
HARNESSING RESILIENCE: BIASED VOLTAGE OVERSCALING
FOR PROBABILISTIC SIGNAL PROCESSING

A Thesis
Presented to

The Academic Faculty

by

Jason George

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
December 2011

HARNESSING RESILIENCE: BIASED VOLTAGE OVERSCALING
FOR PROBABILISTIC SIGNAL PROCESSING

Approved by:

Paul Hasler, Committee Chair
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Bonnie Heck Ferri
School of Electrical and Computer
Engineering
Georgia Institute of Technology

David Anderson, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Thomas Conte
School of Computer Science
Georgia Institute of Technology

Vincent J. Mooney III
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: 22 August 2011

To my parents,

Mike and Gisela George,

who did all the things over the years so my brother and I might have opportunities

such as this one.

iii

ACKNOWLEDGEMENTS

First, and foremost, I would like to thank my doctoral advisor David Anderson, who was

kind enough to take me in when my research was so far from what the rest of his group was

doing. Along the way David has consistently offered guidance and provided opportunities

that not only made the completion of my dissertation possible, but helped launch my career

in a direction I had only hoped might be an option. Without question, David is one of the

kindest and most generous people I have even known and a graduate student would be lucky

to have such a wonderful advisor.

Second, I would like to thank Krishna Palem, who advised me for quite some time. It

was Krishna who provided me with such an unorthodox and interesting dissertation topic.

Had it not been for an opportunity that took Krishna away from Georgia Tech, which he

generously extended to me, I would have completed my dissertation with Krisha. Even so,

Krisha continued to offer both research and career advice from his new post, for which I

am genuinely grateful.

In the same vein, I want to thank my dissertation committee—Paul Hasler, Vincent J.

Mooney III, Bonnie Heck Ferri, and Thomas Conte—who were nice enough to take time

away from their insanely busy schedules to help me complete my dissertation. In particular,

both Paul and Vincent provided invaluable insight and expertise in circuit design that were

instrumental in the completion of my work.

Many of my fellow graduate students also deserve mention for their contributions to

the completion of my doctoral degree—far more than I could enumerate here. My colleges

and predecessors from the CREST group laid the foundation for my topic and helped im-

mensely with my work. Lakshmi Chakrapani, Bo Marr, Bilge Akgul, and Pinar Korkmaz

all contributed significantly and both Lakshmi and Bo continue to offer advice long after

their graduations. Similarly, my colleagues from the CADSP group have helped in many

iv

aspects of my dissertation work. In particular, Brian Degnan has consistently (and gen-

erously) helped me sort out every Cadence issue that halted my progress and whenever a

signal processing subtlety was eluding me Brian Gestner, Ken Chiu, and Devangi Parikh

were always happy to help.

Finally, it was my parents who set me on the path that eventually placed me here.

They always made sure I had the tools I needed to succeed and provided the guidance

and encouragement—regardless of how big or small the task—that helped see me through

whatever endeavor was at hand. Without my parents support, it is unlikely I would have

ever been able to accomplish all the things that helped me get here and I could never thank

them enough.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . viii

LIST OF FIGURES . ix

SUMMARY . xiv

I INTRODUCTION . 1

1.1 A Historical Perspective: Power Consumption and Computing 1

1.2 Global Energy Consumption and the Impact of Computing 4

1.3 Achieving Low Power Computation . 6

II PROBABILISTIC COMPUTING . 10

2.1 Fundamentals of Probabilistic Computing 10

2.2 Probabilistic Arithmetic . 12

2.3 Probabilistic CMOS . 15

2.4 Probabilistic Gates . 16

2.5 Probabilistic Applications . 18

2.6 Resilient Applications . 20

2.7 Probabilistic System-on-a-Chip . 22

III BIASED VOLTAGE OVERSCALING . 24

3.1 Achieving Application Resiliency . 24

3.2 Challenges of Biased Voltage Overscaling 27

3.3 Reduced Precision as an Alternative . 30

IV COMPARING BIASED VOLTAGE OVERSCALING AND REDUCED
PRECISION . 36

4.1 Standard Cell Library . 36

4.2 Conventional Circuit Layout . 38

4.3 BIVOS Circuit Layout . 41

4.4 Simulation Methodology and HSpice Characterization 51

4.5 A Custom PCMOS Simulator . 54

vi

4.6 Estimating Mean-Squared Error . 59

4.7 Comparing a Selection of Circuits . 63

4.7.1 Ripple-Carry Adder . 63

4.7.2 Array Multiplier . 74

4.7.3 Finite-Impulse-Response Filter . 80

V H.264 VIDEO DECODING AS A PROOF OF CONCEPT 92

5.1 H.264 Video Decoding . 92

5.2 FIR Architecture . 94

5.3 Generation of Multiple Voltage Levels . 99

5.4 H.264 Video Decoding Software . 101

5.5 Video Decoding Results . 103

VI CONCLUSIONS AND POTENTIAL DIRECTIONS 107

6.1 Contributions: Biased Voltage Overscaling 107

6.2 Investigating Delay as a Source of Noise 109

6.3 Implications for Optical Computing . 110

APPENDIX A — STANDARD CELL IMPLEMENTATIONS 112

APPENDIX B — CMOS RIPPLE-CARRY ADDER 117

APPENDIX C — INVERTER BIVOS RIPPLE-CARRY ADDER . . . 119

APPENDIX D — LEVEL-CONVETER BIVOS RIPPLE-CARRY ADDER
121

APPENDIX E — H.264 VIDEO DECODING FRAMES 123

APPENDIX F — H.264 VIDEO DECODING NOISE 130

REFERENCES . 136

vii

LIST OF TABLES

1 Standard Cell Area Consumption . 38

2 Standard Cell Design . 39

3 Area Impact of PCMOS Versus Standard Circuit Design 45

4 Biasing Configurations Employed for PCMOS Simulator Validation 56

5 Energy Consumption per Clock Step for an 8-bit Ripple-Carry Adder . . . 56

6 Comparison of HSpice and PCMOS Simulator Measurements for Propagation
Delay . 58

7 Worst Case Propagation Delay for an 8-bit Ripple-Carry Adder 59

8 Comparison of MSE Results . 63

9 Expected Full Adder Summation . 71

10 FIR Filter Coefficients . 81

11 FIR Layout Implementations . 103

12 FIR Filter Energy Consumption and SNR 104

13 Efficiency Comparison . 106

viii

LIST OF FIGURES

1 Power consumption throughout the evolution of modern computing 2

2 Thermal noise interference in digital voltage signals 16

3 Error probability due to thermal noise . 17

4 Energy-probability relationship of a PCMOS inverter 17

5 Energy-probability relationship of a PCMOS full adder 18

6 Probabilistic System-on-Chip (PSoC) . 22

7 Error significance in binary logic . 25

8 Uniform voltage scaling applied to H.264 video decoding 26

9 The impact of biased voltage overscaling versus uniform voltage overscaling 27

10 Biased voltage overscaling as applied to a ripple carry adder 28

11 Carry propagation and the impact of bit errors along the carry chain 29

12 Output versus input for a linearly spaced, nearest neighbor quantizer 33

13 Probability density function a nearest neighbor quantizer 34

14 Stable pole locations for a second-order polynomial 35

15 Transistor schematic for a 24-transistor, full adder 37

16 VLSI layout for a 24-transistor, full adder 37

17 Ripple-carry adder implementation with alternating positive and negative logic 40

18 Voltage boundary at two biased bit positions 42

19 PCMOS ripple-carry adder with inverters providing level conversion 43

20 PCMOS ripple-carry adder with traditional level conversion 44

21 Standard CMOS block-propagate adder implementation 46

22 BIVOS block-propagate adder with inverter level conversion 47

23 BIVOS block-propagate adder with traditional level conversion 47

24 Standard CMOS carry-select adder implementation 48

25 BIVOS carry-select adder with inverter level conversion 49

26 BIVOS carry-select adder with traditional level conversion 50

27 Workflow for simulation methodology . 52

28 PCMOS simulator design . 54

29 A comparison of HSpice and PCMOS simulation results 57

ix

30 A comparison of HSpice and PCMOS probability simulation results 60

31 Estimated MSE error as compared to simulated MSE 62

32 Switching activity for a 16-bit, fixed-point, ripple-carry adder 65

33 Ripple-carry-adder bit-error rates by bit position 70

34 MSE vs energy for a ripple-carry adder employing inverter level conversion 70

35 MSE vs energy for a ripple-carry adder employing traditional level conversion 72

36 Ripple-carry-adder delay for reduced-precision and inverter-based BIVOS im-
plementations . 73

37 Ripple-carry-adder delay for reduced-precision and level-converter-based BIVOS
implementations . 73

38 Switching activity for a standard array multiplier 74

39 Switching activity for a reduced-precision, array multiplier 75

40 Switching activity for an inverter-based BIVOS, array multiplier 76

41 Switching activity for a level-converter-based BIVOS, array multiplier . . . 76

42 Array multiplier bit-error rates by bit position 77

43 Mean-squared error vs energy for a fixed-point, array multiplier 78

44 Mean-squared error vs energy for a fixed-point, array multiplier 79

45 Array-multiplier delay for reduced-precision and inverter-based BIVOS im-
plementations . 79

46 Array-multiplier delay for reduced-precision and level-converter-based BIVOS
implementations . 80

47 Magnitude response for a low-pass, FIR filter 81

48 Magnitude response for a high-pass, FIR filter 81

49 Switching activity for a level-converter-based BIVOS, low-pass FIR filter . . 82

50 Switching activity for a level-converter-based BIVOS, high-pass FIR filter . 83

51 Switching activity for a level-converter-based BIVOS, sub-pixel-interpolation
FIR filter . 84

52 Low-pass FIR filter bit-error rates by bit position 85

53 High-pass FIR filter bit-error rates by bit position 86

54 Sub-pixel-interpolation FIR filter bit-error rates by bit position 86

55 MSE vs energy for a low-pass, FIR filter (inverter level conversion) 87

56 MSE vs energy for a high-pass, FIR filter (inverter level conversion) 87

x

57 MSE vs energy for a sub-pixel-interpolation, FIR filter (inverter level conver-
sion) . 88

58 MSE vs energy for a low-pass, FIR filter (traditional level conversion) . . . 89

59 MSE vs energy for a high-pass, FIR filter (traditional level conversion) . . . 89

60 MSE vs energy for a sub-pixel-interpolation, FIR filter (traditional level con-
version) . 90

61 FIR filter delay for reduced-precision and inverter-based BIVOS implemen-
tations . 90

62 FIR filter delay for reduced-precision and level-converter-based BIVOS im-
plementations . 91

63 Flow chart of the five-stage, H.264 decoding algorithm 93

64 Six-tap, FIR filter used for sub-pixel interpolation in H.264 video decoding 94

65 Standard CMOS implementation for an 8-bit-in, 16-bit-out, array multiplier 95

66 Standard CMOS implementation for an 18-bit ripple-carry adder 95

67 Transistor design and layout for a latch implementation 96

68 Transistor design and layout for a D-type flip-flop 97

69 Floor plan for FIR filter layout . 97

70 Standard CMOS implementation of a 9-bit FIR filter 98

71 BIVOS implementation for a 9-bit-in, 18-bit-out, array multiplier 98

72 BIVOS implementation for an 18-bit ripple-carry adder 99

73 BIVOS implementation of a 9-bit FIR filter 100

74 A comparison of various SIMO DC-DC voltage converter designs 101

75 A comparison of voltage conversion efficiency for SIMO DC-DC voltage con-
verter designs . 102

76 H.264 simulator data flow with PCMOS co-processing 102

77 H.264 video decoding implemented with BIVOS and reduced-precision de-
coding . 105

78 Noise introduced due to BIVOS and reduced-precision H.264 video decoding 105

79 The similarities of propagation delay as a pseudo-noise source and of standard
thermal noise . 110

80 Standard cell implmentation for an inverter gate 113

81 Standard cell implmentation for a multiplexor gate 113

82 Standard cell implmentation for an exclusive-or gate 114

xi

83 Standard cell implmentation for a NAND gate 114

84 Standard cell implmentation for a four-input NAND gate 115

85 Standard cell implmentation for an and-or-invert gate 116

86 Standard cell implmentation for a level converter gate 116

87 Standard CMOS implementation for an 8-bit, ripple-carry adder 118

88 Standard CMOS implementation for an 8-bit, block-propagate adder 118

89 Standard CMOS implementation for an 8-bit, carry-select adder 118

90 BIVOS implementation for an 8-bit, ripple-carry adder 120

91 BIVOS implementation for an 8-bit, block-propagate adder 120

92 BIVOS implementation for an 8-bit, carry-select adder 120

93 BIVOS, level-converter implementation for an 8-bit, ripple-carry adder . . . 122

94 BIVOS, level-converter implementation for an 8-bit, block-propagate adder 122

95 BIVOS, level-converter implementation for an 8-bit, carry-select adder . . . 122

96 H.264 video signal using standard CMOS: frame 1 124

97 H.264 video signal using standard CMOS: frame 18 124

98 H.264 video signal using standard CMOS: frame 36 125

99 H.264 video signal using reduced-precision CMOS: frame 1 125

100 H.264 video signal using reduced-precision CMOS: frame 18 126

101 H.264 video signal using reduced-precision CMOS: frame 36 126

102 H.264 video signal using BIVOS at 1.4V : frame 1 127

103 H.264 video signal using BIVOS at 1.4V : frame 18 127

104 H.264 video signal using BIVOS at 1.4V : frame 36 128

105 H.264 video signal using BIVOS at 1.2V : frame 1 128

106 H.264 video signal using BIVOS at 1.2V : frame 18 129

107 H.264 video signal using BIVOS at 1.2V : frame 36 129

108 H.264 video noise using reduced-precision CMOS: frame 1 131

109 H.264 video noise using reduced-precision CMOS: frame 18 131

110 H.264 video noise using reduced-precision CMOS: frame 36 132

111 H.264 video noise using BIVOS at 1.4V : frame 1 132

112 H.264 video noise using BIVOS at 1.4V : frame 18 133

113 H.264 video noise using BIVOS at 1.4V : frame 36 133

xii

114 H.264 video noise using BIVOS at 1.2V : frame 1 134

115 H.264 video noise using BIVOS at 1.2V : frame 18 134

116 H.264 video noise using BIVOS at 1.2V : frame 36 135

xiii

SUMMARY

A central component of modern computing is the idea that computation requires

determinism. Contrary to this belief, the primary contribution of this work shows that

useful computation can be accomplished in an error-prone fashion. Focusing on low-power

computing and the increasing push toward energy conservation, the work seeks to sacrifice

accuracy in exchange for energy savings.

Probabilistic computing forms the basis for this error-prone computation by diverg-

ing from the requirement of determinism and allowing for randomness within computing.

Implemented as probabilistic CMOS (PCMOS), the approach realizes enormous energy sav-

ings in applications that require probability at an algorithmic level. Extending probabilistic

computing to applications that are inherently deterministic, the biased voltage overscaling

(BIVOS) technique presented here constrains the randomness introduced through PCMOS.

Doing so, BIVOS is able to limit the magnitude of any resulting deviations and realizes

energy savings with minimal impact to application quality.

Implemented for a ripple-carry adder, array multiplier, and finite-impulse-response (FIR)

filter; a BIVOS solution substantially reduces energy consumption and does so with im-

proved error rates compared to an energy equivalent reduced-precision solution. When

applied to H.264 video decoding, a BIVOS solution is able to achieve a 33.9% reduction in

energy consumption while maintaining a peak-signal-to-noise ratio of 35.0dB (compared to

14.3dB for a comparable reduced-precision solution).

While the work presented here focuses on a specific technology, the technique realized

through BIVOS has far broader implications. It is the departure from the conventional

mindset that useful computation requires determinism that represents the primary inno-

vation of this work. With applicability to emerging and yet to be discovered technologies,

BIVOS has the potential to contribute to computing in a variety of fashions.

xiv

CHAPTER I

INTRODUCTION

1.1 A Historical Perspective: Power Consumption and Computing

More than ever before, energy is a topic that is capturing global attention. Both govern-

ments and private investors are launching projects intended to address rising global energy

demands while reducing the environmental footprint of energy production (the U.S. alone

dedicated $16.8 billion to energy recovery in 2009 [79]). In conjunction, consumers and

manufactures are actively pursuing energy conservation in an effort to combat the rising

costs associated with increased energy demand. This has lead to the emergence of products

ranging from automobiles to light bulbs that are far more efficient than their predecessors.

While this general trend toward energy efficiency is relatively new, the computing domain

has long considered energy consumption issues by necessity. Specifically, applications re-

quiring mobility required batteries for operation and the use of batteries dictated a limited

power supply. Because of this limited power supply, it was important to use what power

was available judiciously in order to maximize battery life.

For several decades addressing mobility concerns has largely been the sole purpose of

low-power computing. Systems that allowed for “on-the-grid”, or fixed, computing had a

limitless power source from a wall outlet and there was little need for power conservation.

Beyond the rare instances where high power consumption levels created heat dissipation

issues, performance came first and energy efficiency received little attention if battery life

was not a concern. Quite the opposite in the mobile domain, increased performance was

primarily achieved through improvements in efficiency. As mobility demands continued to

increase, energy conservation was the only option to meet rising performance requirements

while maintaining battery life. As a result, mobility has been the primary force behind

recent advancements in low-power computing.

