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Chapter 1

Introduction

PEECH communication research in general is the study of the pro-

duction, transmission, manipulation and perception of speech. This
research has been very dynamiec and active, especially, since digital tech-
nology offers efficient and readily available tools for a variety of appli-
cations. Speech communication comprises many research areas, ranging
from linguistics, phonetics, speech signal analysis and synthesis, speech
coding and speech recognition to speech perception. In this thesis, we
are mainly concerned with some signal-processing and psychophysical
aspects of speech representation.

Speech sound in the form of the vibrations of the air is produced by
the vibrations of vocal folds, which are driven by air from the lungs, and
the movement of the vocal tract. The vocal tract can be described as an
acoustical tube, whose nonuniform cross-sectional areas are manipulated
by the movements of the lips, jaw, tongue and velum. The movements
of these speech organs are controlled by the central nervous system such
that these movements can convey distinctive information.

The acoustic waves of speech can be received by communication sys-
tems such as telephones or transformed into digital and analogue electric
signal for further processing. Most importantly, human beings as ulti-
mate receivers perceive the vibrations of speech waves. These speech
waves are spectrally shaped by the outer and the middle ears and trans-
formed into the vibration of the inner ear—the cochlea. The cochlea acts
as a spectral analyzer (a bank of bandpass filter) with limited spectral
resolution. The responses of bandpass filters are then transformed into
a flow of spikes in the nerve fibers, The central nervous system decodes
the trains of neural spikes into meaningful concepts.

Speech analysis is a very important way of achieving suitable signal
representations for speech communication. In the signal-processing ap-
proach, speech production is described by a source-filter model. This
model is considered to be time invariant onm the short-time basis be-
cause the speech organs move slowly due to physical constraints. For
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voiced sounds, the source is mainly situated in the vibrating vocal folds
which modulate the air flow from the lungs. The vibration frequency
of the vocal folds is called the fundamental frequency. The unvoiced
sound source consists of the turbulent flow formed somewhere in the
constricted vocal tract. The filter is of the all-pole type, whose coeffi-
cients represent an optimum linear prediction coding (LPC) of the signal
(Flanagan, 1972). Therefore, the vowels typically have line spectra and
the envelopes of the line spectra are modelled by the LPC model. The
envelopes of vowel spectra show peaks and valleys. These peaks, called
formants, correspond to the resonance frequencies of the vocal tract.

Modeiling speech by the LPC analysis is very popular now. The
LPC analysis and synthesis of a female voice, however, have not been
successful (Klatt and Klatt, 1990). The reason is that the higher funda-
mental frequencies of women and children make it difficult to estimate
formant parameters. In other words, for high-pitch sounds, the number
of speech samples which are the output of the vocal tract filter without
excitations, are relatively small in the closed glottis regions. Another
reason for the lack of naturalness of LPC speech is that the excitation
source is often simulated by a series of impulses or by white noise. The
use of an elaborated model of excitation waveform has been a successful
approach to improve the naturalness of synthetic vowels.

Improving the signal processing aspects of speech is just one way of
improving the quality of speech coding and synthesis. The psychophys-
ical study of speech provides a research direction to deal with the per-
ceptually important aspects of speech. When we listen to speech sounds
which are digitally processed and reproduced, both the intelligibility and
the perceptual quality of the speech sounds are important for convey-
ing information such as the identity of the speaker. Signal processing
of speech always introduees distortion into the speech sounds. These
distortions can be produced by quantization, or by parameterization of
speech signals and produce different auditory sensations. On the other
hand, speech generated by speech synthesizers also lacks naturalness.
The evaluation of the processed and synthesized speech is closely re-
lated to the auditory perception of complex sounds. The understanding
of the perception of complex sounds is therefore helpful to improve the
quality of the processed sounds. Most of the time, this perception study
is of course related to many aspects of working mechanisms of the central
nervous system. For example, the perceptual evaluation of the quality
of a text-to-speech system can involve the intelligibility, the naturalness
of prosody and sound quality of the computer generated speech. The
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psychophysical study of speech is relatively easy and provides discrim-
ination thresholds becanse it makes a comparison between the original
speech and the speech that results from the signal processing technigues
such as speech coding.

In this dissertation we study ways to improve the LPC analy-
sis/synthesis techniques. This includes an improved way to estimate
the LPC parameters, especially for high-pitched voices and to estimate
the time instants of glottal closure. The determination of instants of
glottal closure has become a very irnportant step for segmenting voiced
sounds into successive pitch periods, In Chapter 2 a novel weighted LPC
analysis of speech is investigated. In this approach, a weighting func-
tion is derived from the short-time-energy function of the speech signal.
Speech samples are selectively weighted based on how well they match
the speech production model. The estimates of the LPC coefficients by
this novel LPC analysis are therefore more accurate than those obtained
from the conventional LPC analysis,

In Chapter 3 the relation between the eovariance linear prediction
{CLP) analysis of a frame of a speech signal and the CLP analysis of
its subframes is established. The results of CLP analysis derived from a
set of subframes of speech samples are equivalent to those of a residual-
weighted CLP analysis of the complete frame and the solutions of the
residual-weighted CLP are the same as those of the generalized weighted
average of subframe CLP. Those subframes which best reflect the filter
model of the speech production can be chosen to improve the accuracy
of the estimate of the LPC parameters.

The detection of glottal closure instants has been a necessary step in
several applications of speech processing, such as speech coding, speech
prosody manipulation and speech synthesis. Speech processing needs
efficient and robust glottal closure detection methods. In Chapter 4 a
singular value decomposition (SVD) approach is developed to detect the
glottal closure instant in the speech signal. The proposed SVD method
1s equivalent to the calculation of the Frobenius norm of signal matrices
and is therefore computationally efficient.

The spectral modelling of speech sound can be realized by linear
prediction analysis, by which formant frequencies of the vocal tract are
estimated from the peaks of the spectral envelope. The direct use of
the phase spectrum of speech signal to estirnate the formant frequencies
has some advantages (Yegnanarayana et al., 1978). This method of
estimation of formant frequencies can be applied if the speech signal
can be uniquely determined (to a factor) from the phase of its Fourier
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transform. In Chapter 5, we discuss a new approach for ascertaining
whether a signal is uniquely determined by the phase of its Fourier
transform. It will be shown that unigueness corresponds to the non-
singularity of a matrix which can be formed from the finite length real
sequence,

The perceptual study of speech sounds in Chapter 6 is mainly con-
cerned with anditory masking. The experiments are intended to make
a contribution to the understanding of the perceptual aspects of speech
processing, such as speech coding, speech synthesis, and speech manipu-
lation. In contrast to most psychoacoustical masking studies, the targets
in the measurement are narrow- or wide-band noise signals. The results
can show the limitations of the auditory system in perceiving the dis-
tortions introduced by speech processing such as quantization noise in
bit-compressed coding of audio signals or speech and by phase manipu-
lation of speech.
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Chapter 2

Robust signal selection for linear prediction
analysis of speech *

Abstract

This paper investigates a weighted LPC analysis of speech. In
view of the speech production model, the weighting function is ei-
ther chosen to be the short-time energy function of the preempha-
sized speech sample sequence with certain delays, or is obtained
by thresholding the short-timne energy function. In this method,
speech samples are selectively weighted on the basis of how well
they match the speech production model. Therefore the estimates
of the LPC coefficients obtained by this novel LPC analysis are
more accurate than those obtained from the conventional LPC
analysis. They are also less sensitive to the values of the fun-
damental frequency than iz the case in the conventional LPC.

2.1 Introduction

HE source-filter model of speech production can be characterized by

linear prediction equations (Markel and Gray, 1970; Makhoul, 1975)
and two types of sources. The source for voiced sounds is a quasi-periodical
glottal pulse train over a short interval of time and iz produced by the
vibration of vocal folds. The source for unvoiced sounds consists of the
turbulent flow formed somewhere in the constricted vocal tract. The esti-
mates of the predictor coeflicients can be obtained by either an autocor-
relation linear prediction method or a covariance linear prediction {CLP)
method (Flanagan, 1972). The autocorrelation approach is a general prob-
abilistic approach to the spectral analysis of a stationary Gaussian process
(Itakura and Saite, 1970; Markel, 1972). When this method is applied to
the speech signal, the nonstationary and the quasi-periodic characteristics
of the speech signal are neglected. As a frequency-domain approach, the

*Paper with Y. Kamp and L.F. Willems submitted for publication to SPEECH COM-
MUNICATION
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Figure 2.1: Formant tracks obtained by a covariance LPC of order
10. The top trace shows the speech waveform. Formant traces are
shown as dotted lines, For further details see text.

autocorrelation method requires relatively long speech segments to provide
adequate spectral resolution. Due to the harmonic structure of the voiced
speech, this spectral match method does not perform well when the num-
ber of the harmonics is small as is the case for high-pitched voices. On the
other hand, the covariance analysis is a nonstationary formulation of the
estimation problem. In this method, speech is directly considered to be the
output of the vocal tract filter with excitation sources, and thus specified
by the time-varying transfer function of the filter and the characteristics
of the source function (Atal and Hanauer, 1971). Therefore the covariance
method directly models the speech wave rather than its spectrum. This
time-domain approach to the estimation problem can be flexibly applied to
short speech segments where the vocal-tract model is best fifted, avoiding
the influence of the source.

In view of the speech-production model, one expects that speech seg-
ments containing source excitations will not be good candidate data for the
estimation of LPC parameters. This can be seen from Fig. 2.1, which shows
the estimated parameters from a natural vowel. The top trace shows the
speech waveform and the dotted lines show the formant frequencies, which
are linearly associated with the angular values of the zeros of prediction
polynomials. These prediction polynomials are obtained by a covariance
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analysis of order 10 and a sliding 3-ms rectangular window. The speech
signal was preemphasized by a filter having a transfer function (1—-0.9271).
Indeed, it is easy to observe from Fig. 2.1 that the estimated formant fre-
quencies vary significantly in the region containing excitations. Therefore
covariance analysis in these regions does not yield reasonable pole estimates.
A more interesting observation from Fig. 2.1 is that the variations in the
estimates of the high formant frequencies (F3, F4 and F5) are significantly
greater than those of the low formant frequencies, even those estimated
from the excitation-free regions. From careful examination it is found that
this problem is due to the fact that the portion of the waveform associated
with high formants decays rapidly because of the large formant bandwidth,
so that background noise can become dominant. It is therefore expected
that the estimates of the LPC parameters can be improved by choosing
data segments which have a high signal-to-noise ratio and are not affected
by the glottal pulse.

One approach to improvement of the parameter estimation is either to
select or overweight those speech samples which are excitation-free and are
thus expected to fit the LPC model better. There are several ways in which
selection or over-weighting can be performed (Miyoshi et al., 1987; Lee,
1988; Ma and Willems, 1990). Pitch-synchronous LPC analysis is a par-
ticular method of getting nd of the inflnence of glottal pulses by using a
short window to select excitation-free portions, such as the closed-glottis
portion, and to improve the estimates of formant parameters (Steiglitz and
Dickinson, 1977; Pinson, 1978; Kuwabara, 1984). It is not always easy,
however, to choose those excitation-free portions in voiced sounds uttered
by females or children because the pitch period is short. The results are
dependent on the data available in the pitch period and are also sensitive to
the window position (Larar et al., 1985). In addition, the signal of a voiced
sound is quasi-periodic. Differences between the successive pitch periods
are due either to noise or to other factors from the glottal source. The pitch-
synchronous LPC analysis is limited to a single period and does not benefit
from the time averaging of the speech data over several periods. Another
selection technique examined earlier (Miyoshi et al., 1987; Ma and Willers,
1990) is the generalized sample-selective LPC. There, a preliminary conven-
tional LPC analysis provides an approximation for the residual excitation
signal. In a second LPC analysis only those speech samples are kept for
which the residual in the first LPC analysis lies below a certain threshold.
This method conceivably increases the computational burden. Moreover,
due to the inaccuracy of the first LPC analysis, the LPC inverse filtering
can give rise to significant pulses in the residual, other than those on the ex-
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citation moments (Ananthapadmanabha and Yegnanarayana, 1979). The
peaks of the residnal error, which are assumed to correspond to the instants
of glottal closure, are not always very prominent and, as a result, selection
windows might be misplaced. A more complex procedure (Lee, 1988) is to
minimize a more elaborate loss function of the LPC residual signal which
discriminates between the residual samples exceeding a threshold and those
below this threshold. In general, these weight functions are imposed on the
residuals to reduce the effects of the glottal pulses and to improve the es-
timates of the LPC parameters. They need, however, complex procedures
to locate the pitch pulses and to synchromize selection windows (Miyoshi
et al., 1987; Lee, 1988).

The robust selection and weighting techniques described in this paper
are based on the observation that pre-emphasized vowel signals show clear
peaks just after, and clear valleys just before, the moments of excitations,
which also correspond to the peaks in the LPC residual. This is an in-
dication that the short-time energy function (STE) of the signal could be
taken either as a selection criterion or as a weighting function. These two
possibilities are further developed in this paper and compared with the
sample-selective method of Miyoshi et al. (1987). The short-time energy of
the signal is computed over a short window which has a constant lag with
respect to the speech samples considered for the computation of the LPC
parameters. In this way, speech samples that fit the LPC model well and
produce small LPC residuals are ovet-weighted, and speech samples that do
not fit the model are down-weighted. Therefore the estimates of the LPC
coefficients obtained by this method are more accurate than those obtained
from the conventional LPC analysis and they are also less sensitive to the
values of the fundamental frequency. Comparison of experimental results
show that the proposed LPC analysis is attractive from the point of view of
computational efficiency, estimation aceuracy and selection of speech sam-
ples. Finally, a stability analysis of the linear predictor computed with the
short-time energy as weighting function is presented, based on the theory
of the numerical range of a linear operator.

2.2 Weighted LPC analysis

The speech-production model can he generally described by the following
equations:

P
$n= ) Sai@iten m=m,mt+ln42,...,m (2.1)

i=]
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where s, denotes the nth sample of a speech wave, e, is the nth sample
of an excitation wave, a; the ith predictor coefficient and p is the order of
the prediction equations. In the autocorrelation case, my = 1l;ng =N +p
and the speech signal is assumed to be zero outside the interval [1, N]. In
the covariance case, n; = p+ 1 and ny = N. Here a weight function W,
is introduced to select or weight speech samples for the LPC analysis. The
estimates of the LPC parameters can then be obiained by minimizing the
weighted residual energy

E= i (8n = Y 8neitti)* Wy, (2.2)

n=ny i=1

The parameters a; can be obtained by setting the derivative of E with
respect to a; to zero. Then we obtain the following p equations:

n -« N

ﬂz—nl SHFIWH Eg—‘l Spn—idi = En:ni $ndn-1 Wn

n

nzmnl Sﬂ—EW 2‘4 sn—tﬂ‘t = ﬂ-—ru Sndn-2 Wy (2 3)

z:n._n; 51‘1 ‘PW E‘l'—l n— l-ai- - n—“ni 3n8n— .‘PW

For the sake of simplicity we will use a vector notation to represent these
linear equations, namely

i W,.5,57d = :V_?: Wi Srsn - (2.4)

=ty n=n,

where I’ represents matrix transposition; = {d4, &g, .. .,&,)T, and 5, =
(.9,1_1,3,,_2,...,5,,,_?)"". Therefore, the estimated value @ and the “true
value” @ = (ay,as,...,ap)7 are related by the following relation, which is
easily obtained by substituting equation (2.1) into equation {2.4).

i Z WaSnST)7Y( Z WoSnen) (2.5)
n=n n=n;

It 1s easily seen from equation (2.5) that the estimates of the LPC parame-
ters can indeed be improved by choosing a proper weight function to make
the item on the right-hand side of equation (2.5) small. As long as the
matrix C = 372 W35 is nonsingulas, it would then be desirable to
make the sum 372 Wo 5. e, as small as possible, For natural speech this
cannot easily be fulfilled because speech samples in 5, are delayed out-
puts of the production equation (2.1) under the input e, which is not an
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idealized pulse train. The weighting function W,,, however, can take on a
low value or be zero when e, is large, and take on a high value when e, is
small. Consequently, the difference between the estimated predictive coeffi-
cient vector @ and the “true value” & decreases. In other words, the speech
samples that fit the LPC model are over-weighted and those samples that
do not fit the model are down-weighted.

2.3 Choosing the weighting functions

In the Introduction it has been mentioned that the sample-selective method
(Miyoshi et al., 1987) suffers from several shortcomings, in particular, that
it is computationally expensive and that the selection of speech samples is
still unreliable. To avoid these difficulties we now propose a method which
only requires a single LPC analysis but achieves essentially the same objec-
tive by using either an appropriate sample-selection window (i.e. W,=1 or
0) or an appropriate weight function W,. In both cases the weight W, is
based on the STE (the short-time energy), "M-2 52 .| computed over a
window of M samples and with a certain lag k& with respect to the prediction
residual ¢, which is multiplied by W, in equation (2.2). This choice of W,
is based on the following observations. In Figure 2.2 it can be seen that the
pre-emphasized speech signals for vowel /a/, spoken by a female and a male,
show clear peaks and valleys. The peaks are due to the strong excitations
that are produced by rapid closing of the vocal folds and the valleys result
from the decay of the ringing of the vocal tract filter. These strong excita-
tions generally also correspond to the peaks in the LPC residunals indicating
that the LPC model does not fit the speech samples in these regions. Due
to these peaks and valleys the short-time energy funetion of these signals,
calenlated with a window of a size less than a half period, will over-weight
the speech samples which follow the main excitations while down-weighting
those containing the excitations, In other words, the speech samples that
fit the LPC model well are over-weighted and the samples that do not fit
the model are down-weighted (Lee, 1988; Ma and Willems, 1990). This will
be further clarified in the tests described in the next section.

In the spirit of these consideration, we will consider two alternatives. In
the first case, we select the speech samples s, for which the STE function
exceeds a certain threshold Ty. In the following, this case is referred to as
“STE-thresholded” and the function W, in (2.4) is accordingly defined as

B B i A
Wa = { 0 otherwise (2.6)
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Figure 2.2: Preemphasized speech waveforms. (a) vowel /a/ uttered
by 2 male. (b) vowel /a/ uttered by a female.

In the second case, called “STE-weighted”, all speech samples are consid-
ered for the LPC analysis and the weight function W, in (2.4) is the STE
iteelf, ie.
M-1
W= s2 i {2.7)

i=0

This short-time energy function will be used as a weighting function to
over-weight the speech samples which follow the main excitations and to
down-weight those containing excitations.

2.4 Performance evaluation

The STE-thresholded and the STE-weighted LPC analyses defined in the
preceding section are applied to synthetic vowels and natural vowels. They
will be compared with the conventional autocorrelation LPC and against
the sample-selective method (Miyoshi et al,, 1987). In all cases the speech
was sampled at 10 kHz and was then pre-emphasized by a filter (1-0.9z71).
The prediction order was 10 and the speech data are refreshed every 10
ms with an analysis frame of 25-ms duration. Formant frequencies were
obtained by solving for the zeros of the estimated LPC polynomials.

In the antocorrelation case 8 Hamming window of 25-ms duration was
used. The sample-selective, the STE-thresholded and the STE-weighted so-
lutions were obtained from the covariance equations. The sample-selective
method implemented here uses rectangular windows of 12 samples width;
their left edges are set one sample ahead of the time instants at which the
residual of the conventional LPC analysis just falls below 50% of the peak
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value in the current-analysis frame. For our solutions, the short-time en-
ergy STE is calculated over a window of size M = 12 and then delayed by
one sample, i.e. k = 1in (2.6) and (2.7). For the STE-weighted solution,
the weighting function W, is the STE itself; for the STE-thresholded so-
lution, W, is defined by (2.6) with threshold T4 equal to 50% of the peak
value of the short-time energy function in the current analysis frame.

These four LPC solutions, being the conventional LPC, the sample-
selective LPC, the STE-thresholded LPC and the STE-weighted LPC, were
first applied to four synthetic vowels of about 1.2 seconds duration, which
were produced by using two different excitations: single-pulse excitation for
vowels V1 and V2 and L¥-modelled excitation for vowels V3 and V4 (Fu-
jisaki and Ljungqvist, 1986). The influence of high fundamental frequency
on the estimation accuracy was investigated. The formant frequencies and
bandwidths for the four vowel sounds are listed in Table I. The fundamen-
tal frequency of the vowel sounds increases linearly in the specified range
listed in Table I on a logarithmic scale.

The means and standard deviations of the estimated five formant fre-
quencies are listed jm Tables 1I- V for the different LPC solutions. It can
be seen from Tables II and III for vowels V1 and V2 which have the

Vawel F() — range ( Fy, Bl (Fg, ET (Fg, Ba) (Fq, .54) (Fs, Bs)
V1 | 100 — 250 || (500, 50) | (1500,150)] (2500,250) | (3500,350) | (4500, 450)
V2 | 250 — 400 (500, 50) | (1500,150)](2508,250) [ (3500,350) | (4500, 450)
V3 | 100 — 250 || (790, 50} |(1300,150) | (2565,250) | (3500,350) | (4500, 450)
Va | 250 — 400 ||( (1300,150) | (2565,250) | (3500,350) | (4500, 450)

790, 50)

Table I: Formant frequencies and bandwidths in Hz for two synthetic
vowels in two fundamental frequency ranges.

LPC 7 Fy Fy Fy Fy
Conventional  |[498(16) [ 1497(9)] 2498(8) | 3500{5} | 4500(5)
Sample — selective || 500(1) | 1498(9)[2499(5)]3499(1) | 4500(2)
STE — thresholded || 500(0) [1499(6)] 2499(3) ] 3500(3) | 4500(3)
STE — weighted || 499(3) | 1499(3) | 2499(3) [ 3500(3) [4500(4)

Table II: Estimated formant frequencies and their standard devia-
tions (in parentheses) for vowel V1.



