreCompInpPortInfoToDynamic;

13 block.SetPreCompOutPortInfoToDynamic;

14

15 block.RegBlockMethod('SetInputPortDimensions', @SetInpPortDims);

16

17 block.RegBlockMethod('SetInputPortSamplingMode', ...

@SetInpPortFrameData);

18

19 %% Set block sample time to inherited

20 block.SampleTimes = [-1 0];

167
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21

22 %% Set the block simStateCompliance to default (i.e., same as ...

a built-in block)

23 block.SimStateCompliance = 'DefaultSimState';

24

25 %% Run accelerator on TLC

26 block.SetAccelRunOnTLC(true);

27

28 %% Register methods

29 block.RegBlockMethod('Outputs',@Output);

30 %endfunction

31

32 function Output(block)

33

34 Prm=block.InputPort(3).Data;%machine parameters

35 T=block.InputPort(4).Data;%the sampling period

36

37 xls= Prm(:,1);

38 % Ra= Prm(:,2); %not needed as Ra=0;

39 xd= Prm(:,3);

40 xdd= Prm(:,4);

41 xddd= Prm(:,5);

42 xq= Prm(:,6);

43 xqd= Prm(:,7);

44 xqdd= Prm(:,8);

45 Td0d= Prm(:,9);

46 Td0dd= Prm(:,10);

47 Tq0d= Prm(:,11);

48 Tq0dd= Prm(:,12);

49 D= Prm(:,13);

50 M= Prm(:,14);

51 wB= Prm(:,15);

52 Ka= Prm(:,16);

53 Tr= Prm(:,17);

54 kd1=(xddd-xls)./(xdd-xls);

55 kd2=(xdd-xddd)./(xdd-xls);

56 kq1=(xqdd-xls)./(xqd-xls);

57 kq2=(xqd-xqdd)./(xqd-xls);

58 N Machine=size(Prm,1);%total no. of machines

59

60 x0=block.InputPort(1).Data;%states

61 alpha0= x0(:,1);

62 Ed dash0= x0(:,3);

63 Eq dash0= x0(:,4);

64 Psi1d0= x0(:,5);

65 Psi2q0= x0(:,6);
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66 %State Edcd is identically zero as xddd=xqdd

67

68 u0=block.InputPort(2).Data;%pseudo inputs

69 Vg= u0(:,1);

70 iq0= (Ed dash0.*kq1-Psi2q0.*kq2+Vg.*sin(alpha0))./xddd;

71 id0= -(Eq dash0.*kd1+Psi1d0.*kd2-Vg.*cos(alpha0))./xddd;

72

73 %%%%%%%%%%%%%partial derivatives%%%%%%%%%%%%%%%%%%%

74 dIq by dEdd =kq1./xddd;

75 dIq by dEqd =0;

76 dIq by dPsi1d =0;

77 dIq by dPsi2q =-kq2./xddd;

78 dIq by dalpha =Vg.*cos(alpha0)./xddd;

79 dIq by dV =sin(alpha0)./xddd;

80

81 dId by dEdd =0;

82 dId by dEqd =-kd1./xddd;

83 dId by dPsi1d =-kd2./xddd;

84 dId by dPsi2q =0;

85 dId by dalpha =-Vg.*sin(alpha0)./xddd;

86 dId by dV =cos(alpha0)./xddd;

87

88 dTe by dId =kq1.*Ed dash0-iq0.*(xddd-xqdd)-Psi2q0.*kq2;

89 dTe by dIq =kd1.*Eq dash0-id0.*(xddd-xqdd)+Psi1d0.*kd2;

90

91 dTe by dEdd ...

=id0.*kq1+dTe by dId.*dId by dEdd+dTe by dIq.*dIq by dEdd;

92 dTe by dEqd ...

=iq0.*kd1+dTe by dId.*dId by dEqd+dTe by dIq.*dIq by dEqd;

93 dTe by dPsi1d ...

=iq0.*kd2+dTe by dId.*dId by dPsi1d+dTe by dIq.*dIq by dPsi1d;

94 dTe by dPsi2q ...