In the distant past, however, power consumption was a very real concern for computing

1

1944
Colossus, 15 kW

1946
ENIAC, 150 kW

1962
IBM 7090, 30%

1982
GRiD Compass, 75 W

1959
MOBIDIC, 29.76 kW

1977
Apple II, 60W

Vacuum Tubes
1938

Transistors
1955

Integrated Circuits
1964

Figure 1: Time line highlighting the progression of power consumption in computing.
The earliest electronic computers, such as the Colossus and ENIAC, consumed tremendous
amounts of power due to their vacuum-tube designs. With the invention of the transis-
tor, power consumption was reduced substantially in the next generation of machines (the
IBM 7090 used 30% of the power of the vacuum-tube computer it replaced). Finally, in-
tegrated circuits further reduced power consumption making the personal computer and
mobile computing possible.

in general. The earliest electronic computers utilized vacuum tubes to perform calcula-

tions [91]. With a design similar to an incandescent light bulb, vacuum tubes required

large temperature differentials for proper operation. These large temperature differentials

consumed substantial amounts of power that was lost as waste heat and created mechanical

stress on internal components during heating and cooling cycles (at power-up and power-

down respectively) [95]. Because of this repeated stress, vacuum tubes had high failure

rates and where most likely to fail during power cycles [89]. As a result, many vacuum tube

based computers where never turned off once they had been turned on—operating 24 hours

a day, 365 day a year.

One of the earliest vacuum-tube computers was the Colossus [88, 91]. Completed in 1944

as part of the English war effort during World War II, the Colossus was designed to break

German messages that had been encrypted using the Lorenz cipher machine. It was the

first digital electronic computer and the final design of the machine utilized 2, 400 vacuum

tubes consuming 15kW of power. (333 times the 45W supplied to a Macbook Air [2]).

Following the Colossus, the ENIAC was completed in 1946 for the United States Army. It

was designed to calculate artillery firing tables and was the first general-purpose electronic

computer [91, 89]. Employing 17, 468 vacuum tubes, the machine consumed an astounding

150kW of power and was in continuous operation from July 29, 1947 through October 2,

2

1955 (consuming a total of 10.8TWh of power). By comparison, an average home in the

United States consumes 11, 040kWh annually and the operation of the ENIAC could have

powered just under 1, 000 modern homes for an entire year [80].

With the invention of the transistor, transistorized computers began replacing vacuum

tube designs from 1955 onward [91]. A transistor computer utilized circuit boards full

of individual transistors wired to form computing circuits. Despite the fact that early

transistors were even less reliable than vacuum tubes, they began replacing vacuum tubes

because of their smaller size and the fact that they consumed far less power. With the

invention of silicon junction transistors, transistors had an indefinite service life and became

substantially more reliable than vacuum tubes. This afforded transistorized computers a

benefit in size and cost (both initial and operating) when compared to their vacuum tube

counterparts.

The MOBIDIC, short for “MOBile Digital Computer”, was one of the earlier transis-

torized computers. The machine was designed to automate the routing of battlefield data

for the U.S. Army and mounted in a semi trailer for mobility. A second trailer carrying a

generator set supplied the 29.76kW of power the machine required [93]. In contrast, one

of the earliest commercial transistorized computers was the IBM 7090. It was designed for

scientific computing as a transistorized version of the IBM 709 vacuum-tube, mainframe

computer. Compared to the 709 vacuum-tube design, the 7090 consumed only 30% of the

power with a 6 fold increase in computing power [32, 92].

The integrated circuit followed on the heels of the invention of the transistor and fur-

ther improved on the power, size, and cost benefits offered by transistors. So much so, that

the invention of the integrated circuit led to the personal computer. One of the earliest,

the Apple II, consumed a mere 60W of power [1]. With such meager power requirements,

truly mobile computing was suddenly a possibility. The GRiD Compass, released in 1982

as the first laptop computer, signaled the dawn of mobile computing. Requiring only 75W

of power, the machine ushered in a new age of low-power computing targeted specifically

at mobility [90]. Because mobility limited power resources to what could be carried, pru-

dent energy use was paramount to conserve what power was available and to extend the

3

operational life as long as possible.

Since the commercialization of the integrated circuit, not a lot has changed in terms of

power consumption and computing. While there are some exceptions, low-power computing

has largely been reserved for the mobile domain. Systems with access to the power grid

have enjoyed a virtually limitless energy supply and the realtively low energy requirements

of modern computers has diminished the importance of power consumption. As a result,

there has been little need to conserve energy for “on-the-grid” computing.

1.2 Global Energy Consumption and the Impact of Computing

Beyond the domain of computing, energy consumption in general has traditionally garnered

little attention. Evident of the fact that energy use has primarily been an afterthought for

decades, per capita energy consumption within the United States has increased by 37% over

the period of 1960 to 2007 [77]. Total energy consumption for the same time period is up

125% within the U.S. [81]. Globally the trends are similar with a per capita increase of

35% from 1971 to 2007. Generally speaking, energy use has been ignored in pursuit of ever

increasing convenience, functionality, and performance.

To some extent, however, this philosophy of performance above all else is changing.

Global energy consumption is growing dramatically, driven largely by the rapid industri-

alization of China and India [78], pushing energy prices increasingly higher. Coupled with

this, increasing global temperatures have raised significant concerns about the impact of

carbon emissions on global climate change [22, 83] (roughly 70% of world wide electricity

production in 2004 relied on fossil fuels and that number is projected to grow to 90% by

2030 [78]). In contrast to decades past, these rising economic and environmental concerns

have lead to a recent movement toward energy conservation.

With global energy consumption in mind, computing might seem like a strange place to

look for energy savings. The domain, however, (driven by consumer electronic devices) ac-

counts for approximately 11% of household electricity consumption in the United States [70].

This translates to 4% of annual U.S. electricity consumption, or 1.6% of annual energy

4

consumption. Assuming roughly half of computing energy consumption is derived from res-

idential use and the other half from commercial use, as shown in [23], computing resources

can be credited with 8% of total U.S. electricity consumption. In a study commissioned

by the Swiss Centre for Technology Assessment [38], Germany’s computing resources are

cited as contributing an estimated 7.1% (or 38TWh) to national electricity consumption

in 2001 [23]. The study further cites Swiss computing resources as accounting for 3.6%

(1.8TWh) of national electricity consumption at the time of writing and goes on to project

that the introduction of pervasive computing could drive that number as high as 7% (6TWh)

by 2012.

Of the total electricity consumption within the computing domain, server installations

represent a substantial portion. This is driven largely by the enormous growth of the

Internet (41% annually over the last 15 years [14] with over 700 million addressable devices

as of 2009 [15]). In a symbiotic cycle, the growth of the Internet has provided increased

services, which has lead to an increase in Internet users driving the demand for even more

services. Fulfilling this demand, data centers containing hundreds (to thousands) of servers

consume enormous amounts of electricity. They require energy for operation of the servers

and even more for the associated cooling necessary due to the tremendous amount of waste

heat the servers generate:

Total power used by servers represented about 0.6% of total U.S. electricity con-
sumption in 2005. When cooling and auxiliary infrastructure are included, that
number grows to 1.2%, an amount comparable to that for color televisions. The
total power demand in 2005 (including associated infrastructure) is equivalent
(in capacity terms) to about five 1000 MW power plants for the U.S. and 14
such plants for the world. The total electricity bill for operating those servers
and associated infrastructure in 2005 was about $2.7 B and $7.2 B for the U.S.
and the world, respectively [39].

Beyond the server space, smaller systems are beginning suffer from heat dissipation issues

as well. For years the personal computer industry measured performance in megahertz and

Intel, among others, marketed their products with a line of ever increasing clock rates.

As transistor densities increased and clock rates climbed, the industry eventually reached

a point where heat dissipation was such a problem that it became a barrier to increased

5

performance. So much so that according to Linley Gwennap, improvements in the central-

processing units (CPUs) are no longer driving computing performance:

Today’s CPUs have megahertz to burn but are throttled by the amount of heat
that the system can pull out. Reduce the CPU power by 10% and you can
push the clock speed up to compensate, turning power into performance gains.
Most CPU design teams are now more focused on the power budget than on the
timing budget [28].

This “power wall” that Gwennap suggests is a primary factor limiting processor perfor-

mance. A 2008 exascale study targeted at achieving ExaFLOP computation (1018 floating-

point operations per second) cites power concerns as the force behind the wall that the clock

rates have hit, remaining flat since the early 2000s [37]. Further, the challenges posed by the

power wall are only projected to grow. The same study goes on to cite power consumption

as “the single most difficult and pervasive challenge” to reaching the ExaFLOP goal [37].

1.3 Achieving Low Power Computation

Driven largely by the push for ever increasing performance in the mobile domain, low-power

computing has received significant attention. A central component to this quest to reduce

energy consumption is the CMOS power consumption equation (Equation 1) [55]. The equa-

tion splits the power consumption of CMOS transistors into three components: dynamic

power consumption, short-circuit power consumption, and leakage power consumption. Dy-

namic power consumption (ACV 2
ddf) is the power that is consumed by switching transistors

on and off through normal circuit operation. It is determined by a combination of circuit

activity A, line capacitance C, supply voltage Vdd, and operating frequency f . Short-circuit

power consumption (τAVddIshortf) occurs when a gate output changes and the pull-up and

pull-down networks are both momentarily on during the change. The resulting short circuit

between the supply and ground rails allows current to flow from power to ground. Short-

circuit power consumption is defined by the amount of time the short circuit lasts τ (a

function of supply voltage), circuit activity, supply voltage, short-circuit current Ishort (also

a function of supply voltage), and operating frequency. Finally, leakage power consumption

(VddIleak) is caused by current that constantly flows, or leaks, through gates when powered.

6

It is a combination of supply voltage and leakage current Ileak (a function of transistor

threshold, or switching, voltage).

P = ACV 2
ddf + τAVddIshortf + VddIleak (1)

From Equation 1, it is apparent that reductions in supply voltage yield substantial re-

ductions in power consumption. A linear decrease in operating voltage results in a quadratic

reduction in dynamic power consumption with the added bonus of linear reductions in short-

circuit and leakage power consumption. Because of this quadratic relationship between sup-

ply voltage and power consumption, there has been substantial research in voltage reduction

techniques.

Of the various techniques proposed, the most effective approach to reduce power con-

sumption is to eliminate supply voltage altogther. Clock gating is one example of these

“power-down” techniques where the clock signal is turned off for unused portions of a cir-

cuit. As a clock tree consumes up to 30% of a processors power [55], this can lead to

substantial savings. Another is partial memory shutdown where data is remapped and

caches intercept memory accesses to minimize memory usage [66, 69]. As the memory sys-

tem and logic buses are also significant sources of power consumption, this can also lead to

large energy savings [55].

Short of completely turning unused portions of the circuit off, then next best alterna-

tive to reduce power consumption is to reduce supply voltages for operational portions of

the circuit—the extreme case of subthreshold voltage scaling reduces supply voltages below

transistor threshold levels [11, 12, 13, 85]. Unfortunately, however, reductions in supply

voltage (above the threshold volatage) also reduce the maximum operating frequency of the

circuit and impact overall performance (Equation 2) [55]. To combat this reduction in per-

formance, dynamic voltage scaling continually adjusts supply voltages to dynamically meet

changing timing requirements [51]. Parallel processing extends the technique by dividing

workloads across multiple processors, allowing each processor to operate at a lower volt-

age while maintaining timing requirements [17]. In a similar fashion, pipelining subdivides

individual instructions and allows a single processor to begin processing new instructions

7

before previous instructions have completely executed. As a result, pipelining also allows

a processor to operate at a lower voltage by artificially increasing the completion rate (or

operating frequency) of a circuit [55].

fmax ∝ (Vdd − Vth)2/Vdd (2)

Beyond the performance penalty that comes with voltage scaling, reducing the supply

voltage, Vdd, necessitates a reduction in threshold voltage, Vth, to maintain proper circuit

switching. Given the relationship between leakage current and Vth (shown in Equation 3) a

reduction in threshold voltage leads to an increase in leakage power consumption [55]. As a

result, reductions in Vth to maintain circuit performance in a reduced-voltage configuration

can quickly make Ileak a significant power contributor. Further complicating the issue, the

constant march of Moore’s law to reduce feature sizes actually requires reductions in supply

voltage and amplifies static power consumption [35].

Ileak ∝ exp(−qVth/κT) (3)

Several techniques attempt to address the increase in leakage current due to threshold-

voltage scaling. Multithreshold approaches employ the use of high Vth transistors to provide

a virtual power rail to low Vth transistors. The virtual power rail then allows transistors to

be put to sleep with virtually no leakage current while still permitting the use of low Vth

transistors to improve circuit performance [53, 56]. Stacked transistor designs accomplish

the same by adding a second low Vth transistor, creating stacked transistor pairs that reduce

the leakage current in “off” devices [29, 33, 57]. Combining the two approaches, the sleepy

stack techniques utilize a high Vth transistor for forced stacking along with a high Vth sleep

transistor in parallel to provide a constant current source when powered [65]

Among the more unconventional approaches to reducing power consumption, schemes

employing multiple voltage sources attempt meet timing requirements by applying a high

supply voltage to gates along the critical path of a circuit while reducing the supply voltage

along non-critical-path elements [18, 51, 82, 100, 101]. Others attempt to reduce supply volt-

ages beyond timing requirements, allowing critical path errors to occur and correcting any

8

that do. These include efforts ranging from a collection of software-based, signal-processing

techniques designed to detect and correct errors in soft DSP [30] to a fully hardware-based

solution that aggressively scales voltages until errors are detected in Razor [3].

Extending the practice of error prone computing, probabilistic CMOS (PCMOS) also

attempts to scale supply voltages beyond tolerable limits. Unlike other techniques, however,

PCMOS performs no error correction to maintain deterministic operation. Instead PCMOS

attempts to characterize the probability associated with any errors and relies on applications

to either capitalize on, or tolerate, the resulting randomness. In this way, PCMOS is able

to achieve power savings through voltage overscaling without the added overhead of error

correction circuitry [60, 62].

9

CHAPTER II

PROBABILISTIC COMPUTING

2.1 Fundamentals of Probabilistic Computing

Fundamentally, computing is a mathematical practice. It is a process of determining facts

through calculation. As such, there is a sense of definitive truth in the practice of computing.

It is this definitiveness, or determinism, that forms the basis of the modern digital computer.

So much so, that it is implicitly expected that any calculation performed by a computer is

absolutely correct.

This expectation of infallibility in computing is underscored by the Pentium floating-

point division bug (first publicized by Thomas Nicely in October of 1994). The bug was

caused by an omission of five entires in a lookup table used for floating-point division. As

a result of these five missing entries, the Pentium processor would occasionally calculate

floating-point divisions incorrectly (estimated at one error every 27,000 years for a typical

user [74]) with errors limited to a maximum magnitude of 2−14 [67]. Despite the extremely

unlikely potential for error, and the extremely small deviations, there was a public outcry

once the bug came to light resulting in Intel adopting a replacement policy that ultimately

cost the company $475 million [94].

The crux of modern, digital computation is that the underlying hardware always returns

a correct result. A NOT function always returns X = Y and an AND function always

returns X = A · B. The entire system is predicated on this level of determinism at the

lowest level and the design of subsequent layers of complexity (architecture, software, etc.)

rely on it. Computing to this level of accuracy obviously incurs a design cost. Computing

systems are extremely complex and validating functionality is expensive. Additionally,

however, there is a computational cost of maintaining such a high level of accuracy that is

often overlooked.

10

Example 1: As a thought experiment, consider a theoretical switch made

of a cylinder containing a single gas molecule. A binary zero is represented

by the gas molecule’s presence on the left half of the cylinder; a binary one

is conversely represented by the molecule’s presence on the right half of the

cylinder. A pair of pistons, one on each side of the cylinder, set the switch’s

state by constraining the gas molecule to one half of the cylinder or the other.

Between the pistons the gas molecule is free to move within the cylinder and

thermal excitation causes random drift.

0 1

Assuming the theoretical switch is initially at state zero, switching to

state one requires repositioning the pistons to force the gas molecule to the

right half of the cylinder. Partially switching the pistons requires a fixed

amount of energy Ep. Because the gas molecule is free to move between the

pistons, leaving the cylinder in this state allows for a fixed probability that

the gas molecule will drift to the left half of the cylinder resulting in an error.

0 1
Work (Ep)

To guarantee error free operation the pistons must be fully switched to

ensure the gas molecule is unable to reach state zero. This requires a fixed

amount of energy Ef and, because a full switching always requires more move-

ment than a partial switching, Ef > Ep. It is the difference between Ef and

Ep that represents the computational cost of deterministic computing.

0 1
Work (Ef)

2

11

Based on the idea that there is a minimal energy cost of computing, the fundamental

lower limit was calculated to be κT ln(2) [42, 52]. In the context of the modern com-

puter [52], it was determined as the minimal energy required to switch the state of a single

electron. Predicted by von Neumann [84], this limit was based on the notion of deterministic

computing. In truth, the physical behavior of objects, including modern microprocessors, is

best defined statistically. The illusion of determinism arises from tremendous expenditures

of energy to ensure the probability of failure is virtually nonexistent.

Revisiting Example 1, allowing for partial, or lazy, switching reduces the energy re-

quirements of the computation. The trade-off is that there is potential for the theoretical

molecule drift to the left half of the cylinder resulting in an error. As a result, there is a

fixed probability of a correct calculation and a fixed probability of an error. Defining this

sort of partial switching as a probabilistic computation, probabilistic computing allows for

energy savings by relaxing the accuracy requirements of computation.

Probabilistic computing then defines the probability of a correct operation as p where

0.5 ≤ p ≤ 1. In turn, the probability of an error is defined as 1−p. With this as a basis, the

minimal energy cost of computing in a probabilistic sense is derived to be κT ln(2p) [61, 62].

Compared to a corresponding minimal deterministic operation, probabilistic computing

theoretically saves κT ln(1
p) energy at the expense of a loss in accuracy.

2.2 Probabilistic Arithmetic

With probabilistic computing as a basis, probabilistic arithmetic is defined such that op-

erations have a probability of correctness pi associated with each ith bit position. As

such, an n-bit probabilistic arithmetic operation is a function OP that transforms two

n-bit inputs (X and Y) into an m-bit solution (Z) where bitwise operations are cal-

culated with an accuracy defined by each pi. More formally, OP is a function where

O : X ∈ {0, 1}n × Y ∈ {0, 1}n → Z ∈ {0, 1}m and the probability of correctness is de-

fined as P =< p0, p1, · · · , pm−1 >: 0 ≤ pi ≤ 1. The conventional (deterministic) function

corresponds to the case where P ≡< 1 > [27]. In all other cases, a probabilistic arithmetic

operation yields a solution that deviates from a corresponding deterministic operation OD

12

as defined by P .

