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Abstract

The Gaussian statistic model, despite its mathematical elegance, is found to be too fac-
titious for many real world signals, as manifested by its unsatisfactory performance
when applied to non-Gaussian signals. Traditional non-Gaussian signal processing
techniques, on the other hand, are usually associated with high complexities and low
data efficiencies. This thesis addresses the problem of optimum estimation of non-
Gaussian signals in computation-efficient and data-efficient ways. The approaches that
we have taken exploit the high temporal-resolution non-stationarity or the underlying
dynamics of the signals. The sub-topics being treated include: joint MMSE estimation
of the signal DTFT magnitude and phase, high temporal-resolution Kalman filtering,
blind de-convolution and blind system identification, and optimum non-linear estima-
tion. Applications of the proposed algorithms to speech enhancement, non-Gaussian
spectral analysis, noise-robust spectrum estimation, andblind channel equalization are
demonstrated.

The thesis consists of two parts, the Introduction and the Papers. The Introduc-
tion gives background information of the problems at hand, states the motivation of
approaches taken, summarizes the state-of-the-art in literature, and describes our con-
tributions briefly. The Papers presents our contributions in the form of published papers.

The first part of the Papers (paper A and B) deals with the importance of phase in
non-Gaussian signal estimation. Joint MMSE estimators of both magnitude spectra and
phase spectra are developed. Application to the enhancement of noisy speech signals
results in clearer sounds and higher SNR than frequency domain MMSE estimators.
Here the non-Gaussianity of the speech signal is modeled by the linearity in the phase
spectrum, and is enhanced by the joint estimator. This is in contrast to the spectral
domain MMSE estimator (e.g., the Wiener filter), which is zero-phase.

The second part of the Papers (paper C and D) attacks the non-Gaussian estimation
problem with a purely temporal domain approach. It is recognized that a temporal-
domain high-resolution non-stationary LMMSE estimator isable to extract structures
in both magnitude and phase spectra at a lower complexity. For speech signals, the
non-Gaussianity is represented by an excitation sequence with a rapidly varying vari-
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ance filtered by an all-pole filter. A Kalman filter with a time-varying system noise is
ideally suitable to this model. This so called high temporal-resolution Kalman filtering
technique fully exploits the non-stationary processing capability of the Kalman filter,
yet takes advantage of the fact that the all-pole filter changes slowly over time. This is
in contrast to the conventional frame-based Kalman filtering, which presumes signals
to be stationary within a processing frame, and to the adaptive Kalman filtering which
adapts all system parameters in every time instant.

The third part of the Papers (paper E, F and G) sees the non-Gaussian estimation
problem from yet another angle. Her the non-Gaussian excitation is treated as a discrete-
state finite-alphabet symbol sequence. The new model combines the HMM and the
AR model to represent a wide range of signals, thus we call it the Hidden Markov-
Autoregressive model (HMARM). The HMARM can efficiently extract the second or-
der and higher order temporal structure with the two dynamicmodels respectively. Effi-
cient ML system identification algorithms are derived basedon the EM methodology to
jointly estimate the HMM parameters and the AR parameters. In paper F, the HMARM
is extended to having a measurement noise at the output of theAR model. This exten-
sion increases the estimation complexity significantly since the system output is now
hidden and the measurement noise variance need to be estimated jointly with other
parameters. A nonlinear MMSE estimator is incorporated into the EM algorithm to
provide the sufficient statistics for the learning. The HMARM and its extended ver-
sion are applied to speech analysis, noise robust spectrum estimation, and blind channel
equalization for PAM and PPM signals.

The proposed algorithms in this thesis only involve computations of the second or-
der statistics explicitly. The higher order structure is though represented by the appro-
priately chosen models. Thus the computational complexityis low and data efficiency
is high compared to Higher Order Statistics based methods, which require no signal
models.
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Introduction

1 Non-Gaussian time series and Bayesian estimation

A time series is a sequence of observations that are orderly in time (or space). Most of
the natural and man-made signals are time series, e.g. speech, images, and communica-
tion signals. Many important time series exhibit certain temporal structures, or temporal
dependencies. Temporal dependency in a time series is oftenmodeled by linear models,
such as auto-regressive (AR), moving average (MA), and autoregressive-moving aver-
age (ARMA) models, although nonlinear temporal dependencyis sometimes of interest
and can be modeled by nonlinear models such as the Volterra series [1] [2] and neural
network based models [3]. A linear model can be seen as a linear time invariant (LTI)
filter excited by a stationary Gaussian process, whereas a nonlinear model can be seen
as a nonlinear filter excited by either a Gaussian or a non-Gaussian process. In this
work, we focus on LTI filters, especially the AR filters, excited by non-stationary or
non-Gaussian processes. The motivation is that linear filters are easier to analyze, and,
as will be shown later on, the LTI filter model with a non-stationary/non-Gaussian input
is able to represent a wide range of nonlinear signals.

In the category of linear models, the AR model is the most frequently used in appli-
cations. There are several reasons for its popularity: 1) the AR model can well represent
spectra with narrow peaks, and narrow band spectra are very common in practice [4]; 2)
for a Gaussian process, the maximum entropy spectrum [5] is the spectrum given by AR
modeling [6]; 3) under the Gaussian assumption, the AR parameter estimation problem
is linear while the MA and ARMA estimation problems are nonlinear. Moreover, the
AR model with a sufficiently high order can be used to approximate any ARMA models
arbitrarily well [7, p.52] [8, p.411].

Under the standard definition of the AR model, an AR process iscreated by filtering
an independent, identically distributed (i.i.d.) sequence by an all-pole filter [9] [10]. The
most used distribution in the AR modeling is the Gaussian pdf. This model is, however,
too restrictive to suit many important signals. As we will show later, voiced speech sig-
nals and some communication signals are better modeled having non-Gaussian or non-
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4

i.i.d. processes as inputs to the all-pole filters. In this thesis, we use a generalized AR
model definition in which the input process to the all-pole filter can be non-Gaussian,
non-stationary, and temporally dependent.

Definition 1 The process {Xt} is said to be a generalized AR(p) process if for everyt
it satisfies the difference equation

Xt − a1Xt−1 − · · · − apXt−p = Zt, (1)

whereZt is a random process that can take on any probability density function (pdf),
can be non-stationary within the analysis frame, and can be temporally dependent.

Remark 1: The generalized AR model belongs to the big category of equation-
error-type models, which is defined in [11, p.71, p.74]. All the AR models mentioned
in the sequel are under this generalized definition.

Remark 2: This definition means that the input processZt can be any time series.
This is especially useful for de-convolution problems.

When the excitation processZt in an AR model is stationary, white, and Gaus-
sian, the model is known as the Gaussian AR model. The Gaussian AR model has been
widely used in many signal processing fields including linear prediction [12] [13], spec-
tral analysis [6] [14], and linear dynamical modeling [15, p.420] [16]. The identification
of the Gaussian AR model has also been extensively studied. Thanks to the stationary-
white-Gaussian assumption, the Gaussian AR parameters canbe identified analytically
using, e.g. the Least Squares (LS) method [11] [15] [4].

When the excitation processZt is i.i.d. non-Gaussian, the model is known as the
non-Gaussian AR model. Non-Gaussian AR models have recently attracted an in-
creased attention in the signal processing society. Many signals are found to be far
from Gaussian [17] [18] [19]. In other words, for many signals, non-Gaussian stochas-
tic models often outperform Gaussian models significantly and can be used to solve
problems that are unsolvable with the Gaussian models (e.g.Blind Source Separa-
tion using Independent Component Analysis [20]). Major benefits of non-Gaussian
estimation includes smaller estimation variance and bias [21] [22], robustness to out-
liers [23], and efficient representation of signals [23] [24] [25]. Research works on
non-Gaussian AR modeling have appeared in image processing[26] [27] [28], speech
processing [29] [23], medical signal processing [30], radar signals [31], navigation [32],
econometrics [33], and communications signal processing [34].

When the excitation processZt is a non-stationary Gaussian process with possibly
temporal dependency, i.e., a non-i.i.d.1 Gaussian process, it is often treated as an i.i.d.
non-Gaussian process too. Note that here, we are talking about a Gaussian process that

1Here, a non-i.i.d. process is referred to as a non-independent and/or non-identically distributed random
process.



1. NON-GAUSSIAN TIME SERIES AND BAYESIAN ESTIMATION 5

changes its mean and/or variance at every time instance, such that the usual short-time
processing techniques (based on the quasi-stationary assumption) are not applicable.

Similar generalizations of the linear time-invariant (LTI) system to accommodating
non-Gaussian input process date back to the 60’s. Bartlett [35] in 1955 and Brillinger
et al. [36] in 1967 analyzed the polyspectra for the i.i.d. non-Gaussian and non-i.i.d.
processes excited linear systems (see [37]). In [11], ARMA models are generalized
such that the modeling errors are themselves AR or MA processes, therefore correlated
errors are introduced. In [38, Theorem 2], it is shown that a linear system with a non-
i.i.d., non-Gaussian input process can be identified using higher order statistics. The
non-i.i.d. Gaussian excited AR process, though, has received less research attention
than the i.i.d. non-Gaussian excited AR process. In this work, we promote the use of
the non-i.i.d. Gaussian excited AR process, and we give the following motivations for it:
1) its optimum filtering problem can be solved analytically,with appropriate adaptations
to the classical optimum linear filters; 2) there is often rich temporal structures in the
input process which can be exploited to facilitate the identification of the underlying
dynamics of the non-stationary Gaussian process, while thei.i.d. non-Gaussian model
ignores this temporal structure.

It is well known that a nonlinear transformation of an i.i.d.Gaussian process in
general results in an i.i.d. non-Gaussian process. We contend here that a non-stationary,
though linear, transformation of a Gaussian process can also make an i.i.d. non-Gaussian
distribution if viewed as a static system. By non-stationary linear transform, we mean
the transform that changes its functional form or coefficients along time. As an example,

Y = atX + bt (2)

is such a transform, whereX is a stationary Gaussian process,at andbt are the trans-
form coefficients that change over time. The resulting processY can be seen as either
a non-Gaussian process if assumed stationary, or a non-stationary process if assumed
Gaussian. In other words, the same set of data can be explained by either a statistical
structure in a static view, or a temporal structure in a dynamical view. Fig. 1 shows the
relations between the two transforms. The double-arrow in the center shows the duality,
i.e., a process can be modeled as an i.i.d. non-Gaussian process by ignoring the tempo-
ral structure in it, or modeled by a non-i.i.d. Gaussian process if the temporal structure
can be identified.

We prefer to use the dynamical view anywhere possible, sinceit allows analytical
solution to the optimum estimation problem now that the Gaussian assumption is main-
tained. Such observations are analogous to the time-variant linear system theory, which
linearizes a nonlinear system along its trajectory and results in a time-variant linear
system. The Extended Kalman filter (EKF) [39] is a good example of such a dynam-
ical linearization. But unlike the EKF, the non-i.i.d. Gaussian AR model confines its
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Figure 1: Non-Gaussianity, non-stationarity, and nonlinearity.

nonlinearity in the input process instead of the filter. Thisbrings several benefits:

1. The filter is linear and is easier to identify;

2. The nonlinearity of the input process is in the form of a non-Gaussian pdf, which
has no problem of representing discontinuity such as switching effects. Whereas
the EKF requires the existence of derivatives of the nonlinear function.

3. This is useful in many de-convolution problems, where theinput to the filter has
non-Gaussian structures.

The applicability of the dynamical view, however, requiresknowledge of the dy-
namics of the input process. For example, in [18, p.145], a switching model in which
one of its constituent Gaussian sub-processes is selected at each instant is shown to
have a non-Gaussian pdf, since its switching is random. A switching process can not
be treated as a non-stationary Gaussian unless the switching is deterministic. In other
words, if the switching mechanism is decoded, the switchingprocess can be modeled
by a non-stationary Gaussian process without losing any information.

We are interested in two types of non-stationary Gaussian input processes: the Gaus-
sian process with a time-varying variance, and the Gaussianprocess with a time-varying
mean. In contrast to the conventional AR model whose input process must be white,
there can be temporal dependency in the input process of the generalized AR model.
In fact, temporal dependency in the input process is welcomed in our models since it
facilitates the estimation of the temporal structure. An example of the non-stationary-
in-variance Gaussian process with temporal dependency is aGaussian process with a
smoothly varying variance. An example of the non-stationary-in-mean process with
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(A) (B)

Figure 2: (A) A non-stationary Gaussian process with a smoothly varying variance. The red curve is the
scaling factor as a function of time. (B) The resulting histogram is non-Gaussian.

(A) (B)

Figure 3: (A) A non-stationary Gaussian process with a smoothly varying mean. The red curve is the mean
as a function of time. (B) The resulting histogram is non-Gaussian.

temporal dependency is a Gaussian process with a smoothly varying mean. An example
of the switching process with deterministic switching is a GMM or HMM process with
decoded states. Fig. 2 and Fig. 3 shows examples of non-Gaussian processes created by
varying the variance or mean of a Gaussian process, and Fig. 4shows a switching pro-
cess with two Gaussian components. They all can alternatively be seen as non-Gaussian
processes if viewed statically (by the histograms).
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(A) (B)

Figure 4: (A) A switching process with deterministic switching states. (B) The resulting histogram is non-
Gaussian.

Bayesian estimation of non-Gaussian signals

Despite the promising results given by non-Gaussian signalprocessing techniques, the-
ories and methods in this field are still underdeveloped. Fundamental problems such as
optimum filtering of non-Gaussian signals and parameter estimation of non-Gaussian
models are still difficult. The major difficulty is that optimum non-Gaussian estimation
problems are nonlinear. So either a nonlinear equation system needs to be solved (in
estimating parameters), or numerical integration of an arbitrary pdf need to be eval-
uated (in filtering). These problems become even more difficult when the signal is a
non-Gaussian AR process instead of a non-Gaussian i.i.d. process, because the pdf of
the non-Gaussian AR process evolves along time axis, unlikethe stable pdf in the i.i.d.
case.

Recognizing the difficulty of the general non-Gaussian signal processing problem,
we, in this thesis, avoid solving the problem in a general sense. Instead, we attack the
problem by taking on a particular type of signals that have powerful structures which
can be exploited for efficient filtering and system identification. This class of signals are
the generalized AR signals with prominent temporal structures in their input processes.
The signals that we treated in this thesis include voiced speech signals, Pulse Amplitude
Modulation (PAM) signals and Pulse Position Modulation (PPM) signals with Inter-
Symbol Interference (ISI). A wide range of other signals aresuitable for this model too,
although not treated in this work, such as images, music, andradar signals.

Here we define the signal estimation process as the act of recovering a signal wave-
form from its distorted or noisy observations. Any time series estimation problem can
be decomposed into three basic tasks: model design, estimation of model parameters,
and estimation of the time series given the estimated model.In statistics and neural
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networks literature, the last two tasks are also known as learning (of the model) and
inference (of the data). These terms will be used interchangeably in the sequel.

In this work, we consider Bayesian estimation methods, in particular the Minimum
Mean Squared Error (MMSE) estimator, for the signal estimation problem. Bayesian
estimation provides a convenient framework for exploitingprior knowledge of the signal
statistics in the estimation. The prior knowledge is represented by the prior probability
distribution. For a Gaussian AR process, the prior is a Gaussian pdf, while for a non-
Gaussian AR process the prior takes the form of a non-Gaussian pdf. It is well known
that the Bayesian methods result in linear estimators only if the signals are Gaussian.
For arbitrary priors, the Bayesian estimators are generally nonlinear.

Established methods for solving non-Gaussian MMSE estimation problems can be
grouped as follows:

1. integrating non-Gaussian parametric pdfs, which results in highly nonlinear equa-
tions [40] [41];

2. approximating priors using Gaussian Mixture Models (GMM), which results in
the Gaussian Sum Estimator [42] [43];

3. using sampling techniques to approximate the pdf, which results in the Monte
Carlo filters [44] [45] [46] [47] [48].

The problem with the first group of methods is that, the closedform nonlinear solutions
do not generally exist. Even the proposed ones are obtained under very restrictive as-
sumptions. For the Gaussian Sum Estimator, a major drawbackis that the number of
constituent states grows exponentially with the time index, and so does the complexity.
The Monte Carlo filters are also associated with high complexities since large numbers
of samples need to be generated and their likelihood to be tested.

In the works included in this thesis, we adapt a general strategy different from the
above. Specifically, we extend the classic linear Gaussian models to accommodate non-
Gaussian signals by exploiting special temporal structures in the signals. In this way, the
complexity is maintained at a comparable level with the linear Gaussian methods, while
the non-Gaussian features of the signals are faithfully represented. In the following
sections, the signal structures of interest are first introduced, then classic methods in
Bayesian signal estimation and parameter estimation will be briefly reviewed, and our
views on how these problems should be approached in the non-Gaussian case will be
briefly introduced.

2 Temporal structures of non-Gaussian AR signals

A time series carries information in its temporal structure, eg. audio signals, images,
and certain modulated signals used in communications, justto name a few. This is
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in contrast with signals that carry information in the frequency of occurrence, eg. the
failure rate of a component, the bit-error rate of a communication system, results of
independent experiments, the histogram of a random process, and etc. Thus in time
series modeling, exploiting temporal structure is one of the key factors. Here the tem-
poral structure is defined as any pattern exhibited by the signal in the time domain that
can be described by a mathematical model with a small number of coefficients. The
conventional Gaussian AR model however,

1. only models the signal correlation, which is a second order dependency;

2. contributes all signal correlation to the all-pole filter, even though for some AR
signals the input processes are not white.

Many signals have prominent temporal structures in the input process when modeled by
the AR model. In this work, we study two important groups of signals: speech signals
and communications signals.

Specifically, the speech signals that are of interest here are the voiced speech signals,
and the communication signals that are of interest are the PAM and PPM signals with
ISI. When modeled by the AR model, the residual of the voiced speech signal exhibits
an impulse train structure, as shown in Fig. 5. This structure has long been recognized
to be important to the speech quality in speech coding literature [49] [50]. In the filtering
problem, this structure is usually ignored due to the use of linear Gaussian models. To
exploit this structure, from a Bayesian optimum filtering point of view, the input process
can be modeled by a super-Gaussian pdf (e.g., Laplace distribution) [51] [52], due to
the large amplitude of the spikes. Solving for the MMSE estimate requires integrating
the non-Gaussian pdf, which is generally intractable for high-dimension problems. In
the first part of the Papers, We propose to model the input process as a non-stationary
Gaussian process with a constant mean and a time-dependent variance. The variance
goes up at the vicinity of an impulse and remains low between the impulses. Thus,
the time-dependent variance can represent the temporal localization of the power in the
input process. As will be shown below, this high temporal resolution modeling brings
in many advantages for both the block-based spectral domainMMSE estimator and the
temporal domain sequential MMSE estimator.

In the second part of the Papers, we propose to model the inputprocess as a se-
quence of discrete-valued symbols from a finite alphabet added with white Gaussian
noise. A Hidden Markov Model (HMM) is ideal for modeling sucha process, with the
assumption that the temporal dependency is Markovian. The HMM can be seen as a
Kalman filter model with a simple nonlinearity [53]. It can also be seen as modeling a
Gaussian process with a mean controlled by a switching mechanism that is nonlinear.
More about the HMM and nonlinear filtering will be introducedin Section 3.3. When
the HMM is cascaded with the AR model, they respectively extract the nonlinear tem-
poral dependency and the linear dependency from the signal.This model can represent
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(A) (B)

Figure 5: (A) LPC residual of the vowel /ae/. (B) The waveform of the speech.

a broader range of signals that have equivalent discrete input processes with temporal
dependency. Besides the analysis of voiced speech signals,we have investigated the
channel equalization problem of PAM and PPM signals. Specifically, the ISI channel is
modeled as an AR filter, with or without additive measurementnoise, and the transmit-
ted symbols are modeled by the HMM. If the transmitted sequence of symbols possess
a certain dependency, the HMM can capture it and exploit it inthe filtering. The de-
pendency between symbols is due to the special way the symbols are arranged, such
as the PPM signals, or is introduced into the sequence on purpose, such as the trellis
modulated signals [54]. If the transmitted symbols are indeed i.i.d., such as ordinary
PAM signals, the HMM reduces to a Gaussian Mixture Model (GMM). Fig. 6 shows an
example of PPM signals.

3 Signal estimation

This section reviews the estimation of the signal waveform of an AR(p) process, assum-
ing that the signal model and its parameters are known. For anAR(p) process we have
the following signal model

x(t) =

p∑

k=1

akx(t− k) + u(t), (3)

y(t) = x(t) + v(t), (4)

wherey(t) is the observation,x(t) is the clean signal,v(t) is the observation noise,u(t)
is the excitation process to the AR(p) filter, andak are the AR coefficients. The signal
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(A) (B)

Figure 6: (A) The transmitted symbol sequence of a combined PPM-PAM modulation. (B) The received
waveform, assuming the channel is AR(10).

model (3) and (4) are also known as the linear dynamic model.
To simplify the presentation, we assume that the noisev(t) is an i.i.d. Gaussian pro-

cess. In the case that the additive noise is correlated in time or non-Gaussian, the noise
should be treated as another signal, and optimum joint estimation of the two signals
can be done by generalizing the estimator to its vector form.This is more of a topic of
source separation, which is not addressed in this thesis.

3.1 Wiener filtering

The causal Wiener filter (WF) is a Linear Minimum Mean Squared Error (LMMSE)
estimator of the signalx(t) given the observationy(k) for −∞ < k 6 t. The causal
Wiener filter is rarely used in practice due to the difficulty of a required spectral fac-
torization procedure [55, p.265]. Commonly used in practice is the non-causal Wiener
filter (or Wiener smoother). We will now review both filters.

Causal Wiener filters

The LMMSE estimator solves a special case of the MMSE estimation problem, in which
the priors of the clean signal and the observation noise are assumed to be Gaussian. We
use the Gaussian AR signal model (3) and (4) again. To be convenient, we re-write the
signal model in matrix form.

y = x + v, (5)

where the boldface letters representN dimensional vectors that contain the data from
time 1 toN . The LMMSE estimate of the signalx can be shown to be the conditional
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expectation of the signal given the observationy [15]:

x̂ = E[x|y]

= CxyC
−1
yyy, (6)

whereCyy is theN×N covariance matrix ofy, andCxy is theN×N cross-covariance
matrix of x andy. In practical problems, the covariance matrix of the clean signal is
unknown and difficult to estimate. In the Wiener theory, the signal lengthN is assumed
to be infinitely long, spanning from time−∞ to present time. Based on this assump-
tion and the stationarity assumption, Wiener and Hopf proposed a spectral factorization
method to find the spectral response of the causal Wiener filter using power spectral
density (psd) of the signal, which is much easier to estimatethan the covariance ma-
trix [55, p.231] [10, p.417]. Notice that in this method, thesignal is assumed to be wide
sense stationary (WSS) in order to use the power spectral density, and the signal length
is assumed to be semi-infinite.

Non-causal Wiener filters

The non-causal Wiener filter solves the problem by assuming the signal length and the
filter taps length to be infinite, in addition to the WSS assumption. Now, to minimize the
MSE of the estimate by applying the orthogonality principle, one obtains the following
equation:

Ryx(t) =

+∞∑

k=−∞

h(k)Ryy(t− k) for all t, (7)

whereh(k) is thekth coefficient of the Wiener filter,Ryx(t) is the cross-correlation
function of they(t) andx(t), Ryy(t) is the auto-correlation function ofy(t). Because
of the infinite summation, taking the Fourier transform of both sides of (7) results in

Syx(f) = H(f)Syy(f), (8)

or

H(f) =
Syx(f)

Syy(f)
, (9)

whereSyx(f) andSyy(f) are the psds, andH(f) is the frequency response of the
Wiener filter.

Extension to the Wiener filter

In both the causal and non-causal Wiener filter, it is assumedthat the signal is wide sense
stationary and the signal length is infinite or semi-infinite. These assumptions are obvi-
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ously inappropriate in practical problems. First, the observation data are often of short
length. Short time processing is a common technique in many signal processing appli-
cations, such as speech processing. When the length of the data frame is comparable
to the correlation span of the signal, the stationarity assumption does not hold. Second,
the local stationarity assumption rules out the possibility of modeling the dynamics of
the signal within the processing frame. For a time series that has rich temporal struc-
tures, the stationarity assumption is a major drawback. As consequences, the Wiener
filter 1) provides only trivial estimate of the phase spectrum; 2) does not exploit poten-
tial inter-frequency correlation; 3) does not suppress noise power according to temporal
distribution of the signal power.

As an example, we consider the voiced speech signal. A frame of voiced speech
can be modeled by filtering a noisy impulse train by an AR filter. This is known as the
speech production model, or the source-filter model and is widely used in speech coding
and speech synthesis [49]. It is obviously a non-Gaussian ARmodel, since the input
to the AR filter is super-Gaussian due to the large values of the impulses. Because of
the mechanism of glottal folds movement, the excitation to the AR filter has an impulse
train structure. Instead of modeling this temporal structure with a static super-Gaussian
model, it is beneficial to model it as a non-stationary Gaussian process with rapidly
varying variance. That is, between two impulses, the process has a low variance, and
at the vicinities of the impulses, the process has large variances. The large variance
represent the concentration of power at certain time points.

We show in paper A and B, that with a high temporal resolution modeling of the
input process, a block based LMMSE estimator can be obtained, which jointly estimates
the phase and magnitude spectra of the signal, exploits inter-frequency correlation to
help estimation of those spectral components with low localSNRs, and attenuates noise
power at the valleys between the excitation impulses.

Frequency domain methods

In the speech processing literature, estimation methods based on frequency domain ma-
nipulations are dominant, e.g. the power spectral subtraction method [56], the MMSE
short-time spectral amplitude estimator [40], the MAP spectral amplitude estimator and
MMSE spectral power estimator [57], and the MMSE estimator of magnitude-squared
DFT coefficients [41]. These estimators only estimate the spectral magnitude and have
zero phase, and they all assume stationarity of the signal and independence between
spectral components. Thus they share the same property of the non-causal Wiener filter
as discussed above.
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3.2 Kalman filtering

The Kalman filter is a very important extension to the Wiener filter within the LMMSE
framework. The Kalman filter generalizes the LMMSE estimator to allow the parame-
ters to evolve in time. This is possible because of the use of the state-space model and
sequential estimation. Thanks to its capability of handling non-stationary signals, the
Kalman filter is ideal for our high temporal resolution modeling of the input process
to the AR filter. Also, because the Kalman filter is a time domain method, it has no
such problem as ignoring phase spectra as in the Wiener filter(Wiener filter is some-
times referred to as a time domain method, whereas it is indeed solved in the spectral
domain).

The Gaussian AR signal model (3) and (4) can be written in the standard state-space
form:

x(n) = Ax(n− 1) + bu(n)

y(n) = hx(n) + v(n),
(10)

wherex is the state vector of the signal,u(n) is the process noise,y(n) is the
observation,v(n) is the observation noise,A is the state transition matrix, and

A =




0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

ap ap−1 ap−2 · · · a1



, (11)

bT = h =
[
0 · · · 0 1

]
. (12)

The Kalman filtering is first published in the 60s by Rudolf E. Kalman [58] [59]
and since then has been extensively studied and applied in a large number of fields. The
Kalman filter solutions can be found in many text books, e.g. [15]. For the fixed-interval
smoothing problem, the Kalman theory also provides an interesting time-domain solu-
tion. Basically, Kalman smoothers first do a forward filtering followed by a backward
filtering, and then combine the two filtering results. In thiswork, we use a "two-pass"
Kalman smoothing algorithm which combines the last two steps in one sweep [60,
p.572].

Although having been recognized as one of the major features, the non-stationary
processing capability of the Kalman filter is, in many signalprocessing applications,
not fully exploited. In speech processing, for example, thespeech signals are known as
highly non-stationary due to the fast movement of the articulators. The standard way
of handling this non-stationarity is via short time processing. That is, to segment a
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long sequence of speech signal into small frames, and assumelocal stationarity within
each frame. As a consequence, the input process in the AR model is modeled as a
stationary Gaussian process. As we have pointed out before,the impulse train structure
in the input process is important to a good representation ofthe signal and should be
modeled as either a non-Gaussian static process or a non-stationary Gaussian process.
Thus we show, in paper C and D, that if the input process of voiced speech is modeled
as a Gaussian process with rapidly varying variance, the Kalman filter (or smoother)
can achieve a lower estimation MSE than the quasi-stationary Kalman filter. Different
methods of estimating the slowly varying and fast varying parameters of the Kalman
filter are also proposed in these two papers.