=-id0.*kq2+dTe by dId.*dId by dPsi2q+dTe by dIq.*dIq by dPsi2q;

95 dTe by dalpha ...

=dTe by dId.*dId by dalpha+dTe by dIq.*dIq by dalpha;

96 dTe by dV =dTe by dId.*dId by dV+dTe by dIq.*dIq by dV;

97

98 dfSm by dEdd =-dTe by dEdd./M;

99 dfSm by dEqd =-dTe by dEqd./M;

100 dfSm by dPsi1d =-dTe by dPsi1d./M;

101 dfSm by dPsi2q =-dTe by dPsi2q./M;

102 dfSm by dSm =-D./M;

103 dfSm by dalpha =-dTe by dalpha./M;

104 dfSm by dV =-dTe by dV./M;

105
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106 dfEdd by dEdd ...

=-(1./Tq0d).*(1+(xq-xqd).*(kq1.*dIq by dEdd+kq2./(xqd-xls)));

107 dfEdd by dPsi2q ...

=-(1./Tq0d).*(xq-xqd).*(kq1.*dIq by dPsi2q+kq2./(xqd-xls));

108 dfEdd by dalpha =-(1./Tq0d).*(xq-xqd).*kq1.*dIq by dalpha;

109 dfEdd by dV =-(1./Tq0d).*(xq-xqd).*kq1.*dIq by dV;

110

111 dfEqd by dEqd ...

=-(1./Td0d).*(1+(xd-xdd).*(-kd1.*dId by dEqd+kd2./(xdd-xls)));

112 dfEqd by dPsi1d ...

=(1./Td0d).*(xd-xdd).*(kd1.*dId by dPsi1d+kd2./(xdd-xls));

113 dfEqd by dalpha =(1./Td0d).*(xd-xdd).*kd1.*dId by dalpha;

114 dfEqd by dV =(1./Td0d).*(xd-xdd).*kd1.*dId by dV;

115 dfEqd by dVr =-Ka./Td0d;

116

117 dfPsi1d by dEqd =(1./Td0dd).*(1+(xdd-xls).*dId by dEqd);

118 dfPsi1d by dPsi1d =(1./Td0dd).*(-1+(xdd-xls).*dId by dPsi1d);

119 dfPsi1d by dalpha =(1./Td0dd).*(xdd-xls).*dId by dalpha;

120 dfPsi1d by dV =(1./Td0dd).*(xdd-xls).*dId by dV;

121

122 dfPsi2q by dEdd =(1./Tq0dd).*(-1+(xqd-xls).*dIq by dEdd);

123 dfPsi2q by dPsi2q =(1./Tq0dd).*(-1+(xqd-xls).*dIq by dPsi2q);

124 dfPsi2q by dalpha =(1./Tq0dd).*(xqd-xls).*dIq by dalpha;

125 dfPsi2q by dV =(1./Tq0dd).*(xqd-xls).*dIq by dV;

126

127 dfalpha by dSm =wB;

128

129 dfVr by dVr =-(1./Tr);

130 dfVr by dV =(1./Tr);

131

132 dEqd by dVs =Ka./Td0d;

133 %%%%%%%%%%%%%partial derivatives end%%%%%%%%%%%%%%%%

134

135 %%%%%%%%%%State matrices' formation using partial ...

derivatives%%%%%%%%%%%%

136 Kx=zeros(size(x0));

137 Ku=zeros(size(u0));

138 N State=size(x0,2);

139 Afull =zeros(N State);

140 Bfull =zeros(N State,1);

141 B1full=zeros(N State,2);

142 for i=1:1:N Machine

143 if Ka(i)==0

144 continue;

145 end

146
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147 Afull(3,3)=dfEdd by dEdd(i);