The accuracy of a probabilistic arithmetic operation can then be measured as the result-

ing deviation from the corresponding deterministic operation. For a single trial of OP , the

difference between OP and OD (ZP−ZD) represents the deviation introduced by probabilis-

tic computing. Equivalently, ZP −ZD is equal to the sum of any bitwise errors occurring in

OP weighted by the bit position of occurrence. Subdividing OP into h bitwise operations

then allows ZP − ZD to be determined by summing the impact of any individual error at

each jth operation qj . Defining an error vector E =< e0, e1, · · · , eh−1 > such that an error

at operation j is indicated by ej ∈ {0, 1} (where 1 represents a bitwise error and 0 repre-

sents correct operation), a direction vector D =< d0, d1, · · · , dh−1 > where the direction of

an error is indicated by dj ∈ {−1, 1} (a 0 → 1 bit flip equals 1 and a 1 → 0 equals −1),

and a magnitude vector M =< m0,m1, · · · ,mh−1 > such that the magnitude of an error

is indicated by mj (equal to 2i as determined by the bit position of j); then allows the

deviation introduced by OP to be calculated in terms of individual bit errors. Given an

error vector E, Equation 4 then represents the magnitude of the deviation introduced by

OP .

MAGE =
j=h−1∑

j=0

dj · ej ·mj (4)

Example 2: Consider a one-bit addition operation consisting of two bitwise

operations (q0 calculates the sum bit as x0⊕y0 and q1 calculates the carry bit

as x0 ·y0). Since the sum bit applies to bit zero and the carry bit applies to bit

one, m0 = 20 and m1 = 21 implying M =< 1, 2 >. If X = 1 (0b1) and Y = 1

(0b1), then a deterministic addition operation OD would yield q0 = 0 and

q1 = 1 resulting in ZD = 2 (0b10). Implemented as a probabilistic addition

operation OP , a single error at q0 would cause a 0 → 1 bit flip resulting in

q0 = 1 with e0 = 1 and d0 = 1 (E =< 1, 0 > and D =< 1, 1 >). Equation 4

then evaluates to 1 (d0 ·e0 ·m0 = 1·1·1 = 1 for j = 0 and d1 ·e1 ·m1 = 1·0·2 = 0

for j = 1). Verifying the calculation, ZP = 3 (0b11) and ZP − ZD = 1. 2

Repeated over multiple trials, the individual bit errors introduced by OP will vary due

13

to the randomness inherent in probabilistic computing. The probability of an error combi-

nation occurring is determined by the joint probability of the individual bitwise operations.

As P is defined by bit position, the probability of correctness pj for the jth operation is

then determined by the bit position of qj . In turn, the probability of an error at qj is de-

fined as 1− pj . The resulting probability of a particular error combination E, or deviation

(ZP − ZD), is then defined in Equation 5.

PE =
j=h−1∏

j=0

(
ej · (1− pj)

)
+ (ēj · pj) (5)

Example 3: As in Example 2, assume a one-bit addition operation with a

single bit error at q0 (E =< 1, 0 >). If P ≡< 0.9 > then pi = 0.9 for all bit

positions i and as a result pj = 0.9 for all bitwise operations. Equation 4 then

evaluates to 0.1 for q0 (
(
e0 · (1−p0)

)
+(ē0 ·p0) =

(
1 · (1−0.9)

)
+(0 ·0.9) = 0.1)

and 0.9 for q1 (
(
e1 · (1 − p1)

)
+ (ē1 · p1) =

(
0 · (1 − 0.9)

)
+ (1 · 0.9) = 0.9)

yielding PE = 0.09. 2

Given the deviation due to a particular error combination (Equation 4), the probability

of a particular error combination occurring (Equation 5), and 2h possible combinations of

h bitwise errors, the expected deviation of a probabilistic operation OP can be determined

as defined in Equation 6 by summing over each kth error vector E(k).

µ(OP −OD) =
k=2h−1∑

k=0

MAGE(k) ·PE(k) (6)

Similarly, the expected mean-squared error for a probabilistic operationOP can be calcu-

lated as the summation of the squared deviations weighted by error-combination probability

(Equation 7).

MSE(OP) =
k=2h−1∑

k=0

MAG2
E(k) ·PE(k) (7)

14

Example 4: Continuing with Example 3, a one-bit addition operation with

two bitwise operations has four possible error combinations (E(0) =< 0, 0 >,

E(1) =< 1, 0 >, E(2) =< 0, 1 >, and E(3) =< 1, 1 >) resulting in four

possible error magnitudes (ME(0) = 0, ME(1) = 1, ME(2) = 2, and ME(3) = 3).

If P ≡< 0.9 > then the probability of each of the four error combinations

occurring is equal to PE(0) = 0.81, PE(1) = 0.09, PE(2) = 0.09, and PE(3) =

0.01. From Equations 6 and 7 respectively, the expected deviation µ(OP −
OD) = 0.3 and the expected mean-squared error MSE(OP) = 0.54. 2

2.3 Probabilistic CMOS

The foundations of digital logic, on which CMOS computing is built, center on noise immu-

nity and error-free operation. By definition, digital logic groups analog signals into discrete

voltage bands in order to reduce susceptibility to voltage fluctuations. Binary logic allows

for just two bands, a zero or a one, maximizing circuit noise immunity by allowing for a

noise margin with voltage swings up to half of the operating voltage (Vdd/2).

As is the case for probabilistic computing in general, Probabilistic CMOS (PCMOS) at-

tempts to relax these rigorous accuracy constraints allowing standard CMOS to be subjected

to noise interference resulting in bit errors. While any noise source could potentially be used

as a source of randomness to render CMOS probabilistic, thermal noise is considered due to

projections that it will become an impediment to future technology scaling [36, 58, 75]. In

the case of thermal noise, thermal excitation causes electrons to perpetually change veloc-

ities resulting in voltage fluctuations. Should a fluctuation cause signal voltage to exceed

the digital noise margin, Vdd/2, the result is a bit error (Figure 2).

Reductions in supply voltage, in turn, decrease the noise margin for a circuit. This

both reduces the circuit power consumption and increases susceptibility to thermal voltage

fluctuations. Scaling supply voltages beyond the point where noise margins can contain

thermal fluctuations results in bit errors. In this way, PCMOS attempts to trade accuracy

for energy savings.

15

Signal

+Vdd / 2

Overshoot

Thermal
Noise

Undershoot

Gaussian
Noise Probability of

an Error
(1-p)

-Vdd / 2 +Vdd / 2
Signal

Probability density

(a) (b)

Figure 2: Thermal noise interference in digital voltage signals: (a) Thermal noise is an
additive noise source that causes fluctuations in the intended voltage of a signal. If noise
causes the operating voltage of a signal at Vdd to drop below Vdd/2 the resulting undershoot
causes a bit flip (1 → 0). Correspondingly, if noise causes the operating voltage of a signal at
Gnd to rise above Vdd/2 the resulting overshoot also causes a bit flip (0 → 1). (b) Thermal
noise can be represented as a probability density function (PDF). Since thermal noise is
additive, zero-mean, and Gaussian, the resulting PDF is centered at the operating voltage
of the affected signal. The portion of the PDF that extends beyond ±Vdd/2 represents the
probability of a signal error occurring due to a bit flip.

2.4 Probabilistic Gates

As noise is applied to PCMOS gates it is considered to be a random process and is char-

acterized by the resulting statistical interference on gate signals. In the case of thermal

noise, the interference is characterized by a zero-mean, Gaussian distribution that is addi-

tive [40, 76]. The result is a fluctuation in signal-voltage levels that follows a probability

distribution defined by thermal noise and centered at the intended voltage level (Figure 3).

The portion of the PDF that extends beyond the switching point of the gate represents

the probability that thermal noise will cause a voltage fluctuation resulting in a bit flip.

Conversely, the probability of correctness is represented by the portion of the PDF that

does not violate the switching point.

As a result, given an operating voltage and noise RMS, PCMOS gates can be charac-

terized for energy consumption and probability of correctness. In turn, varying operating

voltage at a fixed-noise RMS yields an energy-probability (Ep) profile. Of particular inter-

est, the quadratic reduction in energy consumption due to voltage scaling combined with

a linear decrease in accuracy due to thermal noise yields a quadratic relationship between

16

-Vdd / 2

Vdd0

Probability Density

A B

Digital 0 Digital 1

V

σ

Figure 3: Represented as a probability-density function (PDF), thermal noise applied to an
inverter causes statistical fluctuations centered at the input voltage. If the inverter input is
at a 0, A represents the probability of 0 being interpreted as a 1. Conversely, if the inverter
input is at a 1, B represents the probability of 1 being interpreted as a 0.

Figure 4: Energy-probability relationship of a PCMOS inverter designed in TSMC 0.25µm
technology with a noise RMS of 400mV [27]. Energy consumption can be reduced by as
much as 50% in exchange for roughly a 1% sacrifice in probability of correctness.

energy consumption and probability of correctness for PCMOS gates. Characterized exten-

sively for an inverter [19, 20, 40], PCMOS operation allows slight concessions in accuracy

to be traded for large savings in energy consumption. The Ep profile for an inverter op-

erating a 400mV RMS, pictured for a TSMC 0.25µm process in Figure 4, shows that as

much as 50% of energy consumption can be saved by sacrificing roughly 1% in probability

of correctness.

Similarly, the relationship holds for more complicated gates. Shown in Figure 5 for a

24-transistor full adder implemented in TSMC 0.18µm technology, the Ep profile follows a

quadratic relationship between energy and probability of correctness. Again, as much as

17

Figure 5: Energy-probability relationship of a PCMOS full adder designed in TSMC 0.18µm
technology with a noise RMS of 150mV . As was the case for the inverter in Figure 4, energy
consumption can be reduced by as much as 50% in exchange for roughly a 1% sacrifice in
probability of correctness.

50% of the energy consumption can be saved by sacrificing far less than 1% in probability

of correctness.

2.5 Probabilistic Applications

From the application of PCMOS at the hardware layer it is apparent that probabilistic

computing offers the potential to reduce energy consumption in exchange for accuracy. This

exchange, however, requires that any application utilizing the underlying hardware be able

to operate with the uncertainty introduced by PCMOS. Given this necessity, applications

utilizing probabilistic algorithms are well suited to PCMOS operation due to their natural

probabilistic operation.

18

Example 5: Consider a simple system intended to determine if there has

been rain (R = 1). A Bayesian network might model this system with two

input parameters: is the grass wet (W = 1) and is the sun out (S = 1).

Empirical data for the likelihood of rain is then collected for each possible

input state. From this empirical data it is determined that when the grass is

wet and the sun is out there is a 2% chance that it has rained (the grass is

more likely wet from a sprinkler system). Utilizing PCMOS, such a system

could configure a NAND gate such that R = W · S and set p = 0.98. In this

configuration, 98% of the time the gate would evaluate to R = 0, inferring in

most cases that there has not been rain if the grass is wet and the sun is out.

2

Other examples of probabilistic applications include random neural networks that model

the human brain, probabilistic cellular automata intended to model stochastic processes,

and hyper-encryption that provides a provably secure encryption technique [16, 63]. These

probabilistic applications rely on probability for correct operation. As such, they require a

source of randomness to function and the quality of the random source will impact the result-

ing behavior of the application—low quality random sources can alter application behavior

such as the correctness of Monte Carlo simulations or the strength of encryption schemes

in hyper-encryption. Typically, this source of randomness is provided by pseudo-random

number generators (PRNGs). A PRNG, however, is a complex solution to randomness that

requires substantial silicon area for implementation and can lack in quality of randomness.

PCMOS, on the other hand, provides a source of randomness that is substantially better

than PRNGs. Using statistical tests from a NIST suite, a PCMOS implementation passed

79% of the tests compared to 50% for a standard CMOS implementation [16]. Further,

PCMOS provides this randomness for substantially less silicon area (and substantially less

power). Systems considered yielded savings by orders of magnitude when implemented in

PCMOS as compared to standard CMOS implementations: Bayesian networks, random

neural networks, probabilistic cellular automata, and hyper-encryption [16]. Rather than

avoiding noise as an impediment, these probabilistic applications capitalize on noise as a

source of randomness.

19

2.6 Resilient Applications

Deterministic applications, unlike their probabilistic counter parts, are less obvious choices

for probabilistic computing. By their very nature, deterministic applications are designed

with the assumption of error-free operation. Despite this assumption, however, some of these

deterministic applications exhibit resiliency against bit errors. While these applications are

unable to functionally capitalize on the probability that PCMOS introduces, they are able

to maintain operation in the presence of errors introduced through PCMOS. Because of this

ability to tolerate probabilistic errors, these types of applications are referred to as resilient

applications.

While the majority of all applications require determinism, only a subset of all determin-

istic applications exhibit resiliency. A banking application, for instance, has little margin

for error. It is very unlikely that miscalculations in account balances or account routing

would be well received by account holders. An image processing application, on the other

hand, is much more tolerant to errors as long as they are well behaved. Miscalculations

that result in slight deviations from the intended image are likely to pass unnoticed without

adversely affecting a viewer’s experience.

Example 6: Considering an image processing application, images will typ-

ically be rendered using a color gamut of red, green, and blue (R,G,B) with

the intensity of each color weighted from 0 to 255. In this color scheme white

is defined as (R,G,B) = (255,255,255). Given an image intend to be viewed as

pure white, a human viewer is unlikely to notice a white rendered as (R,G,B)

= (255,250,255). In this case, resiliency in the image processing application

is derived from color tolerances realized through human perception. 2

Signal processing applications, in particular, are excellent candidates for resilient ap-

plications. Many signal processing applications are intended for human consumption. As

such, a human viewer is the determiner of application quality. This allows the opportunity

for human perception to filter noise that might be introduced through the application of

PCMOS. As long as any errors result in deviations that come close to matching intended

20

results, a human observer is unlikely to notice the slight variations.

Adaptive algorithms are another class of applications that are well suited for resilient

operation. Simulated annealing, for one, utilizes an iterative approach to global optimization

by applying a random walk to a solution space. Global optimization is ensured by starting

with large random jumps initially before reducing the jump distance slowly to achieve local

optimization. Errors early in the algorithm, when jumps are large, are unlikely to have a

significant impact on optimization results. As the algorithm reduces the iteration distance,

error rates can be reduced allowing the local minimums to be calculated error free.

In adaptive filtering, the filter transfer function is adjusted automatically based on an

error signal and an optimization algorithm. Occasional deviations in either the error or op-

timization calculations would cause the filter to momentarily diverge from the optimal filter

coefficients. Assuming errors were infrequent, any errors would simply delay convergence

to the optimal transfer function.

Vector quantization is another example of an adaptive algorithm well suited for resilient

operation. Using vector quantization, data compression is achieved by mapping a data

stream to a library of data symbols. Each symbol in the data library corresponds to a

unique data sequence (a series of ones and zeros) and an optimal encoding minimizes the

symbol sequence selected to represent the data stream. Applying PCMOS to the symbol

selection algorithm might not select the optimal symbol sequence, however, accuracy is not

impacted and the only penalty is a slight decrease in compression rates.

Finally, MPEG video compression subdivides video frames into macroblocks and searches

for macroblocks within a frame sequence that are repeated across frames. As video tends to

contain objects that are in motion, these macroblocks are likely to “move” from one frame

to another. Compression is achieved by encoding a macroblock only once then predicting

the location of that block in subsequent frames through a motion vector. Selection of a less

than optimal macroblock/motion-vector pair will again cause a loss in compression, but at

no cost to accuracy.

21

Application

Deterministic
Host

Probabilistic
Portion

Deterministic
Portion

PCMOS

Figure 6: A Probabilistic System-on-Chip (PSoC) with a standard CMOS host processor
and a PCMOS co-processor. Applications are partitioned into deterministic and probabilis-
tic portions. Deterministic code is executed on the standard CMOS host processor and
probabilistic code is executed on the PCMOS co-processor.

2.7 Probabilistic System-on-a-Chip

Regardless of the application, a Probabilistic System-on-a-Chip (PSoC) is envisioned as the

architecture for PCMOS based systems. In both probabilistic and resilient applications, not

all portions of the application can handle the probability introduced by PCMOS. Control

logic, such as branches for instance, must execute deterministically to ensure proper program

flow. To accommodate both deterministic and probabilistic program requirements, a PSoC

provides a standard CMOS host processor and a PCMOS co-processor. Program code is

then divided into deterministic and probabilistic portions. The deterministic portion of a

program executes on the standard CMOS host processor and the probabilistic portion is

offloaded to the PCMOS co-processor (Figure 6).

The PCMOS co-processor utilizes dynamic voltage scaling (DVS) to dynamically adjust

voltage configurations, and associated error rates, to meet changing quality requirements.

Applications, in turn, are provided with a lookup table of operational modes and their as-

sociated energy/probability profiles. Internally, the modes designate voltage configurations

22

that are applied to the PCMOS co-processor to achieve specific operational points. Exter-

nally, the operational modes provide applications with a tool set of predefined operating

points that are optimized to trade accuracy for energy savings.

Example 7: A mobile telephony application, for instance, might have two

calling modes: standard and low-battery. In standard mode voice quality is

important and battery life is sacrificed for call quality. In low-battery mode

battery life is important and call quality is sacrificed to extend battery life.

Operating on a PSoC platform, the application might have access to the fol-

lowing PCMOS operational modes.

