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for speech signals. Our algorithms are based on the rank-reduction paradigm and, in particular, signal subspace techniques.
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1. INTRODUCTION

The signal subspace approach has proved itself useful
for signal enhancement in speech processing and many
other applications – see, e.g., the recent survey [10]. The
area has grown dramatically over the last 20 years, along
with advances in efficient computational algorithms for
matrix computations [16], [46], [47], especially singu-
lar value decompositions and rank-revealing decompo-
sitions.

The central idea is to approximate a matrix, derived
from the noisy data, with another matrix of lower rank
from which the reconstructed signal is derived. As
stated in [42]: “Rank reduction is a general principle
for finding the right trade-off between model bias and
model variance when reconstructing signals from noisy
data.”

Throughout the literature of signal processing and
applied mathematics these methods are formulated in
terms of different notations, such as eigenvalue decom-
positions, Karhunen-Loève transformations, and singu-
lar value decompositions. All these formulations are
mathematically equivalent, but nevertheless the differ-
ences in notation can be an obstacle to understanding
and using the different methods in practise.

Our goal is to survey the underlying mathematics
and present the techniques and algorithms in a com-
mon framework and a common notation. In addition
to methods based on diagonal (eigenvalue and singu-
lar value) decompositions, we survey the use of rank-
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under Grants 21-03-0574 and 26-02-0092.

revealing triangular decompositions. Within this frame-
work we also discuss alternatives to the classical least-
squares formulation, and we show how signals with gen-
eral (non-white) noise are treated by explicit and, in
particular, implicit prewhitening. Throughout the pa-
per we provide small working Matlab codes that illus-
trate the algorithms and their practical use.

We focus on signal enhancement methods which di-
rectly estimate a clean signal from a noisy one (we
do not estimate parameters in a parameterized sig-
nal model). Our presentation starts with formulations
based on (estimated) covariance matrices, and makes
extensive use of eigenvalue decompositions as well as
the ordinary and generalized singular value decompo-
sition (SVD and GSVD) – the latter also referred to
as the quotient SVD (QSVD). All these subspace tech-
niques originate from the seminal 1982 paper [49] by
Tufts and Kumaresan, who considered noise reduction
of signals consisting of sums of damped sinusoids via
linear prediction methods.

Early theoretical and methodological developments in
SVD-based least-squares subspace methods for signals
with white noise were given in the late 80s and early
90s by Cadzow [6], De Moor [7], Scharf [41], and Scharf
and Tufts [42]. Dendrinos, Bakamidis and Carayannis
[9] used these techniques for speech signals, and Van
Huffel [52] applied a similar approach – using the mini-
mum variance estimates from [7] – to exponential data
modelling. Other applications of these methods can be
found, e.g., in [10], [12], [27] and [40]. Techniques for
general noise, based on the GSVD, originally appeared
in [30], and some applications of these methods can be
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found in [25], [26], [32] and [38].
Next we describe computationally favorable alterna-

tives to the (G)SVD methods, based on rank-revealing
triangular decompositions. The advantages of these
methods are faster computation and faster up- and
downdating, which is important in dynamic signal pro-
cessing applications. This class of algorithms originates
from work by Moonen, Van Dooren and Vandewalle [39]
on approximate SVD updating algorithms, and in par-
ticular Stewart’s work on URV and ULV decompositions
[44], [45]. Some applications of these methods can be
found in [1], [33] (direction-of-arrival estimation) and
[53] (total least squares). We also describe some exten-
sions of these techniques to rank-revealing ULLV de-
compositions of pairs of matrices, originating in works
by Luk and Qiao [34], [36] and Bojanczyk [4].

Further extensions of the GSVD and ULLV algo-
rithms to rank-deficient noise, typically arising in con-
nection with narrow-band noise and interference, were
described in recent work by Zhong, Li and Tai [55] and
ourselves [20], [22].

Finally we show how all the above algorithms can be
interpreted in terms of FIR filters defined from the de-
compositions involved [11], [21], and we introduce a new
analysis tool called “canonical filters” which allows us to
compare the behavior and performance of the subspace-
based algorithms in the frequency domain. The hope
is that this theory can help to bridge the gap between
the matrix notation and more classical signal processing
terminology.

Throughout the paper we make use of the important
concept of numerical rank of a matrix. The numerical
rank of a matrix H with respect to a given threshold τ
is the number of columns of H that are guaranteed to
be linearly independent for any perturbation of H with
norm less than τ . In practise, the numerical rank is
computed as the number of singular values of H greater
than τ . We refer to [19], [43] and [31] for motivations
and further insight about this issue.

We stress that we do not try to cover all aspects of
subspace methods for signal enhancement. For exam-
ple, we do not treat a number of heuristic methods such
as the spectral domain constrained estimator [12], as
well as extensions that incorporate various perceptual
constraints [28], [54].

A few words about the notation used throughout
the paper: E(·) denotes expectation; R(A) denotes the
range (or column space) of the matrix A; σi(A) denotes
the ith singular value of A; AT denotes the transpose
of A, and A−T = (A−1)T = (AT )−1, Iq is the identity
matrix of order q; and H(v) is the Hankel matrix with
n columns defined from the vector v (see (4)).

2. THE SIGNAL MODEL

Throughout this paper we consider only wide-sense
stationary signals with zero mean, and a digital signal
is always a column vector s ∈ Rn with E(s) = 0. Asso-
ciated with s is an n×n symmetric positive semidefinite
covariance matrix, given by Cs ≡ E(s sT ); this matrix
has Toeplitz structure, but we do not make use of this
property. We shall make some important assumptions
about the signal.

The Noise Model. We assume that the signal s
consists of a pure signal s̄ ∈ Rn corrupted by additive
noise e ∈ Rn,

s = s̄+ e, (1)

and that the noise level is not too high, i.e., ‖e‖2 is
somewhat smaller than ‖s̄‖2. In most of the paper we
also assume that the covariance matrix Ce for the noise
has full rank. Moreover, we assume that we are able to
sample the noise, e.g., in periods where the pure signal
vanishes (for example, in speech pauses). We emphasize
that the sampled noise vector e is not the exact noise
vector in (1), but a vector that is statistically represen-
tative of the noise.

The Pure Signal Model. We assume that the pure
signal s̄ and the noise e are uncorrelated, i.e., E(s̄ eT ) =
0, and consequently we have

Cs = Cs̄ + Ce. (2)

In the common case where Ce has full rank, it follows
that Cs also has full rank (the case rank(Ce) < n is
treated in Section 7). We also assume that the pure
signal s̄ lies in a proper subspace of Rn; i.e.,

s̄ ∈ S ⊂ Rn, rank(Cs̄) = dim(S) = k < n. (3)

The central point in subspace methods is this assump-
tion about the pure signal s̄ lying in a (low-dimensional)
subspace of Rn called the signal subspace. The main
goal of all subspace methods is to estimate this sub-
space and to find a good estimate ŝ (of the pure signal
s̄) in this subspace.

The subspace assumption (which is equivalent to the
assumption that Cs̄ is rank deficient) is satisfied, e.g.,
when the signal is a sum of (exponentially damped) si-
nusoids. This assumption is perhaps rarely satisfied ex-
actly for a real signal, but it is a good model for many
signals, such as those arising in speech processing [37].2

For practical computations with algorithms based on
the above n×n covariance matrices, we need to be able
to compute estimates of these matrices. The standard
way to do this is to assume that we have access to data
2It is also a good model for NMR signals [50], [51], but these
signals are not treated in this paper.
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vectors which are longer than the signals we want to
consider. For example, for the noisy signal we assume
that we know a data vector s′ ∈ RN with N > n, which
allows us to estimate the covariance matrix for s as fol-
lows. We note that the length N is often determined by
the application (or the hardware in which the algorithm
is used).

Let H(s′) be the m × n Hankel matrix defined from
the vector s′ as

H(s′) =




s′1 s′2 s′3 · · · s′n
s′2 s′3 s′4 · · · s′n+1

s′3 s′4 s′5 · · · s′n+2
...

...
...

...
s′m s′m+1 s′m+2 · · · s′N




(4)

with m + n − 1 = N and m ≥ n. Then we define the
data matrix H = H(s′), such that we can estimate3 the
covariance matrix Cs by

Cs ≈ 1
mH

TH. (5)

Moreover, due to the assumption about additive noise
we have s′ = s̄′ + e′ with s̄′, e′ ∈ RN , and thus we can
write

H = H +E with H = H(s̄′), E = H(e′). (6)

Similar to the assumption about Cs̄, we assume that
rank(H) = k.

In broad terms, the goal of our algorithms is to com-
pute an estimate ŝ of the pure signal s̄ from measure-
ments of the noisy data vector s′ and a representative
noise vector e′. This is done via a rank-k estimate Ĥ of
the Hankel matrix H for the pure signal, and we note
that we do not require the estimate Ĥ to have Hankel
structure.