3.3 HMM filters and switching Kalman filters

The Hidden Markov Model (HMM) [61] [62] is a state-space model with discrete states.
It is analogous to its continuous-state counterpart, the Kalman filter model in many
ways. For example, both models use first-order Markovian dynamics to model state
evolutions, and both observation processes are linear and Gaussian. The HMM can be
expressed in a state-space form similar to the Kalman model (c.f. (10)), but with a
nonlinear system equation:

x(n) = f
(
x(n− 1)

)

y(n) = x(n) + v(n),
(13)

wheref(·) is a nonlinear function. It is shown in [53] that thef(·) is a "winner-takes-all"
nonlinearity, and that there is mapping between the representation using this nonlinear-
ity and the one using a transition matrix. The HMM can also be seen as a Markovian-
dynamical version of the Gaussian Mixture Model, which models non-Gaussianity with
a sum of Gaussian pdfs. The HMM is widely used in modeling multi-mode systems
with temporal structures in the transition of modes. The standard HMM filter estimates
the discrete-valued Markov sequence hidden in white Gaussian noise. The filtering or
smoothing is done with the forward-backward recursion [61].

Having the interesting capability of modeling the non-Gaussianity with a dynami-
cal model, the HMM is ideal for modeling a non-Gaussian AR process with temporal
structures in the input process. We designed a Hidden Markov-Autoregressive Model
(HMARM), which cascades the HMM with the AR model, to model the temporal de-
pendency in the input process and the dependency caused by the AR filter respectively.
The motivation is that the conventional AR model only modelscorrelation of the signal,
which is a second order statistics, while the HMM can model higher order dependency
that exists in the input process. The HMARM can also be seen asan extension of the
HMM to explicitly model time correlation in the emitted samples. The conventional
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HMM assumes that the emitted sample is independent of the previous ones. In the
HMARM, the emitted samples are allowed to have correlation and the correlation is
modeled by an AR(p) model. In this respect, a method in [63] provides an alternative
of achieving a similar goal. In [63], the emission probability is modeled as a correlated
multi-variate Gaussian pdf, which takes into account the correlation between the current
sample and the previous one. This turns out to be a first order AR model.

The HMARM can be extended by introducing observation noise.We call it the
Extended-HMARM (E-HMARM). When the signal is distorted by observation noise,
the HMM filter alone is not sufficient, since it only deals withthe process noise in the
HMARM. An optimum nonlinear smoothing scheme is now needed.We propose to use
a variant of the Switching Kalman filter with soft switching.

Switching Kalman filter is the collective name given to a group of methods (see [64]
for a review). Conceptually, a switching Kalman filter models a system with a bank of
linear models, and does optimum inference by switching between them or taking linear
combinations of them. The switching decision is based on theprobability of the hidden
states that govern the linear models. Instead of switching all parameters of the system
at every time instant as in [65] [66], or switching only the ARparameters frame-wise as
in [67] [68], we switch the parameter of the input process at every time instant and keep
the AR parameter constant within an analysis frame. In this way, the slowly varying
AR parameters and the fast varying input process are modeledmost efficiently (see
Fig. 7). This is justified by our knowledge of many physical systems. For example,
in the speech production system, the vocal tract (the filter)changes slowly compared to
the movement of the vocal folds (the source); in communication systems, the physical
channel (the filter) changes slowly compared to the transmitted symbols (the source).

Z
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Figure 7: The switching AR signal model, whereZM
t is theM th constituent input process, andXt is the

observed signal. The state variableqt controls the switch to select one input process at each time instant.

In paper E, F and G, we present the HMARM and E-HMARM models andalgo-
rithms for the filtering and system identification problems.Applications in speech anal-
ysis, noise robust spectra estimation, and blind channel equalization are demonstrated.



18

4 Parameter estimation

Parameter estimation, or system identification, is the process of learning the parameters
of a system model given the observations and other information about the system. In
the previous section we discussed the optimum filtering (or smoothing) problems for
non-Gaussian AR signals, assuming known parameters. In practice, system parameters
are generally unknown and need to be estimated before the signal can be estimated.

In the specific problem of AR model parameter estimation, theparameters can be
grouped into two groups: the all-pole filter parameters and the excitation parameters.
For a Gaussian AR model, the excitation process assumes an i.i.d. Gaussian pdf. Thus
the only excitation parameter is the variance. For the Gaussian AR model, the filter
parameter estimation problem and the excitation parameterestimation problem are de-
coupled. So all parameters can be estimated jointly. For non-Gaussian AR models, the
excitation processes usually assume more complex models, and the filter parameters
estimation problem and excitation parameters estimation problem are usually coupled.
Most non-Gaussian AR model estimation algorithms estimatethe two sets of param-
eters separately in iterative manners to reduce complexity[69] [70] [71]. In paper E
and F, we show that the filter parameters and the excitation parameters can be jointly
estimated by appropriately constraining the model.

In the following, we will review several major techniques for optimum estimation
of parameters.

4.1 Least Squares methods

Least Squares (LS) is one of the most often used criterion in mathematical optimization.
The LS method tries to find a set of parameters of the selected model that best fit to
the measured data by minimizing the sum of the squares of the modeling error. It is
shown by the Gauss-Markov theorem that the Least Squares estimator is the best linear
unbiased estimator (BLUE) if the model is linear and if the modeling errors have zero
mean and equal variance, and are uncorrelated. It is noteworthy that the LS criterion is
a finite-sample approximate solution of the MSE criterion [4, p.91].

In the AR model parameter estimation problem, the optimum values for the param-
etersap are to be chosen such that the sum of the squared errors between the signalx(t)
and the predicted signal̂x(t) is minimized. The prediction here is a linear prediction
using the previousp samples. Thus the cost function to be minimized is

C(θ) =

N2∑

t=N1

[
x(t) −

p∑

k=1

akx(t− k)
]2

(14)

where theθ = [a1, · · · , ap]
T . TheN1 andN2 are the indices of the boundary samples,
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and the signal is assumed to be zeros outside of the boundaries. The vectorθ that
minimizes the cost function can be shown to be

θ̂ = (X∗X)−1(X∗x) (15)

wherex = [x(N1), · · · , x(N2)]
T , andX is a Toeplitz matrix with[0, x(N1), · · · , x(N2)]

T

as the first column. This result can also be obtained by writing the AR model in a matrix
form:

x = Xθ + u (16)

where thex andX are defined as same as above, andu is the vector of residuals. The
residual is assumed to be a stationary process, and thusu can be seen as a perturbation
vector. The parameter vector can be estimated by solving theperturbed linear system
x ≈ Xθ with the pseudo inverse, which results in (15).

There are two major variants that differ from each other by the choice of the bound-
aries: the autocorrelation method, which uses all available samples of the data frame in
forming theX, and the covariance method, which uses all samples except for the first
p samples in forming the matrixX. Notice that the matrixX∗X is equivalent to the
finite-sample estimate of the signal covariance matrix (up to a scaling factor).

The covariance method is found to be more accurate than the autocorrelation method
when the data length is small [14]. The autocorrelation method though, is more popu-
lar in applications due to the existence of efficient implementation, e.g., the Levinson-
Durbin algorithm (LDA) [72] [73]. An important observationhere is that the auto-
correlation method and the well known Yule-Walker method [74] lead to the same set
of equations. For a Gaussian AR signal, the Yule-Walker method solves the optimum
linear prediction problem by solving the Yule-Walker equations or normal equations:




r(0) r(−1) · · · r(−p)
r(1) r(0)

...
...

. . . r(−1)

r(n) · · · r(0)







1

a1

...
ap


 =




σ2

0
...
0


 (17)

wherer(k) is the autocorrelation at lagk, andσ2 is the variance of the input process.
Due to the stationarity assumption, the autocorrelation matrix in the Yule-Walker system
of equations is Toeplitz and Hermitian. The LDA exploits this structure and solve (3) in
a recursive manner.

Both variants of the Least Squares method, as said, is based on the stationarity
assumption. When applied to non-Gaussian or non-stationarysignals, the bias and
variance of the LS estimates are higher than that of the non-Gaussian estimators [17,
p.147]. The cause of large bias and variance is the mismatch of Gaussian models to
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non-Gaussian signal structures. For example, in the LPC analysis of voiced speech
signals, the impulse train structure causes spectral sampling effects, which bias the es-
timated spectral envelope upwards at the harmonic frequencies and downwards at other
frequencies. In paper E and F, a multi-state version of the Gaussian AR model has been
developed, where the input process is modeled as several Gaussian processes controlled
by a nonlinear switching mechanism. The resulting equationsystem is linear and can
be seen as a multi-state version of the LS solution in (15).

Nonlinear Least Squares

The regression is called nonlinear regression when the regression model is not a linear
function of the parameters. The method for nonlinear regression with the least squares
criterion is called the Nonlinear Least Squares (NLS) method. The NLS method is often
used in parameter estimation where the underlying nonlinear behavior of the process is
well known. In general, solving the NLS problem requires numerical minimization
techniques [75] such as Gauss-Newton method and grid searching.

The Multi-Pulse Linear Predictive Coding (MPLPC) is an example of the NLS
method. The MPLPC is originally proposed by Atal and Remde [76] to optimally de-
termine the impulse position and amplitude of the input process to the AR filter in the
context of analysis-by-synthesis linear predictive coding. The criterion of the optimality
is to minimize the sum of squares of modeling errors. Assuming thath(n) is the (trun-
cated) impulse response of the AR filter, and there areM pulses located at positionsmi

with amplitudesgi, i ∈ [1,M ], the cost function can be written as

C(gi,mi) =

N∑

t=1

[
x(t) −

M∑

i=1

gih(t−mi)
]2

, (18)

whereN is the data frame length. Here the position parametermi is the nonlinear
parameter. To solve the multi-dimensional nonlinear optimization (18) is difficult. A
popular sub-optimal technique for this kind of problem is the Matching Pursuit (MP)
technique, which decomposes the problem into a sequence of one-dimension optimiza-
tions. The MP finds the single best impulse, and subtract the effect of this impulse
from the signal, and then find the next best impulse. Finding one impulse at a time is
easy since it can be casted to a linear problem. Continuing until the required number of
impulses are found, one gets a sequence of impulses that minimizes the cost function
(18).

The MPLPC method is used in paper B and paper C for the estimation of temporal
localization of power in the speech excitation. In using theMPLPC method for esti-
mating the structure of the input process, the AR filter parameters need to be known or
estimated first. The estimation of the AR parameters is done with the linear LS method



4. PARAMETER ESTIMATION 21

as introduced in the previous section. In paper B, the MPLPC model is modified such
that the input process is a sum of a pulse train and a noise floorto better model the
excitation of speech signals. The noise sequence and its amplitude are optimized as part
of the nonlinear optimization.

The Total Least Squares method

In many practical problems, the output of the AR filter is distorted by observation noise.
It is thus preferable to distinguish system noise and measurement noise since they are
generated by different mechanisms. The ordinary LS method though, attributes all per-
turbations to the system noise. This can be seen clearly if the residual vectoru in (16)
can be written as a perturbation vector ofx:

x + ∆x = Xθ. (19)

The Total Least Squares (TLS) is an extension to the LS methodwith an explicit pertur-
bation to the signal matrixX:

x + ∆x = (X + ∆X)θ. (20)

The TLS problem can be solved by first finding the[X;x] that minimizes[∆X;∆x]

subject tox ∈ Range(X), and then solving for

x = Xθ. (21)

The minimization is usually done by finding the best lower rank approximation of the
augmented matrix[X+∆X;x+∆x], using the Singular Value Decomposition (SVD)
technique.

It is shown in [77] (and the references therein) that the TLS estimator is a more ro-
bust parameter estimator than the LS estimator in noisy environments. Whereas, due to
its very simple model, the TLS estimator can not utilize prior knowledge of the probabil-
ity distributions of the system noise and measurement noise. If the Gaussian assumption
is significantly violated, e.g., when outliers are present,the accuracy of the TLS deterio-
rates considerably and may be quite inferior to that of the LSestimates [77, p.5]. In this
respect, the Bayesian analysis based on dynamical system models is a good alternative
since it allows convenient modeling of system noise and measurement noise statistics.

4.2 Bayesian analysis of dynamic systems

One of the most popular dynamic model is the Kalman filter model, which is briefly
reviewed in Section 3.2. Like the TLS, the Kalman filter modelmodels both the system
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noise and the measurement noise. But the Kalman filter model is more flexible in that
the noise processes can be correlated, and non-stationary.More general dynamic models
even allow non-Gaussian modeling of the noise, e.g., [78]. Some of the non-Gaussian
MMSE estimation techniques mentioned in Section 1 have beenor can be generalized
to the dynamic models. Bayesian analysis though, is more used for signal estimation
than parameter estimation, because the prior distributionof parameters are harder to
learn than that of the signal waveforms. Thus the system identifications of Bayesian
dynamic models are often treated as hidden data problems, and are solved via the EM
algorithm. The principle is that, an MMSE estimator estimates the signal given the prior
distributions of the system noise and the distribution of the measurement noise, and the
parameters of the distributions of the noises are estimatedby Maximum Likelihood
estimators given the estimated clean signal. It can be shownthat the iterations increase
the likelihood function monotonically, so the resulting estimates of the parameters are
equivalent to the ML estimates. The ML estimation and EM algorithm will be reviewed
in the next section. Examples of identification of linear dynamic models can be found
in [79] [53] [80]. In paper E and F, we derived blind system identification algorithms
for non-Gaussian and nonlinear dynamic systems based on theEM paradigm.

4.3 The Maximum Likelihood method

The LS estimator reviewed in the previous section belongs todeterministic estimators
since there is no statistics involved explicitly in its model. Introducing statistical models
into the estimation is a way to improve estimation performance by exploiting statistical
structure of the data. The Maximum Likelihood (ML) estimator is a popular statistical
estimator for estimating parameters of an underlying probability distribution of a given
data set.

In the ML estimation, the observation datax are assumed to be samples of a random
process whose probability distribution are parameterizedby a set of parametersθ. The
ML estimator seeks the values ofθ that maximize the likelihood of the observations
given the model. The likelihood is defined as

L(θ) ∝ P (x|θ). (22)

The ML estimator is widely used in applications because it iseasy to use and it is
asymptoticly consistent and efficient. Asymptotic consistency and efficiency means that
if the observation data length approaches infinity, the biasof the ML estimates approach
zero and the variance approach the Cramer-Rao lower bound.

For the specific problem of ML estimation of Gaussian AR parameters, several
works have been reported for the clean observation case [81][82] [83] [84]. Even
for Gaussian AR models, the exact ML estimators are nonlinear [84] [17], and are often
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solved by numerical optimization or approximate ML estimations [17].
For the noisy observation case, the ML estimation of AR parameters are often

done with iterative algorithms. A powerful iterative ML estimation technique called
the Expectation-Maximization (EM) algorithm will be reviewed in the next section.

4.4 The Expectation-Maximization algorithm

The Expectation-Maximization (EM) algorithm is an iterative computation technique
for maximum likelihood estimation. It is most suitable for incomplete data, or hidden
data problems. Observation data corrupted by noise, or outputs of models whose latent
variables are of real interest are examples of incomplete data. For an estimation prob-
lem that direct formulation of ML estimator is intractable or complicated, the problem
can often be casted into a complete-data problem by appropriately choosing the com-
plete data set, for which the ML estimation is more efficient.For example, while the
maximization of the likelihood of the observation data needto be solved by computa-
tionally complex numerical optimizations, the maximization of the joint likelihood of
the observation data and some other data can have a close formsolution. The obser-
vation data and the extra data together are called the complete data. The extra data is
usually unknowna priori, so the conditional mean (expectation) of the joint likelihood
is maximized instead. Thus the EM algorithm iterates between the two steps, the max-
imization step (M-step) and the expectation step (E-step).The EM algorithm is shown
to monotonically increase the likelihood at every iteration [85]. Thus it is an iterative
ML estimator and enjoy the asymptotic property of the ML estimator.

Compared to other algorithms employing numerical optimization techniques such as
gradient ascent methods and Newton type methods, the EM algorithm has the following
advantages:

1. the EM algorithm has no such parameter as step size. Finding optimum time-
dependent step size in the gradient ascent methods is a tricky and rather ad hoc
process.

2. No need of finding Hessian and inverting Hessian as is needed in every iteration
of the Newton type methods.

3. The EM algorithm is numerically stable with each iteration monotonically in-
creasing the likelihood.

4. The E-step and M-step equations of an EM algorithm often give intuitive insights
to the estimation problem, while the other numerical methods provide no such
insight.
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Generalized EM algorithms

In some problems, the M-step has no closed form solutions. Insuch cases, instead of
choosing the parameters that maximize the expected likelihood of the complete data,
the parameters can be chosen such that the expected likelihood is increased. It can be
shown that this choice of parameters also increase the likelihood monotonically at each
iteration [86, p.84]. This is called the Generalized EM (GEM) algorithm. One line of
GEM algorithms use numerical maximization techniques in each M-step. Depending
on the numerical methods used for the maximization, there exist different variants of
GEM, such as the GEM Newton-Raphson algorithm [87] and the GEM gradient algo-
rithm [88]. Another line of GEM uses the coordinate-ascent principle, which increases
the multivariate likelihood function at each iteration by changing one parameter at a
time [34]. If the free variable at each time is chosen to maximize the likelihood, the
coordinate ascent converges to a local maximum [89].

The GEM algorithms, being easy to implement, have slower convergence rates than
the exact EM algorithms, if exist. Also notice that in every iteration of the GEM, the
expected likelihood is increased or locally maximized, unlike that in the exact EM the
expected likelihood is globally maximized. So the GEM is more sensitive to the initial
condition.

EM for parameter and signal estimation

In the application of EM algorithms to the estimation problem of noisy AR signals,
the parameter estimation and signal estimation problems are integrated nicely in one
theoretical framework. For Gaussian signal and noise, the complete data is usually
defined as the concatenation of the observation and the cleansignal. Using the signal
model defined in (3) and (4), the complete data is denoted as

z =

[
y

x

]
. (23)

The parameters to be estimated, including the AR parameters[a1, · · · , ap]
T , the process

noise variance, and the measurement noise variance are denoted by the parameter vector
θ.

In the M-step, the expected likelihood to be maximized is denoted by theQ-function

Q(θ,θ(l)) = E{log f(z|θ)|y}, (24)

whereθ(l) is the estimate ofθ at thel’th iteration, and the expectation is over the clean
signalx. TheQ-function is maximized with respect to the parameterθ, resulting in a
set of linear equations.
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In the E-step, the expectation in (24), or the sufficient statistics of the signal, is cal-
culated. This is usually done with the non-causal Wiener filter or the Kalman smoother.

At the stationary point of the algorithm, the ML estimates ofall parameters and the
MMSE estimates of the clean signal given the parameters are obtained.

Applying the EM algorithm to the estimation of Gaussian AR signals is first pro-
posed by Feder, Oppenheim, and Weinstein [90] [91]. Though,a closely related iterative
algorithm due to Lim and Oppenheim appears much earlier [92].

For non-Gaussian AR signals, the model for the excitation process is more com-
plex, and either the M-step or the E-step can be nonlinear. For example, in [34] the
non-Gaussian pdf is approximated by a mixture of Gaussian pdfs so that the filtering
becomes a linear combination of linear filters, but the M-step requires solving a set of
nonlinear equations. The solution in [34] is to use the generalized EM with coordinate
ascent as described earlier.

Our approaches in paper E and F, are to impose further constraints on the excitation
model. We show that when the mixture of Gaussian pdfs are constrained to have equal
variance, the exact EM algorithm results in linear M-step and E-step. Further more, to
exploit the temporal structure of the excitation process, we use an HMM to model the
dynamics of the excitation process. It is shown that the EM identification algorithm
for the HMM combined with the AR model has better convergenceproperty and bet-
ter estimation accuracy than the GMM ones for signals with temporal structure in the
excitations.

Approximate EM algorithms

In the speech enhancement literature, there is a group of algorithms that have similar
iterative structures to the EM algorithm. In [92] and [93], the algorithm iterates between
the estimation of AR parameters and the estimation of the signal using Wiener filtering.
In [94] and [95], The iterations are between AR parameter estimation and the Kalman
filtering. In [96], a model for the long term correlation in the pitch is introduced. The
parameters of the long term correlation model and the AR model are estimated from the
noisy signal and then the Kalman filtering is done based on theestimated parameters.
The algorithm iterates until convergence criterion is met.These algorithms are not
designed explicitly based on the EM theory, but they are closely related to the EM
algorithm and are conventionally seen as approximate EM algorithm.

In Paper D, we proposed an iterative algorithm based on Kalman filtering. Different
from the above mentioned quasi-stationary EM methods, thismethod uses a Kalman
filter model that has a non-stationary system noise with a rapidly varying variance. This
method is an approximate EM algorithm. Another novelty is that the iteration is in a
frame-wise sequential form. Instead of doing several iterations for each signal frame,
the algorithm does the iterations along consecutive framesso that each frame is filtered
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only once. The estimated spectrum of the previous frame is used in the initialization
of the current frame estimation by a Weighted Power SpectralSubtraction (WPSS) ini-
tialization scheme. The WPSS filter combines the estimate of the previous frame with
the current Power Spectral Subtraction estimate, much as the Decision-Directed method
used in [40]. But it has different property than the Decision-Directed method because
the signal phase is enhanced during the iteration due to the high resolution excitation
modeling, while in the DD method phase is unprocessed. Due tothe strong correla-
tion between signal spectra of consecutive frames, the algorithm filters each frame only
once and achieves the same gain as the conventional iterative scheme. In this way we
can also obtain a good initialization for the iteration which is very important in iterative
algorithms.

4.5 Higher Order Statistics based methods

Higher Order Statistics (HOS) based methods estimate modelparameters using cumu-
lants and their fourier transforms, known as polyspectra. HOS parameter estimation of
LTI systems with non-Gaussian inputs has been extensively studied in the recent years.
Works on AR estimation using HOS methods are found in [97] [38] [98] [37] [99]. In
addition to the common properties of non-Gaussian processing techniques mentioned
previously, major advantages of the HOS methods include:

1. The HOS based methods do not require a model for the pdf of the input process.
Thus they are more general than methods assuming certain parametric forms for
the distributions of input processes.

2. The HOS based methods are immune to Gaussian measurement noise. Either
white or colored Gaussian noise can not degrade the estimation accuracy.

On the other hand, drawbacks associated with HOS methods arealso significant:

1. HOS methods require longer data lengths than second-order method do. This
is also a side effect of the non-parametric calculation of higher order statistics
from samples. For many fast varying non-stationary signals, the calculation of
high order cumulants are prohibitive in terms of data efficiency and computation
efficiency.

2. HOS methods seldom use higher than 4th-order cumulants, because the higher
the moment, the higher the estimator’s variance will be [100] [38]. So they are
unable to model nonlinearities higher than 4th-order.

In the speech processing literature, it is found that the higher order spectral analysis
is associated with a higher spectral distortion compared tothe second order ones [101].
This is due to the high variance of the HOS estimates given short frames of data. As
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a principle, if any information/structure of the signal is knowna priori, one should try
to build it into a model, and then fit the model to the data. Goodmodels help reduce
estimation variance without need of long data.

5 Summary of contributions

The works included in this thesis are dedicated to solving the signal estimation and pa-
rameter estimation problems for non-Gaussian signals thatposses rich temporal struc-
tures. We model such a signal as a stochastic process createdby filtering a non-Gaussian
input process with an all-pole filter. We term this model the generalized AR model since
it resembles the standard AR model except that the input process can be of any prob-
ability distribution and can be temporally dependent. Thismodel contains two parts:
the all-pole filter with a moderate order models part of the temporal correlation of the
signal, and a dynamical model is used to model the non-Gaussianity and correlation of
the input process. Optimum non-Gaussian signal estimationand parameter estimation
are addressed. A brief summary of our contributions on this subject is depicted in Fig.
8. Also shown in the diagram are the major established methods, and their positions in
the big picture of AR signal estimation.

In papers A, B, C, and D, the focuses are on the optimum filtering of the non-
Gaussian AR signals, based on extensions to the classical linear Gaussian filtering theo-
ries. We show that by treating the input process to the all-pole filter as a non-stationary
process (i.e., dispensing with the quasi-stationarity assumption imposed on the input
process), the temporal structures in the input process can be exploited for a better es-
timation of the signal. Thus by viewing a non-Gaussian process as a non-stationary
Gaussian process, this approach solves the non-Gaussian signal estimation problem by
modeling the non-stationarity. Specifically, the input process is modeled as a Gaus-
sian process with zero-mean and a fast varying time-dependent variance. Parameters of
the model are estimated before the filtering using the MPLPC technique, or using an
iterative scheme, which iterates between parameter estimation and filtering.

In papers E, F and G, the non-Gaussianity of the input processis modeled by a
GMM or an HMM model. The parameters of the GMM or the HMM, the all-pole filter
parameters, and the measurement noise statistics are jointly estimated under the EM
framework. The MMSE estimates of the non-Gaussian signal isobtained as a results
of the E-step of the algorithm. The MMSE estimator we used here is a variant of the
Switching Kalman Filter. The SKF is a nonlinear filter which combines a number of lin-
ear filters with a nonlinear switching function. When the GMM is used in the model, the
non-Gaussianity in the input process is modeled without temporal dependency. When
the HMM is used, the dynamics or the nonlinear temporal dependency in the input
process is modeled. Thus it is possible in the HMARM model that the temporal de-
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pendency in the input process and the temporal correlation caused by the all-pole filter
are distinguished by the system identification algorithm. This is especially useful for
de-convolution and equalization problems. Applications in speech analysis and channel
equalization are demonstrated in the papers.

In summary, we propose, in this thesis, several non-Gaussian signal processing
methods. These methods extend the classical linear Gaussian models in various ways
to approach the non-Gaussian signal estimation problem with moderate additional com-
plexities to the Gaussian ones by exploiting special signalstructures. In these methods,
the non-stationarity is fully exploited to model structures used to be modeled by non-
Gaussianity and non-linearity.
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1. INTRODUCTION A3

Abstract

In this paper an MMSE estimator of the complex short-time spectrum is considered for
optimum noise reduction of speech. The correlation betweenfrequency components
is exploited to improve the estimation, especially of thosecomponents with low local
SNR. Furthermore, by making use of both spectral envelope and time envelope, the
estimator is able to suppress noise power in frequency domain and time domain simul-
taneously. The performance of the resulting estimator is found to be superior to the
non-causal IIR Wiener filter. The enhanced signal suffers less spectral distortion, while
achieving a lower mean squared error than the Wiener filter.

1 Introduction

In recent years, several MMSE approaches to speech enhancement appeared, includ-
ing the non-causal IIR Wiener filter [1], the MMSE STSA estimator [2], and MMSE
estimator using non-Gaussian priors [3]. Most of them can becharacterized as short-
time spectral amplitude estimators. A common characteristic of these methods is that
they only process the spectral amplitude and use the noisy phase spectra to generate
the enhanced signals (except for [3], in which the real partsand imaginary parts of the
DFT coefficients are independently estimated). As an example, take the non-causal IIR
Wiener filter with transfer function defined by

HWF (ω) =
Pss(ω)

Pss(ω) + Pvv(ω)
(1)

wherePss(ω) andPvv(ω) denote the power spectral density of the speech signal and the
uncorrelated additive noise, respectively. Hereafter we refer to (1) as the Wiener filter or
WF. The transfer function of the WF is of zero phase and therefore it leaves the phase
unprocessed. In addition, the WF does not exploit any inter-frequency dependency.
This is a consequence of the stationarity assumption, and isanother common point of
the established MMSE approaches. One reason for not processing the phase spectrum is
that phase is found to play a less important role in the human perception of speech [4].
An approximate threshold of phase perception was found in [4] corresponding to a
local SNR of about 6 dB. If a frequency component in a frame hasa local SNR higher
than 6 dB, the phase distortion is not audible. The second common point comes as
a consequence of assuming the speech frame to be infinitely long and stationary [5].
Although speech signals are known to be non-stationary and short-time processing is
applied, this assumption is widely used in order to simplifythe estimator.

