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Chapter 1 

Introduction 

SPEECH communication research in general is the study of the pro­
duction) transmission, manipula.tion and perception of speech. This 

research has been very dynamic and active, especially; since digital tech­
nology offen efficient and readily available tools for a variety of appli­
cations. Speech communication comprises m.any research areas; ranging 
from linguistics; phonetics; speech signal analysis and synthesis, speech 
coding and speech recognition to speech perception. In this thesis; we 
are mainly concerned with some signal-processing and psychophysical 
aspects of speech representation. 

Speech sound in the form of the vibrations of the air is produced by 
the vibrations of vocal folds; which are driven by air from the lungs; and 
the movement of the vocal tract. The vocal tract can be described as an 

acoustical tube, whose nonuniform cross-sectional areas are manipulated 
by the movements of the lips, jaw, tongue and velum. The movements 
of these speech organs are controlled by the central nervous system such 
that these movements can convey distinctive infm:mation. 

The acoustic waves of speech can be received by communication sys­
tems such as telephones or transformed into digital and analogue electric 
signal for further processing. Most importantly, human beings as ulti· 
mate receivers perceive the vibrations of speech waves. These speech 
Waves are spectrally shaped by the outer and the middle ears and trans­
formed into the vibration of the inner ear-the cochlea. The cochlea acts 
as a spectral analyzer (a bank of bandpass filter) with limited spectral 
resolution. The responses of bandpass filters are then transformed into 
a flow of spikes in the nerve fibers. The central nerVOUS system decodes 
the trains of neural spikes into meaningful concepts. 

Speech analysis is a very important way of achieving suitable signal 
representations for speech communication. In the signal-processing ap­
proach, speech production is described by a source-filter model. This 
model is considered to be time invariant on the short-time basis be· 
cause the speech organs move slowly due to physical constraints. For 
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voiced sowlds, the SOurce is mainly situated in the vibrating vocal folds 
which modulate the air flow from the lungs. The vibration frequency 
of the vocal folds is called the fundamental frequency, The unvoiced 
sound source consists of the turbulent flow formed somewhere in the 
constricted vocal tract. The filter is of the all-pole type, whose coeffi­
cients represeut an optimum linear prediction coding (LPC) ofthe signal 
(Flanagan) 1972). Therefore) the vowels typically ha.ve line spectra and 
the envelopes of the line spectra are modelled by the LPC model. The 
envelopes of vowel spectra show peaks and valleys. These peaks, called 
formants, correspond to the resonance frequencies of the vOl;al tract. 

Modelling speech by the LPC analysis is very popular now. The 
LPC analysis and synthesis of a female voice, however, have not been 
successful (Klatt and Klatt, 1990). The reason is that the higher funda­
mental frequencies of women and children make it difficult to estimate 
formant parameters. In other words, for high-pitch sounds, the number 
of speech samples which are the output of the vocal tract filter without 
excitations, are relatively small in the closed glottis regions, Another 
reason for the lack of naturalness of LPC speech is that the excitation 
source is often simulated by a series of impulses or by white noise. The 
use of an elaborated model of excitation waveform has been a successful 
approach to improve the naturalness of synthetic vowels. 

Improving the signal processing aspects of speech is just one way of 
improving the q1lality of speech coding and synthesis. The psychophys­
ical study of speech provides a research direction to deal with the per­
ceptually important aspects of speech. When we listen to speech sounds 
which are digitally processed and reproduced, both the intelligibility and 
the perceptual quality of the speedl sounds are important for convey­
ing information such as the identity of the speaker. Signal processing 
of speech always introduces distortion into the speech sounds. These 
disto;rtions can be produced by quantization, or by parameteriza.tion of 
speech signals and produce different auditory sensations. On the other 
hand, speech generated by speech synthesizers also la.cks naturalness. 
The evaluation of the processed and synthesized speech is closely re­
la.ted to the auditory perception of complex sounds. The understanding 
of the perception of complex sounds is therefore helpful to improve the 
quality of the processed sounds. Most of the time, this perception study 
is of course related to many aspects of working mechanisms of the central 
nervous system. For example, the perceptual evaluation of the quality 
of a text-to-speech system can involve the intelligibility, the naturalness 
of prosody and sound quality of the computer genera.ted speech. The 
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psychophysical study of speech is relatively easy and provides discrim­
ination thresholds because it makes a comparison between the original 
speech and the speech that results from the signal processing techniques 
such as speech coding. 

In this dissertation we study ways to impro ..... e the LPC analy­
sis/synthesis techniques. This includes an improved way to estima.te 
the LPC parameters, especially for high-pitched voices and to estimate 
the time instants of glottal closurE!. The detennination of instants of 
glottal closure has become a 'Very important step for segmenting voiced 
sounds into sUccessi'Ve pitch periods, In Chapter 2 a novel weighted LPC 
analysis of speech is investigated. fu this approach, a weighting fwlc­
tion is derived from the short-time-energy function of the speech signaL 
Speech samples are selectively weighted based on how well they match 
the speech production model. The estimates of the LPC coefficients by 
this novel LPC analysis are therefore mOre accurate than those obtained 
from the conventional LPC analysis. 

In Chapter 3 the rela.tion between the covariance linear prediction 
(CLP) analysis of a frame of a speech signal and the CLP analysis of 
its subframes is established. The results of CLP analysis derived from. a. 
set of subframes of speech samples are equivalent to those of a residual­
weighted CLP analysis of the complete frame and the solutions of the 
residual-weighted CLP are the same a.s those of the generalized weighted 
average of subframe CLP. Those subframes which best reflect the filter 
model of the speech production can be chosen to improve the accuracy 
of the estimate of the LPC parameters. 

The detection of glottal closure instants has been a necessary step in 
several a.pplications of speech processing, such as speech coding, speech 
prosody manipulation and speech synthesis. Speech processing needs 
efficient and robust glottal closure detection methods. In Chapter 4 a 
singular value decom.position (SVD) approach is developed to detect the 
glottal dosure instant in the speech signal. The proposed SVD method 
is equivalent to the calculation of the Frobenius norm of signal mat:r;ices 
and is therefore computationally efficient. 

The spectral modelling of speech sound can. be realized by linear 
prediction analysis, by which formant frequencies of the vocal tra.ct are 
estimated from the peaks of the spectral envelope. The direct use of 
the phase spectrum of speech signal to estimate the formant frequencies 
has some advantages (Yegnanarayana et al., 1978). This method of 
estimation of formant frequencies can be applied if the speech signal 
can be uniquely determined (to a factor) from the phase of its Fourier 
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transform. In Chapter 5, we discuss a new approach for ascertaining 
whether a signal is uniquely determined by the phase of its Fourier 
transform. It will be shown that uniqueness corresponds to the non­
singularity of a matrix which can be formed from the finite length real 
sequence. 

The perceptual study of speech sounds in Chapter 6 is mainly con· 
cerned with auditory masking. The experiments are intended to make 
a contribution to the understanding of the perceptual aspects of speech 
processing, such as speech coding, speech synthesis, and speech manipu­
lation. In contrast to most psychoacoustical ma.sking studies, the targets 
in the meaSUIement are narl"OW- or wide-band noise signals. The results 
can show the limitations of the auditory system in perceiving the dis­
tortions introduced by speech processing such as quantization noise in 
bit-compressed coding of audio signals or speech and by phase manipu­
lation of speech. 

References 

J.L. Flanagan, (1972), Speech Analysis, Synthesis and Perception 
(Springer-Verlag, New York), 2nd edition_ 

D-H. Klatt and L,C. Klatt, (1990), ~'Analysis, synthesis, and percep­
tion of voice quality variations a.mong female and male talkers", J. 
Acoust. Soc. Am. 87, 820-857. 

B. Yegnanarayana, G. Duncan and H.A, Murthy, (1978), "Impl"Oving 
formant extraction from speech using minimwn phase group delay 
spectra'; , in Signal Processing IV: Theories and Application, ed. by 
J_L. J~acoume et. a1 (Elsevier, Amsterdam); pp.447-450. 



Chapter 2 

Robust signal selection for linear prediction 
analysis of speech *' 

Abstract 

This paper investigates a weighted LP C analysis of speech- In 
view of the speech production model, the weighting function is ei­
ther chosen to be the short· time energy function of the preempha· 
sized speech sample sequence with certain delaysJ Or is obtained 
by thresholding the short·time energy function. In this methodJ 
speech samples are selectively weighted on the basis of how well 
they match the speech production modeL Therefore the estimates 
of the LPC coefficients obtained by this novel LPC analysis are 
more accurate than those obtained from the conventional LPC 
analysis. They are also less sensitive to the values of the fun­
damental frequency than is the case in the conventional LPC. 

2.1 Introduction 

T HE source-filter model of speech production can be characterized by 
linear prediction equations (Markel and Gray, 1970j MakhoulJ 1975) 

and two types of sources. The source for voiced sounds is a quasi· periodical 
glottal pulse train over a short interval of time and is produced by the 
vibration of vocal folds- The sOUl'ce for unvoiced sounds consists of the 
turbulent flow formed somewhere in the constricted vocal tract. The esti­
mates of the predictor coefficients can be obtained by either an autocor­
relation linear prediction method or a covariance linear prediction (CLP) 
method (FlanaganJ 1972). The autocorrelation approach is a general prob­
abilistic approa.ch to the spectral analysis of a stationary Gaussian process 
(Itakura. and Saito, 1970j Markel, 1972). When this method is applied to 
the speech signal, the nonstationary and the quasi-periodic characteristics 
of the speech signal are neglected. As a frequency-domain a.pproach, the 

·Paper with Y. Kamp a.nd L.F. Willems submitted for publication to SPEECH COM­
MUNICATION 



6 Chapter 2 Weighted LPG analysis 
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Figure 2.1; Formant tracks obtained by a covariance LPC of order 
10. The top trace shows the speech waveform. Formant ha.c.el! are 
shown as dotted lines. For further details see text. 

autocorrelation method requires relatively long speech segments to provide 
adequate spectral resolution. Due to the harmonic structure of the voiced 
speech, this spectral match method does not perform well when the num­
ber of the harmonics is small as is the case for high-pitched voices. On the 
other hand, the covariance analysis is a nonstationary formulation of the 
estimation problem. In this method, speech is directly considered to be the 
output of the vocal tract filter with excitation sources, and thus specified 
by the time-varying transfer function of the filter and the characteristics 
of the SOl.lTCe function (Atal and Hanauer, 1971)- Therefore the covariance 
method directly models the speech wave rather than its spectrum. This 
time-domain approach to the estimation problem can be flexibly applied to 
short speech segments where the vocal-tract model is best fitted, avoiding 
the influence of the source_ 

In view of the speech-production model, one expects that speech seg­
:rnents containing source excitations will not be good candidate data for the 
estimation ofLPC parameters- This can be seen from Fig. 2.1, which shows 
the estimated parameters from a. natural vowel. The top trace shows the 
speech waveform and the dotted lines show the formant frequencies, which 
are linearly associated with the angular values of the zeros of prediction 
polynomials. These prediction polynomials are obtained by a covariance 
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analysis of order 10 and a sliding 3-ms rectangular window. The speech 
signal was preemphasized by a filter having a transfer function (1- 0.9r1

). 

Indeed) it is easy to observe from Fig. 2.1 that the estimated formant fre­
quencies vary significantly in the region containing excitations. Therefore 
covariance analysis in these regions does not yield reasonable pole estimates. 
A more interesting observation from Fig. 2.1 is that the variations in the 
estimates of the high formant frequencies (F3, F4 and F5) are significantly 
greater than those of the low formant frequencies} even those estimated 
from the excitation~free regions. From careful examina.tion it is found that 
this problem is due to the fa.ct that the portion of the waveform associated 
with high formants decays rapidly because of the large formant ba.ndwidth, 
so that background noise can become dominant. It is therefore expected 
that the estimates of the LPC parameters can be improved by choosing 
data. segments which have a high signal-to-noise ratio and are not affected 
by the glottal pulse. 

One approach to improvement of the parameter estimation is either to 
select or overweight those speech samples which are excitation-free and are 
thus expected to fit the LPC model better. There are several ways in which 
selection or over-weighting can be performed (Miyoshi et al., 1987; Lee, 
1988; Ma and Willems, 1990). Pitch-synchronous LPC analysis is a par­
ticular method of getting rid of the influence of glottal pulses by using a 
short window to select excitation-free portions) such as the closed-glottis 
portion) and to improve the estimates of formant parameters (Steiglitz and 
Dickinson, 1977; Pinson, 1978; Kuwabara., 1984). It is not always easy, 
however, to choose those excitation-free portions in voiced sounds uttered 
by females or children because the pitch period is short. The results are 
dependent on the data available in the pitch period and are also sensitive to 
the window position (Larar et al., 1985). In addition, the signal of a voiced 
sound is quasi-periodic. Differences between the successive pitch pedods 
are due either to noise or to other factors from the glottal source. The pitch· 
synchronous LPC analysis is limited to a single period and does not benefit 
from the time averaging of the speech data over several periods. Another 
selection technique examined earlier (MiyosW et al.) 1987; Ma and Willem.s) 
1990) is the generalized sample-selective LPC. There, a preliminary conven­
tional LPC analysis provides an approximation for the residual excitation 
signal. In a second LPC analysis only those speech samples are kept for 
which the residual in the first LPC analysis lies below a certain threshold. 
This method conceivably increases the computational burden. Moreover, 
due to the inaccuracy of the mst LPC analysis} the LPC inverse filtering 
can give rise to significant pulses in the residual, other than those on the ex-
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citation moments (Ananthapadmanabha and Yegnanarayana, 1979). The 
peaks of the residual error, which are assumed to correspond to the insta.nts 
of glottal closure, are not always very prominent and, as a result, selection 
windows might be misplaced- A mote complex: procedure (Lee, 1988) is to 
mitliroize a mOre elaborate loss function of the LPC residual signal which 
discriminates between the residual samples exceeding a threshold and those 
below this threshold_ In general, these weight functions are imposed on the 
residuals to reduce the effects of the glottal pulses and to improve the es­
timates of the LPC parameters. They need, however, complex procedures 
to locate the pitch pulses and to synchronize selection windows (Miyoshi 
et al., 1987; Lee, 1988). 

The robust selection and weighting techniques described in this paper 
are based on the observation that pre-emphasized vowel signals show clear 
peaks just after, and clear valleys just before, the moments of excitations, 
which also correspond to the peaks in the LPC residuaL This is an in­
dication that the short-time energy function (STE) of the signal could be 
taken either as a selection criterion or as a weighting function. These two 
possibilities are further developed in this paper and compared with the 
sample-selective method of Miyoshi et a1. (1987). The short-time energy of 
the signal is computed over a short window which has a constant lag with 
respect to the speech samples considered for the computation of the LP C 
parameters. In this way, speech samples that fit the LPC model well and 
produce small LPC residuals are over-weighted, and speech samples tha.t do 
not fit the model are down"weighted- Therefore the estimates of the LPC 
coefficients obtained by this method are more a.ccurate than those obtained 
from the conventional LPC analysis and they are also less sensitive to the 
values of the fundamental frequency. Comparison of experimental results 
show that the proposed LPC analysis is attractive from the point of view of 
computational efficiency) estimation accuracy and selection of speech sam­
ples. Finally, a. stability analysis of the linear predictor computed with the 
short-time energy as weighting function is presented, ba.sed on the theory 
of the nwnerical range of a linear operator_ 

2.2 Weighted LPC analysis 

The speech-production model can be generally described by the following 
equations: 

p 

Sn = LS,,-ia. + en n = nl.1l.1 + 1,nl + 2, .. . ,n2 (2-1) 
i", 1 
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where $n denotes the nth sample of a speech wave, en is the nth sample 
of an excitation wave, ai the ith predictor coefficient and p is the order of 
the prediction equations. In the autocorrelation case, nl = 1; 1lz == N + p 
and the speech signal is assumed to be zero outside the interval [1, N]. In 
the covariance case, nl ;:;;;; P + 1 and n2 = N, Here a weight function W n 

is introduced to select Or weight speech samples for the LPC analysis. The 
estimates of the LPC parameters can then be obtained by minimizing the 
weighted residual energy 

n2 P 

E;:;;;; L (sn - L S n-iad2Wn (2,2) 
n.;;;"'t t;=l 

The parameters ~ can be obtained by setting the deriva.tive of E with 
respect to aj to zero, Then we obtain the following p equa.tions: 

(2.3) 

For the sake of simplicity we will use a. vector notation to represent these 
linear equations, namely 

(2.4) 

where T represents matrix transposition; [; == (iil' Ct2, ••• , Up f, and Sn == 
($n~l' Sn-2, ... , sn._p)T. Therefore, the estimated value [; and the "true 
value" a = (at, az, .. " ap? are related by the following relation, which is 
easily obtained by substituting equation (2.1) into equation (2.4). 

1'1.2 1'1.7 

& - a == ( L WnSn.5;(l( L: WnSnen) (2.5) 

It is easily seen from equation (2.5) that the estimates of the LPC parame­
ters can indeed be improved by choosing a proper weight function to make 
the item on the right-hand side of equation (2.5) small. As long as the 
matrix C == E:!'n.t WnSn.Br is nonsingular j it would then be desira.ble to 

make the sum I:~;7H WnSnen as small as possible. For na.tural speech this 
ca.nnot easily be fulfilled because speech samples in Sn are delayed out­
puts of the production equation (2.1) under the input en which is not an 
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idealized pulse train. The weighting function Wn , however, can take on a 
low value aT be ~erQ when en is large, and take on a. high value when en is 
small. Consequently, the difference between the estimated predictive coeffi­
cient vector g, and the "true value" if decreases. In other words, the speech 
samples that fit the LPC model are over-weighted and those samples that 
do not fit the model are down-weighted. 

2.3 Choosing the weighting functions 

In the Introduction it has been mentioned that the sample·selective method 
(Miyoshi et al., 1987) suffers from several shortcomings, in particular, that 
it is computationally expensive and that the selection of speech samples is 
still unreliable. To avoid these difficulties we now propose a method which 
only requires a single LPC analysis but achieves essentially the same objec­
tive by using either an appropriate sample-selection window (i.e. Wn =1 or 
0) or an appropriate weight function Wn. In both cases the weight Wn is 
based on the STE (the short-time energy), E~ol .s!_i_k, computed over a 
window of M samples and with a certain lag k with respect to the prediction 
residual en which is multiplied by Wn in equation (2.2). This choice of Wn 
is based on the following observations. In Figure 2.2 it can be seen that the 
pre-emphasized speech signals for vowel fa!, spoken by a female a.nd a male, 
show dear peaks and valleys. The peaks are due to the strong excitations 
that are produced by rapid closing of the vocal folds and the valleys result 
from the decay of the ringing of the vocal tract filter. These strong excita­
tions generally also correspond to the peaks in the LPC residuals indicating 
that the LPC model does not fit the speech samples in these regions. Due 
to these peaks and valleys the short-time energy function of these signals, 
calculated with a window of a size less than a half period, will over· weight 
the speech samples which follow the main excitations while down-weighting 
those containing the excitations. In other words, the speech samples that 
fit the LPC model well are over-weighted and the samples that do not fit 
the model are down-weighted (Lee, 1988j Ma and Willems} 1990). This will 
be further clarified in the tests described in the next section. 

In the spirit of these consideration, we will consider two alternatives. In 
the first case, we select the speech samples .sn for which the STE function 
exceeds a certain threshold Td. In the following, this caSe is referred to a.s 
['STE-thresholdedjj and the function Wn in (2.4) is accordingly defined as 

W I L..ii",O Sn-i-k > t1. 
{ 

1 'f ~M-l 2 T 
11-== 0 h ot erwise 

(2.6) 
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Fig.2.2(a) Fig.2.2(b) 

Figure 2.2: Preemphasized speech waveforms. (a) vowel/a/ uttered 
by a male. (b) vowel/al uttered by a. female. 

11 

In the second easel called HSTE-weighted", all speech samples are consid­
ered for the LPC analysis and the weight function Wn in (2.4) is the STE 
itselfl Le-

M-l 

Wn == L S~_i_k (2_7) 
i""o 

This $hort~time energy function will be used as a weighting function to 
over-weight the speech samples which follow the ;main excitations and to 
down-weight those containing excitations-

2.4 Performance evaluation 

The STE-thresholded and the STE-weighted LPC analyses defined in the 
preceding section are applied to synthetic vowels and na.tural vowels. They 
will be compared with the conventional autocorrelation LPC and a.gainst 
the sample-seledive method (Miyoshi et aI., 1987). In all cases the speech 
was sampled at 10 kHz and was then pre-emphasized by a filter (1-0.9z- 1

)_ 

The prediction order WaS 10 and the speech data are refreshed every 10 
ms with an analysis frame of 25-ms dura.tion- Formant frequencies were 
obtained by solving for the zerOS of the estimated LPC polynomials, 

In the autocorrelation case a Hamming window of 25-ms duration was 
used. The sample" selective I the STE-thresholded and the STE-weighted so­
lutions were obtained from the covariance equations. The sample-selective 
method implemented here uses rectangular windows of 12 samples width; 
their left edges are set one sample ahead of the time instants a.t which the 
residual of the conventional LPC analysis just falls below 50% of the peak 
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value in the current-analysis frame. For our solutions, the short·time en­
ergy STE is calculated over a window of size M = 12 and then delayed by 
one sample, i.e. k = 1 in (2.6) and (2.7). For the STE-weighted solution, 
the weighting function Wn is the STE itself; for the STE-tmesholded so­
lution, Wn is defined by (2.6) with threshold Td equal to 50% of the peak 
value of the short-time energy function in the current analysis ftame. 

These fOUI LPC solutions, being the conventional LPC, the sample­
selective LPC, the STE-thresholded LPC and the STE-weighted LPC j were 
first applied to fOUI synthetic vowels of about 1.2 seconds duration, which 
were produced by using two different excitations; single-pulse excitation for 
vowels VI and V2 and LF-modelled excitation for vowels V3 and V4 (Fu. 
jisakl and Ljungqvist, 1986). The influence afhigh fundamental frequency 
on the estimation accuracy was investigated. The formant frequencies and 
bandwidths for the fOUI vowel sounds ate listed in Table L The fundamen­
tal frequency of the vowel sounds increases linearly in the specified range 
listed in Table I on a logarithmic scale. 

The means and standard deviations of the estimated five formant fre­
quencies are listed in Tables 11- V far the diffe:('ent LPC solutions. It can 
be seen from Tables II and III for vowels Vl and V2 which have the 

Vowel Fo - range Il F l , Ed (Fl , E2 ) (F3 , B3 ) (F4' B4 ) (Fs, Bs) 
VI 100 - 250 (500, 50) (1500,150) i (2500,250) (3500,350 4500,450) 
V2 250 - 400 1(500,50) (1500,150) 1(2500,250) (3500,350 4500,450) 
V3 
V4 

100 - 250 (790, 50) (1300,150) (2565,250) (3500,350 4500, 450) 
250 - 400 (790 j 50) I (1300,150) (2565 j 250) . (3500,350) 4500, 450) 

Table I: Formant frequencies and bandwidths in Hz for two synthetic 
vowels in two fundamental frequency ranges. 