Mode Energy (pJ/clock) Mean Squared Error

0 43.4 0

1 35.7 40, 769

2 30.9 89, 411

3 25.6 492, 590

Data represents configurations for a low-pass, finite-impulse-response
filter (Section 4.7)

Given the available operating modes, standard calling mode might utilize

the PCMOS co-processor in mode 1 to save some power while maintaining

high voice quality. As battery life is depleted, however, eventually the appli-

cation reconfigures the PCMOS co-processor for mode 3. This triggers the

reconfiguration of the supply voltages for the PCMOS co-processor, saving

additional power at the expense of a degradation in call quality. 2

23

CHAPTER III

BIASED VOLTAGE OVERSCALING

3.1 Achieving Application Resiliency

Unlike their probabilistic counterparts, resilient applications are unable to utilize random-

ness at an algorithmic level. In direct contrast, these applications tolerate the randomness

that is introduced through PCMOS to perform approximate, rather than absolute, calcu-

lations. This tolerance creates a trade off between application quality and energy savings.

Better approximations result in higher levels of application quality, however, reductions in

energy consumption lead to less accurate approximations. As a result, the energy savings

available to a resilient application are limited by the amount of error that the application

can tolerate for a given quality level.

Because energy savings are limited by application quality requirements, design for re-

silient applications is an exercise in minimizing energy consumption while maximizing the

accuracy of approximations. With this goal in mind, a fundamental observation is that not

all errors are created equal when it comes to approximations. The binary number system

places weights on bit positions (bit i is weighted by 2i) creating a hierarchy of bit signifi-

cances. Errors at bits with a higher significance lead to more significant errors. Shown in

Figure 7 for a 16-bit adder, an error on the sum bit of a full adder at bit 0 results in an

error magnitude of 1. A bit error on the same sum bit of a full adder at bit 15, however,

results in an error magnitude of 32,768.

At the application level, error magnitude translates to approximation accuracy and

ultimately application quality. Maintaining application quality necessitates that any bit

errors result in small deviations from the intended results. As such, the bit position where

errors are generated is important.

24

MSB LSB

p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0

S15 S14 S13 S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0

1 100000000000000

Adder

32,768 1

Figure 7: The bit position where an error occurs is significant. Shown here for a 16-bit
adder, an error occurring at the sum of the full adder at bit 0 results in an error magnitude
of 1. A similar error occurring on the sum bit of the full adder at bit 15 results in an error
magnitude of 32,768.

Example 8: Revisiting image processing from Example 6, assume a pixel

is intended to be rendered as pure black, (R,G,B) = (0,0,0). As before, the

color intensity is at an 8-bit resolution with weights ranging from 0 to 255. If

an error were to be generated at bit zero when calculating the color intensity

for red, this would result in a bit flip (0 → 1) causing the rendered pixel

to be (R,G,B) = (1,0,0), a color very close to pure black. Conversely, if an

error were to be generated at bit six the resulting pixel would be rendered as

(R,G,B) = (128,0,0), something much closer to red. 2

While tolerances will vary from application to application, from Example 8 it is clear

that high-order errors can be catastrophic. Any errors that occur must be constrained to

low-order bit positions to minimize the impact on approximation accuracy. Unfortunately,

applying conventional voltage overscaling uniformly reduces supply voltages across all bit

positions. This, in turn, sacrifices accuracy uniformly across all bit positions meaning that

errors are equally as likely at high-order-bit positions as they are at low-order-bit positions.

As a result, application quality degrades rapidly as supply voltage is scaled past the point

where errors begin occurring. Shown in Figure 8, an example of uniform voltage scaling

is used for H.264 video decoding. Errors occurring at high order bit positions cause the

associated pixels to saturate to blacks and whites, resulting in an extremely pixelated image.

25

Figure 8: Uniform voltage scaling applied to H.264 video decoding. While the voltage
overscaling substantially reduces power consumption, high-order-bit errors quickly degrade
application performance.

Biased Voltage OverScaling (BIVOS) addresses this problem by capitalizing on bit sig-

nificance. With BIVOS, voltage overscaling is biased such that energy consumption is

distributed by the significance of bit positions. Elements that calculate the most significant

bit positions receive nominal supply voltages to ensure no errors are generated. Voltage

levels are then gradually decreased with the elements that calculate low-order bit positions

receiving the lowest voltage levels. This results in a probability distribution where errors

are more likely to be generated at bit positions that contribute the least to approximation

accuracy.

BIVOS then dictates that Vi ≥ Vi−1. Given this requirement, a distinct voltage level

could potentially be assigned to the elements at each bit position. Shown in Figure 10 (a), an

n-bit adder receives n distinct voltage levels with all elements that compute Si receiving Vi.

While such a configuration could lead to an optimal solution, practical considerations place

limitations on the number of distinct supply voltages available to a design. In cases where

the number of available voltage levels are limited, binning can be employed to reduced

the number of voltage sources required. With binning, individual bits are grouped with

neighbors to form b bins. For the purposes of biasing, all bit positions within a bin are

considered to have equal significance and receive the same supply voltage. Bins need not be

equivalently sized and the only requirement is that bins be formed from adjacent elements.

26

0

1.8

1.2

0123456789101112131415

Normal Operation (Full-scale)

Uniform Voltage Scaling

BIVOS

Bit Position

V
d

d

0

0.01

0123456789101112131415

Normal Operation (Full-scale)

Uniform Voltage Scaling
BIVOS

Bit Position

B
it

 E
rr

o
r

R
a
te

Figure 9: Where typical voltage scaling lowers the voltage uniformly accros all bit positions,
biased voltage scaling distributes voltages unevenly by bit significance. In turn, the resulting
errors due to voltage overscaling are biased to low order bit positions where the impact of
any bit errors is reduced.

The resulting bins are then biased such that Vb > Vb−1. Shown in Figure 10 (b), the same

n-bit adder is biased using b bins.

Regardless of the distribution employed, it is possible for errors to occur at high-order

bit positions. Shown in Figure 11, a sensitized carry chain can result in a low-order error

propagating to a high-order output. While this is technically a high-order bit error, the

propagation has also resulted in offsetting errors along the carry path. The result is that

error magnitude is constrained by the significance of the bit position where the error was

generated.

In turn, BIVOS limits error magnitudes by biasing errors to low-order bit positions.

Energy consumption is biased to elements that contribute most to approximation accuracy

and errors are biased to elements that contribute least to error magnitude. Ultimately this

leads to minimizing energy consumption while maximizing approximation accuracy.

3.2 Challenges of Biased Voltage Overscaling

An obvious prerequisite to biasing via multiple voltage levels is the availability of multiple

voltage sources. Binning relaxes the need for a high number of sources, however, BIVOS

27

Vn-1

LSB

V0V1V2Vn-3

MSB

Vn-2

A

Cin

B

Cout

S

V1

V1V1

V1V1

A

Cin

B

Cout

S

Vn-2

Vn-2Vn-2

Vn-2Vn-2

(a)

LSB

V0

MSB

Vb-1

A

Cin

B

Cout

S

V0

V0V0

V0V0

A

Cin

B

Cout

S

Vb-1

Vb-1Vb-1

Vb-1Vb-1

(b)

Figure 10: Biased voltage scaling (or BIVOS) example for (a) an n-bit, ripple-carry adder
employing BIVOS with distinct voltage supplies for each 1-bit full adder and (b) an n-bit,
ripple-carry adder employing BIVOS with voltage binning. In each case, the voltage at a bit
position is applied to all elements (INV, AND, OR, etc.) at that bit position. Where a fully
biased BIVOS adder might require n distinct voltage levels, binning reduces the number of
voltage sources required such that b < n.

28

7
+4
11

0 1 1 1
+ 0 1 0 0
0 1 0 1 1

1 0 0

7
+5
12

0 1 1 1
+ 0 1 0 1
0 1 1 0 0

1 1 1

(a) (b)

Figure 11: Carry propagation along a sensitized carry path: (a) correct result of the
addition function (7+4 = 11) and (b) propagation of an error incurred at bit 0 resulting in
incorrect bits at bit 1 and bit 2 in addition to the original error. Despite propagation down
an activated carry chain, the resulting error magnitude is equivalent to the significance of
bit position where it occurred (12− 11 = 1 = 20).

fundamentally requires more than one voltage level. Not an uncommon problem, a typical

method for providing multiple voltage levels is through DC-DC step-down converters. In

each step-down converter there is a power penalty due to less than 100% efficiency in

the voltage conversion. In the case of conventional design, solutions are generally limited

to two or three distinct voltage levels. The BIVOS approach, on the other hand, has

no such constraints. Accordingly, increasing the number of step-down converters for a

BIVOS solution would initially appear to compound the power penalty by adding additional

converters with additional inefficiency. This is not the case, however, as adding step-down

converters to a solution reduces the loading on pre-existing step-down converters. Global

loading is spread over multiple step-down converters that are now sharing the inefficiency

of the original step-down converters.

The primary drawback to providing multiple voltage sources is area cost. Each addi-

tional step-down converter, whether placed on die or off, increases the overall area consump-

tion of the power solution. This becomes an issue in designs with size limitations, which is

the case in most embedded designs where power consumption is a primary consideration.

In turn, BIVOS requires design time trade-offs in terms of area and power efficiency.

Further complicating the area cost of multiple voltage sources, is the associated routing

necessary for power delivery. Each additional voltage level requires a separate on-die, power-

distribution grid. In [41] it was shown, when compared to a single Vdd design, a dual Vdd

design could reduce the decoupling capacitance budget with no area overhead (and in some

29

cases reducing wire congestion). This is primarily attributed to the reduction in current

draw from each individual power supply achieved by the dual Vdd design. By reducing

current draw the demands on the power distribution grid are reduced, allowing for lighter

weight supplies and a reduction in the sizing of power rails. This solution, however, considers

only a dual Vdd power distribution. There is a limit to the extent that power rail reduction

is possible regardless of the current draw of an individual grid. After power rail scaling

reaches technology minimums, any additional voltage grids will add to area overhead.

Once multiple voltage planes have been established, communication between the planes

becomes an issue. Attempting to drive high-voltage gates with signals from low-voltage gates

results in static current flow as transistors never fully switch off. A standard solution to

this problem is to insert level converters at voltage boundaries. Level converters, however,

dissipate additional power and without judicious use can overwhelm any power savings

gained through BIVOS. Further, they can complicate layout due to the need for both high

and low voltage access to convert signals. In [68], level converters requiring only a single,

high-voltage supply are used to simplify placement. This is taken a step further by using

level-converter-less, dynamic circuits for FPGA design in [21]. As an alternative, inverters

can be inserted at voltage transitions to limit static current to a single transistor pair. While

this approach does not yield zero static current, it does simplify design and reduce static

current draw allowing BIVOS configurations to yield reductions in energy consumption.

3.3 Reduced Precision as an Alternative

Given the extra cost associated with implementing a BIVOS solution, an obvious alterna-

tive is a reduction in precision. Rather than employing voltage overscaling with multiple

voltage sources, a reduced-precision solution simply removes bits altogether. This can be

accomplished with a reduced-hardware solution or with a scheme that powers down indi-

vidual bits. A reduced-hardware solution reduces circuit area, however, it limits flexibility

at run time. A power down scheme alternatively saves no area, but does allow for dy-

namic tuning to meet application quality requirements. Regardless of the implementation,

a reduced-precision solution introduces error not unlike a PCMOS solution.

30

In a reduced-precision solution, error is introduced by an inability to accurately represent

real numbers within the digital system. Conventional digital computation represents real

numbers in one of two binary formats: fixed-point or floating-point. Of the two, floating-

point representation offers greater precision and a dynamic number range. This increased

precision and range, however, comes at the expense of increased hardware design complexity,

silicon area, and power consumption. As the work presented here focuses on low-power

computing, and fixed-point representation is typically employed in low-power applications,

floating-point representation is not considered.

In fixed-point representations, a binary number is divided into integer and fractional

parts by a binary point [59]. The decimal value of an n-bit, fixed-point number, D, consisting

of B integer bits and b fractional bits is equal to the sum of the bit values at each bit position

multiplied by the significance of the given bit position (Equation 8).

D =
B−1∑
i=−b

ai ∗ 2i (8)

The binary point is assumed to be fixed at a specific bit position, hence fixed-point repre-

sentation. As the binary point is purely a programming construct, it is not visible to the

underlying hardware. This allows hardware designed to implement integer addition and

multiplication functions to operate on fixed-point numbers [54].

Example 9: Considering the number 10104111, where 4 represents the bi-

nary point, the portion of the number to the left of the binary point represents

the integer portion, 1010, while the portion of the number to the right of the

binary point represents the fractional portion, 111. 2

The range of non-negative, integer numbers η that can be represented by a n-bit, fixed-

point number is limited to

0 ≤ η ≤ 2n − 1. (9)

The range of non-negative, fractional numbers η that can be represented by a B-bit, fixed-

point number is limited to

0 ≤ η ≤ 1− 2−n. (10)

31

In both cases, the range of representable numbers is fixed to a minimum ηmin and a maxi-

mum ηmax value. The dynamic range is then given by R = ηmax − ηmin and the resolution

of the representation is given by

∆ =
R

2n − 1
, (11)

where ∆ represents the quantization level [54]. Any real number that cannot be represented

by the available resolution of the fixed-point representation in use is therefor rounded, or

quantized, and the resulting error introduced by the quantization process Q(X) affects the

accuracy of subsequent calculations.

Example 10: Assuming an unsigned two-bit, fixed-point representation

with two fractional bits and zero integer bits, the representation would yield a

range 0 ≤ η ≤ 0.75 with a quantization level ∆ = 0.25. As such, attempting to

represent a real-value number of 0.40 in this fixed-point representation would

require the number be rounded up to an approximation of 0.50 or down to an

approximation of 0.25. Employing a nearest neighbor rounding scheme, the

real-value number would be rounded to 0.50 with a quantization error of 0.10.

2

Error introduced through quantization is limited by the quantization step size for a

particular fixed-point implementation and dictated by the rounding scheme employed. In

the case of a nearest neighbor rounding scheme, error magnitude MAGE is bound by

−∆
2

< MAGE ≤ ∆
2

. (12)

Similarly, a truncation rounding scheme (round down) bounds MAGE to

−∆ < MAGE ≤ 0. (13)

32

Q(X)

X

Δ

satu
ration

sa
tu

ra
ti

on

MAGE

Figure 12: Output versus input for a linearly spaced, nearest neighbor quantizer. Quanti-
zation error is limited to ±∆/2 by the quantization step ∆.

While quantization is a non-linear process (Figure 12), the error introduced through

quantization is typically modeled as the addition of noise (a linear process). Making the

following assumptions allows for this simplified model [59]:

• MAGE is uniformly distributed over the error range

• MAGE is white noise

• MAGE is uncorrelated with X

• MAGE is a zero-mean, stationary process

Expected noise power can then be calculated by integrating over the error probability

density function (Equation 14) [59].

MSE(Q(X)) =
∫ ∞

−∞
X2pe(X) dX (14)

Based on the assumption that quantization error is uniformly distributed, the probability

density function yields pe(X) equal to 1/∆ over the error range (Figure 13).

33

pe(X)

XΔ
2

Δ
2

1
Δ

Figure 13: Probability density function a nearest neighbor quantizer. Error is limited to
±∆/2 with a uniform probability distribution equal to 1/pe(X).

Substituting pe(X) equals 1/∆ for the range −∆/2 to ∆/2 (a nearest neigbhor rounding

scheme) in Equation 14 yields

MSE(Q(X)) =
∫ ∆/2

−∆/2
X2 1

∆
dX (15)

=
∆2

12
.

Equation 15 is then dependent only on the quantization step size ∆. By assuming uniform,

white, uncorrelated, and zero-mean noise (which is generally valid); quantization error can

be estimated purely as a function of quantization step size, independent of X.

Example 11: As in Example 10, assume a two-bit, fixed-point representa-

tion with two fractional bits (b = 2) and zero integer bits (B = 0) employing

truncation rounding. Equation 14 then reduces to

MSE(Q(X)) =
∫ 0

−∆
X2 1

∆
dX

=
∆2

3

and substituting ∆ equals 0.25 yields

MSE(Q(X)) =
0.252

3
= 2.1x10−2.

2

34

(a) (b) (c)

Figure 14: All stable pole locations for (a) 4, (b) 5, and (c) 6-bit, fixed-point second-
order polynomials. Removing a single bit from a fixed-point solution drastically reduces
the number of stable pole locations.

In the context of a reduced-precision power saving technique, quantization matches an

m-bit input to an n-bit, fixed-point circuit (where m > n) by reducing the bit resolution.

Quantization error is then reflected in the circuit inputs as additive noise and the circuit

transfer function H determines the resulting output noise for a reduced-precision operation

OR as

MSE(OR) = MSE(Q(X))H2. (16)

Applied to filtering, frequency response can be extremely sensitive to coefficient quan-

tization noise. Because a reduced-precision solution reduces the number of discrete values

a number system can represent, locating stable poles within a reduced operating space can

be challenging. Shown in Figure 14, the number of stable poles for a particular solution

can vary drastically based on bit-width employed. As small changes to coefficient values

can cause poles to move outside the stable region, coefficient quantization noise can result

in an unstable filter [59].

35

CHAPTER IV

COMPARING BIASED VOLTAGE OVERSCALING AND REDUCED

PRECISION

4.1 Standard Cell Library

To compare the area requirements for a BIVOS-based circuit design and a more standard

CMOS technique, such as reduced precision, three commonly used adder architectures were

considered: ripple carry, carry select, and block propagate. The first step in building

these architectures was to complete a small library of standard cells. As a starting point,

a 24-transistor full adder was designed (Figure 15) as discussed in the Weste and Harris

text CMOS VLSI Design [86]. Layout was performed in Cadence Virtuoso using the NCSU

Cadence Design Kit for TSMC 0.18µm Regular (0.20µm) technology. Transistors were sized

and placed in accordance with the datapath example from the Weste and Harris text. Of

note in this particular design, wiring is completed in polysilicon and metal one, with metal

two reserved for horizontal routing. In order to compress the design footprint, Weste and

Harris have placed the supply, Vdd, and ground, Gnd, rails in metal two allowing placement

above the cell. The resulting full adder implementation is 12.8µm by 4.8µm with an area

of 61.44µm2.