148 Afull(3,6)=dfEdd by dPsi2q(i);

149 Afull(3,1)=dfEdd by dalpha(i);

150

151 Afull(4,4)=dfEqd by dEqd(i);

152 Afull(4,5)=dfEqd by dPsi1d(i);

153 Afull(4,1)=dfEqd by dalpha(i);

154

155 Afull(5,4)=dfPsi1d by dEqd(i);

156 Afull(5,5)=dfPsi1d by dPsi1d(i);

157 Afull(5,1)=dfPsi1d by dalpha(i);

158

159 Afull(6,3)=dfPsi2q by dEdd(i);

160 Afull(6,6)=dfPsi2q by dPsi2q(i);

161 Afull(6,1)=dfPsi2q by dalpha(i);

162

163 Afull(2,3)=dfSm by dEdd(i);

164 Afull(2,4)=dfSm by dEqd(i);

165 Afull(2,5)=dfSm by dPsi1d(i);

166 Afull(2,6)=dfSm by dPsi2q(i);

167 Afull(2,2)=dfSm by dSm(i);

168 Afull(2,1)=dfSm by dalpha(i);

169

170 Afull(1,2)=dfalpha by dSm(i);

171

172 Bfull(4,1)=dEqd by dVs(i);

173

174 B1full(1,2)=-dfalpha by dSm(i);

175 B1full(3,1)=dfEdd by dV(i);

176 B1full(4,1)=dfEqd by dV(i);

177 B1full(5,1)=dfPsi1d by dV(i);

178 B1full(6,1)=dfPsi2q by dV(i);

179 B1full(2,1)=dfSm by dV(i);

180

181 if N State==7

182 Afull(4,7)=dfEqd by dVr(i);

183 Afull(7,7)=dfVr by dVr(i);

184 B1full(7,1)=dfVr by dV(i);

185 end

186 %%%%%%%%%%State matrices' formation using partial ...

derivatives ends%%%

187

188 %%%%%%%%%%Eigenvalues%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

189 [¬,lambdar]=eig(Afull,'nobalance');
190 lambdar=diag(lambdar);

191 omegar=abs(imag(lambdar));
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192 %%%%%%%%%%Eigenvalues ...

end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

193

194 %%%%%%%%%%%%%%%%%%%%%%%Calculation of r and ...

beta%%%%%%%%%%%%%%%%%%%%

195 w max=max(omegar);

196 min damping ratio=0.15;

197 min damping=cot(acos(min damping ratio));

198 theta spiral=w max*T;%angle of spiral at w

199 radius spiral=exp(-min damping*theta spiral);%radius of ...

spiral at w

200 spiral vector=radius spiral*exp(1i*theta spiral);

201

202 slope=(sin(theta spiral)+min damping*cos(theta spiral))/...

203 (cos(theta spiral)-min damping*sin(theta spiral));

204 %slope of perpendicular to tangent of spiral at (R, tht)

205

206 ...

beta=radius spiral*(cos(theta spiral)-sin(theta spiral)/slope);

207 %intercept of the line from (R,tht) on x axis

208 r=abs(spiral vector-beta);

209 %%%%%%%%%%%%%%%%%%%%%%%Calculation of r and beta ...

ends%%%%%%%%%%%%%%%%

210

211 %%%%%%%%%%Decentralized LQR%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

212 N State=size(Afull,1);

213 csys=ss(Afull,eye(N State),zeros(1,N State),0);

214 dsys=c2d(csys,T);

215 AD=(dsys.a-beta*eye(N State))/r;

216 BD=dsys.b*Bfull/r;

217 B1D=dsys.b*B1full/r;

218 Q=eye(N State);

219 [PD,¬,KD] = dare(AD,BD,Q,1);

220 KVD=KD/(AD-PD\(PD-eye(N State)))*B1D;

221 Kx(i,:)=KD;

222 Ku(i,:)=KVD;

223 end

224

225 block.OutputPort(1).Data=Kx;

226 block.OutputPort(2).Data=Ku;

227 %endfunction

228

229 function SetInpPortDims(block, idx, di)

230

231 block.InputPort(idx).Dimensions = di;

232 if idx==1
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233 block.OutputPort(1).Dimensions = di;

234 end

235 if idx==2

236 block.OutputPort(2).Dimensions = di;

237 end

238 %endfunction

239

240 function SetInpPortFrameData(block, idx, fd)

241

242 block.InputPort(idx).SamplingMode = fd;

243 if idx==1

244 block.OutputPort(1).SamplingMode = fd;

245 block.OutputPort(2).SamplingMode = fd;

246 end

247 %endfunction
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