LPC Fl F2 Fa F4 PI; 
Conventional 498( 16) 1491(9) 2498(8) 3500(5 4500(5) 

Sample - selective 500(1) 1498(9) 2499(5) 3499(1 4500(2) 

liST E ~ thresholded 500(0) 1499(6) 2499(3) 3500(3 4500(3) 
ST E - weighted II 499(3) 1499(3) 2499(3) 3500(3 4506(4) 

Table II: Estimated formant frequencies and their standard devia­
tions (in parentheses) for vowel VI. 
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same formant structure, but different fundamental frequency range, that 
the fO':nnant frequencies O'btained frO'm the autocorrelatiO'n LPC are more 
scattered than those obtained by the other three LPC solutions. CO'mpar­
ing Tables II and Table III} it can be seen that the formant frequencies 
estimated by the conventional LPC analysis are even more scattered fO'r 
vowel V2 than for vowel Vl, due to the higher fundamental frequencies 
O'f vO'wel V2. The difference between the estimated and the O'riginal F1 
teaches as much as 8 percent for vowel V2, which is significantly greater 
than the just-noticeable difference of formant frequency (3-4% for formant 
.one) reported by Flanagan (1972), who used the same vowel stimuli for the 
listening test. The formant frequencies obtained by the sample-selective 
and the STE-thresholded LPCs are very close to the correct values. The 
formant frequencies obtained by the STE-weighted LPC is also clustered 
around the correct values. The formant frequencies for vowels V3 and V 4 
are shown in Tables IV and V 1 respectively. One observes from Table IV 
that the three low-frequency formants obtained by the sample-selective and 
the twO' STE-based LPC}s are narrO'wly distributed 8.l'ound the correct val­
ues, while those obtained by the conventional LPC are relatively scattered. 
Comparing the results for vowels V3 and V 4, one can see that the for-

LPC Fi F2 F3 F4 Fr. 
Conventional 499(39) 1496(31) 2500(22) 3498(15 4500(9) 

Sample - selective 500(0) 1499(1) 2499(1) 3499 1 ·4499(0) 

II STE - tk'1'e.sholded 11 500(0) 1499(0) 2499(0) 3499 0 4499(0) II 
II ST E - weighted 501(9) 1501(7) 2500(4) 3498 3) 4499(2) II 

Table In: Estimated formant frequencies and their standard devia.­
tions for vowel V2. 

LPC Fi F2 Fa F4 F5 
Conventional 777(15) 1267(7) 2581(29) 3626(59) 4868(219) 

Sample - selective 774(5) 1278(7) 2580(4) 3535(22) 4500(29) 

ST E ~ thresholded 789(1) 1303(2) 2559(5) 3503(7) 4548(23) II 
ST E - weighted 781(5) 1284(3) 2535(3) 3505(24) 4705(171) II 

Ta.ble IV: Estima.ted formant frequencies and their standard devia­
tions for vowel V3. 
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Figure 2.3: Normalized LPC error as a function of the position 
of signal selection window for vowel V2. Solid line shows the error 
for conventional LPC analysis. (a) Sample-selective LPC analysis. 
(b) STE-thresholded LPC analysis. (c) STE-weighted LPC analy­
sis. Analysis condition: LPC order=lO j Preempha.sis;;;;;;O.9, Window 
width=12 samples. 

mant frequencies FI and F2 obtained by the conventional LPC are more 
scattered for the vowel V 4 with higher fundamental frequency. This again 
indicates that the conventional LPC is much more sensitive to the excita" 
tion pulses. Generally, the results obtained by the sample-selective method 
and the STE-thresholded LPC are the best ones; those obtained from the 
STE"weighted LPC are slightly poorer but still show much improvement 
compared with the conventional LPC analysis. From the viewpoint of com­
putation complexity, both STE-based LPCs are m.uch more economica.l 
than the sample-selective LPC method. 

In the second test the normalized total squared LPC residual error is 

LPC Fl F2 F'3 Fol F~ 
Conventional 781(31) 1290(27) 2524(22) 3457(36) 4391(25) 

Sa.mple - selectitJe 787(3) 1297(6) 2571{6) 3523(20) 4516(42) 

ST E - thresholded 784(11} 1297(11) 2564(6) 3502( 13) 4539(33) II 
II STE - weighted 784(15) 1291(11) 2532(9) 3466(17) 4480(47) II 

Table V: Estimated formant frequencies and their standa.rd devia­
tions for vowel V4. 
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Figure 2.4; Sa.me as Figure 2.3, but for vowel V4. 
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Figure 2.5: Same as Figure 2.3, but for natural vowel JaJ. 

15 

calcula.ted as a function of the amount of offset of the windows Ot the 
weighting functions. For the sample-selective LPC the shlft of the win­
dows is the number of samples between the left edge of the window and 
the point where the residual just falls below 50% of the peak value. For 
both STE-based LPC's the shift is simply the value of k in the expressions 
(2.6) and (2.7). The experimental conditions are the same as in the first 
experiment. Synthetic vowel segments and natural vowel segments of 250 
samples were used in the test. Synthetic 'Vowel segments were taken from 
vowels V2 and V4 (fundamental frequency 250 Hz) and two natural. vowel 
segments lal and lei were spoken by a female. The results obtained from 
synthetic vowels V2 and V4 are plotted in Figs. 2.3 and 2.4, respectively 
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Figure 2-6: Same as Figure 2.3, but for natural V'owel/e/. 

and those from natural vowels la/ and /e/ are shown in Figs- 2.5 and 2.6, 
respectively. In Figs. 2.3- 2.6, solid lines represent the normali!ed total 
squared LPC error from the conventional LPC analysis and dotted curves 
represent the error obtained from the weighted LPC analysis. In each fig­
ure, panel (a), (b) and (c) show the results from the sample-selective, the 
STE-thresholded and the STE-weighted LPC analysis t respectively. It can 
be seen from panels (a) in Figs. 2.3- 2.6 that the normalized errOr from the 
sample-selective LPC analysis sharply decreases as the window is advanced 
by one sample and that the amount of the decrement is dependent on the 
vowel sounds. From panels (b) in Figs. 2.3- 2.6 we see that normalized 
error curves are similar to those shown in panels (a.), except that the sharp 
decrease may be offset to the right by one or two samples. Panels (c) in 
Figs. 2.3- 2.6 also show that normali:ted ecrors decrease as the window ad­
vances. The decrement is, howevet, less than shown in panels (a) and (b) 
due to the fa.ct that the STE-weighted LPC uses a. continuous weight func­
tion and does not make hard decisions in choosing speech samples. The 
normalized error functions obtained by the sample-selective LPG and the 
S TE- thresholded LP G are quite similar. The smallest normalized ertors 
obtained by the STE-weighted LPC are higher than those obtained by the 
sample-selective LPC or the STE·weighted LPG, but they are still below 
the normalized error obtained by the conventional LPC. 

In the third test, five natural vowels t la/,/e/, lui, Iii and 10/, spoken 
by a female were used fot the four types of LPC analyses. The a.verage 
fundamental frequency of the vowels is a.bout 200 Hz. For comparison, the 
spectral envelopes of the LPC filters obtained by the conventional LPC 
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are shown in each panel by solid lines in Figs. 2.7- 2.11. The spectral 
envelopes obtained by the sample-selective, the STE·thresholded and the 
STE-weighted LPC analyses of order 12 are plotted as dotted lines in panels 
(aL (b) and (cL respectively. On the left-hand side of each panel the speech 
waveform is plotted at the top. At the bottom either the LPC residual Or 
the short-time energy is plotted as a solid line and the selection window 
as a dotted line. In this test a window size of 20 samples was used for the 
sample-selective method and fot the calculation of the short-time energy 
function, since the average period of the vowel signals is about 50 samples. 
The threshold value was set at 70% of the peak value of the residual error or 
the short-time energy function and the sample-seledive function was set to 
be zero in the end portion (30 samples) of the analysis frame. It can be seen 
from Figs. 2.7- 2.11 that the spectral envelopes of the LPC filters obtained 
by the sample-selective LPC and both STE-based LPC are quite similar 
and that the peaks in the spectral envelopes are mOre prominent than 
those obtained from the conventional LPC. Also, their estimated formant 
bandwidths are generally narrower than those from conventional LPC. This 
is due to the fact that the excitation, which contributes to the widening 
of the formant bandwidth, is down-weighted in these LPC analyses. One 
sees that for vowel lei in Fig. 2.8 the first formant does not a.ppear from 
the spectral envelope of the conventional LPC~ while the three other LPC 
solutions give rise to a dear first formant. One also observes from Fig. 2.10 
(a) by using the sample-selective function based on this residual tha.t the 
pulse-like excitation in the LPC residual is not always prominent and that 
the estimated bandwidth for the first formant is unrealistically narrow. This 
could be due to the fact that the LPC residual is not well estimated in the 
LPC analysis of the first step. A low threshold value can be used to avoid 
missing the selection of speech samples, but the rectangular window will be 
generally located in a somewhat irregular manner due to the irregularity of 
the pulse excitation and to ettoneous pulses in the LPC residual resulting 
from the inaccuracy of the first LPC analysis. However, it can be seen that 
the short-time energy function shows good periodicity just like the speech 
waveform. Therefore the positions of windows or' weighting functions based 
on the short-time energy appear to be more regular) with the consequence 
that speech samples with similar positions in each period will be over­
weighted. This could be an advantage in the analysis of natural vowels 
where the LPC model is only approximately valid and where in a period of 
the LPC residual, there is often more than one pulse or nO prominent pulse 
at aJl Obviously these techniques, based on the short-time energy of the 
signal, are robust in the selection of speech samples and computationa.lly 
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less expensive. The estimate obtained by the STE-thresholded LPC is as 
a.ccurate as that derived from the sample-selective method based on the two­
step LPC analysis- The estimate of the STE·weighted LPC is somewhat 
less a.ccurate, but it is quite attractive, taking into consideration the saving 
in computation time. 

2.5 Stability analysis of STE-weighted autocorrelation-based 
LPC 

In this section, a. stability analysis for the STE-weighted autocorrela.tion­
based LPC will be presented, although this cannot be performed for the 
convariance LPC analysis. In the autocorrelation case, the STE-weighted 
LPC equa.tions (2.4) of section II can be rewtitten as 

yTY(l, aI, (h, .. " ilpf = (Ej 0) OJ''' j of (2.8) 

where 

WISI 0 0 0 

W2 S' W;lSl 0 0 

WP~lSp-1 wp-lsp -2 wp-lsp-3 0 

wpsp wpsp-l W p Sp _2 WpSl 

Y= (2.9) 

WN-l$N-l WN-l$N-2 WN-1SN-3 wN-lsN-p 

WNSN WNSN-I WN$N-2 wNsN-p+l 

0 WN+1 sN wN+lsN-l WN+1SN-p+2 

0 0 0 wN+psN 

and Wn = vWn (see equation ( 2.4)), If the columns of Y are denoted by 
Yo, Yl j ••• j Yp then one observes that these columns can be generated via. 
the formula. 

(2.10) 

with A a constant matrix of order N + P defined as 
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0 Wl/ W 2 0 0 
0 0 WdW 3 0 

A= (2.11) 
0 0 0 wN+p-dwN+p 

w 0 0 0 

where w is arbitrary. In fact, it turns out that the value of w plays no useful 
role in the following and we will thus put w ;;;; O. The important consequence 
of (2.10) is that the zeros of the prediction polynomial P(z) = E~ ap~kzk 
belong to the numerical range of the matrix A (Delsarte et al., 1987). By 
definition, the numericalrange or the field of values F(A) of a square matrix 
A is the set of complex numbers iJA." for 11.,,11 == 1, where the tilde denotes 
the conjugate transpose (Delsarte et al., 1987). 

Let uS now turn to the actual computation ofthe numerical range F(A). 
Following (Delsarte et al., 1987), we observe that F(A) has circular sym­
metry around the origin. Indeed, in view of the particular form of (2.11) 
of matrix A, one has 

n+p-l 
-A '"' - Wk rJ rJ;::;;: L.J rJk -~ 7Jk+l 

1.1=1 W,"+l 
(2.12) 

and therefore the substitution "'k ~ e&krP'fJk transforms F(A) into ei ,; F(A). 
Consequently, it is sufficient to find the intersection of F(A) with the real 
axis and this, in turn, is given by the munerical range of the symmetric 
matrix D ;:;;; (A + AT )/2. Since D is symmetric it can be diagonalized by 
some unitary transformation and therefore its numerical range coincides 
with the interval [--Xmail:' -Xmail:] where -Xm.a~ is the largest eigenvalue of D. 

According to (2.11)' matrix D is a tridiagonal nonnegative matrix of 
order N +p with the following expression 

0 Wl/W2 0 0 

WdW2 0 W2/ W 3 0 
1 

D~-
2 

0 0 0 WN+p-I!wN+p 

0 0 WN+p-tlwN+p 0 
(2.13) 

For the maximal eigenvalue of a nonnegative mattix several upper and 
lower bounds are known (Minc, 1988), which are all based on the minimal 
and maximal row (or column) sum of the matrix. Let ri denote the ith rOW 
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sum of matrix D ~ (~j), that is~ ri :;;;: I:S:~P dij . The most straightforward 
of these bounds is given by 

).maz$m~{ri} r;;;;;;1,2, ... ,N+p (2.14) , 

In view of the detailed expression (2.13) of matrix D, we obtain the 
following result. 

Theorem: The zeros of the STE"weighted linear predictor defined by 
equation (2.1) are all located inside a circle with centre at the origin and 
with radius i ma.x.n.( Wn,/Wn,+l + Wn,+l/wnH) for n = 1,2, ... ~ N + p ~ 2. 

Using tighter bounds on the maximal eigenvalue of a nonnegative matrix 
such as provided in (Mine, 1988) gives correspondingly tighter estimates on 
the loca.tion of the ~el'OS of the STE"weighted predictor. 

Ideally, we would have liked to show that the predictor polynomial for 
the STE-weighted LPC is stable, i.e- that all its zeros lie in the open 
tmit disk jzj < 1. Although we have not succeeded in doing so~ we have 
derived an upper bound for the modulus of the largest zero. It appears 
that this upper bound is directly related to the weight ra.tios Wn/wnH 

(n = 1, 2~ ... ~ N + p - 1). In particular} if the largest weight ratio is less 
than or equal to unity then the predictor is proved to be stable. This is 
the case for linear ptediction with exponential forgetting factor (Lee et aI., 
1981), since the weight ratio is then a. constant less than unity. In our case, 
where the short-time energy of the speech signal over a lagged window is 
taken as a weighting function, two successive weight factors Wn, and 'Wn,+l 
are not significantly different since they represent the STE over windows 
which are shifted by one sample only. The difference becomes small a.s the 
window size increases. In our experiments, it turned out that the weight 
ratio wn,/wn+l was at most 1.2. According to the Theorem, this gives 1.2 
as an upper bound for the predictor zero with largest modulus which is, 
of course, insufficient to guarantee stability. It may however provide an 
explanation for the experimental observation that, in practice, the STE­
weighted predictors computed according to section II turn out to be almost 
always stable_ 

2.6 Conclusion 

We have derived a generalized STE-based LPC analysis Wlder the linear 
least square criterion. The sample selection window or the weighting func­
tion in this algorithm are based on the short-time energy of the speech sig-
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naL Their effect is to over-weight the speech samples tha.t fit the LPC model 
well and to down-weight the others. This novel LPC approach produces 
less deviating estimates of the formant frequencies than those obtained from 
the conventional LPC and is less sensitive to the va.lues of the fundamen­
tal frequency. From the experimental observa.tions l the STE-thresholded 
LPC solution is preferable to the sample-selective method based on two­
step LPC analyses in terms of computation efficiency and robustness in the 
selection of speech samples and preferable to the STE-weighted LPC from 
the viewpoint of estimation accuracy. 
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Chapter 3 

A generalized sample-selective linear prediction 
analysis * 

Abstract 

In this paper, we consider the relation between the covari­
ance linear prediction (eLP) analysis of a frame of a speech 
signal and the eLP analysis of its subframes. The results of 
eLP analysis derived from a set of subframes are equivalent to 
those of a residual-weighted eLP analysis of the complete frame 
and the solutions of the residual-weighted eLP are the same as 
those of the generalized weighted average of subfrarne eLP. A 
generalized sample-selective CLP analysis is proposed. Those 
subframes which best reflect the filter model of the speech pro­
duction can be chosen to improve the accuracy of the estimate 
of the LPC parameters. 

3.1 Introduction 

T HE process of speech production can be simplified as a source·filter 
model [l}. The filter can be characterized by an all-pole model 

represented by the linear prediction equations [2}[3]. For voiced sounds, 
the source is situated in the vibrating vocal folds which modulate the 
air flow from the lungs. We refer to the vibration frequency of the vocal 
folds as the fundamental frequency. The unvoiced sound source consists 
of the turbulent flow formed somewhere in the constricted vocal tract . 

In estimating the predictor coefficients, the methods of a.utocorre­
la.tion linear prediction (ALP) and covariance linear prediction (eLP) 
analysis have become very important. The CLP, in pa.tticular, is often 
used for very short segments of sampled da.ta. j for instance in pitch syn­
chronous analysis and dosed-glottis-period analysis. When the analysis 

·Paper with 1.F. Willems pub&hed in Signal Procl!ssing V: Theories and Ap­
plicationll, edited by TOl'rl!sj T., Masgrau, E., and lagunas, M.A. (ELoI;Vil!r Science 
Publisher), pp.l171-ll74, 1990. 
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window is quite wide, for example, covering mote than two pitch peri­
ods, the performance of eLP is close to that of ALP, but that is not the 
case for very short segments of sampled data. In order to give a better 
description of the process of speech production, researchers have paid 
much attention to the fine structure of formants by means of very short 
window eLP analysis, or an analysis of only the excitation-free portions, 
such as the closed glottis portion, to estimate the parameters of the lin­
ear prediction model of speech production. But it is not always easy 
to choose those excitation·free portions, for example, in voiced sounds 
uttered by females Or children, because the pitch period is short. The 
results are dependent On the data available in the pitch period and are 
sensitive to the window position [5]. The estimation accuracy of the pa­
rameters can be improved by sample selective linear prediction (SSLP) 
[4], proposed by Yoshiaki Miyoshi et al. In the following sections we shall 
show that SSLP is a special form of the generalized weighted average 
eLP analysis. 

In practice it is always preferable to obtain an accurate estima.te of 
the LPC parameters so that the SOurce and the filter can be well sep­
arated. One example is the glottal inverse filtering technique, which 
derives the glottal pulse from the speech signal. Improving the estimate 
of the LPC parameters is one of the main goals in speel;h processing. The 
signal of a voiced sound is quasi-periodic. The differences between the 
successive pitch periods are due to noise or other factors from the glot­
tal source. The pitch synchronous LPC analysis does not benefit from 
the correlation of the successive pitch periods.. However, there always 
exists SOIne more aT less excitation -free portion which best reflects the 
parameters of the filter modeL We cannot use these portions to do pitch 
synchronous analysis separately, but We can use them in combination to 
obtain a good estimate of LPC parameters. 

In section 2 we shall present the relation between the results of the 
residual-weighted eLP of a frame and that of its subfrrune eLP. In 
section 3 the relation between the frame CLP and the subframe eLP 
is given. In section 4 a generalized sample-selective CLP method for 
speech analysis is discussed. 

The conclusions are that 1) the results of eLP analysis derived from 
a set of subframes are equivalent to those of the residual-weighted eLP 
analysis of the whole frame and 2) the solutions of the residual-weighted 
eLP are the same as those of the generalized weighted average CLP of 
the individual subframes. From this we obtain a. generalized sar:n.ple­
selective eLP analysis to improve the estimate of LPC parameters. 
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3.2 The Residual-weighted CLP of a frame and its subframe 
CLP 

The speech production model can be generally described by the following 
equations: 

11 

Sn = L Sn-i ai + en 
i",l 

(3.1 ) 

where s"" denotes the nth sample of a speech wave, en is the nth sample 
of an excitation wave, and Uj the ith predictor coefficient. eLP analysis 
is based on the minimization of the following sum of squared prediction 
residuals, 

112 p 

E = L (sn - L Sn_i~)2 (3.2) 
fL""nl i-l 

Fot the sake of simplicity we use a matrix form to represent it. The 
prediction equa.tions and the error for the eLP are therefore a.s follows 

(3.3) 

and 

E = (Sa - s)T(Sa - s) (3.4) 

S and s stand for the left-hand matrix and the column ma.trix of the Sn, 

respectively, and T represents matrix transpose; aT = (aI, (l2, ... , IIp). 
The Least Square Solution of (3.3) is 

(3.5) 

The equation above is the normal eLP analysis for a frame of signal 
samples running from n1 - p to n2. 

We now choose a window W with a frame length n2 - nl + p + 1 and 
some subwindows Wk rwming from bk - p to ek (bk ~ nl and ek $ n2). 
This is illustrated in Fig. 3.1. For ea.ch subframe WI!:, we obtain a set 
of prediction equa.tions. Putting all subframe equations together, we 
obtain what we shall call the residual-weighted eLP equa.tions. In this 
case the total energy of the residual errOr can be ,represented by 
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Figure 3.1: Top: a speech signal. Bottom; an illustration of how 
the subframes are chosen. 
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(3.6) 

where An is the number of times that the prediction equation Sn = 

1::;=1 Sn-i a, appears in the set of eLP equations. 
In order to relate the predictor a which minimizes (3.6) to the solu­

tion (3.5)) we construct the augmented ma.trix (S) s) from the augmented 
matrix (S)s). This matrix is constructed such that the k-th prediction 
equation is explicitly represented An times. It is easy to prove that the 
Least Squares solution of (3.3) will be 

(3.7) 

or 
(3.8) 

where aT = (al) a2)"') dpL and QTQ is a. (n2 - nl + 1) x (n2 - nl + 
1) diagonal matrix containing the number of times that the predictor 
appears, which depends on how we choose the subwindows. 

From equation (3.6)-(3.8)) we can see that the results of eLF anal­
ysis derived from a set of subfrarnes are equivalent to those obtained 
by weighting the residual error function en of the whole frame with a 
window in which the amplitude is the element Q( n} n) of matrix Q. 
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3.3 The frame eLP and the subframe CLP 

The following equations are derived ftom the augmented matrix which 
is partitioned a.ccording to row. 

(Ill:l(Il (3.9) 

In the aboV'e equa.tion 

( 

S&~-l 
Sic = : 

S~k-l 

SOk-2 

(3.10) 

S~k-'l. 

8k = (':1 1 
Sek 

(3.11) 

Because every submatrix Sic and s represent a subframe eLP analysis in 
which the speech samples are ftom bk - p to ek (bk ~ nl and ek ~ n2), 
we can rewrite equa.tion (3.7) as follows: 

(3.12) 

From the product of two partitioned matrices we have 

(3.13) 

Ea.ch individual subframe analysis, on the other- hand, has a solution a" 
given by 

(3.14) 
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where at.: are the prediction coefficients obtained from the analysis of 
the k·th subfra.me. Of course, for each different subframe eLF analysis 
we find different ak coefficients. Comparing the above two formulas, we 
have 

(3.15) 

That is 
(3.16) 

It is obvious that the solutions of the residual-weighted CLP are a 
generalized weighted average of the solutions to the individual subframe 
eLP. We call tills the generalized weighted average CLP. The covariance 
matrix E Sr Sr.: is the weighting factor. The error can be calculated by 

(3.17) 

Note that the a coefficients are from either the residual-weighted 
CLP analysis (3.8) or the windowed signal (3.16). 

3.4 The generalized sample-selective CLP 

So far we have arrived at the relation (3.16) between the frame CLP 
and its subframe eLP. The generalized sample-selective eLP will be 
discussed in this section. 

It is useful to analyze a frame of the speech signal with a group of 
subframes CLP analysis in which only the ak coefficients with a small 
excitation influence are kept. That amounts to an analY!lds of the speech 
signal by a generalized sample-selective linear prediction. We can see 
that SSLP is just a special form of this generalized weighted average 
eLP. The influences of the excitation are included in the analysis frame 
in SSLP[4]. The generalized weighted average CLP gives uS more free­
dom to choose several subframes to compensate for the scarcity of data 
and to reduce the noise influence. We can, for" example) choose those 
subframes which do not include any excitation influence. This subframe 
scheme was also used by P. D. Welch to estimate power spectra in the 
nonstationary case [7]. The choice of subframes is related to the model 
of speech production. We will discuss this in the following part. 