In this paper we show that if these two restrictions are removed, better estimators
are obtained.
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2 Phase spectrum and inter-frequency dependency

The motivation for involving phase information in the MMSE estimator is that, first
of all, phase distortion is audible with low SNR speech. Processing low SNR speech
with an estimator working only on the spectral amplitude brings reverberant effect and
roughness to the enhanced speech. Recent works [6, 7] confirmthat, especially for the
voiced male speech, phase information is of clear perceptual importance. Moreover, the
phase noise causes amplitude spectrum distortion through phase modulation when the
signals are short-time processed using the overlap-add method. The rise of the spectrum
in the valley between pitch harmonics causes audible artifacts and higher residual noise.

Secondly, phase coherence in the voiced speech is a significant source of correlation
between frequency components. Two sources of correlation among frequency compo-
nents can be identified. One is the finite-length window effect. It is known that the
infinite Fourier matrix is the eigenvector matrix of an infinite Toeplitz matrix [8]. If
we denote the covariance matrix of the speech samples, the inverse Fourier matrix, and
the covariance matrix of the frequency components asCs, F, andCθ, respectively, we
can write the covariance matrix asCθ = FCsF

H. WhenCs is a Toeplitz matrix, if
the frame length of the Fourier analysis approaches infinity, Cθ will become diago-
nal. However in general the speech signal is non-stationary, and very long windows are
not applicable. The finite-length window effect causes the covariance matrixCθ to be
generally non-diagonal. Therefore correlation exist among the frequency components.
The second, and more interesting source of correlation is the phase coherence in voiced
speech. Voiced speech can be modeled as an excitation pulse train filtered by an all-pole
filter. The phase of the pulse train is approximately linear at pitch harmonic frequencies.
After the filtering, the coherence in phase is maintained to some extend. If the phase
coherence is lost, the voiced speech sounds reverberant [9]. The coherence in phase
corresponds to energy localization in the time domain, which can be modeled by a time
envelope.

Because of the importance of phase stated above, and becausethe optimum ampli-
tude estimator and the optimum phase estimator do not coexist [2], we formulate the
MMSE estimator as an estimate of the complex Fourier coefficients instead of inde-
pendently derived spectral amplitude and phase estimatorsas in [2] or independent real
parts and imaginary parts as in [3].

3 MMSE estimator with time and frequency envelopes

The key feature of the new MMSE estimator is modeling the covariance matrixCθ as
a full matrix instead of a diagonal matrix as in the WF. We will show the frequency
domain MMSE estimator first and then transform it to time domain.
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We use the following statistical model and problem formulation. The DFT coef-
ficients of each speech segment are modeled as complex Gaussian random variables
with zero mean and varying variance. Lety(n, k), s(n, k), v(n, k) denote then’th sam-
ple of noisy observation, speech, and additive white Gaussian noise of thek’th frame,
respectively. Then

y(n, k) = s(n, k) + v(n, k). (2)

Let θ(m, k) represent them’th DFT coefficient of thek’th frame, defined byθ(m, k) =∑N

n=0 s(n, k)exp(−j2πnm/N). For compactness we use vector representation and
omit the index in the following discussion. Lety, θ, v, andF denote the vectors ofy,
θ, v and the inverse Fourier matrix respectively. Then (2) can bewritten as

y = Fθ + v. (3)

The MMSE estimator can be shown to be the conditional mean [10]

θ̂ = E(θ|y)

= CθF
H(FCθF

H + Cv)−1y
(4)

where(·)H denotes the Hermitian transpose andCv denotes the covariance matrix of
the noisev. The covariance matrixCθ is generally unknown and must be replaced with
an estimate. We propose here an approach to the estimation ofCθ from the all-pole
model of the speech. Letq/A(z) denote the transfer function of the all pole model. Let
H be the corresponding synthesis filter matrix derived from the all-pole model, andr
be the residual vector, such that

s = Hr. (5)

Since the residual is a white noise sequence with unit variance (for voiced speech it is
a few impulses present periodically in the white noise), thecovariance matrixCr of r

can be written as a diagonal matrix with the squared residualas the diagonal elements
1. OnceCr is obtained,Cs andCθ can easily be found. We have

Cs = HCrH
H (6)

Cθ = FHCsF. (7)

Inserting (7) in (4) gives the MMSE short-time spectral estimator.
Fig.1 shows how the covariance matrixCθ estimated by this approach differs from

the diagonal matrix underlying the standard WF. We can see that the off-diagonal el-
ements are generally non-zero. At the brims of the matrix thecross-correlations are

1Here we ignore the long term correlation of the residual.
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significant. This represents the windowing effect caused bythe high spectral power
at low frequencies. More interestingly, we see how inter-frequency dependency, espe-
cially between neighboring formants show up as significant off-diagonal elements in
the covariance matrix. It is well known that a properly chosen window can reduce the
correlation between frequency components but can not eliminate it. In Fig.1 a Hanning
window is used, and we see that the remaining correlation is still significant and can be
exploited to improve the estimator.

The frequency domain MMSE estimator given by (4) is mainly for the purpose
of demonstrating the difference to the WF made by a full covariance matrix. In the
estimation of the speech waveform, (4) is transformed back to time domain, giving the
desired time domain MMSE estimator,

ŝ = Cs(Cs + Cv)−1y. (8)

Estimating the diagonal elements ofCr is equivalent to estimating the residual
power distribution over the time axis. It can also be seen as estimating phase from
the residual, because the power spectrum of the residual is known to be white. Estimat-
ing the squared residual from noisy observation is difficult. Our solution is to estimate
the time envelope of the squared residual with simple shapes, i.e. a constant floor plus
some pulses located periodically. These varying variancesof residual represent time
localization of energy. This is a major difference to the WF, which can be seen as us-
ing constant residual variance because of the stationary assumption. We estimate the
residual envelope in a simple but effective way. The noisy speech signal is first lowpass
filtered with cut-off frequency of 800 Hz. A 3-tap whitening filter is found by applying
linear prediction on the filtered signal. The output of the low pass filter is then filtered
by the whitening filter to get a reference residual. The position of the maximum in the
reference residual is chosen as the first impulse position ofthe estimated residual enve-
lope. According to an estimate of the pitch period the positions of remaining impulses
are found. A pre-defined pulse shape is put on every impulse position. The pulse shape
is chosen to be wider and smoother than a true residual impulse in order to gain robust-
ness against error in estimating the impulse positions. Therest of the residual will be
approximated with a constant whose amplitude is decided by keeping the average power
of the estimated residual equal to unity. The estimation of the residual envelope is only
needed for voiced frames. Fig.2 shows an example of the estimated residual envelope.

Because the above described MMSE estimator requires a spectral envelope and a
temporal envelope as the prior knowledge, we hereafter refer to it as the Time-Frequency
Envelope MMSE (TFE-MMSE) estimator.
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Figure 1: Amplitude plot of the covariance matrixCθ . Matrix size is 160 by 160 (only one quarter of the
matrix is shown).
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4 results

We first compare the performance of the TFE-MMSE estimator and the WF based on
known spectral envelope of the signal. Since the purpose is to show that using the extra
information about phase (or energy localization in time) itis possible to achieve lower
mean squared error and lower spectral distortion at the sametime, we first use known
spectral envelopes for both estimators.

Both estimators run with 30 sentences from different speakers (15 male and 15
female) from the TIMIT database added with artificial white Gaussian noise at a signal-
to-noise ratio of 0 dB. All sentences are 16kHz sampled, and segmented into frames of
160 samples. For the TFE-MMSE estimator, the time envelopesof the residual are esti-
mated from noisy observations using the method described insection 3. For the output
of both estimators, the SNR, Segmental SNR (segSNR) and Log-Spectral Distortion
(LSD) to the original signal spectrum are calculated. The SNR is defined as the ratio of
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the total signal power to the total noise power in the sentence. The segSNR is defined
as the average ratio of signal power to noise power per frame,omitting frames with a
power more than 30 dB below average power. The LSD is defined asthe distance be-
tween two log-scaled DFT spectra summed over all frequencies. The LSD is calculated
only for voiced frames since for the unvoiced frames both estimators are identical.

From Table 1 we see consistent improvement of the TFE-MMSE estimator over WF
in all three measurements. Fig.3 shows the signal spectrum of a voiced frame comparing
with the spectrum of the output of the two estimators. Only the lower frequency half
is plotted to show the details of the harmonic structure. It is seen that the TFE-MMSE
estimator preserves the harmonic structure better than theWF.

To verify the performance in a practical scenario, estimated LPC coefficients are
also used in the comparison. The LPC coefficients are estimated by a method similar to
the decision directed method in [2]. The experimental setupis identical to the above one,
except that input SNR is now set to 10 dB. Table 2 shows the results. Significant im-
provements are observed with the segSNR measurement. The LSD of the TFE-MMSE
estimator also improves significantly over the WF. Informal listening experiments show
that the reduction of spectral distortion is significant.

Male Female
SNR segSNR LSD SNR segSNR LSD

WF 10.73 5.21 290 10.57 5.59 347
TFE-MMSE 11.24 5.48 265 10.85 5.71 315
Improv. 0.51 0.27 25 0.28 0.12 32

Table 1: Performance of WF and the TFE-MMSE estimator with known AR coefficients. All SNR measures
are in dB. Input SNR is 0 dB. Results are averaged over 30 sentences (by 15 male and 15 female speakers).

Male Female
SNR segSNR LSD SNR segSNR LSD

WF 15.65 8.73 245 15.38 9.30 303
TFE-MMSE 16.71 9.42 183 16.48 9.83 231
Improv. 1.06 0.70 62 1.10 0.53 72

Table 2: Performance of WF and the TFE-MMSE estimator with estimated AR coefficients. Input SNR is 10
dB. Results are averaged over 30 sentences (by 15 male and 15 female speakers).

5 Discussion

In the first part of this paper we stated the motivation of formulating an MMSE joint es-
timator of amplitude and phase spectrum, i.e., phase is of perceptual importance for low
SNR sources, and estimating phase provides the additional information about the corre-
lation of DFT coefficients which improves the amplitude spectrum estimation in return.
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Figure 3: A comparison of amplitude spectrum for the output of WF and the TFE-MMSE estimator to the
original signal spectrum.

We have avoided the widely used assumption of independent frequency components.
This is justified by the fact that both finite-length window effect and time localization of
energy (caused by phase coherence) in the voiced speech introduce correlation among
the frequency components. Phase is known as hard to estimate, so we re-formulate the
problem into estimating time envelope of the residual power. The MMSE joint spectral
estimator (4) shows us that a full covariance matrix can exploit the inter-frequency de-
pendency, achieving a better spectrum estimate. The algorithm is finally implemented
as a time domain MMSE estimator (8).

The performance of the TFE-MMSE estimator and Wiener filter are compared based
on known LPC coefficients as well as estimated ones. The TFE-MMSE estimator shows
higher SNR and less spectral distortion than the WF. In the case of using estimated LPC
coefficients, the improvement of segmental SNR and spectraldistortion of the TFE-
MMSE estimator over the WF is even more significant. This is because the spectral
suppression and the temporal suppression benefit from each other making a better joint
estimator.
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1 Abstract

A comprehensive Linear Minimum Mean Squared Error (LMMSE) approach for para-
metric speech enhancement is developed. The proposed algorithms aim at joint LMMSE
estimation of signal power spectra and phase spectra, as well as exploitation of correla-
tion between spectral components. The major cause of this inter-frequency correlation
is shown to be the prominent temporal power localization in the excitation of voiced
speech. LMMSE estimators in time domain and frequency domain are first formulated.
To obtain the joint estimator, we model the spectral signal covariance matrix as a full
covariance matrix instead of a diagonal covariance matrix as is the case in the Wiener
filter derived under the quasi-stationarity assumption. Toaccomplish this, we decom-
pose the signal covariance matrix into a synthesis filter matrix and an excitation matrix.
The synthesis filter matrix is built from estimates of the all-pole model coefficients, and
the excitation matrix is built from estimates of the instantaneous power of the excita-
tion sequence. A decision-directed Power Spectral Subtraction method and a modified
Multi-Pulse Linear Predictive Coding (MPLPC) method are used in these estimations,
respectively. The spectral domain formulation of the LMMSEestimator reveals impor-
tant insight about inter-frequency correlations. This is exploited to significantly reduce
computational complexity of the estimator. For resource-limited applications such as
hearing aids, the performance-to-complexity tradeoff canbe conveniently adjusted by
tuning the number of spectral components to be included in the estimate of each compo-
nent. Experiments show that the proposed algorithm is able to reduce more noise than a
number of other approaches selected from the state-of-the-art. The proposed algorithm
improves the segmental SNR of the noisy signal by 13 dB for thewhite noise case with
an input SNR of 0 dB.

2 Introduction

Noise reduction is becoming an important function in hearing aids in recent years thanks
to the application of powerful DSP hardware and the progressof noise reduction algo-
rithm design. Noise reduction algorithms with high performance-to-complexity ratio
have been the subject of extensive research study for many years. Among many different
approaches, two classes of single-channel speech enhancement methods have attracted
significant attention in recent years because of their better performance compared to the
classic spectral subtraction methods (A comprehensive study of Spectral Subtraction
methods can be found in [1]). These two classes are the frequency domain block based
Minimum Mean Squared Error (MMSE) approach and the signal subspace approach.
The frequency domain MMSE approach includes the non-causalIIR Wiener filter [2],
the MMSE Short-Time Spectral Amplitude (MMSE-STSA) estimator [3], the MMSE
Log-Spectral Amplitude (MMSE-LSA) estimator [4], the Constrained Iterative Wiener



B4

Filtering (CIWF) [5], and the MMSE estimator using non-Gaussian priors [6]. These
MMSE algorithms all rely on an assumption of quasi-stationarity and an assumption of
uncorrelated spectral components in the signal. The quasi-stationarity assumption re-
quires short time processing. At the same time, the assumption of uncorrelated spectral
components can be warranted by assuming the signal to be infinitely long and wide-
sense stationary [7] [8]. This infinite data length assumption is in principle violated
when using the short-time processing, although the effect of this violation may be mi-
nor (and is not the major issue this paper addresses). More importantly, the wide-sense
stationarity assumption within a short frame does not well model the prominent tempo-
ral power localization in the excitation source of voiced speech due to the impulse train
structure. This temporal power localization within a shortframe can be modeled as a
non-stationarity of the signal that is not resolved by the short-time processing. In [9],
we show how voiced speech is advantageously modeled as non-stationary even within
a short frame, and that this model implies significant inter-frequency correlations. As
a consequence of the stationarity and long frame assumptions, the MMSE approaches
model the frequency domain signal covariance matrix as a diagonal matrix.

Another class of speech enhancement methods, the signal subspace approach, im-
plicitly exploits part of the inter-frequency correlationby allowing the frequency do-
main signal covariance matrix to be non-diagonal. This class includes the Time Domain
Constraint (TDC) linear estimator and Spectral Domain Constraint (SDC) linear esti-
mator [10], and the Truncated Singular Value Decomposition(TSVD) estimator [11].
In [10], the TDC estimator is shown to be an LMMSE estimator with adjustable input
noise level. When the TDC filtering matrix is transformed to the frequency domain,
it is in general non-diagonal. Nevertheless, the known signal subspace based methods
still assume stationarity within a short frame. This can be seen as follows. In TDC and
SDC the noisy signal covariance matrices are estimated by time averaging of the outer
product of the signal vector, which requires stationarity within the interval of averaging.
The TSVD method applies singular value decomposition to thesignal matrix instead.
This can be shown to be equivalent to the eigen decompositionof the time averaged
outer product of signal vectors. Compared to the mentioned frequency domain MMSE
approaches, the known signal subspace methods implicitly avoid the infinite data length
assumption, so that the inter-frequency correlation caused by the finite length effect is
accommodated. However, the more important cause of inter-frequency correlation, i.e.,
the non-stationarity within a frame is not modeled.

In terms of exploiting the masking property of the human auditory system, the above
mentioned frequency domain MMSE algorithms and signal subspace based algorithms
can be seen as spectral masking methods without explicit modeling of masking thresh-
olds. To see this, observe that the MMSE approaches shape theresidual noise (the
remaining background noise) power spectrum to one more similar to the speech power
spectrum, thereby facilitating a certain degree of maskingof the noise. In general, the
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MMSE approaches attenuate more in the spectral valleys thanthe spectral subtraction
methods do. Perceptually, this is beneficial for high pitch voiced speech, which has
sparsely located spectral peaks that are not able to mask thespectral valley sufficiently.
The signal subspace methods in [10] are designed to shape theresidual noise power
spectrum for a better spectral masking, where the masking threshold is found exper-
imentally. Auditory masking techniques have received increasing attention in recent
research of speech enhancement [12–14]. While the majority of these works focus on
spectral domain masking, the work in [15] shows the importance of the temporal mask-
ing property in connection with the excitation source of voiced speech. It is shown
that noise between the excitation impulses is more perceivable than noise close to the
impulses, and this is especially so for the low pitch speech for which the excitation im-
pulses locates temporally sparsely. This temporal maskingproperty is not employed by
current frequency domain MMSE estimators and the signal subspace approaches.

In this paper, we develop an LMMSE estimator with a high temporal resolution
modeling of the excitation of voiced speech, aiming for modeling a certain non-stationarity
of the speech within a short frame, which is not modeled by quasi-stationarity based
algorithms. The excitation of voiced speech exhibits prominent temporal power local-
ization, which appears as an impulse train superimposed with a low level noise floor.
We model this temporal power localization as a non-stationarity. This non-stationarity
causes significant inter-frequency correlation. Our LMMSEestimator therefore avoids
the assumption of uncorrelated spectral components, and isable to exploit the inter-
frequency correlation. Both the frequency domain signal covariance matrix and filtering
matrix are estimated as complex-valued full matrices, which means that the information
about inter-frequency correlation are not lost and the amplitude and phase spectra are
estimated jointly. Specifically, we make use of the linear prediction based source-filter
model to estimate the signal covariance matrix, upon which atime domain or frequency
domain LMMSE estimator is built. In the estimation of the signal covariance matrix,
this matrix is decomposed into a synthesis filter matrix and an excitation matrix. The
synthesis filter matrix is estimated by a smoothed power spectral subtraction method
followed by an autocorrelation Linear Predictive Coding (LPC) method. The excitation
matrix is a diagonal matrix with the instantaneous power of the LPC residual as its diag-
onal elements. The instantaneous power of the LPC residual is estimated by a modified
Multi-Pulse Linear Predictive Coding (MPLPC) method. Having estimated the signal
covariance matrix, we use it in a vector LMMSE estimator. We show that by doing
the LMMSE estimation in the frequency domain instead of in time domain, the com-
putational complexity can be reduced significantly due to the fact that the signal is less
correlated in the frequency domain than in the time domain. Compared to several quasi-
stationarity based estimators, the proposed LMMSE estimator results in a lower spectral
distortion to the enhanced speech signal while having higher noise reduction capability.
The algorithm applies more attenuation in the valleys between pitch impulses in time
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domain, while small attenuation is applied around the pitchimpulses. This arrangement
exploits the temporal masking effect, and results in a better preservation of abrupt rise
of the waveform amplitude while maintaining a large amount of noise reduction.

The rest of this paper is organized as follows. In Section 3 the notations and as-
sumptions used in the derivation of LMMSE estimators are outlined. In Section 4, the
non-stationary modeling of the signal covariance matricesis described. The algorithm is
summarized in Section 5. In Section 6, the computational complexity of the algorithm
is reduced by identifying an interval of significant correlation and by simplifying the
modified MPLPC procedure. Experimental settings, objective, and subjective results
are given in Section 7. Finally, Section 8 discusses the obtained results.

3 Background

In this section, notations and statistic assumptions for the derivation of LMMSE esti-
mators in time and frequency domain are outlined.

3.1 Time domain LMMSE estimator

Let y(n, k), s(n, k), v(n, k) denote then’th sample of noisy observation, speech, and
additive noise (uncorrelated with the speech signal) of thek’th frame, respectively. Then

y(n, k) = s(n, k) + v(n, k).

Alternatively, in vector form we have

y = s + v, (1)

where boldface letters represent vectors and the frame indices are omitted to allow a
compact notation. For exampley = [y(1, k), y(2, k), · · · , y(N, k)]T is the noisy signal
vector of thek’th frame, whereN is the number of samples per frame.

To obtain linear MMSE estimators, we assume zero mean Gaussian PDF’s for the
noise and the speech processes. Under this statistic model the LMMSE estimate of the
signal is the conditional mean [16]

ŝ = E[s|y]

= Cs(Cs + Cv)
−1

y,
(2)

whereCs andCv are the covariance matrices of the signal and the noise, respectively.
The covariance matrix is defined asCs = E[ssH ], where(·)H denotes Hermitian trans-
position andE[·] denotes the ensemble average operator.
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3.2 Frequency domain LMMSE estimator and Wiener filter

In the frequency domain the goal is to estimate the complex DFT coefficients given a
set of DFT coefficients of the noisy observation. LetY (m, k), θ(m, k), andV (m, k)

denote them’th DFT coefficient of thek’th frame of the noisy observation, the signal,
and the noise, respectively. Due to the linearity of the DFT operator, we have,

Y (m, k) = θ(m, k) + V (m, k). (3)

In vector form we have
Y = θ + V, (4)

where again boldface letters represent vectors and the frame indices are omitted. As an
example, the noisy spectrum vector of thek’th frame is arranged as

Y = [Y (1, k), Y (2, k), · · · , Y (N, k)]T

where the number of frequency bins is equal to the number of samples per frameN .
We again use the linear model.Y, θ, andV are assumed to be zero-mean complex

Gaussian random variables andθ andV are assumed to be uncorrelated to each other.
The LMMSE estimate is the conditional mean

θ̂ = E[θ|Y]

= Cθ(Cθ + CV)−1Y,
(5)

whereCθ andCV are the covariance matrices of the DFT coefficients of the signal and
the noise, respectively. By applying inverse DFT to each side, (5) can be easily shown
to be identical to (2).

The relation between the two signal covariance matrices in time and frequency do-
main is

Cθ = FCsF
−1, (6)

whereF is the Fourier matrix. If the frame was infinitely long and thesignal was
stationary,Cs would be an infinitely large Toeplitz matrix. The infinite Fourier matrix
is known to be the eigenvector matrix of any infinite Toeplitzmatrix [8]. Thus,Cθ

becomes diagonal and the LMMSE estimator (5) reduces to the non-causal IIR Wiener
filter with the transfer function

HWF (ω) =
Pss(ω)

Pss(ω) + Pvv(ω)
, (7)

wherePss(ω) andPvv(ω) denotes the power spectral density (PSD) of the signal and
the noise, respectively. In the sequel we refer to (7) as the Wiener filter or WF.
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4 High temporal resolution modeling for the signal co-
variance matrix estimation

For both time and frequency domain LMMSE estimators described in Section 3, the
estimation of the signal covariance matrixCs is crucial. In this work, we assume the
noise to be stationary. For the signal, however, we propose the use of a high temporal
resolution model to capture the non-stationarity caused bythe excitation power varia-
tion. This can be explained by examining the voice production mechanism. In the well
known source-filter model for voiced speech, the excitationsource models the glottal
pulse train, and the filter models the resonance property of the vocal tract. The vocal
tract can be viewed as a slowly varying part of the system. Typically in a duration of
20 to 30 ms it changes very little. The vocal folds vibrate at afaster rate producing
periodic glottal flow pulses. Typically there can be 2 to 8 glottal pulses in 20 ms. In
speech coding, it is common practice to model this pulse train by a long-term correla-
tion pattern parameterized by a long-term predictor [17] [18] [19]. However, this model
fails to describe the linear relationship between the phases of the harmonics. That is,
the long term predictor alone does not model the temporal localization of power in the
excitation source. Instead, we apply a time envelope that captures the localization and
concentration of pitch pulse energy in the time domain. This, in turn, introduces an
element of non-stationarity to our signal model because theexcitation sequence is now
modeled as a random sequence with time varying variance, i.e., the glottal pulses are
modeled with higher variance and the rest of the excitation sequence is modeled with
lower variance. This modeling of non-stationarity within ashort frame implies a tem-
poral resolution much finer than that of the quasi-stationarity based algorithms. The
latter has a temporal resolution equal to the frame length. Thus we term the former the
high temporal resolution model. It is worth noting that someunvoiced phonemes, such
as plosives, have very fast changing waveform envelopes, which also could be modeled
as non-stationarity within the analysis frame. In this paper, however, we focus on the
non-stationary modeling of voiced speech.

4.1 Modeling signal covariance matrix

The signal covariance matrix is usually estimated by averaging the outer product of the
signal vector over time. As an example this is done in the signal subspace approach [10].
This method assumes ergodicity of the autocorrelation function within the averaging
interval.

Here we propose the following method of estimatingCs with the ability to model
a certain element of non-stationarity within a short frame.The following discussion is
only appropriate for voiced speech. Letr denote the excitation source vector, andH

denote the synthesis filtering matrix corresponding to the vocal tract filter such as
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H =




h(0) 0 0 · · · 0

h(1) h(0) 0
...

h(2) h(1) h(0)
...

...
. . . 0

h(N − 1) h(N − 2) · · · h(0)




,

whereh(n) is the impulse response of the LPC synthesis filter. We then have

s = Hr, (8)

and therefore
Cs = E[ssH ] = HCrH

H , (9)

whereCr is the covariance matrix of the model residual vectorr. In (9) we treatH as a
deterministic quantity. This simplification is common practice also when the LPC filter
model is used to parameterize the power spectral density in classic Wiener filtering
[20] [5]. Section 4.2 addresses the estimation ofH. Note that (8) does not take into
account the zero-input response of the filter in the previousframe. Either the zero-
input response can be subtracted prior to the estimation of each frame, or a windowed
overlap-add procedure can be applied to eliminate this effect.

We now modelr as a sequence of independent zero mean random variables. The
covariance matrixCr is therefore diagonal with the variance of each element ofr as
its diagonal elements. For voiced speech, except for the pitch impulses, the rest of
the residual is of very low amplitude and can be modeled as constant variance random
variables. Therefore, the diagonal ofCr takes the shape of a constant floor with a few
periodically located impulses. We term this the temporal envelope of the instantaneous
residual power. This temporal envelope is an important partof the new MMSE estima-
tor because it provides the information of uneven temporal power distribution. In the
following two subsections, we will describe the estimationof the spectral envelope and
the temporal envelope respectively.

4.2 Estimating the spectral envelope

In the context of LPC analysis, the synthesis filter has a spectrum that is the envelope of
the signal spectrum. Thus, our goal in this subsection is to estimate the spectral envelope
of the signal. We first use the Decision Directed method [3] toestimate the signal power
spectrum and then use the autocorrelation method to find the spectral envelope.

The noisy signal power spectrum of thek’th frame|Y(k)|2 is obtained by applying
the DFT to thek’th observation vectory(k) and squaring the amplitudes. The Decision

Directed estimate of the signal power spectrum of thek’th frame,| ˆ̂θ(k)|2, is a weighted
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sum of two parts, the power spectrum of the estimated signal of the previous frame,
|θ̂(k − 1)|2, and the power-spectrum-subtraction estimate of the current frame’s power
spectrum:

| ˆ̂θ(k)|2 = α|θ̂(k − 1)|2 + (1 − α)max(|Y(k)|2 − E[|V̂(k)|2], 0), (10)

whereα is a smoothing factorα ∈ [0, 1], andE[|V̂(k)|2] is the estimated noise power
spectral density. The purpose of such a recursive scheme is to improve the estimate
of the power spectrum subtraction method by smoothing out the random fluctuation in
the noise power spectrum, thus reduce the “musical noise” artifact [21]. Other iterative
schemes with similar time or spectral constraints are applicable in this context. For a
comprehensive study of constraint iterative filtering techniques, readers are referred to
[5]. We now take the square-root of the estimated power spectrum and combine it with
the noisy phase to reconstruct the so called intermediate estimate, which has the noise-
reduced amplitude spectrum but noisy phase. An autocorrelation method LPC analysis
is then applied to this intermediate estimate to obtain the synthesis filter coefficients.