There are several approaches to extracting a signal
vector from the m× n matrix Ĥ. One approach, which
produces a length-N vector ŝ′, is to average along the
anti-diagonals of Ĥ, which we write as

ŝ′ = A(Ĥ) ∈ RN . (7)

The corresponding Matlab code is

shat = zeros(N,1);
for i=1:N
shat(i) = mean(diag(fliplr(Hhat),n-i));

end

This approach leads to the FIR filter interpretation
in §9. The rank-reduction + averaging process can be

3Alternatively we could work with the Toeplitz matrices obtained
by reversing the order of the columns of the Hankel matrices; all
our relations will still hold.
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Figure 1. The three signals of length N = 240 used in
our examples. Top: clean speech signal (voiced segment
of male speaker). Middle: white noise generated by Mat-
lab’s randn function. Bottom: colored noise (segment
of a recording of strong wind). The clean signal slightly
violates the subspace assumption (3); see Fig. 3.

iterated, and Cadzow [6] showed that this process con-
verges to a rank-k Hankel matrix; however, De Moor
[8] showed that this may not be the desired matrix. In
practise the single averaging in (7) works well.

Doclo and Moonen [10] found that the averaging op-
eration is often unnecessary. An alternative approach,
which produces a length-n vector, is therefore to simply
extract (and transpose) an arbitrary row of the matrix,
i.e.,

ŝ = Ĥ(`, :)T ∈ Rn, ` arbitrary. (8)

This approach lacks a solid theoretical justification, but
due to its simplicity it lends itself well to the up- and
downdating techniques in dynamical processing; see §8.

Throughout the paper we illustrate the use of the
subspace algorithms with an example from speech pro-
cessing, where the clean signalis a 30 ms segment of a
voiced sound from a male speaker recorded at 8 kHz
sampling frequency of length is N = 240. We use two
noise signals, a white noise signal generated by Matlab’s
randn function, and a segment of a recording of strong
wind. All three signals, shown in Fig. 1, can be con-
sidered quasi-stationary in the considered segment. We
always use m = 211 and n = 30, and the signal-to-noise
ratio in the noisy signals, defined as

SNR = 20 log (‖s̄‖2/‖e‖2) dB,

is always 10 dB.
When displaying the spectrum of a signal, we always

use the LPC power spectrum computed with Matlab’s
lpc function with order 12, which is standard in speech
analysis of signals sampled at 8 kHz.
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3. WHITE NOISE: SVD METHODS

To introduce ideas, we consider first the ideal case of
white noise, i.e., the noise covariance matrix is a scaled
identity,

Ce = η2 In, (9)

where η2 is the variance of the noise. The covariance
matrix for the pure signal has the eigenvalue decompo-
sition

Cs̄ = V Λ̄V
T
, Λ̄ = diag(λ̄1, . . . , λ̄n) (10)

with λ̄k+1 = · · · = λ̄n = 0. The covariance matrix
for the noisy signal, Cs = Cs̄ + η2In, has the same
eigenvectors while its eigenvalues are λ̄i + η2 (i.e., they
are “shifted” by η2). It follows immediately that given η
and the eigenvalue decomposition of Cs we can perfectly
reconstruct Cs̄ simply by subtracting η2 from the largest
k eigenvalues of Cs and inserting these in (10).

In practise, we cannot design a robust algorithm on
this simple relationship. For one thing, the rank k is
rarely known in advance, and white noise is a math-
ematical abstraction. Moreover, even if the noise e is
close to being white, a practical algorithm must use an
estimate of the variance η2, and there is a danger that
we obtain some negative eigenvalues when subtracting
the variance estimate from the eigenvalues of Cs.

A more robust algorithm is obtained by replacing k
with an underestimate of the rank, and by avoiding
the subtraction of η2. The latter is justified by a rea-
sonable assumption that the largest k eigenvalues λ̄i,
i = 1, . . . , k are somewhat greater than η2.

A working algorithm is now obtained by replacing the
covariance matrices with their computable estimates.
For both pedagogical and computational/algorithmic
reasons, it is most convenient to describe the algorithm
in terms of the two SVDs

H = U ΣV
T

(11)

= (U1 , U2 )
(

Σ1 0
0 0

)
(V 1 , V 2 )T

and

H = U ΣV T (12)

= (U1 , U2 )
(

Σ1 0
0 Σ2

)
(V1 , V2 )T

in which U,U ∈ Rm×n and V , V ∈ Rn×n have orthonor-
mal columns, and Σ,Σ ∈ Rn×n are diagonal. These
matrices are partitioned such that U1, U1 ∈ Rm×k,
V 1, V1 ∈ Rn×k and Σ1,Σ1 ∈ Rk×k. We note that the
SVDs immediately provide the eigenvalue decomposi-
tions of the cross-product matrices, because

H
T
H = V Σ

2
V
T
, HTH = V Σ2 V T .

The pure signal subspace is then given by S = R(V 1),
and our goal is to estimate this subspace and to estimate
the pure signal via a rank-k estimate Ĥ of the pure-
signal matrix H.

Moving from the covariance matrices to the use of
the cross-product matrices, we must make further as-
sumptions [7], namely (in the white-noise case) that the
matrices E and H satisfy

1
mE

TE = η2 In and H
T
E = 0. (13)

These assumptions are stronger than Ce = η2In and
E(s̄ eT ) = 0. The first assumption is equivalent to
the requirement that the columns of (

√
mη)−1E are or-

thonormal. The second assumption implies the require-
ment m ≥ n+ k.

Then it follows that

1
mH

TH = 1
mH

T
H + η2In (14)

and if we insert the SVDs and multiply with m we ob-
tain the relation

(V1 , V2)
(

Σ2
1 0

0 Σ2
2

)
(V1 , V2)T = (15)

(V 1 , V 2)
(

Σ
2

1+mη2Ik 0
0 mη2In−k

)
(V 1 , V 2)T ,

where Ik and In−k are identity matrices. From the SVD
of H we can then estimate k as the numerical rank of H
with respect to the threshold m1/2η. Furthermore we
can use the subspace R(V1) as an estimate of S (see,
e.g., [18] for results about the quality of this estimate
under perturbations).

We now describe several empirical algorithms for
computing the estimate Ĥ; in these algorithms k is al-
ways the numerical rank of H. The simplest approach is
to compute Ĥls as a rank-k least squares estimate of H,
i.e., Ĥls is the closest rank-k matrix to H in the 2-norm
(and the Frobenius norm),

Ĥls = argmin bH‖H − Ĥ‖2 (16)

s.t. rank(Ĥ) = k.

The Eckart-Young-Mirsky theorem (see [2, Thm. 1.2.3]
or [16, Thm. 2.5.3]) expresses this solution in terms of
the SVD of H:

Ĥls = U1 Σ1 V
T
1 . (17)

If desired, it is easy to incorporate the negative “shift”
mentioned above. It follows immediately from (15) that

Σ
2

1 = Σ2
1 −mη2Ik = (Ik −mη2Σ−2

1 ) Σ2
1,
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Table 1
Overview of some important gain matrices Φ in the

SVD-based methods for the white-noise case.
Estimate Gain matrix Φ
LS Ik

MLS
(
Ik −mη2 Σ−2

1

)1/2

MV Ik −mη2 Σ−2
1

TDC
(
Ik −mη2 Σ−2

1

) ·(
Ik −mη2(1− λ)Σ−2

1

)−1

which lead Van Huffel [52] to defined a modified least
squares estimate:

Ĥmls = U1 Φmls Σ1V
T
1 with (18)

Φmls = (Ik −mη2Σ−2
1 )1/2.

The estimate ŝ from this approach is an empirical least-
squares estimate of s̄.

A number of alternative estimates have been pro-
posed. For example, De Moor [7] introduced the mini-
mum variance estimate Ĥmv which satisfies the criterion

Ĥmv = argmin bH‖H − Ĥ‖F (19)

s.t. Ĥ = HWmv

for some matrix Wmv, and he showed (see our Ap-
pendix) that this estimate is given by

Ĥmv = U1 Φmv Σ1 V
T
1 with (20)

Φmv = Ik −mη2Σ−2
1 .

Ephraim and Van Trees [12] defined a time-domain
constraint estimate which, in our notation, takes the
form Ĥtdc = HWtdc, where Wtdc satisfies the criterion

Wtdc = argmincW ‖H −HW‖F (21)

s.t. ‖W‖F ≤ α
√
m,

in which α is a user-specified positive parameter. If the
constraint is active, then the matrix Wtdc is given by
the Wiener solution4

Wtdc = V 1 Σ
2

1(Σ
2

1 + λmη2Ik)−1V
T

1

where λ is the Lagrange parameter for the inequality
constraint in (21). If we use (15) then we can write the
TDC estimate in terms of the SVD of H as

Ĥtdc = U1 Φtdc Σ1 V
T
1 with (22)

Φtdc =
(
Ik −mη2Σ−2

1

) ·
(
Ik −mη2(1− λ)Σ−2

1

)−1
.

4In the regularization literature, Wtdc is known as a Tikhonov
solution [19].