It is noted tha.t there is a strong correlation from pitch period to pitch 
period in voiced sounds (exceptions are the voice onset and offset por­
tions). To take advantage of this correlation We can choose subwindows 
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Figure 3.2: Top: spectrum of the CLP of a 40-sample 5ubframe. 
Middle: electroglottogram. Bottom: speech signal. The elec­
troglottogram and speech signal are plotted on the !la.me time 
scale. In the top pa.nel curve 1 corresponds to the result of the 
eLP of data in the window from 0 IDS to 4 ms and curve 2 to the 
result in the window from 2 ms to 6 ms, and sO on. Curve 0 is the 
generalized average of curves 6 and 11. 
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so that they just o:;:over the region where the excita.tions are rela.tively 
small. The information for determining the formants has to be taken 
from these subwindows, and the result can be optimally obtained from 
the generalized average of these subframe CLPs. 

From Fig. 3.2, we can see how formants change accordJng to subframe 
position. The eledroglottogra.m indicates the sta.tus of the vocal folds; 
the spectral curves ate numbered from 0 to 11, When the window con­
tains the main excita.tion the results are unacceptable, for instance, those 
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indica.ted by curves 3 and 8. When the window is located in the closed­
glottis portion, good formant estimates are obtained, as illustrated by 
curves 6 and 11. The analysis conditions for this experiment were as 
follows. The speech signal was sampled at 10 kHz. The pre-emphasis 
parameter was -0.9 and the window length was 40 samples. The win­
dow was moved forward 20 samples every time. Formant frequencies 
in the open-glottis portions deviate from those in the closed-glottis re­
gions. Dividing every pitch period approximately into a.n open-glottis 
portion and a closed-glottis portion, we just analyze the data in the 
closed-glottis portion and calculate the average according to equation 
(3.16). Due to the correlation between pitch periods the averaging pro­
cess can also reduce some noise influence. To take an example, CUIve 
o in Fig. 3.2 shows the results from the average for the windows corre­
sponding to spectral curves 3 and 10. As can be seen, an estimation of 
the formant parameters which fits the speech production model better 
is obtained. 

From the above discussion, we know that we have more freedom in 
the choice of subframe data than with the SSLP, in addition, the rela­
tionship between long-frame CLP , short-frame eLP and the generalized 
weighted-average eLP is now established. 

The conclusions are 1) the results of CLP analysis derived from a 
set of subframes are equivalent to those of the residual-weighted eLF 
analysis of the whole frame a.nd 2) the solutions of the residual-weighted 
eLP are the same as those of the generalized weighted-average eLP of 
the individual subframe. From this we obtained a generalized sample­
selective CLP analysis to improve the estimate of LPC parameters. 
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Chapter 4 

A singular value decomposition approach to 
glottal closure determination from the speech 

signal * 

Abstract 

The detection of glottal closure instants has been a neces" 
sary step in several a.pplications of speech processing, such as 
speech coding) speech prosody manipulation and speech synthe­
sis. The proposed methods to da.te, in particular, the methods 
proposed by Strube and by Wong et al. are deficient in some 
aspects. Speech processing needs efficient and robust glottal 
closure detection methods. In this pa.per, we propose to use 
the singular value decomposition (SVD) approach to detect the 
glottal closure instant from the speech signaL The proposed 
SVD method amounts to calcula.te the Frobenius nonns of sig­
nal matrices and therefore is computationally efficient. More­
over, it produces well-defined and reliable peaks that indicate 
the glottal closure instants. Finally, with the introduction of 
the total least squares technique, the two methods proposed by 
Strube and Wong are rein'Vestigated and unified into the SVD 
framework. 

Introduction 

T HE process of speech production can be simply described by a 
source-filter model (Flanagan, 1972). The filter can be charac­

terized as linear (Markel and Gray, 1970j Makhoul, 1975). Fo:t voiced 
sounds, the sOurCe is situated in the vihtating vocal folds which modulate 
the air flow from the lungs and produce glottal pulses. The unvoiced 

·Pa.per with Y. Ka.mp a.nd L.F. Willems submitted for publiCl;I.tion to J. Aconst. 
Soc. Am. 
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sound source consists of the turbulent flow formed somewhere in the 
constricted vocal tract. 

Present speech research shows a great interest in analyzing the voice 
sound period by period over an interval which is delimited by two suc· 
cessive instants of glottal closure. For the sake of simplicity) we call the 
instants of glottal closure in the speech signal the epochs. Determina­
tion of the epochs plays an important part in applications) such as in 
inverse glottal pulse analysis to extract speaker charactetistics (Hedelin) 
1984; Kuwabara) 1984; Eggen) 1989L prosody manipulations of speech 
sounds by means of th~ PSOLA technique (Moulines and Di Francesco) 
1990)) and speech synthesis and speech coding (Redelin, 1984; Eggen) 
1989)_ 

During the past decades, several epoch detection methods have been 
proposed for the speech signal. One such method is to detect the discon· 
tinuities of the differentiated speech signal (Ananthapadmanabha and 
Yegnanarayana, 1975)- It is a simple and effective technique for very 
clean vowels with sharp glottal closures, but as it is a high-pass filter 
operation) it is thereby understandably sensitive to the noise excitations 
in sounds like voiced frictave and contaminating noise. Epoch detection 
based on the residual signal of the LPC analysis, as is descdbed by Anan­
thapadmanabha and Yegnanatayana (Ananthapadmanabha and Yegna­
narayana, 1979), also cannot produce reliable results, because the LPC 
inverse filtering can give rise to significant pulses Or pl"edictive errors 
in the residual other than those on the excitation moments. Moreover, 
the separa.tion of the source and the system by using the popular LPC 
method is strongly influenced by the shape of the glottal pulse and its 
repetition rate) and therefore does not work well in some cases such as 
in female and children's voice sounds. Due to errors in the LPC analysis 
there often is more than one impulse a.t a. closure instant in the LP C 
residuals. Then it often fails to produce accura.te epochs by detecting 
those impulses in the residual signals. 

At present, the two following methods are better known because 
they can produce a reliable glottal closure detection- The first one is 
proposed by Strube to calculate determinants of the autocovaria.nce ma.­
trices, which can produce satisfactory detection of the epochs. However, 
it cannot easily be normalized (Strube, 1974). The second a.pproach, 
proposed by Wong, Markel a.nd Gray (1979L directly makes use of the 
speech production model with a clearly defined glottal pulse. Here the 
epoch is defined a.s the minimum of the total LPC residual energy cal­
cula.ted ftom rather short analysis frames. Unfortuna.tely, total LPC 
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residual energy tends to be noisy and therefore needs to be smoothed 
which implies some loss in location resolution. 

Another group of related techniques is based on the analysis of a 
long speech segment with the aim of determining the length of the pitch 
period but not determining epochs. Among these techniques are the 
pitch detection algorithms AMDF (Ross) et aL 1974), SIFT (Markel) 
1972), DWS (Duifhuis, et al. 1982) and SHS (Hennes, 1988)) Discussion 
of these algorithms, however, is out of the scope of this paper. 

Many epoch detection methods, among which are the two important 
methods of Strube and Wong et aLI axe, in essence, based on the idea 
that the linear prediction model fits better and) consequently, its predic­
tion error is smaller within a short segment {less than one pitch period} 
of the speech signal which contains no excitations (Strube, 1974; Wong, 
Markel, and Gray, 1979; Cheng and O'Shaughnessy, 1989; Moulines and 
OJ Francesco, 1990). When the instant of glottal closure or main exci­
ta.tion is included in the data segment, the linear prediction model does 
not fit the data well and the prediction error will be large. These large 
prediction errOrs are indications of the glottal closure instants. 

The main contribution of this investigation is to establish a frame­
work of the epoch detection) to compare the results from different ap­
proaches and, finally, to propose a new singular value decomposition 
(SVD) approach to the epoch detection problem. This approach leads 
to a better formulation and has clear advantages over the two above­
mentioned methods, as it is computationally very efficient and robust 
against noise. The resulting measure has a dimension of energy and 
can be easily normalized and thresholded. We ate also able to show the 
relationship between Strube's method, Wong's method and our SVD 
approach and the advantages of the latter. 

In the next section, we introduce our approach mOre explicitly with 
a brief description of the notions of the singular value decomposition 
(SVD) technique and the linear least squares, and present the Total 
Linear Least Squares (TLLS) approach. In the third section, we propose 
our new SVD-based approach for epoch detection. Finally, our method 
is compared with two others, and examples are given. 

4.1 The SVD as unifying framework for epoch detection 

Epoch detection has often been based on a source-filter model of the 
speech production. In either parametric or statistical approaches, the 
all-pole system assumption is usually made (Cheng and Q'Shaughnessy, 
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1989; Moulines and Di Francesco, 1990). The source of the system is 
assumed to have an open glottis portion and a closed glottis portion in 
each pitch period of a voiced sound. The rate of transition from the 
dosed to the open glottis portion is much slower than that from the 
open to the closed glottis portion and thus the main e:x:citation occurs 
at the instant of the glottal closure. The differentia.tion of the main 
e:x:c:itation results in a very sharp pulse at the instant of glottal closure. 
Epoch determination from the speech signal is based on the fact that 
there is strong and a.brupt change of the glottal flow at the instant of 
glottal closure. A vocal tract is approximately a time invariant linear 
system over a short duration of time. When the system para.meters are 
well estimated, its excitation should be small in the closed glottis regions 
and large at glottal closure instants. 

Therefore, the amount of deviation from the linear prediction is a pri­
mary ctiterion used in different epoch detection approaches. The largest 
deviation is expected to happen at the glottal closure instant. The ques" 
tion , however, how to extract the linear predictability or how to identify 
the linear relation from the speech signal has a significant influence on 
the quality of the detection schemes. Moreover, speech sounds are dy­
namic in natUl"e and the source· filter model of the speech production is 
inevitably a.ccompanied by the presence of unknown disturbances, pa­
rameter variations and other uncertainties. Therefore, the linear model 
will only hold approximately and the solution will depend on the error 
criterion used. In practice, a particular solution is obtained by imposing 
additional constraints on the problem, such as least squares, maximum 
likelihood or ll-norm and accordingly, a variety of estimation schemes 
are utilized. Among the most popular estimation schemes for linear 
relation from noisy data, are the Linear Least Squares (LL8) and the 
Total Linear Least Squares (TLLS) schemes. As we shall see, the SVD 
method can provide a unifying framework in identifying linear relations 
from data and it makes the formulation of the problem explicit and 
guarantees the robustness of the munerical solulions. In these estima­
tion schemes, the data matrix or measurement data are in fact modified 
to meet linear relations imposed on the data. In other words, the data 
matrix is decomposed into the sum of two matrices, one of which con­
sists of the linear dependent column vectors and another consists of error 
elements. The constraints mentioned above are used because they ap­
proximately meet the physical requirements of the problem and produce 
a tradable mathematical solution. 
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4.1.1 Singv,lar Value Decompositio1l.(SVD) 

The SVD method has been used in several applications of digital signal 
processing (Vandewalle and De Moor, 1988). The SVD of a certain data 
matrix, allows a particularly robust separation of signal and noise and 
is very effective in dealing with noisy data (Vandewalle and De Moor, 
1988). 

Consider a sequence of measurements or observation vectors, consist­
ing of segments of a speech signal) obtained by advancing a rectangular 
window of length p+ 1 samples one sample further successively. The 
following data matrix can then be formed : 

s= 
( 

sp+l 
Sp+2 

Sp~m 
(4.1) 

We shall assume that m ~ p + 1 and that the data matrix has 
full colunm rank, i.e. p+l. Under these assumptions, it is well known 
(Golub and Van Loan, 1983) that there exist orthogonal matrices 

such that 
(4.2) 

where 

and 
0'1 ~ 0'2 ;::: .•. ~ Up+l > 0, 

where 0''; are called the singular values, the superscript t denotes ;matrix 
transposition and I p+1 is an identity matrix of order p + 1. The column 
vector "iii of the matrix U is a normalized eigenvector associated with the 
eigenvalue a} of matrix sst. fu the same manner the column vector Vi 

is a norma.lized eigenvector associated with the eigenvalue 0'[ of matrix 
8t S. Equation (4.2) is called the singular value decomposition (SVD)-

It is clear that the SVD method decomposes a data matrix into the 
sum of (p+ 1) rank one matrices. The matrix st S is the autocovariance 
matrix of the speech signal and its determinant can be rewritten as 
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(4.3) 

Moreover) the Frobenius norm of a matrix S :;;; {Sij : 1 :5 i ~ m) 1 5 
j :5 p + 1} is defined as 

( 4.4) 

and it is known (Golub and Van Loan) 1983) that it can be expreued 
in terms of the singular values as 

p+1 

IISIIF ~ (2: I7l)l!":l. (4.5) 
,=1 

Hence) the Frobenius norm of S is the square-root of the sUlIl of its 
squared singular values_ 

4.1.2 Strube's method fOT epoch detection 

Let Sf denote the ith column vector of matrix S. In the absence of ex­
citation) the linear filter model of order p imposes a linear dependence 
between the vectors 81) 82) •. _, Sp+l. Consequently, the determinant 
of the matrix st S as a function of time will increase sharply when the 
data matrix contains an impulse excitation and it will decrease (ideally it 
should become zero) when the data matrix does not conta.in any impulse 
excitation_ Therefore, the determinant value can be used as a. way to 
detect the location of epochs in the signal. This is, in essence) Strube's 
method for the detection of epochs (Strube) 1974)1 which in view of 
(4.3) is equivalent to computing the product of all squared singular val­
ues of matrix S. The Cholesky factorization of sts provides however an 
efficient recursive scheme to actually perform this calculation (Strube, 
1974). 

4.1.3 Wong's approach to epoch detection and LLS 

The source-filter model used for linear predictive coding (LPC) is based 
on the assumption that the vocal tract can be approximated by an all­
pole filter of order p. Accordingly, the first column of the data matrix 
S in (4.1) is assumed to be a linear combination of the other columna 
and any deviation from this particular linear dependence is attributed 
to the excitation produced by the source. This viewpoint is expressed 
by the following set of equa.tions: 
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1 ep+l 

-al ep+2 

S -(12 :::;; ep +3 (4.6) 

-~ ep+m 

where en is the nth sample of the glottal excitation wave j and ~ the ith 
predidor coefficient. The least squares solution of the equations above 
can be obtained from 

1 El 
-a1 0 

sts -a2 0 ( 4.7) 

-a.p 0 

where El = E~!~l et is the LPC residual energy which can be coIn­
puted by 

det(stS) 
E 1 == _--::-=--,-,-,..0-

det(StS)ll 
(4.8) 

where (Sf 8)11 denotes the principal s.ubmatrix obtained by removing 
the first row and cohl.1:nn in ma.trix st S. The epoch detection proposed 
by Wong j Markel and Gray (Wong) Markel) and Gray! 1979) is essen" 
tially based on the minimum of this normalized residual energy E1 • In 
practice, the LPC residual energy EI is sequentially calculated from the 
speech samples covered by a short analysis window. When the anal­
ysis. window advances through a glottal pulse, the residual energy will 
increase first and then sharply de.;;:rease (in principle to zero) when the 
window just leaves the glottal pulse. However, these minima. may not be 
well defined in real speech due to the fact that the LPC model does not 
perfectly fit the speech samples and the speech samples are corrupted 
by noise. Owing to the poor prediction of the vocal tract resona.n.;;:es) 
the residual does not become zero after the glottal pulse and the minima 
may not correspond to the instants of the glottal closures. This ha.s been 
demonstra.ted by Kuwabara (1984) and Larar et a1. (1985), and further 
discussion about this method will be developed in the following sections. 

Finally, let us abo observe that the residual energy can also be ex­
pressed in terms of the SVD of matrix S. Indeed equation (4.7) yields 



46 Chapter 4 Glottal closure detection 

1 

(4.9) 

-ap o 
a.nd from the SVD of S one obtains 

which finally gives 
E _ 1 

l - +1 1/2 , 

L~=l ~ 
(4.10) 

where tilk are the elements of the first row of the matrix V. IT the smallest 
singular value O"P+l is significantly smaller than the others, the equa.tion 
above is approximately 

(4.11) 

The LPC solution is in fact a particular case in a whole family of 
estimation schemes for linear relation between noisy data. Indeed, p 
other estimations can be conceived, similar to 1PC, but where each 
column of S in turn is considered to be a linear combination of the 
p remaining columns. This set of estimations is known as the Linear 
Least Squares (LL5) family (Vandewalle and De Moor, 1988). Let Ei 
denote the residual energy of the ith LLS solution where the column i of 
the data matrix S is considered to be a linear combination of the other 
columns. In view of the singular value decomposition (4.2) of 8 one has 

( 4.12) 

and expression (4.10) corresponds thus to the ca.se i == 1 in the LL8 
family. 

4.1.4 Total LineaT Least Squares (TLLS) 

Each of the L18 solutions considered above can be looked upon as a 
modification of the original data matrix S such that a rank reduction 
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from p+l to p results. For instance, the LPC (or 1st LL8) equations 
(4.6) can be rewritten as 

Sp+l - ep+l 

Sp+2 - ep+2 
sp+3 - el'+3 

1 o 
o 
o 

Si>+m - e~+"" Sp+",,-l Sp+m-2 Sm -ap 0 
( 4.13) 

With the equation under this form, one can thus consider that the 
LPG solution a.chieves the rank reduction by modifying only the first 
column of S while all other columns remain unchanged (Vandewalle and 
De Moor, 1988). Similarly, the ith 1L8 solution can be interpreted as 
modifying only the ith column. In speech signals, however, all data in the 
matrix S could be conta.minated by noise or deviations from the model. 
In addition, the same elements in the first column of the matrix 8 occur 
in other columns as well and should therefore also be changed. Even in 
pitch synchronous speech analysis (Kuwabara, 1984; Eggen, 1989), the 
closed-glottis portions of speech, which are often considered excitation 
free, deviate from the linear model because of noise and nonlinearity. 
Therefore it may be unrealistic to modify one cohunn only in order to fit 
the linear production model and it would be more teasonable to modify 
all elements of the matrix S. This is the point of view a.dopted by the 
Total Linear Least Squares (TLLS) which modifies all data columns­
In other words, every element of the data matrix can be changed or 
perturbed in order to fit the linear relation modeL 

Let S be a perturbed matrix and the liS - BIIF be the perturbation 
energy. The TLL8 solution to the linear relation model is then obtained 
by modifying matrix S into S such that the following set of equations 

p 

L Sn-iai ~ 0 
i=O 

where index n runs from p + 1 to m + p, or equivalently 

Sp+l sp .5P-l 81 C/j) 

SpH SP+l 81' S2 ell 

8 p+3 $p+2 S~+l S3 0'2 

$p+m Sp+ .... -l Sp+m-2 8m O:p 

( 4.14) 

a 
0 

0 (4.15) 

0 
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is exactly solvable and the perturbation energy is minimized. We thus 
want to find !i such that 

rank(S) ::; p 

and 

is minimized. The solution to this problem is well known (Golub and 
Van Loan) 1983) and obtained by deleting in (4.2) the contribution of the 
smallest singular value, i.e. O"p+l) assuming for simplicity that (Tp > o"p+l' 

Thus 

(4.16) 

The perturbation error liS - BIIF = O'~+l) and the linear model is tip+! 

since) in view of the orthogonality of the vecton Vi) the following holds: 

SVp+l = O. ( 4.17) 

Finally) the residual error signal is given by 

(4.18) 

If, instead of the approach described above l we delete from (4.2) the 
contribution of a different singular value O"i -/:- (1p+l) then, we obtain a 
different perturbed matrix Si, namely, 

for which a different linear model holds, i.e. 

but with a relatively larger perturbation error I!S - Si!1 == u"l. Each sin­
gular value thus measures the deviation from some corresponding lineas 
model and the sum (pll~ I:f,!ll 0"1 can be considered as an ~~avetage" of 
the devia.tion from any hnear model. . 

4.2 The new epoch detection based on SVD 

The new criterion for epoch detection proposed here is the arithmetic 
mean of the squared singular values, namely, C == (p!l) Lf~; or Al­
though it does not seem p055ible to establish a rigorous and direct con­
nection between the numerical value of C and the instant of glottal 
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closure, the theoretkal argument given below shows why this criterion 
makes sense. Additional support is provided by a series of experiments 
presented at the end of this section and fUl'ther developed in section IV­
These experimental results show that the maxima of C indeed nicely 
correla.te with the instants of glottal closure. 

We start from expression (4.12) for the residual energy of the ith 
L18 solution which is rewritten as 

(4.19) 

(4.20) 

and, in view of the orthogonality of the matrix V which implies 
Lt!i vjJ.: ;;:;: 1, the la.tter inequality reduces to 

2 
2 ::I Ul 

0'17+ 1 :$ O'j ~ -2-Ei. 
O'p+1 

(4.21 ) 

On the other hand, the inequality between geometric and arithmetic 
means yields 

( 4.22) 

Considering (4.21) and (4.22) we finally get 

( 4.23) 

This double inequality provides the rationa.le for the new criterion- In­
deed, C lies between an upper and a lower bound, both of which can be 
considered as measuring the deviation of the speech data from the linear 

dependence model. The lower bound, (TIf~11 Onp~l , is in fact Strube's 
criterion in view of (4.3). On the other hand) except for the scaling fac-

2 

tor ::?-, the upper bound is the arithmetic mean of the residual energies 
"1'+1 



50 Chapter 4 Glottal closure detection 

Ei associated with each of the LL5 solutions and it can thus be consid­
ered as an ((average)) deviation of the data from linear dependence. By 
definition, these lower and upper bounds will both increase in the open 
glottis region of the speech signal and will both decrease in the closed 
glottis portion when the linear dependence between the columns of the 
data matrix is better realized. Consequently) one can reasonably expect 
that the new criterion C will follow a similar behaviour in view of the 
fact that it lies between these bounds. 

One observes incidentally that a similar argument a.lso holds for the 
individual singular values in view ofthe double inequality (4.21). Indeed, 
the lower bound ff;+l rneaSUl'es the deviation from the linear model for 
the TLLS solution and the upper bound is, within a. scaling factor, the 
residual energy Ei of the ith LLS solution. Both can be expected to 
increase when the excitation is present) i.e. when the data do not comply 
with the linear model. It is then not surprising that the expetimental 
observations at the end of this section support the fact that, indeed, each 
singular value increases in the open glottis portion of the signaL Finally, 
it should be noted that (4.23) pro'lides a tighter lower bound than would 
result from straightforward addition of the inequalities (4.21) over index 
i, since U;+l is of course smaller than the geometric mean of the squared 
singular values. 

It should be stressed that the new criterion is very efficient from 
a computational point of view. First, relation (4.4) and (4.5) show 
that the nUInerical value of C can be obtained simply by calculating 
the :Probenius norm of the data. matrix 5 without the need of a.ctually 
performing a singular value decomposition_ Moreover, our criterion can 
easily be updated when a new sa.mple comes in the observation window. 
The sequential computation of the Frobenius norm of the matrix reduces 
to adding the sum of the squared entries of the last row of the matrix 
and to subtracting the sum of the squared entries of the first row of the 
preceeding ma.trix. 

