258 research outputs found

    Subspace-Based Noise Reduction for Speech Signals via Diagonal and Triangular Matrix Decompositions

    Get PDF

    Techniques for the enhancement of linear predictive speech coding in adverse conditions

    Get PDF

    <strong>Non-Gaussian, Non-stationary and Nonlinear Signal Processing Methods - with Applications to Speech Processing and Channel Estimation</strong>

    Get PDF

    Pitch-scaled estimation of simultaneous voiced and turbulence-noise components in speech

    Full text link

    Pre-processing of Speech Signals for Robust Parameter Estimation

    Get PDF

    Models and analysis of vocal emissions for biomedical applications

    Get PDF
    This book of Proceedings collects the papers presented at the 3rd International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications, MAVEBA 2003, held 10-12 December 2003, Firenze, Italy. The workshop is organised every two years, and aims to stimulate contacts between specialists active in research and industrial developments, in the area of voice analysis for biomedical applications. The scope of the Workshop includes all aspects of voice modelling and analysis, ranging from fundamental research to all kinds of biomedical applications and related established and advanced technologies

    Quantisation mechanisms in multi-protoype waveform coding

    Get PDF
    Prototype Waveform Coding is one of the most promising methods for speech coding at low bit rates over telecommunications networks. This thesis investigates quantisation mechanisms in Multi-Prototype Waveform (MPW) coding, and two prototype waveform quantisation algorithms for speech coding at bit rates of 2.4kb/s are proposed. Speech coders based on these algorithms have been found to be capable of producing coded speech with equivalent perceptual quality to that generated by the US 1016 Federal Standard CELP-4.8kb/s algorithm. The two proposed prototype waveform quantisation algorithms are based on Prototype Waveform Interpolation (PWI). The first algorithm is in an open loop architecture (Open Loop Quantisation). In this algorithm, the speech residual is represented as a series of prototype waveforms (PWs). The PWs are extracted in both voiced and unvoiced speech, time aligned and quantised and, at the receiver, the excitation is reconstructed by smooth interpolation between them. For low bit rate coding, the PW is decomposed into a slowly evolving waveform (SEW) and a rapidly evolving waveform (REW). The SEW is coded using vector quantisation on both magnitude and phase spectra. The SEW codebook search is based on the best matching of the SEW and the SEW codebook vector. The REW phase spectra is not quantised, but it is recovered using Gaussian noise. The REW magnitude spectra, on the other hand, can be either quantised with a certain update rate or only derived according to SEW behaviours

    Psychophysical and signal-processing aspects of speech representation

    Get PDF
    • …
    corecore