2.4 Performance evaluation 13

same formant structure, but different fundamental frequency range, that
the formant frequencies obtained from the autocorrelation LPC are more
scattered than those obtained by the other three LPC solutions. Compar-
ing Tables IT and Table III, it can be seen that the formant frequencies
estimated by the conventional LPC analysis are even more scattered for
vowel V2 than for vowel V1, due to the higher fundamental frequencies
of vowel V2. The difference between the estimated and the original F1
reaches as much as 8 percent for vowel V2, which is significantly greater
than the just-noticeable difference of formant frequency (3-4% for formant
one) reported by Flanagan (1972), who used the same vowel stimuli for the
listening test. The formant frequencies obtained by the sample-selective
and the STE-thresholded LPCs are very close to the correct values. The
formant frequencies obtained by the STE-weighted LPC is also clustered
around the correct values. The formant frequencies for vowels V3 and V4
are shown in Tables IV and V, respectively. One observes from Table IV
that the three low-frequency formants obtained by the sample-selective and
the two STE-based LPC’s are narrowly distributed around the correct val-
ues, while those obtained by the conventional LPC are relatively scattered.
Comparing the results for vowels V3 and V4, one can see that the for-

LPC Iy By Fy Fy Iy
Conventional  ||499(39) | 1496(31) | 2500(22) | 3498(15) | 4500(9)
Sample — selective || 500(0) | 1499(1) | 2499(1) | 3499(1) - :}499(0)
STE — thresholded || 500(0) | 1499(0) | 2499(0) | 3499(0) [4499(0)
STE — weighted || 501(8) | 1501(7) | 2500(4) | 3408(3) |4499(2)

Table II1: Estimated formant frequencies and their standard devia-
tions for vowel V2,

LPC Fy Fy Fy Fy Fy
Conventional 777(15) | 1267(7) | 2581(29) | 3626(59) | 4568(219)
Sample — selective || T74(5) |1278(7)| 2580(4) | 3535(22)] 4500(29)

STE — thresholded || 789(1) [1303(2)[ 2559(5) [ 3503(7) | 4548(23)
STE — weighted || 781(5) [1284(3) | 2535(3) [3505(24) [4705(171)

)
)
)
)

Tahble IV: Estimated formant frequencies and their standard devia-
tions for vowel V3.
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Figure 2.3: Normalized LPC error as a function of the position
of signal selection window for vowel V2. Solid line shows the error
for conventional LPC analysis. (a} Sample-selective LPC analysis.
(b) STE-thresholded LPC analysis. (c) STE-weighted LPC analy-
sis. Analysis condition: LPC order=10, Preemphasis=0.9, Window
width=12 zsamples.

mant frequencies F} and Fy obtained by the conventional LPC are more
scattered for the vowel V4 with higher fundarnental frequency. This again
indicates that the conventional LPC is much more sensitive to the excita-
tion pulses. Generally, the results obtained by the sample-selective method
and the STE-thresholded LFC are the best ones; those obtained from the
STE-weighted LPC are slightly poorer but still show much improvement
compared with the conventional LPC analysis. From the viewpoint of com-
putation complexity, both STE-based LPCs are much more economical
than the sample-selective LPC method.

In the second test the normalized total squared LPC residual error is

LPC F P Fy Fy F
Conventional || 781(31) | 1290(27) [2524(22) | 34571(36) | 4391(25
Sample — selective | TRT(3) | 1297(6) | 2571(6) |3523(20)[4516(42
STE — thresholded | 784(11)[1297(11) | 2564(6) | 3502{13) [4539(33
STE — weighted | 784(15)|1291(11)] 2532(9) | 3466(17) | 4480{47

)
)
)
)

Table V: Estimated formant frequencies and their standard devia-
tions for vowel V4.
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Figure 2.5: Same as Figure 2.3, but for natural vowel /a/.

calculated as a function of the amount of offset of the windows or the
weighting functions. For the sample-selective LPC the shift of the win-
dows is the number of samples between the left edge of the window and
the point where the residual just falls below 50% of the peak value. For
both STE-based LPC's the shift is sitply the value of k in the expressions
(2.6) and (2.7). The experimental conditions are the same as in the first
experiment. Synthetic vowel segments and natural vowel segments of 250
samples were used in the test. Synthetic vowel segments were taken from
vowels V2 and V4 (fundamental frequency 250 Hz) and two natural vowel
segments /a/ and /e/ were spoken by a female. The results obtained from
synthetic vowels V2 and V4 are plotted in Figs. 2.3 and 2.4, respectively
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Figure 2.6: Same as Figure 2.3, but for natural vowe! /e/.

and those from natural vowels /a/ and /e/ are shown in Figs. 2.5 and 2.6,
respectively. In Figs. 2.3- 2.6, solid lines represent the normalized total
squared LPC error from the conventional LPC analysis and dotted curves
represent the error obtained from the weighted LPC analysis. In each fig-
ure, panel (a), (b) and (¢) show the results from the sample-selective, the
STE-thresholded and the STE-weighted LPC analysis, respectively. It can
be seen from panels (a) in Figs. 2.3- 2.6 that the normalized error from the
sample-selective LPC analysis sharply decreases as the window is advanced
by one sample and that the amount of the decrement is dependent on the
vowel sounds. From panels (b} in Figs. 2.3- 2.6 we see that normalized
error curves are similar to those shown in panels (a), except that the sharp
decrease may be offset to the right by one or two samples. Panels (¢) in
Figs. 2.3- 2.6 also show that normalized errors decrease as the window ad-
vances. The decrement is, however, less than shown in panels (a) and (b)
due to the fact that the STE-weighted LPC uses a continuous weight func-
tion and does not make hard decisions in choosing speech samples. The
normalized error functions obtained by the sample-selective LPC and the
STE-thresholded LFC are quite similar. The smallest normalized errors
abtained by the STE-weighted LY C are higher than those obtained by the
sample-selective LPC or the STE-weighted LPC, but they are still below
the normalized error obtained by the conventional LPC.

In the third test, five natural vowels, /a/, fe/, /u/, /i/ and o/, spoken
by a female were used for the four types of LPC analyses. The average
fundamental frequency of the vowels is about 200 Hz. For comparison, the
spectral envelopes of the LPC filters obtained by the conventional LPC
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are shown in each panel by solid lines in Figs. 2.7- 2.11. The spectral
envelopes obtained by the sample-selective, the STE-thresholded and the
STE-weighted LPC analyses of order 12 are plotted as dotted lines in panels
(a), (b) and (c), respectively. On the left-hand side of each panel the speech
waveform is plotted at the top. At the bottom either the LPC residual or
the short-time energy is plotted as a solid line and the selection window
as a dotted line, In this test a window size of 20 samples was used for the
sample-selective method and for the calculation of the short-time energy
function, since the average period of the vowel signals is about 50 samples.
The threshold value was set at 70% of the peak value of the residual error or
the short-time energy function and the sample-selective function was set to
be zero in the end portion (30 samples) of the analysis frame. It can be seen
from Figs. 2.7- 2.11 that the spectral envelopes of the LPC filters obtained
by the sample-selective LPC and both STE-based LPC are quite similar
and that the peaks in the spectral envelopes are more prominent than
those obtained from the conventional LPC. Also, their estimated formant
bandwidths are generally narrower than those from conventional LPC. This
is due to the fact that the excitation, which contributes to the widening
of the formant bandwidth, is down-weighted in these LPC analyses. One
sees that for vowel /e/ in Fig. 2.8 the first formant does not appear from
the spectral envelope of the conventional LPC, while the three other LPC
solutions give rise to a clear first formant. One also observes from Fig. 2.10
(a) by using the sample-selective function based on this residual that the
pulse-like excitation in the LPC residual is not always prominent and that
the estimated bandwidth for the first formant is unrealistically narrow. This
could be due to the fact that the LPC residual is not well estimated in the
LPC analysis of the first step. A low threshold value can be used to avoid
missing the selection of speech samples, but the rectangnlar window will be
generally located in a somewhat irregular manner due to the irregularity of
the pulse excitation and to erroneons pulses in the LPC residual resulting
from the inaccuracy of the first LPC analysis. However, it can be seen that
the short-time energy function shows good periodicity just like the speech
waveform. Therefore the positions of windows or weighting functions based
on the short-time energy appear to be more regular, with the consequence
that speech samples with similar positions in each period will be over-
weighted. This could be an advantage in the analysis of natural vowels
where the LPC model is only approximately valid and where in a period of
the LPC residual, there is often more than one pulse or no prominent pulse
at all. Obviously these techniques, based on the short-time energy of the
signal, are robust in the selection of speech samples and computationally
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less expensive. The estimate obtained by the STE-thresholded LPC is as
accurate as that derived from the sample-selective method based on the two-
step LPC analysis. The estiznate of the STE-weighted LPC iz somewhat
less accurate, but it is quite atiractive, taking into consideration the saving
in cornputation time.

2.5 Stability analysis of STE-weighted autocorrelation-based
LPC

In this section, a stability analysis for the STE-weighted autocorrelation-
based LPC will be presented, although this cannot be performed for the
convariance LPC analysis. In the autocorrelation case, the STE-weighted
LPC equations (2.4) of section II can be rewritten as

T P 2 AT T
Y'Y(1,&,8q,...,8) =(E,00,...,0) (2.8)
where
un & 0 0 0
Uty 87 Wasy 0 0
Wy 18p-1 Wy jSp-2 Wp 1853 L
Wy Sy Wplp—1 Wpbp—2 Wpd1
Y = ; : . : (2.9)
WN-18N-1 WN-18N-2 WN-1SN-3 WN-18N—p
WNSN WNSN-1 WNSEN-2 WNSN_pt1
0 WNL1SN  WN1SN-1 WN 118N —p+2
\ 0 0 Wy 4pdN
and wy, = /W, (see equation ( 2.4)). If the columns of ¥ are denoted by
Yo, Y1, - - -2 ¥p then one observes that these columns can be generated via
the formula

=AMy, k=0,1,...,p-1 (2.10)

with A a constant matrix of order N + p defined as
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0 'W]_/Wz 0 0
0 0 ‘MJ2/1.U3 0
A= D : (211)
0 0 0 WN+p-1/WN+p
w 0 0 0

where w is arbitrary. In fact, it turns out that the value of w plays no useful
role in the following and we will thus put @ = 0. The important consequence
of (2.10) is that the zeros of the prediction polynomial P(z) = 35 ap. 52"
belong to the numerical range of the matrix 4 (Delsarte et al.,, 1987). By
definition, the numerical range or the field of values F(A) of a square matrix
A is the set of complex numbers 747 for {|nf| = 1, where the tilde denotes
the conjugate transpose (Delsarte et al., 1987).

Let us now turn to the actual computation of the numerical range F(A4).
Following (Delsarte et al., 1987), we observe that F({A) has circular sym-
metry around the origin. Indeed, in view of the particular form of (2.11)
of matrix A, one has

n+p—1
A= Y e (2.12)
k1 W41

and therefore the substitution g — e*®g, transforms F(A) into ¢4 F(A).
Consequently, it is sufficient to find the intersection of F(A) with the real
axis and this, in turn, is given by the numerical range of the symmetric
matrix D = (4 + AT)/2. Since D is symmetric it can be diagonalized by
some unitary transformation and therefore its nmmerical range coincides
with the interval [—\ .., Aqe] Where Ap,a 15 the largest eigenvalue of D.
According to (2.11), matrix D is a tridiagonal nonnegative matrix of

order N+p with the following expression

0 W1/WZ 0 0

wllwz 0 'w'g/ws . 0

D=3 ' : : :
0 0 0 . WN4p-1/WN+p

0 0 rew WN+p..1/w_N'+P 0

(2.13)

For the maximal eigenvalue of a nonnegative matrix several upper and
lower bounds are known (Mine, 1988), which are all based on the minimal
and maximal row {(or column) sum of the matrix. Let »; denote the ith row
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sum of matrix D = (dy;), that is, r; = Zj\; +P d;;. The most straightforward
of these bounds is given by

Amaz < max{n} r=1,2,... . N+p (2.14)

In view of the detailed expression (2.13) of matrix D, we obtain the
following result.

Theorem: The zeros of the STE-weighted linear predictor defined by
equation (2.1) are all located inside a circle with centre at the origin and
with radius %max,,(wﬂ/wnﬂ + Wy /W) forn=1,2,...,N+p-2.

Using tighter bounds on the maximal eigenvalue of a nonnegative matrix
guch as provided in (Minc, 1988) gives correspondingly tighter estimates on
the location of the zeros of the STE-weighted predictor.

Ideally, we would have liked to show that the predictor polynormial for
the STE-weighted LPC is stable, i.e. that all its zeros lie in the open
unit disk {z| < 1. Although we have not succeeded in doing so, we have
derived an upper bound for the modulus of the largest zero. It appears
that this upper bound is directly related to the weight ratios wy,/w,41
(rn=1,2,...,N + p—1). In particular, if the largest weight ratio is less
than or equal to unity then the predictor is proved to be stable. This is
the case for linear prediction with exponential forgetting factor (Lee et al.,
1981), since the weight ratio is then a constant less than unity. In our case,
where the short-time energy of the speech signal over a lagged window is
taken as a weighting function, two successive weight factors wy, and wyqg
are not significantly different since they represent the STE over windows
which are shifted by one sample only. The difference becomes small as the
window size increases. In our experiments, it turned out that the weight
ratio wn/wpy; was at most 1.2, According to the Theorem, this gives 1.2
as an upper bound for the predictor zero with largest modulus which is,
of course, insufficient to guarantee stability. It may however provide an
explanation for the experimental observation that, in practice, the STE-
weighted predictors computed according to section II turn out to be almost
always stable.

2.6 Conclusicon

We have derived a generalized STE-based LPC analysis under the linear
least square criterion. The sample selection window or the weighting func-
tion in this algorithm are based on the short-time energy of the speech sig-
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nal. Their effect is to over-weight the speech samples that fit the LPC model
well and to down-weight the others. This novel LPC approach produces
less deviating estiumates of the formant frequencies than those obtained from
the conventional LPC and is less sensitive to the values of the fundamen-
tal frequency. From the experimental observations, the §TE-thresholded
LPC solution is preferable to the sample-selective method based on two-
step LPC analyses in terms of computation efficiency and robustness in the
selection of speech samples and preferable to the STE-weighted LPC from
the viewpoint of estimation accuracy.
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Chapter 3

A generalized sample-selective linear prediction
analysis *

Abstract

In this paper, we consider the relation between the covari-
ance linear prediction (CLP) analysis of a frame of a speech
signal and the CLP analysis of its subframes. The results of
CLP analysis derived from a set of subframes are equivalent to
those of a residnal-weighted CLP analysis of the complete frame
and the solutions of the residual-weighted CLP are the same as
those of the generalized weighted average of subframe CLP. A
generalized sample-selective CLY analysiz is proposed. Those
stubframes which best reflect the filter model of the speech pro-
duction can be chosen to improve the accuracy of the estimate
of the LPC parameters.

3.1 Introduction

HE process of speech production can be simplified as a source-filter
model [1}. The filter can be characterized by an all-pole model
represented by the linear prediction equations [2][3]. For voiced sounds,
the source is situated in the vibrating vocal folds which modulate the
air flow from the lungs. We refer to the vibration frequency of the vocal
folds as the fundamental frequency. The unvoiced sound source consists
of the turbulent flow formed somewhere in the constricted vocal tract .
In estimating the predictor coefficients, the methods of autocorre-
Jation linear prediction (ALP) and covariance linear prediction (CLP)
analysis have become very important. The CLP, in particular, is often
used for very short segments of sampled data, for instance in pitch syn-
chronous analysis and closed-glottis-period analysis. When the analysis

*Paper with L.F. Willems published in Signal Processing V: Theories and Ap-
plications, edited by Torres, T., Masgrau, E., and lagunas, M.A. (Elscvier Science
Publisher), pp.1171-1174, 1990.
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window is quite wide, for example, covering more than two pitch peri-
ods, the performance of CLP is close to that of ALP, but that is not the
case for very short segments of sampled data. In order to give a better
description of the process of speech production, researchers have paid
much attention to the fine structure of formants by means of very short
window CLP analysis, or an analysis of only the excitation-free portions,
such as the closed glottis portion, to estimate the parameters of the lin-
ear prediction model of speech production. But it is not always easy
to choose those excitation-free portions, for example, in voiced sounds
uttered by females or children, because the pitch period is short. The
results are dependent on the data available in the pitch period and are
sensitive to the window position [5]. The estimation accuracy of the pa-
rameters can be improved by sample selective linear prediction (SSLP)
(4], proposed by Yoshiaki Miyoshi et al. In the following sections we shall
show that S5LP is a special form of the generalized weighted average
CLP analysis.

In practice it is always preferable to obtain an accurate estimate of
the LPC parameters so that the source and the filter can be well sep-
arated. Omne example is the glottal inverse filtering technique, which
derives the glottal pulse from the speech signal. Improving the estimate
of the LPC parameters is one of the main goals in speech processing. The
signal of a voiced sound is quasi-periodic. The differences between the
successive pitch periods are due to noise or other factors from the glot-
tal source. The pitch synchronous LPC analysis does not benefit from
the correlation of the successive pitch periods. However, there always
exists some more or less excitation -free portion which best reflects the
parameters of the filter model. We cannot use these portions to do pitch
synchronous analysis separately, but we can use them in combination to
obtain a good estimate of LPC parameters.

In section 2 we shall present the relation between the results of the
residual-weighted CLP of a frame and that of its subframe CLP. In
section 3 the relation between the frame CLP and the subframe CLP
is given. In section 4 a generalized sample-selective CLP method for
speech analysis is discussed.

The conclusions are that 1) the results of CLP analysis derived from
a set of subframes are equivalent to those of the residual-weighted CLP
analysis of the whole frame and 2) the solutions of the residual-weighted
CLP are the same as those of the generalized weighted average CLP of
the individual subframes. From this we obtain a generalized sample-
selective CLF analysis to improve the estimate of LPC parameters.
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3.2 The Residual-weighted CLP of a frame and its subframe
cLp

The speech production model can be generally described by the following
equations:

P
Bn =3 Bn_ili+ en (8.1)
=1
where s, denotes the nth sample of a speech wave, e, is the nih sample
of an excitation wave, and a; the ith predictor coefficient. CLF analysis
is based on the minimization of the following sum of squared prediction
residuals,

n? r
E= 3 (8a=) tnia)’ (3.2)
n=nl =]

For the sake of simplicity we use a matrix form to represent it. The
prediction equations and the error for the CLP are therefore as follows

5 & & o i
nl—1 nl—-2 .- nl—p a s,
N 2 = 1:+1 (3-3)
Sp3-1 Sp2-2 .- Sn2p a,, 37;2
and
E=(5a-35)T(5a-s) (3.4)

S and s stand for the left-hand matrix and the colurnn matrix of the s,,,
tespectively, and T represents matrix transpose; al = (a3,0,...,ap).
The Least Square Solution of (3.3) is

a=(575)"157s (3.5)

The equation above is the normal CLFP analysis for a frame of signal
samples running from nl — p to n2.

We now choose a window W with a frame length n2 —nl +p+1 and
some subwindows W)}, running from bk — p to ek (3% > nl and ek < n2).
This is illustrated in Fig. 3.1. For each subframe W, we obtain a set
of prediction equations. Putting all subframe equations together, we
obtain what we shall call the residual-weighted CLP equations. In this
case the total energy of the residual error ¢an be represented by
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Figure 3.1: Top: a speech signal. Bottom: an tlustration of how
the subiframes are chosen.

n2 P
B 3 An(sn =Y saiits)? (3.6)
n=nl =1
where A, is the number of times that the prediction equation &, =
P Sn_;@; appears in the set of CLP equations.

In order to relate the predictor & which minimizes (3.6) to the solu-
tion (3.5), we construct the augmented matrix (§, §) from the augmented
matrix (8,5). This matrix is constructed such that the k-th prediction
equation is explicitly represented A, times. It is easy to prove that the
Least Squares solution of (3.3) will be

= (5751573 (3.7)

or

5= (5TQTQ8)18TQTQs (3.8)

where &7 = (dy,ds,...,dp), and QTQ is a (n2 —nl + 1) x (R2 - nl +
1) diagonal matrix containing the number of times that the predictor
appears, which depends on how we choose the subwindows.

From equation (3.6)-(3.8), we can see that the results of CLP anal-
ysis derived from a set of subframes are equivalent to those obtained
by weighting the residual error function e, of the whole frame with a
window in which the amplitude is the element @(n,n) of matrix Q.
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3.3 The frame CLP and the subframe CLP

The following equations are derived from the augmented matrix which
is partitioned according to row.

51 &, 8
~5jz ta _ %2 (3.9)
S;u ip 501
In the above eguation
Shh—1 Sbk—2 .-- Fbk=p
Se=| ¢ i (3:10)
Bap—1 Sak—2 ... Bek-p
bk
s=| (3.11)
Beh

Because every submatrix S and s represent a subframe CLP analysis in
which the speech samples are from bk — p to ek (bk > nl and ek < n2),
we can rewrite equation (3.7) as follows:

5
(57 s7 ... s%) Sf &
Sn
31
=(sT sf ... sf) 5:2 (3.12)
"

From the product of two partitioned matrices we have

S sTSa=Y STss (3.13)

Each individual subframe analysis, on the other hand, has a solution a;
given by
ST Skt = STss (3.14)
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where a; are the prediction coefficients obtained from the analysis of
the k-th subframe. Of course, for each different subframe CLP analysis
we find different a; coefficients. Comparing the above two formulas, we
have

> 5FSea =3 ST Spar (3.15)

.yl
a= (> 8T5:)" (357 Suan) (3.16)
It is obvious that the solutions of the residual-weighted CLP are a
generalized weighted average of the solutions to the individual subframe
CLP. We call this the generalized weighted average CLP. The covariance
matrix ¥ 57 Sy is the weighting factor. The error can be calculated by

E=3"s{si— Y s; 54 (3.17)
Note that the & coefficients are from either the residual-weighted
CL¥P analysis (3.8) or the windowed signal (3.16).

That 15

3.4 The generalized sample-selective CLP

So far we have arrived at the relation (3.16) between the frame CLP
and its subframe CLP. The generalized sample-selective CLP will be
discussed in this section.