The arguments presented hereabove are corroborated by experimen" 
tal evidences as can be seen from Fig. 4.1 (a) for a synthetic vowel with 
impulse excitation and in Fig. 4.1 (b) for a natural voweL The speech 
signal is displayed on the bottom of the figure and all of the singular val­
ues are scaled in the display and ordered such that the smallest singular 
value is displayed on the top row of the figure_ All singular values exhibit 
local maxima when the analysis interva.l just comes across the excitation. 
Of course) the new criterion being the arithmetic'mean of the squared 
values) will also show maxima which coincide with the occurrences of 
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(a) (b) 

Figure 4.1: (a) and (b). From top to bottom j 10 singula.r value 
curves obtained from a synthetic vowel with impulse excitation 
and a natural vowel, respectively. The singular values ale ordered 
and scaled (indicated by the numbers in the figures)j the smallest 
one on the top, the speech waveform on the bottom. 

the glottal pulses. 
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We decide to locate the time position of the maxima in the Frobenius 
norm of the signal segment at time t == P + 1 given that the signal 
segment extends from t ;;:;; 1 to t = m + p} where m is the number of the 
equations and p the order of the linear model. The reason for this is that 
a. maxim"Wll in the Frobenius norm a.ppears when the excitation point 
just enters the first row of the data matrix S. This can be seen from 
equation (4.1): when $P+I is the ex.citation point, and when the analysis 
interval shifts fUl"ther) there will be fewer rows of the da.ta matrix that 
contain the excitation point. Thus, beyond t ;;; p + 1) the perturbation 
energy starts to decrease. This is clearly illustrated in Fig. 4.2 (b) for a 
synthetic voweL As a consequence, the max.ima have been delayed with 
respect to the speech signal. The amount of the delay is equal to the 
number m of prediction equations and this delay has been compensated 
for in all the figures. 

The instant of glottal closure can be determined a priori via the 
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Figure 4.2: (a). From top to bottom, the results from Wong's 
method (W), Strube's method (S), and the new method (C), the 
electroglotta.l waveform (Eg) and the speech wa.veform (Sp) for 
a natural vowel la/. (b) From top to bottom, the results from 
Wong's method (W), Strube's method (S), and the new method 
(C), the differentia.ted glottal pulses (Dg) a.nd the spee.::;h waveform 
(Sp) for a synthetic vowel la/. 

w 

s 

c 

Dg 

Sp 

electroglottal waveform for natural vowels or the excitation waveform 
for synthetic vowels_ Fig- 4-2 (a) shows) from top to bottom, the results 
of Wong)s method, Strube}s method) the new method} the electroglottal 
waveform and speech signaL In the same manner) Fig. 4.2 (b) shows, 
from top to bottom, the results of Wong's method, Strube's method, the 
new method, the differentiated glottal pulse waveform and the speech 
signal. The speech signals were sampled at a sampling frequency of 10 
kHz) and preemphasized with a filter (1 - O.9Z~1) that differentiates 
glottal pulses and produces sharp impulses. The analysis interval was 
30 samples long in total and the prediction order p was 10. As a rule) 
the analysis interval should be shorter than the pitch period and we 
found that the order of the predictor should be about 10. From the 
elec:troglotta.l wa.veform (in Fig. 4.2( a)) or from the differentiated glottal 
pulses (in Fig_ 4.2(b)) we can determine exactly the instants of glottal 
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closures. It can be seen that the new criterion produces clear peaks at 
the these instants. 

4.3 Comparison and examples 

Let us first observe tha.t Strube uses in fad the logarithm of the deter­
minant of the autocovariance matrix to determine the epochs. In view 
of (3), the actual criterion he uses is thus "Ef~floglT; whereas our cri­
terion is I:f~; 0"1- Consequently, the dynamics of the singular values is 
nonlinearly compressed in Strube's method with the consequence that 
the peaks -will be less ptominent. 

As seen from the simplified expression (4.11) I Wong's criterion re­
lies essentially on the smallest singular value. On the other hand, we 
observe from Figs. 4.1 and 4.2 that, as a function of time, the small­
est singular value tends to exhibit flat tops and bottoms, and therefore 
both the maxima and the minima of the curve may not be well defined. 
Consequently the exact location of the epoch derived from the minima 
may not be possible with Wong's method in this situation. It can also 
be seen from the top trace in Fig. 4.1 (b) that the smallest singular value 
as a function of time is noisy and therefore in view of (4.11), Wong's 
method will be sensitive to noise. A FIR lowpass filtering, with linear 
phase, can reduce this noise effect. At the same time, this filtering of 
Wong's criterion produces distinct maxima in the smoothed curve. It 
is observed from Fig. 4.1 and 4.2 that these maxima correspond to 
the sharp down-going edges of the time function of the smallest singu­
lar value and which indicate the instants of the glottal closures (Eggen, 
1989). But the positions of these maxima may depend on the filtering, 
as will be illustrated in the following. 

It can be seen from Fig. 4.3 (a) and (b) that a. FIR lowpass filtering 
of Wong's criterion produces nice maxima, corresponding to the instants 
of glottal closures, but the minima on which Wong's method is based 
may not be well defined. The FIR filter was designed a.ccording to the 
window method with a Kaiser window. The cutoff frequency of the filter 
WaS 1kHz and the length was 30 samples for Fig. 4.3 (a) and 20 samples 
for Fig. 4.3(b). Fig. 4.3 (a) and (b) were obtained from vowels uttered 
by a. male and a. female respectively and we have chosen the length of 
the analysis window to be 30 for the male voice (Fig. 4.2 (a)) and 21 for 
the female voice (Fig. 4.3(b)) because the pitch period of the male voices 
is in general longer than that of the female voices. However j Fig. 4.3( c L 
and (d) demonstrate that the positions of the maxima obtained from 
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Figure 4.3: (a) and (b). FIR lowpass filtered results from the 
three methods (labeled as W, S, and C) for clean speech uttered 
by a male and a female, respectively. The cutoff frequency of the 
filter was 1 kaz and the filter length of the filter was 30 samples 
in (a) and 20 in (b). Figures (c) and (d) show the lowpass filtered 
results from the three methods for noisy speech with filter length 
of 40, and 10 samples, respectively. The SNR of the noisy speech 
was 20 dB. 
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noisy speech by the three methods are affected by the filtering in quite 
different ways. The noisy speech was produced by adding white noise 
to the speech signal with a signal-to-noise ratio of 20 dB. Fig. 4.3( c) 
and (d), show the results of the lowpass filtering of the three criteria 
with filter length of 40, and 10, respectively. It can be seen that the 
lowpass filtering changes the position ofthe maxima obtained by Wong's 
and Strubels methods. But the lowpass filtering has less or almost no 
influence on the positions of the maxima obtained by the new proposed 
method. From ( 4.4) one can see that the Frobenius norm is actually 
equivalent to multiplying the square of preemphasized speech samples 
Sn, (sn, n == 1,2, ... IP + m) with a trapezoidal window w(n), (w(n) = 

n,/or n == 1,2,- __ ,p+ Ijw(n)::;; p+ 1,/or p + 1 < n < mjw(n);;;;;; 
p+m+l-n j Jo'r n == m,m+l, ... ,p+m). Since the frequency response 
of the trapezoidal window is similar to a lowpass filter, this explains why 
our method is inherently robust to noise and thus produces stable epoch 
detedions. 

In brief, the new SVD based method is to add all squared singular 
values On a lineaI:' scale which produces a very smooth curve with well­
defined maxima. The result is a. very dear picture of the glottal closure 
instants. Lower secondary peaks can easily be distinguished from the 
main peaks and the epoch detection is stable even under noisy condi­
tions_ 

The advantage of the proposed method can be seen from more exam­
ples shown in Fig. 4.4 and comparisons can be made between the results 
obtained by the three methods discussed in this paper. Fig- 4.4 (a), (b), 
(c), (d) and (e), give the results of these three methods for a synthetic 
vowel /ul, and the natural vowels /i/, lal, lu/ and /a:/) uttered by a 
male. Fig. 4.4 (f), (g) and (h) show the results from natural vowels /a/ I 
/i/ and /u/, uttered by a female. The order of the predictor was 10 and 
the analysis window was 30 samples for both the male voices and the 
female voices. In each panel, from top to bottom the curves 1, 2 and 3, 
respectivelYI represent the results of Wong's and Strube's methods and 
the new approach. Curve 3 for the new criterion shows very clearly­
defined peaks at the impulse excitation instants for the synthetic vowel 
(Fig. 4.2 (a)). However, curves 1 and 2, which respectively represent 
the results of Wong's and Strube's methods) show no peaks, but rather 
dear transitions at the excitation instants. The results for vowel I a:1 
in panel (e) also show that curve 3 has distinct maxima, but curve 1 
is noisy and curve 2 has relatively high secondary peaks at the instant 
of glottal opening. These relatively high secondary peaks are due to 
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Figure 4.4: Comparison of the results obtained by Wong's method 
(W), Strube's method (S), the new method (C). Figures (a), (b), 
(c:;) , (d), and (e) show l'esults obtained from a synthetic vowel 
/ul and natural vowels /i,a,u,a:/, uttered by a male, respectively. 
Figures (f), (g), and (h) show results obtained from vowels /a, 
i, u/ respectively uttered by a female. Sampling frequency is 10 
kHli, analysis length 30 samples, the order of predictor 10. All 
results obtained from the preemphasJzed speech signal with a. filter 
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Figure 4.4: See caption to panel (a). 



58 Chapter 4 Glottal closure detection 

the logarithmic compression in Strube)s method. For the same ~itua.­
tion, the new approach produces very distinct peaks at glottal closure 
instants and significant lower secondary peaks that can be easily distin­
guished from the main excitation points for the other vowels. It can be 
seen from panel (h) for the vowel/u/) however} that the pea.k~ produced 
by the new method do not agree with those from Strube's method and 
that the distance between the successive local maxima in Strube}s cri­
terion is not so regular for this vowel although the repetition rate of the 
excitation is quite regular. This is due to the fact that) for tills vowel 
with a short pitch per-iod, the relatively high secondary peaks strongly 
interfere with the main peaks. It can also be seen from the results for 
vowel lui uttered by a male in panel (d) and by a female in panel (h) 
that Wong's criterion shows quite noisy pictures. For all other vowels) 
one can observe that Wong)s method produces sharp down-going edges 
which correspond to the local maxima in both Strube)s criterion and the 
new criterion. 

4.4 Application to sentences 

In the preceding section) examples have been given to empha~i~e the 
advantageous aspects of the new method for detecting glottal closUl'e 
instants. In those simple examples) short stationary speech segments 
were used and the peaks produced by the new SVD-based method in 
Fig. 4.4 were easy to pick out by a peak-picking algoritlun. In order 
to facilitate the peak selection in more realistic situations) we first use 
a threshold to separate these peaks into isolated regions and then pick 
the local maximum in each of the regions. Since the shott time energy 
of speech changes drastically) adaptive schemes should be implemented. 
In order to isolate the peaks we can consider two schemes. One is to use 
an adaptive threshold) and the other is to normalize the curve and then 
to select peaks from it. The latter is similar to the solution adopted 
by Wong who used the nonnalized residual energy in his glottal closure 
detedion method (Wongt Markel} and Gray) 1979). 

We shall resort to the adaptive threshold solution, and the short 
time energy of speech will provide the basis of thresholding technique. 
In the application to sentences) a relatively long interval of L samples is 
used to calculate the short·term energy tl, and the Frobenius norm £F 

is calculated from a relatively short interval of M samples. The short 
interval is located in the middle of the long interval) which can avoid 
using a lower threshold in voice onset region and a higher threshold in 
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Figure 4-5: Adaptive threshold procedure. Curve EF thresholded 
by curve EI • A constant threshold Et.'fJ is used to a.void the distor­
tion ofthe peaks. (a.) The threshold method. (b) Isolated regions 
containing the instants of glottal closure. 
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voice offset region. Therefore; the average energy per sample can be 
obtained: 

and 
EF == f,F/N, 

where N is the number of elements in the da.ta matrix ( 4.1) . Therefore; 
the following algorithm can be implemented to select peaks. 1. e. 

if (EF - f3El > 0) then ret;u.lt := sqrt(EF - 13EI) else re$uit :== 0-
where sqrt represents square root operation and /3 is a scale factor to 
change the threshold. Note that the long interval average Ef is less 
than or equal to the maxima of the short-interval average EF in the 
above algorithm. Because E/ changes lIluch mOre smoothly than EF, 
the algodthm does not displace the peaks. Of course, the following 
algorithm can also be used: 

if (EF - {3Ezp > 0) then '1'esult := sqrt(EF - (3Elp) else result :;;;;: o. 
where E{p is the value of the short time energy when EF starts to become 

larger than f3 Ez. This threshold value is then kept fixed until E F is falling 
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Figure 4.6: (a) and (b). Results from a male speech, "Do yon 
require any further transaction?". The upper trace is the speech 
signal and the lower trace the new criterion with the peaks indi­
cating the glottal closure instants. Sampling frequency is 10kHz, 
analysis length 30 samples, the order of predictor 12. All re­
sults obtained from the preemphasized speech signal with a filter 
1",O.9z- 1, 
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Figure 4.6: Same as panel (a.) and (b), but with a female voice. 
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below the threshold. Fig_ 4.5 illustrates the latter algorithm. Thus, the 
threshold is constant in the selected peak regions and the peaks are not 
distorted. This is why this second method of thresholding is preferable. 

Choosing a proper threshold strategy is a delicate matter. In gen­
eral, the value (3 = 1 produces satisfactory results for most of the voiced 
sounds. However, in some parts, it also selects secondary excitations, 
which correspond to the glottal opening instants. These secondary ex, 
citation instants can be deleted by considering that they have smaller 
amplitude than the peaks nearest to them (or by choosing /3 > I) and 
they seriously deviate from the global pitch or long-term. pitch period 
measured by, for instance, the DWS method (Duifhuis, et a1. 1982). 

Fig. 4.6 (a) and (b) show the results obtained from a sentence, "Do 
you require any further transaction?n, which is uttered by a male and 
Fig. 4.6 (c) and (d) show the result from the same sentence uttered by 
a female. For the male voices the length of the long interval L is 100 
samples, the length of the short interval M is 30 sa.mples, and the order 
of the predictor p is 12, and /3 ~ 1. For the female voices only the length 
of the long interval is changed to 70 samples because of its shorter pitch 
period. It can be seen that well-defined peaks dearly indicate the glottal 
closure instants in the voiced regions, however I epochs are not defined 
in the unvoiced segments_ 

4.5 Conclusion 

In summary, a new epoch detection technique is proposed in which only 
the I'-robenins norm of the linear predictive matrix has to be computed. 
The sequential computation of the Froberuus norm of the matrix is re­
duced to just the addition of the sum of the squared entries of the last 
row of the matrix and the subtra.ction of the sum of the squared entries 
of the first row of the preceeding matrix. Therefore, the new method is 
computa.tionally very attractive and :more efficient than those of Strube 
and Wong. As an additional benefit, the neW method is less sensitive to 
noise- Finally all three methods are interpreted in the unifying frame­
work of singular value decomposition_ 
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Chapter 5 

Novel criteria of uniqueness for signal 
reconstruction from phase * 

Abstract 

In this paper we propose a new approach for ascertaining 
whether a signal is uniquely determined by its Fourier transform 
phase. It is shown that uniqueness corresponds to the non· 
singularity of a matrix which can be formed from the finite 
length real sequence. 

5.1 Introduction 

R ECONSTRUCTION of a signal from its FOUIier transform phase or 
magnitude are of special interest in the area of speech processing, 

geophyskal signal processing and image processing. Generally speaking, 
we cannot determine a signa.l only from its Fourier transform magnitude 
or phase. It is obvious that the magnitude of a signal sequence with 
a determined magnitude) when it passes through an all-pa.ss filter, is 
unchanged, and that if a signal sequence with a determined phase is con­
volved with a zero phase sequence) the resultant sequence has the same 
pha.se as the original. In 1980 Hayes, Lim and Oppenheim gave some 
conditions under which it is possible to reconstruct the signal sequence 
from its phase or magnitude uniquely [1} [2J. These conditions were given 
in the Z-transform domain. Other studies were focused on the zero dis­
tribution of the Z-transform of the reconstructed signal) and algorithms 
for signal reconstruction under certain constraints were proposed [7] [8]. 
In order to guarantee the uniqueness (to within a scale factor) of signal 
reconstruction, constraints must be imposed on the Z-transform of the 
signal or its zero distribution, Or on the algorithms. 

Generally speaking I we do not know the. zerO distribution of the 
Z-transform of the finite length real sequence- To find the zeros of poly-

·Pape~ published in the IEEE Trane. on Signal Proceaeing, Vo1.39, pp_989-992, 
1991. 
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nomials of higher degree than five is a genuine nonlinear problem and 
one must apply numerical methods, which are time-consuming and com­
plicated [3]. The problem of accurately finding the zeros of high-order 
polynomials ( of degree greater that 100) is an extremely difficult one 
and the accuracy can not be guaranteed_ 

In this paper, novel criteria are proposed for determining the unique­
ness of the reconstruction of a signal from its Fourier transform phase. 
We can decide whether the reconstructed signal sequence is unique (to 
within a scale factor) by determining whether a matrix formed by the 
reconstructed finite length real sequence is singular. Thus, only elemen­
tary transformations such as Doolittle factorization, are needed to deter­
mine the singularity [4]. This method shows clear advantages over that 
of Hayes in numerical stability and computation time. In section 2, we 
discuss the criterion of uniqueness for reconstructing a one-dimensional 
finite length sequence from its phase. In section 3, we present the cri­
terion of uniqueness for reconstructing a multi·dimensional finite length 
sequence. 

5.2 Uniqueness of a one-dimensional finite length sequence 

5.2.1 Reconstruction from a continuous phase function 

Let {:en, n = 0,1, ... , N - 1} be a finite length real signal sequence. Its 
discrete Fourier transform is 

N-l 

X(jw) = L :tnea:p( -jwn) 
n""O 

and 

X(jw) = IX(jw)le:up(j¢;}l(w)), 

From the above definitions, we have 

o;;"N-l . 

() 
.::: ... ..n=O :Un SIn wn 

tan1,ba: w =- N-l -
Ln=o ~n cos wn 

(5.1) 

To reconstruct a sequence from a known phase tan¢~(w), we also express 
tan¢~(w) as 

(5.2) 
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where {a"., n ;;;;;; 0,1) ... ) N - 1} is the reconstructed finite length real 
sequence in some sense. For reconstruction, the available relation is 

Equivalently, 
""N-l' ""N-l· 
L..n-O :l)n Slnwn un=O an SIn wn 
""N-l - ""N-l . 
":::""'n::::;O ~n cos wn L.m""O an COS wn 

(5.3) 

After reduction, then 

N-l N-l N-l 

L ;Un L ai sinw( n - i) ::::; :1:0 L a.; sin wi. (5.4) 
fI."'-} :i;;;;;o i:::::O 

For simplicity, we define the following vector S and matrix B: 

S = (sinw,sin2w,sin3w, ... ,sin(N -l)w)T 

and 

ao 0 0 0 a2 as aN-l 0 

al ao 0 0 as a4 0 0 
B= 

aN-3 aN-4 ao 0 aN-l ° 0 
aN-2 aN-3 al ao ° 0 0 0 

fu the same way, sequences {zn, n == 1,2, ... , N - 1} and {an, n = 

1,2, ... , N - I} can be written as follows: 

and 

AT = (aI' a,lI"" aN-d, 

where T is a. transpose operation. Note that :1:0 and ao are not included 
in the above vectors. Therefore, equa.tion (5.4) can be changed into a 
ma.trix: form as 

(5.5) 

We know that function series {sinwi, i ;;;;;; 1,2, ... , N -l} are linearly 
independent in the interval 0 < w < 11'. That is, the necessary and 
sufficient condition, t.mder which the linear combination L~"il ci sin iw 
is equal to zero, is {C:i = 0, i = 1,2, ... , N -l}. Beca.use the left-hand side 
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of equation (5.5) is a linear combination of {sin wi, i == 1,2, ... , N - 1}, 
we can conclude that 

J' T (X B ~ OlloA );;;; (OJ OJ' .. ,0). 

Thus, 
(5.6) 

It is apparent that equation (5.6) is linear with respect to X, and that 
X = ~ A is one of the solutions, which can be easily proved. Here 
We have made an assumption that :1:0 is not equal to zero. If matrix 
B is nonsingular, then X = ~A is the only solution vector. Thus the 

an 
reconstructed sequence is identical to the original sequence within a scale 
factor. If matrix B is singular 1 the solution is not unique. That is, the 
sequence reconstructed from phase is not unique. 

Conversely, suppose that two finite length real sequences have the 

relation, {aPl f:. .Ba~Z)}, j3 is a real number j and tanWl(w) :::: tan'¢2(w). 
Matrices Bl and B'J are nonsingular. Then we have 

and 

ConsequentlYj Al :;:: j3A2• 

Therefore j the nonsingularity of matrix B is a necessary and sufficient 
condition for unique reconstruction of a fin..ite length sequence from it 
Fourier transform phase. 

5.2.2 Reconstruction from discrete. phase values 

Now suppose we aTe given the value of the phase function tan¢z(w) 
only at (N -1) different frequency point w/c in the interval 0 < Wit; < 1r. 

Substituting the va.lue w/c into equation (5.4), we have (N-1) equations. 

where 

( 

Slnw1 
sin 2W1 

sin(N ~ 1)W1 

sinwz sinWN-l 
sin2wN_l 

sin(N - l)WN-l 

(5.7) 

) 
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We have assumed that Wi .,t. Wj, if i .,t. j, and Wk C (0, 7r). In addition, 
functions {sin(iw),i = 1,2, .. . ,N - 1} are linearly-independent in the 
interval w C (0) 7r). The matrix SIJJ is nonsingular j therefore equation 
(5.7) and equation (5.6) are equivalent. 

From the above reasoning, we conclude that: (1), if and only if the 
ma.trix B) which is formed from a finite length real sequence) is nonsin­
gular, then the sequence is uniquely detennined by its phase function, 
and (2L if the phase function or its samples tan t,b~(Wk) is given, the se­
quence can be reconstructed in several ways, such as an itera.tive method 
with constraints [6]. Even if we do not know whether the reconstructed 
sequence is unique, we can check its matrix B to determine the unique­
ness. 

5.2.3 Determination of singularity of matri:c Band e;J;amples 

To determine the singularity of the matrix B, we can use the well known 
Doolittle fa.ctorization method [4], which is numerically stable. Consid­
ering the structure of the matrix B, We can speed up the computation. 
Let B be partitioned in the form 

where Bll and B22 are square submatrices) so that 

o 
ao 

am-l 

o ) ( aN -m . .. aN -1 0) o aN-m+1 ... 0 0 
· ,B12 =. . , · - . · . . 

ao aN-l 0 0 

are triangular matrices) where m =- (N - 1)/2 - 1) If (N - 1) is even; 
otherwise m ;:;:;; (N - 2)/2. Because ao #- 0) En is nonsingular and the 
following identity 

( 
Bll Bn) _ (C Bn) (I 0) 
B2l B22 - 0 B22 P I 1 

C;;;;;; Bu - BuB;l B';H~ P == B;l B,l , 

can be obtained j where I is a unit matrix and B221 is the inverse of B22 . 

It evidently follows tha.t the singularity of B is determined by that of 
matrix C) which is about half the size of the matrix B. Both En and 
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Bi.} are triangular matrices, therefore we can save more computation 
time, 

We give two special cases in this section. When N ;:::: 1, the detetroi­
nant of matrix B, IIBII equals ao, The Z-transfonn of the sequence an 
IS 

X(z) = ao + alZ"-l. 