This relation is derived in our Appendix. If the con-
straint is inactive then λ = 0 and we obtain the LS so-
lution. Note that we obtain the MV solution for λ = 1.

All these algorithms can be written in a unified for-
mulation as

Ĥsvd = U1 Φ Σ1 V
T
1 (23)

where Φ is a diagonal matrix, called the gain matrix, de-
termined by the optimality criterion; see Table 1. Other
choices of Φ are discussed in [48]. The corresponding
Matlab code for the MV estimate is

[U,S,V] = svd(H,0);
k = length(diag(S) > sqrt(m)*eta);
Phi = eye(k) - m*eta^2*inv(S(1:k,1:k)^2);
Hhat = U(:,1:k)*Phi*S(1:k,1:k)*V(:,1:k)’;

with the codes for the other estimates being almost sim-
ilar (only the expression for Phi changes).

A few practical remarks are in order here. The MLS,
MV and TDC methods require knowledge about the
noise’s variance η2; good estimates of this quantity can
be obtained from samples of the noise e in the speech
pauses. The thresholds used in all our Matlab templates
(here, τ =

√
mη) are the ones determined by the theory.

In practise, we advice the inclusion of a “safety factor,”
say,

√
2 or 2, in order to ensure that k is an under-

estimate (because overestimates included noisy compo-
nents). However, since this factor is somewhat problem
dependent, it is not included in our templates.

We note that equation (23) can also be written as

Ĥsvd = HWΦ, WΦ = V

(
Φ 0
0 0

)
V T (24)

where WΦ is a symmetric matrix which takes care of
both the truncation at k, and the modification of the
singular values (WΦ is a projection matrix in the LS
case only). Using this formulation, we immediately see
that the estimate ŝ (8) takes the simple form

ŝ = WΦH(`, :)T = WΦ s, (25)

where s is a arbitrary length-n signal vector. This ap-
proach is useful when the signal is quasi-stationary for
longer periods, and the same filter, determined by WΦ,
can be used over these periods (or in an exponential
window approach).

4. RANK-REVEALING TRIANGULAR DE-
COMPOSITIONS

In real-time signal processing applications the com-
putational work in the SVD-based algorithms, both in
computing and updating the decompositions, may be
too large. Rank-revealing triangular decompositions are
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computationally attractive alternatives which are faster
to compute than the SVD, because they involve an ini-
tial factorization that can take advantage of the Hankel
structure, and they are also much faster to update than
the SVD.

Below we present these decompositions and their use.
Our Matlab examples required the UTV Tools pack-
age [13] and, for the VSV decomposition, also the UTV
Expansion Pack [14]. These packages include software
for efficient computation of all the decompositions, as
well as software for up- and downdating. The software
is designed such that one can either estimate the nu-
merical rank or use a fixed, predetermined value for k.

4.1. UTV Decompositions
Rank-revealing UTV decompositions were introduced

in the early 90es by Stewart [44], [45] as alternatives to
the SVD, and take the form (referred to as URV and
ULV, respectively):

H = UR

(
R11 R12

0 R22

)
V TR , (26)

H = UL

(
L11 0
L21 L22

)
V TL , (27)

where R11, L11 ∈ Rk×k. The four “outer” matrices
UL, UR ∈ Rm×n, and VL, VR ∈ Rn×n have n orthonor-
mal columns, and the numerical rank5 of H is revealed
in the middle n× n triangular matrices:

σi(R11) ≈ σi(L11) ≈ σi(H), i = 1, . . . , k
∥∥∥∥
(
R12

R22

)∥∥∥∥
F

≈ ‖(L21 , R22 )‖F ≈ σk+1(H).

In our applications we assume that there is a well-
defined gap between σk and σk+1. The more work one
is willing to spend in the UTV algorithms, the smaller
the norm of the off-diagonal blocks R12 and L21.

In addition to information about numerical rank, the
UTV decompositions also provide approximations to
the SVD subspaces, cf. §3.3 in [19]. For example, if
VR1 = VR(:, 1: k) then the subspace angle ∠(V1, VR1)
between the ranges of V1 (in the SVD) and VR1 (in the
URV decomposition) satisfies

sin∠(V1, VR1) ≤ σk(R11) ‖R12‖2
σk(R11)2 − ‖R22‖22

.

The similar result for VL1 = VL(:, 1: k) in the ULV
decomposition takes the form

sin∠(V1, VL1) ≤ ‖L21‖2 ‖L22‖2
σk(L11)2 − ‖L22‖22

.

5The case where H is exactly rank deficient, for which the subma-
trices R12, R22, L21 and L22 are zero, was treated much earlier
by Golub [15] in 1965.

Table 2
Symmetric gain matrices Ψ for UTV and VSV (for the

white noise case), using the notation T11 for either R11,
L11 or S11.

Estimate Gain matrix Ψ
LS Ik
MV Ik −mη2T−1

11 T
−T
11

TDC
(
Ik −mη2T−1

11 T
−T
11

) ·(
Ik −mη2(1− λ)T−1

11 T
−T
11

)−1

We see that the smaller the norm of R12 and L21, the
smaller the angle. The ULV decomposition can be ex-
pected to give better approximations to the signal sub-
space R(V1) than URV when there is a well-defined gap
between σk and σk+1, due to the factors σk(R11 ≈ σk
and ‖L22‖2 ≈ σk+1 in these bounds.

For special cases where the off-diagonal blocks R12

and L21 are zero, and under the assumption that
σk(T11) > ‖T22‖2 – in which case R(VT1) = R(V1) –
we can derive explicit formulas for the estimators from
Section 3. For example, the least squares estimates are
obtained by simply neglecting the bottom block T22 –
similar to neglecting the block Σ2 in the SVD approach.
The MV and TDC estimates are derived in the Ap-
pendix.

In practise, the off-diagonal blocks are not zero but
have small norm, and therefore it is reasonable to also
neglect these blocks. In general, our UTV-based esti-
mates thus take the form

Ĥutv = UT

(
T11 Ψ 0

0 0

)
V TT , (28)

where T = R,L and where the symmetric gain matrix
Ψ is given in Table 2. The MV and TDC formulations,
which are derived by replacing the matrix in Σ2

1 in Ta-
ble 1 with TT11T11, were originally presented in [23]; there
is no estimate that corresponds to MLS. We emphasize
again that these estimators only satisfy the underlying
criterion when the off-diagonal block is zero.

In analogy with the SVD-based methods, we can use
the alternative formulations

Ĥurv = HWR,Ψ, H̃ulv = HWL,Ψ (29)

with the symmetric matrix WT,Ψ given by

WT,Ψ = VT

(
Ψ 0
0 0

)
V TT . (30)

The two estimates Ĥulv and H̃ulv are not identical; they
differ by UL(:, k+1: n)L21 VL(:, 1: k)T whose norm
‖L21‖2 is small.
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The Matlab code for the ULV case with high rank
(i.e., k ≈ n) takes the form

[k,L,V] = hulv(H,eta);
Ik = eye(k);
Psi = Ik - m*eta^2*...

L(1:k,1:k)\Ik/L(1:k,1:k)’;
Hhat = H*V(:,1:k)*Psi*V(:,1:k)’;

An alternative code that requires more storage for U has
the form

[k,L,V,U] = hulv(H,eta);
Psi = Ik - m*eta^2*...

L(1:k,1:k)\Ik/L(1:k,1:k)’;
Hhat = U(:,1:k)*L(1:k,1:k)*Psi*V(:,1:k)’;

For the ULV case with low rank (k � n) change hulv
to lulv, and for the URV cases change ulv to urv.

4.2. Symmetric VSV Decompositions
If the signal length N is odd and we use m = n (ig-

noring the condition m ≥ n+k), then the square Hankel
matricesH and E are symmetric. It is possible to utilize
this property in both the SVD and the UTV approach.

In the former case, we can use that a symmetric ma-
trix has the eigenvalue decomposition

H = V ΛV T

with real eigenvalues in Λ and orthonormal eigenvectors
in V , and thus the SVD of H can be written as

H = V D |Λ|V T , D = diag(sign(λi)).

This well-known result essentially halves the work in
computing the SVD. The remaining parts of the algo-
rithm are the same, using |Λ| for Σ.

In the case of triangular decompositions, a symmetric
matrix has a symmetric rank-revealing VSV decompo-
sition of the form

H = VS

(
S11 S12

ST12 S22

)
V TS (31)

where VS ∈ Rn×n is orthogonal, and S11 ∈ Rk×k and
S22 are symmetric. The decomposition is rank revealing
in the sense that the numerical rank is revealed in the
“middle” n× n symmetric matrix:

σi(S11) ≈ σi(H), i = 1, . . . , k
∥∥∥∥
(
S12

S22

)∥∥∥∥
F

≈ σk+1(H).

