1,733 research outputs found

    Power Efficient and High Speed Carry Skip Adder using Binary to Excess One Converter

    Get PDF
    The design of high-speed and low-power VLSI architectures need efficient arithmetic processing units, which are optimized for the performance parameters, namely, speed and power consumption. Adders are the key components in general purpose microprocessors and digital signal processors. As a result, it is very pertinent that its performance augers well for their speed performance. Additionally, the area is an essential factor which is to be taken into account in the design of fast adders. Towards this end, high-speed, low power and area efficient addition and multiplication have always been a fundamental requirement of high-performance processors and systems. The major speed limitation of adders arises from the huge carry propagation delay encountered in the conventional adder circuits, such as ripple carry adder and carry save adder. Observing that a carry may skip any addition stages on certain addend and augend bit values, researchers developed the carry-skip technique to speed up addition in the carry-ripple adder. Using a multilevel structure, carry-skip logic determines whether a carry entering one block may skip the next group of blocks. Because multilevel skip logic introduces longer delays, Therefore, in this paper we examine The basic idea of this work is to use Binary to Excess- 1 converter (BEC) instead of RCA with Cin=1 in conventional CSkA in order to reduce the area and power. BEC uses less number of logic gates than N-bit full adder

    High Speed and Low Power Consumption Carry Skip Adder using Binary to Excess-One Converter

    Get PDF
    Arithmetic and Logic Unit (ALU) is a vital component of any CPU. In ALU, adders play a major role not only in addition but also in performing many other basic arithmetic operations like subtraction, multiplication, etc. Thus realizing an efficient adder is required for better performance of an ALU and therefore the processor. For the optimization of speed in adders, the most important factor is carry generation. For the implementation of a fast adder, the generated carry should be driven to the output as fast as possible, thereby reducing the worst path delay which determines the ultimate speed of the digital structure. In conventional carry skip adder the multiplexer is used as a skip logic that provides a better performance and performs an efficient operation with the minimum circuitry. Even though, it affords a significant advantages there may be a large critical path delay revealed by the multiplexer that leads to increase of area usage and power consumption. The basic idea of this paper is to use Binary to Excess-1 Converters (BEC) to achieve lower area and power consumption

    Concepts for on-board satellite image registration. Volume 3: Impact of VLSI/VHSIC on satellite on-board signal processing

    Get PDF
    Anticipated major advances in integrated circuit technology in the near future are described as well as their impact on satellite onboard signal processing systems. Dramatic improvements in chip density, speed, power consumption, and system reliability are expected from very large scale integration. Improvements are expected from very large scale integration enable more intelligence to be placed on remote sensing platforms in space, meeting the goals of NASA's information adaptive system concept, a major component of the NASA End-to-End Data System program. A forecast of VLSI technological advances is presented, including a description of the Defense Department's very high speed integrated circuit program, a seven-year research and development effort

    High Performance and Optimal Configuration of Accurate Heterogeneous Block-Based Approximate Adder

    Full text link
    Approximate computing is an emerging paradigm to improve power and performance efficiency for error-resilient application. Recent approximate adders have significantly extended the design space of accuracy-power configurable approximate adders, and find optimal designs by exploring the design space. In this paper, a new energy-efficient heterogeneous block-based approximate adder (HBBA) is proposed; which is a generic/configurable model that can be transformed to a particular adder by defining some configurations. An HBBA, in general, is composed of heterogeneous sub-adders, where each sub-adder can have a different configuration. A set of configurations of all the sub-adders in an HBBA defines its configuration. The block-based adders are approximated through inexact logic configuration and truncated carry chains. HBBA increases design space providing additional design points that fall on the Pareto-front and offer better power-accuracy trade-off compared to other configurations. Furthermore, to avoid Mont-Carlo simulations, we propose an analytical modelling technique to evaluate the probability of error and Probability Mass Function (PMF) of error value. Moreover, the estimation method estimates delay, area and power of heterogeneous block-based approximate adders. Thus, based on the analytical model and estimation method, the optimal configuration under a given error constraint can be selected from the whole design space of the proposed adder model by exhaustive search. The simulation results show that our HBBA provides improved accuracy in terms of error metrics compared to some state-of-the-art approximate adders. HBBA with 32 bits length serves about 15% reduction in area and up to 17% reduction in energy compared to state-of-the-art approximate adders.Comment: Submitted to the IEEE-TCAD journal, 16 pages, 16 figure

    Critical design issues for gallium arsenide VLSI circuits.

    Get PDF
    The aim of this research was to design and evaluate various Gallium Arsenide circuit elements such as logic gates, adders and multipliers suitable for high speed VLSI circuits. The issues addressed are the logic gate design and optimisation, evaluation of various buffering schemes and the impact of the algorithm on adder and multiplier performance for digital signal processing applications. This has led to the development of a design approach to produce high speed and low power dissipation Gallium Arsenide VLSI circuits. This is achieved by : Evaluating the well established Direct Coupled Logic (DCFL) gates and proposing an alternative gate, namely the Source Follower DCFL (SDCFL), to improve the noise margin and speed. Suggesting various buffering schemes to maintain high speed in areas where the fanout loading is high (eg. clock drivers). Comparing various adder types in terms of delay-power and delay-area products to arrive at a suitable architecture for Gallium Arsenide implementation and to determine the influence of the algorithm and layout approach on circuit performance. To investigate this further, a multiplier was also designed to assess the performance at higher levels of integration. Applying a new layout approach, called the 'ring notation*, to the adder and multiplier circuits in order to improve their delay-area product. Finally, the critical factors influencing the performance of the circuits are reviewed and a number of suggestions are given to maintain reliable operation at high speed