If ao i- 0, then the sequence is uniquely determined by its Fourier trans­
form phase, 

When N ;;;;:; 3, II B II = ao ( ao - a2 ), If ao 1:- 0 and ao -:f. a2, the sequence 
can be uniquely reconstructed. Its Z-transform is 

If ao = a:!. the two roots, Zl and Z2, of polynomial X(z) have a relation 
such that Zl Z2 ;:::: ao / a:l = 1, That means they are the zeros in reciprocal 
pairs or on the unit circle, Theoretically, any Z-polynomial of the finite 
length real sequence ca.n be factorized into the product of a number 
of second order polynomials, So if a polynomial X(z) has no zeros in 
reciprocal pa.irs Or on the unit circle, the sequence is uniquely specified by 
its phase, and vice versa, Suppose, for example, that one of the second­
order polynomials has a pair of reciprocal zeros, then the polynomial 
X(z) can be written as 

N-3 

X{z} = (l + az-1 + Z-2) 2: qz-· . 
• =0 

It is easy to show that the matrix B becomes 

Co 0 0 0 Co Cl CN-3 0 

Cl Co 0 0 Cl /;2 0 0 

B= 
CN-3 CN-4 Co 0 CN-3 0 0 0 

0 CN-3 Cl Co 0 0 0 0 
1 0 0 0 0 0 0 
Ct 1 0 0 0 0 0 

1 a- 1 0 0 0 0 

* 0 1 0: 1 0 0 0 

0 0 0 0 1 a 1 
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Note that the first columns of the two first matrice are equal. There­
fore t the determinant value of the matrix B is equal to zero. This is in 
agreement with Hayes' conclusions [1 J. 

5.3 Uniqueness of a multidimensional finite length real 
sequence 

5.3.1 Reconst7"Uction from a continuous phase function 

Let {:1! ( n1 , 7l:;!, ... , 1lm), nk = ° t 1, ... , N - 1, k ::;;:- 1, 2, ... , m} be an m­

cliroensional finite length real sequence (m-D) with Fourier transform 

X(w) == L:c(n)exp(-jwen), 
n 

where vector w ;;;;;: (Wl;W2, ... ;Wm )t ii == (n1,n2, ... ,nm ), and w. ii 
denotes the inner product of w and ii. 

In a reasoning similar to that in the above section, we have 

E z(n) L a(i) sin{w e (n - i)} = z(6) L a(i) sin(w - i), (5.8) 
niO ~ t 

where 0 = (0,0, .. . ,0). 
In order to write Eq. (5.8) in matrix formt we define a mapping 

relation between natUl'al numbers and vectors. For any vector ii = 

(nb n2, .. . , nm), there exists a number M, so that 

where 0 :::;; M :5 L, and L = N m 
- L ConverselYt for any M E (0, L), 

there exists an ii. For example, if m. == 2t N = 3 and ii = (1,2), then 
M :::: 1 + 2 * 3 = 7. When M = 3, ii = (0, 1). 

According to the mapping rela.tion; we can rewrite the moD sequences 
;1;( it) and a( ii) as 

and 

A~ ;:; {a(f); a(2);. "; a(.in, 
Note that z(O) and a(O) are not included in the above vectors. 

We can now define a matrix. Em and a vector Sm as: 
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BT'Il. = 
( 

a(O') 
a(l) 

a(L:: 1) 

and 
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o 
a(O) 

o 
o 

a(O') 
) ( 

a(2) 

a(L) 
o 

a(L) 

o 

where i denotes a vector which is mapped from 1. Since the functions 
{sinW'. il} are linearly independent, we have 

(5.9) 

5.3.2 Recon.druction from discrete phase values 

If the values of the phase function tan 1Po1l(W) are given at L different 
frequency points Wk (0 < Wk < 11') in vector space w , equation (5.8 ) 
yields L equations. That is) 

where 

s"" = 
(

,in f: .• w-;' 
,in ~. '"1 

sin L. wi 

sin f • w-; sin f. WL 
sin2. wI, 

sinL. wI 

(5.10) 

) 
The matrix S"" is nonsingular J 50 equation (5.10) reduces to (5.9). 

Therefore, an m-D finite length real sequence can be uniquely spec­
ified by the Fourier transform phase, if matrix Bm is nonsingular. 

5.4 Conclusion 

In this paper, the uniqueness of reconstructing a finite length real se· 
quence ftom the Fourier transform phase is determined by the singularity 
of matrix B or matrix Em- This criterion is the same for the reconstruc­
tion from the phase function or from discrete phase values. To determine 
the singularity of the matrix B or Em j only elementary transformations 
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such as Doolittle factorization are needed. The numerical trea.tment of 
determining the rank of matrix B is much easier than as is used in an­

other metheod. The properties of the matrix B or Bm also make the 
calculation easier. When an iterative method is used to reconstruct a 
sequence under certain constraints, we can determine the uniqueness or 
the effectiveness of the constraints in this way. For a given sequence, we 
can also find out whether there is a unique mapping between the phase 
and the sequence (to within a scale factor). 
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Chapter 6 

Masking of noise by broadband harmonic 
complex sounds: implications for the processing 

of complex sounds * 

6.1 Introduction 

6.1.1 A uditory masking and the auditory system 

W HEN we listen to two competing sim.ultaneous or successive 
sO"Wl.ds) one sound can reduce the a.bility ofthe ear to perceive the 

other. The threshold at which a target sound is just audible is raised due 
to the presence of the masker sound. Depending on the temporal rela­
tionship between the two sounds, if the two sounds are presented simul­
taneously we speak about simultaneous or spectral masking, and about 
nonsimultaneous or temporal masking, if the two sounds are presented 
in succession. Nonsimultaneous masking is fUIther classified as forward 
masking and backward masking, depending on whether the masker is 
presented before or after the target-

In response to the incoming sounds, the auditory system. first trans­
forms the sound pressure waves into traveling wa.ves on the basilar mem.­
bl'ane. The vibration of the basilar membrane is then transformed into 
neural activity which is sent to higher levels of the auditory system 
through nerve fibers. The masking beha,vioUl' reflects both the mechan­
ical properties of the ba.silar membrane and the electrical firing char­
acteristics of nerVe fibers in the auditory system. The ma.sking of one 
sound by another is therefore often used as a tool to explore the auditory 
system and it can reveal the spectral and the temporal resolution of the 
system. 

In view of the relationships between masker and target mentioned 

·Parb of this. c:ha.pter were published in th~ Proc:. Eurospeech-91, GenoV1l., Italy, 
1991, pp.1l25-1128 and 1M a poster a.t the Royal Society diljl;u$s.ion meeting Auditory 
P'I'(J(;~.,ing of Complez $Ql,1.nd", London, Dec. 4-5, 1991. 
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above) two extreme choices for masker and target are often made to 
simplify the experiment. The signals chosen are either concentra.ted in 
the time domain such as clicks or concentrated in the frequency domain 
such as sinusoids. As in a general system analysis, signals with very 
compact distributiOll in the frequency domain (sinusoids) are often used 
as maskers Or targets so that an appropriate frequency resolution can be 
measured. On the other hand) sounds with compact time distribution 
are utilized in the masking experiments in order to measure temporal 
resolution. 

Masking ex.periments of pure tones by pure tones and by narrow­
band noise (target signal concentrated in the frequency domain) have 
revealed that the audjtory periphery resembles a bank of bandpass filters 
(Wegel and Lane) 1924; Fletcher, 1940; Egan and Hake) 1950; Schafer 
et al., 1950; Ehmer, 1959; Small, 1959). This filter bank for:rns the ba­
sis for a frequency analysis of incoming sounds and the resolution of 
this frequency analysis is related to the bandwidth of the filters. These 
balldwidths) called critical bands (Fletcher, 1929), ha.ve been measured 
psychophysically in several ways (Bos and de Boer, 1966; Patterson and 
Moore, 1986) and were found to be systematically ordered, with the 
widest one corresponding locally to the base of the cochlea and the 
smallest one to the apex. (Greenwood, 1961). The filter-bank structure 
and the values of the critical-band width are approximately in line with 
direct measurements of mechanical frequency separation of the cochlea. 
along the cochlear partitions (Bekesy, 1960; Yates, 1986). They are fur­
ther supported by the mea.surement of neural activity of auditory nerve 
fibers that is described by tuning curves (Pickles) 1986). 

This spectral ma.sking behaviour can also be described by considering 
that the ell:citation pattern of a pure tone on the basilar membrane is 
quite spread. Therefore, the excitation patterns produced by the masker 
and the target overlap and interact with each other (Zwicker, 1970). 
Moreover, the pure-tone masking behaviour tells Us that the system 
is nonlinear and the spread of masking towards higher frequencies is 
strongly dependent on masker leveL This is manifested by the fact that 
the threshold of the target a.t the high· frequency side of the masker 
increases faster than the sound pressure level of the masker (Wegel and 
Lane, 1924; Ehmer, 1959; Schone j 1977). 

Forward ;masking and backward masking patterns) on the other hand, 
are obtained by using short-duration target signals (for review see e.g. 
Duifhuis, 1973; Fastl, 1976, 1976/77, 1979). In the experimental config­
lll'ation, the target signal starts after the offset of the masker (forward 
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masking) or ends before the onset of the masker (backward masking)­
The target thIeshold is typically determined as a function of the fre­
quency of the target signal, the masker level and the time dela.y be­
tween the masker and the target. Broadband noise) pure tones and 
narrowband noise are often used as maskers and pulsed pure tones as 
targets in the forward-masking paradigm (Duifhuis) 1973; Pastl, 1976). 
EYen pulsed pure tones with a short duration of 2 or 5 ms) producing 
wide spectral splatter) can be used to evaluate temporal fine structures 
in high-frequency regions (Fastl) 1976; Zwicker, 1976b). The temporal 
masking patterns reflect the temporal resolution of the auditory system. 
Two important processes of the auditory pathway are revealed in these 
patterns. One is the ringing of the auditory filter in response to the 
masker. This ringing response persists after the offset of the masker and 
can overlap temporally with the target signal. The other process is due 
to neural adaptation because the inner hair cells and the auditory nerve 
fibers deplete their energy in response to the masker and only slowly 
recover from it (Duifhuis) 1973; Jesteadt et al.) 1982; Mo.ore and Glas­
berg, 1983a). In general, target thresholds in forward masking increase 
monotonically with masker level and decrease with masker· signal delay. 
In contrast to simultaneous masking, the target threshold in forward 
masking increases less than proportional with an increase of the masker 
level (Jesteadt et aI., 1982i Moore and Glasberg) 1983a). 

In this paper, we are concerned with the masking properties of har r 

mornc complex sounds. It is therefore worthwhile to consider dynamic 
stimuli in terms of time-frequency representation (or spectro-temporal 
representation) in the masking experiments. The auditory system can be 
considered as a multi-resolution device which has a decreasing frequency 
resolution and an increasing temporal resolution with the increase of the 
center frequency of the channel. 

6.1.2 Auditory behavior and speech processing 

Auditory masking can work against our ability to perceive a useful or 
meaningful sound in the presence of competing sounds. The same mask· 
ing properties, on the other hand, can work favorably by making quan­
tization noise inaudible in bitftcompressed coding of audio signals or 
speech. One purpose of speech coding is to reduce the bit rate of infor­
mation :flow in communication channels and storage media. Simplifying 
the representation of the speech signals almost always results in quan­
tization noise. Ideally, this quantization noise should be inaudible ill 
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the reproduced signal. This can be achieved by taking care that the 
quantization noise is masked by the speech sounds. As we know, speech 
signals are spectrally complex and dynamic. The global spectra of the 
signals over a short interval of time show peaks and valleys, but the 
quantization noise generally ha.s a flat spectrum. Therefore, spectral 
weighting has been used to shape the spectrum of the noise such that 
its power spectrum is similar to tha.t of the speech and the noise can be 
masked effectively (Atal, 1988). This spectral weighting of the noise is 
called perceptual weighting. In the coding of wideband signals, the use 
of perceptual weights has been remarkably successful, allowing wideband 
signal representation with an average of four bits per sample (Johnston, 
1988). 

Speech signals are ofterl manipulated or transformed for different 
purposes without damaging their subjective sound quality, such as in 
pitch manipulation, phase equalization and dispersion. The long-term 
spectrum of the speech is usually preserved after these manipulations, 
but the phase spectrum has often been totally changed for each pitch 
period of the speech (Strube, 1982; Moriya and Honda, 1986; Charpen­
tier and Moulines, 1989; Qua-tieri et al., 1990). Such manipulations and 
transformations take advantage of the fact that the human auditory sys­
tem seems rather insensitive to phase. The phase spectrum does playa 
role, however, in judging the sound quality (Goldstein, 1967; Plomp and 
Steeneken, 1969) and the pitch (Houtsma and Smurzynski, 1990), but 
within limits, Therefore, it is a very interesting and practical question 
to what degree and how phase plays a role in determining speech sound 
quality. 

Finally, there also has been the question of how to choose the excita" 
tioIl signal in the source-filter model to produce a. natural sound. It is a 
well-known fact that the LPC synthesizer with pulse excitation produces 
mechanically sounding speech (Markel and Gray, 1976). If an excitation 
function Inore similar to the glottal pulse shape is chosen, more natu­
ral sounds can be obtained (Rosenberg, 1971; Hohnes, 1973). Since the 
shape of the glottal pulse is determined by its Fourier phase, given a flat 
amplitude spectrum, these results show that the phase spectrum plays 
an important role in judging the quality of speech sounds. 

We have seen that auditory masking phenomena have a grea.t impact 
on the processing of speech such as in speech coding. However, the 
perceptual weights, used in speech coding so far, have been based on 
the masking patterns of pure tones by noise bands or masking of noise 
bands by pure tones only. The response of the auditory pathwa.y to 
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complex signals like speech, however) cannot easily be predicted from 
the response to simple sinusoids or the results from simple masket-target 
setups_ 

It is the intention of the present masking study to make a contribu· 
tion to the understanding of the perceptual correlates of speech process" 
ing, such as speech coding, speech synthesis) and speech manipulation. 
The masking technique is used not only to provide threshold values of 
target signals in complex maskers, but also to shed light on how the au­
ditory system processes complex sounds, hi speech coding, for instance, 
quantization noise is the target1 speech sounds are the maskers, and the 
noise should be inaudible in the coded speech. hi order to achieve our 
goal) a series of experiments with periodic pulses and synthetic vowels 
as maskers and noise bands as the targets are performed. The maskers 
are still simple compared to speech signals. This simplification, however) 
makes it possible to systematically study some important aspects of a 
signal and to facilitate the experiment. The spectrally flat signals are, 
for instance, also used as the excitations in speech synthesizers for voiced 
sounds. Based on the experiments, some auditory correlates of speech, 
related to limitations of the auditory system such as phase sensitivity 
and masking1 are discussed. 

6.2 Experimental method 

6.2.1 General procedure 

A two interval) two alternative, forced choice (2I2AFC), adaptive proce­
dUIe was used to determine thresholds in all experiments (Levitt, 1971). 
Each interval contained either 200 IDS of ma.sker alone Or 200 ms of 
masker plus target, both intervals including 25-ms sinusoidal onset and 
offset ramps. The pause between the two sound intervals was 500 ms 
and the order of two intervals was varied randomly. The level of the 
target was initially well above the expected threshold. In a two-down 
one-up procedUIe, shown in Fig. 6.11 the target level was decreased af­
ter two consecutive correct responses at the same signal level, and was 
increased after each incorrect response. The amount of level change was 
determined by a varying step size, For ea.ch block of trials, a step size of 
8 dB was used until the first reversal, which was defined as a transition 
from down to up Or vice versa, as shown in Fig. 6.1. A step size of 4 
dB was then used until the second reversal, in order to quickly reach 
the threshold value. After the third reversal the step size was 2 dB. 
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Figure 6.1: Two-down one-up 2I2AFC pl:ocedure. X shows a 
correct response and 0 shows an inconed response. 

The average of the midpoints between consecutive reversals; excluding 
the first three points; was taken as the threshold level. This procedure 
theoretically estimates the 70.7% correct response point of a psycho­
metric function. Fourteen reversals were taken for each data point and 
this procedure was repeated three times for each parameter and subject. 
The response time was controlled by the subjects. 

6.2.2 Stimuli 

All stinluli were generated by a computer and had a dynamic range 
of more than 90 dB (16 bits). In order to reduce spectral shaping by 
the sample-hold device in the D / A converters; they were opetated at a 
sampling frequency of 20 kHz. 

Maskers were synthesized by adding up harmonics of a. certain fun­
damental frequency) according to the following fotrnula: 

M 

m(t) = L Ai cos(211'iFot + 1/;1) (6.1) 

where Eo is the fundamental frequenc:;y and M was c:;hosen suc:;h that 
the spectrum of m(t) covered the frequency range up to 10 kHz. When 
the signal was delivered to the headphones, its upper spectral edge was 
limited by a lowpass filter with a cutoff frequency of 7.8 kHz (see section 
Apparatus and subjects). 

In the experiments) the global spectral shape and the phase rela­
tionship between the harmonics of the masker were manipulated. The 
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spectral slopes used were 0 dB/oct (flat spectrum); -3 dB/oct, and -6 
dB/oct, which corresponded respectively to choosing Ai = 1; A. ;;;;;: 1jVi, 
and Ai = l/i. The phase relationship between the harmonics of the 
masker was chosen as follows. For zero-phase maskers, Wi. wa.s equal to 
zero for all i. For cosine-sine alternating-phase stimuli, tPi was equal 
to 11"/2 for odd harmonic numbers and zero for even harmonic num­
bers. Maskers with two Schroeder-phase conditions were also used where 
.,pi. = -i( i + 1)71'"/ M and 7fi. = +i( i + 1)11" / M, which will be respectively 
called masker m_ and masker m+ for convenience. In Fig. 6.2, examples 
of the masker wavefonns are plotted which have been normalized to the 
same RMS value. It can be seen tha.t the zero-phase masker has a much 
larger peak factor than the Schroeder-phase maskers. In addition, the 
peak factor also becomes smaller for complexes with a tilted spectral 
slope. 

The target signal was either a narrowband or a broadband noise of 
200'00$ duration. These target signals were calculated by adding equa.l­
amplitude sinusoids with a spectral spacing of 4 Hz: 

(6.2) 

where <Pi is the phase angle randomly distributed over the range ( -'7[, 1r); 
Fn was equal to 4 H2i, and i was chosen such that the above formula could 
produce a particular narrOW- or wideband noise. 

The threshold of the noise band in a specified frequency region was 
calculated as the ratio of the average energy of the noise to that of the 
masker in a 1-Hz band. In other words, the threshold, T D; of the noise 
target was defined as the ratio of the spectral densities between the 
target and the masker, expressed in decibels: 

C2FO 
TD = 1010g(-A2 ) 

Fn. 
(6.3) 

where A2/2Fo and 0 2 j2Fn. are the spectral power densities of the masker 
and the target at the center frequency of the noise band. 

6.2.3 Apparatus and subjects 

Stimuli were generated through two equal D / A converters and filtered 
by two lowpa.ss filters. The cutoff frequency of the lowpass filters was 
7.8 kHz, with an attenuation of 90 dB/octave. Programmable analog 
attenuators were used to control the levels of the maskers and targets. 
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Figure 6.2: (a) Waveform of the masker with a flat spectrum 
and zero phase. (b) masker with a spectral slope -3 dB/oct and 
zero phase. (c) masker with a spectral slope -6 dB/oct and zero 
phase. (d) masker with a flat spectrum and alternating phase, 
(e) the m_ masker. (f) the m+ masker. Waveforms in (a)-(d) are 
normalized to thc same RMS valuc] while the RMS value for the 
Schroeder-phase maskers is a. factor 5 larger. For the latter two] 
the time scale is also increased by a factor 2. 
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The stimuli were presented diotically through ETYMOTIC RESEARCH 
ER-2 insert earphones; which have a ft.at spectral response up to 10 kHz. 
Colleagues from the laboratory as well as paid subjects participated in 
the experiments. They all were about at age 30 and had normal hearing. 

6.3 Experiment 1 

Detection of narrowband noise of critical-band width in spectrally-flat 
and zero-phase harmonic comple:ces 

This experiment is concerned with the threshold of narrowband noise 
as a function of fundamental frequency of the masker and of the cen­
ter frequency of the target. The broa.dband maskers (0-10 kHz) were 
spectrally-fiat harmonic complex sounds with the initial phases of the 
harmonics set to zero. The fundamental frequencies of the complexes 
Were 100, 150, 200, 250 and 400 Hz. 

Noise bands with critical-band widths served as targets. The values 
of the critical-band width were computed according to the formula pro­
posed by Zwicker and Terhardt (1980). In the low-frequency region, the 
spectral spacing of the ma.sker components was larger than the band· 
width of the target signal. In this region, the spectrum of the target was 
either centered on a specific harmonic or placed between two successive 
harm.onics. When the bandwidths of the noise targets were greater than 
the spacing of two successive harmonics, the noise targets were added 
without consideration of the harmonic structures of the maskers. The 
maskers were presented at a sound pressure level of 80 dB, 

6.3.1 Results 

Three subjects participated in this experiment. Since their results were 
similar, only the averages of the measurements are presented. Figs, 6.3 
(a-e) show the results for masker fundamental frequencies of 100, 150, 
200, 250 and 400 Hz, respectively. 

One sees from panels (a-c) that in the high-frequency region; the 
threshold of the tatget decreases with an increase of the center frequency 
of the noise band. On the other hand, in the low-frequency region in 
panels (b) and (c), and to a certain extent in panel (a); the threshold 
of the noise target increases globally with an increase of the center fre­
quency of the noise band until the center frequency reaches a critical 
point- This critical point corresponds to the maximum of the threshold 
and is dependent on the fundamental frequency of the masker. 
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Figure 6.3: Thresholds of noise bands of critical-band width in 
fl,at-spectrum 1 zero-phase maskers are plotted as a. function of the 
center frequency of the noise band. Parameter in the panels is 
the fundamental frequency of the masker. (a) the 100·Hz masker. 
(b) the l50-Hz masker. (c) the 200-Hz masker. (d) the 250-Hz 
masker. (e) the 4000Hz maSker. Target threshold represents the 
ratio of the spectral densities of ta.rget a.nd masker e:x;pressed in 
decibels. Masker level is 80 dB SPL. 
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Besides the global increase of the thresholds of the noise targets 
towards high frequencies, the thresholds of the noise bands in the low­
frequency region show also peaks and dips (most clearly seen in panels 
c and d). Peaks reflect the thresholds of the noise targets which have 
a center frequency equal to the frequency of a harmonic of the masker 
and dips reflect the thresholds of the noise targets which are situated 
between two successive masker harmonics. 

6.3.2 Discussion 

The masking patterns in this experiment are strongly dependent on 
the relationships between the fundamental frequen~y of the masker and 
the bandwidth of the auditory filter. In the low-frequency region, if 
the bandwidth of the filter is smaller than or close to the fundamen­
tal frequency of the masker, the threshold for noise targets is predomi­
nantly determined by the sharpness of spectral resolution. In the high­
frequency region, auditory filters with a wide bandwidth pass through 
more than three harmonics and the interaction of these harmonics pro­
duces a temporally modulated waveform. The detection of noise targets 
can then easily be realized by temporally analyzing the masker. 

Thresholds which are mainly determined by spectral resolution re­
flect the harmonic structure of the maskers. In the low-frequency region, 
the masking patterns show cleat peaks and dips for the pulse trains with 
high fundamental frequencies because the critical-band widths at low 
frequencies are smaller than the spa~e between harmonics. Individual 
masker harmonics therefore become visible in the masking patterns. For 
maskers with high fundamental frequencies, the detection is dominated 
by the spectral resolution up to very high frequencies (see Figs. 6.3 d 
and 6.3 e). 

For maskers with a low fundamental frequency; the threshold of the 
targets at high frequencies decreases as a ~onsequen~e of the increas­
ingly better temporal resolution of the auditory channels and as a result 
of the energy increase of the critical-band noises towards high frequen­
cies. In these situations, the response of the auditory filter to the pulsed 
maskers decays fast and the filtered waveform a.re therefore more deeply 
modulated. At a fixed channel, this modulation becomes shallower for 
maskers with higher fundamental frequencies. Consequently, the thresh" 
olds of the noise bands in maskers with higher fundamental frequencies 
are higher. 