4.3 Estimating the temporal envelope

We propose to use a modified MPLPC method to robustly estimatethe temporal en-
velope of the residual power. MPLPC is first introduced by Atal and Remde [17] to
optimally determine the impulse position and amplitude of the excitation in the con-
text of analysis-by-synthesis linear predictive coding. The principle is to represent the
LPC residual with a few impulses in which the locations and amplitudes (gains) of the
impulses are chosen such that the difference between the target signal and the synthe-
sized signal is minimized. In the noise reduction scenario,the target signal will be the
noisy signal and the synthesis filter must be estimated from the noisy signal. Here, the
synthesis filter is treated as known. For the residual of voiced speech, there is usually
one dominating impulse in each pitch period. We first determine one impulse per pitch
period, then model the rest of the residual as a noise floor with constant variance. In
MPLPC the impulses are found sequentially [22]. The first impulse location and ampli-
tude is found by minimizing the distance between the synthesized signal and the target
signal. The effect of this impulse is subtracted from the target signal and the same pro-
cedure is applied to find the next impulse. Because this way offinding impulses does not
take into account the interaction between the impulses, re-optimization of the impulse
amplitudes is necessary every time a new impulse is found. The number of pitch im-
pulsesp in a frame is determined in the following way.p is first assigned an initial value
equal to the largest number of pitch periods possible in a frame. Thenp impulses are
determined using the above mentioned method. Only the impulses with an amplitude
larger than a threshold are selected as pitch impulses. In our experiment, the threshold
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is set to 0.5 times the largest impulse amplitude in this frame. Having determined the
impulses, a white noise sequence representing the noise floor of the excitation sequence
is added into the gain optimization procedure together withall the impulses. We use a
codebook of 1024 white Gaussian noise sequences in the optimization. The white noise
sequence that yields the smallest synthesis error to the target signal is chosen to be the
estimate of the noise floor. This procedure is in fact a multi-stage coder withp impulse
stages and one Gaussian codebook stage, with a joint re-optimization of gains. Detailed
treatment of this optimization problem can be found in [23].After the optimization,
we use a flat envelope equal to the square of the gain of the selected noise sequence to
model the variance of the noise floor. Finally, the temporal envelope of the instanta-
neous residual power is composed of the noise floor variance and the squared impulses.
When applied to noisy signals, the MPLPC procedure can be interpreted as a non-linear
Least Square fitting to the noisy signal, with the impulse positions and amplitudes as
the model parameters.

5 The algorithm

Having obtained the estimate of the temporal envelope of theinstantaneous residual
power and the estimate of the synthesis filter matrix, we are able to build the signal
covariance matrix in (9). The covariance matrix is used in the time LMMSE estimator
(2) or in the spectral LMMSE estimator (5) after being transformed by (6).

The noise covariance matrix can be estimated using speech absent frames. Here,
we assume the noise to be stationary. For the time domain LMMSE estimator (2), if
the noise is white, the covariance matrixCv is diagonal with the noise variance as
its diagonal elements. In the case of colored noise, the noise covariance matrix is no
longer diagonal and it can be estimated using the time averaged outer product of the
noise vector. For the spectral domain LMMSE estimator (5),CV is a diagonal matrix
with the power spectral density of the noise as its diagonal elements. This is due to
the assumed stationarity of the noise1. In the special case where the noise is white, the
diagonal elements all equal the variance of the noise.

We model the instantaneous power of the residual of unvoicedspeech with a flat
envelope. Here, voiced speech is referred to as phonemes that require excitation from
the vocal folds vibration, and unvoiced speech consists of the rest of the phonemes. We
use a simple voiced/unvoiced detector that utilize the factthat voiced speech usually
has most of its power concentrated in the low frequency band,while unvoiced speech
has a relatively flat spectrum within0 to 4kHz. Every frame is low pass filtered and

1In modeling the spectral covariance matrix of the noise we haveignored the inter-frequency correlations
caused by the finite-length window effect. With typical window length, e.g.15 to 30ms, the inter-frequency
correlations caused by the window effect is less significantthan those caused by the non-stationarity of the
signal. This can be easily seen by examining a plot of the spectral covariance matrix.



B12

Algorithm 1 TFE-MMSE estimator

1: Take thek’th frame,
2: Estimate the noise PSD from the latest speech-absent frame.
3: Calculate the power spectrum of the noisy signal.
4: Do power spectrum subtraction estimation of the signal PSD,and refine the estimate

using Decision-Directed smoothing (eq.(10)).
5: Reconstruct the signal by combining the amplitude spectrumestimated by 4 and

the noisy phase.
6: Do LPC analysis to the reconstructed signal. Obtain the synthesis filter coefficients,

and form the synthesis matrixH.
7: IF the frame is voiced

Estimate the envelope of the instantaneous residual power using the modified
MPLPC method.

8: IF the frame is unvoiced
Use a constant envelope for the instantaneous residual power.

9: ENDIF
10: Calculate the residual covariance matrixCr.
11: Form the signal covariance matrixCs = HCrH

H (eq.(9)).
12: IF time domain LMMSE:

ŝ = Cs(Cs + Cv)
−1

y (eq.(2)).
13: IF frequency domain LMMSE:

transformCs to frequency domainCθ = FCsF
−1,

filter the noisy spectrum̂θ = Cθ(Cθ + CV)−1Y (eq.(5)),
obtain the signal estimate by inverse DFT.

14: ENDIF
15: Calculate the power spectrum of the filtered signal,|θ̂(k − 1)|2, for use in the PSD

estimation of next frame.
16: k = k + 1 and go to 1.

then the filtered signal power is compared with the original signal power. If the power
loss is more than a threshold, the frame is marked as an unvoiced frame, and vice versa.
Note however, that even for the unvoiced frames, the spectral covariance matrix is non-
diagonal because the signal covariance matrixCs, built in this way, is not Toeplitz.
Hereafter, we refer to the proposed approach as the Time-Frequency-Envelope MMSE
estimator (TFE-MMSE), due to its utilization of envelopes in both time and frequency
domain. The algorithm is summarized in Algorithm 1.

6 Reducing computational complexity

The TFE-MMSE estimators require inversion of a full covariance matrixCs or Cθ.
This high computational load prohibits the algorithm from real time application in hear-
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ing aids. Noticing that both covariance matrices are symmetric and positive definite,
Cholesky factorization can be applied to the covariance matrices, and the inversion can
be done by inverting the Cholesky triangle. A careful implementation requiresN3/3

operations for the Cholesky factorization [24] and the algorithm complexity isO(N3).
Another computation intensive part of the algorithm is the modified MPLPC method.
In this section we propose simplifications to these two parts.

Further reduction of complexity for the filtering requires understanding of the inter-
frequency correlation. In the time domain the signal samples are clearly correlated with
each other in a very long span. However, in the frequency domain, the correlation span
is much smaller. This can be seen from the magnitude plots of the two covariance
matrices (see Fig.1).
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Figure 1: The voiced speech waveform and its time domain and frequency domain (amplitude) covariance
matrices estimated with the non-stationary model. Frame lengthis 128 samples.

For the spectral covariance matrix, the significant values concentrate around the
diagonal. This fact indicates that a small number of diagonals capture most of the inter-
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frequency correlation. The simplified procedure is as follows. Half of the spectrum
vectorθ is divided into small segments ofl frequency bins each. The sub-vector start-
ing at thej’th frequency is denoted asθsub,j , wherej ∈ [1, l, 2l, · · · , N/2] andl ≪ N .
The noisy signal spectrum and the noise spectrum can be segmented in the same way
givingYsub,j andVsub,j . The LMMSE estimate ofθsub,j needs only a block of the co-
variance matrix, which means that the estimate of a frequency component benefits from
its correlations withl neighboring frequency components instead of all components.
This can be written as

θ̂sub,j = Cθsub,j
(Cθsub,j

+ CVsub,j
)−1Ysub,j . (11)

The first half of the signal spectrum can be estimated segmentby segment. The sec-
ond half of the spectrum is simply a flipped and conjugated version of the first half.
The segment length is chosen to bel = 8, which in our experience does not degrade
performance noticeably when compared with the use of the full matrix. Other segmen-
tation schemes are applicable, such as overlapping segments. It is also possible to use
a number of surrounding frequency components to estimate a single component at a
time. We use the non-overlapping segmentation because it iscomputationally less ex-
pensive while maintaining good performance for smalll. When the signal frame length
is 128 samples and the block length isl = 8, using this simplified method requires
only 8×83

1283 = 1
512 times of the original complexity for the filtering part of thealgorithm

with an extra expense of FFT operations to the covariance matrix. When l is set to
values larger than 24, very little improvement in performance is observed. Whenl is
set to values smaller than 8, the quality of enhanced speech degrades noticeably. By
tuning the parameterl, an effective trade-off between the enhanced speech quality and
the computational complexity is adjusted conveniently.

In the MPLPC part of the algorithm, the optimization of the impulse amplitude and
the gain of the noise floor brings in heavy computational load. It can be simplified by
fixing the impulse shape and the noise floor level. In the simplified version, the MPLPC
method is only used for searching the locations of thep dominating impulses. Once the
locations are found, a predetermined pulse shape is put at each location. An envelope of
the noise floor is also predetermined. The pulse shape is chosen to be wider than an im-
pulse in order to gain robustness against estimation error of the impulse locations. This
is helpful as long as noise is present. The pulse shape used inour experiment is a raised
cosine waveform with a period of 18 samples and the ratio between the pulse peak and
the noise floor amplitude is experimentally determined to be6.6. Finally, the estimated
residual power must be normalized. Although the pulse shapeand the relative level of
the noise floor are fixed for all frames, experiments show thatthe TFE-MMSE estimator
is not sensitive to this change. The performance of both the simplified procedure and
the optimum procedure are evaluated in Section 7. Fig.2 shows the estimated envelopes
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of residual in the two ways.
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Figure 2: Estimated magnitude envelopes of the residual by the MPLPC method and the simplified MPLPC
method.

7 Results

Objective performance of the TFE-MMSE estimator is first evaluated and compared
with the Wiener filter [2], the MMSE-LSA estimator [4], and the signal subspace method
TDC estimator [10]. For the TFE-MMSE estimator, both the complete algorithm and
the simplified algorithms are evaluated. For all estimatorsthe sampling frequency is
8kHz, and the frame length is 128 samples with 50% overlap. Inthe Wiener filter we
use the same Decision Directed method as in the MMSE-LSA and the TFE-MMSE
estimator to estimate the PSD of the signal. An important parameter for the Decision
Directed method is the smoothing factorα. The larger theα is, the more noise is re-
moved and more distortion imposed to the signal, because of more smoothing made to
the spectrum. In the MMSE-LSA estimator with the aforesaid parameter setting, we
found experimentallyα = 0.98 to be the best trade-off between noise reduction and
signal distortion. We use the sameα for the WF and the TFE-MMSE estimator as for
the MMSE-LSA estimator. For the TDC, the parameterµ (µ ≧ 1) controls the degree
of over suppression of the noise power [10]. The larger theµ is, the more attenuation



B16

to the noise but larger distortion to the speech. We chooseµ = 3 in the experiments by
balancing the noise reduction and signal distortion.

All estimators run with 32 sentences from different speakers (16 male and 16 fe-
male) from the TIMIT database [25] added with white Gaussiannoise, pink noise, and
car noise in SNR ranging from 0 dB to 20 dB. The white Gaussian noise is computer
generated, and the pink noise is generated by filtering whitenoise with a filter having a
3 dB per octave spectral power descend. The car noise is recorded inside a car with a
constant speed. Its spectrum is more low pass than the pink noise. The quality measures
used include the SNR, the segmental SNR, and the Log-Spectral Distortion (LSD). The
SNR is defined as the ratio of the total signal power to the total noise power in the sen-
tence. The segmental SNR (segSNR) is defined as the average ratio of signal power to
noise power per frame. To prevent the segSNR measure from being dominated by a few
extreme low values, since the segSNR is measured in dB, it is common practice to apply
a lower power thresholdǫ to the signals. Any frame that has an average power lower
thanǫ is not used in the calculation. We setǫ to 40dB lower than the average power of
the utterance. The segSNR is commonly considered to be more correlated to perceived
quality than the SNR measure. The LSD is defined as [26]:

LSD =
1

K

K∑

k=1

[
1

M

M∑

m=1

(
20log10

|X(m, k)| + ǫ

|X̂(m, k)| + ǫ

)2] 1
2

, (12)

whereǫ is to prevent extreme low values. We again setǫ to 40 dB lower than the
average power of the utterance. Results of the white Gaussian noise case are given
in Fig. 3. TFE-MMSE1 is the complete algorithm, and TFE-MMSE2 is the one with
simplified MPLPC and reduced covariance matrix (l = 8). It is observed that the TFE-
MMSE2, although a result of simplification of TFE-MMSE1, hasbetter performance
than the TFE-MMSE1. This can be explained as follows: 1) Its wider pulse shape is
more robust to the estimation error of impulse positions, and 2) the wider pulse shape
can model to some extent the power concentration around the impulse peaks, which
is overlooked by the spiky impulses. For this reason, in the following evaluations we
investigate only the simplified algorithm.

Informal listening tests reveal that, although the speech enhanced by the TFE-
MMSE algorithm has a significantly clearer sound (less muffled than the reference al-
gorithms), the remaining background noise has musical tones. A solution to the musical
noise problem is to set a higher value to the smoothing factorα. Using a largerα sacri-
fices the SNR and LSD slightly at high input SNR’s, but improves the SNR and LSD at
low input SNR’s, and generally improves the segSNR significantly. The musical tones
are also well suppressed. By settingα = 0.999, the residual noise is greatly reduced,
while the speech still sounds less muffled than for the reference methods. The reference
methods can not use a smoothing factor as high as the TFE-MMSE: experiments show
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(a) SNR gain, male speech.
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(b) SNR gain, female speech
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(c) segSNR gain, male speech.
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(d) segSNR gain, female speech
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(f) Log-Spectral Distortion gain, female speech.

Figure 3: SNR gain, segSNR gain, and Log-Spectral Distortion gain forthe white Gaussian noise case.

that atα = 0.999 the MMSE-LSA and the WF result in extremely muffled sounds. The
TDC also suffers from a musical residual noise. To suppress its residual noise level to
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as low as that of the TFE-MMSE withα = 0.999, the TDC requires aµ lager than
8. This causes a sharp degradation of the SNR and LSD, and results in very muffled
sounds. The TFE-MMSE2 estimator with a large smoothing factor (α = 0.999) is here-
after termed TFE-MMSE3 and its objective measures are also shown in the figures. To
verify the perceived quality of the TFE-MMSE3 subjectively, preference test between
the TFE-MMSE3 and the WF, and between the TFE-MMSE3 and the MMSE-LSA
are conducted. The WF and the MMSE-LSA use their best value of smoothing factor
(α = 0.98). The test is confined to white Gaussian noise and a limited range of SNR’s.
Three sentences by male speakers and three by female speakers at each SNR level are
used in the test. Eight unexperienced listeners are required to vote for their preferred
method based on the amount of noise reduction and speech distortion. The utterances
are presented to the listeners by a high quality headphone. The clean utterance is first
played as a reference, and the enhanced utterances are played once, or more if the lis-
tener finds this necessary. The results in Table 1 and 2 show that: 1) at 10 dB and 15 dB
the listeners clearly prefer the TFE-MMSE over the two reference methods, while at 5
dB the preference on the TFE-MMSE is unclear; 2) the TFE-MMSEmethod has a more
significant impact on the processing of male speech than on the processing of female
speech. At 10 dB and above, the speech enhanced by TFE-MMSE3 has barely audi-
ble background noise, and the speech sounds less muffled thanthe reference methods.
There is one artifact heard in rare occasions that we believeis caused by remaining mu-
sical tones. It is of very low power and occur some times at speech presence. The two
reference methods have higher residual background noise and suffer from muffling and
reverberance effects. When SNR is lower than 10 dB, a certain speech dependent noise
occurs at speech presence in the TFE-MMSE3 processed speech. The lower the SNR
is, the more audible this artifact is. Comparing the male andfemale speech processed
by the TFE-MMSE3, the female speech sounds a bit rough.

The algorithms are also evaluated for pink noise and car noise cases. The objective
results are shown in Fig. 4 and 5. In these results the TDC algorithm is not included
because the algorithm is proposed based on the white Gaussian noise assumption. In-
formal listening test shows that the perceptual quality in the pink noise case for all the
three algorithms are very similar to the white noise case, and that in the car noise case all
tested methods have very similar perceptual quality due to the very low pass spectrum
of the noise.

A comparison of spectrograms of a processed sentence (male "only lawyers love
millionaires") is shown in Fig. 6.
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Table 1: Preference test between WF and TFE-MMSE3 with additive whiteGaussian noise.
15 dB 10 dB 5 dB

Male
speaker

WF 8% 7% 37%
TFE 92% 83% 63%

Female
speaker

WF 37% 33% 58%
TFE 63% 67% 42%

Table 2: Preference test between MMSE-LSA and TFE-MMSE3 with additive white Gaussian noise.
15 dB 10 dB 5 dB

Male
speaker

LSA 4% 25% 46%
TFE 96% 75% 54%

Female
speaker

LSA 25% 42% 50%
TFE 75% 58% 40%

8 Discussion

The results show that for male speech, the TFE-MMSE3 estimator has the best perfor-
mance in all the three objective measures (SNR, segSNR, and LSD). For female speech,
the TFE-MMSE3 is the second in SNR, the best in LSD, and among the best in segSNR.
The TFE-MMSE3 estimator allows a high degree of suppressionto the noise while
maintaining low distortion to the signal. The speech enhanced by the TFE-MMSE3
has a very clean background and a certain speech dependent residual noise. When the
SNR is high (10 dB and above), this speech dependent noise is very well masked by
the speech, and the resulting speech sounds clean and clear.As spectrograms in Fig. 6
indicates, the clearer sound is due to a better preserved signal spectrum, and a more
suppressed background noise. At SNR lower than 5 dB, although the background still
sounds clean, the speech dependent noise becomes audible, and perceived as a distor-
tion to the speech.The listeners preference start shiftingfrom the TFE-MMSE3 towards
the MMSE-LSA that has a more uniform residual noise, although the noise level is high.
The conclusion here is that at high SNR, it is preferable to remove background noise
completely using the TFE-MMSE estimator without major distortion to the speech.
This could be especially helpful at relieving listening fatigue for the hearing aid user.
Whereas, at low SNR it is preferable to use a noise reduction strategy that produces
uniform background noise, such as the MMSE-LSA algorithm.

The fact that female speech enhanced by the TFE-MMSE estimator sounds a little
rougher than the male speech is consistent with the observation in [15], where male
voiced speech and female voiced speech are found to have different masking proper-
ties in the auditory system. For male speech, the auditory system is sensitive to high
frequency noise in the valleys between the pitch pulse peaksin the time domain. For
the female speech, the auditory system is sensitive to low frequency noise in the valleys
between the harmonics in the spectral domain. While the time domain valley for the
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Figure 4: SNR gain, segSNR gain, and Log-Spectral Distortion gain forthe pink noise case.

male speech is cleaned by the TFE-MMSE estimator, the spectral valleys for the female
speech are not attenuated enough; a comb filter could help to remove the roughness in
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Figure 5: SNR gain, segSNR gain, and Log-Spectral Distortion gain forthe car noise case.

the female voiced speech.
In the TFE-MMSE estimator, we apply a high temporal resolution non-stationary
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Figure 6: Spectrograms of enhanced speech. Input SNR is 10 dB.

model to explain the pitch impulses in the LPC residual of voiced speech. This enables
the capture of abrupt changes in sample amplitude that are not captured by an AR linear
stochastic model. In fact, the estimate of the residual power envelope contains infor-
mation about the uneven distribution of signal power in timeaxis. In Fig.7 the original
signal waveform, the WF enhanced signal waveform and the TFE-MMSE enhanced
signal waveform of a voiced segment are plotted. It can be observed in this figure that
by a better model of temporal power distribution the TFE-MMSE estimator represents
the sudden rises of amplitude better than the Wiener filter.
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Figure 7: Comparison of waveforms of enhanced signals and the original signal. Dotted line: original, solid
line: TFE-MMSE, dashed line: WF.

Noise in the phase spectrum is reduced by the TFE-MMSE estimator. Although
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human ears are less sensitive to phase than to power, it is found in recent work [27] [28]
[29] that phase noise is audible when the source SNR is very low. In [27] a threshold
of phase perception is found. This phase-noise tolerance threshold corresponds to an
SNR threshold of about 6 dB, which means for spectral components with local SNR
smaller than 6 dB, it is necessary to reduce phase noise. The TFE-MMSE estimator
has the ability of enhancing phase spectra because of its ability to estimate the temporal
localization of residual power. It is the linearity in the phase of harmonics in the residual
that makes the power be concentrated at periodic time instances, thus producing pitch
pulses. Estimating the residual power temporal envelope enhances the linearity of the
phase spectrum of the residual and therefore reduces phase noise in the signal.
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Abstract

In this paper, speech enhancement via Kalman filtering is considered. A non-stationary
signal model for the speech signal is first described. This model consists of a slowly
varying AR model and an excitation source that exhibits a rapidly time-varying vari-
ance. The AR model and the excitation model fit nicely into theKalman filtering frame-
work, fully exploiting the capability of the Kalman filter toprocess non-stationary sig-
nals in an LMMSE optimum manner. The AR-model coefficients are estimated by a
decision-directed type Power Spectral Subtraction methodfollowed by an LPC analysis.
For the robust estimation of the rapidly time-varying excitation model in the presence of
noise, we propose the use of a Multi-Pulse Linear PredictiveCoding (MPLPC) based
method. The Kalman filtering algorithm based on the non-stationary signal model is
able to partially avoid the commonly used quasi-stationarity assumption of the speech.
Therefore the non-stationarity of the signal is fully exploited in suppressing the noise
power that is more stationary. Our experiments show that theKalman filter with rapidly
time-varying variance modeling using the proposed MPLPC based method brings sig-
nificant performance improvement both when compared to a baseline Kalman filter-
ing method with quasi-stationarity assumption and when compared to the well-known
MMSE Log-Spectral Amplitude estimator (MMSE-LSA).

1 introduction

Kalman filters have been applied to speech enhancement in thelast two decades. An
early proposal can be dated back to Paliwal and Basu in the late 80’s [1]. The Kalman
filter can be seen as a generalization of the Wiener filter. It therefore has important
properties that are superior to those of the Wiener filter. One of the most fundamental
differences between the Wiener filter and the Kalman filter isthe ability of the lat-
ter to accommodate non-stationary signals. However, most Kalman filters previously
proposed for speech enhancement have not fully exploited this aspect. On the con-
trary, it is common practice to simply segment the speech into short frames and assume
the signal to be stationary within each frame [1–3]. This is also known as the quasi-
stationarity assumption. Thus, the modeling of signal non-stationarity in these methods
is not significantly different from common practice for Wiener filtering [4] and Spectral
Subtraction [5] based speech enhancement methods.

The speech signal is known to be non-stationary due to the movement of the articu-
lators consisting of the vocal tract and the vocal folds. Theshort time processing usually
segments signals into frames with length of about 20 ms. Thistemporal resolution is
good enough to resolve the movement of the vocal tract, but not enough to resolve the
movement of the vocal folds. Reducing the frame length is in general undesirable be-
cause it undermines the capability of averaging that every spectral estimator relies on.
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Therefore, for voiced speech, a model with high temporal resolution is desired to fully
exploit the non-stationarity of the signal.

A Kalman filter with modeling of non-stationarity is proposed by Popescu and
Zeljkovic [6]. This filter aims at modeling non-stationarity of the noise but still as-
sumes the speech to be stationary within the analysis frame.Lee et al. proposed an
EM-based noise reduction approach [7], in which the excitation source of an AR filter
is modeled as an outcome from one of two Gaussian processes. These processes dif-
fer by having a low and a high variance, respectively. This isin contrast to the single
variance used in other proposed Kalman filters. Goh et al. proposed another EM-based
algorithm with a voiced-unvoiced speech model that is able to model the periodicity
or long-term correlation in the excitation of the voiced speech [8]. This model is still a
quasi-stationary model since the long-term correlation alone can not model the temporal
power concentration in the excitation source.

In this paper, we present a Kalman filter based approach with an explicit effort to
estimate the time varying variance of the excitation source. This is achieved by mod-
eling the excitation as a combination of sparse impulses anda noise component with
low variance. To robustly identify the locations of these pulses, we propose the use of a
modified Multi-Pulse Linear Predictive Coding (MPLPC) method, which was originally
proposed for lossy compression of speech by Atal and Remde [9]. The AR parameters
are estimated in a recursive manners similar to the decisiondirected method in [10]. A
forward-backward Kalman filtering using the estimated hightemporal resolution exci-
tation variance and the AR model is then applied to obtain a final estimate of the signal.

2 Non-stationary signal modeling

In [11] we show that voiced speech can be advantageously modeled as non-stationary
even within a short analysis frame. Examining the speech production mechanism re-
veals that for voiced speech the vocal tract filter is slowly varying while the excitation
source produced by the vocal folds exhibits rapid variationin power. An all-pole filter
estimated by the Linear Predictive Coding (LPC) method excited by the LPC residual is
a good mathematical model of speech production. With this model, the high temporal
resolution estimation and robust spectral envelope estimation are divided into separate
problems: the LPC residual exhibits rapid power variation,thus requires a high tempo-
ral resolution modeling; the all-pole filter represents thespectral envelope of the signal,
thus demands large data length for a robust estimation. Therefore, our non-stationary
signal model consists of an all-pole filter that is invariantwithin the span of a frame,
and an excitation sequence modeled byN Gaussian random variables with zero means
and varying variances, whereN is the frame length. This is different from the quasi-
stationary model, which models the excitation source as having a constant variance



3. KALMAN FILTERING C5

within a frame. This signal model partially avoids the quasi-stationarity assumption,
therefore is termed non-stationary signal model.

3 Kalman filtering

The non-stationary signal model is most suitable for Kalmanfiltering because of the
Kalman filter’s capability to handle non-stationarity. To fully utilize the data buffered
in frames, as is the case in many applications, we choose to use a forward-backward
Kalman filtering formulation.

We use the following state space model:

x(n) = Ax(n− 1) + bu(n)

y(n) = hx(n) + v(n),
(1)

wherex is the state vector of the speech signal,u(n) is the process noise,y(n) is
the observation,v(n) is the observation noise,A is the state transition matrix, and

A =




0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

ap ap−1 ap−2 · · · a1



, (2)

bT = h =
[
0 · · · 0 1

]
. (3)

The Kalman forward filtering solution is summarized as follows:

x̂(n|n− 1) = Ax̂(n− 1|n− 1) (4)

M(n|n− 1) = AM(n− 1|n− 1)AT + σ2
u(n)bbT (5)

K(n) =
M(n|n− 1)hT (n)

σ2
v + h(n)M(n|n− 1)hT

(6)

x̂(n|n) = x̂(n|n− 1)+

K(n)[y(n) − h(n)x̂(n|n− 1)] (7)

M(n|n) = [I − K(n)h(n)]M(n|n− 1). (8)
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The backward filtering solution can be shown to be [12]:

x̂(n− 1|N) =x̂(n− 1|n− 1)+

F(n− 1)[x̂(n|N) − x̂(n|n− 1)] (9)

F(n− 1) = M(n− 1|n− 1)AT M−1(n|n− 1). (10)

In the equations listed above,x̂(n|n− 1) denotes the forward prediction ofx(n) using
previous data up to timen− 1, andx̂(n|n) denotes the forward filtering estimate using
data up to timen. Likewise,M(n|n−1) andM(n|n) are the forward prediction and fil-
tering estimate MSE matrix, respectively. The vectorx̂(n−1|N) denotes the backward
prediction ofx(n−1) using future data from timen to the end of the frame. The matrix
F(n − 1) denotes the backward prediction MSE matrix. The filtering first goes for-
ward obtaining the forward estimate and forward MSE matrix,then goes backward and
combine the forward-backward estimate by eq.(9). The unknown parameters need to be
estimated before the filtering, which includesA, σ2

u(n), andσ2
v . The observation noise

are assumed to be white Gaussian in this work. Its varianceσ2
v is time invariant and can

be estimated using the speech absent frames. The variance ofthe processing noise, on
the other hand, is time varying. The estimation ofA andσ2

u(n) will be presented in the
following section.