In addition to a full adder (FA), the three adder architectures require inverter (INV),

multiplexer (MUX), exclusive-or (XOR), not-and (NAND), partial and-or-invert (AOI), and

level converter (LC) standard cells. With the 24-transistor, full-adder design serving as a

reference for cell pitch, the remaining cells were sized to match. Conventional transistor

sizing was adopted for the INV with a 2/1 width ratio of pMOS to nMOS. Matching

inverter pitch to the 24-transistor full adder results in dimensions of 3.65µm by 4.8µm

with an area of 17.52µm2. The two-input MUX and XOR circuits implement identical

logic and are duplicated only to ease signal identification. In order to match inverter-input

capacitance, these cells are also sized with a 2/1 pMOS-to-nMOS ratio with minimum

36

GND

A W=2400n
L=200n

W=2400n
L=200n

B B W=300n
L=200n

W=300n
L=200n

A

VDD

S

W=300n
L=200n

B C W=300n
L=200n

W=300n
L=200n

B

VDD

W=2400n
L=200n

C W=300n
L=200n

A W=300n
L=200n

W=300n
L=200n

A

W=300n
L=200n

C

A W=1200n
L=200n

W=1200n
L=200nB B W=300n

L=200n
W=300n
L=200n

A W=300n
L=200nB C W=300n

L=200n
W=300n
L=200n

B

W=1200n
L=200nC

W=300n
L=200nA

W=300n
L=200n

W=300n
L=200n

A
W=300n
L=200n

CGND

C

Figure 15: Transistor schematic for a 24-transistor, full adder with transistor sizing to
minimize propagation delay through the carry output [86].

Figure 16: VLSI layout for the same 24-transistor, full-adder design shown in Figure 15. In
order to compress the design footprint, the supply, Vdd, and ground, Gnd, rails have been
placed in metal two allowing placement above the cell [86]. Implemented in TSMC 0.18µm
Regular technology, the resulting cell is 12.8µm by 4.8µm with an area of 61.44µm2.

37

Table 1: Standard Cell Area Consumption

Cell Height Width Area
(µm) (µm) (µm2)

INV 4.8 3.65 17.52
MUX 4.8 3.95 18.96
XOR 4.8 3.95 18.96

NAND 4.8 3.80 18.24
NAND4 4.8 5.10 24.48

AOI 4.8 4.65 22.32
LC 4.8 3.60 17.28
FA 4.8 12.8 61.44

sized nMOS transistors. The 4-input NAND gate extends a standard 2-input NAND to 4

inputs. Again, to match inverter-input capacitance, pMOS transistors are minimum size

with nMOS transistors sized at a 2/1 ratio to pMOS transistors. The AOI cell implements

the equation A + (B · C). Transistors are again sized at a 2/1 pMOS-to-nMOS ratio with

nMOS transistors minimum sized. Unlike the other cells, the level converter performs no

logical function and simply translates a low voltage signal to a high voltage signal. In this

case, transistors are sized through experimentation to minimize power consumption with a

3/8 pMOS-to-nMOS ratio and minimum sized pMOS transistors.

The resulting cell implementations are shown in Figures 80 through 86 of Appendix A

and are detailed in Tables 1 and 2. All cells are roughly the same size with equivalent worst

case logical effort of two (excluding the base line inverter, level converter, and full adder).

Of these, only the AOI cell is unbalanced with a single input exhibiting a logical effort of

one on the pull-down network.

4.2 Conventional Circuit Layout

As a baseline, each of the three adders were first designed for standard CMOS operation

with the goal of minimizing area. Working from the standard-cell library, the full-adder

outputs, sum (S) and carry out (Cout), were left in their inverted state per the design in

the Weste Harris text [86]. By doing so, sequential full adders in an adder datapath are

able to alternate between positive and negative logic. Inverters are only inserted where

38

Table 2: Standard Cell Design

Input
Cell Capacitance Resistance Logical

(Cinv) (Rinv) Effort
INV 1 1 1
MUX 1 2 2
XOR 1 2 2

NAND 1 2 2
NAND4 1 2 2

AOI 1 2 2

necessary to match input/output bits to the appropriate logic (Figure 17). The result is a

reduction in transistor count and an associated improvement in performance. This type of

alternating logic is adhered to whenever possible, allowing the inversion of internal signals

and accounting for input/output inversion where necessary.

The ripple-carry adder is the simplest design of the three considered and is implemented

as a set of full adders in series (Figure 17). As is the case for all three architectures, the

datapath for the ripple-carry adder is eight bits wide (since the designs are based on standard

cells, datapaths larger than eight bits simply require tiling of 4-bit blocks). Previously

noted, full adders alternate between positive and negative logic and input/output inversion

is accounted for with added inverters. The resulting ripple-carry adder, shown in Figure 87

of Appendix B, is 36.6µm wide with a height of 20.1µm and an area of 735.66µm2.

More complicated than the ripple-carry adder, the block-propagate adder is comprised

of two 4-bit, ripple-carry adder blocks. Propagate logic is calculated external to the full

adders within each ripple-carry adder and a single multiplexer determines propagate or

carry for each block. Elements are divided across four, two-bit rows to create a roughly

square design. The resulting block-propagate adder is 63.5µm wide with a height of 24.4µm

and an area of 1549.40µm2 (Figure 88, Appendix B).

Again, more complicated than the ripple-carry adder, the carry-select adder contains

multiple 4-bit, ripple-carry-adder blocks. The first block is comprised of a standard 4-bit,

ripple-carry adder. The second set contains a pair of 4-bit, ripple-carry adders. The carry-in

39

A0 B0

S0

CinCout

A1 B1

S1

A2 B2

S2

A3 B3

S3

Figure 17: Ripple-carry adder implementation with alternating positive and negative logic.
At bit 0 the full adder operates on positive logic (A0, B0, and Cin) generating negated
outputs (S0 and C0). The sum output is inverted to generate S0, however, the carry output
is left in an inverted state. At bit 1 the full adder operates on negative logic (A0, B0, and
Cin) generating positive outputs (S0 and C0) without the need of inverters. When compared
to a more conventional design, every two-bit pair in an alternating logic implementation
removes both inverters on the carry outputs of each full adder and allows one-inverter to
be saved on the sum output of the negative-logic full adder. This is at the expense of two
additional inverters on the A and B inputs of the negative-logic full adder. The result is
a net gain of one less inverter (a standard design would require four inverters for the two
sum and two carry outputs) and a reduction of two inverters along the critical path of the
carry chain.

40

bit of one ripple-carry adder is hard wired to zero and the carry-in bit of the other ripple-

carry adder is hard wired to one. Multiplexers select between the two sets of sum bits based

on the carry-in bit to the second block (or conversely the carry-out bit of the first block).

Shown in Figure 89 (Appendix B), the elements are arranged in six, two-bit rows with

the bottom four containing the carry-select logic in addition to the requisite full adders.

Remaining components are placed in line to minimize area. The resulting carry-select adder

is 43.9µm wide by 31.4µm tall, with an area of 1378.46µm2.

4.3 BIVOS Circuit Layout

For BIVOS design, the starting point was again the original standard cell library. As

previously noted, a BIVOS design requires multiple supply-voltage levels. To accommodate

multiple voltage levels the Vdd rail lengths were reduced by 0.15µm at both horizontal cell

edges on each standard cell. This creates a minimum metal spacing of 0.3µm when adjacent

cells are abutted to form a datapath, allowing for independent Vdd rails in each cell (Gnd

rails are left unaltered as a common ground is required for operation). Should any adjacent

cells operate at the same voltage, as in the case of standard CMOS design, broken Vdd rails

are rejoined during datapath layout (Figure 18).

Utilizing the standard cell library, full adder outputs are in an negative state. The

standard datapaths utilize this structure to remove inverters from the critical path. Em-

ploying the BIVOS technique, however, requires further consideration. Previously discussed,

BIVOS relies on biasing bit errors to low-order bit positions using multiple supply voltages.

Mentioned in several works, this creates a voltage mismatch at supply voltage bound-

aries [11, 12, 13, 85]. This results in static current flow when a low voltage device attempts

to drive a high voltage device. The solution typically employed in these works is to insert

level converters between voltage boundaries. Level converters consume additional power,

however, and can quickly overwhelm any savings realized through BIVOS. As an alterna-

tive, inverters can be used to mitigate static current flow to a single transistor pair while

avoiding the additional area, and power, overhead incurred with the use of level converters.

This solution does have the drawback of limiting the biasing of adjacent voltage planes

41

Vdd0 Vdd1

BRIDGE BRIDGEGAP

Figure 18: Voltage boundary at two bits for an adder architecture. Vdd rails for standard
cells operating at the same voltage level are joined with the highlighted bridges. Vdd rails for
standard cells operating at different voltage levels are left disconnected via the highlighted
gap. Shown here for bits 0 and 1 of a ripple-carry adder, bit 0 is biased to V0 and bit 1
is biased to V1 with the carry out inverter from bit 0 operating at V1 to mitigate static
current.

42

A0 B0

S0

Cin

Cout

A1 B1

S1

A2 B2

S2

A3 B3

S3

Vdd0Vdd1Vdd2Vdd3

Figure 19: PCMOS based ripple-carry adder implementation with inverters acting as level
converters at voltage boundaries. The addition of inverters along the carry chain makes the
use of alternating logic impractical.

to less than the threshold voltage (anything greater than the threshold voltage can cause

enough static current flow to overwhelm savings), however, it eliminates the need for formal

level conversion.

BIVOS designs employing inverter-level conversion capitalize on the negative state of

full-adder outputs to require only a single inverter, inserted between full-adder pairs, for

“level conversion” at voltage boundaries (Figure 19). As the voltage differential between

adjacent voltage planes is limited by threshold voltage, these designs require several dis-

tinct voltage levels (and added inverters for level conversion) to achieve a significant voltage

reduction. The additional inverters negate any transistor savings made possible by alter-

nating logic, making a positive logic design more practical. Designs employing traditional

level conversion (Figure 20), alternatively, can support voltage differentials up to one half of

the high voltage level at voltage boundaries. As a result, far fewer distinct voltage levels are

required to realize a substantial voltage reduction. Limiting biasing to two distinct voltage

levels then reduces the the overhead associated with the addition of level converters. This

allows these designs utilize the same alternating logic employed for the standard datapaths

with the addition of a single inverter and level converter at voltage boundaries.

43

A0 B0

S0

Cin

Cout

A1 B1

S1

A2 B2

S2

A3 B3

S3

VddLC

Figure 20: PCMOS based ripple-carry adder implementation with traditional level con-
verters at voltage boundaries. By applying voltage binning in conjunction with traditional
level converters, a reduction in transistor count through the application of alternating logic
is possible.

Beyond requiring voltage conversion at voltage boundaries, BIVOS design adds an ad-

ditional requirement that multiple voltage levels be routed to appropriate biasing positions.

Designs minimize the resulting area impact by capitalizing on the fact that BIVOS dis-

tributes supply voltage by bit position. As such, aligning bit positions vertically across

datapaths allows for voltage planes to be routed vertically in metal three (as many as one

supply voltage for each bit position) and a single, vertical Vdd line can supply each cell along

a vertical bit position. The result is that routing is achieved with minimal routing overhead

within the datapaths and any area penalty incurred for the addition of voltage planes is

limited to the routing from the voltage supply to the datapaths.

Following these guidelines, the three original adder architectures were modified to allow

BIVOS operation utilizing both inverter level conversion (Figures 90, 91, and 92 in Ap-

pendix C) and traditional level converters (Figures 93, 94, and 95 in Appendix D). Designs

employing inverter level conversion allowed for an independent supply voltage at each bit

position. Designs employing traditional level converters where divided into two, four-bit

voltage bins for biasing. Where adjacent cells operate on the same bit position, Vdd rails

were joined to establish a common bias for the bit. As individual supply voltages were routed

vertically in metal three, they added zero area overhead to the datapath design. The only

44

Table 3: Area Impact of PCMOS Versus Standard Circuit Design

Implementation Architecture Width(µm) Height(µm) Area(µm2) Penalty

Standard
Ripple-Carry 36.6 20.1 735.66 —

Block-Propagate 63.5 24.4 1549.40 —
Carry-Select 43.9 31.4 1378.46 —

PCMOS INV
Ripple-Carry 40.2 24.6 988.92 34%

Block-Propagate 75.4 25.3 1907.62 23%
Carry-Select 46.9 34.8 1632.12 18%

PCMOS LC
Ripple-Carry 40.2 21.6 868.32 18%

Block-Propagate 67.3 24.6 1655.58 7%
Carry-Select 43.9 32.6 1431.14 4%

area penalty was due to the necessary inclusion of inverters, acting as “level conversion,”

and level converters between voltage islands.

Shown in Table 3, the area penalty for employing the BIVOS technique can be non-

trivial. Designs employing inverter level conversion suffer the worst area penalties. While

these designs only require an additional inverter for each voltage conversion, the number

of voltage levels required coupled with the added inverters necessitate the use of positive

logic. The result is a significant area overhead for designs utilizing inverter level conversion.

Designs employing traditional level converters, on the other hand, suffer a minimal area

penalty for most architectures. Limiting voltages to two distinct levels allows the use of the

same alternating logic utilized in the standard designs and only requires the addition of a

single inverter/level-converter pair. As a result, the area penalty for employing a BIVOS

design with traditional level conversion is less than 10% for two of the three architectures.

In the case of the ripple-carry adder, employing alternating positive and negative logic

internally in the standard CMOS design saves one inverter for every two bit positions

(Figures 17 and 19). Coupled with the logic savings, the symmetry of the design allows

for tight, symmetric cell spacing with no dead space (unused area) in the logic block. As a

result, both BIVOS designs suffer a significant area penalty due to the extra logic required

for level conversion. For inverter level conversion, employing positive logic adds an inverter

at each row and requires an additional 1.5µm between each row for p-well spacing at voltage

boundaries. The traditional level conversion design only adds a single inverter and a single

45

A0 B0

S0

Cin

Cout

A1 B1

S1

A2 B2

S2

A3 B3

S3

A0 B0A2 B2

A1 B1

A1 B1A2 B2

A3 B3

0

1

Figure 21: Standard CMOS implementation for a block-propagate adder. Utilizing alter-
nating logic, the standard design eliminates three inverters at every two bit positions when
compared to a positive logic design.

level converter, however, the width is equivalent to the inverter design due to unused dead

space. Where traditional level conversion saves area is the need to add 1.5µm for p-well

spacing between only two of the four rows. The result is a 34% and 18% area penalty for

the inverter and traditional level conversion designs respectively.

Shown in Figures 21 and 22, the standard CMOS block-propagate adder saves three

inverters for every two bit positions by capitalizing on the availability of both positive and

negative input signals generated for the propagate logic. Despite these savings, the added

complexity of the device requires additional logic that reduces the relative of impact of the

removed inverters. The area penalty for the BIVOS designs, in turn, is not as pronounced

as was the case for the ripple-carry adder. Requiring an additional six inverters and p-well

spacing between each row, inverter level conversion yields a 23% area penalty. Needing only

a single inverter and a single level converter along with p-well spacing between a pair of

rows, traditional level conversion yields a 7% area penalty.

Finally, the standard CMOS carry-select adder saves only one inverter for every two

46

S0S1S2S3

Vdd0Vdd1Vdd2Vdd3Cout

A0 B0A2 B2 A1 B1A2 B2

A0 B0

Cin

A1 B1A2 B2A3 B3

0

1

Figure 22: BIVOS block-propagate adder utilizing inverter-based level conversion. Im-
plemented with positive logic, the design utilizes inverters as “level converters” between
voltage boundaries. As was the case for the ripple-carry adder, the design is unable to
utilize alternating logic.

LC

S0S1S2S3

Vdd0Vdd1Vdd2Vdd3
Cout

A0 B0A2 B2

A1 B1

A1 B1A2 B2

A3 B3

A0 B0

Cin

A1 B1A2 B2A3 B3

0

1

Figure 23: BIVOS block-propagate adder utilizing traditional level conversion. Imple-
mented with alternating logic, the design requires only a single level converter between
voltage boundaries. Limiting the number of voltage bins again allows for the application of
alternating logic.

47

A4 B4

S4

1

Cout

A5 B5

S5

A6 B6

S6

A7 B7

S7

0

1

A4 B4

0

A5 B5A6 B6A7 B7

0

1

0

1

0

1

SZ7 SZ6 SZ5 SZ4

SZ7 SZ6 SZ5 SZ4
CinCinCinCin

CinCinCinCin

Cin

Figure 24: Standard CMOS implementation for a carry-select adder. Utilizing alternating
logic, the standard design eliminates one inverter at every two bit positions when compared
to a positive logic design.

bit positions by implementing alternating logic (Figure 24). At the same time, the design

requires a subset of the addition logic to be duplicated with added multiplexers to resolve

carry selection. Because of this irregular design, the resulting circuit footprint contains

dead space that allows both BIVOS designs to insert the logic needed for level conversion

with minimal area impact. In the case of inverter level conversion (Figure 26), the four

added inverters and p-well spacing result in an area penalty of 18%. For traditional level

conversion, the extra level converter and p-well spacing yields an area penalty of just 4%.

Beyond the additional overhead added for voltage conversion, the vertical routing of Vdd

lines requires area. Here, design of a single datapath allows ample space in metal three for

routing. Assuming this the case, the additional Vdd lines required to route multiple supplies

results in no area penalty. Should the additional Vdd lines displace other signals, however,

these routing requirements will add area to design overhead. With a rail width of 0.9µm,

48

Vdd4Vdd5Vdd6Vdd7

A4 B4

1

A5 B5A6 B6A7 B7

S4

Cout

S5S6S7

0

1

0

1

0

1

0

1

SZ7 SZ6 SZ5 SZ4

SZ7 SZ6 SZ5 SZ4
CinCinCinCin

CinCinCinCin

Cin

A4 B4

0

A5 B5A6 B6A7 B7

Figure 25: BIVOS carry-select adder utilizing inverter-based level conversion. Implemented
with positive logic, the design employs inverters as “level converters” between voltage
boundaries. Once again, the inclusion of inverters along the carry chain makes the use
of alternating logic impractical.