As the criti<:al·band width increases monotonically with the increase 



6.3 Experiment 1 87 

of frequency, the spectral resolution degrades towards high center fre­
quencies and the temporal resolution improves. Masking patterns there­
fore show global maxima in the middle frequency region in Figs. 6.3 (b-c), 
but the global maxima are less pronounced in the Figs. 6.3 (a) and (d); 
corresponding to maskers with fundamental frequencies of 100 and 250 
Hz. 

The results suggest that the detection of targets in harmonic complex 
tones is optimally realized by listening to either the spectral valleys of 
the masker or the valleys in the temporal envelopes of the masker. Since 
the envelopes of the auditory filter responses represent a distribution 
of the energy of the masker in the time-frequency plane, the masking 
patterns could be qualitatively explained by examining the valleys in the 
time-frequency distribution of the masker energy. Figs. 6.4 (a.) and (b) 
show the envelopes of the responses of a cochlear·filter bank to the 100 
and 400-Hz ma.skers. Each filter has an impulse response of a gauuna.­
tone filter (Patterson, 1987). The center frequencies of the in total 
128 filters were linearly distributed in the range from 0 to 5 kHz. The 
envelopes were obtained by Hilbert transform and are represented on a 
decibel scale. By looking at the low frequency region of both panels in 
Fig_ 6.4; the spectral composition of the two maskers becomes apparent. 
Due to the wider spacing of the harmonics of the 400-Hz masker, the 
spectral valleys are much wider and deeper for the 400-Hz masker than 
for the 100·Hz masker. At high frequencies, on the other hand, the 
temporal modulation is the obvious feature. Due to the longer period of 
the lOO,Hz masker, the temporal valleys are much wider and deeper for 
the 100·Hz masker than for the 400-Hz ma.sker. Finally, one can see tha.t 
the transition from spectral valleys to temporal valleys occurs a.t a. much 
higher frequency for the 400-Hz masker than for the tOO-Hz masker. 

Figs. 6.5 (a) and (b) show two samples of temporal envelopes at 4 
kHz for the two maskers. The solid line represents the envelope of the 
response to the masker alone and the dotted line the response envelope 
for the masker plus noise target a.t tlueshold. This analysis suggests 
that subjects are indeed a.ble to 'Ilisten into the deep temporal valleys" 
of the 100-Hz masker and that therefore less target energy is necessary 
to reach the threshold. 

These results are, in principle, in agreement with the masking 
patterns of pure-tone targets masked by harmonic complex sounds 
(Duifhu.is, 1970; Schroeder and Mehrgardt, 1982; Kohlra.usch; 1992). 
Duifhuis (1970) examined the ability of the auditory system to perform 
spectral and temporal analysis by using zero-phase harmonic complexes 
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as maskers. In one of his experiments he found tha.t a pure tone, whicll 
wa.s a.dded in phase with the harmonic component of the masker, was 
deteded by spectral analysis of the maskers for low harmonic numbers, 
and by temporal analysis of the maskers for high harmonic nwnbers. 
In adilition, the masking period pattern of the harmonic complexes ob­
tained with pulsed tones as targets (Duiflmis, 1971) dearly showed that 
the detection of the target was realized by listening during the valleys 
of the cochlear-filter responses to the maskers. 

The masking of a pUIe tone by a harmonic complex with harmonic 
amplitude proportional to 11f and zero phase also revealed the ability 
of the auditory system to perform a temporal analysis of the masker 
(Schroeder and Melugardt, 1982). In this experiment, the threshold of 
a target tone at 1200 Hz monotonically increased wi th the increase of the 
fundamental frequency of the masker, until the fundamental frequency 
reached 150 Hz, and remained constant for higher fundamental frequen­
cies. Thus, for fundamental frequencies below 150 Hz, the detection of 
the 1200-Hz target is dominated by temporal analysis. This corresponds 
to OUI findings tha.t the threshold of the noise band at 1200 Hz is located 
at the threshold pla.teau in the 150-Hz masker, i.e. at the transition be­
tween temporal and spectral analysis of the 150-Hz complex. 

Finally, a quantita.tive comparison can be made between the thresh­
olds of noise bands and thresholds of pute-tone signals masked by com­
plex tones of 20 harmonics with a fundamental of 100 Hz (Kohlrausch, 
1992). For a comparison, the thresholds from the different experiments 
have to be converted into ratios of spectral densities of targets and 
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maskers as defined in our experiment. We can then easily compare 
the thresholds on the basis of the target power in a critical band due to 
the fact that the energy of the target in a critical band is integrated for 
detection. The thresholds from the present measurements expressed as 
the total power of the narrowband noise targets relative to the spectral 
level of the masker are 3 dB and 2 dB at frequencies of 500 Hz and 1 
kHz respectively. This compares well with the corresponding level of 1 
dB and ,2 dB found for the pure tone targets (Kohlrausch j 1992). 

So far j the masking patterns in this experiment were assumed to be 
given by the envelope of the output of the auditory filters. No attempt 
was made to account for nonlinear characteristics and phase dispersion of 
the auditory systemj although they are very important factors to qUart· 

titatively describe the masking pattern of temporal masking (Jesteadt 
et a1.) 1982; Schroeder) 1975). These two factors will be studied in the 
experiments that follow. The envelopes of waveforms in the outputs of 
the filters represent their short-time energies and were already used as a. 
decision criterion to explain masking data (Martens j 1982; Kohlrausch, 
1988). It is interesting to see from panels (a) and (b) in Fig.6.5 that 
the valleys in the envelope of the lOO-Hz masker are more than 40 dB 
below the valleys in the envelope of the 400-Hz masker. The th:.reshold 
difference j however, is only about 25 dB. It is most likely to asswne that 
further lowpass filtering and neural adaptation processes would reduce 
the differem:e in the depth of the valleys. Alternatively One could think 
of a much narrOwer bandwidth of the auditory filter than that given 
by the gamma-tone filter han1e However) in order to explain the ex­
perimental difference by narrowing the filter bandwidth onlYj one would 
need a reduction factOr for the bandwidth of more than three. Thus we 
conclude that the thresholds are indeed influenced by neural adaptation. 
The data obtained from the present experim.ents can therefore only be 
qualitatively explained from the spectro-temporal representation shown 
in Figs. 6.4 and 6.5. 

6.4 Experiment 2 

Masking of broadband noise by spectrally"jlat and zero"phase harmonic 
comple:l: sounds 

Masking of critical-band noise by broadband maskers has been studied 
in the previous experiment. Since the energy of the noise targets was 
concentrated in one critical band) the detection of the noise targets is 
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predominantly determined by the auditory response of a single channel. 
In practice, noise as produced by quantization is a wideband signal. 
For a broadband noise target, the energy in different critical bands will 
influence its threshold in different waYSj depending on the spectral and 
temporal structures of maskers. Based on the previous experiment j one 
can expect that the thresholds of broadband noise in a masker with a 
low fundamental frequency will be mainly determined by the temporal 
analysis. For a masker with a high fundamental frequency, on the other 
hand, thresholds will be determined by auditory frequency analysis. To 
investigate this experimentally, the energy of a broadband noise target 
can be limited to contain only high frequencies or low frequencies by 
highpass or lowpass filtering of the noise. 

Broadband noise signals were generated in this experiment by a.dding 
sinusoids from 10 Hz to 5 kHz with a frequency spacing of 4 Hz. The 
targets were produced from these broadband noise samples by lowpass 
or highpass filtering through a progran:una.ble DIFA filter that had a. 
cutoff attenuation of 180 dB/oct. The thresholds of th~ targets were 
determined as a function of the cutoff frequency of the filter. Maskers 
were spectrally-flat and zeto-phase harmonic complexes with fundamen­
tal frequencies of 100, 200 j and 400 Hz. Maskers were presented at a 
sound preSSUTe level of 80 dB, 

6.4.1 Results 

The results, being the average from two subjects, are shown in Fig- 6.6. 
The panels (a-f) show the thresholds of the filtered noise target in the 
presence of maskers with fWldamental frequencies of 100, 200 and 400 
Hz, respectively. The three panels to the left show results for lowpa$s­
filtered and the thIee panels to the right show results for highpass· 
filtered noise (.6. in the figUTes). For a comparison, the diamonds (0) in 
the figure show threshold values which are estimated from the thresh­
old patterns of the c.ritical-band noise targets for the three maskers in 
Fig.6.3. The estimation is based on the minimum of the critical-band­
noise truesholds within the passband of the broadband noise-

One sees from panel (a) in Fig. 6 -6 that the threshold of the lowpass­
filtered noise in the lOO-Hz masker increa.ses sharply with decreasing 
cutoff frequency. For the maskers with fundamental frequencies of 200 
and 400 Hz, however, thresholds remains rather constant in the cutoff­
frequency range from 500 Hz to 5 kHz, as can easily be seen in panels 
(b) and (c). 
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fundamental frequency of the maskers. Masker level is 80 dB SPL. 
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The thteshold of the highpass-filtered noise target in maskers with a. 
fundamental frequency of 400 Hz decreases significantly with a decrease 
of the cutoff ftequency (panel f). Fot maskers with fundamental fre­
quencies of 100 and 200 Hz, thresholds show little change in the cutoff 
frequency range from 500 Hz to 4 kHz-

6.4.2 Discussion 

As predicted from E:K:periment 1t the masking of broadband noise targets 
by harmonic complex tones is mainly determined by the detection of 
these noise targets in specific frequency regions. In these regions, the 
masker is best resolved either in the frequency domain Or in the time 
domain. For lowpa.ss-filtered noise targets t the threshold in the masket 
with a fundamental frequency of 100 Hz increases with a decrease of 
the cutoff frequency of the lowpa.ss filter (see 6., Fig. 6.6 a). This is 
in line with the experimental finding in Experiment 1 j as can be seen 
from the nearly identical COUl'se of the prediction (see 0). Because 
the threshold minimum for the narrowband noise targets in a ma.sker 
with a fundamental of 200 Hz was situated in the low-frequency region 
(see Fig. 6.3c), lowpass filtering of a wi deb and noise target does not 
reduce the noise energy in this region and therefore does not significantly 
influence its threshold. This argument also applies to the threshold for 
IOWpass-filtered noise targets in the 400-Hz masker t where the detection 
of noise target is also mainly determined by the presence of noise energy 
in the low frequency region. 

For highpass-filtered noise targets l where the detection of tatgets in 
the 100-Hz masker is predominantly determined by its high-frequency 
energy, the decrease of the cutoff frequency does not influence detection 
and the threshold remains constant (see 6. in Fig. 6.6d). On the other 
hand, when the threshold of the noise target is mainly determined by its 
lowest spectral component, as is true for the 400-Hz masket, detection 
of noise targets is further improved by a. decrease of the cutoff frequency 
and the threshold decreases (see 6. in Fig. 6.6 f). The thresholds of 
highpass-filtered noise targets agree well with the trueshold minhna (0) 
of the noise bands, which are estima.ted from the region above the cutoff 
frequency in Fig.6.3. 
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6.5 Experiment 3 

Masking of narrowband noise by broadband harmonic compie:r: sounds 
as a function of spectral tilt and le1Jei 

The detection of noise targets in maskers composed of equal-amplitude 
harmonics has been studied in the two previous experiments. Since nat­
ural sounds such as speech have in general some spectral tilt, it is mOre 
realistic to investigate the detection of noise targets in such maskers. 
Tilting the spectrum of the masker while keeping its overall level con­
stant will redistribute the energy of the masker in the frequency do­
main. The local spectral level of the masker is therefore a function of 
component frequency. In addition) the wa.veform of the maskers is more 
dispersed in time than for the flat-spectrum signal (see Fig. 6.2). There­
fore, for the purpose of separating the influence of masker level and of 
spectral tilt on threshold, the maskers with spectral tilts are presented 
at different sound pressure levels. 

In a pilot experiment that was concerned with spectral slope effects 
only) the narrowband noise targets were centered at 1000) 1414) 2000) 
2828, and 4000 Hz. Their bandwidth was equal to 10% of their center 
frequency, which is somewhat less than their corresponding critical-band 
width. The maskers were spectrally tilted by 0, -3, and -6 dB/oct and 
consisted of zero-phase harmonics with a fundamental frequency of 100 
Hz. The tnaskers were presented at an overall sound pressure level of 64 
dB. 

In the experiment that dealt with ma.sker level effects, narrowband 
noise targets were centered at frequencies of 500, 1000, 2000 and 4000 
Hz, with bandwidths of 100, 100, 200, and 400 Hz, respedively. The 
sound pressure level of the masker was changed from 44 dB to 64 dB in 
steps of 5 dB for maskers with a spectral slope of 0 dB/oct) and in steps 
of 10 dB for maskers with spectral slopes of·3 and -6 dB/oct. 

An important remark is necessary with respect to the expected level 
effects. First of all) all thresholds are expressed relative to the spectral 
density of the masker. Thus) if target thresholds (expressed in dB SPL) 
vary in the same way as the masker level, the (relative) target thresholds 
remain constant. IT target thresholds increase less than the masker level) 
the (relative) thresholds decrease, and we sa.y that the target becomes 
better audible at higher masker levels, This behaviour is expected for 
temporal resolution. In the case of spectral resolution) on the other 
hand) target thresholds increase faster than the masker leveL Thus the 
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Figure 6.7: Thresholds of noise bands in the lOO-Hz maskers with 
spectral slopes of 0 dB/oct (.0.), -3 dB/oct (0) and -6 dB/oct (V), 
Masker level is 64 dB SPL, 

95 

(rela.tive) thresholds increase and we say that the target becomes less 
audible at higher masker levels. 

For spectrally tilted maskers) the spectral level is of course a function 
of frequency. The threshold of the narrowband noise targets WaS there­
fore defined as the spectral density relation between the target and the 
masker at the center frequency of the target noise, expressed in decibels. 

6.5.1 Results 

Results for the pilot experiment were obtained from three subjects, 
The average thresholds are plotted in Fig, 6,7, One sees that the thresh­
old for the noise targets in the spectrally-flat masker is the lowest and 
that it decreases strongest towards high frequencies. The threshold for 
the masker with a spectral slope -6 dB/oct is the highest and remains 
rather constant in the whole frequency region. 

The measurements for variable masker level were performed with two 
subjects. The a.verage thresholds are plotted in Figs. 6.8 (a&c) a.gainst the 
center frequency of the narrowband noise target 1 with the sound pressure 
level as a. parameter. One sees from Figs. 6.8(a-c) that the threshold 
of the narrowband noise signal increa.ses when the sound pressure level 
decreases from 64 to 44 dB. The tllI'eshold increase is the largest for 
the spectrally-flat masker. The increase of thresholds is also the largest 
at high frequencies. In general, the increase of thresholds due to the 
de<:rea.se of masker level is reduced in the maskers with a spectral slopes 
of "3 and "6 dB/oct. Towards low frequencies) the level effect becomes 



96 Ch.apter 6 Masking of noise 

.. -,-----------~.-----, 

=? 
7,+d:---~~~~~,'d'-=---~~~~.,..........j1d' 

TorQet rreQuenO)l(l"Iz) 

~,--------------~ 

(b) 

i? 
~4~~-------~~1~d~-~~~~~~1~ 

TOf'Qet rrequenCiy(Hz} 

(c) 

=? 
7+--~~----~~--~~~~~~ 
1~ ,d 1¢ 

TOf"Qet frequlllln...:ry(H:IIi] 

Figure 6.8: Thresholds of noise ba.nds in the lOO-Hz zero-phase 
maskers with spectral slopes of (a) 0 dB/oct, (b) -3 dB/oct) and 
(c) -6 dB/oct. The masker levels are 64 dB (1::..)) 59 dB (0), 54 
dB (0), 49 dB (0) and 44 dB (\7). 
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Figure 6.9: Enyelopes of gammamtone-filter responses at 4 kHz for 
the lOO"Hz maskers with three different spectral slopes: 0 dB/oct 
(solid line), ~3 dB/oct (dashed line) and -6 dB/oct (dotted line). 
The maskers have the same harmonic amplitude at 4 kHz. 
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small for all three maskers. In addition l for the masker with a spectral 
slope of -6 dB/oct) one sees that the threshold of the target at 500 Hz 
increases slightly with the increase of the masker level. 

6.5.!! Discussion 

The results shown in Fig. 6.7 indicate that the spectra.l slope of the 
masker has significant influence on the thresholds of narrowband noise 
targets. The differences between the thresholds in the three spectrally­
tilted maskers increase with an increase of the center frequency of the 
noise signal. There are two factors contributing to these threshold differ­
ences. On the one hand, the modula.tion depth in the temporal waveform 
at the output of auditory filters is reduced as a result of spectral tilt. 
This can be Seen from Fig. 6.9, where the envelopes of the auditory 
filter responses to the three ma.skers at 4 kHz are plotted on a decibel 
scale. The auditory filter is here simulated by a gamma.-tone filter and 
the spectral levels of the three maskers at 4 kHz are identical. The en­
velopes for the thl'ee maskers with spectral slopes of 0, ·3 and -6 dB/oct 
ate shown by solid, dashed and dotted lines, respectively. 

On the other hand, due to the spectral tilt, the local spectral levels 
are different if the three maskers are presented at the same overall level. 
As the detection of narrowband noise targets in the :measurements is 
predominantly determined by temporal resolution of the auditory sys­
tem, siro.ilar level effects a.S seen in temporal masking will inftuence the 
noise thresholds in our measurements. It has been shown that in for~ 
ward masking the ratio between changes in threshold of the target and 
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changes in sound pressure level of the masker is less than one (Jesteadt 
et al.) 1982)_ In other words, the target threshold does not correspond 
to a constant target-to-masker ratio; it decreases with an increase of 
masker level. Since l in our measurements, a steeper slope of the masker 
level is associated with a "lower masker level" 1 these level effects are a 
second contribution to the high thresholds for sloped vs- fiat-spectrum 
maskers. 

In contrast to thresholds at high frequencies) the threshold of a noise 
target at 500 Hz in a masker with a spectral slope of -6 dB/oct in­
creases somewhat with an increase of masker level (see Fig.6.8 c). This 
behaviour is expected) if spectral resolution and, especially, upward 
spread of masking plays a dominant role (Wegel and Lane) 1924; Ehmer, 
1959; Schone, 1977). For a masker with a spectral slope of ·6 dB/oct, 
the spectral level at low frequencies is quite high. For example, the 
first harmonic of the masker is 18 dB higher than in the spectrally-flat 
masker _ Due to the upward spread of masking) the threshold should 
therefore increase with an increase of masker level. 

We have suggested two possible factors which contribute to the 
threshold differences at high frequencies in Fig. 6.7 for the spectrally· 
tilted maskers. It is not clear, however, how much each of the two factors 
contributes to the differences. This leads us to the discussion of the re­
sults obtained by varying the overall masker level. The results shown in 
Figs. 6.8( a-c) indicate that the threshold of the noise target (expressed 
relative to the spectrum level of the masker) changes systematically as 
the sound pressure level changes _ The rate of the threshold change is 
strongly dependent on the center frequency of the noise target. This is 
clearly shown in Fig. 6.10 for the spectrally·fia.t masker. The thresholds 
are replotted as a function of sound pressure level of the maskers with 
the center frequency of the noise target as a parameter. The data in 
Fig- 6.10 are well fitted by straight lines. One sees from Fig. 6.10 that 
the slope of the straight lines becomes steeper with an increase of the 
center frequency of the noise target. This implies that the influence of 
level effects on the target thresholds decreases as the auditory responses 
to the masker become less modulated. 

We have shown that the change of threshold can be caused by the 
change of the temporal waveforms and the change of local sound pres­
sure levels_ Since the thresholds of the narrowband noise targets in the 
spectrally-fiat masker as a function of masker level are fitted quite well 
by straight lines, we can interpolate these da.ta to an arbitrary sound 
pressure level in the region we have used. In this way, we can compensate 
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Figure 6.10: Thresholds of noise bands in spedrally-flat j zeto­
phase maskers as a function of masker level. The center frequency 
of the noise band is the para.meter: 4000 Hz (h.)) 2000 Hz (0), 
1000 Hz (\7) and 500 Hz (0). 

99 

the level effects and isolate the effect of temporal envelope dispersion. 
To do so, we first determine the local spectra.llevels at 1, 2) and 4 kHz 
for maskers with spectral slopes of -3 and ·6 dB/od- The thresholds 
in a spectrally-flat masker for these spectral levels ate then calculated 
by interpolating the data in Fig. 6.10. These calculated values ate fi­
nally compal.'ed to the measured thresholds in the sloped maskers (see 
Table I). 

It can be seen from Table I that the thresholds of the noise targets for 
the two spectrally· tilted maskers are higher than in the spectrally-fla.t 
masker at all three frequencies. For example) the threshold difference 

Slope\F'req. 1 kHz 2 kHz 4 kHz 

-3 dB/oct 4.4 dB 6.1 dB 9.1 dB 
-6 dBfoct 3.5 dB 5.0 dB 7.2 dB 

Table I: The differences between the thresholds of narrowband 
noise targets in spectra.lly-fiat maskers and in two spectrally­
tilted maskers. The spectrally-flat masker and the· spectrally­
tilted maskers have the same spectral level at the center frequen­
cies of noise bands. The threshold differences are referred to an 
overall level of 64 dB for the maskets with spectral slopes of -3 
and -6 dB/oct_ 
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between a noise target at 2 kHz in a spectratly"fiat and a spectrally-tilted 
masker with a slope of -3 dB/oct is 6.1 dB. This threshold difference can 
only be caused by the difference in envelope modulation resulting from 
the spectral tilt of the masker. For the masker with a spectral slope of -6 
dB/oct t the response envelopes become even less modulated due to the 
low spectral levels at high frequencies. Threshold differences between 
maskers with spectral slopes of 0 and -6 dB/oct are therefore smaller 
than threshold differences between maskers with spectral slopes of 0 and 
-3 dB/oct. 

6.6 Experiment 4 

Phase difference limens (DL$) in spectrally-tilted harmonic comple;J; 
sounds 

We have shown in the previous experiments that thresholds of the noise 
bands at high frequencies are mainly determined by temporal analysis of 
the masker waveform and that tills temporal analysis is strongly influ­
enced by the fundamental frequency~ the level~ and the spectral shape of 
the maskers. Studies of auditory phase sensitivity for equal-amplitude 
harmonic complex sounds also showed that~ especially at high frequen­
cies~ the phase-shifted component was detected by temporal analysis of 
the stimuli (Schroeder~ 1959; Schroeder and Strube~ 1986j Patterson~ 
1987; Moore and Glasberg~ 1989). Typically~ phase difference limens of 
a phase-shifted high harmonic in zero-phase complexes with equal am­
plitude harmonics were measured (Moore and Gla.sberg, 1989)- These 
phase DLs indicate the smallest detectable changes of stimulus wave­
form by temporal analysis. Moreover~ the phase DLs and the thresholds 
of the noise targets could be related because a phase,shifted harmonic 
is mathematically equivalent to adding another harmonic with the same 
frequency~ but different amplitude and phase values. The precise quan­
titative relation is given by: 

cos(211nFot -I- ~) = 2sin( ~/2)sin(21rnFot + 11 + t,p/2) 
+cos{21rnFot) 

(6.4) 

For conveniencej this added component is called target and the original 
signal is called masker. The temporal analysis for detection of noise 
targets can therefore be further manifested by measuring phase DLs of 
each harmonic component of the masker. The study of phase sensitiv­
ity in complex tones is also of growing practical value in~ for example, 
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speecll coding and speecll perception. Therefore, in this experiment, the 
measurement of phase sensitivity of individual harmonics is extended by 
using broadband harmonic complexes with different spectral dopes. 

For a comparison with masking experiments, we also express the 
phase difference limen as threshold of the added component ( amplitude 
ratio between the added component and the original harmonic compo­
nent, expressed in decibelsL i.e. 