4 Parameter estimation

4.1 AR parameter estimation

The estimate of AR coefficients is needed in building the state transition matrix of the
Kalman filter. Since the AR model represents the spectral envelope of the signal, it is
convenient to estimate the signal spectrum first and then estimate its envelope. To esti-
mate the signal spectrum robustly and efficiently, we use thePower Spectral Subtraction
method in a time-recursive manner similar to the decision directed method used in [13].
Denote the DFT spectrum of the speech in thekth frame by a vectorθ(k). The current

estimate of the signal power spectrum of thek’th frame, | ˆ̂θ(k)|2, is a weighted sum
of two parts, the power spectrum of the estimated signal of the previous frame and the
power-spectral-subtraction estimate of the current frame’s power spectrum:

| ˆ̂θ(k)|2 =α|θ̂(k − 1)|2+
(1 − α)max(|Y(k)|2 − E[|V̂(k)|2], 0), (11)

whereα is a smoothing factor,|Y(k)|2 is the noisy power spectrum ofk’th frame,
|θ̂(k − 1)|2 is the power spectrum of the estimated signal of the(k − 1)’th frame and
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E[|V̂(k)|2] is the estimated noise power spectral density. The smoothing factorα con-
trols the degree of smoothing over time. Such a smoothing scheme has been shown to
be effective in reducing musical noise artifact. We take thesquare-root of the estimated
signal power spectrum and combine it with the noisy phase to obtain an intermediate
estimate of the signal. An auto-correlation type LPC analysis is then applied to the
intermediate estimate to obtain the estimate of the AR modelcoefficients.

4.2 Estimating the excitation variance with high temporal resolu-
tion

The conventional quasi-stationarity based algorithms estimate the excitation source vari-
ance by explicitly or implicitly averaging the power of the estimate of the excitation
source over the whole frame. In our non-stationary model, inorder to resolve the rapid
power variation of the excitation of the voiced speech, the variance must be estimated
within smaller intervals. Acknowledging the impulse trainstructure of the LPC resid-
ual (see Figure 1), a time varying variance can be found by first estimating the resid-
ual instantaneous power and then doing smoothing to the instantaneous power with
less smoothing around the impulses and more smoothing between the impulses. The
smoothed instantaneous power is our estimate of the variance. In this way, the onset
of the power rise at the impulse is preserved, and the variance estimate between the
impulses are robust to outliers because of higher degree of smoothing. Since impulses
are of high amplitudes and easier to estimate than the floor between the impulses, when
noise is present, we propose the following simplified procedure, which does not require
estimating all samples of the excitation source. The positions of the impulses are first es-
timated, then a pre-determined pulse shape is put on every impulse position. A constant
noise floor with an amplitude that is proportional to the pulse peak is put on, together
with the pulses, to form an envelope of the instantaneous power of the excitation. The
envelope is finally scaled to ensure that its total energy equals the estimated energy of
the excitation. The pulse shape and the amplitude ratio are determined by experiments.
We choose a raised cosine waveform with a period of 18 samplesas the pulse shape, and
the amplitude ratio is set to 6.6. To robustly estimate the impulse positions, we propose
to use the Multi-Pulse Linear Predictive Coding (MPLPC) method. The basic MPLPC
method is originally proposed by Atal and Remde [9] for determining the impulse posi-
tion and amplitude of the excitation in linear predictive coding (LPC) applications. The
MPLPC procedure finds the optimum position and amplitude of the excitation impulses
that minimize the distance between the target signal waveform and the synthesized sig-
nal waveform. In our noise reduction application, the target signal is the noisy speech
signal. The impulses are estimated in a sequential way: every time an impulse has been
determined, its contribution to the waveform is subtractedand a search for the next im-
pulse is started. The search continues until the amplitude of the newest impulse gets
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below a certain threshold. We choose the threshold to be 0.5 times the highest impulse
amplitude. Any new impulse smaller than this threshold is not regarded as a pitch im-
pulse. The following is a brief description of the MPLPC optimization procedure. For
details the reader is referred to [14].

The squared error between the synthesized signal using the first impulse and the
noisy signal can be written as

e =

N∑

n=1

[y(n) − gh(n−m)]2, (12)

whereN is the frame length,g andm are the amplitude and location of the impulse
respectively, andh(n) is the impulse response of the synthesis filter. By differentiating
(12) with respect tog and setting the derivative to zero, the optimum amplitude isfound
to be

g =

∑N

n=1 y(n)h(n−m)
∑N

n=1 h
2(n−m)

(13)

and the optimum value form can be shown to be

m∗ = arg max
m

(
∑N

n=1 y(n)h(n−m))2
∑N

n=1 h
2(n−m)

, (14)

wherem∗ denotes the optimum position of the impulse. After the estimation of all the
pitch impulses sequentially, only the position information is used in constituting the
envelope, as described previously. An example of the estimated envelope is shown in
Figure 1.
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Figure 1: Top: a segment of voiced speech waveform; middle: the LPC residual of the speech waveform;
bottom: the instantaneous magnitude of the residual (thin line) and the estimated amplitude envelope (thick
line).
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5 experimental results

To evaluate the performance of the proposed Non-stationaryKalman filter (NSK), we
compare it with two reference methods, the conventional Kalman filter (CK) based on
quasi-stationary assumption, and the MMSE-LSA estimator [10]. In CK, the all-pole
model is estimated by the decision directed power subtraction method as same as the
one used in the MMSE-LSA, followed by an LPC analysis. The smoothing factorα in
all three algorithms is set to 0.98. All algorithms run with 32 sentences from the TIMIT
database corrupted by white Gaussian noise at different SNR. The sampling frequency
is 8 kHz and the frame length is 128 samples with 50% overlap. The comparison is on
objective measures including SNR gain and Log-Spectral Distortion (LSD). The SNR
is defined as the ratio between the total signal power and the noise power. The LSD is
defined as the distance between log-scaled DFT spectra for the clean and the processed
speech summed over all frequencies and divided by the numberof frequency bins. Com-
parison of spectrograms, and informal listening test are also performed. Figure 2 and 3
show the results for SNR gain and LSD, respectively.
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Figure 2: Comparison of SNR gain.

It is observed that the proposed NSK has constantly the highest SNR gain among
the three algorithms, and has the lowest spectral distortion except for 0 dB input SNR.
In Figure 4, the spectrograms of the processed speech by the three algorithms are com-
pared. Here we clearly see that the NSK preserves the harmonic structure of the voiced
speech better than all the other algorithms. Finally, informal listening test shows that
the NSK results in a less muffled sound than the other two algorithms, as is evident from
the spectrogram plots.
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6 Conclusion

In this paper, we proposed a non-stationary signal model that is able to model the rapid
power variation in the excitation source of the voiced speech signals. This model es-
timates the variance of the excitation source with a high temporal resolution by fitting
an envelope to the instantaneous power of the LPC residual. The envelope is designed



REFERENCES C11

to emphasize the temporal power concentration at the impulses while reducing noise
power between the impulses. Locating the impulses is done byan MPLPC optimization
procedure. The Kalman filter with this non-stationary signal model shows better SNR
gain and suffers from lower spectral distortion than the quasi-stationarity based Kalman
filter and MMSE-LSA estimator.
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Abstract

A new iterative speech enhancement scheme that can be seen asan approximation to
the Expectation-Maximization (EM) algorithm is proposed.The algorithm employs a
Kalman filter that models the excitation source as a spectrally white process with a
rapidly time-varying variance, which calls for a high temporal resolution estimation of
this variance. A Local Variance Estimator based on a Prediction Error Kalman Fil-
ter is designed for this high temporal resolution variance estimation. To achieve fast
convergence and avoid local maxima of the likelihood function, a Weighted Power Spec-
tral Subtraction filter is introduced as an initialization procedure. Iterations are then
made sequential inter-frame, exploiting the fact that the AR model changes slowly be-
tween neighboring frames. The proposed algorithm is computationally more efficient
than a baseline EM algorithm due to its fast convergence. Performance comparison
shows significant improvement over the baseline EM algorithm in terms of three objec-
tive measures. Listening test indicates an improvement in subjective quality due to a
significant reduction of musical noise compared to the baseline EM algorithm.

1 Introduction

Single channel noise reduction of speech signals using iterative estimation methods
has been an active research area for the last two decades. Most of the known iterative
speech enhancement schemes are based on, or can be interpreted as, the Expectation-
Maximization (EM) algorithm or a certain approximation to it. Proposals of the EM
algorithms for speech enhancement can be found in [1] [2] [3][4] [5]. Some other
iterative speech enhancement techniques can be seen as approximations to the EM al-
gorithm, see e.g. [6] [7] [8] [9]. A paradigm of these EM basedapproaches is to iterate
between an expectation step comprising Wiener or Kalman filtering given the current
estimate of signal model parameters, and a maximization step comprising the estimation
of the parameters given the filtered signal. By doing so, the conditional likelihood of the
estimated parameters and the signal increases monotonically until a certain convergence
criterion is reached.

Evolution of these EM approaches is seen in the underlying signal models. In early
proposals [6] [1] [7], the non-causal IIR Wiener filter (WF) isused, where the signal is
modeled as a short-time stationary Gaussian process. This is a rather simplified model,
where the speech is assumed to be stationary and the voiced and unvoiced speech share
the same Gaussian model even though voiced speech is known tobe far from Gaussian.
The time domain formulation in [2] uses the Kalman smoother in place of the WF,
which allows the signal to be modeled as non-stationary but still uses one model for both
voiced and unvoiced speech. In [3], the speech excitation source is modeled as a mixture
of two Gaussian processes with differing variances. For voiced speech, the process with
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higher variance models the impulses and the one with lower variance models the rest
of the excitation sequence. The detection of the impulse is done by a likelihood test
at every time instant. In [4], an explicit model of speech production is used, where
the excitation of voiced speech is modeled as an impulse train superimposed in white
noise. The impulse parameters (pitch period, amplitude, and phase) and the noise floor
variance are estimated iteratively by an inner loop in everyiteration. In [9], the long term
correlation in voiced speech is explicitly modeled. To accomplish this, the instantaneous
pitch period and the degree of voicing need to be estimated inevery frame. In general,
using finer models has the potential to improve the enhanced speech quality, but also
raises the concern of complexity and robustness, since the decision on voicing and other
pitch related parameters are difficult to extract from noisyobservations.

Another line of development in speech enhancement employing fine models of the
voiced speech production mechanism puts effort into modeling the rapidly varying vari-
ance of the excitation source of voiced speech signals undera Linear Minimum Mean
Squared-Error Estimator (LMMSE) framework [10] [11] [12].It is shown that the
prominent temporal localization of power in the excitationsource of voiced speech is
a major source of correlation between spectral components of the signal. An LMMSE
estimator with a signal model that models this non-stationarity can achieve both higher
SNR gain and lower spectral distortion. It is well known thatthe Kalman filter pro-
vides a more convenient framework for modeling signal non-stationarity than the WF:
the WF assumes the signal to be wide-sense stationary; while the Kalman filter allows
for a dynamic mean, which is modeled by the state transition model, and a dynamic
system noise variance, which is assumed to be knowna priori. Whereas, in most of
the proposed Kalman filtering based speech enhancement approaches, the system noise
variance is modeled as constant within a short frame, thus animportant part of the non-
stationarity is not modeled. In [12], the temporal localization of power in the excitation
source is estimated by a modified Multi-pulse LPC method, andthe Kalman filter using
this dynamic system noise variance gives promising results.

In this paper, we propose a new iterative approach employingKalman filtering with
a signal model comprising a rapidly time-varying excitation variance. The proposed
algorithm consists of three steps in every iteration, i.e.,the estimation of the auto-
regressive (AR) parameters, the excitation source variance estimation with high tem-
poral resolution, and the Kalman filtering. The high temporal resolution estimation of
the excitation variance is performed by a combination of a prediction-error Kalman fil-
ter and a spline smoothing method. By employing an initialization procedure called
Weighted Spectral Power Subtraction, the convergence is achieved in one iteration per
frame. The iterative scheme thus becomes frame-wise sequential, because the esti-
mation in the current frame is based on the filtered signal of the previous frame. In
constrast with the aforementioned EM approaches with fine speech production models,
this approach has the advantages of simplicity and robustness since it requires no ex-
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plicit estimation of pitch related parameters neither voiced/unvoiced decisions. The low
computational complexity is also attributed to its fast convergence.

2 The Kalman filter based iterative scheme

It is convenient to introduce the overall scheme before going into detailed discussion.
Figure 1 shows the function blocks of the proposed algorithm. The noisy signal is
segmented into non-overlapping short analysis frames. We denote thenth sample of
the speech signal, the additive noise, and the noisy observation of the kth frame as
s(n, k), v(n, k) andy(n, k), respectively. At the first iteration of thekth frame, the
noisy signal is first filtered by a Weighted Power Spectral Subtraction (WPSS) filter as
an initialization step. The WPSS does a Power Spectral Subtraction (PSS) estimation of
the signal spectrum, and combines it with the estimated power spectrum of the previous
frame. The filtered signal̂spss(n, k) is then synthesized using the combined spectrum
and the noisy phase, and is fed into an LPC analysis (by closing the switch to the WPSS
output) to estimate the AR coefficients. A Prediction Error Kalman filter (PEKF) takes
the ŝpss(n, k) as input and estimates the system noiseû(n, k). The time dependent
variance of the excitation,σ2

u(n, k), is estimated by a Local Variance Estimator (LVE)
that locally smoothes the instantaneous power of theû(n, k). A second Kalman filter
then filters the noisy signal to get the final signal estimate,using the estimated SR
coefficients and system noise variance. The signal estimateŝ(n, k) is used by the LPC
block in the next iteration (by closing the switch to the feedback link) to improve the
estimation of the AR coefficients.

The iterations can be made sequential on a frame-to-frame basis by fixing the num-
ber of iterations to one, and closing the switch to the WPSS permanently. This is a
frame-wise-sequential approximation to the original iterative algorithm, with the pur-
pose of reducing computational complexity, exploiting thefact that the spectral enve-
lope of the speech signal changes slowly between neighboring frames. As is shown
in the experiment section, with an appropriate parameter setting of the WPSS proce-
dure, the iterative algorithm can achieve convergence in the first iteration with an even
higher SNR gain. For comparison, the block diagram of the iterative-batch EM ap-
proach (IEM) [2] [5] that is used as a baseline algorithm in our work is shown in Figure
2 (A). Note that for the IEM, the system noise variance is onlydependent on the frame
indexk, while for the proposed algorithm, it is dependent on bothk andn. The two
new functional blocks in the proposed algorithm are the WPSS and the High Temporal
Resolution Modeling (HTRM) block. The function of the WPSS isto improve the ini-
tialization of the iterative scheme to achieve fast convergence. Section 3 addresses the
initialization issue in details. The HTRM block estimates the system noise variance in
a high temporal resolution, in contrast to the IEM where the system noise variance is
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Figure 1: Block diagram of the proposed algorithm

ŝ(n, k − 1)

(B)(A)

LPC coef.

LPC coef.

KF
KF
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Figure 2: Block diagrams of the IEM algorithm (A), and the IEM with WPSS initialization (B) .

constant within a frame. The formulation of the Kalman filtering with high temporal
resolution modeling is treated in section 4.

3 Initialization and sequential approximation

The Weighted Power Spectral Subtraction procedure combines the signal power spec-
trum estimated in the previous frame and the one estimated bythe Power Spectral Sub-
traction method in the current frame, so that the iteration of the current frame is started
with the result of the previous iteration as well as the new information in the current
frame. The weight of the previous frame is set much larger than the weight of the
current frame because the signal spectrum envelope varies slowly between neighboring
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frames. The WPSS combines the spectrum estimates as follows:

| ˆ̂θ(k)|2 = α|θ̂(k − 1)|2 + (1 − α)max(|Y(k)|2 − E[|V(k)|2], 0), (1)

where| ˆ̂θ(k)|2 is the estimate of thekth frame’s power spectrum at the output of the
WPSS,α is the weighting for the previous frame,|θ̂(k − 1)|2 is the power spectrum
of the estimated signal of the previous frame,|Y(k)|2 is the power spectrum of the
noisy signal, andE[|V(k)|2] is the Power Spectral Density (PSD) of the noise. Here
we use bold face letters to represent vectors. The WPSS then takes the square-root of
the weighted power spectrum and combines it with the noisy phase to form its output
ŝpss(n, k). The LPC block uses thêspss(n, k) to estimate the AR coefficients of the
signal.

The WPSS procedure pre-processes the noisy signal so that theiteration starts at
a point close to the maximum of the likelihood function, and is thus an initialization
procedure. Initialization is crucial to EM approaches. A good initialization can make
the convergence faster and prevent converging into a local maxima of the likelihood
function. Several authors have suggested using an improvedinitial estimate of the pa-
rameters at the first iteration. In [4], Higher Order Statistics is used in the first estimation
of AR parameters in order to improve the immunity to Gaussiannoise. In [9], the noisy
spectrum is first smoothed before the iteration begins. The initialization that is used
here can be understood as using the likelihood maximum foundin the previous frame
as the starting point in the search of the maximum in the current frame, at the same time
adapts to changes by incorporating new information from thePSS estimate. It can also
be understood as a smoothed Power Spectral Subtraction method, noting the similarity
between (1) and the Decision-Directed method used in [13]. Our experiments show that
with this initialization procedure, an EM based approach can achieve faster convergence
and higher SNR gain when theα is set appropriately.

Other authors have suggested sequential EM approaches in, e.g. [2] [3] [4] [5] [9].
These methods are sequential on a sample-to-sample basis. Thus the AR coefficients
and the residual related parameters need to be estimated at every time instant. Our new
algorithm is sequential frame-wise. This reduces computational complexity by exploit-
ing the slow variation of the spectral envelopes (represented by the AR model). The
system noise variance, on the other hand, needs a high temporal resolution estimation,
and is discussed in the next section.
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4 Kalman filtering with high temporal resolution signal
model

Speech signals are known as non-stationary. Common practice is to segment the speech
into short frames of 10 to 30 ms and assume a certain stationarity within the frame.
Thus the temporal resolution of such a quasi-stationarity based processing equals the
frame length. For voiced speech, the system noise usually exhibits large power varia-
tion within a frame (due to the impulse train structure), thus a much higher temporal
resolution is desired. In this work, we allow the variance ofthe system noise to be in-
deed time variant. We estimate it by locally smoothing an estimate of the instantaneous
power of the system noise.

4.1 The Kalman filtering solution

We use the following signal model,

s(n) =

p∑

i=1

ais(n− i) + u(n)

y(n) = s(n) + v(n)

(2)

where the speech signals(n) is modeled as apth-order AR process, andy(n) is the
observation,ai is theith AR parameter, the system noiseu(n) and the observation noise
v(n) are uncorrelated Gaussian processes. The system noiseu(n) models the excitation
source of the speech signal and is assumed to have a time dependent varianceσ2

u(n)

that needs to be estimated. The observation noise varianceσ2
v is assumed to change

much slower, such that it can be seen as time invariant in the duration of interest and
can be estimated from speech pause. In this work, we further assume that it is known.
Equation (2) can be represented by the state space model

x(n) = Ax(n− 1) + bu(n)

y(n) = hx(n) + v(n)
(3)

where boldface letters represent vectors or matrices.
This is a standard state space model for the speech signal. Details about the state

vector arrangement and the recursive solution equations are omitted here for brevity.
Interested readers are referred to the classic paper [14]. We use the Kalman fixed-
lag smoother in our experiment since it obtains the smoothing gain at the expense of
delay only (again, see [14]. Though, note that in the proposed algorithm the system
noise variance is truly time variant, whereas in the conventional Kalman filtering based
speech enhancement the system noise variance is quasi-stationary).
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4.2 Parameter estimation

The AR coefficients and the excitation variance should ideally be estimated jointly.
However, this turns out to be a very complex problem. Here we also take an iterative
approach. The AR coefficients are first estimated as described in Section 3, and then
the excitation and its rapidly time-varying variance are estimated by the HTRM block,
given the current estimate of the AR coefficients. The Kalmanfilter then uses the current
estimate of the AR coefficients and the excitation variance to filter the noisy signal. The
spectrum of the filtered signal is used in the next iteration to improve the estimate of the
AR coefficients. It is again an approximation to the Maximum Likelihood estimation
of the parameters, in which every iteration increases the conditional likelihood of the
parameters and the signal.

The time-varying residual variance is estimated by the HTRMblock. Given the AR
coefficients, a Kalman filter takes theŝpss as input and estimate the system noise, which
is essentially the linear prediction error of the clean signal. To distinguish this operation
from the second Kalman filter, we call it the Prediction ErrorKalman filter (PEKF).
Instead of using a conventional linear prediction analysisto find the linear prediction
error, we propose to use the PEKF because it has the capability to estimate the excitation
source for the clean signal given an explicit model of noise in the observations. Noting
that ŝpss is the output of a smoothed Power Spectral Subtraction estimator, it contains
both remaining noise and signal distortion. We model the joint contribution of the
remaining noise and the signal distortion by a white Gaussian noisez(n). The PEKF
thus assumes the following state space model:

x(n) = Ax(n− 1) + bu(n)

ŝpss(n) = hx(n) + z(n).
(4)

Comparing with (3), the differences are: 1) now theŝpss becomes the observation, 2)
the system noiseu(n) is now modeled as a Gaussian process withconstant variance
within the frame, 3) the observation noisez(n) has a smaller variance thanv(n) because
the WPSS procedure has removed part of the noise power. The same Kalman solution as
stated before is used to evaluate the prediction,x̂(n|n− 1), and the filtered estimation,
x̂(n|n). The prediction error is defined ase(n) = x̂(n|n) − x̂(n|n − 1). The reason
that in the PEKF the system noise variance is modeled as constant within a frame is that
we only use it as an initial estimate, and a finer estimate of the time variant variance
is obtained at the output of the HTRM block. This is necessarysince we can not use
the estimate of theσ2

u(n) in the previous frame as the initialization, due to the fact that
the proposed processing framework is not pitch-synchronous. We assumez(n) to be
zero-mean Gaussian with varianceσ2

z = βσ2
v , whereβ is a fractional scalar determined

by experiments.
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The high temporal resolution estimate of the system noise varianceσ2
u(n) is ob-

tained by local smoothing of the instantaneous power ofe(n). By a moving average
smoothing using 2 or 3 points at each side of the current data point we get a quite good
result. However, we found that a cubic spline smoothing yields better performance.
The reason could be that the spline smoothing smoothes more in the valleys between
two impulses than at the impulse peaks because of the large difference between the
amplitudes of the impulse and the noise floor. This property of spline smoothing is de-
sirable for our purpose since we want to maintain the dynamicrange of the impulse as
much as possible while smoothing out noise in the valleys. The cubic spline smoothing
is implemented using the Matlab routinecsaps with the smoothing parameter set to
0.1.

5 Experiments and results

We first define three objective quality measures used in this section, i.e., the signal to
noise ratio (SNR), segmental SNR (segSNR), and Log-Spectral Distortion (LSD). The
SNR is defined as the ratio of the total signal power to the total noise power in the
utterance. SNR provides a simple error measure although itssuitability for perceptual
quality measure is questioned since it equally weights the frames with different energy
while noise is known to be especially disturbing in low energy parts of the speech. We
mainly use SNR as a convergence measure. Segmental SNR is defined as the average
ratio of signal power to noise power per frame, and is regarded to be better correlated
with perceptual quality than the SNR. The LSD is defined as thedistance between two
log-scaled DFT spectra averaged over all frequency bins [15]. We measure the LSD on
voiced frames only. Common parameters are set as follows: the sampling frequency is
8 kHz, the AR model order is10, the frame length is160 samples. We aim at removing
broad band noise from speech signals. In the experiments, the speech is contaminated
by computer generated white Gaussian noise. The algorithm can be easily extended for
the colored noise by augmenting the signal state vector and the transition matrix with
the ones of the noise [8].

P
P

P
P

P
Iter.

α
0.0 0.8 0.9 0.95 0.96 0.97 0.98 0.99IEM

1 9.45 10.39 10.86 11.22 11.3111.38 11.41 11.33 10.36
2 10.57 11.07 11.26 11.36 11.3711.37 11.33 11.21 11.06
3 10.94 11.12 11.20 11.22 11.22 11.20 11.17 11.0611.17
4 10.99 11.06 11.09 11.09 11.08 11.07 11.05 10.9711.11

Table 1: Output SNR of IEM+WPSS at differentα and IEM.

We then compare the performance of the IEM with and without WPSS initializa-
tion, in order to show the effectiveness of the WPSS initialization. The two system
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configurations are as in Fig. 2. When it is without the WPSS, the IEM is initialized
by estimating the AR coefficients from the noisy signal. In the original IEM [2], the
observation noise variance is estimated iteratively as part of the EM estimation and the
system noise variance is obtained from the variance of the LPC residual. In this work,
the observation noise variance is estimated from the speechpause. Utilizing this in-
formation, for the IEM, the initial estimate of the system noise variance is obtained by
subtracting the noise variance from the LPC residual variance. We found that this mod-
ification improves the SNR gains by about 2 dB. In the sequel, we refer to the modified
version as the IEM. Table 1 shows the output SNR of the IEM withWPSS initialization
(IEM+WPSS) at differentα and the IEM versus the number of iterations. The input sig-
nal is 3.6 seconds of male speech corrupted by white Gaussiannoise at 5 dB SNR. By
the SNR measure, the IEM converges at the third iteration. While for the IEM+WPSS,
the iteration of convergence is dependent ofα. Whenα is greater than0.96, the al-
gorithm achieves convergence at the first iteration. Withα larger than0.98 the SNR
improvement decreases. Experiments on more speech samplesand SNR levels show a
consistent trend. Thus theα is decided to be0.98. The result shows that the IEM with
WPSS initialization (α = 0.98) can achieve convergence at the first iteration and obtain
even higher SNR gain than the IEM with three iterations.

Next, to determine the values of the weighting factorα and the remaining-noise-
factorβ for the proposed iterative Kalman filtering (IKF) algorithm, the algorithm is
applied to 16 sentences from the TIMIT corpus added with white Gaussian noise at 5 dB
SNR with various values ofα andβ. As is for the IEM+WPSS, the number of iterations
needed for convergence of IKF is dependent of the parameters. The combination ofα
andβ that makes convergence at the first iteration and gives the best result is chosen.
By balancing the noise reduction and signal distortion, we choose the combination:
α = 0.95, β = 0.5.

It is observed in this experiment that for anα smaller than0.98, settingβ to a value
larger than0 results in a great improvement in the SNR, segSNR, and LSD, incompari-
son to whenβ is 0. Note that whenβ equals0, the PEKF is reduced to the conventional
linear prediction error filter. This suggests that the prediction-error Kalman filter suc-
ceeds in modeling and reducing the remaining noise in the excitation source that can not
be modeled by the linear prediction error filter. When theα is larger than0.98, settingβ
to a positive value does not improve the SNR and LSD, but stillsignificantly improves
the segSNR.

Now we compare the IKF with the base line IEM, and the IEM+WPSS algorithm.
The results averaged on 30 TIMIT sentences (the training setused in the parameter se-
lection is not included) are listed in Table 2. Significant improvement in all the three
performance measures is observed, especially the segmental SNR. The only exception
is the LSD at 0 dB. To confirm the subjective quality improvement, we apply a Degra-
dation Mean Opinion Score (DMOS) test on the enhanced speechby the IKF and IEM,
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with 10 untrained listeners. The result is shown in Tab 3. Thelistening test reveals that
the background noise level in the IKF output is perceived to be significantly lower than
the IEM. Besides, the low score of IEM is attributed to the annoying musical artifact,
which is greatly reduced in the IKF. At input SNR higher than 15 dB, the background
noise in the IKF enhanced speech is reduced to almost inaudible without introducing
any major artifact.

Input Methods SNR[dB] segSNR[dB] LSD[dB]

20dB
IKF 23.13 12.60 1.89

IEM+WPSS 22.75 11.42 2.08
IEM 22.72 11.61 2.07

15dB
IKF 19.16 9.48 2.46

IEM+WPSS 18.74 7.79 2.68
IEM 18.69 8.13 2.65

10dB
IKF 15.37 6.65 3.15

IEM+WPSS 14.96 4.36 3.33
IEM 14.85 4.76 3.30

5dB
IKF 11.71 4.07 4.06

IEM+WPSS 11.40 1.13 3.96
IEM 11.18 1.56 3.97

0dB
IKF 8.25 1.81 5.24

IEM+WPSS 8.11 -1.95 4.54
IEM 7.81 -1.44 4.67

Table 2: Performance comparison. White Gaussian noise.

15dB
IKF 3.92

10dB
IKF 3.12

5dB
IKF 2.14

IEM 2.25 IEM 1.98 IEM 1.64
noisy 2.11 noisy 1.79 noisy 1.63

Table 3: DMOS scores.