49

A4 B4

S4

1

Cout

A5 B5

S5

A6 B6

S6

A7 B7

S7

0

1

A4 B4

0

A5 B5A6 B6A7 B7

0

1

0

1

0

1

SZ7 SZ6 SZ5 SZ4

SZ7 SZ6 SZ5 SZ4
ClcClcClcClc

ClcClcClcClc

Clc

LC

CinCin

Clc

Clc

Figure 26: BIVOS carry-select adder utilizing traditional level conversion. Implemented
with alternating logic, the design requires only a single level converter and a single inverter
between voltage boundaries. With a limited number of voltage bins, transistor count is
reduced through the use of alternating logic.

50

the potential area impact for each datapath (including metal-to-metal spacing of 0.3µm) is

approximately 2% per voltage level (Vdd width × Cell Height / Cell Area) routed in each

architecture. Assigning an independent voltage to each bit then implies roughly a 14% area

penalty (14 additional Vdd lines × Penalty).

Additional routing requirements are necessary to deliver the multiple voltage sources to

BIVOS datapaths. If at all possible, BIVOS datapaths should be placed directly adjacent to

voltage sources (whether on die or off). When this is not possible each voltage line requires

equivalent area and, excluding any routing complications created by the additional lines,

the expected impact is equal to the number of independent voltage levels multiplied by the

routing expense for a single voltage line.

4.4 Simulation Methodology and HSpice Characterization

Simulation was employed to compare the effectiveness of BIVOS and reduced-precision

solutions. While Spice is widely considered to be one of the most accurate circuit-simulation

tools available, the accuracy that Spice delivers comes at the expense of simulation speed.

Given the size of the circuits to be tested, full-scale Spice simulation was not possible.

Instead, a custom C++ simulator was designed to substantially decrease simulation time.

The simulator work flow, shown in Figure 27, breaks circuits into smaller pieces that are

more manageable for Spice simulation. Layout is then utilized to estimate parasitics for

these sub-circuits, followed by Spice simulation to create a device model and finally C++

simulation to emulate PCMOS behavior (Figure 27).

Under this methodology, HSpice simulation acts as a basis for the C++ simulator. To

improve Spice simulation accuracy, layout was first performed for sub-circuit elements to

ensure any modeling includes internal line capacitance. While the size of a sub-circuit is

arbitrary in terms of the simulation methodology, the standard cells outlined in Section 4.1

were used here. With sub-circuit layout complete for the library of TSMC 0.18µm standard

cells, a Spice netlist was extracted for each sub-circuit that included device parasitics. The

resulting netlists were then combined with TSMC 0.18µm device models and characterized

through HSpice simulation.

51

Layout

(Cadence Virtuoso)

Parasitics

HSPICE

(Synopsys HSPICE)

NCSU Cadence

Design Kit

TSMC 0.18μ

TSMC 0.18μ

Device Models

Device Model

PCMOS Simulator

(C++)

Power and Errors

Figure 27: Workflow for the simulation methodology. Parasitics are first extracted by
device layout. A device model is then created through Spice simulation. Finally, power and
error estimates are accomplished through a custom PCMOS simulator.

During HSpice simulation, the sub-circuit outputs were loaded to match the input ca-

pacitance of the sub-circuits they are intended to drive. In addition, inverter pairs were

added to drive sub-circuit inputs to better model the drive strength a cell would experience

in circuit. Sub-circuits were then simulated to characterize power consumption and prop-

agation delay at each output. Static power consumption was measured by transitioning

circuit inputs over all possible input combinations and allowing the power draw to settle

over 10µs. Dynamic energy consumption was then measured by transitioning sub-circuit in-

puts over all possible state transitions and measuring average power consumption for 10ns.

Total and static energy consumption were first calculated as

Energy = Power × Time, (17)

then “dynamic” energy consumption was calculated as a combination of short-circuit and

dynamic energy by subtracting out static energy consumption (Equation 18). Propagation

delay for sub-circuit outputs was measured by transitioning sub-circuit inputs over all input

state transitions resulting in output transitions. Delay was then measured from the time

the trigger input reached Vdd/2 to the time when the transitioning output reached Vdd/2.

52

Simulations were repeated over a range of 0.8V to 1.8V supply voltages in 0.1V increments

with input signal voltage also varied over 0.8V to 1.8V in 0.1V increments.

Etotal = Edynamic + Eshort + Estatic (18)

To simulate a relative increase in thermal noise at a future technology generation, addi-

tive noise was injected by coupling a noise source to circuit inputs as reported in [20]. The

injected thermal noise was modeled as a Gaussian random source with a standard deviation

σ, referred to as the noise root-mean-square (RMS) value [40, 76]. Noise RMS was chosen

to violate the minimal noise margin required to maintain deterministic circuit operation,

defined for a modern process in Equation 19 where σ =
√

kT
C [36].

Vdd/σ ≥ 20 (19)

or σ ≤ 0.05× Vdd (20)

For a TSMC 0.18µm process where nominal Vdd equals 1.8V , thermal errors began to

emerge as σ approached 150mV , or σ ≈ 0.08×Vdd. With σ = 150mV , reductions in supply

voltage resulted in probabilistic device operation. Increasing noise levels beyond this point,

where σ > 150mV , would render the device probabilistic even at the nominal operating

voltage. As such, σ = 150mV was chosen to model the point where conventional voltage

scaling would be limited by the bit errors caused by thermal noise.

The full-adder sub-circuit was chosen as the noise injection point for thermal noise

testing. All other sub-circuits had substantially fewer transistors than the full adder and

were considered circuit extensions for the purpose of noise modeling. Thermal noise was

injected into the HSpice netlist in the form of three Gaussian piece-wise-linear sources.

Each noise source was coupled to a circuit input causing random fluctuations in the signal

voltage. By coupling noise sources to full-adder inputs, as opposed to outputs, the resulting

characterization captured any error masking performed by the full adder (discussed in [7]).

Input signals were held constant and actual and expected circuit outputs were compared to

53

Subcircuit

Circuit

Subcircuit SubcircuitSignal

Bus

S
ig
n
a
l

S
ig
n
a
l

S
ig
n
a
l

S
ig
n
a
l

. . . .

Bus

S
ig
n
a
l

S
ig
n
a
l

S
ig
n
a
l

Figure 28: Subcircuits, as modeled through Spice simulation, form the base element for
the PCMOS simulator. Signals then connect various subcircuits to form larger circuits of
arbitrary size.

determine the probability of correctness p as

p =
correct samples
total samples

. (21)

Probability simulations were repeated once for every possible input combination over 10, 000

clock cycles at 300ns.

4.5 A Custom PCMOS Simulator

Based on sub-circuit device models derived through HSpice, a C++ PCMOS simulator

allows for circuits of arbitrary size. Each circuit is comprised of individual sub-circuits

(Figure 28) and each sub-circuit acts as a black box based on model data—accepting inputs

and accounting for delay, energy, and injecting any bit-errors at appropriate rates to calcu-

late outputs. Sub-circuits are “wired” to form circuits with sub-circuit outputs driving the

inputs of other sub-circuits. As inputs are applied to the circuit they are allowed to prop-

agate through the various sub-circuits where each calculates both an ideal and a PCMOS

solution. Circuit outputs are then sampled and the PCMOS-bit solutions are compared to

the ideal-bit solutions to determine error rates. Once simulation has completed for the given

number of circuit samples, error counts are compared to determine bit-level error rates and

mean squared error (MSE) is calculated to determine the average magnitude deviation.

54

Internally, sub-circuits use gate level analysis that is based on event-driven logic simu-

lation [8, 26, 72, 99]. Under this event-driven model, events are defined as logic transitions

(1 → 0 or 0 → 1) on circuit signals. Each circuit signal maintains a list of events that

includes the event time, relative to the current clock, and signal value (0 or 1). When a

sub-circuit is clocked, the event lists from all sub-circuit inputs are aggregated and sorted

for time of arrival. Sub-circuit outputs are then calculated for each event in the master

event list. HSpice model data is used to calculate dynamic energy consumption and output

delay for each event based on the current and previous input states. Dynamic energy is

added to total energy consumption and the calculated propagation delay is added to event

times and placed on output signals as new signal events. Should any event arrive before a

prior event can fully propagate, the pair are merged and recalculated as a single event based

on the time of arrival of the latest event. Once the master event list has been exhausted,

static energy consumption is calculated and added to total energy consumption based on

the final sub-circuit input state and clock rate. Once signal events have propagated through

the entire circuit and calculations are complete, all signal events are cleared and a new clock

cycle begins.

Validation of the PCMOS simulator was performed by comparing energy consumption

results to HSpice simulation for an 8-bit, ripple-carry adder (Figures 19 and 90). The

previous layout was modified to isolate the power planes for each cell within the circuit to

determine the energy consumption at each cell. A Spice netlist was then extracted from the

adder layout to include internal line capacitance. Thermal noise was then injected at A and

B full-adder inputs (C inputs were isolated within the circuit) using a Gaussian random

distribution as before. Adder inputs were driven using a uniform random distribution and

the circuit was sampled over 10k samples to determine power consumption. This was then

compared to an equivalent 8-bit, ripple-carry adder implemented in the C++ simulator and

simulated over 10k samples.

The experiment was repeated over four biasing configurations, shown in Table 4, with no

noise and again with 150mV RMS thermal noise. The four configurations chosen represent

nominal voltage, minimal voltage, a BIVOS distribution with 0.1V increments between

55

Table 4: Biasing Configurations Employed for PCMOS Simulator Validation

Bias Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
(V) (V) (V) (V) (V) (V) (V) (V)

1 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8
2 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
3 1.8 1.8 1.7 1.6 1.5 1.4 1.3 1.2
4 1.8 1.8 1.3 1.0 0.9 0.8 0.8 0.8

Table 5: Energy Consumption per Clock Step for an 8-bit Ripple-Carry Adder

Bias RMS HSpice C++ Error
(mV) (fJ/Clock) (fJ/Clock) (%)

1 0 721 664 7.90
2 0 136 141 3.75
3 0 569 551 2.94
4 0 573 574 0.29
1 150 740 702 4.96
2 150 140 142 1.70
3 150 574 571 0.40
4 150 582 588 1.09

voltage planes, and a BIVOS distribution with increments up to 0.5V between voltage

planes. The two BIVOS distributions were chosen specifically to test low (3) and high (4)

static current flows between voltage planes.

Each of the biasing configurations tested for the PCMOS simulator matched the HSpice

validation results within tolerable limits (Table 5). The worst case error was just under 8%

for the nominal voltage configuration with no noise present. In particular, the two BIVOS

configurations testing high and low static current draw with thermal noise matched closely

with a deviation on the order of 1%.

Further inspection of the energy consumption for each of the individual full adders

within the ripple-carry adder also shows a close alignment between the PCMOS simulator

and HSpice results for the majority of the configurations. Shown in Figure 29, the estimated

energy consumptions match to within 20% of the HSpice validation results in all cases.

Evident from the mismatch at the lower bit positions for Bias 1 (blue lines), the algorithm

56

(a) (b)

Figure 29: Energy consumption of full adders, by bit position, for the four bias configura-
tions detailed in Table 4 as measured by HSpice and PCMOS simulation: (a) 0V noise RMS
and (b) 150mV noise RMS. The PCMOS simulator and HSpice results align well for the
most part; the largest deviation (roughly 20%) occurs with an underestimation of energy
consumption for the full adders in the nominal configuration (1.8V).

used for merging signal events does not perform well for signals with close arrival times. As

a result, the minimal propagation delay for 1.8V biasing coupled with a short carry chain at

the lower-order bit positions allows the algorithm to merge signals over aggressively. This

yields low power consumption estimates for nominal configurations. The full-adder results

do, however, show that the PCMOS simulator closely models increasing energy consumption

with increasing bit positions due to delay along the carry chain causing spurious switching

as signals propagate. Evident from Table 5, any deviations at individual full adders are

averaged out at the aggregate with the largest errors occurring as under estimates for

baseline energy consumption (the two nominal configurations).

The PCMOS simulator was additionally validated for delay measurements by comparing

worst-case propagation results to HSpice simulation for the same 8-bit, ripple-carry adder

used to verify power measurements. In both cases, one ripple-carry input was held at nega-

tive one and the second input was transitioned from zero to one to activate the entire carry

chain. Propagation delay was measured from the time the zero-to-one transition reached

Vdd/2 to the time that the most significant output bit reached Vdd/2. The experiment was

57

Table 6: Comparison of HSpice and PCMOS Simulator Measurements for Propagation
Delay

Voltage HSpice C++ Error
(nS) (nS) (%)

1.8 1.35699 1.3962 2.81
1.7 1.44066 1.4872 3.13
1.6 1.53728 1.6044 4.18
1.5 1.66022 1.7453 4.87
1.4 1.80883 1.9298 6.27
1.3 2.00342 2.1715 7.74
1.2 2.24417 2.5061 10.45
1.1 2.60844 2.9948 12.90
1.0 3.12856 3.7447 16.45
0.9 3.94258 4.9989 21.13
0.8 5.45996 7.4893 27.10

repeated once for uniform voltage distributions ranging from 1.8V to 0.8V in 0.1V incre-

ments and again for the same biasing configurations in Table 4. In all cases noise RMS was

fixed at 0.0V .

Shown in Table 6, delay measurements for uniform distributions match closely at nom-

inal voltage levels with a deviation of less than 3%. As voltage scaling increases, however,

PCMOS simulator results deviate from HSpice results with each voltage step. Supply volt-

ages at 1.2V and above match within 10% of HSpice measurements. Below 1.2V , PCMOS

simulator results begin to diverge fairly substantially with 0.8V measurements exhibiting a

27% deviation from HSpice measurements.

In the case of the four biasing configurations from Table 4, propagation delay measure-

ments again show increased deviation with increased voltage scaling. Shown in Table 7,

the measurement error for a BIVOS distribution is determined primarily by the lowest sup-

ply voltage employed. Biasing configurations 2 and 4 both employ 0.8V supplies and the

deviation of each roughly equals the 27% deviation exhibited by the 1.8V uniform distri-

bution. Similarly, bias 3 employs 1.2V and the deviation is roughly equal to the 10% error

exhibited by the 1.2V uniform distribution. As a result, the deviation in delay measure-

ments for a particular biasing scheme can be approximated by the error exhibited for a

58

Table 7: Worst Case Propagation Delay for an 8-bit Ripple-Carry Adder

Bias HSpice C++ Error
(nS) (nS) (%)

1 1.35699 1.3962 2.81
2 5.45996 7.4774 26.98
3 1.66745 1.8117 7.96
4 3.4026 4.5927 25.91

uniform distribution at the lowest supply voltage employed. While these measurements can

be fairly inaccurate at lower supply voltages, the result can be bounded with expected error

and they do provide a reasonable estimate to compare the performance impact of various

distributions.

Error propagation within the PCMOS simulator was validated against HSpice simula-

tion using a chain of eight full-adders configured in a ripple-carry pattern. Under typical

conditions, the entire circuit would be exposed to thermal noise. As outlined in 4.4, however,

thermal noise was modeled as Gaussian noise sources at each of the full-adder inputs with

additional elements acting as extensions to the full adder. Accordingly, Inverters (necessary

for a standard ripple-carry adder) were excluded to remove any filtering effects they would

add to the HSpice simulation.

Simulation was performed over 10m data points at 150mV noise RMS. A comparison of

the resulting probabilities of correctness, as measured at circuit outputs, is shown in Fig-

ure 30. PCMOS simulator measurements match to within 0.1% of the corresponding HSpice

measurements at all bit positions. Further, error distributions (or correctness distributions

as show) largely follow the same pattern in each case, indicating that error propagation

and filtering is properly addressed within the PCMOS simulator. The PCMOS simulator

results do slightly under estimate probability of correctness in most cases, although the

discrepancy is minor.

4.6 Estimating Mean-Squared Error

Shown in Figure 5, the probability of a correct computation at 0.15V noise RMS is excep-

tionally high. In turn, the probability of an error is exceptionally low (on the order of 1

59

Figure 30: Probability of correctness, by bit position, for bias configurations two, three, and
four (detailed in Table 4) as measured by HSpice and PCMOS simulation at 150mV noise
RMS. The PCMOS simulator results largely follow the pattern of HSpice results, although
at a slightly reduced probability of correctness.

in 10k samples). Because of these low error rates, the Monte Carlo simulation technique

utilized in the PCMOS simulator requires a high number of samples to realize the true

operating probability, or the associated MSE, of a circuit (roughly 10m samples). While

the simulator is substantially faster than Spice simulation and works well as a PCMOS em-

ulator, it requires multiple days to process the high number of samples necessary to realize

an accurate MSE and is not nearly fast enough for rapid design-space exploration.

Instead, design-space exploration is accomplished by using the PCMOS simulator to

determine power requirements (validated as accurate at 10k samples in Section 4.5) in

conjunction with mathematical analysis to determine theoretical MSEs. Previous work in

estimating error rates focused on bit errors at circuit outputs [7, 27, 45, 46, 47]. Three works

in particular [45, 46, 47], develop mathematical models that greatly improve simulation time

while closely matching error-rates derived through Spice simulation. While these techniques

perform well and provide a means to compare error-prone designs, they offer no way to derive

MSE as output error probabilities provide no indication of error magnitude (Figure 11).

Rather than rely on output bit-error rates, a Matlab script was designed to estimate MSE

60

by iterating over error combinations based on Equation 7. Circuits are subdivided into full

adder operations with sum outputs weighted by bit position i and carry outputs weighted

by i + 1. Identical to the PCMOS simulator, the probability of correctness pi for each full

adder operation is determined by subcircuit-device models and biasing voltages.