TD == 201og2sin(tp/2). (6.5) 

where '-P takes values ftom 0 to 180 degtee. A phase change of 180 degree 
is equivalent to a threshold value of 6 dB. Of course, this definition of 
threshold is meaningful only when the phase shift is detectable. 

The maskers in this experiment were zero"phase harmonic complexes 
with three different fundamental frequencies of 100, 200 and 400 Hz 
and two spectral slopes of 0 and ·6 dB/oct, which are the same a.s 
used in Experiment 3. The 100-Hz masker with two spectral slopes 
was presented at an overall sound pressure level of 70 dB. For the 200 
and 400-Hz maskers, the harmonic components at the same frequencies 
were presented at the same amplitude as for the laO-Hz maskers with 
conesponding spectral slopes. 

The threshold of the added component was determined by using 
the SaJlle procedure as we used before. In order to :make the added 
component audible, the value of if> for the added component was initially 
set to 180 degtee and the amplitude was additionally increased by 6 dB. 
If the threshold was greater than 6 dB, then the phase-shifted component 
was not detectable and the corresponding phase value was set to 180 
degrees. 

6.6.1 Results 

The just noticeable phase-shifts ( average for two subjects) are plot­
ted in Figs. 6.11 (a) (c) and (e). These values of phase shift are also 
expressed as thresholds of the added components in the 100, 200 and 
400-Hz maskers and plotted as a function of harmonic frequency respec­
ti...-ely in Figs. 6.11 (b), (d) and (f) (6 for 0 dB/oct and 0 for -6 dB/oct 
slopes). 

One observes that for high-frequency harmonics, thresholds are gen­
erally low for the maskers with fundamental frequencies of 100 and 200 
Hz and with a. fiat spectrum. For maskers with a fundamental fre­
quency of 100 Hz, threshold differences between the two spectral slopes 
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Figure 6.11: Left panels: Phase DL expressed in degree of phase 
shift in stimuli with spectral slopes of 0 dB/oct (.6) and -6 dB/oct 
(0). Right panels: Results from corresponding left panels tra.ns­
formed into threshold of the added component. Parameter is the 
fundamental frequency of the stimulus. 
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are large. For maskers with fundamental frequencies of 200 and 400 Hz, 
on the other hand) the thresholds are similar for the two spectral slopes. 
The phase shift is hardly detectable for any harmonic of the 400-Hz 
stimulus and for low-frequency harmonics of the 200-Hz stimulus with 
a spectral slope of -6 dB/ad. 

6.6.2 Discussion 

When the detection of pha.se-shifted harmonics is dependent on the tem­
poral resolution of the auditory system, the phase difference limens must 
be accordingly dependent on the fundamental frequency and the spec­
tral slope of the masker. For the 100-Hz stimuli, the phase DLs are the 
lowest and are mostly affected by the spectral slope. This is because the 
masker with a low fundamental frequency and a high spectral level re­
sults in a deeply~modulated temporal waveform. This phenomenon has 
also been observed in Experiment 3. The phase DLs for the phase-shifted 
components are therefore larger for the spectrally-tilted stimulus. They 
also generally increase with the fundatnental frequency. For the 400-H~ 
stimuli with two spectral slopes, hardly any phase shifts are detectable. 
In this case, the valleys in the envelopes of responses for this masker 
become shallow and the added component becomes difficult to detect. 
In other words, the phase-shifted component is not resolved temporally. 

The phase-shifted high harmonic appears to pop out of the com­
plex and the cue for detection is the same as in a masking experiment 
(Duiihuis! 1970; Moore and Glasberg, 1989). As a result, the threshold 
of the added component decreases with the increase of harmonic number 
at high frequencies. Threshold patterns of the added components are 
therefore similar to masking patterns obtained in Experiment 3. For low~ 
frequency components, On the other hand, the detection is mainly based 
on change of sound quality! such as a change of timbre or roughness 
of the sound (Plomp and Steeneken, 1969; Duithuis, 1970; Patterson, 
1987; Moore and Glasberg, 1989). In this case, the number of harmon­
ics in a critical band is less than three and the interpretation of of a 
phase change as an addition of another component (see equation 6.4) 
becomes psychoacoustically less relevant. The threshold pattern of the 
added component is therefore different from the masking pattern ob­
tained in Experiment 3 (see Fig. 6.11 for the 100-Hz masker). If the 
harmonic components are well resolved as for the 400-Hz masker, the 
phase shift is no longer detectable. 

A direct comparison can be made with results from the phase DLs 
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obtained by Moore and Glasberg (1989). They measured the phase DL 
of each harmonic of zero-phase complex tones consisting of 20 equal­
amplitude harmonics. They found that the phase DLs for the 10th 
harmonics of the lOa-Hz and 200"Hz stimuli were a.bout 10 degrees. 
Our phase DLs at this harmonic number are 10 degrees for the 100-
Hz stimuli and about 68 degrees, however, for the 200-Hz stimuli due 
to low stimulus levels. In the measurements of Moore and Glasberg, 
the phase DLs increased for high-frequency harmonics. This result is 
obviously different from our measurements where the phase DLs decrease 
for higher component frequencies. The difference is explained by the 
different bandwidths of the complexes in the two studies. Moore and 
Glasberg used bandlimited complexes and the increase of the phase DL 
occurred at the upper spectral edge. In Our experiment, the stimuli were 
wideband up to 7.8 kHz and measurements were obtained up to 4 kHz. 

From Experiment 3, we expect that the phase DLs at high frequen­
cies dec;:rease with an increase of masker level. Our results indeed show 
that phase DLs for the lOa-Hz stimuli with a low spectral level (due to 
the spectral slope of the stimuli) are large. This increase of phase DLs 
due to a low level is in agreement with observations by Patterson (1987) 
and Moore and Glasberg (1989). Since the detection of a phase shift 
for high-frequency harmonics is mainly based on the temporal analysis 
of the stimulus, phase differenc;:e limens fot unresolved harmonics are 
totally equivalent to detection of an added component. 

6.7 Experiment 5 

Masking of narrowband noise by broadband harmonic comple;ces with 
different phase relations 

The previous experiments have shown the importance of the tempo­
ral structure of complex- tone maskers in the masking of noise bands. In 
those e:x:periments, all phases of the masker components were set to zero. 
The temporal structure of a harmonic masker, however, is very depen­
dent on the phase relationships between its harmonic components. For 
this reason, the influence of phase on masking of narrowband noise is 
investigated in this experiment. From many possible phase relationships 
between the harmonic components of a broadband masker, three special 
phase relationships reported in the literatUre (Schroeder and Mehrgardt, 
1982; Patterson, 1987) were chosen. One is a Stluoeder-phase, another 
one is alternating-phase, and the third is the zero-phase wndition that 
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has been used so far in all expetiroents. The reason to include Schroeder­
phase maskers is that they have low pea.k factors of the temporal wave­
form. This contrasts with the zero-phase maskers which have high peak 
factors. Waveforms of the maskers with alternating phase are qua.si 
periodic, with the quasi-period being half the period of the ~ero-phase 
masker. 

In the first experiment, the detection of noise targets in two types of 
Schroeder-phase maskers (m_ and m+) with a fundamental frequency of 
100 Hz was investigated. The maskers were presented at sound pressure 
levels of 44 and 64 dB. The noise targets were centered at frequencies of 
500, 1000, 2000 and 4000 Hz, with bandwidths of 100, 100, 200 and 400 
Hz, respectively_ 

In the second experiment, the masker with a fundamenta.l frequency 
of 100 Hz had an alternating-phase relationship for all harmonic compo­
nents. The targets were narrowband noise signals of critical-band width, 
as used in Experiment 1 (see page 83). For convenience of comparison 
with the results from Experiment 1, the maskers were presented at a 
sound pressure level of 80 dB. 

In the third experiment, we studied how an alternating-phase rela­
tionship below a certa.in frequency influences the detection of a high­
frequency target. Maskers were computed in such a wa.y that the 
harmonics below a certain frequency (transition frequency) ha.d an 
alternating-phase relationship and zero phase above that frequency. The 
ma.skers had fundamental frequencies of 100, 200 and 400 Hz and were 
presented at 64 dB SPL. The target was a narrowband noise of 100 Hz 
width, centered at 5 kHz. 

6. 7.1 Results 

Thresholds of noise targets in two Schroeder-phase maskers (m_ and 
Tn+) were obtained for two subjects and the average thresholds are plot­
ted in Fig. 6.12. fu addition, thresholds in zero-phase maskers with the 
same levels are plotted for comparison. One can observe that there are 
significant threshold differences for the three types of maskers, but only 
at high center frequencies of the noise targets. For the maskers a.t 64 dB 
SPL, the tlU'eshold for targets at high frequencies is the lowest in the 
zero-phase ma.sker and is the highest in the m_ ma.sker. The difference 
is 16 dB. For the maskers at 44 dB SPL, the differences between the 
thresholds are reduced and the thresholds for the m+ and m_ maskers 
are nearly identical. 
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Figure 6.12: Thresholds of noise bands for three maskers with 
a fundamental of 100 Hz: the llerO-pha.se masker (0), the m_ 
masker (L:.) and the m+ masker (\7). Panel (a) for masker level 
64 dB and panel (b) for masker level 44 dB. 

Results for the second experiment are obtained for three subjects 
and the average thresholds are shown in Fig. 6.13. For comparison, 
the thresholds of critical-band noise targets in zero-phase maskers with 
fundamental frequencies of 100 and 200 H~ are replotted from Fig. 6.3. 
Comparing all thresholds for low target frequencies, the thresholds for 
alternating"phase and zero-phase maskers are dose if the maskers have 
the same fundamental. For high target frequencies~ on the other hand, 
thresholds of the 100·Hz alternating-phase masker ate similar to the 
200-Hz zero-phase masker within some 5 dB. 

For the third ell:periment, the thresholds of the na.rrowband noise sig­
nal, centered at 5 kHz, are obtained for five subjects, and the averages 
are presented in Fig. 6.14. The noise threshold is plotted as a function 
of the transition frequency below which the harmonics are in sine-cosine 
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Figure 6.13; Thresholds of critical-band noise targets in a 100-Hz 
masker with an alternating phase for all harmonics (\7). Thresh­
olds of the noise bands in a lOO-Hz zero-phase maskel (6) a.nd 
in a. 200-Hz zero-phase masker (0) are plotted for comparison. 
Masker level is 80 dB SPL. 
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alternating phase- Thresholds for maskers with three fundamental fre" 
quencies of 100 (6.),200 (0) and 400 Hz (\7) are plotted in the same 
panel. One can see that the noise threshold does not change for low 
transition frequencies for all three maskers. As the transition frequency 
increases, however j the threshold starts to increase at about 1.6 kHz for 
the lOO-Hz masker and at about 3 kHz for the 200-Hz masker. The 
increment is about 15 dB in the 100-Hz masker and is about 4 dB in the 
200-Hz masker. For the 400-Hz masker l a small decrease in threshold is 
observed for the two highest transition frequencies. 

6-7.2 Discussion 

Schroeder-phase maskers 

As the detedion of noise targets at high frequencies is predominantly 
determined by the temporal waveform of the masker l it is expected that 
the target threshold for the two types of Schroeder-phase maskers is 
higher than that for the zero-phase masker. Fig. 6.12 indeed shows 
that the noise targets masked by the zero-phase ma.sker have the lowest 
thresholds. 

The difference between thresholds for the two Schroeder-phase 
ma.skers is not manifested by the envelopes of their waveforms. One 
notices from panels (e) and (f) in Fig.6.2 that the two maskers are time­
reversed versions of ea.ch other. It is of course reasona.ble to use the en-
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Figure 6.14: Thresholds of a noise ba.nd a.t 5 kHz in maskers with 
a frequency-dependent phase relationship. Below the transition 
frequency indicated at the a.bscissa., the components are in sine­
cosine aJternating phase. The components above the transition 
frequency are in zero phase. Parameter is the funda.mental fre­
quency of the maskers; 100 H:Il (6),200 Hz (0) and 400 Hz (\7)­
Masker level is 64 dB SPL. 

velopes of the cochlear-filter responses to the two maskers to explain the 
difference. The gamma-tone filtet (Patterson and Moore) 1986) is used 
here to calculate the envelopes ofthe responses to the three maskers. Re­
sponse waveforms at 4 kHz and their envelopes plotted on a decibel scale 
are shown in Fig. 6.15 (a-c)) respectively_ It turns out that the envelope 
(plotted on a decibel scale) for the zero·phase masker shows deeper and 
wider valleys than for the m_ and m+ maskers. The envelopes for the 
two Schroeder-phase maskers) however, appear quite similar and they 
cannot convincingly account for the large threshold differences observed 
in the data_ 

An alternative approach is to choose a basilar-membrane (BM) 
model the properties of which are based on measurements of basilar­
membrane motion and of neurophysiological responses (e.g_, Schroeder, 
1972; Allen) 1978; De Boer, 1980j Viergever) 1980; Strube) 1985). The 
cochlear model implen1ented by Strube (1985) provides a reasonably 
good fit of the phase response of the cochlear filter. Temporal en­
velopes derlved from this filter have been shown to be able to explain the 
threshold differences between the two Schtoeder-phase maskers (Strube, 
1985; Smith et aLI 1986; Kohlrausch, 1988). This BM model is therefore 
used to calculate the cochlear response to the three maskers. In the 
calculation of response envelopes, the parameters of the model are set 
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Figure 6-15: Left panels: Wa.veforms of ga.mma-tone filter re­
sponses to (a) the ffi_ masker I (b) the m+ masker l and (c) the 
zero-phase masker l respectively. Right pa.nels: Corresponding en­
velopes, plotted On a. de<;ibel sl;;a.le. The resonanCe frequency of 
the filter is 4 kHz. The maskers are normalized to have the same 
RMS value. 
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Figure 6.16: Left panels: Waveforms of ba.5ilar-membra.ne filter 
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phase masker. Right pa.nels: Corresponding envelopes, plotted on 
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according to Strube (1985). The parameter Vo/bo in the model (where 
Vo is the friction coefficient per unit area associated with the basilar 
membrane motion and bo is the width of the basilar membrane at the 
stapes)j however j is chosen to be 32000 mg/mm3s, while Strube used a 
value of 16000 mg/mm3 s for most of his simulations. The BM model 
with a larger Vo/bo seems to provide a better ma.tch of the phase response 
to the experimental data (Viergever j 1980), The response waveforms at 
resonance frequency 4 kHz and their envelopes (plotted on a decibel 
scale) for the three maskers are shown in Fig. 6.16. From Fig.6,16, we 
can see that the valleys in the envelope for the zero-phase masket ate 
the deepest and the widest whereas the ..... alleys in the envelope for the 
m_ masker are the sha.llowest. The valleys in the envelope of the m_ 
masker are shallower and narrower than those for the m+ masker. This 
is in line with the experimental finding at 4 kHz that the lowest target 
threshold is obtained with the zero-phase masker and the highest for 
the m_ m.asker, and that the threshold for the m+ masker is lower than 
that for the m_ masker. 

The results of this experiment are in agreement with masking experi­
ments where the masker or the maskee contained some special frequency­
dependent group delays. Firstly, to investigate the temporal resolution 
of the auditory system j Patterson and Green measured the sim.ultaneous 
masking of tones by maskers generated as Huffman sequences (Patter­
son and Green, 1971). The Huffman sequences were actually the impulse 
responses of allpass filters and differed from each other by their group 
delays which were strongly frequency dependent. Two sets of group de­
lays had the opposite sign and thus the waveforms of masker plus target 
were just time-reversed versions of each other. From the masking of pure 
tones we know that it is easier to mask a tone by a second tone of lower 
frequency than by one of higher frequency. It is therefore reasona.ble to 
consider that in the experiments of Patterson and Green the threshold 
differences for the two different maskers are predominantly determined 
by the difference of the frequency-dependent group delays of the maskers 
below the target frequency. Thus; the target thresholds are higher in 
the masker with a group delays increasing with an increase of frequency 
than with a. group delays decreasing with an increase of frequency (Pat­
terson and Green, 1971). Our results with two Schroeder-phase maskers 
and noise targets are in agreement with this result. In our case, the ffl_ 

masker has a group delay increasing with an increase frequency. 
Secondly, a direct comparison can be made with the masking 

of pure tones by the two Schroeder-phase maskers (Smith et al., 
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1986; Kohlrausch, 1988). The large threshold differences between the 
two Schroeder-phase maskers at high masker levels are, in principle, in 
agreement with the experimental finding by Smith et aL (1986) and 
Kohlrausch (1988). It is reasonable to suggest from. these experiments 
that the group delays of the cochlear filters contribute to disperse Or to 
concentrate the spectro-temporal distribution of the masker. 

Although Our results for the two Schroeder-phase maskers qualita­
tively agree with those from Kohlrausch's experiment, it is still difficult 
to compare the results between these two experiments quantitatively due 
to the difference in bandwidth and group delay function of the maskers. 
One notices in Fig- 6_12, on the one hand, that the threshold of the 
noise target at 1 kHz for the zero-phase masker with a fundamental fre­
quency of 100 Hz is similar to that for the m+ masker- In Kohlrausch's 
experiment, on the other hand, threshold of a pure tone at 1 kHz for 
the lOO·Hz zero-phase masker was significantly higher than for the m+ 
masker (Kohlrausch, 1988)- This difference is caused ma.inly by the dif­
ference between group delay functions of the maskers used in the two 
experiments. 

Alternating-phase maskers 

The masking of the critical-band-noise targets by the masket with 
alternating-phase relationship for all harmonic components differs ob­
viously at high frequencies from the masking patterns of the lOO-Hz 
zero-phase masker (see Fig- 6_13). This is due to the fact that the 
alternating-phase manipulation introduces a secondary peak in the mid­
dle of a period- Therefore the lOO-Hz masker with an alternating phase 
has a quasi·petiod of 5 ms and the responses of the cochlear filters at high 
frequencies are very similar to the responses for the 200-Hz zero-phase 
masker. Its masking pa.ttern in the high-frequency region is therefore 
dose to that obtained from the 200·Hz masker. This is clearly illus­
trated in Fig.6.17, where the responses of the basilar-membrane filter at 
4 kHz to these three maskers are plotted. The valleys in the log-envelope 
plot for the 100-Hz zero-phase masket are much deeper than those for 
the 100·Hz masker with an alternating-phase relationship. On the other 
hand, the log-envelope plots for the 200-Hz zero-phase masker and the 
alternating-phase masker are similar. In the low-frequency region, the 
frequency resolution plays a dominant role in determining the masking 
thresholds. Therefore, the phase choice does not influence the masked 
threshold-
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Figure 6.17: Left panels: Waveforms of basilar-membra.ne niter 
responses to (a) the lOO-Hz zero-phase masker, (b) the lOO-Hz 
masker with all harmonics in an alternating phase, (c) the 200-
Hz zero-phase masker. Right pa.nels: Conesponding envelopes, 
plotted on a decibel scale. The resonance frequency of the filter is 
4 kHz. The maskers are normalized to have the same RMS value. 
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The effects of alternating-phase manipula.tion on the target tlrresh­
aIds are strongly dependent on the fundamental frequencies of the 
maskers. This is clearly demonstrated by the third experiment where the 
low-frequency components of the maskers are set to alternating phase 
and high-frequency components are set to zerO phase. In this experi­
ment, the detection of the noise band is predominantly determined by 
the critical-band filter at 5 kHz which has a bandwidth of approximately 
900 Hz. Consequently) when only the low frequency harmonics of the 
maskers are set to alternating phase relationship. the threshold of the 
noise band remains constant with the lowest threshold for the 100-Hz 
masker and the highest for the 400-Hz ma.sker. As the transition fre­
quency increases to a certain region, the noise threshold for the 100-
Hz and the 200-Hz masker increases. This is because the alternating 
phase of the harmonics results in a seconda.ry peak between two suc­
cessive pulses of the masker waveform a.nd the height of the secondary 
peak increases when more harmonics are in alterna.ting phase. Since 
the waveform for the lOO-Hz masker has the strongest modulation} the 
effect of the secondary peak on the masked threshold is the strongest for 
this fundamental frequency. For the 400-Hz masker} the critical-band 
filter passes through only two or three harmonics and the valleys in the 
envelope of the filter response ate hardly affected by the phase change. 
The tlrreshold of the noise targets therefore remains rather constant for 
the 400-Hz masker. 

6.8 Experiment 6 

Masking of narrowband noise by synthetic vowel sounds 

As an application to speech perception, it is desirable to show how mask­
ing pat terns of speec.h sounds such as vowels can be understood in terms 
of evidenc.e presented previously in this cha.pter. For instance} in Exper­
iment 3, we have seen that the threshold decreases at target frequencies 
a.bove 1 kHz when the masker level increases. Since spectra of the vowel 
sounds consist of several formant regions represented by peaks and val· 
leys, the spectral level of a vowel masker is a function of frequency. It 
is therefore investigated in this experiment whether these differences in 
spectral levels of vowel maskers influence the thresholds of noise targets. 

Vowel sounds were synthesized by using spectrally-fiat zero-phase 
harmonic complexes with funda.mental frequencies of 100 and 200 Hz 
as inputs to (I. linear-predictive-wrung (LP C) filter. The formant fre-
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quencies of the vowel were 680, 1110, 2347, 3202 and 4500 Hz. The 
targets were noise bands of critical-band width as used in Experiment 
1 (see page 83). The targets passed through the same LPC filter as 
used for the vowel sounds and they therefore had locally the same spec· 
tral envelope as the vowel sound. The threshold of the target was then 
defined as the spectral level difference between the masker and the tar­
get, expressed in decibels. All vowel maskers were presented at a sound 
preSSUIe level of 80 dB. 

6.8.1 Results 

The avera.ge thresholds for three subjects are plotted in Figs. 6.18 (a,b) 
for vowel fundamentals of 100 and 200 Hz respectively. The spectral 
envelope of the vowel masker is plotted in Fig. 6.18(c). One observes 
that there is no global decrease of threshold towards high frequencies as 
we have observed in Experiment 1 and 2 (see page 83). At low target 
frequencies, one sees from Fig. 6.18 (b) that the threshold (unction shows 
dips (at 300 and 500 Hz) and peaks (at 400 and 600 Hz) for the 200-Hz 
vowel masker, since masker harmonics are spectrally well resolved. By 
comparing Figs. 6.18 (a) and (c), it can be seen that threshold peaks 
correspond to spectral valleys and tlueshold valleys to spectral peaks of 
the vowel masker, which is a very counter-intuitive result. 

6.8.2 Discussion 

Vowel sounds have complex spectra and their masking patterns can vary 
in many ways. In principle, the (relative) threshold is rather constant 
as a function of frequency and globally less frequency-dependent than in 
a flat-spectrum zero~pha.se masker (Experiment 1, see page 83) This is 
because the spectrum of a vowel sound has in general a slope of -6dB/oct. 
As we ha.ve seen in EXperiment 3, the tmeshold of the noise target 
increases as a. result of the spectral slope of the masker. In Fig. 6.18( a) 
the valleys in the masking pattern are found to be located approximately 
at the formant frequencies, Le. at the spectral peaks of the masker! and 
the peaks of the masking pattern are located at the spectral va.lleys of 
the masker. In particular) the threshold dips around frequencies 1110 
and 2350 Hz correspond to the second and the third formant frequencies 
of the vowel masker. The threshold peak at about 1900 Hz corresponds 
to the spectral valley at 1900 Hz. These low thresholds at the formant 
frequencies are quite similar to the result of Experiment 3 where the 
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Figure 6,18: Thresholds of critical- band noise ta.rgets for vowel 
maskers as a function of center frequency of the noise ba.nd. (a) 
IOU-Hz vowel masker. (b) 200-H:a: vowel masker. (c) Spectral 
envelope of the vowel masker. 
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thresholds of noise targets in the maskers with high levels have a lower 
spectral density ratio. 