It is useful to analyze a frame of the speech signal with a group of
subframes CLP analysis in which only the a, coefficients with a small
excitation influence are kept. That amounts to an analysis of the speech
signal by a generalized sample-selective linear prediction. We can see
that SSLP is just a special form of this generalized weighted average
CLP. The influences of the excitation are included in the analysis frame
in $SLP[4]. The generalized weighted average CLP gives us more free-
dom to choose several subframes to compensate for the scarcity of data
and to reduce the noise influence. We can, for example, choose those
subframes which do not include any excitation influence. This subframe
scheme was also used by P. D. Welch to estimate power spectra in the
nonstationary case [7]. The choice of subframes is related to the model
of speech production. We will discuss this in the following part.

It is noted that there is a strong correlation from pitch period to pitch
period in voiced sounds (exceptions are the voice onset and offset por-
tions). To take advantage of this correlation we can choose subwindows
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Figure 3.2: Top: spectrum of the CLP of a 40-sample subframe.
Middle: electroglottogram. Bottom: speech signal. The elec-
troglottogram and speech signal are plotted on the same time
scale. In the top panel curve 1 corresponds to the result of the
CLP of data in the window from 0 ms to 4 ms and curve 2 to the
result in the window from 2 ms to 6 ms, and so on. Curve 0is the
generalized average of curves 6 and 11.

so that they just cover the region where the excitations are relatively
small. The information for determining the formants has to be taken
from these subwindows, and the result can be optimally obtained from
the generalized average of these subframe CLPs.

From Fig. 3.2, we can see how formants change according to subframe
position. The electroglottogram indicates the status of the vocal folds;
the spectral curves are numbered from 0 to 11, When the window con-
tains the main excitation the results are unacceptable, for instance, those
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indicated by curves 3 and 8. When the window is located in the closed-
glottis portion, good formant estimates are obtained, as illustrated by
curves 6 and 11. The analysis conditions for this experiment were as
follows. The speech signal was sampled at 10 kHz. The pre-emphasis
parameter was -0.9 and the window length was 40 samples. The win-
dow was moved forward 20 samples every time. Formant frequencies
in the open-glottis portions deviate from those in the closed-glottis re-
gions. Dividing every pitch period approximately into an open-glottis
portion and a closed-glottis portion, we just analyze the data in the
closed-glottis porition and calculate the average according to equation
(3.16). Due to the correlation between pitch periods the averaging pro-
cess can also reduce some noise influence. To take an example, curve
0 in Fig. 3.2 shows the results from the average for the windows corre-
sponding to spectral curves 3 and 1Q. As can be seen, an estimation of
the formant parameters which fits the speech production model better
is obtained.

From the above discussion, we know that we have more freedom in
the choice of subframe data than with the S5LP, in addition, the rela-
tionship between long-frame CLP , short-frame CLP and the generalized
weighted-average CLP is now established.

The conclusions are 1) the results of CLP analysis derived from a
set of subframes are equivalent to those of the residual-weighted CLP
analysis of the whole frame and 2) the solutions of the residual-weighted
CLP are the same as those of the generalized weighted-average CLP of
the individual subframe. From this we obtained a generalized sample-
selective CLP analysis to improve the estimate of LPC parameters.
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Chapter 4

A singular value decomposition approach to
glottal closure determination from the speech
signal *

Abstract

The detection of glottal closure instants has been a neces-
sary step in several applications of speech processing, such as
speech coding, speech prosody manipulation and speech synthe-
sis. The proposed methods to date, in particular, the methods
proposed by Strube and by Wong et al. are deficient in some
aspects. Speech processing needs efficient and robust glottal
closure detection methods. In this paper, we propose to tse
the singular value decomposition (SVD) approach to detect the
glottal closure instant from the speech signal. The proposed
SVD method amounts to calculate the Frobenius norms of sig-
nal matrices and therefore is computationally efficient. More-
over, it produces well-defined and reliable peaks that indicate
the glottal closure instants. Finally, with the introduction of
the total least squares technique, the two methods proposed by
Strube and Wong are reinvestigated and unified into the SVD
framework.

Introduction

HE process of speech production can be simply described by =
source-filter model (Flanagan, 1972). The filter can be charac-
terized as linear (Markel and Gray, 1970; Makhoul, 1975}. For voiced
sounds, the source is situated in the vibrating vocal folds which modulate
the air flow from the lungs and produce glottal pulses. The unvoiced

"Paper with Y. Kamp and L.F. Willems submitted for publication to J. Aconst.
Soc. Am.
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sound source consists of the turbulent flow formed somewhere in the
constricted vocal tract.

Present speech research shows a great interest in analyzing the voice
sound period by period over an interval which is delimited by two sue-
cessive instants of glottal closure. For the sake of simplicity, we call the
instants of glottal closure in the speech signal the epochs. Determina-
tion of the epochs plays an important part in applications, such as in
inverse glottal pulse analysis to extract speaker characteristics (Hedelin,
1984; Kuwabara, 1984; Eggen, 1989), prosody manipulations of speech
sounds by means of the PSOLA technique (Moulines and Di Francesco,
1990), and speech synthesis and speech coding (Hedelin, 1984; Eggen,
1989).

During the past decades, several epoch detection methods have been
proposed for the speech signal. One such method is to detect the discon-
tinwities of the differentiated speech signal (Ananthapadmanabha and
Yegnanarayana, 1975). It is a simple and effective technique for very
clean vowels with sharp glottal closures, but as it 1s a high-pass filter
operation, it is thereby understandably sensitive to the noise excitations
in sounds like voiced frictave and contaminating noise. Epoch detection
based on the residual signal of the LPC analysis, as is described by Anan-
thapadmanabha and Yegnanarayana (Ananthapadmanabha and Yegna-
narayana, 1979), also cannot produce reliable results, because the LPC
inverse filtering can give rise to significant pulses or predictive errors
in the residual other than those on the excitation moments. Moreover,
the separation of the source and the system by using the popular LPC
method is strongly influenced by the shape of the glottal pulse and its
repetition rate, and therefore does not work well in some cases such as
in female and children’s voice sounds. Due to errors in the LPC analysis
there often is more than one impulse at a closure instant in the LPC
residuals, Then it often fails to produce accurate epochs by detecting
those impulses in the residual signals.

At present, the two following methods are better known because
they can produce a reliable glottal closure deteéction. The first one is
proposed by Strube to calculate determinants of the autocovariance ma-
trices, which can produce satisfactory detection of the epochs. However,
it cannot easily be normalized (Strube, 1974). The second approach,
proposed by Wong, Markel and Gray (1979), directly makes use of the
speech production model with a clearly defined glottal pulse. Here the
epoch is defined as the minimum of the total LPC residual energy cal-
culated from rather short analysis frames. Unfortunately, total LPC
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residual energy tends to be noisy and therefore needs to be smoothed
which implies some loss in location resolution.

Another group of related techniques is based on the analysis of a
long speech segment with the aim of determining the length of the pitch
period but not determining epochs. Among these techniques are the
pitch detection algorithms AMDF (Ross, et al. 1974}, SIFT (Markel,
1972), DWS (Duifhuis, et al. 1982) and SHS (Bermes, 1988}, Discussion
of these algorithms, however, is out of the scope of this paper.

Many epoch detection methods, among which are the two important
methods of Strube and Wong et al., are, in essence, based on the idea
that the linear prediction model fits better and, consequently, its predic-
tion error is smaller within a short segment (less than one pitch period)
of the speech signal which contains no excitations {Strube, 1974; Wong,
Markel, and Gray, 1979; Cheng and 0’Shaughnessy, 1989; Moulines and
Di Francesco, 1990). When the instant of glottal closure or main exci-
tation is included in the data segment, the linear prediction model does
not fit the data well and the prediction error will be large. These large
prediction errors are indications of the glottal closure instants.

The main contribution of this investigation is to establish a frame-
work of the epoch detection, to compare the results from different ap-
proaches and, finally, to propose a new singular value decomposition
(SVD) approach to the epoch detection problem. This approach leads
to a better formulation and has clear advantages over the two above-
mentioned methods, as it is computationally very efficient and robust
against noise. The resulting measure has a dimension of energy and
can be easily normalized and thresholded. We are also able to show the
relationship between Strube’s method, Wong’s method and our S5VD
approach and the advantages of the latter.

In the next section, we introduce our approach more explicitly with
a brief description of the notions of the singular value decomposition
(S5VD) technique and the linear least squares, and present the Total
Linear Least Squares (TLLS) approach. In the third section, we propose
our new SVD-based approach for epoch detection. Finally, our method
is compared with two others, and examples are given.

4.1 The SVD as unifying framework for epoch detection

Epoch detection has often been based on a source-filter model of the
speech production. In either parametric or statistical approaches, the
all-pole system assumption is usually made (Cheng and O'Shaughnessy,
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1989; Moulines and Di Francesco, 1990}. The source of the system is
assumed to have an open glottis portion and a closed glottis portion in
each pitch period of a voiced sound. The rate of transition from the
closed to the open glottis portion is much slower than that from the
open to the closed glottis portion and thus the main excitation occurs
at the instant of the glottal closure. The differentiation of the main
excitation results in a very sharp pulse at the instant of glottal closure.
Epoch determination from the speech signal is based on the fact that
there is strong and abrupt change of the glottal flow at the instant of
glottal closure. A vocal tract is approximately a time invariant linear
system over a short duration of time. When the system parameters are
well estimated, its excitation should be small in the closed glottis regions
and large at glottal closure instants.

Therefore, the amount of deviation from the linear prediction is a pri-
mary criterion used in different epoch detection approaches. The largest
deviation is expected to happen at the glottal closure instant. The ques-
tion , however, how to extract the linear predictability or how to identify
the linear relation from the speech signal has a significant influence on
the quality of the detection schemes. Moreover, speech sounds are dy-
namntic in nature and the source-filter model of the speech production is
inevitably accompanied by the presence of unknown disturbances, pa-
rameter variations and other uncertainties. Therefore, the linear model
will only hold approximately and the sclution will depend on the exrror
¢riterion used. In practice, a particular solution is cbtained by imposing
additional constraints on the problem , such as least squares, maximum
likelihood or /1-norm and accordingly, a variety of estimation schemes
are utilized. Among the most popular estimation schemes for linear
relation from noisy data, are the Linear Least Squares (LLS) and the
Total Linear Least Squares (TLLS) schemes. As we shall see, the SVD
method can provide a unifying framework in identifying linear relations
from data and it makes the formulation of the problem explicit and
guarantees the robustness of the numerical solutions. In these estima-
tion schemes, the data matrix or measurement data are in fact modified
to meet linear relations imposed on the data. In other words, the data
matrix i1s decornposed into the sum of two matrices, one of which con-
sists of the linear dependent columnm veetors and another consists of error
elements. The constraints mentioned above are used because they ap-
proximately meet the physical requirements of the problem and produce
a tractable mathematical solution.
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4.1.1 Singular Value Decomposition(SVD)

The SVD method has been used in several applications of digital signal
processing (Vandewalle and De Moor, 1988). The SVD of a certain data
matrix, allows a particularly robust separation of signal and noise and
is very effective in dealing with noisy data (Vandewalle and De Moor,
1988).

Consider a sequence of measurements or observation vectors, consist-
ing of segments of a speech signal, obtained by advancing a rectangular
window of length p+1 samples one sample further successively. The
following data matrix can then be formed :

8p+1 & dp—1 —
& & & P |
r+2 p+1 ] 2
S = _ _ ) (4.1)
3p+m Sp+m_1 3P+m_2 .

‘We shall assume that m > p + 1 and that the data matrix has
full column rank, i.e. p+1. Under these assumptions, it is well known
{Golub and Van Loan, 1983} that there exist orthogonal matrices

U = (4,83, ..., )

V= (ﬁl,'ﬂz, ...,ﬁp+1),

such that
§ =2 ou! (4.2)
where
U'U = VIV = VVE = [,
and

o1 2032 ... 2 opy > 0,

where ; are called the singular values, the superscript t denotes matrix
transposition and I, is an identity matrix of order p+ 1. The column
vector %; of the matrix U7 iz a normalized eigenvector associated with the
eigenvalue o7 of matrix 55%. In the same manner the colwnn vector ;
is a normalized eigenvector associated with the eigenvalue of of matrix
5tS. Equation {4.2) is called the singular value decomposition (5VD).
It is clear that the SVD method decomposes a data matrix into the
sum of (p+1) rank one matrices. The matrix $*5 is the autocovariance
matrix of the speech signal and its determinant can be rewritten as
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det($15) = IEX o2, (4.3)

] Mg
Moreover, the Frobenius norm of a matrix § = {85 1 1 €7 € m,1 <
7 < p+ 1} is defined as
1
ISlle = (B, TiZ1s5)? (44)
and it is known (Golub and Van Loan, 1983} that it can be expressed
in terms of the singular values as

1

15F = (Z a2, (4.5)

Hence, the Frobenius norm of § is the square-root of the sum of its
squared singular values.

4.1.2  Strube’s method for epoch detection

Let 5; denote the itk column vector of matrix 5. In the absence of ex-
citation, the linear filter model of order p imposes a linear dependence
between the vectors 8, 33, ..., &,41. Consequently, the determinant
of the matrix 5°S as a function of time will inerease sharply when the
data matrix contains an impulse excitation and it will decrease {ideally it
should become zero) when the data matrix does not contain any impulse
excitation. Therefore, the determinant value can be used as a way to
detect the location of epochs in the signal. This is, in essence, Strube’s
method for the detection of epochs (Strube, 1974), which in view of
(4.3) is equivalent to computing the product of all squared singular val-
ues of matrix 5. The Cholesky factorization of §*S provides however an
efficient recursive scheme to actually perform this caleulation (Strube,
1974). ‘

4.1.3 Wong’s approach to epoch detection and LLS

The source-filter model used for linear predictive coding (LPC) is based
on the assumption that the vocal tract can be approximated by an all-
pole filter of order p. Accordingly, the first column of the data matrix
S in (4.1) is assumed to be a linear combination of the other columns
and any deviation from this particular linear dependence is attributed
to the excitation produced by the source. This viewpoint is expressed
by the following set of equations:
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1 €p+1
a1 Ept2

S| —% | = | €p43 (4.6)
- GP e‘P'-I"m

where e, is the nth sample of the glottal excitation wave, and a; the ith
predictor coefficient. The least squares solution of the equations above
can be obtained from

1 E,
—t 0
5t —a2 | =1 O (4.7)
where F; = E:-?_;il e? is the LPC residual energy which can be com-
puted by
det{ 55)
= i 4.8
By = Get(s5m (48)

where (5°8);; denotes the principal submatrix obtained by removing
the first row and columon in matrix §t5. The epoch detection proposed
by Wong, Markel and Gray (Wong, Markel, and Gray, 1979) is essen-
tially based on the minimum of this normalized residual energy E;. In
practice, the LPC residual energy E, is sequentially calculated from the
speech samples covered by a short analysis window. When the anal-
ysis window advances through a glottal pulse, the residual energy will
increase first and then sharply decrease (in principle to zero) when the
window just leaves the glottal pulse. However, these minima may not be
well defined in real speech due to the fact that the LPC model does not
perfectly fit the speech samples and the speech samples are corrupted
by noise. Owing to the poor prediction of the vocal tract resonances,
the residual does not become zero after the glottal pulse and the minima
may not correspond to the instants of the glottal closures. This has been
demonstrated by Kuwabara (1984) and Larar et al. {1985), and further
discussion about this method will be developed in the following sections.
Finally, let us also observe that the residual energy can also be ex-
pressed in terms of the SVD of matrix 5. Indeed equation (4.7) yields
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1 E
— 0
—a | = (5t)1| O (4.9)
_a'p 0

and from the SVD of S one obtains

(Sts)—l = E?+10'-_2'LT;’LT;"'

el Vi

which finally gives

]

E, = e (4.10)
2 ke
where vy, are the elements of the first row of the matrix V., If the smallest

singular value o, is sigrificantly smaller than the others, the equation
above is approximately

L
qt=

k

2
a,
By = 2 (4.11)
Y1 p41

The LPC solution is in fact a particular case in a whole family of
estimation schemes for linear relation between noisy data. Indeed, p
other estimations can be conceived, similar to LPC, but where each
colurnn of 5 in turn is considered to be a linear combination of the
p remaining columns. This set of estimations is known as the Linear
Least Squares (LLS) family (Vandewalle and De Moor, 1988). Let E;
denote the residual energy of the ith LLS solution where the column i of
the data matrix § is considered to be a linear combination of the other
columns. In view of the singular value decomposition (4.2) of § one has

1
PR
+1 13

k

(4.12)

and expression (4.10} corresponds thus to the case ¢ = 1 in the LLS
family.
{.1.{ Total Linear Least Squares (TLLS)

Each of the LLS solutions considered above can be looked upon as a
modification of the original data matrix S such that a rank reduction
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from p+41 to p results. For instance, the LPC (or 1st LLS) equations
(4.6) can be rewritten as

Sp+1 — €pa4l Sy 8p—1 i 1 0

Sp42 — €pyz Sp+l &y 1] —a] 0

Sp+3 — €p+3  Spia Sprl .- 83 ~az [ =10

dptm — Cptm  Sptm-1 SFpim-=2 .- Bm ~Gp 0
(4.13)

With the equation under this form, one can thus consider that the
LPC solution achieves the rank reduction by modifying only the first
column of § while all other columns remain unchanged (Vandewalle and
De Moor, 1888). Similarly, the ith LLS solution can be interpreted as
modifying only the #h column. In speech signals, however, all datain the
matrix § could be contaminated by noise or deviations from the model.
In addition, the same elements in the first column of the matrix § occur
in other columns as well and should therefore also be changed. Even in
pitch synchronous speech analysis (Kuwabara, 1984; Eggen, 1989), the
closed-glottis portions of speech, which are often considered excitation
free, deviate from the linear model because of noise and nonlinearity.
Therefore it may be unrealistic to modify one coluran only in order to fit
the linear production model and it would be more reasonable to modify
all elements of the matrix 5. This is the point of view adopted by the
Total Linear Least Squares (TLLS) which modifies all data columns.
In other words, every element of the data matrix can be changed or
perturbed in order to fit the linear relation model.

Let § be a perturbed matrix and the {|§ — §||F be the perturbation
energy. The TLLS solution to the linear relation model is then obtained
by modifying matrix § into § such that the following set of equations

r
Y bniai =10 (4.14)
=0

where index n runs from p + 1 to m + p, or equivalently

§p+1 §F gp_]_ - 51 27} 0
§p+2 ‘ép+1 §p e 52 ] 0
Spra  fpez S ... E3 a; | =1} 0 (4.15)

Spim  Sptm—1 bpim-2 .- dnm Op 0
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is exactly solvable and the perturbation energy is minimized. We thus
want to find 5 such that )
rank(S) < p

anrd

1S — $lir

is minimized. The solution to this problem iz well known (Golub and
Van Loan, 1983) and obtained by deleting in (4.2) the contribution of the
smallest singular value, i.e. o4, assuming for simplicity that op > op4q.
Thus

5= Eleo';ﬁ,;ﬁf. (4.16)

¥

The perturbation error {|§ — §||F = Op41, and the linear model is 7544

since, in view of the orthogonality of the vectors 7;, the following holds:

$Tps1 = 0. (4.17)
Finally, the residual error signal is given by

Sﬁp"‘l = ‘Tp+1ﬁp+1' (4.18)

If, instead of the approach described above, we delete from (4.2) the
contribution of a different smgula.r value a; ;é @pt1, then, we obtain a
different perturbed matrix §;, namely,

f e o
Si = Xjgi0 U 0]

for which a different linear model holds, i.e.

but with a relatively larger perturbation error |{§ - §ii| = ¢2. Each sin-
gular value thus measures the deviation from some corresponding linear
model and the sum p-]|.-1 Zf:ll o? can be considered as an “average” of
the deviation from any linear model. '

4.2 The new epoch detection based on SVD

The new criterion for epoch detection proposed here 13 the arlthmetlc
mean of the squared singular values, namely, C = +1 Zp*"ll o?.

though it does not seem possible to estabhsh a rigorous and direct con-
nection between the numerical value of C and the instant of glottal
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closure, the theoretical arpument given below shows why this criterion
makes sense. Additional support is provided by a series of experiments
presented at the end of this section and further developed in section IV.
These experimental results show that the maxima of C indeed nicely
correlate with the instants of glottal closure.

We start from expression (4.12) for the residual energy of the ith
LLS solution which is rewritten as

. y o
— = — 4.19
B ol Vik o2 v’ (4.19)
Since mg- < —;L one has
Tpat

1 1 p+t
"ET 2 zk: (420)

a; p+1 k=1

and, in view of the orthogonality of the matrix V which implies

Ei:i vZ = 1, the latter inequality reduces to

E;. (4.21)

On the other hand, the inequality between geometric and arithmetic
means vields .

+
(2 o?)7H < Z : (4.22)

Considering (4.21) and (4.22) we finally get

1 i pt+l 0_2 1 p+1
(M eh)mT < 0= —— Y ot < E.  (4.23)
P + 1; i=] P+1 P+ 1 {m=]

This double inequality provides the rationale for the new criterion. In-
deed, C lies between an upper and a lower bound, both of which can be
considered as measuring the deviation of the speech data from the linear
dependence model. The lower bound, (Hp+1 2)P+1 i in fact Strube’s
criterion in view of (4.3). On the other hand, except for the scaling fac-

]
tor ;;1—, the upper bound is the arithmetic mean of the residual energies
Pl
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E; associated with each of the LLS solutions and it can thus be constd-
ered as an “average” deviation of the data from linear dependence. By
definition, these lower and upper bounds will both increase in the open
glottis region of the speech signal and will both decrease in the closed
glottis portion when the linear dependence between the columns of the
data matrix 1s better realized. Consequently, one can reasonably expect
that the new eriterion C will follow a similar behaviour in view of the
fact that it lies between these bounds.