As subcircuit-device models specify p by input combination, each circuit is simulated

in the PCMOS simulator over 100k samples (again uniform random input distributions)

to determine the input combination probabilities at each full adder. Circuits are operated

with no errors to establish input probabilities under deterministic operation. The resulting

characterization allows the probability of correctness to be calculated at each full adder

output based on individual adder position and biasing voltage.

Deviating from Equation 7, iterating over all possible error combinations quickly be-

comes prohibitive as the number of full adders grows. Instead, the expected MSE is esti-

mated by only considering the most significant contributors. The script starts at the most

significant bit position (as they contribute more to a solution), calculating error magnitude

and probability of occurrence for a single bit error, and stores the error magnitude as the

maximum error contribution. It then recurses calculating the error magnitude and prob-

ability of occurrence for the original bit error plus a second, simultaneous bit error. The

resulting contribution is compared to the maximum contribution, replacing the maximum

contribution if exceeding it. Recursion repeats, adding additional errors, until the error

contribution becomes insignificant (less than 0.001% of the maximum contribution). Once

the initial bit error iterates through all significant combinations of errors at lower bit po-

sitions, the script moves onto the next most significant bit position and recursion begins

again. This is repeated as long the resulting contributions are greater than 0.001% of the

maximum contribution.

Validation of this estimation technique was performed by comparing results from the

PCMOS simulator to estimated MSEs for a 16-bit, ripple-carry and an 8-bit, array multi-

plier. Starting with a fixed probability of correctness at p0 = 0.99 (all other pi = 1), each

device was simulated over 100k samples in the PCMOS simulator and the estimated MSE

was derived—probability of correctness was fixed to 99% to ensure the PCMOS simulator

61

Figure 31: A comparison of estimated and simulated MSEs for 15 different biasing con-
figurations. Estimated error closely aligns with simulated results for all simulation runs
with deviations on the order of 1%. Ninety-five percent confidence intervals, calculated for
PCMOS simulator results, are largely imperceptible for all but the largest MSEs (implying
a high degree of confidence in the MSE point estimates).

could realize the true operating probability of each circuit with 100k samples. This was

repeated over 15 trials by adding an additional, adjacent bit at pi = 0.99 for each trial to

test accuracy of estimation at each bit position. Shown in Figure 31, the resulting esti-

mated MSEs closely align with simulated results, deviating by no more than 3%. Further,

95% confidence intervals (calculated for PCMOS simulator results) fall within ±5% of MSE

results for all configurations tested.

Finally, a single experiment was completed using subcircuit-device models to evaluate

more realistic parameters. Input voltages started at 1.8V at bit 15 and were reduced at

each adjacent bit by 0.1V down to 0.8V at bits 0 through 5. Each device was simulated

over 10m samples in the PCMOS simulator to ensure the true operating probability of each

circuit was realized. Shown in Table 8, the resulting estimated MSEs closely match those

derived by simulation and 95% confidence intervals fall within ±10% of measure results.

62

Table 8: Comparison of MSE Results

PCMOS Simulator Estimated MSE Variation Confidence
RCA 1.78E + 004 1.75E + 004 1.52% ±1.88E + 003
Mult 4.63E + 004 4.60E + 004 0.58% ±3.43E + 003

4.7 Comparing a Selection of Circuits

Three fixed-point circuits were chosen for a comparison between BIVOS and reduced pre-

cision solutions: a ripple-carry adder, an array multiplier, and an FIR filter. Reduced

precision solutions were achieved through power down of unused portions of the circuit.

This is roughly equivalent to a reduced precision hardware implementation for the ripple-

carry adder. For the array multiplier, however, inputs and outputs were hard wired to the

outermost full adders along one dimension of the two dimensional structure. As a result, it

was only possible to power down one dimension of the structure.

Circuits were sized for a width to allow for 16 configurable bit positions. Eight reduced

precision solutions were then tested for each circuit with widths varied from 15 down to

8-bits. Eight BIVOS configurations were also tested for each BIVOS circuit design. For

designs employing inverter-based level conversion, an initial bias position, with a nominal

voltage of 1.8V , was varied from bit 15 down to bit 8 and the supply voltage of each

adjacent bit was reduced by 0.1V . For designs employing traditional level conversion, bits

were divided into two voltage bins where the most-significant bin received 1.8V and the

least-significant bin was varied in 0.1V increments between 1.7V and 1.0V (repeated for

low-order bin sizes of 10, 11, 12, and 13 bits). In all cases, simulation results were compared

to ideal, full-width results to determine MSE. Input signals were randomly generated using

uniform random distributions (fully exercising the number range) and all experiments were

executed with a noise RMS of 150mV over 10k circuit samples at a clock period of 300ns.

4.7.1 Ripple-Carry Adder

The ripple-carry adder, comprised of a single dimension of full adders with one at each

bit position, had the simplest circuit structure of the three circuits tested. Based on the

63

requirement of 16 configurable bit positions, it was designed for an input width of 16-bits

with a 17-bit output. As discussed in Section 4.3, the nominal and BIVOS designs employing

traditional level conversion utilized alternating logic to minimize transistor counts. BIVOS

designs employing inverter level conversion were forced to use positive logic.

Shown in Figure 32, the full-adder switching activity is considered for a standard CMOS

circuit along with three aggressive power reduction solutions: reduced precision with 8 bits

powered down, BIVOS employing inverter level conversion with an initial bias position

at bit 15, and BIVOS employing traditional level conversion with 13 bits biased to 1.0V .

Switching activity in each of the full-adders indicates power consumption relative to circuit

architecture. At nominal operation, the standard CMOS adder exhibits low circuit activity

for bit positions one and two before increasing into an alternating high-to-medium pattern

(Figure 32 (a)). Low activity at the low order bit positions is a function of a fixed carry-in

of zero at bit 0 and is present for all adder configurations. With each full adder along

the carry chain, however, the probability of a carry-in increases due to the uniform input

distribution. By bit 4, the probability of a carry-in approaches 50%. Once the probability

of a carry-in is sufficiently high, full adders are likey to switch twice: once when circuit

inputs arrive and again once the carry-in has had an opportunity to propagate from lower

order bit positions. By eliminating inverters along the carry chain and inserting inverters

at negative-logic positions in the alternating-logic adder, input delay is increased at these

negative-logic postions while carry-in delay is decreased. This allows the negative-logic

full adders extra opportunity to merge input and carry-in signals resulting in decreased

switching activity at alternating bit positions. While the reduced-precision solution has no

activity at the powered-down bit positions, shown as white boxes, the powered bit positions

show a pattern that is similar to the standard CMOS solution (Figure 32 (b)).

Contrary to the standard CMOS design, the BIVOS solution employing inverter level

conversion shows the highest circuit activity from bit positions 5 through 10 (Figure 32

(c)). This is a result of circuit propagation occurring in a series of waves due to biasing

configuration. In a typical multi-voltage design, supply voltages are assigned to minimize

critical path propagation and ensure all paths complete at roughly the same time. As a

64

LOWHIGH

1.81.81.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8

(a)

1.81.81.8 1.8 1.8 1.8 1.8 1.8 00 0 0 0 0 0 0

(b)

1.61.71.8 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.8 0.8 0.8 0.8 0.8

(c)

1.81.81.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

(d)

Figure 32: Switching activity for a 16-bit, fixed-point, ripple-carry adder: (a) Nominal
operation at full (1.8V) voltage, (b) Reduced precision operation with eight bits powered
down, (c) BIVOS operation with an initial bias position at bit 15, and (d) BIVOS operation
with 13 bits biased to 1.0V . The delay introduced through voltage biasing in BIVOS
operation creates propagation waves, causing additional circuit switching at higher-order
bit positions. This translates to higher circuit activity at boundaries with low biasing
voltages: through the middle of the circuit in (c) and at the high order bit positions in (d).

65

result, all voltages along a propagation path are equal ensuring a single propagation wave

through the circuit. Conversely, a BIVOS solution ensures that low-voltage elements at

low-order bit positions are driving high-voltage elements at high-order bit positions. This

allows the high-order bit positions extra opportunity to complete before results from the

slower, low-order bit positions are able to propagate. As a result, each biasing voltage cre-

ates an independent propagation wave that causes higher-order bit positions to recalculate,

consuming extra power in the process. At voltages close to 1.8V the impact is small; at

voltages close to 0.8V , however, the added delay due to low-voltage operation can increase

circuit activity significantly.

66

Example 12: To highlight the affect of propagation waves on switching

activity, consider a positive-logic, two-bit, ripple-carry adder. Initially both A

and B inputs are set to three resulting in a summation of six with a positive

carry between the full adders.

A0 B0

S0

A1 B1

S1S2

1

C0

0
1

1

1 111

01

Switching A to a zero causes the full adders to recalculate. If the carry

calculation at bit zero is unable to complete before the full adder at bit one

completes, S1 and S2 will be calculated with the initial C0 value.

A0 B0

S0

A1 B1

S1S2

0

C0

1
1

1

0 110

00

Once the carry at bit zero is calculated, the full adder at bit one will

recalculate the S1 and S2 outputs for a second time. The delay incurred along

the carry chain results in two switches at bit one while the inputs switched

only once.

A0 B0

S0

A1 B1

S1S2

1

C0

1
0

0

0 110

00

67

Under normal operating conditions both full adders receive 1.8V . As the

full adder is designed to minimize carry propagation delay (at the expense

of sum propagation delay), this allows ample time for the carry output from

bit zero to reach the carry input at bit one before the sum calculation can

complete. Shown below for a full-adder pair simulated in HSpice, the S1

output only momentarily glitches to 1.7V (well above threshold voltage) at

0.5ns due to the propagation delay at C0.

printed Fri Apr 8 2011 00:19:07 by gt8920a on ecelinsrv5.ece.gatech.edu Synopsys, Inc. (c) 2000-2009

waveview 1

500n

500n

500.5n

500.5n

501n

501n

501.5n

501.5n

502n

502n

sec (lin)

0

0.6

1.2

vol
t (li

n)

0

0.6

1.2

1.8

vol
t (li

n)

0

0.6

1.2

1.8

vol
t (li

n)

0n 0.5n 1n 1.5n 2n

A0

C0

S1

With bit zero biased to 1.0V , however, the delay at C0 is increased due

to the voltage scaling. As bit one is still operating at 1.8V , S1 completes well

in advance of C0 and must recalculate once C0 arrives. Shown below for a

second full-adder pair simulated in HSpice, the S1 output fully switches to 0V

before switching back to 1.8V .

printed Fri Apr 8 2011 00:34:09 by gt8920a on ecelinsrv5.ece.gatech.edu Synopsys, Inc. (c) 2000-2009

waveview 1

500n

500n

500.5n

500.5n

501n

501n

501.5n

501.5n

502n

502n

sec (lin)

0

0.6

1.2

vol
t (li

n)

0.6

1.2

1.8

vol
t (li

n)

0

0.6

1.2

1.8

vol
t (li

n)

0n 0.5n 1n 1.5n 2n

A0

C0

S1

The result is an additional circuit switching due to the propagation waves

created by voltage biasing, compared to nominal operation, for specific input

patterns. 2

From Figure 32 (c), the impact of the increased propagation delay due to 0.8V operation

at bits 0 through 5 accumulates in a substantial increase in circuit activity in the middle

of the device. As operating voltage increases by bit significance, the likelihood of increased

activity propagating is absorbed due to the low probability of a fully activated carry chain.

68

At the high-order bit positions circuit activity returns to normal. The same affect is evi-

dent in the BIVOS solution employing traditional level conversion (Figure 32 (d)), however,

the low-voltage bin extends all the way to bit 13 allowing increased circuit activity at the

full-voltage, high-order bit positions. To some extent the impact of increased switching

activity is mitigated in the inverter-based design by voltage scaling along the inner bit po-

sitions where increased activity occurs. In the case of the design employing traditional level

conversion, increased switching activity is particularly expensive as this increases energy

consumption at full adders that were already operating at full power.

Shown in Figure 33, the cumulative error count by bit position is examined for the same

three aggressive power reduction solutions considered for switching activity. The reduced-

precision solution, shown in red, allows a substantial number of bit errors, but constrains

them to lower-order bit positions. The resulting MSE is then a function of the volume of

bit errors occurring at these lower-order bit positions. Both BIVOS solutions, conversely,

allow higher-order errors to occur and limit the overall error count (the solution employing

inverter level conversion biases the bulk of the bit errors to low-order bit positions). In

these cases, MSE is largely a function of the weight of the highest-order bit errors.

The resulting MSE versus average switching energy is shown in Figure 34 for the reduced-

precision and inverter-based, BIVOS, ripple-carry-adder solutions. Both methods yield con-

siderable energy savings compared to the baseline energy profile. The BIVOS implemen-

tation, however, yields energy savings with less MSE than a comparable reduced-precision

implementation for a fixed energy budget.

Of note in Figure 34, the reduced precision solution exhibits a sawtooth pattern with

many lower energy solutions resulting in lower a MSE than an adjacent higher energy

solution. This is due to the alternating logic employed coupled with the uniform, random

input distribution. With such a data set, all input combinations are equally likely at each

full adder (Table 9). The expected value of an individual full adder is then 2.25—the

average summation of all eight possible input combinations. When a positive-logic full

adder is powered down, or reduced, the adjacent negative-logic full adder receives a fixed

zero at the Cin input. The negative-logic full adder interprets this zero as a one. Coupled

69

Figure 33: Bit-error rates by bit position for 3 ripple-carry-adder implementations: reduced
precision operation with 8 bits powered down, BIVOS operation with an initial bias position
at bit 15, and BIVOS operation with 13 bits biased to 1.0V . Where a reduced-precision so-
lution introduces a substantial number of errors at low-order bit positions, BIVOS solutions
distribute a small number of errors across a larger range of bit positions.

Figure 34: MSE vs energy for a fixed-point, ripple-carry adder. Both reduced precision and
inverter-based BIVOS designs significantly reduce energy consumption when compared to
a standard CMOS adder. The BIVOS solution, however, reduces error for any given energy
level.

70

Table 9: Expected Full Adder Summation

A B Cin Sum
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 2
1 0 0 1
1 0 1 2
1 1 0 2
1 1 1 3

with the S output on the positive-logic full adder fixed at zero, this translates to a constant

summation of two at the powered down full-adder that is roughly equivalent to the expected

value. Conversely, powering down a negative-logic full adder is interpreted as a zero at the

adjacent positive-logic full adder resulting in a constant summation of zero that deviates

substantially from the expected value. As a result, powering down a positive-logic full adder

can offset some of the error introduced by an adjacent negative-logic full adder at high-order

bit positions.

Repeated for the four BIVOS designs employing traditional level conversion, Figure 35

shows that designs based on traditional level conversion can also significantly reduce energy

consumption. These designs, however, exhibit a trade-off between accuracy and propagation

delay that is highlighted by the arching slope of the BIVOS solution spaces. Designs with

fewer bias bits display better MSE characteristics, although they suffer from an increased

number of bit positions that are susceptible to power increases due to propagation waves.

As voltage is scaled power consumption increases at high-order bit positions resulting in

a diminishing return per voltage step. When coupled with a consistent MSE penalty per

voltage step, the culmination is a relative increase in MSE penalty per energy step. This

affect is most prominent in the BIVOS design employing a 10-bit, low-order voltage bin.

Beyond the accuracy/delay tradeoff, not all BIVOS configurations outperformed a reduced-

precision solution. Where the inverter-based BIVOS design allowed increasing supply volt-

ages to be assigned by increasing bit significance, the designs employing traditional level

71

13

12

11

10

Figure 35: A comparison of fixed-point, ripple-carry adder designs employing standard
CMOS, reduced precision, and BIVOS utilizing traditional level conversion. The four
BIVOS designs were repeated with low-order voltage bins ranging from 10 to 13 bits. As
was the case for the inverter-based BIVOS design, the energy savings are significant for all
cases. The reduced precision solution, however, outperforms the BIVOS designs for most
data points.

conversion only allowed for two distinct voltage levels. This provided a minimal opportunity

to assign voltage levels by bit significance, requiring a compromise between the number of

bit positions biased and the biasing voltage selected. Of the four bins sizes chosen, each

of the resulting solution spaces exhibit a crossover point where a BIVOS solution becomes

favorable to a reduced-precision design. Between the four designs, the solutions with fewer

bits in the low-order bin displayed the most data points with favorable MSE.

The worst-case propagation delays for each of the solutions are shown in Figures 36

and 37. Where the reduced-precision solution decreases propagation delay, the voltage

scaling employed with BIVOS solutions results in an increase in propagation delay. While

all of the BIVOS solutions considered result in a substantial performance penalty, those

employing traditional level conversion result in a slightly lower worst-case propagation delay

than those employing inverter level conversion. To some extent this is a function of operating

with higher supply voltages, but it is also a function of reduced circuit count through

alternating logic.

72

Figure 36: Worst case propagation delay for reduced-precision and inverter-based, BIVOS
ripple-carry-adder implementations. Where the reduced-precision solution reduces delay
by powering down circuit elements, the BIVOS solution increases delay through voltage
scaling.

Figure 37: Worst case propagation delay for reduced-precision and level-converter-based,
BIVOS ripple-carry-adder implementations. Again, the reduced-precision solution reduces
delay by powering down circuit elements while the BIVOS solutions increases delay through
voltage scaling.

73

LOWHIGH

1.81.8

1.8

1.8

1.8

1.8

1.8

1.8

1.8 1.8 1.8 1.8 1.8 1.8 1.8

Figure 38: Switching activity for a standard CMOS, array multiplier operating at nominal
voltage (1.8V). Unlike the ripple-carry adder, the design does not result in an alternating
high-to-low activity pattern along positive and negative full-adder boundaries. This is due
to input filtering applied by NAND gates that reduces the likelihood of input switching.