The finding that the masking pattern of a vowel sound is a bInned 
'Version of its physical spectrum has been a.ttributed to the limited 
frequency resolution of the auditory system (Moore and Glasberg, 
1983a; Tyler and Lindblom, 1982; Houtgast, 1974). The difference in 
decibels between peaks and valleys in the masking pattern is less than 
what is found in the physical spectrum of the masker. Our result sug­
gests that among other reasons) the level effects due to the spectral peaks 
and valleys in the vowel masker can also attribute to the reduction of 
peak-valley difference in the masking pattern. The thresholds expressed 
in spectral density ratios in this experiment can be easily transformed to 
absolute target level by incorporating masker power density and target 
bandwidth. The so transformed threshold values are plotted in Fig.6.19. 
They show indeed that the masked threshold curve is a blurred version 
of the physical spectrum of the masker. 

The masking pattern of the 200·Hz vowel masker of Fig. 6.18 (b) 
clearly reflects the spectral composition of the masker at low frequencies, 
and the formant regions ate not well delineated. This is a consequence 
of the spectral resolution of the auditory system associated with a vowel 
with a high fundamental frequency. Dnly at high frequencies, threshold 
peaks occur at spectral valleys of the envelope of the vowel masker I at 
about 1900 and 3000 Hz. 

In sun:unary, OUl results suggest that the blurring of the vowel spec­
trum, which is observed in spectral masking patterns, should not be 
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attributed to the spectral resolution of the auditory system (Moore and 
Glasberg, 1983a). It rather seems that temporal resolution in combina­
tion with nonlinear level effects can quite well account for the observed 
reduction in peak -valley differences. 

6.9 General discussion 

In genera.l, the auditory system is a nonlineat system consisting of a bank 
of bandpass filters with varying frequency resolution. Frequency reso­
lution decreases and, accordingly, temporal resolution increases with an 
increase of the center frequency of the filter _ Therefore, the detection of 
targets a.t low frequencies is mainly determined in the frequency domain 
by spectral analysis of the masker. At high frequencies, on the other 
hand, the detection of ta.rgets is predominantly determined by temporal 
analysis of the masker. The relative contributions of spectral and tem­
poral analysis strongly depends on the fundamental frequency of the 
masker. The auditory system can therefore easily detect targets at high 
frequencies where envelopes of auditory-filter responses show deep val­
leys (Goldstein, 1967; Duifhuis, 1970; Duiihuis, 1973; Patterson, 1987). 
This has been shown by studies of masking period patterns in the lit­
erature (Duifiluis, 1970; Kohlrausch, 1988). Similarly, targets at low 
frequencies can be easily detected f:rom maskers with high fundamental 
frequencies. 

Moreover, the temporal resolution changes nonlinearly with masker 
level. Better resolution is associated with a higher masker level. There· 
fore, in deeply modulated maskers with high levels the targets appear 
to be detected easier (if the threshold is expressed as a spectral density 
ratio of target and masker) than they are at low masket levels. For 
maskers with a spectral slope of -6 dB/oct, in addition to the influence 
of waveform dispersion, the threshold of targets at high frequencies in­
creases significantly due to the low spectral level a.ssociated with a strong 
spectral slope. 

The auditory system is sensitive to the phase relationships among 
spectral components within a critica.l band. This phase sensitivity 
is mainly determined by the temporal ana.lysis of the stimulus and 
therefore, is strongly dependent on the funda.mental frequency and the 
spectral slope of the stimuli. This is a reason why only with low­
fundamental stimuli, the fiat-5pectrum vowel (Schroeder and Strube, 
1986) and the phase-vowel (Traunmtiller, 1987) stimuli can show vowel­
like qualities. Typically, phase spectra ofthese phase-vowels were similar 
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to natural vowels and the envelopes of the amplitude spedra were flat 
(Tra.unmiiller, 1987). From our phase DLs measurements, we can expect 
that phase-vowels with fundamentals of 200 and 400 Hz will not have 
vowel qualities. 

Although experiments in this chapter have been performed with 
rather artificial sounds} the results have also relevance for speech tech­
nology. For instance, the audibility of quantization noise is one of the 
main concerns in speech coding. In the perceptual weighting technique} 
which is mainly ba.sed On the masking of pure tones} the spectrum of 
the noise is shaped such that it is similar to the spectral envelope of the 
coded speech signal (Schroeder et al.; 1979). IT the spectral level of the 
noise is significantly lower than the spectral level of the speech sound, 
the quantization noise can be made inaudible. Our experiments showed, 
however, that the masking of noise targets by broadband harmonic com­
plex sounds is mainly determined by local details of the masker in the 
frequency domain or in the time domain, and not primarily by global 
features of the maskers' spectra. Our results suggest that the weight­
ing in the low-frequency region and for high-pitched sound should be 
associated with the harmonic: structure of the speech signal. At high 
frequencies, the perceptual weighting should be associated with the tem­
poral wavefonn of the speech signal. Although the masking threshold of 
the noise target at high frequencies is generally higher in vowel sounds 
than in pulse trains, the threshold can still be lower in the spectral peak 
region than in the valley region. In view of the continuously changing 
time-frequency structure of the sounds, a dynamic adaptation of percep­
tual weights could improve the quality of the low bit-rate coded speech, 
especially for coding of transient sounds. 

Phase manipulation of speech signals will certainly influence their 
subjective sound quality, especially for transient sounds. Although the 
long"term spectrum of speech is usually preserved after phase manipu­
lations, the speech waveform within each pitch period of vowel sounds 
is totally changed (Strube, 1982j Moriya and Honda, 1986; Quatieri et 
al., 1990). The a.uditory system. is sensitive to this kind of waveform 
changes} especially a.t high frequencies, where good temporal resolution 
is retained. For example, a phase dispersion system ha.s been designed 
to reduce the peak/RMS ra.tio of speech signal in broadcasting (Qua-tieri 
et al., 1990), where actual phase spectra of vowel sounds were replaced 
by phase spectra of upward frequency sweeps while amplitude spectra 
were left unchanged. Under broadcasting conditions, only a small loss 
of voke quality was reported (Quatieri et al.} 1990). All these phase 
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manipulations are quite acceptable fot voiced sounds. Although the 
masking experiments in this paper have suggested that the change of 
waveform is most detectable at high frequencies, this does not necessar­
ily suggest the same fot judgement of quality difference_ Moreover, due 
to the global spectral tilt of vowel sounds, the phase changes at high 
frequencies become less noticeable. Our measurements of phase DLs for 
spectrally-tilted complex tones do show that the phase shift at high fre­
quencies is quite detectable. We can expect that for real high-quality 
speech sound the phase of high harmonics will play an important tole. 
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Summary 

SPEECH signal processing is a very important way of achieving suit­
able signal representations for speech conunun..ication. Psychophys­

ical studies of speech representation, on the other hand, provides a re­
search direction to deal with the perceptually important aspects of the 
speech signal in the signal processing. The main theme of this dis­
sertation Was devoted to the study of some psychophysical and signal­
processing aspects of speech representation. 

One speech analysis technique proposed in Chapter 2 is a robust 
linear-predictive coding (LPC) analysis using a short- time-energy (STE) 
weighting function. We derived a generalized STE·based LPC analysis 
under the linear-Ieast"square criterion. The sample selection window or 
the weighting function in this algorithm were based on the short-time 
energy of the speech signal. Their effect was to over-weight the speech 
samples that fit the LPC model well and to down-weight the other sam­
ples. This novel LPC approach produces less devia.ting estimates of the 
formant frequencies than those obtained from the conventional LPG and 
is less sensitive to the values of the fundamental frequency. From the 
experimental observations j the STE-thresholded LPC solution i$ prefer­
able to the sample-selective method based on two-step LPG analyse$ in 
terms of computation efficiency and robustness in the selection of speech 
samples and preferable to the STE-weighted LPC from the viewpoint of 
estimation accuracy. 

The weighted LPC analysis was further developed in Chapter 3, 
where the relation between the covariance linear prediction (CLP) anal­
ysis of a frame of a speech signal and the CLP analysis of its subframes 
wa.s established. The results of CLP analysis derived from a set of sub· 
frames were equivalent to those of a residual-weighted CLP analysis of 
the complete frame and the solutions of the residual-weighted GLP are 
the same as those of the generalized weighted average of subframe CLP. 
Those subframes which best reftect the filter model of speech production 
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can therefore be chosen to improve the accura.cy of the estimate of the 
LPC parameters. 

Another signal processing technique, proposed in Chapter 4, was to 
use a singular-value decomposition (SVD) te<:hnique to detect instants 
of glottal closure. The exact detection of such instants in a speech 
signal is a very important step in speech-<:oding and speech-manipulation 
applica.tions. This new technique used the Frobenius norm of the linear­
predictive matrix for the detection of instants of glottal closure. The 
sequential computation of the Frobenius norm of the matrix is reduced 
to just the addition of the sum of the squared entries of the la.st tOW 

of the matrix and the subtraction of the sum of the squared entries 
of the first row of the preceeding matrix. Therefore, the new method 
is computationally very attractive. As an additional benefit, the new 
method is less sensitive to noise. 

Motivated by using the phase of the Fourier transform of speech 
to extract formant frequencies, we studied in Chapter 5 the conditions 
under which a signal is uniquely determined by its Fourier transform 
phase. If a speech signal cannot be uniquely determined by its phase (to 
a factor), then it is not possible to directly extract formant frequendes 
from its phase spectrum. We showed that uniqueness corresponds to the 
non-singularity of a matrix which can be formed from the finite length 
real sequence. 

The study of auditory masking in Chapter 6 is intended to shed 
light on how the auditory system processes complex sounds. The au­
ditory system. can be considered as a nonlinear system consisting of a 
bank of bandpass filters with varying frequency resolution. Frequency 
resolution decreases and, accordingly, temporal resolution increases with 
an increase of center frequency of the filter. Therefore the detection of 
targets at low frequencies is mainly determined by spectral properties 
of maskers. At high frequencies, on the other hand, the detection of 
targets is predominantly determined by temporal behaviour of maskers. 
The relative contributions of spectral and temporal analysis strongly 
depends on the fundamental frequency of the masker. 

The temporal resolution changes nonlinearly with masker level. Bet­
ter resolution is associated with a higher masker level. Therefore, in 
deeply modulated maskers with high levels the targets appear to be de­
tected easier (if the target threshold is expressed relative to the masker 
level) than they are at low masker levels. For maskers with a spectral 
slope of -6 dB! oct, in addition to the influence of waveform dispersion, 
the threshold of targets at high frequencies increases significantly due to 
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the low spectral level associated with a strong spectral slope. 
From the masking experiments, insight is also gained into the dis­

crimination thresholds for those speech sounds that result from from 
speech processing techniques. For instance, quantization noise in coded 
speech signal can be masked, if the spectral envelope of the noise is 
shaped properly by a perceptual weighting technique. The perceptual 
weighting technique sO far is mainly based on the ma.sking beha.viour of 
pure tones. Masking beha.viour of complex: sounds, however, cannot be 
easily predicted from masking behaviour of pure tones. Our experiments 
showed that the masking of noise targets by harmonic complex sounds 
is mainly detennined by local details of the masker in the frequency 
domain or in the time domain, and not primarily by global features of 
the maskers' spectra. We therefore suggest that the weighting in the 
low-frequency region and for high-pitched sound should be associated 
with the harmonic structure of the speech signal. At high frequencies, 
the perceptual weighting should be a.ssociated with the temporal wave­
form of the speech signal. In view of the continuo11sly changing time­
frequency structure of the sounds) a dynamic adaptation of perceptual 
weights should be used to improve the quality of low bit-rate coded 
speech, especially for coding of transient sounds. 

Our measurements of phase difference limens of individual compo­
nents in spectrally-tilted complex tones showed that the phase shift is 
easily detectable at high frequencies. Phase manipulations of speech sig­
nals will influence their subjective sound quality especially for transient 
sounds! beca.use the auditory system is sensitive to this kind of waveform 
changes, especially at high frequencies. For real high-quality speech we 
have to take care of the phase relationships of high harmonics. 



Sam en vatting 

H ET toepassen van signaalbewerkingop spraa.kgeluiden is een be­
langrijke mallier om goede signaa.ltepresentaties te verkrijgen voor 

spraakcommunicatie. Psychofysisch ondel'zoek naar representaties van 
spraaksignalen laat zien welke aspecten van het bewerkte spraaksignaal 
perceptief van bela.ng zijn. Ret hoofdthema van rut proefschrift is onder­
zoek naar psychofysische en signaalbewerkingsaspecten van spraakrep­
resentatie. 

Een van de spraa.kanalysetechnieken die wordt voorgesteld in Hoofd­
stuk 2, is een robuuste lineair-predictieve coderingsana.lyse (LPC) waa.r­
bij een korte-termijn-energieweegfunctie (STE) wordt gebruikt. Een 
gegeneraliseerde STE-gebaseerde LPC-analyse met een lineair-kleinste­
kwadxaatmaatstar is ontwikkeld_ Het venster voor het selecteren van 
monsters of de weegfunctie voor dit algotitme is gebaseerd op de korte­
termijn-energje van het spraaksignaaL Het effect mervan is dat die 
$praa.ksignaalmonsten die goed voldoen aan het LPC-model zwaarder 
worden gewogen dan monsters die met zo goed in dit model passen. Deze 
nieuwe LPC-benadering resulteert in kleinere afwijkingen in schattin­
gen van formantfrequenties dan bij conventionele LPC en is ook minder 
gevoelig voor de waatde van de grondfrequentie. Proefondervindelijk 
is ook aa.ngetoond dat de STE-gedrempelde LPC-oplossing de vool'keur 
verdient boven de selectieve-monster-methode wat betreft robumtheid 
ten aanzien van geselecteerde monsters en wat betreft doelmatigheid 
van berekeningen J en ook te verkiezen is boven de STE-gewogen LPC­
methode met betl'ekking tot de nauwkelldgheid van geschatte wa.a.rden. 

De gewogen LPC~ana.lyse-methode is verder ontwikkeld in Hoofdstuk 
3, waatin het verband tussen de covariantie-lineaire·predictieanalyse 
(eLP) van een fragment spraaksignaal en de CLP-analyses van de sub· 
fragment en wordt aangetoond. Het resultaat van een eLP-analyse 
gebaseerd op een aantal sub-fragmenten, was gelijkwaa.rdig aan het re­
sultaat van een residu·gewogen eLP-analyse van het gehele fragment 
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en de oplossingen vanuit de residu-gewogen eLP bleken hetzelfde als 
de oplossingen verkregen uit het gegeneraliseerd-gewogen gemiddelde 
sub-fragment CLP. Die sub-fragrnenten die het best passen bij het fil­
termodel van spraakproduktie) kunnen daarom worden geselecteerd om 
zo de schattingsnauwkeurigheid voor LPC-grootheden te verhogen. 

Een andere signaalbewerkingstechniek) besproken in Hoofdstuk 4, 
bestaat uit het gebruik van singuliere-waarde·decompositie (SVD) om 
de moment en van het sluiten van de stembanden te bepalen. Het precies 
bepalen van deze moment en is een erg belangrijke stap bij het coderen of 
het manipuleren va.n spraakgeluiden. Deze nieuwe techniek gebruikt de 
Frobenius-norm van de lineaire voorspellingsmatrix vOOt het detecteren 
van de moment en van het sluiten van de stembanden. De sequenWHe 
berekening van de Frobenius-norm van een matrix is teruggebracht tot 
het optellen van de som van de gekwadrateerde elementen in de laatste rij 
van de matrix) en tot het aftrekken van de som van de gekwadrateerde 
element en in de eerste rij van de voorafgaande matrix. Deze nieuwe 
methode is daarom rekentechnisch erg aantrekkelijk. Bovendien blijkt 
de nieuwe methode minder gevoelig voor ruis. 

Geinspireerd door het gebruik van de rase bij de FOU1'ier transform 
van spraak va or het bepalen vall de formantfrequenties, is in Hoofdstuk 
5 onderzocht onder welke voorwaarden een signaal op unieke wijze is 
bepaald door zijn Fouriet-transforrnfase. Als een spraaksignaal niet op 
unieke wijze bepa-ald is door zijn fasefunctie, op een vermenigvuldig­
ingsfactor na) dan is het ook niet :mogelijk orn op dire de wijze de for­
mantfrequenties uit het fasespectruID af te leiden. Er is aangetoond 
dat uniekheid overeenkomt met de niet-singula.riteit van een matrix die 
gevormd kan worden uit de eindige reeks van de signaahnonsters. 

Het onderzoek naar auditieve maskering) besproken in Hoofdstuk 5) 
is bedoeld om inzicht te krijgen in hoe ons gehootsysteem samengestelde 
geluiden verwerkt. Ret gehoorsysteem kan beschouwd worden als een 
niet·Iineair systeem van banddoorlaatfilters met een verlopend oploss­
ingsvetmogen. Frequentie-oplossend vermogen neemt af en, daarmee 
sarnenhangend, tijdoplossend vermogen neemt toe naarmate de afstem· 
frequentie va.n het filter toeneemt. Daarom is het detecteren van een 
doelsignaa.l met lage frequentie grotendeels bepaald door spectrale eigen­
schappen van de maskeerder. Bij hoge doelsignaalfrequenties) daatente­
gen) wordt het detectieproces grotendeels bepaald door het ternporele 
gedrag van de maskeerder. De relatieve bijdragen -van spectrale en tern­
porele analyse in het oor hangen sterk af van de grondfrequentie van de 
maskeerder. 
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Temporeel oplo$send vermogen verandert op niet~lineaire wijze met 
het m.askeermveau. Een beter oplossend vermogen gaat samen met 
hogere maskeerniveaus. Blj sterk gemoduleel'de maskeergeluiden op hoge 
geluidsniveaus j lijken doelsignalen gemakkelijkel' detecteerbaar dan bij 
maskeergeluiden op lage geluidsniveaus, zolang de detectiedrempel re­
latiefwordt ultgedrukt met betl'ekking tot het gelu.idsniveau van de mas­
keerder. Voor maskeerders met een spectrale helling van ·6 dBjoctaaf 
neemt de zo ultgedrukte detectiedtempel voor hoog-frequente doelsig­
nalen aanzienlijk toe als gevolg van het lage spectrale niveau van de 
maskeerder verbonden aan :IIo'n spectrale helling. Deze drempeltoename 
wordt verde!, versterkt door de invloed van golfvonndispersie. 

Door het uitvoeren van maskeringsexperimenten is tevens inzicht 
ve:tkregen in ons onderscheidingsvetmogen voor spraakgeluiden die re­
sulteren uit bepaalde spraakbewerkingstechnieken. Kwantiseringsruis 
bij een gecodeerd spraaksignaal kan bijvoorbeeld gemaskeerd worden 
als de spec::trale omhullende van deze ruis op de juiste marlier bepaald 
wordt door middel van een perceptieve weegteclmiek. pete weegtech­
niek is voornamelijk gebaseerd op maskeergedrag Van ons oor voor 
zmvere sinustonen. Maskeergedrag voor samengestelde geluiden kan 
echter erg moeilijk voorspeld worden vanuit kennis over maskeergedtag 
VOOr zIDvere tonen. Onze experimenten hebben aangetoond dat het 
maskeren van ruisachtige doelsignalen door harmonisch samengestelde 
tonen voornamelijk bepaald wordt door plaatselijke details van de mas­
keerder in of weI het fxequentiedomein ofwel het tijdsdo.mein, en met 
zozeer wordt bepaald door globale eigenschappen van het spectrum van 
de maskeerder. Er wordt daarom voorgesteld dat de weging in het laag" 
frequente gebied voor geluiden met een hoge grondfrequentie geasso­
cieerd wordt met de harmon.ische structuur van het spraaksignaaL In 
het hoog-frequente gebied behoort het perceptieve gewicht geassocieerd 
te worden met de golfvonn Van het signaal in het tijdsdomein. Gezien 
de voortdurend verandexende tijd-frequentiestructuur van spraakgelu­
iden, moet een dynamische adaptatie van perceptieve gewichten wor­
den aangewend ter bevordering van de kwaliteit van spraakgeluid dat 
is gecodeerd met een lage bit-stroom, vooral in het geval van transiente 
geluiden. 

Metingen van onze gevoelighejd voor faseverschillen tussen individu­
ele deeltonen van spectraal-geka.ntelde samengestelde geluiden hebben 
aangetoond, dat een faseverschuiving gemakkelijk detecteerbaar is bij 
hoge frequenties. Faseveranderingen in spraa.ksignalen befnvloeden hun 
$ubjectieve geluidskwaliteit, in het bijzonder voor transiente geluiden, 
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omdat ons gehoorsysteem erg gevoelig is voor golfvormveranderingen) 
speciaal bij hoge frequenties. Om zeker te zijn van spraakgeluid met een 
hoge kwaliteit moet zorg gedtagen worden voOt het behoud van de juiste 
faserelaties, vooral tussen hoge-orde harmonischen. 
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behorende bij het proefschrift 
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The relative importance of the Fourier transform phase a.nd ampli­
tude for the perception of a reconstructed signal is strongly depen­
dent on the window size of the short-time Fourier analysis. 

A. V. Oppenheim and J.S. Lim} "The importance of phase in sig­
nals} Froc. of the IEEE} Vol. 69, pp.529-541} 1981. 

/I 

FIOLA (pitch inflected overlap and add) technique is very appro­
priate for manipulating the pitch of speech sounds and producing 
natural-sounding speech, because our hearing is relatively insensi­
tive to the phase manipulation in speech signals. 

L.L.M. Vogten, C. Ma, W.n.E. Verhelst and l.H. EggenJ IIPitch 
inflected overlap and add speech manipulation J

\ European Patent: 
91202044.3 

III 

A finite signal sequence (:vit,n = 0,1,2, ... , N - 1) is not uniquely 
determined by its Fourier phase if the polynomial 2:;;:';01 

Xnzit con­
tains a factor of 1 + O:Z-l + Z-2, given a c R. 

This thesis} Chapter 5. 

IV 

In the coding of high-pitched speech sounds, the use of a long-term 
pitch predictor improves the subjective quality of the coded speech. 
This is due to that fact that in the optimization process, coding er­
rors around the low-harmonics are downweighted and coding errors 
between the low-ha.rmonics are overweighted_ 



S. Singhal and B.s. Atai, (iAmplitude optimization and pitch pre­
diction in multipulse coders", IEEE Trans. on Aco'lJ,stics, Speech 
and Signal Processing l Vol. 37, pp. 311-327, 1989. 

v 
Models which functionally describe natural processes should work 
well, be structurally simple, and be computationally efficient. 
Therefore, there are always possibilities to modify and to improve 
it model. 

VI 
The estimation of the coefficients of linear-prediction-coding (LPG) of 
spee('h can be improved by the selection of speech samples which fit the 
LPC model welL 

This thesis, Chapters 2, 3 

VII 

Omission and simplification help us to understand things, but one must 
first understand what to omit and how to simplify. 

VIII 

High-fidelity loudspeakers ate designed to have a fiat spectral response 
only in testing rooms, not in living rOoms. It is a good solution to 
use an adaptive digital filter for the frequency equalization at a fixed 
position, but it is a bad practice to achieve the frequency equalization 
for time-varying positions. 

IX 

Although the Fast Fourier Transform (FFT) was discovered again and 
again after Gauss, it has been valned only after the invention of digital 
computers. 

M. T. Heideman, D.H. Johnson and C. S. BUrT'IJ,s, "Gauss and the 
history of the Past Fourier Transform", IEEE ASSP Mtlgazine, 
Vol. 11 No.4) pp.14-21) 1984. 

X 
Who does not hOllor his/het teachers lacks wisdom in spite of hi5/her 
knowledge. 
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