The symmetric rank-revealing VSV decomposition was
originally proposed by Luk and Qiao [35], and it was
further developed in [24].
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Figure 2. Example with a sum-of-sines clean signal for
which H has rank 8, and additive white noise with SNR
0 dB. Top left: LPC spectra for the clean and noisy sig-
nals. Other plots: LPC spectral for the SVD and ULV
LS-estimates with truncation parameter k = 1, . . . , 9.

The VSV-based matrix estimate is then given by

Ĥvsv = VS

(
S11Ψ 0

0 0

)
V TS , (32)

in which the gain matrix Ψ is computed from Table 2
with T11 replaced by the symmetric matrix S11. Again,
these expressions are derived under the assumption that
S12 = 0; in practice the norm of this block is small.

The algorithms in [24] for computing VSV decomposi-
tions return a factorization of S which, in the indefinite
case, takes the form

S = TT ΩT,

where T is upper or lower triangular, and Ω = diag(±1).
Below is Matlab code for the high-rank case (k ≈ n):

[k,R,Omega,V] = hvsvid_R(A,eta);
Ik = eye(k);
M = R(1:k,1:k)’\Ik/R(1:k,1:k);
M = Omega(1:k,1:k)*M*Omega(1:k,1:k);
Psi = Ik - R(1:k,1:k)\M/R(1:k,1:k)’;
Hhat = V(:,1:k)*S(1:k,1:k)*Psi*V(:,1:k)’;

5. WHITE NOISE EXAMPLE

We start with an illustration of the noise reduction
for the white-noise case by means of SVD and ULV,
using an artificially generated clean signal:

s̄i = sin(0.4i) + 2 sin(0.9i) + 4 sin(1.7i) + 3 sin(2.6i)
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Figure 3. The singular values of the Hankel matrices H
(clean signal) and H (noisy signal). The solid horizon-
tal line is the “safeguarded” threshold

√
2m1/2η; the

numerical rank with respect to this threshold is k = 13.

for i = 1 . . . , N . This signal satisfies the subspace as-
sumption, and the corresponding clean data matrix H
has rank 8.

We add white noise with SNR = 0 dB, and compute
SVD and ULV LS-estimates for k = 1, . . . , 9. Figure 2
shows for LPC spectra for each signal, and we see that
the two algorithms produce very similar results.

This example illustrates that as k increases we include
an increasing number of spectral components, and this
occurs in the order of decreasing energy of these com-
ponents. It is precisely this behavior of the subspace
algorithms that make them so powerful for signals that
(approximately) admit the subspace model.

We now turn to the speech signal from Fig.1, recalling
that this signal does not satisfy the subspace assump-
tion exactly. Figure 3 shows the singular values of the
two Hankel matrices H and H associated with the clean
and noisy signals. We see that the larger singular values
of H are quite similar to those of H, i.e., they are not
affected very much by the noise – while the smaller sin-
gular values of H tend to level off around

√
mη, which

is the variance of the noise. Figure 3 also shows our
“safeguarded” threshold

√
2
√
mη for the truncation pa-

rameter, leading to the choice k = 13 for this particular
realization of the noise.

The rank-revealing UTV algorithms are designed
such that they reveal the large and small singular val-
ues of H in the triangular matrices R and L, and Fig. 4
shows a clear grading of the size of the nonzero ele-
ments in these matrices. The particular structure of
the nonzero elements in R and L depends on the algo-
rithm used to compute the decomposition. We see that
the “low-rank versions” lurv and lulv tend to produce
triangular matrices whose off-diagonal blocks R12 and
L21 have smaller elements than those from the “high-
rank versions” hurv and hulv (see [13] for more details
about these algorithms).

Next we illustrate the performance of the SVD-
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Figure 4. The large and small singular values are re-
flected in the size of the elements in the matrices R and
L from the URV and ULV decompositions. The trian-
gular matrices from the lurv and lulv algorithms (left
plots) are closer to block diagonal form than those from
the hurv and hulv algorithms (right plots).

and ULV-based algorithms using the minimum-variance
(MV) estimates. The top plot in Fig. 5 shows the LPC
spectra for the clean and noisy signals – in the clean
signal we see four distinct formants, while only two for-
mants are above the noise level in the noisy signal.

The middle and bottom plots in Fig. 5 show the spec-
tra for the MV estimates using the SVD and ULV algo-
rithms with truncation parameters k = 8 and k = 16,
respectively. Note that the SVD- and ULV-estimates
have almost identical spectra for a fixed k, illustrating
the usefulness of the more efficient ULV algorithm. For
k = 8 the two largest formants are well reconstructed;
but k is too low to allow us to capture all four formants.
For k = 16 all four formants are reconstructed satisfac-
torily, while a larger value of k leads to the inclusion
of too much noise. This illustrates the importance of
choosing the correct truncation parameter. The clean
and estimated signals are compared in Fig. 6.

6. GENERAL NOISE

We now turn to the case of more general noise whose
covariance matrix Ce is no longer a scaled identity ma-
trix. We still assume that the noise and the pure signal
are uncorrelated and that Ce has full rank. Let Ce have
the Cholesky factorization

Ce = RTe Re, (33)
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Figure 5. LPC spectra of the signals in the white-noise
example, using SVD- and ULV-based MV estimates.
Top: clean and noisy signals. Middle and bottom: esti-
mates; both SNRs are 12.5 dB for k = 8 and 13.8 dB
for k = 16.
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Figure 6. Comparison of the clean signal and the SVD-
based MV estimate for i = 16.

where Re is an upper triangular matrix of full rank.
Then the standard approach is to consider the trans-
formed signal R−Te s whose covariance matrix is given
by

E(R−Te s sTR−1
e ) (34)

= R−Te CsR
−1
e = R−Te Cs̄R

−1
e + In,

showing that the transformed signal consists of a trans-
formed pure signal plus additive white noise with unit
variance. Hence the name prewhitening for this process.
Clearly, we can apply all the methods from the previous
section to this transformed signal, followed by a back-
transformation involving multiplication with RTe .

Turning to practical algorithms based on the cross-
product matrix estimates for the covariance matrices,
our assumptions are now

rank(E) = n and H
T
E = 0.

Since E has full rank, we can compute an orthogonal
factorization E = QR in which Q has orthonormal
columns and R is nonsingular. For example, if we use a
QR factorization then R is a Cholesky factor of ETE,
and m−1/2R estimates Re above. We introduce the
transformed signal zqr = R−T s whose covariance ma-
trix is estimated by

1
mR

−THTH R−1 = 1
mR

−TH
T
H R−1 + 1

mIn,

showing that the prewhitened signal zqr – similar to
above – consists of a transformed pure signal plus ad-
ditive white noise with variance m−1. Again we can
apply any of the methods from the previous section
to the transformed signal zqr, represented by the ma-
trix Zqr = H R−1, followed by a back-transformation
with RT .

The complete model algorithm for treating full-rank
non-white noise thus consists of the following steps.
First compute the QR factorization E = QR, then form
the prewhitened matrix Zqr = H R−1 and compute its
SVD Zqr = U ΣV T . Then compute the “filtered” ma-
trix Ẑqr = ZqrWΦ with the gain matrix Φ from Table 1
using mη2 = 1. Finally compute the dewhitened matrix
Ĥqr = ẐqrR and extract the filtered signal. For exam-
ple, for the MV estimate this is done by the following
Matlab code

[Q,R] = qr(E,0);
[U,S,V] = svd(H/R,0);
k = length(diag(S) > 1/sqrt(m));
Phi = eye(k) - inv(S(1:k,1:k))^2;
Hhat = U(:,1:k)*Phi*S(1:k,1:k)...

*V(:,1:k)’*R;
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6.1. GSVD Methods
There is a more elegant version of the above algorithm

which avoids the explicit pre- and dewhitening steps,
and which can be extended to a rank deficient E, cf. §7.
It can be formulated both in terms of the covariance
matrices and their cross-product estimates.

Consider first the covariance matrix approach [25],
[26], which is based on the generalized eigenvalue de-
composition of Cs̄ and Ce:

Cs̄ = X Λ̄X
T
, Ce = XX

T
,

where Λ̄ = diag(λ̄1, . . . , λ̄n) and X is a nonsingu-
lar matrix6 (see, e.g., §8.7 in [16]). If we partition
X = (X1 , X2 ) with X1 ∈ Rn×k then the pure sig-
nal subspace satisfies S = R(X1). Moreover

Cs = Cs̄ + Ce = X (Λ̄ + In)X
T
,

showing that we can perfectly reconstruct Cs̄ (similar
to the white noise case) by subtracting 1 from the k
largest generalized eigenvalues of Cs.