6 Conclusion

In this paper, a new iterative Kalman filtering based speech enhancement scheme is
presented. It is an approximation to the EM algorithm embracing the maximum likeli-
hood principle. A high temporal resolution signal model is used to model voiced speech
and the rapidly varying variance of the excitation source isestimated by a prediction-
error Kalman filter. Distinct from other algorithms utilizing fine models for voiced
speech, this approach avoids any voiced/unvoiced decisionand pitch related parameter
estimation. The convergence of the algorithm is obtained atthe first iteration by intro-
ducing the WPSS initialization procedure. Performance evaluation shows significant
improvements in three objective measures. Furthermore, informal listening indicates a
significant reduction of musical noise. This result is confirmed by a DMOS subjective
test.
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Abstract

Speech signals, especially voiced speech, can be better modeled by non-Gaussian au-
toregressive (AR) models than by Gaussian ones. Non-Gaussian AR estimators are
usually highly non-linear and computationally prohibitive. This paper presents an effi-
cient algorithm that jointly estimates the AR parameters and the excitation statistics and
dynamics of voiced speech signals. A model called the HiddenMarkov-Autoregressive
model (HMARM) is designed for this purpose. The HMARM modelsthe excitation to
the AR model using a Hidden Markov Model with two Gaussian states that have, re-
spectively, a small and a large mean but identical variances. This formulation enables
a computationally efficient exact EM algorithm to learn all parameters jointly, instead
of resorting to pure numerical optimization or relaxed EM algorithms. The algorithm
converges in typically 3 to 5 iterations. Experimental results show that the estimated
AR parameters have much lower bias and variance than the conventional Least Squares
solution. We also show that the new estimator has a very good shift-invariance property
that is useful in many applications.

1 Introduction

Autoregressive (AR) modeling has been one of the most important techniques in speech
signal processing. While the classical Least Squares (LS) solution, also known as LPC
analysis, is computationally simple, it relies on a Gaussian AR model assumption.
However, many important natural signals, including speechsignals, are found to be
far from Gaussian. The mismatch of a Gaussian model to a non-Gaussian signal causes
an unnecessarily large variation in the estimates. This is supported by the fact that the
Cramer-Rao bound for the variances of the AR estimators is lower in the non-Gaussian
case than in the Gaussian case [1]. Smaller variances of AR estimators are desirable
in many speech processing applications. As an example, in linear predictive coding,
when a sustained vowel is segmented into overlapping framesthat are subsequently en-
coded, small variance and shift-invariance property of theestimates of AR parameters
are very beneficial in reducing the entropy and thus the needed bit rate for encoding
the AR parameters. Non-Gaussian modeling of speech signalsalso reduces the bias of
the AR estimator caused by the spectral sampling effect of the impulse train in voiced
speech excitations. Applications in speech synthesis, speech recognition, and speech
enhancement can benefit from these properties of non-Gaussian AR modeling.

We see the non-Gaussian AR model estimation problem as a blind system identi-
fication problem since the AR parameters and the non-Gaussian statistics of the exci-
tation need to be estimated jointly. Reported works in this field include Higher Order
Statistics (HOS) based methods (see [2] for a comprehensivereview), Gaussian Mix-
ture Model (GMM) based methods [1, 3, 4] and non-linear dynamical methods [5].
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The HOS-based methods do not require explicit knowledge of the excitation probabil-
ity density function (pdf), but tend to produce high-variance estimates when the length
of the data record is small [3] and are associated with high computational complexity
due to the bispectrum calculation. The GMM-based methods estimate their parameters
using the Maximum Likelihood (ML) criterion. Since the exact ML solution for non-
Gaussian signals typically involves solving a set of highlynon-linear equations, it has
to be solved by computationally complex numerical algorithms, or by solving for an
approximation of the ML solution. In [1], the ML solution is solved by a conventional
Newton-Raphson optimization algorithm. In [4], the AR parameters and the excita-
tion probability density function (pdf) are separately estimated in a recursive manner
to approximate the joint estimation in a tractable way. In [3], the AR parameters and
the excitation pdf are estimated by a generalized EM (GEM) algorithm, which relaxes
from the standard EM algorithm by breaking the multi-dimensional optimization into
recursive one-dimensional optimizations. The price to payfor the GEM is a slower con-
vergence rate than the EM. The non-linear dynamic method proposed in [5] estimates
the coefficients of an inverse filter by minimizing a dynamic-based complexity measure
called phase space volume (PSV). This method does not assumeany structure of the
excitation, but the computation of PSV is rather involved.

Most of the reported non-Gaussian AR modeling techniques are for general pur-
poses. While being applicable to any probability distribution, this also makes them less
efficient in handling speech signals, whose production mechanism is well known and
implies powerful structures in the signal. In this paper, wepropose an algorithm that
is designed to exploit the structure of voiced speech signals, aiming at better computa-
tional efficiency and data efficiency. The algorithm jointlyestimates the AR parameters
and the excitation statistics and dynamics based on a ML criterion. Here the voiced
speech signal is modeled by a Hidden Markov-AutoregressiveModel (HMARM), where
the excitation sequence is modeled by a Hidden Markov Model (HMM) that has two
states with Gaussian emission densities of different meansbut same variances and then
convolved with an AR filter. The HMARM parameters can be learned efficiently by
an exact EM algorithm consisting of a set of linear equations. This model is different
from the Linear Predictive HMM (LP-HMM), or AutoregressiveHMM (AR-HMM)
used in [6] and [7]. The AR-HMM applies its dynamic modeling on tracking the AR
model variation along frames, while the proposed HMARM applies dynamic modeling
on tracking the impulse train structure of the excitation within a frame.

The remainder of this paper is organized as follows. Section2 describes the problem
formulation and derives the EM algorithm. The algorithm is evaluated with synthetic
signals and speech signals in Section 3. Conclusion is made in Section 4.
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2 The Method

The speech production mechanism is well modeled by the excitation-filter model, where
an AR(p) filter models the vocal tract resonance property and an impulse train models
the excitation of voiced speech. To improve naturalness of the speech, a white noise
component is added to the impulse train. This can be expressed in the following equa-
tions:

x(t) =

p∑

k=1

g(k)x(t− k) + r(t) (1)

r(t) = v(t) + u(t), (2)

wherex(t) is the signal,g(k) is thekth AR coefficient, andr(t) is the excitation. The
excitation sequence is the sum of an impulse trainv(t) and a white Gaussian noise
sequenceu(t) with zero mean and varianceσ2. This noisy impulse train structure is
perfectly suitable for stochastic dynamic modeling. We design a two-state HMARM
whose diagram is shown in Fig.1. The stateqt at timet selects according to the state
transition probabilityaqt−1qt

one of two states. The emission pdfs of the two states are
Gaussian pdfs with identical variancesσ2, and a small meanmr(1) and a large mean
mr(2) respectively. The small mean is close to zero, and the large mean is equal to the
amplitude of the impulses. The emission outcome constitutes the excitation sequence
r(t), which is independent ofr(l) for l 6= t and only dependent on the stateqt. The
excitationr(t) is then convolved with an AR(p) filter with coefficients[g(1), · · · , g(p)]
to produce the observation signalx(t). The objective of the algorithm is to learn the
model parametersφ = [A,mr(1),mr(2), σ2, g(1), · · · , g(p)] given a frame of signal
x with lengthT , where the state transition matrixA = (aij), with i, j ∈ (1, 2).

N
`

r(t); mr(j), σ2
´

qt

r(t)

aqt−1qt

1
G(z)

hidden unit

visible unit

intermediate unit

x(t)

Figure 1: A generative data structure of the HMARM.

We now define the notations for the HMARM model. Letα(j, t) andβ(i, t) de-
note the forward and backward likelihoods as defined in the standard HMM [8],aij
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denote the state transition (statei to statej) probability,br(j, t) denote the observation
pdf (emission pdf) of the excitationr(t) given the stateqt = j, which is a Gaussian
distribution

br(j, t) = N
(
r(t);mr(j), σ

2
)
, (3)

andbx(j, t) denote the observation pdf of the signalx(t) given the stateqt = j. From (1)
and (3),bx(j, t) can be shown to be a Gaussian process with a varying meanmx(j, t),

bx(j, t) = N
(
x(t);mx(j, t), σ2

)
, (4)

where

mx(j, t) =

p∑

k=1

g(k)x(t− k) +mr(j). (5)

The forward and backward likelihood inductions are given by

α(j, t) =

[ N∑

i=1

α(i, t− 1)aij

]
bx(j, t), (6)

β(i, t) =

[ N∑

j=1

aijbx(j, t+ 1)β(j, t+ 1)

]
, (7)

respectively. Now defineξ(i, j, t) to be the probability of being in statei at timet and
in statej at timet + 1, i.e. ξ(i, j, t) = p(qt = i, qt+1 = j|x,φ). One can evaluate
ξ(i, j, t) by

ξ(i, j, t) =
α(i, t)aijbx(j, t+ 1)β(j, t+ 1)
∑T−1

t=0 aqtqt+1
bx(qt+1, t+ 1)

. (8)

Defineγ(i, t) =
∑N

j=1 ξ(i, j, t). It can then be shown that the quantity
∑T−1

t=1 γ(i, t)

represents the expected number of transitions made from state i, and
∑T−1

t=1 ξ(i, j, t)

represents the expected number of transitions from statei to statej [8].
Now we derive the EM algorithm. Let bold face lettersx andq denote a frame of

signal and the state vector of the corresponding frame of excitation, respectively. We de-
fine the complete data to be(x,q). Instead of maximizing the log-likelihood logp(x|φ)

directly, we maximize the expectation of the complete data likelihood logp(x,q|φ)

over the statesq given the datax and current estimate ofφ, denoted byφ̃. So the
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function to be maximized in each iteration is written as:

Q(φ, φ̃) =
∑

q

p(x,q|φ̃)

p(x|φ̃)
log p(x,q|φ) (9)

=
∑

q

p(x,q|φ̃)

p(x|φ̃)

( T∑

t=1

log aqt−1qt

+

T∑

t=1

log bx
(
qt, x(t)

))
(10)

=
∑

i

∑

j

∑

t

p(x, qt−1 = i, qt = j|φ̃)

p(x|φ̃)
log aqt−1qt

+
∑

j

∑

t

p(x, qt = j|φ̃)

p(x|φ̃)
log bx

(
qt, x(t)

)
, (11)

where (10) follows from the identity

p(x,q|φ) =

T∏

t=1

aqt−1qt
bx

(
qt, x(t)

)
,

and (11) follows from the first order Markov assumption. The first term in (11) concerns
only aij and the second term concerns the rest of the parameters. Thusthe optimization
can be done on the two terms separately. The re-estimation equation ofaij is found
by the Lagrange multiplier method, and is identical to the standard Baum-Welch re-
estimation algorithm:

âij =

∑T−1
t=1 p(x, qt−1 = i, qt = j|φ̃)
∑T−1

t=1 p(x, qt−1 = i|φ̃)
=

∑T−1
t=1 ξ(i, j, t)

∑T−1
t=1 γ(i, t)

. (12)

We denote the second term of (11) byQ(φ, b̂). Following (1) and (4) we can write

Q(φ, b̂) =
∑

j

T−1∑

t=1

p(x, qt = j|φ̃)

p(x|φ̃)

(
log

1√
2πσ2

− 1

2σ2

(
x(t) −mx(j, t)

)2
)
. (13)

The re-estimation equations of the rest of the parameters are found by setting the par-
tial derivatives of (13) to zero, and solving the equation system. Forg(k), we havep
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equations:

∑

j

T−1∑

t=1

γ(j, t)
(
x(t) −mx(j, t)

)
x(t− k) = 0, k = 1, · · · , p. (14)

whereγ(j, t) = p(x,qt=j|φ̃)

p(x|φ̃)
is now interpreted as the posterior of statej at timet given

the observationx andφ̃. Formr(j), we get two equations:

T−1∑

t

γ(j, t)
(
x(t) −mx(j, t)

)
= 0, j = 1, 2. (15)

Forσ2, we get

σ̂2 =

∑
j

∑T−1
t γ(j, t)

(
x(t) −mx(j, t)

)2

∑
j

∑T−1
t=1 γ(j, t)

. (16)

Equation (14) and (15) formp + 2 coupled linear equations which can be solved ana-
lytically. Then (16) can be solved by inserting the estimated g(k) andmr(j).

In this model,mx(j, t) can be interpreted as the linear prediction ofx(t) taking
into account the excitation dynamics, as shown in (5). The re-estimation equations also
have intuitive interpretations. In (12),aij equals the expected number of transitions
from statei to statej divided by the expected number of transitions made from state i;
Equation (14) is a multi-state version of the orthogonalityprinciple; Equation (15) tells
that the prediction error weighted by state posterior is of zero mean; and (16) calculates
the mean of the prediction error power weighted by the state posterior as the variance
of the stochastic element of the signal.

The existence of linear solutions to the maximization of theQ function makes fast
convergence. This is a direct benefit from our proposed signal model. Compared to the
GMM-based method in [3], which has no analytical solution tothe maximization ofQ
function, the HMM in our model is constrained to have states with identical emission
variance. It is this constraint that renders the set of non-linear equations linear, without
compromising the validity of the model.

A GMM with similar constraint can be used in place of the HMM inour signal
model, and the EM equations can be derived in the same way as shown above with
proper changes in the definition ofα andβ (andξ(i, j, t) is not needed in the GMM). In
our experience, this constrained GMM-AR model results in a slower convergence rate
and slightly worse estimation accuracy than the HMARM. Thisis expected since the
GMM lacks capability of dynamic modeling, while the impulsetrain does show a clear
dynamic structure.

Finally, we point out an implementation issue of the HMARM estimation. Since
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the signal model is a causal dynamic model and the analysis isusually frame-based,
the ringing from the last impulse of the previous frame has anundesired impact on
the current frame estimates. This is because the estimator does not see the previous
impulse but its effect is there. This could sometimes degrade the performance mildly.
We therefore suggest to do a pre-processing that removes theringing from the previous
frame, or simply set the signal before the first impulse to zeros. The latter is used in our
experiments.

3 Experimental results

We now experimentally compare the spectral distortion, thevariance, and the bias of
the AR parameters estimated by the proposed HMARM analysis and the LPC analysis.
To get different realizations of an AR process, we shift a rectangular window along a
long segment of the signal by one sample each time. Every shift produces a different
realization frame of the AR process. A small variance of the estimates based on shifted
realizations is also known as the shift-invariance property. The LPC analysis has a
poor shift-invariance property when it is applied to voicedspeech. This is because its
underlying Gaussian model does not fit the non-Gaussian nature of the excitation of the
voiced speech.

First, to have access to the true values of the AR parameters of a signal, we use
a synthetic signal that mimics a voiced speech signal. The signal is analyzed by the
HMARM and the LPC analysis respectively for 50 realizationswith a frame length of
320 samples. The 50 realizations of estimated AR spectra arecompared to the true
AR parameters and the difference is measured by the Log-Spectral Distortion (LSD)
measure. The LSD versus the shift is shown in Fig 2. It is clearthat the proposed method
has a flat distortion surface and this surface is lower than the LPC’s. It is important to
note that the LPC analysis encounters huge deviation from the true values in the second
half of the plot. This is where a large “hump” in the signal comes into the analysis
frame. The large humps in the signal are caused by the impulses in the excitation,
which represent the non-Gaussian structure of the signal. The bias is0.092 for the
HMARM analysis, and compared to the0.197 for the LPC analysis, accounts for an
improvement of more than 6 dB. The variance is0.128 for the HMARM and9.69 for
the LPC analysis, representing a variance reduction of18 dB.

Second, we test the shift-invariance property with true speech signals. The AR
spectra of four different sustained voiced phonemes are estimated 50 times with one
sample shift each time. The frame length is set to 256 samples. The spectra are plotted
in Fig 3. The estimates by the HMARM show good consistency, while the LPC analysis
appears to be poor. In Fig. 4 we show the prediction residualsof the signal using the
AR parameters estimated by the HMARM and the LPC respectively. It is clear that
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Figure 2: (a): The Log-Spectral Distortion of the AR spectra. (b): thesynthetic signal waveform used in the
test.

the residual of the HMARM has more prominent impulses, and less correlation in the
valleys. From, as one example, a speech coding point of view,the lower variance of
the AR estimates reduces the entropy of the AR parameters, and the more impulsive
residual is also easier to code.

As it is well known that a properly chosen window can reduce the variance of
the LPC estimates, we also conducted comparisons between the HMARM analysis
and the Hamming-windowed LPC analysis. For the synthetic signal, the variance of
the Hamming-windowed LPC is1.197, which is still 9.7 dB higher than that of the
HMARM. Although its variance is reduced, the Hamming-windowed LPC in general
suffers from larger bias and lower spectral resolution. Dueto space limit, more results
will be presented in a following paper.

4 Conclusion

A non-Gaussian AR model is proposed to model the voiced speech signal. This model
enables an efficient EM algorithm that consists of a set of linear equations. The algo-
rithm jointly estimates the AR parameters of the signal and the dynamics of the exci-
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Figure 3: The AR spectra estimated by HMARM and LPC analysis.

tation that is highly non-Gaussian in the voiced speech case. The experimental results
using synthetic signals and real speech signals show that the algorithm has a good shift-
invariance property, and the variance and bias are significantly smaller than the classical
LPC analysis.
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1. INTRODUCTION F3

Abstract

We have previously proposed a blind system identification method that exploits the un-
derlying dynamics of non-Gaussian signals in [1]. The signal model being identified is
an Auto-Regressive (AR) model driven by a discrete-state Hidden Markov process. An
exact EM algorithm was derived for the joint estimation of the AR parameters and the
HMM parameters. In this paper, we extend the system model by introducing an addi-
tive measurement noise. The identification of the extended system model becomes much
more complicated since the system output is now hidden. We propose an exact EM al-
gorithm that incorporates a novel Switching Kalman Smoother, which obtains optimum
nonlinear MMSE estimates of the system output based on the state information given
by the HMM filter. The exact EM algorithms for both models are obtainable only by
appropriate constraints in the model design, and have better convergence properties
than algorithms employing generalized EM algorithm or empirical iterative schemes.
The proposed methods also enjoy good data efficiency since only second order statistics
is involved in the computation. The signal models are general and suitable to numer-
ous important signals, such as speech signals and base-bandcommunication signals.
This paper describes the two system identification algorithms in an integrated form, and
provides supplementary results to the noise-free model andnew results to the extended
model with applications in speech analysis and channel equalization.

1 Introduction

One of the recent trends in signal processing is to exploit non-Gaussianity or non-
stationarity of the signals to accomplish tasks that are generally impossible for tradi-
tional linear estimators, e.g., blind source separation, blind channel equalization, and
blind system identification. Blind system identification (BSI) solves the fundamental
problem residing in most signal processing fields: estimating the system parameters
from system output only. In this definition of BSI, the model selection is a prelimi-
nary step to the actual identification process. Model selection is usually done according
to prior knowledge of the underlying physics of the system. So the task of the BSI
is to extracta posteriori information from the system output. A good model selec-
tion should facilitate the identification process without compromising the validity of the
model much.

In this work, we present two signal models that have efficientidentification solu-
tions. On one hand, they are general enough to accommodate many important signals
such as speech signals and base band communications signalswith the presence of
Inter-Symbol Interference (ISI). On the other hand, the efficiency of the algorithms
comes from the prior knowledge of the specific signal structure carried by the model.

The first system model consists of a linear time-invariant ARfilter excited by a
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first-order discrete-state Hidden Markov process. In the speech analysis application,
the AR filter models the resonant property of the vocal tract,and a two-state Hidden
Markov process models the excitation to the filter as a noisy impulse train. The task of
system identification here is to jointly estimate the AR coefficients and the excitation
dynamics, which contains information about the impulse position, the impulse ampli-
tude, and the noise variance, under a certain optimum criterion. By the joint estimation,
the highly non-Gaussian impulse train structure of the excitation no longer affects the
AR estimation as it does in the classic Least Squares (LS) solution. The LS methods,
such as the auto-correlation method, a.k.s. the LPC analysis, assumes a Gaussian signal
model. The consequence of the mismatch of Gaussian model to non-Gaussian signals
is an unnecessarily large variation in the estimates. This is supported by the fact that the
Cramer-Rao bound for the variances of the AR estimators is lower in the non-Gaussian
case than in the Gaussian case [2]. Estimating the AR parameters taking into account
the impulse structure of the excitation can also reduce bias. This bias is present in the
LPC analysis because of the spectral sampling effect of the impulse train. We will show
that the AR spectra estimated by our method have smaller variance and bias and a better
shift invariance property than the LPC analysis. These properties are useful in a wide
range of speech processing fields, such as speech coding, pitch modification, speech
recognition, and speech synthesis. The identification is done through an exact EM al-
gorithm that consists of forward-backward calculations ofstate posterior and solving a
small linear equation system iteratively. Initialized with the LPC estimates, using only
a few dozens of samples, the algorithm converges in typically 3 to 5 iterations.

Application of this model to the blind channel equalizationproblem is also demon-
strated in this paper. To combat ISI in a dispersive channel,channel equalizers are used
in many communication systems before decoding the signal. When neither the chan-
nel response nor the transmitted-symbol statistics are known a priori, hence the name
blind equalization, the channel response and transmitted symbols need to be estimated
jointly. Most established blind equalization methods presume the channel to be FIR.
Our blind equalization method, instead, is based on an assumption of an IIR all-pole
channel model with the following arguments: 1) The use of an AR channel model can
reduce the computational complexity dramatically by exploiting the Markovian prop-
erty of the channel; 2) In channels that exhibit resonance property, such as wireline
channels, an AR model is probably more realistic than an FIR model; 3) An AR model
with a sufficiently high order can approximate any ARMA or MA model very well. To
be specific, the AR filter models the channel response, and theHidden Markov process
models the sampled base-band signals. The algorithm exploits the underlying dynam-
ics and non-Gaussianity of the finite alphabet symbol sequence to accomplish system
identification. An example of equalizing an MA channel is also demonstrated.

In the second system model, observation noise is taken into account. Now, the model
consists of a linear time-invariant AR filter excited by a first-order discrete-state Hidden
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Markov process, and the measurements of the system output are perturbed by white
Gaussian noise. The identification algorithm must jointly estimate the AR parameters,
the excitation dynamics, and the measurement noise variance. The introduction of mea-
surement noise complicates the problem significantly. Thisis because that the simplicity
of the first algorithm partly comes from the fact that the AR model aggregates the state
information in the most recent system output samples, whichare not directly observable
now due to the presence of measurement noise. We adopted a layered data structure with
Markov property between layers, which is analogous to the one used in the Independent
Factor Analysis [3]. The EM algorithm thus involves a nonlinear MMSE smoother,
which provides estimates of the conditional first and secondmoments of the system
output needed in the parameter estimations. We propose a nonlinear MMSE smoother
that can be seen as a variant of the soft-decision Switching Kalman Filter [4], where
the states control the discrete inputs to the AR filter, and the switching relies on thea
posteriori probability of states estimated by a forward-backward algorithm. The EM
algorithm thus iterates between the nonlinear MMSE smoothing and the ML parameter
estimations.

The introduction of measurement noise modeling in the second system model is a
major extension to the first system model. The second method is thus noise robust and
applicable in adverse environments, although with a price of higher computational com-
plexity. In its application to robust spectrum estimation of speech signals, the algorithm
gives better estimates of the signal spectra than referencemethods do, under moderate
noise conditions. Established iterative estimators basedon Gaussian AR models are
known to have convergence problems, thus an empirical termination is required [5] [6].
They also require prior knowledge of measurement noise statistics. The proposed al-
gorithm does not require prior knowledge of the noise statistics, and its convergence is
guaranteed. Applications to channel equalization under moderate noise conditions are
also demonstrated. Simulations show that the proposed algorithm has better estimates
of the channel response and the transmitted symbols than theLeast Squares method.

The remainder of the paper is organized in the following way:Section 2 introduces
the two signal models and derives the EM algorithms for blindsystem identification. In
Section 3 the proposed algorithms are applied to solving problems in speech analysis,
noise robust spectrum estimation, and blind channel equalizations with and without
measurement noise. We conclude in Section 4.

2 Method

We consider the stochastic source-filter model, in which a linear time invariant (LTI)
filter is excited by a stochastic process with a certain statistic property. When the ex-
citation is stationary and Gaussian, the Least Squares method provides an optimum
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solution to the system identification problem. Nevertheless, many important signals are
far from Gaussian. Voiced speech signals and modulated communication signals trans-
mitted through a dispersive channel are just two examples ofsuch signals. A common
characteristic of the above mentioned two non-Gaussian signals is that the excitation
can be viewed as a sequence of symbols drawn from a finite alphabet, with possibly ad-
ditive noise. More specifically, for voiced speech, the excitation is well modeled by an
impulse train with additive white Gaussian noise [7]. This noisy impulse train structure
can be characterized by a two-state symbol sequence. While anM -ary Pulse Ampli-
tude Modulation (PAM) signal can be characterized by anM -state symbol sequence.
The probability distribution functions (pdfs) of these discrete state excitations are thus
multi-modal, and possibly asymmetric (as is for the impulsetrain). Based on this obser-
vation, either a Gaussian Mixture Model (GMM) or a Hidden Markov Model (HMM)
with discrete states is suitable to characterize the statistics of such excitations. When
such non-Gaussian excitations are filtered by an AR filter, weterm the system model
a Hidden Markov-Auto Regressive Model (HMARM) or a GaussianMixture-Auto Re-
gressive model (GMARM), respectively. We will show in the following sections that
when the emission pdfs of all states are constrained to be Gaussian pdfs with identi-
cal variance, both the HMARM and the GMARM have exact EM algorithms for their
identifications. Whereas, the HMM is preferable in modeling the excitation because
of its capability of modeling the underlying temporal structure that is not captured by
the GMM, which is still a static statistical model. Therefore, the following presentation
will mainly focus on the HMARM with a brief discussion on the advantage of the HMM
over the GMM in modeling temporal structure.

In Section 2.1, we present the HMARM and its identification without measurement
noise. Section 2.2 deals with the identification of HMARM with its output perturbed by
white Gaussian noise, which is termed the Extended-HMARM.

2.1 The HMARM and its identification

For an AR(p) filter excited by a Hidden Markov sequence, we have the following system
model:

x(t) =

p∑

k=1

g(k)x(t− k) + r(t) (1)

r(t) = v(t) + u(t), (2)

wherex(t) is the observed signal (system output),g(k) is thekth AR coefficient, and
r(t) is the excitation. The excitation is a Hidden Markov process, i.e., a first order
Markov chainv(t) plus white Gaussian noiseu(t) with zero mean and varianceσ2.
A diagram of the data structure of the HMARM is shown in Fig. 1,which adopts a
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layered data structure analogous to the one used in [3]. The stateqt at timet selects
according to the state transition probabilityaqt−1qt

one ofM states. The emission pdfs
of the states are Gaussian pdfs with thesame varianceσ2, and meansmr(j), j ∈
(1, · · · ,M), respectively. The emission outcome constitutes the excitation sequence
r(t), which is independent ofr(l) for l 6= t and only dependent on the stateqt. The
excitationr(t) is then convolved with an AR(p) filter with coefficients[g(1), · · · , g(p)]
to produce the observationx(t). The objective of the identification algorithm is to learn
the model parametersφ = [A,mr(1), · · · ,mr(M), σ2, g(1), · · · , g(p)] given a frame
of signal with lengthT , where the state transition matrix is denoted byA = (aij),
i, j ∈ (1, · · · ,M).

N
`

r(t); mr(j), σ2
´

qt

r(t)

aqt−1qt

1
G(z)

hidden data layer

observation data layer

intermediate data layer

x(t)

Figure 1: A generative data structure of the HMARM.