One observes incidentally that a similar argument also holds for the
individual singular values in view of the double inequality (4.21). Indeed,
the lower bound o2, measures the deviation from the linear model for
the TLLS solution and the upper bound is, within a scaling factor, the
residual energy F; of the ith LLS solution. Both can be expected to
increase when the excitation is present, i.e. when the data do not comply
with the linear model. It is then not surprising that the experimental
observations at the end of this section support the fact that, indeed, each
singular value increases in the open glottis portion of the signal. Finally,
it should be noted that {4.23) provides a tighter lower bound than would
result from straightforward addition of the inequalities (4.21) over index
1, since 05_,_1 is of course smaller than the geometric mean of the squared
singular values.

It should be stressed that the new criterion is very efficient from
a computational point of view. First, relation (4.4) and (4.5) show
that the numerical value of C can be obtained simply by calculating
the Frobenius norm of the data matrix 5 without the need of actually
performing a singular value decomposition. Moreover, our criterion can
easily be updated when a new sample comes in the observation window.
The sequential computation of the Frobenius norm of the matrix reduces
to adding the sum of the squared entries of the last row of the matrix
and to subtracting the sum of the squared entries of the first row of the
preceeding matrix,

The arguments presented hereabove are corroborated by experimen-
tal evidences as can be seen from Fig. 4.1 (a) for a synthetic vowel with
impulse excitation and in Fig. 4.1 (b) for a natural vowel. The speech
signal is displayed on the bottom of the figure and all of the singular val-
ues are scaled in the display and ordered such that the smallest singular
value is displayed on the top row of the figure. All singular values exhibit
local maxima when the analysis interval just comes across the excitation.
Of course, the new criterion being the arithmetic mean of the squared
values, will also show maxima which coincide with the occurrences of
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Figure 4.1: (a) and {b). From iop to bottom, 10 singular value
curves obtained from a synthetic vowel with impulse excitation
and a natural vowel, respeciively. The singular values are ordered
and scaled (indicated by the numbers in the figures), the smallest
one on the top, the speech waveform on the bottom.

the glottal pulses.

We decide to locate the time position of the maxima in the Frobenius
norm of the signal segment at time ¢ = p 4 1 given that the signal
segment extends from £ = 1 to t = m + p, where m is the number of the
equations and p the order of the linear model. The reascn for this is that
a maximown in the Frobenius norm appears when the excitation point
just enters the first row of the data matrix 8. This can be seen from
equation (4.1): when s,,; is the excitation point, and when the analysis
interval shifts further, there will be fewer rows of the data matrix that
contain the excitation point. Thus, beyond ¢t = p + 1, the perturbation
energy starts to decrease. This is clearly illustrated in Fig. 4.2 (b) for a
synthetic vowel. Az a consequence, the maxima have been delayed with
respect to the speech signal. The amount of the delay is equal to the
number m of prediction equations and this delay has been compensated
for in all the figures.

The instant of glottal closure can be determined a priori via the
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Figure 4.2: (a). From top to bottom, the results from Wong's
method (W), Strube’s method (8), and the new methed (C), the
electroglottal waveform (Eg) and the speech waveform (Sp) for
a natural vowel /a/. (b) From top to bottom, the results from
Wong's method (W), Strube’s method (3), and the new method
{C), the differentiated glottal pulses {Dg) and the speech waveform
{Sp) for a synthetic vowel /a/.

electroglottal waveform for natural vowels or the excitation waveform
for synthetic vowels. Fig. 4.2 (a) shows, from top to bottom, the results
of Wong's method, Strube’s method, the new method, the electroglottal
waveformn and speech signal. In the same manner, Fig. 4.2 (b) shows,
from top to bottomn, the results of Wong’s method, Strube’s method, the
new tuethod, the differentiated glottal puilse waveform and the speech
signal. The speech signals were sampled at a sampling frequency of 10
kHz, and preemphasized with a filter (1 — 0.92!) that differentiates
glottal pulses and produces sharp impulses. The analysis interval was
30 samples long in total and the prediction order p was 10. As a rule,
the analysis interval should be shorter than the pitch period and we
found that the order of the predictor should be abhout 10. From the
electroglottal waveform (in Fig. 4.2(a)) or from the differentiated glottal
pulses (in Fig. 4.2(b)) we can determine exactly the instants of glottal
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closures. It can be seen that the new ¢riterion produces clear peaks at
the these instants,

4.3 Comparison and exarnples

Let us first observe that Strube uses in fact the logarithm of the deter-
minant of the autocovariance matrix to determine the epochs. In view
of (3), the actual criterion he uses is thus E¥1lloge? whereas our cri-
terion is 1. o?. Consequently, the dynamics of the singular values is
nonlinearly compressed in Strube’s method with the consequence that
the peaks will be less prominent.

As seen from the simplified expression (4.11), Wong’s criterion re-
lies essentially on the smallest singular value. On the other hand, we
observe from Figs. 4.1 and 4.2 that, as a function of time, the small-
est singular value tends to exhibit flat tops and bottoms, and therefore
both the maxima and the minima of the curve may not be well defined.
Consequently the exact location of the epoch derived from the minima
may not be possible with Wong’s method in this situation. It can also
be seen from the top trace in Fig. 4.1 (b) that the smallest singular value
as a function of time is noisy and therefore in view of (4.11), Wong’s
method will be sensitive to noise. A FIR lowpass filtering, with linear
phase, can reduce this noise effect. At the same time, this filtering of
Wong's criterion produces distinct maxima in the smoothed curve, It
is observed from Fig. 4.1 and 4.2 that these maxima correspond to
the sharp down-going edges of the time function of the smallest singu-
lar value and which indicate the instants of the glottal closures (Eggen,
1989). But the positions of these maxima may depend on the filtering,
as will be illustrated in the following.

It can be seen from Fig. 4.3 (a) and (b) that a FIR lowpass filtering
of Wong's criterion produces nice maxima, corresponding to the instants
of glottal closures, but the minima on which Wong’s method is based
may not be well defined. The FIR filter was designed according to the
window method with a Kaiser window. The cutoff frequency of the filter
was 1kHz and the length was 30 samples for Fig. 4.3 (a) and 20 samples
for Fig. 4.3(b). Fig. 4.3 (a) and (b) were obtained from vowels uttered
by a male and a fexnale respectively and we have chosen the length of
the analysis window to be 30 for the male voice (Fig. 4.2 (a}) and 21 for
the female voice (Fig. 4.3(b)) because the pitch period of the male voices
is in general longer than that of the female voices. However, Fig. 4.3(c),
and (d) demonstrate that the positions of the maxima obtained from
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Figure 4.}: (a) and (b). FIR lowpass filtered results from the
three methods (labeled as W, 8, and ) for clean speech nttered
by a male and a female, respectively. The cutoff frequency of the
filter was 1 kHz and the filter length of the filter was 30 samples
in {a) and 20 in (b). Figures (¢) and (d) show the lowpass filtered
results from the three methods for noisy speech with filter length
of 40, and 10 samples, respectively. The SNR of the noisy speech
was 20 dB.
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noisy speech by the three methods are affected by the filtering in quite
different ways. The noisy speech was produced by adding white noise
to the speech signal with a signal-to-moise ratio of 20 dB. Fig. 4.3(c)
and (d), show the results of the lowpass filtering of the three criteria
with filter length of 40, and 10, respectively. It can be seen that the
lowpass filtering changes the position of the maxima obtained by Wong’s
and Strube’s methods. But the lowpass filtering has less or almost no
inflitence on the positions of the maxima obtained by the new proposed
method. From ( 4.4) one can see that the Frobenius norm is actually
equivalent to multiplying the square of preemphasized speech samples
Sn, (80,7 = 1,2,...,p + m) with a trapezoidal window w(n)}, (w(n) =
a,for n=12,. . ,p+Lwln}=p+1,for p+1<n<muwhn)=
p+m+l—n, for n=m,m+l,...,p+m). Since the frequency response
of the trapezoidal window is similar to a lowpass filter, this explains why
our method is inherently robust to noise and thus produces stable epoch
detections.

In brief, the new SVD based method is to add all squared singular
values on a linear scale which produces a very smooth curve with well-
defined maxima. The result is a very clear picture of the glottal closure
instants. Lower secondary peaks can easily be distinguished from the
main peaks and the epoch detection is stable even under noisy condi-
tions.

The advantage of the proposed method can be seen from more exam-
ples shown in Fig. 4.4 and comparisons can be made between the results
obtained by the three methods discussed in this paper. Fig. 4.4 (a), (b),
(¢), (d) and (e), give the results of these three methods for a synthetic
vowel /u/, and the natural vowels /i/, /a/, /u/ and /fa:/, uttered by a
male. Fig. 4.4 (f), (g) and (h) show the results from natural vowels /a/,
/i/ and /u/, nttered by a female. The order of the predictor was 10 and
the analysis window was 30 samples for both the male voices and the
fermale voices. In each panel, from top to bottom the curves 1, 2 and 3,
respectively, represent the results of Wong’s and Strube’s methods and
the new approach. Curve 3 for the new criterion shows very clearly-
defined peaks at the impulse excitation instants for the synthetic vowel
(Fig. 4.2 (a)). However, curves 1 and 2, which respectively represent
the results of Wong’s and Strube’s methods, show no peaks, but rather
clear transitions at the excitation instants. The results for vowel /a:/
in panel (e) also show that curve 3 has distinet maxima, but curve 1
is noisy and curve 2 has relatively high secondary peaks at the instant
of glottal opening. These relatively high secondary peaks are due to
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Figure 4.4; Comparison of the results obtained by Wong’s method
(W), Strube’s method (5), the new methed (C). Figures (2), (b),
(c), (d), and (¢) show results obtained from a synthetic vowel
/u/ and natural vowels /i,a,u,a:/, uttered by a male, respectively.
Figures (), (g), and (h) show resulis obtained from vowels /a,
i, u/ respectively utiered by a female. Sampling frequency is 10
kHz, analysis length 30 samples, the order of predictor 10. All
results obtained from the preemphasized speech signal with a filter
1=0.9z"1
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Figure 4.4: See caption to panel {a).
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the logarithmic compression in Strube’s method. For the same situa-
tion, the new approach produces very distinct peaks at glottal closure
instants and significant lower secondary peaks that can be easily distin-
guished from the main excitation points for the other vowels. It can be
seen from panel (h) for the vowel /u/, however, that the peaks produced
by the new method do not agree with those from §trube’s method and
that the distance between the successive local maxima in Strube’s cri-
terion is not so regular for this vowel although the repetition rate of the
excitation is quite regular. This is due to the fact that, for this vowel
with a short pitch period, the relatively high secondary peaks strongly
interfere with the main peaks. It can also be seen from the results for
vowel /u/ uttered by a male in panel (d) and by a female in panel {h)
that Wong’s criterion shows quite noisy pictures. For all other vowels,
one can observe that Wong's methed produces sharp down-going edges
which correspond to the local maxima in both Strube’s eriterion and the
new criterion.

4.4 Application to sentences

In the preceding section, examples have been given to emphasize the
advantageous aspects of the new method for detecting glottal closure
instants. In those simple examples, short stationary speech segiments
were used and the peaks produced by the new 5VD-based method in
Fig. 4.4 were easy to pick out by a peak-picking algorithm. In order
to facilitate the peak selection in more realistic situations, we first use
a threshold to separate these peaks into isolated regions and then pick
the local maximum in each of the regions. Since the short time energy
of speech changes drastically, adaptive schemes should be implemented.
In order to isolate the peaks we can consider two schemes. One is to use
an adaptive threshold, and the other is to normalize the curve and then
to select peaks from it. The latter is similar to the solution adopted
by Wong who used the normalized residual energy in his glottal closure
detection method (Wong, Markel, and Gray, 1979).

We shall resort to the adaptive threshold solution, and the short
time energy of speech will provide the basis of thresholding technigue.
In the application to sentences, a relatively long interval of L samples is
used to calculate the short-term energy £;, and the Frobenius norm ¢p
is calculated from a relatively short interval of M samples. The short
interval is located in the middle of the long interval, which can avoid
using a lower threshold in voice onset region and a higher threshold in
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Figure 4.5: Adaptive threshold procedure. Curve Ep thresholded
by curve E;. A constant threshold Ex,, iz used to avoid the distor-
tion of the peaks. (a) The threshold method. (b) Isolated regions
containing the instants of glottal closure,

voice offset region. Therefore, the average energy per sample can be
obtained: :

E’l = E;/L

and
Ep =ep/N,

where N is the number of elements in the data matrix ( 4.1) . Therefore,
the following algorithm can be implemented to select peaks. i. e.

if (Ep — BE; > 0) then result = sqrt(E’F - ﬁE‘;) else result := (.
where sqrt represents square root operation and § is a scale factor to
change the threshold. Note that the long interval average E is less
than or equal to the maxima of the short-interval average Ep in the
above algorithm. Because £ changes much more smoothly than Er,
the algorithtn does not displace the peaks. Of course, the following
algorithm ean also be used:

if (Er — BEy, > 0) then result := sqri(Ep — ﬁE;p) else result := 0.
where E’[p is the value of the short time energy when Ep starts to become
larger than 2 E;. This threshold value is then kept fixed until Ep is falling



60

Chapter 4 Glottal closure detection

o

T
n

2 20
tma)

2 o "
time)

{a) and (b). Results from a male speech, “Do you
require any further transaction?”. The upper trace is the speech
signal and the lower trace the new criterion with the peaks indi-
cating the glottal ¢losure instants. Sampling frequency is 10kHz,
analysis length 30 sampies, the order of predictor 12. All re-

sults obtained from the preemphasized speech signal with a filter
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Figure 4.6: Same as panel (a) and (b), but with a female voice.



62 Chapter 4 Glottal closure detection

below the threshold. Fig. 4.5 illustrates the latter algorithm. Thus, the
threshold is constant in the selected peak regions and the peaks are not
distorted. This is why this second method of thresholding is preferable.

Choosing a proper threshold strategy is a delicate matter. In gen-
eral, the value # = 1 produces satisfactory results for most of the voiced
sounds. However, in some parts, it also selects secondary excitations,
which correspond to the glottal opening instants. These secondary ex-
citation instants can be deleted by considering that they have smaller
amplitude than the peaks nearest to them {or by choosing 3 > 1) and
they seriously deviate from the global pitch or long-term pitch period
measured by, for instance, the DWS method (Duifhuis, et al. 1982).

Fig. 4.6 (a) and (b) show the results obtained from a sentence, “Do
you require any further transaction?”, which is uttered by a male and
Fig. 4.6 (¢) and (d) show the result from the same sentence uttered by
a female. For the male voices the length of the long interval L is 100
samples, the length of the short interval M is 30 samples, and the order
of the predictor pis 12, and 3 = 1. For the female voices only the length
of the long interval is changed to 70 samples because of its shorter pitch
period. It can be seen that well-defined peaks clearly indicate the glottal
closure instants in the voiced regions, however, epochs are not defined
in the unvoiced segmernts.

4.5 Conclusion

In summary, a new epoch detection technique is proposed in which only
the Frobenius norm of the linear predictive matrix has to be computed.
The sequential computation of the Frobenius norm of the matrix is re-
duced to just the addition of the sum of the squared entries of the last
row of the matrix and the subtraction of the sum of the squared entries
of the first row of the preceeding matrix. Therefore, the new method is
computationally very attractive and more efficient than those of Strube
and Wong. As an additional benefit, the new method is less sensitive to
noise. Finally all three methods are interpreted in the unifying frame-
work of singular value decomposition.
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Chapter 5

Novel criteria of uniqueness for signal
reconstruction from phase *

Ahbstract

In this paper we propose a new approach for ascertaining
whether a signal is uniquely determined by its Fourier transform
phase. It is shown that uniqueness corresponds to the non-
singularity of a matrix which can be formed from the finite
length real sequence.

5.1 Introduction

ECONSTRUCTION of a signal from its Fourier transform phase or
magnitude are of special interest in the area of speech processing,
geophysical signal processing and image processing. Generally speaking,
we cannot determine a signal only from its Fourier transform magnitude
or phase. It is obvious that the magnitude of a signal sequence with
a determined magnitude , when it passes through an all-pass filter, is
unchanged, and that if a signal sequence with a determined phase is con-
volved with a zero phase sequence, the resultant sequence has the same
phase as the original. In 1980 Hayes, Lim and Oppenheimn gave some
conditions under which it is possible to reconstruct the signal sequence
from its phase or magnitude uniquely [1] [2]. These conditions were given
in the Z-transform domain. Other studies were focused on the zero dis-
tribution of the Z-transform of the reconstructed signal, and algorithms
for signal reconstruction under certain constraints were proposed [7] [8].
In order to gnarantee the uniqueness (to within a scale factor) of signal
reconstruction, constraints must be imposed on the Z-transform of the
signal or its zero distribution, or on the algorithms.
Generally speaking, we do not know the zero distribution of the
Z-transform of the finite length real sequence. To find the zeros of poly-

*Paper published in the IEEE Trans. on Signal Processing, Vol.39, pp.988-992,
1991,
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nomials of higher degree than five is a genuine nonlinear problem and
one must apply numerical methods, which are time-consuming and com-
plicated {3], The problem of accurately finding the zeros of high-order
polynomials ( of degree greater that 100) is an extremely difficult one
and the accuracy can not be gnaranteed.

In this paper, novel criteria are proposed for determining the unique-
ness of the reconstruction of a signal from its Fourier transform phase.
We can decide whether the reconstructed signal sequence is unique (to
within a scale factor) by determining whether a matrix formed by the
reconstructed finite length real sequence is singular. Thus, only elemen-
tary transformations such as Doolittle factorization, are needed to deter-
mine the singularity [4]. This method shows clear advantages over that
of Hayes in numerical stability and computation time. In section 2, we
discuss the criterion of uniqueness for reconstructing a one-dimensional
finite Jength sequence from its phase. In section 3, we present the cri-
terion of uniqueness for reconstructing a multi-dimensional finite length
sequence,

5.2 Unigueness of a one-dimensional finite length sequence

5.2.1 Reconsiruction from e continuous phase funclion

Let {zn,n =10,1,...,N — 1} be a finite length real signal sequence. Its
discrete Fourier transform is

N-1

= E zpexp(—juwn)

n=0

X(jw) = | X (jw)| exp(j¥a(w)).
From the above definitions, we have

T, sinwn
tan iz (w) = E}";, =0 = : (5.1)
n=0 In CO3WN

To reconstruct a sequence from 2 known phase tan ¢, (w), we also express
tan ¢ (w) as
N-1
., Sinwn
tan ¢g{w) = ol
E " On COSWT

(5.2)
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where {a,,n = 0,1,...,N — 1} is the reconstructed finite length real
sequence in some sense. For reconstruction, the avallable relation is

tan @, (w) = tan ¥, (w).

Equivalently,
N zasinen Y N-la,sinwn (5.3)
Ef o T cOsSWR Zn-‘ﬂ @ COS WA '
After reduction, then
N-1 N=1 N-1
E Tn z aisinw(n — 1) = 2¢ Z a; sinwi. (5.4)
== i=0 =0
For simplicity, we define the following vector § and matrix B:
S = (sinw, sin 2w, sin 3w, . . ., sin(N — 1)w)T
and
o 0 ¢ ¢ a2 da ... N1 0
iy ag 0 0 dg  dy4 0 0
B = : : : - : :
aN-3 2y-4 -.. @g 0 ay-—1 0 0
dy_3 fy_z ... 41 4dp 0 0 ... 0 0

In the same way, sequences {2,,n = 1,2,...,N = 1} and {an,n =
1,2,..., N — 1} can be written as follows:

xT - (z1,%2,.-.,@N-1)

and
AT = (ahah s uaN--l))

where T is a transpose operation. Note that 2y and ag are not induded
in the above vectors. Therefore, equation (5.4) can be changed into a
maitrix form as

(XTB - 2947)5 = 0. (5.5)

We know that function series {sinw?,i = 1,2,..., N — 1} are linearly
independent in the interval 0 < w « m. That is, the necessa.ry and
sufficient condition, under which the linear combmamon EN 1 eisinfw
is equal to zero,is {¢; = 0, =1,2,..., N —1}. Because the left-hand side



68 Chapter & Signal reconstruction from phase

of equation (5.5) is a linear combination of {sinﬁré,z‘ =1,2,...,N -1},
we can conclude that

(XTB - 204AT) = (0,0,...,0).

Thus,

BTX = #A. {5.6)
It is apparent that equation (5.6) is linear with respect to X, and that
X = i‘A is one of the solutions, which can be easily proved. Here

we have made an assumption that zy is not equal to zero. H matrix
B is nonsingular, then X' = 224 is the only solution vector. Thus the
reconstructed sequence is identical to the original sequence within a scale
factor. If matrix B is singular, the solution is not unique. That is, the
sequence reconstructed from phase is not unique.

Conversely, suppose that two finite length real sequences have the
relation, {agl) # ﬁaﬁz)}, A is a real number, and tany; (w) = tan s (w).
Matrices By and By are nonsingular. Then we have

B:IPAQ = ﬂ-gﬂAl
and
BY 4, = oV 4,
Consequently, 4; = fA,.
Therefore, the nonsingularity of matrix B is a necessary and sufficient
condition for unigue reconstruction of a finite length sequence from it
Fourier transform phase.

5.2.2 Reconstruction from discrete phase values

Now suppose we are given the value of the phase function tan i, (w)
only at (IN-1) different frequency point wy in the interval ¢ < wy < 7.
Substituting the value wy into equation (5.4), we have (N-1) equations.

STRTX = 2087 4, (5.7)
where
simun sinwsg ... sift

51N 2w ca e sin 2o _q

sin{ N — L)ap ... ... sin(¥ — 1wy
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We have assumed that w; # wj, if i # §, and @y C (0, 7). In addition,
functions {sin(iw),i = 1,2,..., N — 1} are linearly-independent in the
interval w C (0,7). The matrix S, is nonsingular, therefore equation
(5.7) and eqnation (5.6) are equivalent.