    A Survey on Approximate Multiplier Designs for Energy Efficiency: From Algorithms to Circuits

    Full text link
    Given the stringent requirements of energy efficiency for Internet-of-Things edge devices, approximate multipliers, as a basic component of many processors and accelerators, have been constantly proposed and studied for decades, especially in error-resilient applications. The computation error and energy efficiency largely depend on how and where the approximation is introduced into a design. Thus, this article aims to provide a comprehensive review of the approximation techniques in multiplier designs ranging from algorithms and architectures to circuits. We have implemented representative approximate multiplier designs in each category to understand the impact of the design techniques on accuracy and efficiency. The designs can then be effectively deployed in high-level applications, such as machine learning, to gain energy efficiency at the cost of slight accuracy loss.Comment: 38 pages, 37 figure

    Increasing adder efficiency by exploiting input statistics

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2008.Includes bibliographical references (p. 49-50).Current techniques for characterizing the power consumption of adders rely on assuming that the inputs are completely random. However, the inputs generated by realistic applications are not random, and in fact include a great deal of structure. Input bits are more likely to remain in the same logical states from addition to addition than would be expected by chance and bits, especially the most significant bits, are very likely to be in the same state as their neighbors. Taking this data, I look at ways that it can be used to improve the design of adders. The first method I look at involves looking at how different adder architectures respond to the different characteristics of input data from the more significant and less significant bits of the adder, and trying to use these responses to create a hybrid adder. Unfortunately the differences are not sufficient for this approach to be effective. I next look at the implications of the data I collected for the optimization of Kogge- Stone adder trees, and find that in certain circumstances the use of experimentally derived activity maps rather than ones based on simple assumptions can increase adder performance by as much as 30%.by Andrew Lawrence Clough.M.Eng

    Harnessing resilience: biased voltage overscaling for probabilistic signal processing

    Get PDF
    A central component of modern computing is the idea that computation requires determinism. Contrary to this belief, the primary contribution of this work shows that useful computation can be accomplished in an error-prone fashion. Focusing on low-power computing and the increasing push toward energy conservation, the work seeks to sacrifice accuracy in exchange for energy savings. Probabilistic computing forms the basis for this error-prone computation by diverging from the requirement of determinism and allowing for randomness within computing. Implemented as probabilistic CMOS (PCMOS), the approach realizes enormous energy sav- ings in applications that require probability at an algorithmic level. Extending probabilistic computing to applications that are inherently deterministic, the biased voltage overscaling (BIVOS) technique presented here constrains the randomness introduced through PCMOS. Doing so, BIVOS is able to limit the magnitude of any resulting deviations and realizes energy savings with minimal impact to application quality. Implemented for a ripple-carry adder, array multiplier, and finite-impulse-response (FIR) filter; a BIVOS solution substantially reduces energy consumption and does so with im- proved error rates compared to an energy equivalent reduced-precision solution. When applied to H.264 video decoding, a BIVOS solution is able to achieve a 33.9% reduction in energy consumption while maintaining a peak-signal-to-noise ratio of 35.0dB (compared to 14.3dB for a comparable reduced-precision solution). While the work presented here focuses on a specific technology, the technique realized through BIVOS has far broader implications. It is the departure from the conventional mindset that useful computation requires determinism that represents the primary innovation of this work. With applicability to emerging and yet to be discovered technologies, BIVOS has the potential to contribute to computing in a variety of fashions.PhDCommittee Chair: Anderson, David; Committee Member: Conte, Thomas; Committee Member: Ferri, Bonnie; Committee Member: Hasler, Paul; Committee Member: Mooney, Vincen

    Efficient modular arithmetic units for low power cryptographic applications

    Get PDF
    The demand for high security in energy constrained devices such as mobiles and PDAs is growing rapidly. This leads to the need for efficient design of cryptographic algorithms which offer data integrity, authentication, non-repudiation and confidentiality of the encrypted data and communication channels. The public key cryptography is an ideal choice for data integrity, authentication and non-repudiation whereas the private key cryptography ensures the confidentiality of the data transmitted. The latter has an extremely high encryption speed but it has certain limitations which make it unsuitable for use in certain applications. Numerous public key cryptographic algorithms are available in the literature which comprise modular arithmetic modules such as modular addition, multiplication, inversion and exponentiation. Recently, numerous cryptographic algorithms have been proposed based on modular arithmetic which are scalable, do word based operations and efficient in various aspects. The modular arithmetic modules play a crucial role in the overall performance of the cryptographic processor. Hence, better results can be obtained by designing efficient arithmetic modules such as modular addition, multiplication, exponentiation and squaring. This thesis is organized into three papers, describes the efficient implementation of modular arithmetic units, application of these modules in International Data Encryption Algorithm (IDEA). Second paper describes the IDEA algorithm implementation using the existing techniques and using the proposed efficient modular units. The third paper describes the fault tolerant design of a modular unit which has online self-checking capability --Abstract, page iv
    • …
    corecore