As demonstrated in [30], we can turn the above into
a working algorithm by means of the generalized SVD
(GSVD) of H and E, given by

H = UH ΓXT , E = UE ∆XT . (35)

If E has full rank then X ∈ Rn×n is nonsingular. More-
over, UH , UE ∈ Rm×n have orthonormal columns, and
Γ,∆ ∈ Rn×n are diagonal matrices

Γ = diag(γ1, . . . , γn), ∆ = diag(δ1, . . . , δn)

satisfying Γ2 + ∆2 = I (see, e.g., [2, §4.2]). In the
QR-based algorithm described above, we now replace
the QR factorization of E with the factorization E =
UE (∆XT ), leading to a matrix Zgsvd given by

Zgsvd = H (∆XT )−1 = UH (Γ ∆−1), (36)

which is the SVD of Zgsvd expressed in terms of
GSVD factors. The corresponding signal zgsvd =
(∆XT )−T s = (X ∆)−1s consists of the transformed
pure signal (X ∆)−1s̄ plus additive white noise with
variance m−1. Also, the pure signal subspace is spanned
by the first k columns of X, i.e., S = R(X(:, 1: k)).

Let Γ1 and ∆1 denote the leading k × k submatrices
of Γ and ∆. Then the filtered and dewhitened matrix
Ĥgsvd takes the form

Ĥgsvd = UH Γ
(

Φ 0
0 0

)
XT = H YΦ (37)

6The matrix X is not orthogonal; it is chosen such that the

columns ξ̄i of X
−T

satisfy Cs̄ ξ̄i = λi Ce ξ̄i for i = 1, . . . , n, i.e.,
(λ̄i, ξ̄i) are the generalized eigenpairs of (Cs̄, Ce).

with

YΦ = X−T
(

Φ 0
0 0

)
XT , (38)

where again Φ is from Table 1 with Σ1 = Γ1 ∆−1
1 =

Γ1 (I − Γ2
1)−1/2 and mη2 = 1. Thus we can compute

the filtered signal either by averaging along the anti-
diagonals of Ĥgsvd or as

ŝgsvd = Y TΦ s = X(:, 1: k) ( Φ , 0 )X−1s.

The Matlab code for MV case takes the form

[U,V,X,Gamma,Delta] = gsvd(H,E,0);
S = Gamma/Delta;
k = length(diag(S) > 1);
Phi = eye(k) - inv(S(1:k,1:k))^2;
Hhat = U(:,1:k)*Gamma(1:k,1:k)...

*Phi*X(:,1:k)’;

We note that if we are given (an estimate of) the noise
covariance matrix Ce instead of the noise matrix E, then
in the GSVD-based algorithm we can replace the matrix
E with the Cholesky factor Re in (33).

6.2. Triangular Decompositions
Just as the URV and ULV decompositions are alter-

natives to the SVD – with a middle triangular matrix in-
stead of middle diagonal matrix – there are alternatives
to the GSVD with middle triangular matrices. They
also come in two versions with upper and lower trian-
gular matrices but, as shown in [20], only the version
using lower triangular matrices is useful in our applica-
tions.

This version is known as the ULLV decomposition of
H and E; it was introduced by Luk and Qian [34] and
it takes the form

H = UH LH LV
T , E = UE LV

T , (39)

where LH , L ∈ Rn×n are lower triangular, and the three
matrices UH , UE ∈ Rm×n and V ∈ Rn×n have orthonor-
mal columns. See [23] for an application of the ULLV
decomposition in speech processing.

The prewhitening technique from §6 carries over
to the ULLV decomposition. Using the orthogo-
nal decomposition of E in (39) we define the trans-
formed (prewhitened) signal zullv = (LV T )−T s =
L−TV T s whose scaled covariance matrix is estimated
by 1

mZ
T
ullvZullv, in which

Zullv = H (LV T )−1 = UH LH ,

and we see that the ULLV decomposition automatically
provides a ULV decomposition of this matrix. Hence we
can use the techniques from §4.1 to obtain the estimate

Ẑullv = UH

(
LH,11 Ψ 0

0 0

)
,
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where LH,11 denotes the leading k×k submatrix of LH .
This leads to the ULLV-based estimate

Ĥullv = ẐullvLV
T

= UH

(
LH,11 Ψ 0

0 0

)
LV T . (40)

The alternative version takes the form

H̃ullv = H YΨ with (41)

YΨ = V L−1

(
Ψ 0
0 0

)
LV T ,

and the gain matrix Ψ is given by the expressions in
Table 2 with T11 replaced by LH,11 and mη2 = 1. The
Matlab code for the MV estimate is:

[k,LH,L,V,UH] = ullv(H,E,1);
Ik = eye(k);
Psi = Ik - LH(1:k,1:k)\Ik/LH(1:k,1:k)’;
Hhat = UH(:,1:k)*LH(1:k,1:k)...

*Psi*L(1:k,1:k)*V(:,1:k)’;

Similar to the GSVD algorithm, we can replace E by
the Cholesky factor Re of the noise covariance matrix
in (33), if it is available.

6.3. Colored Noise Example
We now switch to the colored noise (the wind sig-

nal), and the top plot in Fig. 7 shows the power spec-
tra for the pure and noisy signals, together with the
power spectrum for the noise signal which is clearly non-
white. The middle plot shows the power spectra for the
MV-estimates using the GSVD and ULLV algorithms
with k = 15; the corresponding SNRs are 12.1 dB and
11.4 dB. The GSVD estimate is superior to the ULLV
estimate, but both give a satisfactory reduction of the
noise in the frequency ranges between and outside the
formants.

The bottom plot in Fig. 7 illustrates the performance
of the SVD and ULV algorithms applied to this signal
(i.e., there is no preconditioning). Clearly, the implicit
white-noise assumption is not correct and the estimates
are inferior to those using the GSVD and ULLV algo-
rithms because the SVD and ULV algorithms mistake
some components of the colored noise for signal.

7. RANK DEFICIENT NOISE

Not all noise signals lead to a full-rank noise ma-
trix E; for example, narrow-band signals often lead to
an E that is (numerically) rank deficient. In this case,
we may think of the noise as an interfering signal that
we need to suppress.

When E is rank deficient, the above GSVD- and
ULLV-based methods do not apply because ∆ and L
become rank deficient. In [22] we extended these al-
gorithms to the rank-deficient case; we summarize the
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Figure 7. LPC spectra of the signals in the colored-
noise example, using the MV estimates. Top: clean and
noisy signals together with the noise signal. Middle:
GSVD and ULLV estimates; the SNRs are 12.1 dB and
11.4 dB. Bottom: SVD and ULV estimates (both SNRs
are 11.4 dB). Without knowledge about the noise, the
SVD and ULV methods mistake some components of
the colored noise for a signal.
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Figure 8. Comparison of the clean signal and the
GSVD-based MV estimate for i = 15.
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algorithms here, and refer to the paper for the – quite
technical – details.

The GSVD is not unique in the rank-deficient case,
and several formulations appear in the literature. We
use the formulation in Matlab, and our algorithms re-
quire an initial rank-revealing QR factorization of E of
the form

E = QR, R ∈ Rp×n,
where R is upper trapezoidal and p = rank(E). Then
we use a GSVD of (H,R) of the form

H = UH

(
Γ 0
0 Io

)
XT (42)

R = UR ( ∆ , 0 )XT , (43)

where Γ and ∆ are p × p and diagonal, and Io is the
identity matrix of order n − p. Moreover, UH ∈ Rm×n
and UR ∈ Rp×p have orthonormal columns, and X ∈
Rn×n is nonsingular.

The basic idea in our algorithm is to realize that there
is no noise in the subspace R(X(:, p+1: n)) spanned by
the last n− k columns of X, and therefore any compo-
nent of the noisy signal s in this subspace should not
be filtered. The filtering should only take place in the
subspace R(X(:, 1: p). Note that the vectors in these
two subspaces are not orthogonal; as shown in [20], or-
thogonal subspaces are inferior to the bases X(:, 1: p
and X(:, p+1: n).

Again let Γ1 and ∆1 denote the leading k × k sub-
matrices of Γ and ∆. Then the GSVD-based estimate
takes the form

Ĥgsvd = UH

(
Γ 0
0 Io

)


Φ 0 0
0 0 0
0 0 Io


XT ,

where, similar to the full-rank case, the k×k gain matrix
Φ is from Table 1 with Σ1 = Γ1 ∆−1

1 = Γ1 (I − Γ2
1)−1/2

and mη2 = 1.
The corresponding Matlab code for the MV estimate,

which requires UTV Tools for the rank-revealing QR
factorization hrrqr, takes the form (where thr is the
threshold for the rank decision in E):

thr = 1e-12*norm(E,’fro’);
[Q,R] = hrrqr(E,thr);
[UH,UR,X,Gamma,Delta] = gsvd(H,R);
S = Gamma/Delta;
k = length(diag(S) > 1);;
i = 1:k; j = p+1:n;
Phi = eye(k) - inv(S(1:k,1:k))^2
Hhat = UH(:,1:k)*Gamma(1:k,1:k)...