From the above reasoning, we conclude that: (1), if and only if the
matrix B, which is formed from a finite length real sequence, is nonsin-
gular, then the sequence is uniquely determined by its phase function,
and (2), if the phase function or its samples tan ), (wy) is given, the se-
quence can be reconstructed in several ways, such as an iterative method
with constraints [6]. Even if we do not know whether the reconstructed
sequence is unigue, we can check its matrix B to determine the unique-
ness.

5.8.3 Delerminaiion of singularity of matriz B and examples

To determine the singularity of the matrix B, we can use the well known
Doolittle factorization method [4], which is numerically stable. Consid-
ering the structure of the matrix B, We can speed up the computation.
Let B be partitioned in the form

By; By
B
( BZI -322 ) !

where By; and Bjs are square submatrices, so that

ap 0 ... 0 AN-m .. Gn_1 0

a7 a9 e 0 aEN_m+1l - ¢ 0
Bz = : : C y Brz = : : : ]

Om @m—1 ... o aN_1 0 ... 0

are triangular matrices, where m = (N — 1)/2 — 1, If (N — 1) is even;
otherwise m = (N — 2)/2. Because ag # 0, Byy is nonsingular and the
following identity

By Bipy_ [ C B I o
Bay By |\ 0 Ba P I}’

C = By — By1Byy By, P = By, By,

can be obtained, where I is a unit matrix and Bj,' is the inverse of By,.
It evidently follows that the singularity of B is determined by that of
matrix C, which is about half the size of the matrix B. Both Bi; and
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B;,' are triangular matrices, therefore we can save more computation
time.

We give two special cases in this section, When N = 1, the determi-
nant of matrix B, || B|| equals ag. The Z-transform of the sequence a,
15

X(z) = ag + G]P..’_i.

If ag # 0, then the sequence iz uniquely determined by its Fourier trans-
form phase.

When N = 3, || B|| = ao(ao—a2). fag # 0 and ay # a, the sequence
can be uniquely reconstructed. Its Z-transform is

X(z)=ap+ a2t + agz .

If ap = as, the two roots, z; and za, of polynomial X (z) have a relation
such that 2323 = ag/a2 = 1. That means they are the zeros in reciprocal
pairs or on the unit circle. Theoretically, any Z-polynomial of the finite
length real sequence can be factorized into the product of a number
of second order polynomials. So if a polynomial X (z) has no zeros in
reciprocal pairs or on the unit circle, the sequence is uniquely specified by
its phase, and vice versa. Suppose, for example, that one of the second-
order polynomials has a pair of reciprocal zeros, then the polynomial
X (%) can be written as

N-3
X(z)=(1+az P47 Z ciz .

i=0

It is easy to show that the matrix B becomes

(] 0 oo 0 0 [+1)] 1 ... CN-3 0
(] Ca .. 0 0 (5] cz ... 0 0
B = : - : E 5
CN-2 CN_a --- ¢cg 0 en-3 0 0 0
0 cCnN—-3 --- £1 &) 0 0 0 0

1 0 600 0 0 0

a 1 0 0 0 0 0

1 o« 1 0 0 00

*
0 1 a1 0 0 O
0 0 00 1 o 1
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Note that the first columns of the two first matrice are equal. There-
fore, the determinant value of the matrix B is equal to zero. This is in
agreement with Hayes’ conclusions [1].

5.3 Uniqueness of a multidirmensional finite length real
sequence

5.3.1 Reconstruction from a continuous phase function

Let {z(n;,ng,...,7m), 7 =0,1,...,N -1,k = 1,2,...,m} be an m-
dimensional finite length real sequence {m-D) with Fourier transform

X (&) = gw(ﬁ) exp(-ji o i),

where vector & = (wy,ws,...,wy), & = (n1,72,...,m), and & e 7
denotes the inner product of & and 7.
In & reasoning similar to that in the above section, we have

3" 2(@) Y a(@)sin{@ e (i - 3)} = 2(0) Y a(i) sin(@#7),  (5.8)

AF0 7

where 0 = (0,0,...,0).

In order to write Eq. (5.8) in matrix form, we define a mapping
relation between natural numbers and vectors. For any vector @ =
(n1,m2,...,Tm), there exists a number M, so that

M=n+nN+.. .+, N,

where 0 £ M < L, and L = N™ — 1. Conversely, for any M ¢ (0, L),
there exists an #i. For example, if m = 2N = 3 and @ = (1,2), then
M=14+2x3=17 When M =3,7 = (0,1).

According to the mapping relation, we can rewrite the m-D sequences
z(7t) and a(7) as

XT = {z(D),2(3),...,2(L)}

and
AT = {a(1),a(3),..., (D)},

Note that 2(6) and a(a) are not included in the above vectors.
We can now define a matrix B,, and a vector 5,, as:
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a(0) 0 ... 0 a() ... a(L} 0
g | D &0 0 L
E : : a(l) ... ... ©
aLZ1y ... ... ad) 0 ... 0 0

and
Sm = {sin(& » 1), sin(Z « &), sin(3 o @), .. ., sin(L « @)},

where i denotes a vector which is mapped from i. Since the functions
{sind » 7} are linearly independent, we have

BT X, = 2(0) Am. (5.9)

5.3.2 Reconstruction from discrete phase values

If the values of the phase function tan (&) are given at L different
frequency points wy (0 < wy < 7) in vector space & , equation (5.8 )
yields I equations. That is,

STBT X, = 2(0)ST Am, (5.10)
where
sinlew, sinTews ... sinleu
sin2 e ... sin2 e Wl
Sw =
sin L o o .. sinLewy

The matrix S, is nonsingular, so equation (5.10) reduces to (5.9).
Therefore, an m-D finite length real sequence can be uniquely spec-
ified by the Fourier transform phase, if matrix By, is nonsingular.

5.4 Conclusion

In this paper, the uniqueness of reconstructing a finite length real se-
quence from the Fourier transform phase is determined by the singularity
of matrix B or matrix B,,. This criterion is the same for the reconstrue-
tion from the phase function or from discrete phase values. To determine
the singularity of the matrix B or By, only elementary transformations
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such as Doolittle factorization are needed. The numerical treatment of
determining the rank of matrix B is much easier than as is used in an-
other metheod. The properties of the matrix B or B, also make the
calculation easier. When an iterative method is used to reconstruct a
sequence under certain constraints, we can determine the uniqueness or
the effectiveness of the constraints in this way. For a given sequence, we
cam also find out whether there is a unique mapping between the phase
and the sequence (to within a scale factor).
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Chapter 6

Masking of noise by broadband harmonic
complex sounds: implications for the processing
of complex sounds *

6.1 Introduction

6.1.1 Auditory masking and the auditory system

HEN we listen to two competing simultaneous or successive

sounds, one sound can reduce the ability of the ear to perceive the
other. The threshold at which a target sound is just audible is raised due
to the presence of the masker sound. Depending on the temporal rela-
tionship between the two sounds, if the two sounds are presented simul-
taneously we speak about simultaneous or spectral masking, and about
nonsimultaneous or temporal masking, if the two sounds are presented
in succession. Nonsimultaneous masking is further classified as forward
masking and backward masking, depending on whether the masker is
presented before or after the target.

In response to the incoming sounds, the auditory system first trans-
forms the sound pressure waves into traveling waves on the basilar mem-
brane. The vibration of the basilar membrane is then transformed into
neural activity which is sent to higher levels of the auditory system
through nerve fibers. The masking behaviour reflects both the mechan-
ical properties of the basilar membrane and the electrical firing char-
acteristics of nerve fibers in the auditory system. The masking of one
sound by another is therefore often used as a tool to explore the auditory
gystem and it can reveal the spectral and the temporal resolution of the
system.

In view of the relationships between masker and target mentioned

*Parts of this chapter were published in the Proc. Burospeech-91, Genova, Italy,
1991, pp.1125-1128 and as a poster at the Royal Society discussion meeting Auditory
Processing of Complex Sounds, Londen, Dec. 4-5, 1981,
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above, two extreme choices for masker and target are often made to
simplify the experiment. The signals chosen are either concentrated in
the time demain such as clicks or concentrated in the frequency domain
such as sinusoids. As in a general system analysis, signals with very
compact distribution in the frequency domain (sinuscids) are often used
as maskers or targets so that an appropriate frequency resolution can be
measured. On the other hand, sounds with compact time distribution
are utilized in the masking experiments in order to measure temporal
resolution.

Masking experiments of pure tones by pure tones and by narrow-
band noise (target signal coneentrated in the frequency domain) have
revealed that the auditory periphery resembles a bank of bandpass filters
(Wegel and Lane, 1924; Fletcher, 1940; Egan and Hake, 1950; Schafer
et al., 1950; Ehmer, 1959; Small, 1959). This filter bank forms the ba-
sis for a frequency analysis of incoming sounds and the resolution of
this frequency analysis is related to the bandwidth of the filters. These
bandwidths, called critical bands (Fletcher, 1929), have been measured
psychophysically in several ways (Bos and de Boer, 1966; Patterson and
Moore, 1986) and were found to be systematically ordered, with the
widest one corresponding locally to the base of the cochlea and the
smallest one to the apex {Greenwood, 1961). The filter-bank structure
and the values of the critical-band width are approximately in line with
direct measurements of mechanical frequency separation of the cochlea
along the cochlear partitions (Bekesy, 1960; Yates, 1986). They are fur-
ther supported by the measurement of neural activity of auditory nerve
fibers that is described by tuning curves (Pickles, 1986).

This spectral masking behaviour can also be described by considering
that the excitation pattern of a pure tone on the basilar membrane is
quite spread. Therefore, the excitation patterns produced by the masker
and the target overlap and interact with each other (Zwicker, 1970).
Moreover, the pure-tone masking behaviour tells us that the system
is nonlinear and the spread of masking towards higher frequencies is
strongly dependent on masker level. This is manifested by the fact that
the threshold of the target at the high-frequency side of the masker
increases faster than the sound pressure level of the masker (Wegel and
Lane, 1924; Ehmer, 1959; Schone, 1977).

Forward masking and backward masking patterns, on the other hand,
are obtained by using short-duration target signals (for review see e.g.
Duifhuis, 1973; Fastl, 1976, 1976/77, 1979). In the experimental config-
uration, the target signal starts after the offset of the masker (forward



6.1 Introduction 7

masking) or ends before the onset of the masker (backward masking).
The target threshold is typically determined as a function of the fre-
quency of the target signal, the masker level and the time delay be-
tween the masker and the target. Broadband noise, pure tones and
narrowband noise are often used as maskers and pulsed pure tones as
targets in the forward-masking paradigm (Duifhuis, 1973; Fastl, 1976).
Even pulsed pure tones with a short duration of 2 or & ms, producing
wide spectral splatter, can be used to evaluate temporal fine structures
in high-frequency regions (Fastl, 1976; Zwicker, 1976b). The temporal
masking patterns reflect the temporal resolution of the auditory system.
Two important processes of the auditory pathway are revealed in these
patterns. Ome is the ringing of the auditory filter in response to the
masker. This ringing response persists after the offset of the masker and
can overlap temporally with the target signal. The other process is due
to neural adaptation because the inner hair cells and the auditory nerve
fibers deplete their energy in respomse to the masker and only slowly
recover from it (Duifhuis, 1973; Jesteadt et al., 1982; Moore and Glas-
berg, 1983a). In general, target thresholds in forward masking increase
monotonically with masker level and decrease with masker-signal delay.
In contrast to simultaneous masking, the target threshold in forward
masking increases less than proportional with an increase of the masker
level (Jesteadt et al., 1982; Moore and Glasberg, 1983a).

In this paper, we are concerned with the masking properties of har-
monic complex sounds. It is therefore worthwhile to consider dynamic
stimuli in terms of time-frequency representation (or spectro-temporal
representation) in the masking experiments. The anditory system can be
considered as a multi-resolution device which has a decreasing frequency
resolution and an increasing temporal resolution with the increase of the
center frequency of the channel.

6.1.2 Auditory behavior and speech processing

Auditory masking can work against our ability to perceive a useful or
meaningful sound in the presence of competing sounds. The same mask-
ing properties, on the other hand, ¢an work favorably by making quan-
tization noise inaudible in bit-compressed coding of aundio signals or
speech. One purpose of speech coding is to reduce the bit rate of infor-
mation flow in communication channels and storage media. Simplifying
the representation of the speech signals almost always results in quan-
tization noise. Ideally, this quantization moise should be inaudible in
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the reproduced signal. This can be achieved by taking care that the
quantization noise is masked by the speech sounds. As we know, speech
signals are spectrally complex and dynamic. The global spectra of the
signals over a short interval of time show peaks and valleys, but the
quantization noise generally has a flat spectrum. Therefore, spectral
weighting has been used to shape the speetrum of the noise such that
its power spectrum is sitnilar to that of the speech and the noise can be
masked effectively (Atal, 1988). This spectral weighting of the noise is
called perceptual weighting. In the coding of wideband signals, the use
of perceptual weights has been remarkably successful, allowing wideband
signal representation with an average of four bits per sample (Johnston,
1988).

Speech signals are often manipulated or transformed for different
purposes without damaging their subjective sound quality, such as in
pitch manipulation, phase equalization and dispersion. The long-term
spectrum of the speech is usually preserved after these manipulations,
but the phase spectrum has often been totally changed for each pitch
period of the speech (Strube, 1982; Moriya and Honda, 1986; Charpen-
tier and Moulines, 1989; Quatieri et al., 1990). Such manipulations and
transformations take advantage of the fact that the human anditory sys-
tem seems rather insensitive to phase. The phase spectrum does play a
role, however, in judging the sound quality (Goldstein, 1967; Plomp and
Steeneken, 1969) and the pitch (Houtsma and Smurzynski, 1990), but
within limits. Therefore, it is a very interesting and practical question
to what degree and how phase plays a role in determining speech sound
quality.

Finally, there also has been the question of how to choose the excita-
tion signal in the source-filter model to produce a natural sound. It is a
well-known fact that the LPC synthesizer with pulse excitation produces
mechanically sounding speech (Markel and Gray, 1976). If an excitation
function more similar to the glottal pulse shape is chosen, more natu-
ral sounds can be obtained (Rosenberg, 1971; Holmes, 1973). Since the
shape of the glottal pulse is determined by its Fourier phase, given a flat
amplitude spectrum, these results show that the phase spectrum plays
an important role in judging the guality of speech sounds.

We have seen that auditory masking phenomena have a great impact
on the processing of speech such as in speech coding. However, the
perceptual weights, used in speech coding so far, have been based on
the masking patterns of pure tones by noise bands or masking of noise
bands by pure tones only. The response of the auditory pathway to
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complex signals like speech, however, cannot easily be predicted from
the response to simple sinusoids or the results from simple masker-target
setups.

It is the intention of the present masking study to make a contribu-
tion to the understanding of the perceptual correlates of speech process-
ing, such as speech coding, speech synthesis, and speech manipulation.
The masking technique is used not only to provide threshold values of
target signals in complex maskers, but also to shed light on how the au-
ditory system processes complex sounds. In speech coding, for instance,
quantization noise is the target, speech sounds are the maskers, and the
noise should be inaudible in the coded speech. In order to achieve our
goal, a series of experiments with periodic pulses and synthetic vowels
as maskers and noise bands as the targets are performed. The maskers
are still simple compared to speech signals. This simplification, however,
makes it possible to systematically study some important aspects of a
signal and to facilitate the experiment. The spectrally flat signals are,
for instance, also used as the excitations in speech synthesizers for voiced
sounds. Based on the experiments, some auditory correlates of speech,
related to Lmnitations of the anditory system such as phase seunsitivity
and masking, are discussed.

6.2 Experimental method

6.2.1 (@eneral procedure

A two interval, two alternative, forced choice (2I2AFC), adaptive proce-
dure was used to determine thresholds in all experiments (Levitt, 1971).
Each interval contained either 200 ms of masker alone or 200 ms of
masker plus target, both intervals including 25-ms sinusoidal onset and
offset ramps. The pause between the two sound intervals was 500 ms
and the order of two intervals was varied randomly. The level of the
target was initially well above the expected threshold. In a two-down
ane-up procedure, shown in Fig. 6.1, the target level was decreased af-
ter two consecutive correct responses at the same signal level, and was
increased after each incorrect response. The amount of level change was
determined by a varying step size. For each block of trials, a step size of
8 dB was used until the first reversal, which was defined as a transition
from down to up or vice versa, as shown in Fig. 6.1. A step size of 4
dB was then used until the second reversal, in order to quickly reach
the threshold value. After the third reversal the step size was 2 dB.
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Figure 6.1: Two-down one-up 2I2AFC procedure. x shows a
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The average of the midpoints between consecutive reversals, exeluding
the first three points, was taken as the threshold level. This procedure
theoretically estimates the 70.7% correct response point of a psycho-
metric funetion. Fourteen reversals were taken for each data point and
this procedure was repeated three times for each parameter and subject.
The response time was controlled by the subjects.

6.2.2 Stimuli

All stirnuli were generated by a computer and had a dynamic range
of more than 90 dB (16 bits). In order to reduce spectral shaping by
the sample-hold device in the D/A converters, they were operated at a
sampling frequency of 20 kHz.

Maskers were synthesized by adding up harmonics of a certain fun-
damental frequency, according to the following formmula:

M
m(t) =Y A; cos(2miFot + ) (6.1)

i=1
where Fy is the fundamental frequency and M was chosen such that
the spectrum of m(t) covered the frequency range up to 10 kHz. When
the signal was delivered to the headphones, its upper spectral edge was
limited by a lowpass filter with a cutoff frequency of 7.8 kHz (see section

Apparatus and subjects).

In the experiments, the global spectral shape and the phase rela-
tionship between the harmonics of the masker were manipulated. The
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spectral slopes used were 0 dB/oct (flat spectrum), -3 dB/oct, and -6
dB/oct, which corresponded respectively to choosing 4; = 1, A; = 1/v/%,
and A; = 1/i. The phase relationship between the harmonics of the
masker was chosen as follows. For zero-phase maskers, ¥; was equal to
zero for all i. For cosine-sine alternating-phase stiznuli, 14 was equal
to n/2 for odd harmonic numbers and zero for even harmonic num-
bers. Maskers with two Schroeder-phase conditions were also used where
¥ = —i(i + 1}r/M and ¢4 = +i(i + 1) /M, which will be respectively
called masker m_ and masker m_ for convenience. In Fig. 6.2, examples
of the masker waveforms are plotted which have been normalized to the
same RMS value. It can be seen that the zero-phase masker has a much
larger peak factor than the Schroeder-phase maskers. In addition, the
peak factor also becomes smaller for complexes with a tilted spectral
slope.

The target signal was either a narrowband or a broadband noise of
200-ms duration. These target signals were calculated by adding equal-
amplitude sinusoids with a spectral spacing of 4 Hz:

s(t) = CY cos(2miFnt + ¢;) (6.2)

where ¢; is the phase angle randomly distributed over the range (—=, ),
Fy, was equal to 4 Hz, and ¢ was chosen such that the above formula conld
praduce a particular narrow- or wideband noise.

The threshold of the noise band in a specified frequency region was
calculated as the ratio of the average energy of the noise to that of the
masker in a 1-Hz band. In other words, the threshold, T D, of the noise
target was defined as the ratio of the spectral densities between the
target and the masker, expressed in decibels:

C¥F,

(6.3)

where A%/2F, and C?/2F, are the spectral power densities of the masker
and the target at the center frequency of the noise band.

6.2.3 Apparatus and subjects

Stimuli were generated through two equal D/A converters and filtered
by two lowpass filters., The cutofl frequency of the lowpass filters was
7.8 kHz, with an attenmation of 90 dB/octave. Programmable analog
attenuators were used to control the levels of the maskers and targets.
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Figure 6.2: (a) Waveform of the masker with a flat spectrum
and #zero phase. (b) masker with a spectral slope -3 dB/oct and
zero phase. (c) masker with a spectral slope -6 dB/oct and zero
phase. (d) masker with a flat spectrum and alternating phase.
(e) the m_ masker. {f) the m, masker. Waveforms in (a)-(d) are
normalized to the same RMS value, while the EM3 value for the
Schroeder-phase maskers is a factor 5 larger. For the latter two,
the time scale is also increased by a factor 2.



6.3 Experiment 1 83

The stimuli were presented diotically through ETYMOTIC RESEARCH
ER-2 insert earphones, which have a flat spectral response up to 10 kHz.
Colleagues from the laboratory as well as paid subjects participated in
the experiments. They all were about at age 30 and had normal hearing.

6.3 Experiment 1

Detection of narrowband noise of critical-band width in spectrally-flat
and zero-phase harmonic complezes

This experiment is concerned with the threshold of narrowband noise
as a function of fandamental frequency of the masker and of the cen-
ter frequency of the target. The broadband maskers (0-10 kHz) were
spectrally-flat harmonic complex sounds with the initial phases of the
harmonics set to zero. The fundamental frequencies of the complexes
were 100, 150, 200, 250 and 400 Hz.

Noise bands with critical-band widths served as targets. The values
of the critical-band width were computed according to the formula pro-
posed by Zwicker and Terhardt (1980). In the low-frequency region, the
spectral spacing of the masker components was larger than the band-
width of the target signal. In this region, the spectrum of the target was
either centered on a specific harmonic or placed between two snccessive
harmonics. When the bandwidths of the noise targets were greater than
the spacing of two successive harmonics, the noise targets were added
without consideration of the harmonic structures of the maskers. The
maskers were presented at a sound pressure level of 80 dB.

6.3.1 Results

Three subjects participaied in this experiment. Since their results were
simnilar, only the averages of the measurements are presented. Figs. 6.3
(a-e) show the results for masker fundamental frequencies of 100, 150,
200, 250 and 400 Hz, respectively.