We now define some HMM type notations. Letα(j, t) andβ(i, t) denote the forward
and backward likelihoods as defined in [8], andaij denote the state transition probability
(from stateqt = i to stateqt+1 = j), andbr(j, t) denote the emission pdf of stateqt = j

observed at the intermediate layerr(t). Follows from (2), the emission pdfbr(j, t) takes
on a Gaussian distribution

br(j, t) = N
(
r(t);mr(j), σ

2
)
. (3)

Now, let bx(j, t) denote the emission pdf of stateqt = j observed at the observation
data layerx(t). It is difficult to deduce this pdf from top layer down to the bottom layer
because of the filtering. But we can use the autoregressive property of the filter, i.e.,
the p most recent system outputs and the current input state definethe current output
uniquely. From (1), (2) and (3),bx(j, t) can be shown to be a Gaussian pdf with atime
varyingmeanmx(j, t),

bx(j, t) = N
(
x(t);mx(j, t), σ2

)
, (4)
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where

mx(j, t) =

p∑

k=1

g(k)x(t− k) +mr(j). (5)

The forward and backward likelihood inductions are given by

α(j, t) =

[ M∑

i=1

α(i, t− 1)aij

]
bx(j, t), (6)

β(i, t) =

[ M∑

j=1

aijbx(j, t+ 1)β(j, t+ 1)

]
, (7)

respectively. Now defineξ(i, j, t) to be the probability of being in statei at timet and
in statej at timet + 1, i.e. ξ(i, j, t) = p(qt = i, qt+1 = j|x,φ). One can evaluate
ξ(i, j, t) by

ξ(i, j, t) =
α(i, t)aijbx(j, t+ 1)β(j, t+ 1)
∑T−1

t=1 aqtqt+1
bx(qt+1, t+ 1)

, t ∈ [1, T − 1]. (8)

Defineγ(i, t) =
∑M

j=1 ξ(i, j, t). It can then be shown that the quantity
∑T−1

t=1 γ(i, t)

represents the expected number of transitions made from state i, and
∑T−1

t=1 ξ(i, j, t)

represents the expected number of transitions from statei to statej [8].
Now we are ready to derive the EM algorithm for identification. Let bold face

lettersx andq denote a frame of signal and the state vector of the corresponding frame
of excitation, respectively. We define the complete data to be the concatenation of the
observation data and the hidden data(x,q), as indicated in Fig. 1. The excitationr(t)
can not be treated as hidden data because once the parametersφ are known,r(t) is
linearly dependent on the observation data. Hence we term itthe intermediate data.
Following the EM paradigm [9], we maximize, instead of the log-likelihood logp(x|φ)

directly, the expectation of the complete data likelihood logp(x,q|φ) over the states
q given the observationx and current estimate ofφ, which is denoted bỹφ. So the
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function to be maximized in each iteration is written as1:

Q(φ, φ̃) =
∑

q

p(q|x, φ̃)log p(x,q|φ) (9)

=
∑

q

p(x,q|φ̃)

p(x|φ̃)
log p(x,q|φ) (10)

=
∑

q

p(x,q|φ̃)

p(x|φ̃)

(∑

t

log aqt−1qt
+

∑

t

log bx
(
qt, x(t)

))
(11)

=
∑

i

∑

j

∑

t

p(x, qt−1 = i, qt = j|φ̃)

p(x|φ̃)
log aqt−1qt

+
∑

j

∑

t

p(x, qt = j|φ̃)

p(x|φ̃)
log bx

(
qt, x(t)

)
, (12)

where (11) follows from the identity

p(x,q|φ) =

T∏

t=1

aqt−1qt
bx

(
qt, x(t)

)
,

and (12) follows from the first order Markov assumption. The first term in (12) concerns
only aij and the second term concerns the rest of the parameters. Thusthe optimization
can be done on the two terms separately. The re-estimation equation ofaij is found
by the Lagrange multiplier method, and is identical to the standard Baum-Welch re-
estimation algorithm [10]:

âij =

∑T−1
t=1 p(x, qt−1 = i, qt = j|φ̃)
∑T−1

t=1 p(x, qt−1 = i|φ̃)
=

∑T−1
t=1 ξ(i, j, t)

∑T−1
t=1 γ(i, t)

. (13)

We denote the second term of (12) byQ(φ, b̂). Following (1) and (4) we can write

Q(φ, b̂) =
∑

j

T−1∑

t=1

p(x, qt = j|φ̃)

p(x|φ̃)

(
log

1√
2πσ2

− 1

2σ2

(
x(t) −mx(j, t)

)2
)
. (14)

The re-estimation equations of the rest of the parameters are found by setting the partial
derivatives of (14) w.r.t. the parameters to zero, and solving the equation system. Define

1In the following, the notation of summation is abbreviated to showing only the variable’s name if the
summation interval is over the whole range of the variable. In other case the summation interval will be
shown explicitly.
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γ(j, t) = p(x,qt=j|φ̃)

p(x|φ̃)
, which is now interpreted as the posterior of statej at timet given

the observationx andφ̃. Forg(k), we havep equations:

∑

j

T−1∑

t=1

γ(j, t)
(
x(t) −mx(j, t)

)
x(t− k) = 0, k = 1, · · · , p. (15)

Formr(j), we haveM equations:

T−1∑

t=1

γ(j, t)
(
x(t) −mx(j, t)

)
= 0, j = 1, · · · ,M. (16)

Forσ2, we get

σ̂2 =

∑
j

∑T−1
t γ(j, t)

(
x(t) −mx(j, t)

)2

∑
j

∑T−1
t=1 γ(j, t)

. (17)

Equation (15) and (16) formp + M coupled linear equations which can be solved
analytically, whereinmx(j, t) is calculated by (5). Then (17) can be solved by inserting
the estimatedg(k) andmr(j).

In this model,mx(j, t) can be interpreted as the linear prediction ofx(t) taking into
account the mean of the stateqt = j. The re-estimation equations also have intuitive in-
terpretations. In (13),aij equals the expected number of transitions from statei to state
j divided by the expected number of transitions made from state i; Equation (15) is a
multi-state version of the orthogonality principle; Equation (16) tells that the prediction
error weighted by state posterior is of zero mean; and (17) calculates the mean of the
prediction error power weighted by the state posterior as the variance of the stochastic
element of the signal.

The existence of linear solutions to the maximization of theQ function makes fast
convergence. This is a direct benefit from the HMM modeling ofthe excitation, where
the HMM is constrained to have states with identical emission variance. Without this
constraint, the resulting maximization equations would bea set of nonlinear equations.
GMM-based, general purpose identification methods do not have this constraint, e.g.
[11]. Thus they have to resort to numerical maximization of theQ function, which is
known as the Generalized EM algorithm.

A GMM with similar constraint can be used in place of the HMM inour signal
model, and the EM equations can be derived in the same way as shown above with
proper changes in the definition ofα andβ (theξ(i, j, t) used in the HMM is not needed
in the GMM). The derivation of the GMARM is briefly described in Appendix 5. The
advantage of the GMARM is a lighter computational load than that of the HMARM.
Whereas, the lack of dynamic modeling makes the GMARM converge slower and es-
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timate less accurately than the HMARM when there is a discrete temporal structure in
the excitation that is ignored by the GMM, since the GMM is still a static model. Ex-
amples of this discrete temporal structure include the impulse train structure in voiced
speech signals and Pulse Position Modulation (PPM) signals, and trellis-coded modu-
lation signals. They all have inherent temporal structuresthat can be well modeled by
a state transition matrix. The GMARM on the other hand, can not exploit this useful
information in its estimation. For excitations that have notemporal structure, the two
algorithms perform similarly.

Remark: An advantage of this two-layer structure is that the AR modelextracts
the linear temporal structure from the signal, and the HMM takes care of the nonlinear
temporal structure overlooked by the AR model. Thus it is a more efficient way of
modeling complex temporal structures than using AR model orHMM alone.

2.2 The Extended-HMARM and its identification

In the previous signal model, the output of the AR filter is assumed to be exactly mea-
surable. In many applications, however, measurement noiseis inevitable. To be robust
against noise, the signal model need to be extended to incorporate a noise model. As-
suming stationary white Gaussian measurement noise, we have a new system model
whose structure is depicted in Fig. 2. We term this model the Extended-HMARM
(E-HMARM).

N
`

y(t); my(j, t), σ2

y|qt

´

N
`

r(t); mr(j), σ2
´

qt

r(t)

1
G(z)

top hidden data layer

intermediate data layer

x(t)

y(t) observation data layer

bottom hidden data layer

aqt−1qt

Figure 2: A generative data structure of the E-HMARM.

In this extended data model, we define two hidden data layers:the stateqt and the
filter outputx(t). Observe thatr(t) is not hidden because it is linearly dependent on
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x(t). The system model can be expressed in the following equations:

x(t) =

P∑

k=1

g(k)x(t− k) + r(t) (18)

r(t) = v(t) + u(t) (19)

y(t) = x(t) + z(t), (20)

wherey(t) is the observations,z(t) is the measurement noise,g(k) is thekth AR co-
efficient, andr(t) is the non-Gaussian process noise, or, the filter excitation. We write
r(t) as the sum ofv(t), a sequence ofM -state symbols, and a white Gaussian noise
sequenceu(t) with zero mean and varianceσ2

u. Thus the excitationr(t) is actually
a Hidden Markov process withM states. In HMM terms, these states have Gaussian
emission pdfs with meanmr(j), j ∈ [1, · · · ,M ], and identical varianceσ2

u. The state
transition matrix is denoted byA = (ai,j). The observation noise is assumed to be
white Gaussian noise with zero mean and varianceσ2

z .
The HMM used here is different from the standard HMM and the HMM used in the

HMARM in that, the emission pdf of the stateqt = j observed at the observation data
layer is a Gaussian pdf with atime varying meanmy(j, t) and atime varyingvariance
σ2

y|qt
. This can be written as:

byt|qt,y(j, t) = N
(
y(t);my(j, t), σ2

y|qt

)
. (21)

From (20), the mean ofy(t) should bex(t) if x(t) was known. But sincex(t) is not
available, a proper choice of the mean ofy(t) will be the mean ofx(t) given y. So
my(j, t) can be obtained by calculating the smoothing estimate ofx(t) using the obser-
vationsy and the current stateqt. The variance of the emission pdf is therefore the sum
of the smoothing error variance and the measurement noise variance. The smoothing
estimates and the error variance can be calculated with a nonlinear MMSE smoother,
which will be described later. It can be summarized as follows:

my(j, t) =
〈
x(t)|y, φ̃

〉
, (22)

σ2
y|qt

= σ2
xp

(j, t) + σ2
z , (23)

with σ2
xp

(j, t) being the smoothing error variance ofx(t) givenqt = j. In (22) and in the
following, we use the angle bracket〈ψ|ϕ〉 to denote the expectation ofψ conditioned
onϕ. The forward and backward likelihood denoted byα(j, t) andβ(j, t) are defined
in the same way as in the HMARM, and can be calculated recursively.

The parameters to be estimated areφ = [A,mr(1), · · · ,mr(M), σ2
u, σ

2
z , g(1), · · · , g(p)].
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Applying the EM methodology again, we write theQ function as follows:

Q(φ, φ̃) =
∑

q

∫

x

p(q,x|y, φ̃) log p(q,x,y|φ)dx (24)

=
∑

q

p(q|y, φ̃) log p(q|φ) +
∑

q

p(q|y, φ̃)

∫

x

p(x|q,y, φ̃) log p(x|q, φ̃)dx

+

∫

x

p(x|y, φ̃) log p(y|x,φ)dx. (25)

Equation (25) follows from the first order Markovian property of the layered data model:

p(q,x,y|φ) = p(q|φ)p(x|q,φ)p(y|x,φ). (26)

Denote the first, second, and third term in (25) asQT ,QB , andQV , respectively. Thus
QT involves only the top hidden layer parameters,QB involves only the bottom hidden
layer parameters, andQV involves only the visible (observation) layer parameters.The
maximization of theQ function can now be done by maximizing the three terms in (25)
separately.

According to the Gaussian assumption of the observation noise,QV can be written
as:

QV =

∫

x

p(x|y, φ̃)
∑

t

[
log

1√
2πσ2

z

− 1

2σ2
z

(
y(t) − x(t)

)2
]
dx (27)

=
∑

t

∫

x(t)

p(x(t)|y, φ̃)

[
log

1√
2πσ2

z

− 1

2σ2
z

(
y(t) − x(t)

)2
]
dx(t) (28)

=
∑

t

log
1√
2πσ2

z

− 1

2σ2
z

∑

t

(
y2(t) − 2y(t)〈x(t)|y〉 + 〈x2(t)|y〉

)
. (29)

Note that all the conditioned mean should also be conditioned on φ̃, but it is omitted
here and in the sequel for brevity.
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From (18) and (25),QB can be written as:

QB =
∑

q

p(q|y, φ̃)

∫

x

p(x|q,y, φ̃)
∑

t

[
log

1√
2πσ2

u

− 1

2σ2
u

(
x(t)

−
P∑

k=1

g(k)x(t− k) −mr(j)

)2]
dx

=
∑

t

∑

j

p(qt|y, φ̃)

∫

x(t)

p(x(t)|qt,y, φ̃)

[
log

1√
2πσ2

u

− 1

2σ2
u

(
x(t)

−
P∑

k=1

g(k)x(t− k) −mr(j)

)2]
dx(t)

=
∑

t

∑

j

p(qt|y, φ̃)

[
log

1√
2πσ2

u

− 1

2σ2
u

〈(
x(t)

−
P∑

k=1

g(k)x(t− k) −mr(j)

)2

|qt,y
〉]
, (30)

whereqt = j, andj ∈ (1, · · · ,M). Here, the posterior mean is conditioned on both the
state at present timeqt and the observationy.

QT can be written as:

QT =
∑

q

p(q|y, φ̃)
∑

t

log aqt−1qt

=
∑

t

∑

j

p(qt = j|y, φ̃)log aqt−1qt
, (31)

whereaqt−1qt
is the state transition probability (from stateqt−1 to qt).

Now we maximize theQ functions by setting the derivatives with respect to the
parameters to zeros. Forσ2

z we get equations:

∂QV

∂σ2
z

= − T

2σ2
z

+
1

2(σ2
z)2

∑

t

[
y2(t) − 2y(t)

〈
x(t)|y

〉
+

〈
x2(t)|y

〉] .
= 0,

from which we get

σ2
z =

∑

t

[
y2(t) − 2y(t)

〈
x(t)|y

〉
+

〈
x2(t)|y

〉]
/T. (32)
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For the AR parametersg(k), we get:

∂QB

∂g(k)
=

T−1∑

t=1

∑

j

p(qt = j|y, φ̃)

[
1

σ2
u

〈(
x(t) −

P∑

c=1

g(k)x(t− c)

−mr(j)
)
x(t− k)

∣∣∣qt = j,y

〉]

=
1

σ2
u

T−1∑

t=1

∑

j

p(qt = j|y, φ̃)

[〈
x(t)x(t− k)|qt = j,y

〉

−
P∑

c=1

g(c)
〈
x(t− c)x(t− k)|qt = j,y

〉

−mr(j)
〈
x(t− k)|qt = j,y

〉]
.
= 0, k = 1, · · · , P (33)

Here,p(qt = j|y, φ̃) is the posterior probability of the state beingj at timet, and is to
be denoted in the sequel byγ(t, j) = p(qt = j|y, φ̃). In (33), the sum of the posterior
mean〈 · |qt = j,y〉 over the state weighted by the state posterior can be expressed as
the posterior mean conditioned only ony. That is,

∑

j

γ(t, j)〈 · |qt,y〉 = 〈 · |y〉. (34)

Therefore, (33) can be re-written as

T−1∑

t=1

[〈
x(t)x(t− k)

∣∣∣y
〉
−

P∑

c=1

g(c)
〈
x(t− c)x(t− k)

∣∣∣y
〉

−
∑

j

γ(t, j)mr(j)
〈
x(t− k)

∣∣∣qt = j,y
〉]

= 0. (35)

Formr(j) we have

∂QB

∂mr(j)
=

T−1∑

t=1

γ(t, j)

[
− 1

2σ2
u

〈
2
(
x(t) −

P∑

c=1

g(c)x(t− c) −mr(j)
)
(−1)

∣∣∣qt = j,y
〉]

=
1

σ2
u

T−1∑

t=1

γ(t, j)

[〈
x(t)|qt = j,y

〉
−

P∑

c=1

g(c)
〈
x(t− c)|qt = j,y

〉

−mr(j)

]
.
= 0, j = 1, · · · ,M. (36)
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Forσ2
u, we have

∂QB

∂σ2
u

=

T−1∑

t=1

∑

j

γ(t, j)

[
− 1

2σ2
u

+
1

2(σ2
u)2

〈(
x(t) −

P∑

c=1

g(c)x(t− c)

−mr(j)

)2∣∣∣qt = j,y

〉]
.
= 0, (37)

from which we get

σ2
u =

T−1∑

t=1

∑

j

γ(t, j)

[〈(
x(t) −

P∑

c=1

g(c)x(t− c) −mr(j)

)2∣∣∣qt = j,y

〉

︸ ︷︷ ︸
W

]

/ T−1∑

t=1

∑

j

γ(t, j), (38)

where

W =
〈
x2(t)

∣∣∣qt = j,y
〉
− 2mr(j)

〈
x(t)

∣∣∣qt = j,y
〉

+m2
r(j)

− 2

P∑

c=1

g(c)
〈
x(t)x(t− c)

∣∣∣qt = j,y
〉

+ 2mr(j)

P∑

c=1

g(c)
〈
x(t− c)

∣∣∣qt = j,y
〉

+

P∑

c=1

P∑

d=1

g(c)g(d)
〈
x(t− c)x(t− d)

∣∣∣qt = j,y
〉
. (39)

The transition probability can be estimated in the same way as in the standard HMM:

âij =

∑T−1
t=1 p(x, qt−1 = i, qt = j|φ̃)
∑T−1

t=1 p(x, qt−1 = i|φ̃)
=

∑T−1
t=1 ξ(i, j, t)

∑T−1
t=1 γ(i, t)

, (40)

whereξ(i, j, t) andγ(i, t) are defined in the same way as in the HMARM.
Equation (32), (35), and (36) consist of a set of1 + P + M linear equations and

can be solved by matrix inversion. Then (38) can be solved by inserting the newly
updated parameter estimates. The quantities needed in these equations include: the state
posteriorsξ(i, j, t) andγ(i, t), which are calculated by the forward-backward algorithm;
the first and second moments ofx(t), which are estimated by a nonlinear MMSE fixed-
interval smoother.

The nonlinear MMSE smoother consists of a forward sweep and abackward sweep.
In the forward sweep, at timet, a Kalman filter producesM estimates of the mean and
correlation matrix ofx(t) conditioned onqt = j, j = 1, · · · ,M , andy. We com-
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bine theM estimates weighted by the statea posterioriprobabilities,γ(i, t), to get an
MMSE filtering estimate conditioned only ony. Then the backward sweep calculates
the smoothing estimates and MSE matrices using the filteringestimates and MSE ma-
trices obtained in the forward sweep. The backward sweep equations are identical to
those of the two-pass Kalman smoother, and can be found in, e.g., [12, p.572]. The
algorithm thus iterates between the nonlinear MMSE smoother, and the estimation ofφ
andγ(i, t).

The algorithm stacks two dynamic state estimators together, i.e., the nonlinear MMSE
smoother and the HMM estimator. A unifying view of the Kalman-type state estimator
and the HMM state estimator can be found in [13]. The nonlinear smoother uses a con-
tinuous state model, where the state vector is the output of the AR(P ) filter, x|t−P+1:t,
and the state transition is ruled by the auto-regressive property of the AR(P ) filter. The
HMM uses a discrete state model, where the states are the input symbols, and the state
transition is ruled by the underlying mechanism that produces the symbols.

Remark:The proposed nonlinear MMSE smoother falls in the category of Switch-
ing Kalman Filter (SKF) with soft-decision, as is defined in [4]. Different from the
typical SKFs whose control mechanism switches the AR filter coefficients and/or the
system-noise variance over segments of data, the proposed SKF switches its system-
noise mean from sample to sample.

3 Applications and results

We apply the proposed system models and their identificationalgorithms to tackle prob-
lems in speech analysis and channel equalization. In the speech analysis examples, we
show that the proposed non-Gaussian AR system identification method can provide bet-
ter estimates of the AR coefficients, and better structured residual, than those given by
the classical LPC analysis. We also show that under mild noise conditions, robust AR
analysis can be achieved without knowing the noise variance. In the channel equal-
ization examples, we show that joint channel estimation andsymbol estimation can be
done efficiently to a high accuracy when SNR is high. When SNR ismoderate, the joint
estimation can be done with extra computational complexity.

3.1 Efficient non-Gaussian speech analysis

In a vast variety of speech processing applications, AR coefficients or AR spectra, and
linear prediction residual need to be calculated. Least Squares methods, such as the LPC
analysis (implemented as an autocorrelation method), havebeen the standard methods
of analyzing AR models. The Gaussian assumption taken by theLS method results in
simple analytic solutions. But when applied to non-Gaussian signals such as voiced
speech signals, the mismatch of assumption brings in undesirably large variance and
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bias. The large variance implies a bad shift-invariance property of the LPC analysis.
This means that, when a sustained vowel is segmented into several frames, the LPC
estimates of the AR parameters for each frame can be very different. This causes, as an
example, in a CELP coding application, more bits than necessary to be transmitted, and
in a packet loss concealment application, difficulty to interpolate a missing frame. Here
we apply the HMARM method to AR analysis, and compare the biasand the variance
of the estimates to those given by the LPC analysis.

First, we use a synthetic signal that resembles a sustained voiced speech signal. The
synthetic signal is made by filtering a noisy impulse train with an AR(10) filter. 50
realizations of this signal are analyzed. To get the 50 realizations we shift a rectangular
window along the signal one sample each time 50 times. The window length is 320
samples. The estimated AR spectra of the 50 realizations arecompared to the true
AR spectrum, and the difference is measured by the Log-Spectral Distortion (LSD)
measure. The LSD is defined as follows:

LSD =
1

L

[ L∑

l=1

(
20log10

|X(l)|
|X̂(l)|

)2] 1
2

, (41)

whereL is the number of spectral bins. The LSD versus the shift is shown in Fig 3. It
is clear that the proposed method has a flat distortion surface and this surface is lower
than the LPC’s. It is important to note that the LPC estimatesencounter huge deviation
from the true values in the second half of the plot. This is where a large “hump” in
the signal comes into the analysis frame. The large humps in the signal are caused
by the impulses in the excitation, which represent the non-Gaussian/nonlinear structure
of the signal. The bias and variance of the estimates are alsocalculated using sample
mean and sample variance. The bias is0.092 for the HMARM analysis, and compared
to the0.197 for the LPC analysis, accounts for an improvement of more than 5 dB.
The variance is0.128 for the HMARM and9.69 for the LPC analysis, representing a
variance reduction of18.8 dB.

Now, we test the shift-invariance property with true speechsignals. For real speech
signals, there is an implementation issue needed to be pointed out. Since the HMARM
is a causal dynamic model, and the analysis is usually frame-based, the ringing from
the last impulse of the previous frame has an undesired impact on the current frame
estimates. This is because the estimator does not see the previous impulse but its effect
exists. This could sometimes degrade the performance mildly. We therefore suggest
to do a pre-processing that removes the ringing from the previous frame, or simply set
the signal before the first impulse to zero. The latter is usedin our experiments. The
AR spectra of four different voiced phonemes are estimated 50 times with one sample
shift each time. The frame length is set to 256 samples. The spectra are plotted in Fig
4. The estimates by the HMARM show good consistency, while the consistency of the
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Figure 3: (a): The Log-Spectral Distortion of the AR spectra of the 50 shifted frames. (b): the synthetic
signal waveform used in the experiment.

LPC analysis appears to be poor. We observed the same tendency when we varied the
segment length and compared the estimates from different data length. These results
show that, the LPC analysis is sensitive to the difference inthe waveforms of different
realizations of the same process, while the HMARM is significantly less sensitive. The
residual of the HMARM analysis also has different properties than the LPC analysis. In
Fig. 5 we show the prediction residual of a voiced speech signal using the AR param-
eters estimated by the HMARM and the LPC respectively. It is clear that the residual
of the HMARM has more prominent impulses, and the noise between the impulses ap-
pears to be less correlated. In general, the residual of HMARM has a smaller L1 norm
than that of the LPC analysis. From a sparse coding point of view, the proposed method
provides a sparser representation of the voice signal than the one given by LPC analysis.
Traditionally, sparse representation is achieved by minimizing L1-norm with numerical
optimizations (see [14] for a review, and [15] for application in speech analysis), or us-
ing Bayesian inference with a super Gaussian pdf as prior [16]. The HMARM method
proposed here provides a computationally simple alternative to the sparse coding of
voiced speech signals.

In the experiments described above, the analysis window is arectangular window.
As it is well known that an appropriately chosen window can reduce the variance of
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the LPC estimates, we also conducted comparisons between the HMARM analysis
and the Hamming-windowed LPC analysis. For the synthetic signal, the variance of
the Hamming-windowed LPC is1.197, which is still 9.7 dB higher than that of the
HMARM. Although its variance is reduced, the Hamming-windowed LPC in general
suffers from lower spectral resolution due to the large mainlobe of the Hamming win-
dow. We show in Fig. 6 that the Hamming-windowed LPC analysisfails to resolve two
closely located spectral peaks, while the HMARM succeeds. The signal used herein is
a synthetic signal, which is made by filtering a noisy impulsetrain with an AR filter
with order 40. Windowing technique can sometimes cause large bias because it alters
the signal waveform significantly, especially when the datasequence is short. We show
in Fig. 7 the difference in spectrum caused by windowing. By reducing the amplitude
of the last peak, the Hamming window changes the waveform andthus the spectrum
significantly.

Another known LS method is the covariance method [17, Ch. 5.3]. The covariance
method is known to give more accurate estimates of the AR coefficients than the au-
tocorrelation method when the data length is small. In our experiments, it is so when
the analysis window is rectangular. When a Hamming window is used, the covariance
method gives similar results as the autocorrelation method.
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(c) Vowel /a/ in “began”.
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(d) Vowel /ou/ in “shoulder”

Figure 4: The AR spectra estimated by HMARM and LPC analysis.

3.2 Blind channel equalization

We consider a discrete-time communication channel model asshown in Fig. 8, where
the channel response has included the response of the transmitter filter, the medium, the
receiver filter, and the symbol-rate sampler. We assume thatthe channel can be well
characterized by an AR model, and no measurement noise is present (or, the channel
has a very high SNR). The transmitted symbols are quaternaryPAM symbols. At the
receiver end, the channel distortion is compensated and thetransmitted symbols are
decoded. The receiver has no prior knowledge about the channel, the alphabet of the
transmitted symbols, and the probability distribution of the symbols.

Using the HMARM, the equalization and decoding are done jointly. In the first
experiment, 200 symbols generated randomly using a four-symbol alphabetA={ -3,-
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Figure 5: Prediction residuals by the HMARM and the LPC analysis.
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Figure 6: Spectral resolution comparison using a synthetic signal. The AR model order is 40.

1,1,3} are transmitted. The channel is AR(10) with coefficients

A = [1,−1.223,−0.120, 1.016, 0.031,−0.542,−0.229, 0.659, 0.307,−0.756, 0.387].

The received signal waveform, the equalizer output, and theestimated channel spectra
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Spectrum − LPC without Hamming window
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Figure 7: Using Hamming window on a short frame alters the spectrum.

X S

Received symbol sequence

Z

White Gaussian noise

Transmitted symbol sequence

AR(p) channel

Figure 8: The discrete-time channel model.

are shown in Fig. 9 Fig. 10 and Fig. 11, respectively. Here we again use the LS
method as the reference method. It is clear from the figures that the recovered symbol
sequence by the HMARM method coincides with the transmittedsymbols very well,
and the spectrum estimated by the HMARM method completely overlaps with the true
channel spectrum. Whereas the LS method has a much larger estimation error on both
the recovered symbols and the channel spectrum. More precisely, the estimation error
variance of the recovered symbol sequence is1.06 × 10−26 for the HMARM method
and0.36 for the LS method, which represents a255 dB gain of the HMARM method
over the LS method.

In the second experiment, we consider an FIR channel model. In most of the chan-
nel equalization literature, channels are modeled by MA models. A major advantage of
MA modeling in channel equalization is the simplicity in algorithm design. Whereas,
most realistic channels have both an MA part and an AR part. When the channel re-
sponse is IIR, the drawback of an MA model is obvious: it requires a very large number
of coefficients to approximate an IIR channel, while the AR model can approximate an
MA channel with a mildly larger order. Equalization of MA channel using AR model
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Figure 9: The received signal waveform. The channel is AR(10).
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Figure 10: The recovered symbol sequences. Dots: the transmitted symbols, circles: the recovered symbols
by the HMARM, stars: the recovered symbols by the LS method.
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Figure 11: The true and estimated spectra. Note that the HMARM spectrum overlaps the true spectrum.

has been shown before, e.g. [11]. In this example we use the same experimental setup
as in [11] to demonstrate the applicability of our method to the MA channel equaliza-
tion. The alphabetA is the same as before, and the 3rd order MA channel coefficients
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areB = [1.0,−0.65, 0.06, 0.41]. The received signal waveform is shown in Fig. 12.
The recovered symbol sequence and the estimated channel spectrum are shown in Fig.
13 and Fig. 14, respectively. The estimation error varianceof the recovered symbol
sequence is0.0023 for the HMARM method, and0.4212 for the LS method. The gain
of the HMARM method over the LS method is22.6 dB.
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Figure 12: The received signal waveform. The channel is MA(3).
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Figure 13: The recovered symbol sequences. Dots: the transmitted symbols, circles: the recovered symbols
by the HMARM, stars: the recovered symbols by the LS method.