*Phi*X(:,1:k)’ + ...
UH(:,p+1:n)*X(:,p+1:n)’;

There is also a formulation based on triangular fac-
torizations of H and E. Again assuming that we have

first computed the QR factorization of E, this formu-
lation is based on the ULLIV decomposition of (H,R)
[20], [22], [36]:

H = UH LH

(
L 0
0 Io

)
V T (44)

R = UR (L , 0 )V T , (45)

in which UH ∈ Rm×n, UR ∈ Rp×p and V ∈ Rn×n have
orthonormal columns, and LH ∈ Rn×n and L ∈ Rp×p
are lower triangular. The corresponding estimate is
given by:

Ĥulliv = UH LH




Ψ 0 0
0 0 0
0 0 Io



(
L 0
0 Io

)
XT ,

where Ψ is from Table 2 with T11 replaced by LH,11, the
leading k × k submatrix of LH .

The Matlab code requires UTV Tools plus UTV
Expansion Pack, and for the MV estimate it takes
the form:

thr = 1e-12*norm(E,’fro’);
[Q,R] = hrrqr(E,thr);
[k,LH,L,V,UH] = ulliv(A,B,1);
Ik = eye(k);
Phi = Ik - LH(1:k,1:k)\Ik/LH(1:k,1:k)’;
i = 1:k; j = p+1:n;
Hhat = UH(:,1:k)*LH(1:k,1:k)*Phi*X(:,1:k)’ ...

+ UH(:,p+1:n)*LH(p+1:n,p+1:n)*X(:,p+1:n)’;

8. DYNAMICAL PROCESSING: UP- AND
DOWN-DATING

In many applications we are facing a very long signal
whose length prevents the “brute-force” use of the above
algorithms – for example, the long signal may not be
quasi-stationary, and in a real-time application we can
only accept a certain small delay caused by the noise
reduction algorithm.

A simple approach to obtain real-time processing is
to apply the algorithms to short segments whose length
is chosen such that the delay is acceptable and such that
the signal can be considered quasi-stationary in the du-
ration of the segment. However, this simple block ap-
proach can lead to highly undesired modulation effects,
due to the fact that the filter changes in each block.

One remedy for this is to impose constraints on how
much the filters can change from one block to the next,
via imposing a “smoothness constraint” on the basis
vectors of the signal subspace from one segment to the
next [29]. This approach has proven to reduce the mod-
ulation effects considerably, at the expense of a non-
negligible increase in computational work.

An alternative approach is to apply the above meth-
ods to the signals in a window that either increases in
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length or has fixed length and “slides” along the given
signal. In both cases, we need to recompute the matrix
decomposition when the window changes, which leads
to the computational problems of up- and downdating.

In the former approach, the task is to compute the
factorization of the new, larger Hankel matrix

Hα
new =

(
αH
aT

)
, aT = s(m+1:N+1)

where α is a forgetting factor between 0 and 1. The com-
putational problem of efficiently computing the factor-
ization of Hα

new, given the factorization of H, is referred
to as updating.

In the sliding-window approach, the computational
problem becomes that of efficiently computing the fac-
torization of the modified matrix

HBnew = H( s(2:N+1) ) =
(
H(2:m, : )

aT

)

given the factorization of H. We see that this involves a
downdating step, where the top row is removed from H,
followed by an updating step.

Up- and downdating of the SVD is a computationally
demanding task which requires of the order n3 opera-
tions when Σ and V are updated, and it involves the
solution of nonlinear equations referred to as the sec-
ular equations; see [5] and [17] for details. For these
reasons, SVD updating is usually considered to be in-
feasible in real-time applications. This is one of the
original motivations for introducing the rank-revealing
triangular decompositions, whose up- and downdating
requires only of the order n2 computations.

The details of the up-and downdating algorithms for
the UTV, VSV, ULLV and ULLIV decompositions are
rather technical; we refer to the packages [13], [14] and
the many references in there for details.

9. FIR FILTER INTERPRETATIONS

The behavior and the quality of the rank-revealing
matrix factorizations that underly our algorithms is of-
ten measured in terms of linear algebra “tools” such
as perturbation bound and angles between subspaces.
While mathematically well-defined and precise, these
“tools” may not give an intuitive interpretation of the
performance of the algorithms when applied to digital
signals.

The purpose of this section is to demonstrate that
we can associate a straight-forward FIR filter inter-
pretation with each algorithm, thus allowing a perfor-
mance study which is more directly oriented towards
the signal processing applications. This section expands
the SVD/GSVD-based results from [21] to the methods
based on triangular decompositions, and also introduces
the new concept of canonical filters.

The FIR filter interpretation is most conveniently ex-
plained in connection with the estimate ŝ′ (7) obtained
via averaging along the anti-diagonals of the matrix es-
timate Ĥ. This interpretation is based on the fact that
multiplication of a vector x by a Hankel matrix H(s′),

[H(s′)x]i =
n∑

j=1

xj si−j−1, i = 1, . . . ,m

is equivalent to filtering the signal s′ with a FIR filter
whose coefficients are the elements of x.

9.1. Basic Relations
If A(·) denotes the averaging operation defined in (8),

then for an outer product vwT ∈ Rm×n we have

A(vwT ) = D−1H′(v) Jw,

where D is the N ×N diagonal matrix

D = diag(1, 2, . . . , n−1, n, . . . , n, n−1, . . . , 2, 1),

H′(v) is the N × n Hankel matrix with zero upper and
lower “corners”

H′(v) =




0 0 · · · v1
...

...
...

0 v1 · · · vn−1

v1 v2 · · · vn
v2 v3 · · · vn+1
...

...
...

vm−n+1 vm−n+2 · · · vm
vm−n+2 vm−n+3 · · · 0

...
...

...
vm 0 · · · 0




,

and J is the n × n exchange matrix consisting of the
columns of the identity matrix in reverse order, cf. [11],
[21]. If Vk = (v1, . . . , vk) and Φ = diag(φ1, . . . , φk) then
it follows from (24) that we can write

Ĥ = HWΦ =
k∑

i=1

(Hvi)φi vTi ,

and it follows that

ŝ′ = A(Ĥ)

=
k∑

i=1

A((Hvi)φi vTi
)

=
k∑

i=1

φiD
−1H′(Hvi)Jvi

= D−1
k∑

i=1

φiH′
(H(s′)vi

)
(Jvi). (46)
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The time-varying scaling D takes care of corrections at
both ends of the signal.

We conclude that the estimate ŝ′ essentially consists
of a weighted sum of k signals, each one obtained by
passing the input signal s′ through a pair of FIR filters
with filter coefficients vi and Jvi. Each of these filter
pairs corresponds to a single FIR filter of length 2n− 1
whose coefficients are the convolution of vi and Jvi; i.e.,
we can write the filter vector as ci = H′(vi) vi. These
filters7 are symmetric and have zero phase.

9.2. SVD/UTV/VSV Filters
We first consider the LS algorithms where the filter

matrix is the identity, Φ = Ik and Ψ = Ik, which corre-
sponds to a simple truncation of the SVD, UTV or VSV
decomposition. Then ŝ′ is given by (46) with φ = 1 and
with vi denoting the ith column of any of the matri-
ces V , VL, VR or VS (depending on the decomposition
used).

The k individual contributions to ŝ′ can be judged
as follows. If we write H′(Hvi) = ‖Hvi‖2H′(ṽi) with
ṽi = Hvi‖Hvi‖−1

2 , then we obtain

‖H′(Hvi)Jvi‖2 ≤ ‖Hvi‖2 ‖H′(ṽi)‖2 ‖Jvi‖2,
where ‖Jvi‖2 = 1. Moreover,

‖H′(ṽi)‖2 ≤ ‖H′(ṽi)‖F = n1/2 ‖ṽi‖2 = n1/2,

and thus, for i = 1, . . . , k,

‖H′(Hvi)Jvi‖2 ≤ n1/2 ‖Hvi‖2. (47)

For the SVD algorithm ‖Hvi‖2 = σi. The UTV and
VSV algorithms are designed such that ‖Hvi‖2 ≈ σi.
This means that the energy in the output signal of the
ith filter branch is bounded by σi (or an approximation
to σi). By truncating the decomposition at k we thus
include the k most significant components in the signal,
as determined by the filters defined by the vectors vi.

In the next section, we demonstrate that these filters
are typically band-pass filters centered at frequencies
for which the signal’s power spectrum has large val-
ues. Hence, the filters “pick out” the dominating spec-
tral components/bands in the signal; this leads to noise
reduction because these components/bands are domi-
nated by the pure signal.

For the other SVD-based algorithms (MLS, MV and
TDC), Φ 6= I is still a diagonal matrix and Eq. (46) still
holds. The analysis remains unchanged, except that the
ith output signal is multiplied by the weight φi.