One sees from panels (a-c) that in the high-frequency region, the
threshold of the target decreases with an increase of the center frequency
of the noise band. On the other hand, in the low-frequency region in
panels (b) and (c), and to a certain extent in panel (a), the threshold
of the noise target increases globally with an increase of the center fre-
quency of the noise band until the center frequency reaches a critical
point. This critical point corresponds to the maximum of the threshold
and is dependent on the fundamental frequency of the masker.
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Figure 6.3: Thresholds of noise bands of critical-band width in
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(b) the 150-Hz masker. (c) the 200-Hz masker. (d) the 250-Hz
masker. (e) the 400-Hz masker. Target threshold represents the
ratio of the spectral densities of target and masker expressed in
decibels. Masker level is 80 dB SPL.
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Besides the global increase of the thresholds of the noise targets
towards high frequencies, the thresholds of the noise bands in the low-
frequency region show also peaks and dips (most clearly seen in panels
¢ and d). Peaks reflect the thresholds of the noise targets which have
a center frequency equal to the frequeney of a harmonic of the masker
and dips reflect the thresholds of the noise targets which are situated
between two successive masker harmonics.

6.2.2 IMscussion

The masking patterns in this experiment are strongly dependent on
the relationships between the fundamental frequency of the masker and
the bandwidth of the auditory filter. In the low-frequency region, if
the bandwidth of the filter is smaller than or close to the fundamen-
tal frequency of the masker, the threshold for noise targets is predomi-
nantly determined by the sharpness of spectral resolution. In the high-
frequency region, auditory filters with a wide bandwidth pass through
more than three harmonics and the interaction of these harmonics pro-
duces a temporally modulated waveform. The detection of noise targets
can then easily be realized by temporally analyzing the masker.

Thresholds which are mainly determined by spectral resolution re-
flect the harmonic structure of the maskers. In the low-frequency region,
the masking patterns show clear peaks and dips for the pulse trains with
high fundamental frequencies because the critical-band widths at low
frequencies are smaller than the space between harmonics. Individual
masker harmonics therefore become visible in the masking patterns. For
maskers with high fundamental frequencies, the detection i1s dominated
by the spectral resolution up to very high frequencies (see Figs. 6.3 d
and 6.3 e).

For maskers with a low fundamental frequency, the threshold of the
targets at high frequencies decreases as a comsequence of the increas-
ingly better temporal resclution of the anditory channels and as a result
of the energy increase of the critical-band noises towards high frequen-
cies. In these situations, the response of the anditory filter to the pulsed
maskers decays fast and the filtered waveform are therefore more deeply
modulated. At a fixed channel, this modulation becomes shallower for
maskers with higher fundamental frequencies. Consequently, the thresh-
olds of the noise bands in maskers with higher fundamental frequencies
are higher.

As the critical-band width increases monotonically with the increase
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of frequency, the spectral resolution degrades towards high center fre-
quencies and the temporal resolution improves. Masking patterns there-
fore show global maxima in the middle frequency region in Figs. 6.3 (b-c),
but the global maxima are less pronounced in the Figs. 6.3 (a) and (d),
corresponding to maskers with fundamental frequencies of 100 and 250
Hz.

The results suggest that the detection of targets in harmonic complex
tones is optimally realized by listening to either the spectral valleys of
the masker or the valleys in the temporal envelopes of the masker. Since
the envelopes of the auditory filter responses represent a distribution
of the energy of the masker in the time-frequency plane, the masking
patterns could be qualitatively explained by examining the valleys in the
time-frequency distribution of the masker energy. Figs. 6.4 (a) and (b)
show the envelopes of the responses of a cochlear-filter bank to the 100
and 400-Hz maskers. Each filter has an impulse response of a gamma-
tone filter (Patterson, 1987). The center frequencies of the in total
128 filters were linearly distributed in the range from 0 to 5 kHz. The
envelopes were obtained by Hilbert transform and are represented on a
decibel scale. By locking at the low frequency region of both panels in
Fig. 6.4, the spectral composition of the two maskers becomes apparent.
Due to the wider spacing of the harmonics of the 400-Hz masker, the
spectral valleys are much wider and deeper for the 400-Hz masker than
for the 100-Hz masker. At high frequencies, on the other hand, the
temporal modulation is the obvious feature. Due to the longer period of
the 100-Hz masker, the temporal valleys are much wider and deeper for
the 100-Hz masker than for the 400-Hz masker. Finally, one can see that
the transition from spectral valleys to temporal valleys occurs at a much
higher frequency for the 400-Hz masker than for the 100-Hz masker.

Figs. 6.5 (a) and (b) show two samples of temporal envelopes at 4
kHz for the two maskers. The solid line represents the envelope of the
response to the masker alone and the dotted line the response envelope
for the masker plus noise target at threshold. This analysis suggests
that subjects are indeed able to “listen into the deep temparal valleys”
of the 100-Hz masker and that therefore less target energy is necessary
to reach the threshold.

These results are, in principle, in agreement with the masking
patterns of pure-tone targets masked by harmonic complex sounds
(Duifhuis, 1970; Schroeder and Mehrgardt, 1982; Kohlrausch, 1992).
Duifbuis (1970) examined the ability of the auditory system to perform
spectral and temporal analysis by using zero-phase harmonic complexes
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Figure 6.4: (a2) Envelopes of gamma-tone filter responses to the
160-Hz masker with a flat spectrum and zero phase. (b) Envelopes
for the 400-Hz masker with a flat spectrum and zero phase.
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plus noise signal at threshold.

as maskers. In one of his experiments he found that a pure tone, which
was added in phase with the harmonic component of the masker, was
detected by spectral analysis of the maskers for low harmonic numbers,
and by temporal analysis of the maskers for high harmonic numbers.
In addition, the masking period pattern of the harmonic complexes ob-
tained with pulsed tones as targets (Duifhuis, 1971) clearly showed that
the detection of the target was realized by listening during the valleys
of the cochlear-filter responses to the maskers.

The masking of a pure tone by a harmonic complex with harmonic
amplitnde proportional to 1/f and zero phase also revealed the ability
of the auditory system to perform a temporal analysis of the masker
(Schroeder and Mehrgardt, 1982). In this experiment, the threshold of
a target tone at 1200 Hz monotonically increased with the increase of the
fundarnental frequency of the masker, until the fundamental frequency
reached 150 Hz, and remained constant for higher fundamental frequen-
cies. Thus, for fundamental frequencies below 150 Hz, the detection of
the 1200-Hz target is dominated by temporal analysis. This corresponds
to our findings that the threshold of the noise band at 1200 Hz is located
at the threshold plateau in the 150-Hz masker, i.e. at the transition be-
tween temporal and spectral analysis of the 150-Hz complex.

Finally, a quantitative comparison can be made between the thresh-
olds of noise bands and thresholds of pure-tone signals masked by com-
plex tones of 20 harmonics with a fundamental of 100 Hz (Kohlrausch,
1992). For a comparison, the thresholds from the different experiments
have to be converted into ratios of spectral densities of targets and
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maskers as defined in our experiment. We can then easily compare
the thresholds on the basis of the target power in a critical band due to
the fact that the energy of the target in a critical band is integrated for
detection. The thresholds from the present measurements expressed as
the total power of the narrowband noise targets relative to the spectral
level of the masker are 3 dB and 2 dB at frequencies of 500 Hz and 1
kHz respectively. This compares well with the corresponding level of 1
dB and -2 dB found for the pure tone targets (Kohlransch, 1992).

So far, the masking patterns in this experiment were assumed to be
given by the envelope of the output of the auditory filters. No attempt
was made to aceount for nonlinear characteristics and phase dispersion of
the auditory system, although they are very important factors to quan-
titatively describe the masking pattern of temporal masking (Jesteadt
et al., 1982; Schroeder, 1975). These two factors will be studied in the
experiments that follow, The envelopes of waveforms in the outputs of
the filters represent their short-time energies and were already nsed as a
decision criterion to explain masking data (Martens, 1982; Kohlrausch,
1988). It is interesting to see from panels (a} and (b) in Fig.6.5 that
the valleys in the envelope of the 100-Hz masker are more than 40 dB
below the valleys in the envelope of the 400-Hz masker. The threshold
difference, however, is only about 25 dB. It is most likely to assume that
further lowpass filtering and neural adaptation processes would reduce
the difference in the depth of the valleys. Alternatively one could think
of a much narrower bandwidth of the auditory filter than that given
by the gamma-tone filter bank. However, in order to explain the ex-
perimental difference by narrowing the filter bandwidth only, one would
need a reduction factor for the bandwidth of more than three. Thus we
conclude that the thresholds are indeed influenced by neural adaptation.
The data obtained from the present experimnents can therefore only be
qualitatively explained from the spectro-temporal representation shown
in Figs. 6.4 and 6.5.

6.4 Experiment 2

Masking of broadband noise by specirally-flat and zero-phase harmonic
complex sounds

Masking of eritical-band neise by broadband maskers has been studied
in the previous experiment. Since the energy of the noise targets was
concentrated in one critical band, the detection of the noise targets is
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predominantly determined by the auditory response of a single channel.
In practice, noise as produced by quantization is a wideband signal.
For a broadband noise target, the energy in different critical bands will
influence its threshold in different ways, depending on the spectral and
temporal structures of maskers. Based on the previous experiment, one
can expect that the thresholds of broadband noise in a masker with a
low fundamental frequency will be mainly determined by the temporal
analysis. For a masker with a high fundamental frequency, on the other
hand, thresholds will be determined by auditory frequency analysis. To
investigate this experimentally, the energy of a broadband noise target
can be limited to contain only high frequencies or low frequencies by
highpass or lowpass filtering of the noise.

Broadband noise signals were generated in this experiment by adding
sinusoids from 10 Hz to 5 kHz with a frequency spacing of 4 Hz. The
targets were produced from these broadband noise samples by lowpass
or highpass filtering through a programmable DIFA filter that had a
cutoff attenuation of 180 dB/oct. The thresholds of the targets were
determined as a function of the cutoff frequency of the filter. Maskers
were spectrally-flat and zero-phase harmonic complexes with fundamen-
tal frequencies of 100, 200, and 400 Hz. Maskers were presented at a
gound pressure level of 80 dB.

6.4.1 Resulls

The results, being the average from two subjects, are shown in Fig. 6.6.
The panels (a-f) show the thresholds of the filtered noise target in the
presence of maskers with fundamental frequencies of 100, 200 and 400
Hz, respectively. The three panels to the left show results for lowpass-
filtered and the three panels to the right show results for highpass-
filtered noise (A in the figures). For a comparison, the diamonds (<) in
the figure show threshold values which are estimated from the thresh-
old patterns of the critical-band noise targets for the three maskers in
Fig.6.3. The estimation is based on the minimum of the critical-band-
noise thresholds within the passband of the broadband noise.

One sees from panel (a) in Fig. 6.6 that the threshold of the lowpass-
filtered noise in the 100-Hz masker increases sharply with decreasing
cutoff frequency. For the maskers with fundamental frequencies of 200
and 400 Hz, however, thresholds remains rather constant in the cutoff-
frequency range from 500 Hz to 5 kHz, as can easily be seen in panels
(b) and (c).
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Figure 6.6: Left panels: Thresholds of lowpass-filtered noise
targets (A) are plotted as a function of the cutoff frequency.
Right panels: Thresholds for highpass-filtered noise targets (A).
‘Threshold values (<*) are estimated from the minima in the pass-
band regions of the masking patterns in Fig.6.3. Parameter is the
fundamental frequency of the maskers. Masker level is 80 dB SPL.
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The threshold of the highpass-filtered noise target in maskers with a
fundamental frequency of 400 Hz decreases significantly with a decrease
of the cutoff frequency (panel ). For maskers with fundamental fre-
quencies of 100 and 200 Hz, thresholds show little change in the cutoff
frequency range from 500 Hs to 4 kHs.

6.4.2 Discussion

As predicted from Experiment 1, the masking of broadband noise targets
by harmeonic complex tones is mainly determined by the detection of
these noise targets in specific frequency regions. In these regions, the
masker 15 best resolved either in the frequency domain or in the time
domain. For lowpass-filtered noise targets, the threshold in the masker
with a fundarmenta) frequency of 100 Hz increases with ‘a decrease of
the cutoff frequency of the lowpass filter (see A, Fig. 6.6 a). This is
in line with the experimental finding in Experiment 1, as can be seen
from the nearly identical course of the prediction (see <). Because
the threshold minimunm for the narrowband noise targets in a masker
with a fundamental of 200 Hz was situated in the low-frequency region
{see Fig. 6.3¢c), lowpass filtering of a wideband noise target does not
reduce the noise energy in this region and therefore does not significantly
influence its threshold. This argument also applies to the thresheld for
lowpass-filtered noise targets in the 400-Hz masker, where the detection
of noise target is also mainly determined by the presence of noise energy
in the low frequency region.

For highpass-filtered noise targets, where the detection of targets in
the 100-Hz masker is predominantly determined by its high-frequency
energy, the decrease of the cutoff frequency does not influence detection
and the threshold remains constant (see A in Fig. 6.6d). On the other
hand, when the threshold of the noise target is mainly determined by its
lowest spectral comnponent, as is true for the 400-Hz masker, detection
of noise targets is further improved by a decrease of the cutoff frequency
and the threshold decreases (see A in Fig. 6.6 f). The thresholds of
highpass-filtered noise targets agree well with the threshold minima (O)
of the noise bands, which are estimated from the region above the cutoff
frequency in Fig.6.3.
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6.5 Experiument 3 |

Masking of narrowband noise by broadband harmonic complex sounds
as & function of spectral tilt and level

The detection of noise targets in maskers composed of equal-amplitude
harmonics has been studied in the two previous experiments. Since nat-
ural sounds such as speech have in general some spectral tilt, it is more
realistic to investigate the detection of noise targets in such maskers.
Tilting the spectrum of the masker while keeping its overall level con-
stant will redistribute the energy of the masker in the frequency do-
main. The local spectral level of the masker is therefore a function of
compenent frequency. In addition, the waveform of the maskers is more
dispersed in time than for the flat-spectrum signal (see Fig. 6.2). There-
fore, for the purpose of separating the influence of masker level and of
spectral tilt on threshold, the maskers with spectral tilts are presented
at different sound pressure levels.

In a pilot experiment that was concerned with spectral slope effects
only, the narrowband noise targets were centered at 1000, 1414, 2000,
2828, and 4000 Hz. Their bandwidth was equal to 10% of their center
frequency, which is somewhat less than their corresponding critical-band
width. The maskers were spectrally tilted by 0, -3, and -6 dB/oct and
consisted of zero-phase harmonics with a fundamental frequency of 100
Hz. The rnaskers were presented at an overall sound pressure level of 64
dB.

In the experiment that dealt with masker level effects, narrowband
noise targets were centered at frequencies of 500, 1000, 2000 and 4000
Hz, with bandwidths of 100, 100, 200, and 400 Hz, respectively. The
sound pressure level of the masker was changed from 44 dB to 64 dB in
steps of b dB for maskers with a spectral slope of 0 dB/oct, and in steps
of 10 dB for maskers with spectral slopes of -3 and -6 dB/oct.

An important remark is necessary with respect to the expected level
effects. First of all, all thresholds are expressed relative to the spectral
density of the masker. Thus, if target thresholds (expressed in dB SPL)
vary in the same way as the masker level, the (relative) target thresholds
remain constant. If target thresholds increase less than the masker level,
the (relative) thresholds decrease, and we say that the target becomes
better audible at higher masker levels, This behaviour is expected for
temporal resolution. In the case of spectral resolution, on the other
hand, target thresholds increase faster than the masker level. Thus the
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Figure 6.7: Thresholds of noize bands in the 100-Hz maskers with
spectral slopes of 0 dB/oct (A), -3 dB/oct (<} and -6 dB/oct (7).
Masker level is 64 dB SPL.

(relative) thresholds increase and we say that the target becomes less
audible at higher masker levels.

For spectrally tilted maskers, the spectral level is of course a functicn
of frequency. The threshold of the narrowband noise targets was there-
fore defined as the spectral density relation between the target and the
masker at the center frequency of the target noise, expressed in decibels.

6.5.1 Results

Results for the pilot experiment were obtained from three subjects.
The average thresholds are plotted in Fig. 6.7. One sees that the thresh-
old for the noise targets in the spectrally-flat masker is the lowest and
that it decreases strongest towards high frequencies. The threshold for
the masker with a spectral slope -6 dB/oct is the highest and remains
rather constant in the whole frequency region.

The measurements for variable masker level were performed with two
subjects. The average thresholds are plotted in Figs. 6.8 (a-c) against the
center frequency of the narrowband noise target, with the sound pressure
level as a parameter. One sees from Figs. 6.8(a-c) that the threshold
of the narrowband noise signal increases when the sound pressure level
decreases from 64 to 44 dB. The threshold increase is the largest for
the spectrally-flat masker. The increase of thresholds is also the largest
at high frequencies. In general, the increase of thresholds due to the
decrease of masker level is redueed in the maskers with a spectral slopes
of -3 and -6 dB/oct. Towards low frequencies, the level effect becornes
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Figure 6.9: Envelopes of gamma-tone-filter responses ai 4 kHz for
the 100-Hz maskers with three different spectral slopes: 0 dB/oct
(solid line), -3 dB/oct (dashed line) and -6 dB/oct {dotted line).
The maskers have the same harmonic amplitude at 4 kHz.

small for all three maskers. In addition, for the masker with a spectral
slope of -6 dB/oct, one sees that the threshold of the target at 500 Hz
increases slightly with the increase of the masker level.

6.5.2 Discussion

The results shown in Fig. 6.7 indicate that the spectral slope of the
masker has significant influence on the thresholds of narrowband noise
targets. The differences between the thresholds in the three spectrally-
tilted maskers increase with an increase of the center frequency of the
noise signal. There are two factors contributing to these threshold differ-
ences, On the one hand, the modulation depth in the temporal waveform
at the output of auditory filters is reduced as a result of spectral tilt.
This can be seen from Fig. 6.9, where the envelopes of the auditory
filter responses to the three maskers at 4 kHz are plotted on a decibel
scale. The auditory filter i1s here simulated by a gamma-tone filter and
the spectral levels of the three maskers at 4 kHz are identical. The en-
velopes for the three maskers with spectral slopes of 0, -3 and -6 dB/oct
are shown by solid, dashed and dotted lines, respectively.

On the other hand, due to the spectral tilt, the local spectral levels
are different if the three maskers are presented at the same overall level.
As the detection of narrowband noise targets in the measurements is
predominantly determined by temporal resolution of the anditory sys-
tem, sirnilar level effects as seen in temporal masking will influence the
noise thresholds in our measurements. It has been shown that in for-
ward masking the ratio between changes in threshold of the target and
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changes in sound pressure level of the masker is less than one {Jesteadt
et al., 1982). In other words, the target threshold does not correspond
to a constant target-to-masker ratio; it decreases with an increase of
masker level. Since, in our measurements, a steeper slope of the masker
level is associated with a “lower masker level”, these level effects are a
second contribution to the high thresholds for sloped vs. flat-spectrum
maskers,

In contrast to thresholds at high frequencies, the threshold of a noise
target at 500 Hz in a masker with a spectral slope of -6 dB/oct In-
creases somewhat with an increase of masker level (see Fig.6.8 c). This
behaviour is expected, if spectral resolution and, especially, upward
spread of masking plays a dominant role (Wegel and Lane, 1924; Ehmer,
1959; Schoéne, 1977). For a masker with a spectral slope of -6 dB/oct,
the spectral level at low frequencies is quite high. For example, the
first harmonic of the masker is 18 dB higher than in the spectrally-flat
masker. Due to the upward spread of masking, the threshold should
therefore increase with an increase of masker level.

We have suggested two possible factors which contribute to the
threshold differences at high frequencies in Fig. 6.7 for the spectrally-
tilted maskers. It is not clear, however, how much each of the two factors
contributes to the differences. This leads us to the discussion of the re-
sults obtained by varying the overall masker level. The results shown in
Figs. 6.8(a-c) indicate that the threshold of the noise target (expressed
relative to the spectrum level of the masker) changes systematically as
the sound pressure level changes. The rate of the threshold change is
strongly dependent on the center frequency of the noise target. This is
clearly shown in Fig. 6.10 for the spectrally-flat masker. The thresholds
are replotted as a function of sound pressure level of the maskers with
the center frequency of the noise target as a parameter. The data in
Fig. 6.10 are well fitted by straight lines. One sees from Fig. 6.10 that
the slope of the straight lines becomes steeper with an increase of the
center frequency of the noise target. This implies that the influence of
level effects on the target thresholds decreases as the auditory responses
to the masker bacome less modulated.

We have shown that the change of threshold can be caunsed by the
change of the temporal waveforms and the change of local seund pres-
sure levels. Since the thresholds of the narrowband noise targets in the
spectrally-flat masker as a function of masker level are fitted quite well
by straight lines, we can interpolate these data to an arbitrary sound
pressure level in the region we have used. In this way, we can compensate
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Pigure 6.10: Thresholds of noise bands in spectrally-flat, zero-
phase maskers as a function of masker level. The cenier frequency
of the noise band is the parameter: 4000 Hz {A), 2000 Hz (<),
1000 Hz (~7) and 500 Hz (O}

the level effects and isolate the effect of temporal envelope digpersion.
To do so, we first determine the local spectral levels at 1, 2, and 4 kHz
for maskers with spectral slopes of -3 and -6 dB/oct. The thresholds
in a spectrally-flat masker for these spectral levels are then calculated
by interpolating the data in Fig. 6.10. These calculated values are fi-
nally compared to the measured thresholds in the sloped maskers {see
Table I).