When there exists white Gaussian measurement noise in the system, the perfor-
mance of the HMARM method degrades. For a channel SNR of 60 dB,50 dB, and 40
dB, the gain of the HMARM method over the LS method are 27.5 dB,17.5 dB, and 8
dB, respectively. From 30 dB down, the performance of HMARM is similar to that of
the LS method.
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Figure 14: The true and estimated spectra.

3.3 Noise robust spectrum estimation for voiced speech

When measurement noise is present in an AR system, the classicLeast Squares method
performs poorly because there is no noise modeling in it. TheLS method can be ex-
tended to modeling both process noise and measurement noise. This is known as the
Extended Least Squares (XLS) method [18]. Examples of Gaussian AR model identi-
fication are given in [18]. On another thread, EM-type AR model estimations in noisy
environments have been extensively studied, especially inthe speech processing litera-
ture. Pioneered by Lim and Oppenheim [5], and followed by Hansen and Clements [19],
Weinstein and Oppenheim [20], Gannot [21], and etc., the paradigm of EM-type al-
gorithms is an iterative ML or MAP estimation. These algorithms are all based on
Gaussian signal assumption and succeed in achieving noise robust AR estimation with
low complexities. Yet a common drawback of the Gaussian EM-type algorithm is that
convergence is not guaranteed. Often an empirical stop criterion is needed, or certain
constraints based on knowledge of speech signals are needed[19].

Using the E-HMARM method, we show that the observation noisestrength, the AR
parameters, and the excitation statistics of voiced speechsignal can be jointly estimated,
and the convergence is guaranteed.

The synthetic signal used in Section 3.1 is added with white Gaussian noise, such
that the SNR equals 15 dB and 20 dB. Fig. 15 and Fig. 16 show the signal spectrum
and the estimated spectra by the E-HMARM and LS, respectively. Table 1 shows the
averaged values of parameters of 50 estimations. The results show that the E-HMARM
algorithm gives much better estimates of the signal spectrathan the LS method. The
estimates of the impulse amplitude and measurement noise variance are also quite ac-
curate. The estimated process noise variance is always larger than the true value, espe-
cially when the SNR is low. This is because in the E-HMARM algorithm, the modeling
error is included as part of the process noise.
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Figure 15: The true and estimated spectra. The SNR is 15 dB.
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Figure 16: The true and estimated spectra. The SNR is 20 dB.

Table 1: The true and estimated parameters. Results are the average of 50 estimations.
AR(10) filter coefficients σ2

z σ2
u mr(1) mr(2)

True values
[1, -1.223, -0.120, 1.016, 0.031, -0.543, 1.43a

0.22 0 10
-0.229, 0.660 , 0.307, -0.756, 0.387] 0.45b

E-HMARM
(15 dB)

[1, -1.164, -0.144, 0.916, 0.078, -0.438,
1.36 0.57 -0.03 10.25

-0.286, 0.601, 0.316, -0.678, 0.334]
E-HMARM
(20 dB)

[1, -1.210, -0.126, 0.975, 0.044, -0.475,
0.51 0.27 -0.03 10.23

-0.290, 0.646, 0.335, -0.759, 0.375]

LS (15 dB)
[1, -0.838, -0.150, 0.425, 0.184, -0.041,

- - - -
-0.119, 0.109, 0.237, -0.098, 0.075]

LS (20 dB)
[1, -1.012, -0.143, 0.650, 0.140, -0.211,

- - - -
-0.200, 0.266, 0.327, -0.341, 0.155]

a15 dB
b20 dB

Like all EM-type algorithms, it is possible for the E-HMARM algorithm to con-
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verge towards a local maxima. A good initialization can prevent converging to the local
maxima. In our implementation of the E-HMARM algorithm, theLS estimates of the
AR coefficients are used as initial values. The convergence criterion is set such that
the iteration stops when the norm of the difference in the parameter vectors is smaller
than10−4. No divergence has ever been observed under extensive experiments. The
E-HMARM algorithm works best at SNRs above 15 dB. From 10 dB and below, the
algorithm converges to the LS solution.

3.4 Blind noisy channel equalization

In Section 3.2 we have shown the performance of the HMARM blind channel equaliza-
tion in a high SNR communication system. We now show that at a lower SNR range,
the E-HMARM algorithm can do the job better.

In this example, we consider a Pulse Position Modulation (PPM) signal. PPM is a
modulation scheme in whichM messages are encoded by transmitting a single pulse in
one ofM possible time-shifts in a time frame. PPM is typically used in optical com-
munications and recently in ultra-wide-band (UWB) systems [22] and indoor infrared
communications [23]. PPM is known to be vulnerable to ISI because of its very large
signal bandwidth, and equalization is necessary for high speed transmission. Different
from the white spectrum of the PAM symbol sequence, the spectrum of a PPM sym-
bol sequence is high pass and has a strong DC component2. The smaller theM , the
more high pass the spectrum. This imposes a difficulty to the system identification, i.e.,
the auto-correlation in the symbol sequence can be absorbedinto the AR spectrum es-
timates resulting in biased estimates of the channel response. In the E-HMARM, this
difficulty can be circumvented by exploiting the known symbol amplitudes. That is,
if the transmitted symbol amplitudes are known to the receiver, as is the case in most
communication systems, we can constrain themr to be equal to the known values. This
not only speeds up the convergence, but also makes the algorithm robust against the
non-whiteness of the symbol sequence.

In the experiment, the transmitted symbols are randomly generated from anM -ary
alphabet withM = 8. A signal frame thus has 8 time slots, each corresponding to one
symbol in the alphabet. When thekth symbol is to be transmitted, a pulse is put at the
kth time slot, and zeros elsewhere. We again use an equivalentdiscrete-time channel
model to simplify the analysis. Without loss of generality,the transmitted signal is
modeled as a "1" at the symbol position and "0" at the other 7 positions. The channel is
modeled as an AR(10) filter. White Gaussian noise is added to the output of the AR(10)
filter. The E-HMARM equalizer estimates the channel response and the noise variance,

2Instead of defining the whole frame as a symbol, here we treat thepulse duration as the symbol duration.
Thus a time frame consists ofM symbols, and the sampler at the receiver samplesM times per frame. This
is why the received symbol sequence has a strong DC component and a high pass spectrum.
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and does inverse filtering to recover the transmitted symbols. The standard LS method
is used as a reference method. It is shown in Fig. 17 that the recovered symbol sequence
by the E-HMARM method has much smaller error variance than that of the LS method.
In Fig. 18 it is shown that the E-HMARM gives a very good estimate of the channel
spectrum, while the LS estimate is far off. The channel SNR inthis example is 18 dB,
and the signal length is 400 samples. The E-HMARM equalizer works best at SNRs
above 18 dB. At SNRs below 18 dB its performance degrades fast. At SNRs below 15
dB the E-HMARM algorithm converges to the LS solution.
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Figure 17: The recovered symbol sequence. Dots: the transmitted symbols,circles: the recovered symbols
by the HMARM, stars: the recovered symbols by the LS method. TheSNR is 18 dB.
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Figure 18: The true and estimated spectra. The SNR is 18 dB.

Next, we consider a combined PAM-PPM modulation with a smallerM . A time
frame has nowM = 4 pulse positions. Only one of the positions has an impulse, and
the other positions have zeros. The impulse can have an amplitude of either "1" or
"2". So the alphabet still has 8 symbols, but the time frame isshorter and thus the high
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pass effect of the symbol sequence is more severe. Fig. 19 shows the spectrum of a
transmitted symbol sequence. The LS equalizer mistakes thehigh pass characteristics
of the transmitted symbol sequence as part the channel distortion, and results in a biased
spectrum estimate, as shown in Fig. 20. In the same figure, thespectrum estimate by
the E-HMARM method is shown, and its curve overlaps the true spectrum. Fig. 21
shows the recovered symbol sequence. It shows clearly that the E-HMARM gives a
much lower estimation error variance than the LS method. In this experimental setup,
the E-HMARM works best at SNRs above 23 dB.
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Figure 19: The spectrum of the transmitted symbol sequence.
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Figure 20: The true and estimated spectra. The SNR is 23 dB.

4 Conclusion

In this paper we have presented two blind system identification algorithms for two non-
Gaussian AR systems. The algorithms combine an AR model and an HMM such that
second order temporal structure (auto-correlation) and higher order temporal structure
(abrupt changes and discrete dynamics) in the signals can beextracted efficiently by the
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Figure 21: The recovered symbol sequence. Dots: the transmitted symbols,circles: the recovered symbols
by the HMARM, stars: the recovered symbols by the LS method. TheSNR is 23 dB.

two models, respectively. By constraining the variance of the HMM emission pdfs to
be identical, the algorithms have analytical solutions to the maximization of theQ func-
tions in each iteration, which results in faster convergence than numerical optimization
methods. In the case that measurement noise is present, a nonlinear MMSE smoother is
integrated into the EM algorithm. This smoother obtains optimum MMSE estimates of
the non-Gaussian signal at a complexity comparable toM Kalman smoothers. At mod-
erate noise levels, the algorithm gives accurate estimatesof the parameters of the HMM,
the AR model, and the measurement noise variance. Applications of the algorithms in
speech analysis and channel equalization are demonstrated.

5 Appendix I

Here we show how to combine a GMM with an AR model in the two-layer data struc-
ture. The forward-backward algorithm used in the HMM parameter learning is a conve-
nient and insightful way of calculating the state posteriorprobability. So we can modify
the HMM learning algorithm to obtain a GMM learning algorithm.

Assume the GMM hasM Gaussian terms. Denote the vector of the weights for
Gaussian terms byA = [ai], wherei ∈ 1, · · · ,M . Denote the emission pdf given the
stateqt = j by bx(j, t). Define the forward and backward likelihoodα(j, t) andβ(i, t)

as same as in the HMM. So the induction equations can be written, analogous to those
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of the HMM, as:

α(j, t) =
∑

i

[
α(i, t− 1)

]
ajbx(j, t)

= ajbx(j, t), (42)

and

β(i, t) =
∑

j

[
aibx(j, t+ 1)β(j, t+ 1)

]
. (43)

Now, we can derive the EM algorithm. TheQ function can be written as

Q(φ, φ̃) =
∑

q

p(q|x, φ̃)log p(x,q|φ) (44)

=
∑

q

p(x,q|φ̃)

p(x|φ̃)

( T∑

t=1

log aqt
+

T∑

t=1

log bx
(
qt, x(t)

))
(45)

=
∑

j

T∑

t=1

p(x, qt = j|φ̃)

p(x|φ̃)
log aqt

+
∑

j

T∑

t=1

p(x, qt = j|φ̃)

p(x|φ̃)
log bx

(
qt, x(t)

)
.

(46)

Comparing (46) with (12), only the first terms are different.So all the re-estimation
equations are identical except for the one foraj . For aj we have the following re-
estimation equation:

âj =

∑T

t=1 p(x, qt = j|φ̃)
∑

j

∑T

t=1 p(x, qt = j|φ̃)

=

∑T

t=1 α(j, t)β(j, t)
∑

j

∑T

t=1 α(j, t)β(j, t)
. (47)

This GMARM algorithm has a lighter computational load than the HMARM pre-
sented in Section 2.1 since the calculation of the state posterior probability has a simpler
form.
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Abstract

The Hidden Markov Auto-Regressive model (HMARM) has recently been proposed to
model non-Gaussian Auto-Regressive signals with hidden Markov-type driving noise.
This model has been shown to be suitable to many signals, including voiced speech and
digitally modulated signals received through ISI channels. The HMARM facilitates a
blind system identification algorithm that has a good computational efficiency and data
efficiency. In this paper, we solve an implementation issue of the HMARM identification,
which can otherwise degrade the efficiency of the model and hinder extensive evalua-
tions of the algorithm. Then we study in more detail the properties associated with the
autoregressive (AR) spectral analysis for signals of interest.

1 Introduction

Exploiting the non-Gaussianity of signals in spectral analysis can often offer signifi-
cant improvements in estimation accuracy over traditionalGaussianity based methods.
In [1] and [2], we show that specially designed non-Gaussianmodels for specific types
of signals can exploit the structures in the signals and achieve higher computational and
data efficiency than general purpose non-Gaussian methods such as the higher order
statistics methods and Gaussian Mixture Model based methods. The Hidden Markov
Auto-Regressive model (HMARM) proposed by the authors in [1] is tailored for sig-
nals generated by exciting an autoregressive (AR) filter with either a finite-alphabet
symbol sequence or a hidden Markov sequence. Due to the non-Gaussian nature of
the excitation, this type of signal belongs to the class of non-Gaussian AR signals. We
proposed an efficient learning algorithm for the HMARM to jointly estimate the AR
coefficients and the excitation symbols or the parameters ofthe hidden Markov se-
quence. The joint estimation is what distinguishes the method from other identification
algorithms of models that have similar source-filter structure: most known methods es-
timate the source parameters and the filter parameters in a sequential way, resulting in
lower efficiencies. The HMARM algorithm is an exact EM algorithm, which solves for
a set of linear equations iteratively and converges in a few iterations. It is shown that
compared to the classical autocorrelation method of AR spectral analysis, the HMARM
has a smaller bias, a smaller variance, and a better shift invariance property. In [2], the
HMARM is extended for robust analysis of noisy signals by introducing an observation
noise model to the system. At moderate noise levels, the algorithm achieves a high
estimation accuracy withouta priori knowledge of the noise variance. Applications of
the model to different signals, including noise robust spectral analysis of speech signals
and blind channel estimation, are demonstrated in [1] [2], and promising results are
obtained.

One critical issue in the frame based implementation of the HMARM algorithm
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in [1] is that, if a signal is segmented into frames, the HMARMcould have problems
estimating the parameters for those frames that do not contain the onset of the signal.
This is because when estimating the AR parameters of the current frame, the estimator
has no knowledge about the excitation in the previous frame,but the large impulses in
the previous excitation can cause large "ripples" in the beginning of the current frame,
which then causes the state estimator in the HMARM to make wrong decisions. Since
the parameter estimations are based on the state decisions,these estimates become er-
roneous too. In the previous papers, this problem is solved by pre-processing the frame
to remove the "ripples" caused by the previous frame. For simplicity of that approach,
all samples before the first impulse in the current frame are set to zero. This solution
is somewhat troublesome since it requires an impulse detector in the residual domain,
whose accuracy affects the performance of the whole system.This and other ways of
subtracting the ripples also lower the computation efficiency and data efficiency, since
they add extra complexity and discard data samples. In this paper, we address this
problem by exploiting the Markovian property of the AR modelin a way analogous to
the covariance method for AR spectral analysis. Our proposed solution costs no extra
complexity, and is highly reliable.

The rest of the paper is organized as follows. Section 2 describes the covariance
implementation, and discusses its benefits. Then, in Section 3, we investigate some
interesting properties of the HMARM using our new proposed implementation in ap-
plication to spectral analysis.

2 Covariance method for the HMARM

The causality problem associated with the frame based implementation1 of the HMARM
is functionally different from the boundary problem in the least-squares (LS) method.
The classical LS solution to the AR spectral analysis assumes the excitation to the AR
filter to be a stationary white Gaussian sequence. With this assumption, the only pa-
rameter of the excitation statistics, the variance, is decoupled from the estimation of
the AR filter coefficients. Therefore, the excitation has no effect on the AR filter esti-
mates. However, the HMARM has a more sophisticated model forthe excitation, and
the estimations of the excitation parameters and the AR parameters affect each other.
Specifically, the HMARM models the excitation as a hidden Markov sequence. During
the estimation, the states of the excitation sequence at each time instant are first esti-
mated by calculating the state probabilities. Based on the state decisions, the AR filter
coefficients and the parameters of the hidden Markov model are estimated by a set of
coupled linear equations, c.f. [1] and [2] for derivations.For convenience, we list below
the signal model and the final equations of the estimator.

1In this context, the frames have no overlap.
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For a signal generated by the following model,

x(t) =

p∑

k=1

g(k)x(t− k) + r(t) (1)

r(t) = v(t) + u(t), (2)

wherex(t) is the signal,g(k) is thekth AR coefficient, andr(t) is the excitation se-
quence consisting of a Markovian sequencev(t) and additive white Gaussian noiseu(t),
the estimates of the parameters are obtained from solving the following p + m equa-
tions, wherep is the order of the AR model, andm is the number of states of the HMM.
Fork = 1, · · · , p, andj = 1, · · · ,m:

m
X

j

T−1
X

t=1

γ(j, t)
“

x(t) − mx(j, t)
”

x(t − k) = 0, (3)

T−1∑

t

γ(j, t)
(
x(t) −mx(j, t)

)
= 0, (4)

Here,γ(j, t) is the posterior probability of the states, and

mx(j, t) =

p∑

k=1

g(k)x(t− k) +mr(j), (5)

wheremr(j) is the mean of statej.
The state posteriorγ(j, t) is estimated by a forward-backward induction, based on

an initial estimate of the AR coefficients. The LS estimates of the AR coefficients are
used as the initialization. With the voiced speech signal asan example, the voiced
speech can be modeled as a noisy impulse train filtered by a vocal tract filter, and a
two-state HMM is sufficient for representing the impulse train: a state with a mean
equal to the magnitude of the impulses, and a state with a zeromean. For a frame that
does not contain the onset of the impulse train, there must beripples, or ringing, at
the beginning of the frame, which is originated from an impulse in the previous frame.
If the ringing is large enough, it will be erroneously interpreted by the algorithm as
having a non-zero-mean state at the beginning of the frame although the true state is a
zero-mean state. The wrong decision on the state certainly has a negative impact on the
subsequent estimation of parameters. To illustrate the problem, in Fig. 1, we plot the
log-spectral distance (LSD) between an estimated spectrumand the true spectrum for
frames of signal beginning at different time instants. The signal is a synthetic speech
signal, generated by filtering a noisy impulse train with a10th order AR filter (the first
200 samples of the signal and its excitation are shown in Fig.2). The first impulse,
i.e. the onset, is located at the50th sample. A hundred frames with length of 320
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Figure 1: The log-spectral distances between the true AR spectrum andthe estimates.
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Figure 2: The synthetic signal waveform (upper panel) and its excitation (lower panel).

samples are taken from the signal by shifting the frame one sample each time. The
figure shows that for the first 50 frames, i.e. all the frames that contain the onset, the
spectral distortions of the HMARM spectra are low and constant. In the rest 50 frames,
where the onset impulse is absent, the distortion is generally much higher. Also shown
in Fig. 1 are the distortion curve for the LS spectral estimates. These curves show that
the problem with the LS method is of another kind, which was pointed out in [1].

The results of the HMARM shown in Fig. 1 are without any preprocessing. To
avoid the problem, in [1] and [2], a preprocessor detects theposition of the first impulse
of the excitation in the current frame, and sets all samples before this position to zero,
such that large ripples trailing from the previous frame areremoved. The problem with
this solution is that removing samples reduces data efficiency of the algorithm. The
reliability of the impulse detector is also a concern. Another solution is to calculate the
ripples from the previous frame, using the estimated AR filter and the impulses of the
previous frame, and subtract it from the current frame. Thissolution also reduces data
efficiency, since a certain part of the signal energy is discarded, which could have been
used by the estimator. Furthermore, the ringing will be subtracted using an inaccurate
estimate of the AR coefficients. Moreover, these solutions add extra complexity to the
algorithm.
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The solution we propose in this paper is based on the observations that the HMARM
has a built in linear predictor, i.e. (5), and that an AR(p) process is a Markovian process
with vector states ofp-dimension. So, instead of calculate the long trailing ripples
from the previous frame using estimated parameters and subtract it from the following
frames, it is better to initialize the predictor of the current frame with thep samples in
the end of the previous frame, which gives the state estimator all the information about
the past. therefore the causality problem is avoided.

To implement this solution, we only have to change the way thedata matrix and the
p covariance vectors are populated. They are used in the matrix form of the predictor
(5) and the equations system (??) in the following forms:




x0 x−1 x−2 · · · x−p+1

x1 x0 x−1 · · · x−p+2

x2 x1 x0 · · · x−p+3

...
...

...
...

...
xT−1 xT−2 xT−3 · · · xT−p



, (6)

whereT is the frame length, and

[
x1x1−k, x2x2−k, · · · , xTxT−k

]t
, k = 1, · · · , p. (7)

In the frame based implementation the samples with negativeindices are of value zero.
To provide the estimator a correct starting state, the samples in the previous frame must
be put into the appropriate positions of the matrices. In thecase that the previous frame
is missing, the firstp rows of the matrices in (6) and (7) must be removed, so that
there is no un-populated elements (the zeros) in the matrices. This is formally similar
to the covariance method of the LS analysis of AR models [3]. Therefore, we term it
the covariance method HMARM, and the original implementation the autocorrelation
method HMARM. The LSD of the two implementations are plottedin Fig. 3 for com-
parison. It is clear from this figure that the covariance method HMARM maintains its
good performance for all frames. Notice that for frames thatcontain the onset impulse,
the performance of the covariance method HMARM is similar tothe autocorrelation
method HMARM. This is in contrast to the LS, whose covariancemethod always out-
performs its autocorrelation method, given that the signallength is small.

3 HMARM for spectral analysis

Now, we discuss some properties of the HMARM that can be beneficial in the AR spec-
tral analysis. The HMARM hereafter refers to the covariancemethod implementation.
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Figure 3: The log-spectral distances between the true AR spectrum andthe estimates. HMARM-a: the
autocorrelation method of the HMARM; HMARM-c: the covariance method of the HMARM.

3.1 Window design and covariance methods

As shown in [1] and [2], the HMARM estimate of the AR spectrum has significantly
lower bias and variance than the LPC analysis, which is an autocorrelation LS method.
The variance studied therein is the shift variance, where the set of realizations of an
AR process is generated by shifting a time window many times with one sample as the
shift step length. Other known methods for reducing the shift variance of the LS anal-
ysis are the window design and the covariance method LS. In [1], it has been shown
that applying a Hamming window reduces the shift variance ofthe LPC analysis, but
the reduced variance is still significantly larger than thatof the HMARM. Besides, any
window other than the rectangular window has the side effectof reduced spectral res-
olutions. Here, we discuss the covariance method LS analysis, and compare the three
methods under a more general variance analysis.

The covariance method LS reduces the shift variance by avoiding the boundary ef-
fect. This is done by feeding a number of samples preceding the current frame to the
data matrix. In this way, the covariance matrix of the signalbecomes non-Toeplitz, and
thus the assumption of the signal being stationary is avoided, whereas it is still based
on the assumption that the excitation is white stationary Gaussian. Therefore, for the
signals of interest in this work, the large variance caused by the mismatch between the
assumption and the signal is still there. To reveal a more general statistics than only the
shift variance, we let the sliding window shift so many timesthat the beginning frames
and the ending frames contain completely different samples. In this way, it is possible
to show a variance consisting of both the shift variance and the variance due to different
realizations. We investigate the statistical properties of the three estimators, with a syn-
thetic speech signal and a bipolar signal received through an AR channel. The synthetic
speech signal is the one used in the previous example (Fig. 2), and the received bipolar
signal is generated by filtering a random [-1,1] sequence with an AR filter. They are
the two typical non-Gaussian AR signals with different characteristics: the excitation of
the speech signal is spectrally colored due to the periodic impulses, and has a Gaussian
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Speech Bipolar
bias variance bias variance

HMARM-c 0.0861 27.68 8.8 × 10−15 4.7 × 10−24

LS-c 0.1524 169.39 0.1595 190.41
LS-a-w 0.1276 185.90 0.1862 560.95
LS-a 0.1879 179.22 0.3100 160.46

Table 1: Comparison of biases and variances. HMARM-c: the covariancemethod HMARM, LS-c: the
covariance method LS, LS-a-w: the autocorrelation method LS with Hamming window, LS-a: the autocorre-
lation method LS.

component due to the noise; while the transmitted bipolar sequence is spectrally white,
and very non-Gaussian since there is no Gaussian noise in it.Tab. 1 shows the biases
and variances of the three methods. The statistics are obtained from estimating 600
frames of an AR process, and the frames are obtained by movinga 320-sample window
600 times by one sample each time.

The results show that: 1) the HMARM has a far smaller variancethan the auto-
correlation method LS, especially for the signal that has noGaussian componets, and
2) generally, the Hamming windowing and the covariance method do not reduce the
variance of an LS AR analysis.

3.2 Avoiding spectral sampling effect

Having a more sophisticated model for the excitation makes the estimation accuracy of
the HMARM superior to the traditional Gaussian AR model whenapplied to spectral
analysis of certain non-Gaussian signals. This is because the excitation to an AR filter
is often not spectrally white and/or non-Gaussian. With theHMARM, correlation in
the excitation can be separated from that caused by the AR filter. Thus the estimates
of the AR spectral envelop are not affected by the excitation. An example of related
problems for the Gaussian AR model is the spectral sampling effect due to the impulse
train structure in voiced speech.

A voiced speech signal is commonly modeled by AR filtering of an impulse train.
The impulse train has a comb-shape spectrum. Although the LPC analysis is intended
for estimating the spectral envelop of the signal, which models the vocal tract reso-
nance property, the comb-shape excitation spectrum has a spectral sampling effect on
the estimated spectral envelop. This causes the following problems. Firstly, when a
formant peak happens to locate at one of the harmonic frequencies of the impulse
train, the estimated spectral envelop will have an abnormally sharp peak. This is a
well known problem for the LPC analysis in speech coding, especially for high pitch
speech [4] [5]. Secondly, in the case that the formant peaks do not locate at a harmonic
frequency, the peaks of the estimated spectral envelope tend to drift to the neighboring
harmonic frequencies. This effect is undesired in applications such as speech synthesis



G10

Figure 4: The AR spectra estimated by the HMARM (upper) and the LPC (middle), and the true spectrum
(lower). The vertical bars show the harmonic frequencies. The pitch frequency is 133Hz.

Figure 5: The AR spectra estimated by the HMARM (upper) and the LPC (middle), and the true spectrum
(lower). The vertical bars show the harmonic frequencies. The pitch frequency is 200Hz.

and prosody manipulation. We compare the spectral envelopes estimated by the LPC
and the HMARM, using two synthetic speech signals with pitchfrequencies of 133Hz
and 200Hz. Fig. 4 shows that the LPC spectral envelope has an abnormally sharp peak,
while the HMARM estimate does not have the problem. Fig. 5 shows that the spectral
peaks of the LPC estimate drift towards the harmonic frequencies, while the HMARM
estimate has the peaks in correct positions.

3.3 Avoiding over training

Another problem associated with parametric modeling is known as over training, or
over fitting. In the specific case of AR spectral analysis, over training is referred to the
phenomena that when modeling the signal with a model order larger than the true order,
the AR spectrum tends to fit to the FFT spectrum instead of the spectral envelope. Here
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Figure 6: The AR spectra estimated by the HMARM (upper) and the LPC (middle) with order 40, and the
true spectrum of order 10 (lower).

we take the bipolar signal as an example. The transmitted signal is a randomly generated
bipolar signal with a white spectrum. The signal is convolved by an AR channel before
it is received. The receiver tries to de-convolve the channel distortion by first estimating
the channel. In general, the model order is unknown, and using a larger model order
could risk over training. In Fig. 6 we show that the HMARM largely avoids the effect
of over training, while the LPC spectral envelope starts representing the random peaks
due to the spectrum of the transmitted signal.

4 Conclusion

In this paper, we propose a covariance method type implementation of the HMARM
system identification algorithm. The method solves the causality problem that can cause
the state estimator to fail in a frame based HMARM analysis. The proposed method
costs no additional complexity to the system, and is proven by extensive experiments
to be highly reliable. Based on the results of the covarianceimplementation, a few
interesting issues concerning the AR spectral analysis areaddressed. Examples are
given for speech and digitally modulated signals with promising results.
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