For the other UTV- and VSV-based algorithms (MV
and TDC), the filter matrix Ψ is a symmetric k × k
matrix with eigenvalue decomposition

Ψ = Y M Y T , (48)
7It is easy to verify that we obtain the same FIR filters if we base
our algorithms on Toeplitz matrices.
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Figure 9. Frequency responses of the combined FIR fil-
ters for the SVD algorithm (thick lines) and ULV algo-
rithm (thin lines) applied to the test problem in Fig. 5.
Both algorithms compute the MV estimates, and the
filters are computed by means of (46) and (49).

in which M = diag(µ1, . . . , µk) contains the eigenvalues,
and the matrix Y = (y1, . . . , yk) contains the orthonor-
mal eigenvectors. Now let Z = V ( : , 1: k)Y denote the
n×k matrix obtained by multiplying the first k columns
of V , VL, VR or VS by Y . Then we can write

Ĥ = H ZM ZT ,

which immediately leads to the expression

ŝ′ = D−1
k∑

i=1

µiH′(Hzi)Jzi, (49)

where zi is the ith columns of Z. The FIR filter inter-
pretation described above immediately carries over to
this expression: the estimate ŝ′ is a weighted sum (with
weights µi) of k signals obtained by passing s′ through
the filter pairs zi and Jzi.

Figure 9 shows the frequency responses for the com-
bined FIR filter pairs associated with the SVD and ULV
estimates in Fig. 5. For i = 1 through 11, the SVD and
ULV filters are very similar in the frequency domain,
while some differences show up for i > 11. This sup-
ports the similarity between the two algorithms that we
already noted before.

The first two filters (for i = 1 and 2) are bandpass
filters that capture the largest formant at 700 Hz, while
the next two filters (for i = 3 and 4) are bandpass fil-
ters that capture the second largest formant at 1.1 kHz.
The next six filters (for i = 5 through 10) capture more
information in the frequency range 0–1500 Hz. The five
filters for i = 11 through 15 capture the two formants at
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2.3 kHz and 3.3 kHz. By adaptively placing bandpass
filters at the portions of the signal with high energy, the
subspace algorithms are able to extract the most impor-
tant spectral components of the noisy signal while, at
the same time, suppressing the noise in the frequency
ranges with less energy.

9.3. GSVD/ULLV Filters
The subspace algorithms for general noise have FIR

filter interpretations similar to those for the white-noise
algorithms.

To derive the FIR filters for the GSVD algorithms,
let ξ1, . . . , ξk denote the first k columns of the matrix
Ξ = X−T in (38), such that

Ĥgsvd = H YΦ = H Ξ(: , 1: k) ΦX( : , 1: k)T .

Then it follows from §9.1 that

ŝ′ = A(H YΦ)

= D−1
k∑

i=1

φiH′
(H(s′)ξi

)
Jxi. (50)

We see that the coefficients of the ith FIR filter pair
ξi and Jxi consist of the elements of the ith columns
of Ξ = X−T and X (in reverse order), and the com-
bined filters have coefficients given by the convolution
of ξi and Jxi. In contrast to the SVD/UTV/VSV algo-
rithms, these are not zero-phase filters.

In order to obtain bounds similar to (47), we make
the reasonable assumption that ‖E‖2 ≤ ‖H‖2. Then it
follows from the definition of the GSVD that

‖Jxi‖2 = ‖xi‖2 ≤ ‖X‖2 =
∥∥∥∥
(
H
E

)∥∥∥∥
2

≤ 2 ‖H‖2.

From the definition we also have ‖H ξi‖2 = γi. Follow-
ing the same procedure as in the previous section we
thus obtain, for i = 1, . . . , k,

‖H′(H(s′)ξi
)
Jxi‖2 ≤ 2n1/2 γi ‖H‖2. (51)

Similar to before, we thus include the k most significant
components in the signal, as determined by the filters
defined by the vectors ξi and xi.

For the ULLV algorithm we insert the eigenvalue de-
composition of Ψ (48) into (41) to obtain

H̃ullv = H V L−1

(
YM Y T 0

0 0

)
LV T

=
k∑

i=1

(H V L−1yi)µi (V LT yi)T .

When we insert this result into the expression for A(·)
we immediately obtain

ŝ′ = D−1
k∑

i=1

φiH′
(H(s′)V L−1yi

)
J V LT yi. (52)
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Figure 10. Frequency responses of the FIR filters for
the GSVD algorithm (thick lines) and ULLV algorithm
(thin lines) applied to the test problem in Fig. 7. Both
algorithms compute the MV estimates, and the filters
are computed by means of (50) and (52).

and we see that the coefficients of the ith FIR filter
pair are the elements of the two vectors V L−1yi and
J V LT yi.

While difficult to immediately interpret, the relations
derived in this section allow us to compute the FIR
filters and in this way study the performance of the
algorithms considered.

10. CANONICAL FILTERS

We shall now present a novel technique, based on the
FIR filter interpretation, for comparing the performance
of different subspace algorithms. To simplify the presen-
tation, we restrict ourselves to the LS estimation algo-
rithms where Φ = Ψ = Ik. The rank-k matrix estimates
take the form

Ĥ = H Vk V
T
k ,

in which Vk denotes the submatrix consisting of the first
k columns of V (in the SVD algorithm), UR or UL (in
the UTV algorithms) or VS (in the VSV algorithm).
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10.1. Theory
The important observation here is that the matrix Ĥ

is independent of the choice of the columns v1, . . . , vn
of the matrix Vk, as long as they are orthonormal and
span the same subspace. To see this, let Q be k × k
orthogonal matrix; then the columns of the matrix

Wk = VkQ (53)

form a second set of orthonormal vectors spanning
R(Vk), and WkW

T
k = VkQQ

TV Tk = VkV
T
k . Another

way to state this is to observe that VkV Tk is an orthog-
onal projection matrix.

This fact allows us – for each estimation algorithm –
to choose a new set of vectors w1, . . . , wn that may bet-
ter describe the estimate ŝ′ than the vectors v1, . . . , vn,
knowing that ŝ′ stays the same. And since these vectors
define FIR filter coefficients in a filter interpretation,
this means that we are free to choose filters as long as
(53) is satisfied.

In particular, if we want to compare the output of two
rank-reduction algorithms, then we can try to choose
the vectors w1, . . . , wn for the two algorithms such that
these vectors are as similar as possible. The more simi-
lar the filters, the more similar the estimates.

The solution to the problem of choosing these vectors
comes in the form of the canonical vectors associated
with the subspaces spanned by the columns of the Vk-
matrices for the two algorithms in consideration.

To illustrate this, let us compare the truncated SVD
and ULV algorithms which produce LS estimates. We
work with the two matrices Vk and VL,k, and we let
Vk = R(Vk) and VL,k = R(VL,k) denote the subspaces
spanned by the columns of these two matrices. If

V Tk VL,k = UΘ ΘV TΘ (54)

is the SVD of the cross-product matrix, then the canon-
ical vectors wi and wL,i are the columns of

Wk = VkUΘ and WL,k = VL,kVΘ. (55)

The singular values appearing in Θ are termed the
canonical correlations, and they are equal to the cosines
of the canonical angles θ1, . . . , θk. I.e.,

Θ = diag (cos(θ1), . . . , cos(θk)) (56)

with 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θk. See [2], [3] and [16] for
more details.

We emphasize the following geometric interpretation
of the canonical angles and vectors. The smallest canon-
ical angle θ1 is the smallest angle between any two vec-
tors v and vL in Vk and VL,k, respectively, and it at-
tained for v = w1 and vL = wL,1. The second canonical
angle θ2 is the smallest angle between any two vectors v

and vL orthogonal to w1 and wL,1 in Vk and VL,k, and
it is attained for v = w2 and vL = wL,2; etc.

Hence, canonical vectors associated with small canon-
ical angles define subspaces of Vk and VL,k that are
as close as possible, and zero canonical angles define
canonical vectors in the intersection of the subspaces
Vk and VL,k. Zero canonical vectors are always present
when k is greater than n/2, because Vk and VL,k (being
subspaces of Rn) must have a nontrivial intersection of
dimension 2k − n:

θ1 = · · · = θ2k−n = 0 when 2k > n.

We can now compare the truncated SVD and ULV
algorithms by comparing the canonical FIR filters
determined by the canonical vectors w1, . . . , wk and
wL,1, . . . , wL,k. If k > n/2 then we are sure that 2k−n
of these filters are identical, and if some of the nonzero
canonical angles θi are small then the associated filters
are also guaranteed to be similar.

Thus, small (and zero) canonical angles define FIR
filters for the two algorithms that extract very similar
signal components.

Of course, there is more to this analysis than merely
the canonical angles. Even if θi is not very small, mean-
ing that the vectors wi and wL,i are somewhat different,
say, in the 2-norm, the associated filters may have simi-
lar properties in the frequency domain. For example, wi
and wL,i may represent bandpass filters with approxi-
mately the same center frequency and bandwidth.

Hence, it is the size of the canonical angles θi together
with the frequency responses of the canonical FIR filters
represented by wi and wL,i that provides a convenient
tool for comparison of the similarities and differences in
the output signals from the two algorithms character-
ized by Vk and VL,k.

We note that, as pointed out in [3], the most accu-
rate way to compute small canonical angles θi is via the
singular values of the matrix (I − VkV Tk )VL,k:

for i=1:k
VLk = VLk - Vk(:,i)*(Vk(:,i)’*VLk);

end
theta = asin(min(1,svd(VLk)));
theta = flipud(theta);

10.2. Example
We illustrate the above comparison of the truncated

SVD and ULV algorithms with a numerical example
using the same data as in §3 and with truncation pa-
rameter k = 12.