It can be seen from Table I that the thresholds of the noise targets for
the two spectrally-tilted maskers are higher than in the spectrally-flat
masker at all three frequencies. For example, the threshold difference

Slope\Freq.||1 kHz | 2 kHz | 4 kHz
-3 dB/oct ||4.4dB|6.1dB|9.1 dB
-6 dB/oct ||3.5dB|5.0dB(7.2dB

Table I: The differences between the thresholds of narrowband
noise targets in spectrally-flat maskers and in two spectrally-
tilted maskers. The spectrally-flat masker and the spectrally-
tilted maskers have the same spectral level at the center frequen-
cies of noise bands. The threshold differences are referred to an
overall level of 64 dB for the maskers with spectral slopes of -3
and -6 dB/oct.
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between a noise target at 2 kHz in a spectrally-flat and a spectrally-tilted
masker with a slope of -3 dB/oct is 6.1 dB. This threshold difference can
only be caused by the difference in envelope modulation resulting from
the spectral tilt of the masker. For the masker with a spectral slope of -6
dB/oct, the response envelopes become even less modulated due to the
low spectral levels at high frequencies. Threshold differences between
maskers with spectral slopes of 0 and -6 dB/oct are therefore smaller
than threshold differences between maskers with spectral slopes of 0 and
-3 dB/oct,

6.6 Experiment 4

Phase difference limens (DLs) in spectrally-tilted harmonic complex
sounds

We have shown in the previous experiments that thresholds of the noise
bands at high frequencies are mainly determined by temporal analysis of
the masker waveform and that this temporal analysis is strongly infln-
enced by the fundamental frequency, the level, and the spectral shape of
the maskers. Studies of auditory phase sensitivity for equal-amplitude
harmeonic complex sounds also showed that, especially at high frequen-
cies, the phase-shifted component was detected by temporal analysis of
the stimuli (Schroeder, 1959; Schroeder and Strube, 1986; Patterson,
1987; Moore and Glasberg, 1989). Typically, phase difference limens of
a phase-shifted high harmonic in zero-phase complexes with equal am-
plitude harmonics were measured (Moore and Glasberg, 1989). These
phase DLs indicate the smallest detectable changes of stimulus wave-
form by temporal analysis. Moreover, the phase DLs and the thresholds
of the noise targets could be related because a phase-shifted harmonic
is mnathematically equivalent to adding another harmonic with the same
frequency, but different amplitude and phase values. The precise quan-
titative relation is given by:

cos(2anFot + ) = 2sin(e/2)sin(2rnFot + 7+ ¢/2)

+cos(2rnFyt) (6.4)

For convenience, this added component is called target and the original
signal is called masker. The temporal analysis for detection of noise
targets can therefore be further manifested by measuring phase DLs of
each harmonic component of the masker. The study of phase sensitiv-
ity in complex tones is also of growing practical value in, for example,
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speech coding and speech perception. Therefore, in this experiment, the
measurement of phase sensitivity of individual harmonics is extended by
using broadband harmonic complexes with different spectral slopes.

For a comparison with masking experiments, we also express the
phase difference limen as threshold of the added component { amplitude
ratio between the added component and the original harmonic compo-
nent, expressed in decibels), i.e.

TD = 20{og2sin(p/2). (6.5)

where  takes values from 0 to 180 degree. A phase change of 180 degree
15 equivalent to a threshold value of 6 dB. Of course, this definition of
threshold is meaningful only when the phase shift is detectable.

The maskers in this experiment were zero-phase harmonic complexes
with three different fundamental frequencies of 100, 200 and 400 Hz
and two spectral slopes of 0 and -6 dB/oct, which are the same as
used in Experiment 3. The 100-Hz masker with two spectral slopes
was presented at an overall sound pressure level of 70 dB. For the 200
and 400-Hz maskers, the harmonic components at the same frequencies
were presented at the same amplitude as for the 100-Hz maskers with
corresponding spectral slopes.

The threshold of the added component was determined by using
the same procedure as we used before. In order to make the added
component audible, the value of ¢ for the added component was initially
set to 180 degree and the amplitude was additionally increased by 6 dB.
If the threshold was greater than 6 dB, then the phase-shifted component
was not detectable and the corresponding phase value was set to 180
degrees.

6.6.1 Resulls

The just noticeable phase-shifts ( average for two subjects) are plot-
ted in Figs. 6.11 (a) (c) and (e). These values of phase shift are also
expressed as thresholds of the added components in the 100, 200 and
400-Hz maskers and plotted as a function of harmonic frequency respec-
tively in Figs. 6.11 (b), (d) and (f) (& for ¢ dB/oct and < for -6 dB/oct
slopes).

One observes that for high-frequency harmonics, thresholds are gen-
erally low for the maskers with fundamental frequencies of 100 and 200
Hz and with a flat spectrum. For maskers with a fundamental fre-
gquency of 100 Hz, threshold differences between the two spectral slopes
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are large. For maskers with fundamental frequencies of 200 and 400 Hz,
on the other hand, the thresholds are similar for the two spectral slopes.
The phase shift is hardly detectable for any harmonic of the 400-Hz
stimulus and for low-frequency harmonics of the 200-Hz stimulus with
a spectral slope of -6 dB/oct.

§.6.2 Discussion

When the detection of phase-shifted harmonics is dependent on the tem-
poral resolution of the auditory system, the phase difference lirnens must
be accordingly dependent on the fundamental frequency and the spec-
tral slope of the masker. For the 100-Hz stimuli, the phase DLs are the
lowest and are mostly affected by the spectral slope. This is because the
masker with a low fundamental frequency and a high spectral level re-
sults in a deeply-modulated temporal waveform. This phenomenon has
also been observed in Experiment 3. The phase DLs for the phase-shifted
components are therefore larger for the spectrally-tilted stimulus. They
also generally increase with the fundamental frequency. For the 400-Hz
stimuli with two spectral slopes, hardly any phase shifts are detectable.
In this case, the valleys in the envelopes of responses for this masker
become shallow and the added component becomes difficult to detect.
In other words, the phase-shifted component is not resolved temporally.

The phase-shifted high harmonic appears to pop out of the com-
plex and the cue for detection is the same as in a masking experiment
(Duifhuis, 1970; Moore and Glasberg, 1989). As a result, the threshold
of the added component decreases with the increase of harmonic number
at high frequencies. Threshold patterns of the added components are
therefore similar to masking patterns obtained in Experiment 3. For low-
frequency components, on the other hand, the detection is mainly based
on change of sound quality, such as a change of timbre or roughness
of the sound (Plomp and Steeneken, 1969; Duifhuis, 1970; Patterson,
1987; Moore and Glasherg, 1989). In this case, the number of harmon-
ics in a critical band is less than three and the interpretation of of a
phase change as an addition of another component (see equation 6.4)
becomes psychoacoustically less relevant. The threshold pattern of the
added component is therefore different from the masking pattern ob-
tained in Experiment 3 (see Fig. 6.11 for the 100-Hz masker)., If the
harmonic components are well resolved as for the 400-Hz masker, the
phase shift is no longer detectable.

A direct comparison can be made with results from the phase DLs
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obtained by Moore and Glasberg (1989). They measured the phase DL
of each harmonic of zero-phase complex tones consisting of 20 equal-
amplitude harmonics. They found that the phase DLs for the 10¢h
harmonics of the 100-Hz and 200-Hz stimuli were about 10 degrees.
Qur phase DLs at this harmonic nunber are 10 degrees for the 100-
Hz stimuli and about 68 degrees, however, for the 200-Hz stimuli due
to low stimulus levels. In the measurements of Moore and Glasberg,
the phase DLs increased for high-frequency harmonics. This result is
obviously different from our measurements where the phase DLs decrease
for higher component frequencies. The difference is explained by the
different bandwidths of the complexes in the two studies. Moore and
Glasberg used bandlimited complexes and the increase of the phase DL
occurred at the upper spectral edge. In our experiment, the stimuli were
wideband up to 7.8 kHz and measurements were obtained up to 4 kHz.

From Experiment 3, we expect that the phase DLs at high frequen-
cies decrease with an increase of masker level. Qur results indeed show
that phase DLs for the 100-Hz stimuli with a low spectral level (due to
the spectral slope of the stimuli) are large. This increase of phase DLs
due to a low level is in agreement with observations by Patterson (1987)
and Moore and Glasberg (1989). Since the detection of a phase shift
for high-frequency harmonics is mainly based on the temporal analysis
of the stimulus, phase difference limens for unresolved harmonics are
totally equivalent to detection of an added component.

6.7 Experiment 5

Masking of narrowband noise by broadband harmonic complezes with
different phase relations

The previous experiments have shown the importance of the tempo-
ral structure of complex-tone maskers in the masking of noise bands. In
those experiments, all phases of the masker components were set to zero.
The temporal structure of a harmonic masker, however, is very depen-
dent on the phase relationships between its harmonic components. For
this reason, the influence of phase on masking of narrowband noise is
investigated in this experiment. From many possible phase relationships
between the harmonic components of a broadband masker, three special
phase relationships reported in the literature ($chroeder and Mehrgardt,
1082; Patterson, 1987) were chosen. One is a Schroeder-phase, another
one is alternating-phase, and the third is the zero-phase condition that
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has been nsed so far in all experiments. The reason to include Schroeder-
phase maskers is that they have low peak factors of the temporal wave-
form. This contrasts with the zero-phase maskers which have high peak
factors. Waveforms of the maskers with alternating phase are quasi
periodic, with the quasi-period being half the period of the zero-phase
masker.

In the first experiment, the detection of noise targets in two types of
Schroeder-phase maskers (m_ and m..) with a fundamental frequency of
100 Hz was investigated. The maskers were presented at sound pressure
levels of 44 and 64 dB. The noise targets were centered at frequencies of
500, 1000, 2000 and 4000 Hz, with bandwidths of 100, 100, 200 and 400
Hz, respectively.

In the second experiment, the masker with a2 fundamental frequency
of 100 Hz had an alternating-phase relationship for all harmonic compo-
nents. The targets were narrowband noise signals of critical-band width,
as used in Experiment 1 (see page 83). For convenience of comparison
with the results from Experiment 1, the maskers were presented at a
sound pressure level of 80 dB.

In the third experiment, we studied how an alternating-phase rela-
tionship below a certain frequency influences the detection of a high-
frequency target. Maskers were computed in such a way that the
harmonics below a certain frequency (transition frequency) had an
alternating-phase relationship and zero phase above that frequency. The
maskers had fundamental frequencies of 100, 200 and 400 Hz and were
presented at 64 dB SPL. The target was a narrowband noise of 100 Hz
width, centered at 5 kHz.

6.7.1 Resulis

Thresholds of noise targets in two Schroeder-phase maskers {(m_ and
., ) were obtained for two subjects and the average thresholds are plot-
ted in Fig. 6.12. In addition, thresholds in zero-phase maskers with the
saine levels are plotted for comparison. One can observe that there are
significant threshold differences for the three types of maskers, but only
at high center frequencies of the noise targets. For the maskers at 64 dB
SPL, the threshold for targets at high frequencies is the lowest in the
zero-phase masker and is the highest in the m._ masker. The difference
is 16 dB. For the maskers at 44 dB SPL, the differences between the
thresholds are reduced and the thresholds for the my and m_ maskers
are nearly identical.
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Figure 6.12: Thresholds of noise bands for three maskers with
a fundamental of 100 Hz: the zero-phase masker (£), the m.
masker (A) and the m, masker (7). Panel (a) for masker level
64 dB and panel (b) for masker level 44 dB.

Results for the second experiment are obtained for three subjects
and the average thresholds are shown in Fig. 6.13. For comparison,
the thresholds of critical-band noise targets in zero-phase maskers with
fundamental frequencies of 100 and 200 Hz are replotted from Fig. 6.3.
Comparing all thresholds for low target frequencies, the thresholds for
alternating-phase and zero-phase maskers are close if the maskers have
the same fundamental. For high target frequencies, on the other hand,
thresholds of the 100-Hz alternating-phase masker are similar to the
200-Hz zero-phase masker within some 5 dB.

For the third experiment, the thresholds of the narrowband noise sig-
nal, centered at 5 kHz, are obtained for five subjects, and the averages
are presented in Fig. 6.14. The noise threshold is plotted as a function
of the transition frequency below which the harmonics are in sine-cosine
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Figure 6.13: Thresholds of critical-band noise targets in a 100-Hz
masker with an alternating phase for all harmonics (7). Thresh-
olds of the noise bands in & 100-Hz zero-phase masker {(4) and
in a 200-Hz zero-phase masker (<) are plotted for comparison.
Masker level iz 80 dB SPL.

alternating phase. Thresholds for maskers with three fundamental fre-
quencies of 100 (A), 200 (<) and 400 Hz (/) are plotted in the same
panel. One can see that the noise threshold does not change for low
transition frequencies for all three maskers. As the transition frequency
inereases, however, the threshold starts to inerease at about 1.6 kHz for
the 100-Hz masker and at about 3 kHz for the 200-Hz masker. The
increment is about 15 dB in the 100-Hz masker and is about 4 dB in the
200-Hz masker. For the 400-Hz masker, a small decrease in threshold is
observed for the two highest transition frequencies.

8.7.2 [hscussion

Sehroeder-phase maskers

As the detection of noise targets at high frequencies is predominantly
determined by the temporal waveform of the masker, it is expected that
the target threshold for the two types of Schroeder-phase maskers is
higher than that for the zero-phase masker. Fig. 6.12 indeed shows
that the noise targets masked by the zero-phase masker have the lowest
thresholds.

The difference between thresholds for the two Schroeder-phase
maskers is not manifested by the envelopes of their waveforms. One
notices from panels (e) and (f) in Fig.6.2 that the two maskers are time-
reversed versions of each other. It is of course reascnable to use the en-
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Figure 6.14: Thresholds of a noise band at 5 kHz in maskers with
a frequency-dependent phase relationship. Below the fransition
frequency indicated at the abscissa, the components are in sine-
cosine alternating phase. The components above the transition
frequency are in zero phase. Parameter is the fundamental fre-
quency of the maskers: 100 Hz (A}, 200 Hz (<*) and 460 Hz (V).
Masker level is 64 dB SPL.

velopes of the cochlear-filter responses to the two maskers to explain the
difference. The gamma-tone filter {Patterson and Moore, 1986) is used
here to calculate the envelopes of the responses to the three maskers, Re-
sponse waveforms at 4 kHz and their envelopes plotted on a decibel scale
are shown in Fig. 6.15 (a-c), respectively. It turns out that the envelope
(plotted on a decibel scale) for the zero-phase masker shows deeper and
wider valleys than for the m_ and m, maskers. The envelopes for the
two Schroeder-phase maskers, however, appear quite similar and they
cannot convinecingly account for the large threshold differences observed
in the data.

An alternative approach is to choose a basilar-membrane (BM)
model the properties of which are based on measurements of basilar-
membrane motion and of neurophysiological responses (e g., Schroeder,
1972; Allen, 1978; De Boer, 1980; Viergever, 1980; Strube, 1985). The
cochlear model implemented by Strube {1985) provides a reasonably
good fit of the phase response of the cochlear filter. Temporal en-
velopes derived from this filter have been shown to be able to explain the
threshold differences between the two Schroeder-phase maskers (Strube,
1985; Smith et al., 1986; Kohlrausch, 1988). This BM model is therefore
used to calculate the cochlear response to the three maskers. In the
calculation of response envelopes, the parameters of the model are set
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Figure 6.15: Left panels: Waveforms of gamma-tone filter re-
sponses to (a) the mn_ masker, (b) the my masker, and (¢) the
gero-phase masker, respectively. Right panels; Corxesponding en-
velopes, plotted on a decibel scale. The resonance frequency of
the filter is 4 kHz. The maskers are normalized to have the same
RMS value.
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according to Strube (1985). The parameter Vg/bp in the model (where
Vo is the friction coefficient per unit area associated with the basilar
membrane motion and by 15 the width of the basilar membrane at the
stapes), however, is chosen to be 32000 mg/mm?®s, while Strube used a
value of 16000 mg/mm3s for most of his simulations. The BM model
with a larger Vy/bo seems to provide a better match of the phase response
to the experimental data (Viergever, 1980). The response waveforms at
resonance frequency 4 kHz and their envelopes (plotted on a decibel
scale) for the three maskers are shown in Fig. 6.16. From Fig.6.16, we
can see that the valleys in the envelope for the zero-phase masker are
the deepest and the widest whereas the valleys in the envelope for the
m_ masker are the shallowest. The valleys in the envelope of the m_
masker are shallower and narrower than those for the m masker. This
is in line with the experimental finding at 4 kHz that the lowest target
threshold is obtained with the zero-phase masker and the highest for
the m.. masker, and that the threshold for the my masker is lower than
that for the m_ masker. :

The results of this experiment are in agreement with masking experi-
ments where the masker or the maskee contained some special frequency-
dependent group delays. Firstly, to investigate the temporal resolution
of the auditory system, Patterson and Green measured the simultaneous
masking of tones by maskers generated as Huffman sequences (Patter-
son and Green, 1971). The Huffman sequences were actually the impulse
responses of allpass filters and differed from each other by their group
delays which were strongly frequency dependent. Two sets of group de-
lays had the opposite sign and thus the waveforms of masker plus target
were just time-reversed versions of each other. From the masking of pure
tones we know that it is easier to mask a tone by a second tone of lower
frequency than by one of higher frequency. It is therefore reasonable to
consider that in the experiments of Patterson and Green the threshold
differences for the two different maskers are predominantly determined
by the difference of the frequency-dependent group delays of the maskers
below the target frequency. Thus, the target thresholds are higher in
the masker with a group delays increasing with an increase of frequency
than with a group delays decreasing with an increase of frequency (Pat-
terson and Green, 1971). Our results with two Schroeder-phase maskers
and noise targets are in agreement with this result. In our case, the m_
masker has a group delay increasing with an increase frequency.

Secondly, a direct comparison can be made with the masking
of pure tones by the two Schroeder-phase maskers (Smith et al.,
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1986; Kohlrausch, 1988). The large threshold differences between the
two Schroeder-phase maskers at high masker levels are, in principle, in
agreement with the experimental finding by Smith et al. (1986) and
Kohlrausch (1988). It is reasonable to suggest from these experiments
that the group delays of the cochlear filters contribute to disperse or to
concentrate the spectro-temporal distribution of the masker.

Although our results for the two Schroeder-phase maskers gualita-
tively agree with those from Kohlrausch’s experiment, it is still difficutt
to compare the results between these two experiments quantitatively due
to the difference in bandwidth and group delay function of the maskers.
One notices in Fig. 6.12, on the one hand, that the threshold of the
noise target at 1 kHz for the zero-phase masker with a fundamental fre-
quency of 100 Hz is similar to that for the m, masker. In Kohlrausch’s
experiment, on the other hand, threshold of a pure tone at 1 kHz for
the 100-Hz zero-phase masker was significantly higher than for the m
masker (Kohlrausch, 1988). This difference is caused mainly by the dif-
ference between group delay functions of the maskers used in the two
experiments.

Alernating-phase mashkers

The masking of the critical-band-noise targets by the masker with
alternating-phase relationship for all harmonic components differs ob-
viously at high frequencies from the masking patterns of the 100-Hz
zero-phase masker (see Fig. 6.13). This is due to the fact that the
alternating-phase manipulation introduces a secondary peak in the mid-
dle of a period. Therefore the 100-Hz masker with an alternating phase
has a quasi-period of 5 ms and the responses of the cochlear filters at high
frequencies are very similar to the responses for the 200-Hz zero-phase
masker. Its masking pattern in the high-frequency region is therefore
close to that obtained from the 200-Hz masker. This is clearly illus-
trated in Fig.6.17, where the responses of the basilar-membrane filter at
4 kHz to these three maskers are plotted. The valleys in the log-envelope
plot for the 100-Hz zero-phase masker are much deeper than those for
the 100-Hz masker with an alternating-phase relationship. On the other
hand, the log-envelope plots for the 200-Hz zero-phase masker and the
alternating-phase masker are similar. In the low-frequency region, the
frequency resolution plays a dominant role in determining the masking
thresholds. Therefore, the phase choice does not influence the masked
threshold.
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Figure 6.17: Left panels: Waveforms of basilar-membrane filter
responses to (a) the 100-Hz zero-phase masker, (b) the 100-Hz
masker with all harmonics in an alternating phase, (c) the 200-
Hz zero-phase masker. Righi panels: Corresponding envelopes,
plotted on a decibel scale. The resonance frequency of the filter is
4 kHz. The maskers are normalized to have the same RMS value.
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The effects of aliernating-phase manipulation on the target thresh-
olds are strongly dependent on the fundamental frequencies of the
maskers. This is clearly demonstrated by the third experiment where the
low-frequency components of the maskers are set to alternating phase
and high-frequency components are set to zero phase. In this experi-
ment, the detection of the noise band is predominantly determined by
the critical-band filter at 5 kHz which haz a bandwidth of approximately
900 Hz. Consequently, when only the low frequency harmonics of the
maskers are set to alternating phase relationship, the threshold of the
noise band remains constant with the lowest threshold for the 100-Hz
masker and the highest for the 400-Hz masker. As the tramsition fre-
quency increases to a certain region, the moise threshold for the 100-
Hz and the 200-Hz masker increases. This is because the alternating
phase of the harmonics results in a secondary peak between two suc-
cessive pulses of the masker waveform and the height of the secondary
peak increases when more harmonics are in alternating phase. Since
the waveform for the 100-Hz masker has the strongest modulation, the
effect of the secondary peak on the masked threshold is the strongest for
this fundamental frequency. For the 400-Hz masker, the critical-band
filter passes through only two or three harmonics and the valleys in the
envelope of the filter response are hardly affected by the phase change.
The threshold of the noise targets therefore rerains rather constant for
the 400-Hz masker.

6.8 Experiment 6

Masking of narrowband noise by synthetic vowel sounds

As an application to speech perception, it is desirable to show how mask-
ing patterns of speech sounds such as vowels can be understood in terms
of evidence presented previously in this chapter. For instance, in Exper-
iment 3, we have seen that the threshold decreases at target frequencies
above 1 kHz when the masker level increases. Since spectra of the vowel
sounds consist of several formant regions represented by peaks and val-
leys, the spectral level of a vowel masker is a function of frequency. It
is therefore investigated in this experiment whether these differences in
spectral levels of vowel maskers influence the thresholds of noise targets.

Vowel sounds were synthesized by using spectrally-flat zero-phase
harmonic complexes with fundamental frequencies of 106 and 200 Hz
as inputs to a linear-predictive-coding (LPC) filter. The formant fre-
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quencies of the vowel were 680, 1110, 2347, 3202 and 4500 Hz. The
targets were noise bands of critical-band width as used in Experiment
1 (see page 83). The targets passed through the same LPC filter as
used for the vowel sounds and they therefore had locally the same spec-
tral envelope as the vowel sound. The threshold of the target was then
defined as the spectral level difference between the masker and the tar-
get, expressed in decibels. All vowel maskers were presented at a sound
pressure level of 80 dB.

6.8.1 Results

The average thresholds for three subjects are plotted in Figs. 6.18 (a,b)
for vowel fundamentals of 100 and 200 Hz respectively. The spectral
envelope of the vowel masker is plotted in Fig. 6.18(c). One observes
that there is no global decrease of threshold towards high frequencies as
we have observed in Experiment 1 and 2 (see page 83). At low target
frequencies, one sees from Fig. 6.18 (b) that the threshold function shows
dips (at 300 and 500 Hz) and peaks (at 400 and 600 Hz) for the 200-Hz
vowel masker, since masker harmonics are spectrally well resolved. By
comparing Figs. 6.18 (a) and (c), it can be seen that threshold peaks
correspond to spectral valleys and threshold valleys to spectral peaks of
the vowel masker, which is a very counter-intuitive result.

6.8.2 Discussion

Vowel sounds have complex spectra and their masking patterns can vary
in many ways. In principle, the (relative) threshold is rather constant
as a function of frequency and globally less frequency-dependent than in
a flat-spectrum zero-phase masker (Experiment 1, see page 83) This is
because the spectrum of a vowel sound has in general a slope of -6dB/oct.
As we have seen in Experiment 3, the threshold of the noise target
increases as a result of the spectral slope of the masker. In Fig. 6.18(a)
the valleys in the masking pattern are found to be located approximately
at the formant frequencies, i.e. at the spectral peaks of the masker, and
the peaks of the masking pattern are located at the spectral valleys of
the masker. In particular, the threshold dips around frequencies 1110
and 2350 Hz correspond to the second and the third formant frequencies
of the vowel masker. The threshold peak at about 1900 Hz corresponds
to the spectral valley at 1900 Hz. These low thresholds at the formant
frequencies are quite similar to the result of Experiment 3 where the
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Figure 6.18: Threshalds of critical-band noise targets for vowel
maskers as a function of center frequency of the noise band. (a)
100-Hz vowel masker. (b) 200-Hz vowel masker. (¢) Spectral
envelope of the vowel masker.
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Hz vowel masker, expressed in dB SPL.

thresholds of noise targets in the maskers with high levels have a lower
spectral density ratio.

The finding that the masking pattern of a vowel sound is a blurred
version of its physical speetrum has been attributed to the limited
frequency resolution of the auditory systemn (Moore and Glasberg,
1983a; Tyler and Lindblom, 1982; Houtgast, 1974). The difference in
decibels between peaks and valleys in the masking pattern is less than
what is found in the physical spectrum of the masker. Our result sug-
gests that among other reasons, the level effects due to the spectral peaks
and valleys in the vowel masker can also attribute to the reduction of
peak-valley difference in the masking pattern. The thresholds expressed
in spectral density ratios in this experiment can be easily transformed to
absolute target level by incorporating masker power density and target
bandwidth. The so transformed threshold values are plotted in Fig.6.19.
They show indeed that the masked threshold eurve is a blurred version
of the physical spectrum of the masker.

The masking pattern of the 200-Hz vowel masker of Fig. 6.18 (b)
clearly reflects the spectral compaosition of the masker at low frequencies,
and the formant regions are not well delineated. This is a consequence
of the spectral resolution. of the auditory system associated with a vowel
with a high fundamental frequency. Only at high frequencies, threshold
peaks occur at spectral valleys of the envelope of the vowel masker, at
about 1900 and 3000 Ha.

In summary, our results suggest that the blurring of the vowel spec-
trum, which is observed in spectral masking patterns, should not be
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attributed to the spectral resolntion of the auditory system (Moore and
Glasberg, 1983a). It rather seems that temporal resolution in combina-
tion with nonlinear level effects can quite well account for the observed
reduction in peak-valley differences.

6.9 General discussion

In general, the auditory system is a nonlinear system consisting of a bank
of bandpass filters with varying frequency resolution. Frequency reso-
lution decreases and, accordingly, temporal resolution increases with an
increase of the center frequency of the filter. Therefore, the detection of
targets at low frequencies is mainly determined in the frequency domain
by spectral analysis of the masker. At high frequencies, on the other
hand, the detection of targets is predominantly determined by temporal
analysis of the masker. The relative contributions of spectral and tem-
poral analysis strongly depends on the fundamental frequency of the
masker. The auditory system can therefore easily detect targets at high
frequencies where envelopes of auditory-filter responses show deep val-
leys (Goldstein, 1967; Duifhuis, 1970; Duifhuis, 1973; Patterson, 1987).
This has been shown by studies of masking period patterns in the lit-
erature (Duifhuis, 1970; Kohirausch, 1988). Similarly, targets at low
frequencies can be easily detected from maskers with high fundamental
frequencies.

Moreover, the temporal resolution changes nonlinearly with masker
level. Better resolution is associated with a higher masker level. There-
fore, in deeply modulated maskers with high levels the targets appear
to be detected easier (if the threshold is expressed as a spectral density
ratio of target and masker) than they are at low masker levels. For
maskers with a spectral slope of -6 dB/oct, in addition to the influence
of waveform dispersion, the threshold of targets at high frequencies in-
creases significantly due to the low spectral level associated with a strong
spectral slope.

The auditory system is sensitive to the phase relationships among
spectral components within a critical band. This phase semsitivity
is mainly determined by the temporal analysis of the stimulus and
therefore, is strongly dependent on the fundamental frequency and the
spectral slope of the stimuli, This is a reason why only with low-
fundamental stimuli, the flat-spectrum vowel (Schroeder and Strube,
1986) and the phase-vowel (Traunmiiller, 1987) stimuli can show vowel-
like qualities, Typically, phase spectra of these phase-vowels were similar
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to natural vowels and the envelopes of the amplitude spectra were flat
(Traunmiiller, 1987). From our phase DLs measurements, we can expect
that phase-vowels with fundamentals of 200 and 400 Hz will not have
vowel gualities.

Although experiments in this chapter have been performed with
rather artificial sounds, the results have also relevance for speech tech-
nology. For instance, the audibility of quantization noise is one of the
main concerns in speech coding. In the perceptual weighting technique,
which is mainly based on the masking of pure tones, the spectrum of
the noise is shaped such that it is similar to the spectral envelope of the
coded speech signal (Schroeder et al., 1979). If the spectral level of the
noise is significantly lower than the spectral level of the speech sound,
the quantization noise can be made inaudible. Qur experiments showed,
however, that the masking of noise targets by broadband harmonic com-
plex sounds is mainly determined by local details of the masker in the
frequency domain or in the time domain, and not primarily by global
features of the maskers’ spectra. Our results suggest that the weight-
ing in the low-frequency region and for high-pitched sound should be
associated with the harmonic structure of the speech signal. At high
frequencies, the perceptual weighting should be associated with the tem-
poral waveform of the speech signal. Although the masking threshold of
the noise target at high frequencies is generally higher in vowel sounds
than in pulse trains, the threshold can still be lower in the spectral peak
region than in the valley region. In view of the continuously changing
time-frequency structure of the sounds, a dynamic adaptation of percep-
tual weights could improve the quality of the Jow bit-rate coded speech,
especially for coding of transient sounds.

Phase manipulation of speech signals will certainly influence their
subjective sound quality, especially for transient sounds. Although the
long-term spectrum of speech is usually preserved after phase manipu-
lations, the speech waveform within each pitch period of vowel sounds
is totally changed (Strube, 1982; Moriya and Honda, 1986; Quatieri et
al., 1990). The auditory system is sensitive to this kind of waveform
changes, especially at high frequencies, where good temporal resolution
is retained. For example, a phase dispersion system has been designed
to reduce the peak/RMS ratio of speech signal in broadcasting (Quatieri
et al., 1990), where actual phase spectra of vowel sounds were replaced
by phase spectra of upward frequency sweeps while amplitude spectra
were left unchanged. Under broadcasting conditions, only a small loss
of voice quality was reported (Quatieri et al., 1990). All these phase
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manipulations are quite acceptable for voiced sounds. Although the
masking experiments in this paper have suggested that the change of
waveform is most detectable at high frequencies, this does not necessar-
ily suggest the same for judgement of quality difference. Moreover, due
to the global spectral tilt of vowel sounds, the phase changes at high
frequencies become less noticeable. Our measurements of phase DLs for
spectrally-tilted complex tones do show that the phase shift at high fre-
quencies is quite detectable. We can expect that for real high-quality
speech sound the phase of high harmonics will play an important role.
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Summary

PEECH signal processing is a very irnportant way of achieving suit-

able signal representations for speech copununication. Psychophys-
ical studies of speech representation, on the other hand, provides a re-
search direction to deal with the perceptually irmportant aspects of the
speech signal in the signal processing. The main theme of this dis-
sertation was devoted to the study of some psychophysical and signal-
processing aspects of speech representation.

One speech analysis technique proposed in Chapter 2 is a robust
linear-predictive coding (LPC) analysis using a short- time-energy (STE)
weighting function. We derived a generalized STE-based LPC analysis
under the linear-least-square criterion. The sample selection window or
the weighting function in this algorithun were based on the short-time
energy of the speech signal. Their effect was to over-weight the speech
samples that fit the LPC model well and to down-weight the other sam-
ples. This novel LPC approach produces less deviating estimates of the
formant frequencies than those obtained from the conventional LPC and
is lass sensitive to the values of the fundamental frequency. From the
experimental observations, the STE-thresholded LPC solution is prefer-
able to the sample-selective method based on two-step LPC analyses in
terms of computation efficiency and robustness in the selection of speech
samples and preferable to the STE-weighted LPC from the viewpoint of
estirnation accuracy.

The weighted LPC analysis was further developed in Chapter 3,
where the relation between the covariance linear prediction (CLP) anal-
ysis of a frame of a speech signal and the CLP analysis of its subframes
was established. The results of CLP analysis derived from a set of sub-
frames were equivalent to those of a residual-weighted CLP analysis of
the complete frame and the solutions of the residual-weighted CLP are
the same as those of the generalized weighted average of subframe CLP.
Those subframes which best reflect the filter model of speech production
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can therefore be chosen to improve the acenracy of the estimate of the
LPC parameters.

Another signal processing technique, proposed in Chapter 4, was to
use a singular-value decomposition (SVD) technique to detect instants
of glottal closure. The exact detection of such instants in a speech
signal is a very important step in speech-coding and speech-manipulation
applications. This new technigue used the Frobenius norm of the linear-
predictive matrix for the detection of instants of glottal closure. The
sequential computation of the Frobenius norm of the matrix is reduced
to just the addition of the sum of the squared entries of the last row
of the matrix and the subtraction of the sum of the squared entries
of the first row of the preceeding matrix. Therefore, the new method
1s computationally very attractive. As an additional benefit, the new
method is less sensitive to noise.

Motivated by using the phase of the Fourier transform of speech
to extract formant frequencies, we studied in Chapter 5 the conditions
under which a signal is uniquely determined by its Fourier transform
phase. If a speech signal cannot be uniquely determined by its phase (to
a factor), then it is not possible to directly extract formant frequencies
from its phase spectrum. We showed that uniqueness corresponds to the
non-singularity of a matrix which can be formed from the finite length
real sequence.

The study of auditory masking in Chapter 6 is intended to shed
light on how the auditory system processes complex sounds. The aun-
ditory system can be considered as a nonlinear system consisting of a
bank of bandpass filters with varying frequency resolution. Frequency
resolution decreases and, accordingly, temporal resolution increases with
an increase of center frequency of the filter. Therefore the detection of
targets at low frequencies is mainly determined by spectral properties
of maskers. At high frequencies, on the other hand, the detection of
targets iz predominantly determined by temporal behaviour of maskers.
The relative contributions of spectral and temporal analysis strongly
depends on the fundamental frequency of the masker.

The temporal resolution changes nonlinearly with masker level. Bet-
ter resolution is associated with a higher masker level. Therefore, in
deeply modulated maskers with high levels the targets appear to be de-
tected easier (if the target threshold is expressed relative to the masker
level} than they are at low masker levels. For maskers with a spectral
slope of -6 dB/oct, in addition to the influence of waveform dispersion,
the threshold of targets at high frequencies increases significantly due to
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the low spectral level associated with a strong spectral slope.

From the masking experiments, insight is also gained into the dis-
crimination thresholds for those speech sounds that result from from
speech processing techniques. For instance, quantization noise in coded
speech signal can be masked, if the spectral envelope of the noise is
shaped properly by a perceptual weighting technigue. The perceptual
weighting technique so far 1s mainly based on the masking behaviour of
pure tones. Masking behaviour of complex sounds, however, cannot be
easily predicted from masking behaviour of pure tones. Our experiments
showed that the masking of noise targets by harmonic complex sounds
is mainly determined by local details of the masker in the frequency
domain or in the time domain, and not primarily by global features of
the maskers’ spectra. We therefore suggest that the weighting in the
low-frequency region and for high-pitched sound should be associated
with the harmonic structure of the speech signal. At high frequencies,
the perceptual weighting should be associated with the temporal wave-
form of the speech signal. In view of the continuously changing time-
frequency structure of the sounds, a dynamic adaptation of perceptual
weights should be used to improve the quality of low bit-rate coded
speech, especially for coding of transient sounds.

QOur measurements of phase difference limens of individual compo-
nents in spectrally-tilted complex tones showed that the phase shift is
easily detectable at high frequencies. Phase manipulations of speech sig-
nals will influence their subjective sound quality especially for transient
sounds, becanse the auditory system is sensitive to this kind of waveform
changes, especially at high frequencies. For real high-quality speech we
have to take care of the phase relationships of high harmonics.



Samenvatting

ET toepassen van signaalbewerking op spraakgeluiden is een be-

langrijke manier om goede signaalrepresentaties te verkrijgen voor
spraakcommunicatie. Psychofysisch onderzoek naar representaties van
spraaksignalen laat zien welke aspecten van het bewerkte spraaksignaal
perceptief van belang zijn. Het hoofdthema van dit proefschrift is onder-
zoek naar psychofysische en signaalbewerkingsaspecten van spraakrep-
resentatie.

Een van de spraakanalysetechnicken die wordt voorgesteld in Hoofd-
stuk 2, is een robuuste lineair-predictieve coderingsanalyse (LPC) waar-
bij een korte-termijn-energieweegfunctie (STE) wordt gebruikt. Een
gegeneraliscerde STE-gebaseerde LF C-analysze met een lineair-kleinste-
kwadraatmaatstaf is ontwikkeld. Het venster voor het selecteren van
monsters of de weegfunctie voor dit algoritme is gebaseerd op de korte-
termijn-energie van het spraaksignaal. Het effect hiervan is dat die
spraaksignaalmonsters die goed voldoen aan het LPC-model zwaarder
worden gewogen dan monsters die niet zo goed in dit model passen. Deze
nieuwe LPC-benadering resulteert in kleinere afwijkingen in schattin-
gen van formantfrequenties dan bij conventionele LPC en is ook minder
gevoelig voor de waarde van de grondfrequentie. Proefondervindelijk
is ook aangetoond dat de STE-gedrempelde LP C-oplossing de voorkeur
verdient boven de selectieve-monster-methode wat betreft robuustheid
ten aanzien van geselecteerde monsters en wat betreft doelmatigheid
van berekeningen, en ook te verkiezen is boven de STE-gewogen LPC-
methode met betrekking tot de nauwkeurigheid van geschatte waarden.

De gewogen LP C-analyse-methode is verder ontwikkeld in Hoofdstuk
3, waarin het verband tussen de covariantielineaire-predictieanalyse
(CLP) van een fragment spraaksignaal en de CLP-analyses van de sub-
fragmenten wordt asngetoond. Het resultaat van een CLP-analyse
gebaseerd op een aantal sub-fragmenten, was gelijkwaardig aan het re-
sultaat van een residu-gewogen CLP-analyse van het gehele fragment
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en de oplossingen vanuit de residu-gewogen CLF bleken hetzelfde als
de oplossingen verkregen uit het gegeneraliseerd-gewogen gemiddelde
sub-fragment CLP. Die sub-fragmenten die het best passen bij het fil-
termodel van spraakproduktie, kunnen daarom worden geselecteerd om
zo de schattingsnauwkeurigheid voor LPC-grootheden te verhogen.

Een andere signaalbewerkingstechniek, besproken in Hoofdstuk 4,
bestaat uit het gebruik van singuliere-waarde-decompositie (SVD) om
de momenten van het sluiten van de sterbanden te bepalen. Het precies
bepalen van deze momenten is een erg belangrijke stap bij het coderen of
het manipuleren van spraakgeluiden. Deze nieuwe techniek gebruikt de
Frobenius-norm van de lineaire voorspellingsmatrix voor het detecteren
van de momenten van het sluiten van de stembanden. De sequentiéle
berekening van de Frobenius-norm ven ¢en matrix is teruggebracht tot
het optellen van de som van de gekwadrateerde elementen in de laatste rij
van de matrix, en tot het aftrekken van de som van de gekwadrateerde
elementen in de eerste rij van de voorafgaande matrix. Deze nieuwe
methode is daarom rekentechnisch erg aantrekkelijk. Bovendien blijkt
de nieuwe methode minder gevoelig voor ruis.

Geinspireerd door het gebruik van de fase bij de Fourier transform
van spraak voor het bepalen van de formantfrequenties, is in Hoofdstuk
5 onderzocht onder welke voorwaarden een signaal op unieke wijze i3
bepaald door zijn Fourier-transformfase. Als een spraaksignaal niet op
unieke wijze bepaald 1z door zijn fasefunctie, op een vermenigvuldig-
ingsfactor na, dan is het ook niet mogelijk om op directe wijze de for-
mantfrequenties uit het fasespectrum af te leiden. Er is aangetoond
dat uniekheid overeenkomt met de niet-singulariteit van een matrix die
gevormd kan worden uit de eindige reeks van de signaalmonsters.

Het onderzoek naar auditieve maskering, besproken in Hoofdstuk 5,
is bedoeld om inzicht te krijgen in hoe ons gehoorsysteem samengestelde
geluiden verwerkt. Het gehoorsysteem kan beschouwd worden als een
niet-lineair systeem van banddoorlaatfilters met een verlopend oploss-
ingsvermogen. Frequentie-oplossend vermogen neemt af en, daarmee
samenhangend, tijdoplossend vermogen neemt toe naarmate de afstem-
frequentie van het filter toeneemt, Daarom is het detecteren van een
doelsignaal met lage frequentie grotendeels bepaald door specirale eigen-
schappen van de maskeerder. Bij hoge doelsignaalfrequenties, daarente-
gen, wordt het detectieproces grotendeels bepaald door het temporele
gedrag van de maskeerder. De relatieve bijdragen van spectrale en tem-
porele analyse in het oor hangen sterk af van de grondfrequentie van de
maskeerder.
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Temporeel oplossend vermogen verandert op niet-lineaire wijze met
het maskeernivean. Een beter oplossend vermogen gaat samen et
hogere magkeerniveauns. Bij sterk gemoduleerde maskeergeluiden op hoge
geluidsniveauns, lijken doelsignalen gemakkelijker detecteerbaar dan bij
maskeergeluiden op lage geluidsniveaus, zolang de detectiedrempel re-
latief wordt uitgedrukt met betrekking tot het geluidsniveau van de mas-
keerder. Voor maskeerders met een spectrale helling van -6 dB/octaaf
neemnt de zo nitgedrukte detectiedrernpel voor hoog-frequente doelsig-
nalen aanzienlijk toe als gevolg van het lage spectrale nivean van de
maskeerder verbonden asn zo’n spectrale helling. Deze drempeltoename
wordt verder versterkt door de invloed van golfvormdispersie.

Door het uitvoeren van rnaskeringsexperimenten is tevens ingzicht
verkregen in ons onderscheidingsvermogen voor spraakgeluiden die re-
sulteren uit bepaalde spraakbewerkingstechnieken. Kwantiseringsruis
bij een gecodeerd spraak:ignaal kan bijvoorbeeld gemaskeerd worden
als de spectrale omhullende van deze ruis op de juiste manier bepaald
wordt door middel van een perceptieve weegtechniek. Deze weegtech-
niek is voornamelijk gebaseerd op maskeergedrag van ons oor voor
zuivere sinustonen. Maskeergedrag voor samengestelde geluiden kan
echter erg moeilijk voorspeld worden vanuit kennis over maskeergedrag
voor zuivere tomen. Onze experimenten hebben aangetoond dat het
maskeren van ruisachtige doelsignalen door harmonisch samengestelde
tonen voornamelijk bepaald wordt door plaatselijke details van de mas-
keerder in ofwel het frequentiedomein ofwel het tijdsdomein, en niet
zozeer wordt bepaald door globale eigenschappen van het spectrum van
de maskeerder. Er wordt daarom voorgesteld dat de weging in het laag-
frequente gebied voor geluiden met een hoge grondfrequentie geasso-
cieerd wordt met de harmonische structuur van het spraaksignaal. In
het hoog-frequente gebied behoort het perceptieve gewicht geassocieerd
te worden met de golfvorm van het signaal in het tijdsdomein. Gezien
de voortdurend veranderende tijd-frequentiestructuur van spraakgelu-
iden, moet ¢en dynamische adaptatie van perceptieve gewichten wor-
den aangewend ter bevordering van de kwaliteit van sprazkgeluid dat
is gecodeerd met een lage bit-stroom, vooral in het geval van transiente
geluiden.

Metingen van onze gevoeligheid voor faseverschillen tussen individu-
¢le deeltonen van spectraal-gekantelde samengestelde geluiden hebben
aangetoond, dat een faseverschuiving gemakkelijk detecteerbaar is bij
hoge frequenties. Faseveranderingen in spraaksignalen beinvloeden hun
subjectieve geluidskwaliteit, in het bijzonder voor transiente geluiden,
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omdat ons gehoorsysteem erg gevoelig is voor golfvormveranderingen,
speciaal bij hoge frequenties. Om zeker te zijn van spraakgeluid met een
hoge kwaliteit moet zorg gedragen worden voor het behoud van de juiste
faserelaties, vooral tussen hoge-orde harmonischen.
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