In order to demonstrate the power of our analysis, we
use the high-rank algorithm hulv to compute the ULV
decomposition. This algorithm seeks to compute good
approximations to the singular vectors corresponding
to the smallest singular values, but we cannot expect
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Figure 11. Frequency responses of the FIR filters for the
truncated SVD and high-rank ULV algorithms (which
produce LS estimates), applied to the test problem in
Fig. 5. Thick lines are SVD filters; thin lines are ULV
filters.
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Figure 12. The canonical angles θ1, . . . , θk (in radians)
associated with the matrices Vk and VL,k from the SVD
and the ULV decomposition computed by the high-rank
hulv algorithm.

that the principal singular vectors are approximated so
well in this algorithm. Hence we cannot expect the FIR
filters for the SVD- and ULV-based methods to be very
similar, and Fig. 11 confirms this.

Nevertheless the truncated SVD and ULV algorithms
produce estimated signals that sound qualitatively the
same, in spite of the fact that the FIR filters appear
to be quite different. The canonical angles and filters
provide an explanation for this. Figure 12 shows the
canonical angles θ1, . . . , θk associated with the matri-
ces Vk and VL,k, and we see that many of these an-
gles are quite small. Hence we can expect that the two
algorithms produce estimates ŝ that have very similar
signal components lying in a similar subspaces of the
12-dimensional signal subspaces Vk and VL,k used here.

This is confirmed by the plots in Fig. 13 of the SVD/
ULV canonical filters defined by the columns of Wk and
WL,k in (55). We see that actually the first 8 canon-
ical filters are very similar. We conclude that for this
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Figure 13. The frequency responses for the SVD/ULV
canonical filters defined by the columns of Wk and WL,k

in (55). Thick lines are SVD canonical filters; thin lines
are ULV canonical filters.

particular noisy signal, the SVD and ULV algorithms
produce filtered signals that have very similar signal
components, each lying in an 8-dimensional subspace
of the respective signal subspaces for the two methods.
This explains why the two estimates sound so similar,
despite the fact that the columns of Vk and VL,k are
quite different.

11. CONCLUSION

In this paper we surveyed the definitions and use
of diagonal matrix decompositions (eigenvalue and sin-
gular value decompositions) and rank-revealing matrix
decompositions (ULV, URV, VSV, ULLV and ULLIV)
in single-channel subspace-based noise reduction algo-
rithms for speech signals, and we illustrated the al-
gorithms with working Matlab code and speech en-
hancement examples. We have further provided finite-
duration impulse response (FIR) filter representations
of the noise reduction algorithms and derived closed-
form expressions for the FIR filter coefficients. More-
over, we have introduced a new analysis tool called
canonical filters which allows us to compare the behav-
ior and performance of the subspace based algorithms
in the frequency domain.
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APPENDIX: MV and TDC ESTIMATES

The following derivation of the SVD-based MV esti-
mate was given in [7].

Lemma A.1. Let the SVDs of H and H be given
by (12) and (11), and let E satisfy (13). Then the two
SVDs are related by

(U1 , U2 ) =
(

(U1Σ1 + EV1)Σ−1
1 , (mη2)−1/2EV2

)

(
Σ1 0
0 Σ2

)
=

(
(Σ

2

1 +mη2Ik)1/2 0
0 mη2In−k

)

(V1 , V2 ) = (V 1 , V 2 ).

Proof. Inserting the SVD of H into H = H + E and
using that E = E V 1V

T

1 + E V 2V
T

2 , we get H = Z V
T

with

Z = (Z1 , Z2 ) =
(
U1Σ1 + EV 1 , EV 2

)
.

We have

ZT1 Z1 = Σ1U
T

1 U1Σ1 + Σ1U
T

1 EV 1 +

V
T

1 E
TU1Σ1 + V

T

1 E
TEV 1

= Σ
2

1 +mη2Ik

ZT2 Z2 = V
T

2 E
TEV 2 = mη2In−k

ZT2 Z1 = V
T

2 E
TU1Σ1 + V

T

2 E
TEV 1 = 0

and thus we can write Z = (Z D−1)D with

D =

(
(Σ

2

1 +mη2Ik)1/2 0
0 (mη2)1/2In−k

)
.

By comparing the SVDs of H and H it follows that
U = Z D−1, Σ = D, and V = V . �

As a consequence of this Lemma we have

UT1 U1 = Σ−1
1

(
Σ1U

T

1 U1 + V T1 E
TU1

)
= Σ−1

1 Σ1

UT1 U2 = Σ−1
1

(
Σ1U

T

1 U2 + V T1 E
TU2

)
= 0

UT2 U = (mη2)−1/2V T2 E
TU = 0

and thus

UTU =
(

Σ−1
1 Σ1 0
0 0

)
.

The matrix Wmv that solves (19) is Wmv = H†H, where
H† = V Σ−1UT is the pseudoinverse of H, and thus

Ĥmv = HH†H = U UT U ΣV
T

= U1 Σ−1
1 Σ

2

1V
T .

Using the relation Σ
2

1 = Σ2
1 − mη2Ik, we immediately

obtain (20).
The derivation of the UTV- and VSV-based MV es-

timate is new; it follows that of the SVD. Note that

we must assume that the off-diagonal blocks in the UTV
and VSV decompositions are zero (in practice, the norm
of the off-diagonal block is small). Hence, in our deriva-
tion the UTV and VSV decompositions take the block
diagonal form

H = UT

(
T 11 0
0 0

)
V
T

T

H = UT

(
T11 0
0 T22

)
V TT ,

where T denotes either L, R or S.
Lemma A.2. Assuming that E satisfies (13), the

two above decompositions satisfy

UT =
(

(UT1T 11 + EVT1)T−1
11 , (mη2)−1/2EVT2

)

T =

(
chol(T

T

11T 11 +mη2Ik) 0
0 (mη2)1/2In−k

)

VT = V T ,

where chol(·) denotes the Cholesky factor.
Proof. We insert the decomposition of H into H =

H + E and use E = EV T1V
T

T1 + EV T2V
T

T2 to obtain
H = Z V

T

T with

Z = (Z1 , Z2 ) =
(
UT1T 11 + EV T1 , EV T2

)
.

We have

ZT1 Z1 = T
T

11U
T

T1UT1T 11 + T 11U
T

T1EV T1 +

V
T

T1E
TUT1T 11 + V

T

T1E
TEV T1

= T
T

11T 11 +mη2Ik

ZT2 Z2 = V
T

T2E
TEV T2 = mη2In−k

ZT2 Z1 = V
T

T2E
TUT1T 11 + V

T

T2E
TEV T1 = 0

and thus we can write Z = (Z D−1)D with

D =

(
chol(T

T

11T 11 +mη2Ik) 0
0 (mη2)1/2In−k

)

By comparing the decompositions of H and H it follows
that UT = Z D−1, T = D, and VT = V T . �

As a consequence of this lemma we have

UTT UT =

(
T−T11 T

T

11 0
0 0

)

(the derivation is similar to that for the SVD). Hence
the UTV-based estimate is

Ĥmv = HH†H = UTU
T
T UTT V

T

= UT1T
−T
11 T

T

11T 11V
T
T1

= UT1T11 T
−1
11 T

−T
11 (TT11T11 −mη2Ik)V TT1

= UT1T11 (Ik −mη2T−1
11 T

−T
11 )V TT1.
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This is the result given in Table 2.
We now turn to the SVD-based TDC estimate, and

we follow the derivation from [12]. The Lagrange func-
tion for the constrained problem in (21) is

L(W,λ) = ‖HW −W‖2F + λ̃ (‖W‖2F −mα2)

where λ̃ is the Lagrange parameter for the constraint.
Differentiation with respect to the elements in W yields

L′ = 2H
T

(HW −H) + 2λ̃W,

and setting L′ = 0 we obtain the condition

(H
T
H + λ̃ I)W = H

T
H.

Thus

Wtdc =
(
H
T
H + λ̃I

)−1

H
T
H

= V
(

Σ
2

+ λ̃Ik

)−1

Σ
2
V
T

= V 1

(
Σ

2

1 + λ̃Ik

)−1

Σ
2

1 V
T

1 .

When we set λ̃ = λmη2, multiply with H, and insert
Σ

2

1 = Σ2
1 −mη2Ik and V 1 = V1 from Lemma A.1, then

we obtain (22).
The UTV- and VSV-based TDC estimates are de-

rived analogously, using again the above block-diagonal
decompositions:

Wtdc = V T

(
T
T
T + λmη2Ik

)−1

T
T
T V

T

T

= V T1

(
T
T

11T 11 + λmη2Ik

)−1

T
T

11T 11 V
T

T1.

Multiplying with H and inserting T
T

11T 11 = TT11T11 −
mη2Ik and V T1 = VT1 we obtain the result in Table 2.
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