4.7.2 Array Multiplier

More complicated than the ripple-carry adder, the array multiplier consists of an eight-by-

eight array of full adders forming a two dimensional structure. It was configured for 8-bit

inputs resulting in 16-bit outputs. Shown in Figure 38, switching activity for a standard

CMOS solution increases along the vertical dimension of the circuit with the highest switch-

ing activity occurring at the last circuit row. As was the case for the ripple-carry adder,

these full adders are most likely to complete an initial switching on input transitions before

switching again as delayed inputs arrive along propagation paths. Unlike the ripple-carry

adder, however, the array multiplier does not display an alternating pattern of high-to-

medium activity despite employing alternating logic. This is due to the NAND gates at

each full-adder input filtering incoming circuit inputs, resulting in a reduced likelihood of

input switching.

Figure 39 shows the switching activity for a reduced-precision solution with eight bits

74

LOWHIGH

1.81.8

1.8

1.8

1.8

1.8

1.8

1.8

0 0 0 0 0 0 0

Figure 39: Switching activity for a standard CMOS, array multiplier using reduced-
precision operation with eight bits powered down. The circuit exhibits switching activity
that is similar to the nominal design at the bit positions that are powered.

powered down. Similar to the ripple-carry adder, activity for the reduced-precision imple-

mentation mimics the standard design with the exception of the powered-down full adders.

Figures 40 and 41 show the switching activity for the inverter-based and tradition level

conversion BIVOS solutions respectively. Not unlike the ripple-carry adder solutions, the

inverter-based design has the highest activity through the center of the circuit. Again, this

is due to the propagation delay incurred from the bit positions biased near 0.8V . The design

employing traditional level conversion exhibits increased switching activity throughout much

of the circuit when compared to a standard implementation. Increased switching activity

at the high-order bit positions is once again expensive as this increases power consumption

in full adders operating at nominal voltage.

Error distributions for the same extreme power-reduction designs employed previously

are shown in Figure 42. As was the case for the ripple-carry adder, the reduced-precision

solution concentrates a high frequency of errors at lower-order bit positions while the BIVOS

solutions distribute far fewer errors over a larger number of bit positions. Unlike the adder,

75

LOWHIGH

1.81.8

1.8

1.8

1.8

1.8

1.8

1.8

1.8 1.8 1.8 1.8 1.8 1.8 1.8

Figure 40: Switching activity for an array multiplier employing BIVOS with inverter-
based level conversion with an initial bias position at bit 15. Delay incurred through the
application of voltage scaling accumulates as additional switching activity along the last
row of the circuit.

LOWHIGH

1.81.8

1.8

1.8

1.8

1.8

1.8

1.8

1.8 1.8 1.8 1.8 1.8 1.8 1.8

Figure 41: Switching activity for an array multiplier employing BIVOS with traditional level
conversion with 13 bits biased to 1.0V . Delay again accumulates as additional switching
activity along the last row of the circuit.

76

Figure 42: Bit-error rates by bit position for reduced-precision and BIVOS array-multiplier
implementations. Again, the reduced-precision solution distributes a large number of errors
over low-order bit positions while the BIVOS solutions distribute fewer errors over a larger
range of bit positions. All solutions exhibit increased error counts through the center of the
device as a result of the increased full-adder counts at these bit positions.

the multiplier solutions show a higher frequency of errors through the inner bit positions

for all designs. This is due to the array-multiplier structure where inner bit positions have

a higher number of full-adders allowing for more errors through the center of the structure.

Comparing MSE and switching energy for the reduced-precision and inverter-based

BIVOS solutions in Figure 43, the BIVOS solution is unable to outperform the reduced-

precision solution for any data points (in direct contrast to the inverter-based, BIVOS

ripple-carry adder). Further, the inverter-based BIVOS solution is only capable of reducing

power consumption below a standard implementation at three data points. This is due to

the fact that the nominal solution is able to eliminate as many as three inverters at each

full adder using alternating logic along the two dimensions of the multiplier structure. As a

result, the BIVOS array multiplier is at a severe power disadvantage when utilizing inverters

for level conversion given the design requires 122 more inverters than an alternating-logic

implementation.

77

Figure 43: Mean-squared error vs energy for a fixed-point, array multiplier. Where the
reduced-precision solution is able to reduce energy consumption compared to a standard
CMOS array multiplier, a BIVOS design implemented with inverter-based level conversion
suffers from a multitude of additional inverters and is unable to overcome the added power
consumption. As a result, the BIVOS solution is only able to improve upon the energy
consumption of a standard design at three data points.

BIVOS solutions employing traditional level conversion performed far better than the

inverter-based alternative. Shown in Figure 44, BIVOS implementations reduced MSE when

compared to a reduced-precision solution for most data points. More pronounced than the

adder solutions, particularly with smaller biasing bin sizes, BIVOS configurations show the

same diminishing return with increased voltage scaling. This is again due to increased

switching activity (and the associated increase in energy consumption at unbiased bits)

with greater and greater delay between propagation waves along voltage boundaries.

Unlike the ripple-carry adder, a reduced-precision multiplier solution yields little im-

provement in worst-case propagation delay (Figures 45 and 46). This is because the worst-

case propagation path in the array multiplier is vertical along bit 7 and then horizontal

across the final row. As a result, powering down full adders by column does not remove any

from the critical path until bit 7 is powered-down. In the case of the BIVOS implementa-

tions, both the inverter and traditional level converter designs again suffer a performance

penalty.

78

13

12

11

10

Figure 44: Mean-squared error vs energy for a fixed-point, array multiplier. Both a reduced-
precision and BIVOS solutions employing traditional level conversion are able to improve
on a standard CMOS design. Unlike the inverter-based designs, those utilizing traditional
level conversion outperform a reduced-precision solution at multiple data points.

Figure 45: Worst case propagation delay for reduced-precision and inverter-based, BIVOS
array-multiplier implementations. In this case, a reduced-precision design is unable to
eliminate transistors for most data points due to a critical path that runs vertical at bit 7.
As before, a BIVOS solution increases delay through voltage scaling.

79

Figure 46: Worst case propagation delay for reduced-precision and level-converter-based,
BIVOS array-multiplier implementations. Again, delay is relatively constant for a reduced-
precision design where BIVOS increases delay due to voltage scaling.

4.7.3 Finite-Impulse-Response Filter

Finally, the most complicated circuit of the three was the FIR filter. It employed 6-taps

using the same adder and multiplier structures tested previously. The circuit was simulated

for three sets of coefficients (Table 10): low-pass filtering, high-pass filtering, and H.264

sub-pixel interpolation. Typical digital-signal processors will use two to four guard bits to

“guard” against overflow in a series of mathematical operations (such as those present in

an FIR filter). Utilizing guard bits, however, adds extra high-order bit positions, exacer-

bating the affect of propagation waves on power consumption. Instead, low and high-pass

filter coefficients where chosen to ensure overflow would not occur (H.264 coefficients were

defined as such) and the FIR filter was designed to utilize no guard bits. The resulting

magnitude responses for the low and high-pass filter coefficients are shown in Figures 47

and 48 respectively.

Shown in Figure 49 for the low-pass filter, switching activity for the standard design is

highest at the ripple-carry adders where the longest propagation paths terminate. This is

the case for the reduced-power solutions as well, with the reduced precision solution roughly

80

Table 10: FIR Filter Coefficients

Tap 0 Tap 1 Tap 2 Tap 3 Tap 4 Tap 5
Low-pass −10 25 61 61 25 −10
High-pass 19 25 −64 63 −25 −19
Sub-pixel 1 −5 20 20 −5 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−25

−20

−15

−10

−5

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Lowpass Equiripple: Quantized
Lowpass Equiripple: Reference

Figure 47: Magnitude response for an 8-bit, low-pass, FIR filter. Normalized frequencies
below 0.7π are passed without attenuation while those above are suppressed.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−20

−15

−10

−5

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Highpass Equiripple: Quantized
Highpass Equiripple: Reference

Figure 48: Magnitude response for an 8-bit, high-pass, FIR filter. Normalized frequencies
above 0.3π are passed without attenuation while those below are suppressed.

81

LOWHIGH

(a) (b) (c) (d)

Figure 49: Switching activity for a low-pass FIR filter with four implementations: (a)
standard CMOS (1.8V), (b) reduced-precision with eight bits powered down, (c) BIVOS
with inverter level conversion and an initial bias position at bit 15, and (d) BIVOS with
traditional level conversion and 13 bits biased to 1.0V . Delay incurred through voltage
biasing results in increased switching activity at the ripple-carry-adder outputs.

mirroring standard CMOS activity. As was the case for the adder and multiplier circuits,

switching activity is increased for the BIVOS designs. Again, the inverter-based design

shows the highest activity at inner bit positions and the design employing tradition level

conversion suffers at high-order bit positions.

Error distributions are shown in Figures 52, 53, and 54 for the low-pass, high-pass, and

sub-pixel-interpolation filters respectively. While there is variation due to filter coefficients,

the distributions are roughly equivalent. As the array multipliers comprise the majority of

the filter circuitry, the error distributions show the same higher frequency of bit errors at

82

LOWHIGH

(a) (b) (c) (d)

Figure 50: Switching activity for a high-pass FIR filter with four implementations: (a)
standard CMOS (1.8V), (b) reduced-precision with eight bits powered down, (c) BIVOS
with inverter level conversion and an initial bias position at bit 15, and (d) BIVOS with
traditional level conversion and 13 bits biased to 1.0V . Again, delay incurred through
voltage biasing results in increased switching activity at the ripple-carry-adder outputs.

83

LOWHIGH

(a) (b) (c) (d)

Figure 51: Switching activity for a sub-pixel-interpolation, FIR filter with four implementa-
tions: (a) standard CMOS (1.8V), (b) reduced-precision with eight bits powered down, (c)
BIVOS with inverter level conversion and an initial bias position at bit 15, and (d) BIVOS
with traditional level conversion and 13 bits biased to 1.0V . As before, delay incurred
through voltage biasing results in increased switching activity at the ripple-carry-adder
outputs.

84

Figure 52: Bit-error rates by bit position for reduced-precision and BIVOS, low-pass FIR-
filter implementations. As the circuit structure of the FIR filter is dominated by array
multipliers, the error rates follow a pattern similar to that found in the array multiplier.

inner bit positions as were present in the multiplier designs. Similar to the other circuits,

reduced-precision solutions yield a large quantity of bit errors, with limited magnitude,

while BIVOS solutions distribute fewer errors across more bit positions.

Again, as array multipliers dominate the filter circuitry, MSE and switching energy are

largely determined by multiplier configurations. This is despite the fact that the highest

switching activity within the filter circuit is at the ripple-carry adders. Evident from Fig-

ures 55, 56, and 57; the inverter-based level conversion that yields highly favorable results

for a ripple-carry adder is unable match reduced-precision solutions for the FIR filter. In-

stead, the resulting MSE versus switching energy plots more closely resemble those of the

array multiplier.

Shown in Figures 58, 59, and 60; the BIVOS solutions employing traditional level conver-

sion also closely resemble those of the array multiplier. As was the case for the multiplier,

the traditional-level-conversion solutions outperform reduced-precision solutions at many

data points. The trade-off between accuracy and delay is strongly pronounced for the FIR

filter solutions. At the smallest bin sizes, the increase in high-order power consumption

85

Figure 53: Bit-error rates by bit position for reduced-precision and BIVOS, high-pass FIR-
filter implementations. Again, the error rates follow a pattern similar to that found in the
array multiplier.

Figure 54: Bit-error rates by bit position for reduced-precision and BIVOS, sub-pixel-
interpolation FIR-filter implementations. Once again, the error rates follow a pattern similar
to that found in the array multiplier.

86

Figure 55: Mean-squared error vs energy for reduced-precision and BIVOS (implemented
with inverter level conversion) low-pass, FIR filter implementations. Similar to the array
multiplier, an inverter-based solution is unable to outperform a reduced-precision solution.

Figure 56: Mean-squared error vs energy for reduced-precision and BIVOS (implemented
with inverter level conversion) high-pass, FIR filter implementations. Again, an inverter-
based solution is unable to outperform a reduced-precision solution.

87

Figure 57: Mean-squared error vs energy for reduced-precision and BIVOS (implemented
with inverter level conversion) sub-pixel-interpolation, FIR filter implementations. Once
more, an inverter-based solution is unable to outperform a reduced-precision solution.

is so significant that the lowest-voltage (and highest MSE) solutions require more energy

than others operating at a higher voltage. Despite this trade-off, the overall trend indicates

that traditional level conversion is superior to other designs across the three sets of filter

coefficients.

Worst case propagation delay for the FIR filter is shown in Figures 61 and 62. Since

the constant filter coefficients utilized for low-pass, high-pass, and H.264 filtering impact

the ability to activate the critical path, worst case propagation delay was estimated as

the summation of the worst case multiplier delay and adder delay at each configuration.

Delay was estimated for the FIR filter in general, as filter coefficients were ignored in the

calculation. Due to the inclusion of ripple-carry adders, reduced-precision solutions once

again decreased overall propagation delay. BIVOS solutions, in turn, increased worst-case

propagation delay with increased voltage scaling.

88

13

12

11

10

Figure 58: Mean-squared error vs energy for reduced-precision and BIVOS (implemented
with traditional level conversion) low-pass, FIR filter implementations. As was the case for
the multiplier, BIVOS designs employing traditional level conversion outperform a reduced-
precision design at a majority of the data points tested.

13

12

11

10

Figure 59: Mean-squared error vs energy for reduced-precision and BIVOS (implemented
with traditional level conversion) high-pass, FIR filter implementations. Again, BIVOS
designs employing traditional level conversion outperform a reduced-precision design at a
majority of the data points tested.

89

13

12

11

10

Figure 60: Mean-squared error vs energy for reduced-precision and BIVOS (implemented
with traditional level conversion) sub-pixel-interpolation, FIR filter implementations. As be-
fore, BIVOS designs employing traditional level conversion outperform a reduced-precision
design at a majority of the data points tested.

Figure 61: Worst case propagation delay for reduced-precision and inverter-based, BIVOS
FIR-filter implementations. Operating as a combination of adder and multiplier elements,
the reduced-precision design decreases propagation delay by powering down circuit elements.
The BIVOS solution, conversely, increases delay through voltage scaling.

90

Figure 62: Worst case propagation delay for reduced-precision and level-converter-based,
BIVOS FIR-filter implementations. Again, the reduced-precision design decreases propaga-
tion delay by powering down circuit elements and the BIVOS solution increases delay with
voltage scaling.

91

CHAPTER V

H.264 VIDEO DECODING AS A PROOF OF CONCEPT

5.1 H.264 Video Decoding

Video decoding, specifically H.264 video decoding, was chosen as an application to eval-

uate the effectiveness of BIVOS as a technique. Discussed earlier, video decoding falls

into the category of resilient applications since it is ultimately a human viewer who deter-

mines application quality. H.264 video decoding was selected based on the common use

of the specification in platforms ranging from broadcast television to Internet and cellular

streaming.

H.264 is a hybrid video coding standard that compresses data by reducing redundancies:

spatial, temporal, perceptual, and statistical [34]. Video is encoded as a sequence of pic-

tures, or frames. Each frame is subdivided into small 16x16 blocks of pixels and each pixel

is encoded using the YCbCr (luma Y, or brightness, and chroma Cb/Cr, or color deviation

from gray toward blue/red) color space. While the pixel data in some blocks is encoded

directly, compression is achieved by predicting the majority of the pixel data based previ-

ously encoded blocks [87]. The resulting block prediction data is then compressed using an

integer transform and quantized. Finally, blocks are grouped into frames to complete the

encoding.

Decoding is comprised of a five step process, shown in Figure 63, that reverses the en-

coding process. The first step in the decoding process is obtaining the information necessary

to reconstruct the frame (block type, quantizer parameters, reference frame indexes, etc.)

in the entropy decoder [71]. From the entropy decoder, the inverse quantizer reverses the

quantization process employed in the encoder and the inverse transform reverses the com-

pression transform used in encoding. Once the original block data is decoded, it is passed

to the motion compensation stage where pixel data is retrieved using prediction data based

on previously decoded blocks. If the prediction data is based on blocks in the current frame

92

Entropy
Decoder

Inverse
Quantizer

Inverse
Transform

Frame
Memory

Deblocking
Decoded

Picture Buffer

1 2 3

5

Coded
Image

Decoded
Image

Intraprediction

Interprediction

Motion
Compensation

4

Figure 63: Flow chart of the five-stage H.264 decoding algorithm. 1. Entropy Decoder:
decodes frame parameters. 2. Inverse Quantizer: reverses encoding quantization of block
prediction data. 3. Inverse Transform: reverses compression transform applied to original
block prediction data. 4. Motion Compensation: calculates block-pixel values by performing
motion based prediction. Results are stored in frame memory for further intraprediction
until the current frame is fully decoded. 5. Deblocking: Decoded blocks are filtered to
smooth transitions across block edges. Resulting frame is stored in the decoded picture
buffer for display and use in interprediction.

only, pixel data is retrieved using the intraprediction stage. If prediction data is based

on blocks in previously decoded frames, pixel data is retrieved using the interprediction

stage. Once all blocks have been decoded and the entire frame has been recovered, a filter

is applied to reduce distortion along block edges in the deblocking stage [34, 71].

Within the motion compensation stages, motion resolution is defined to quarter-pixel

resolution for luma samples. To achieve sub-pixel resolution, interpolation is used. First,

half-pixel values are generated by interpolation of neighboring integer-pixels using a six-tap,

finite-impulse-response (FIR) filter, shown in Figure 64. Linear interpolation is then used

to generate quarter-pixel values by comparing neighboring half and integer-pixels [71, 98].

Operating on a RISC processor, such as an ARM processor, the sub-pixel computations

typically account for more than 50% of computational time [98].

Within the H.264 algorithm, motion compensation was chosen for BIVOS operation

(specifically the six-tap FIR filter was implemented using BIVOS). Because of the high

93

Input

Output

Z-1 Z-1 Z-1 Z-1 Z-1

X

+

X X X X X

+ +

+ +

1 -5 20 120 -5

Figure 64: Six-tap, finite impulse response (FIR) filter used for sub-pixel interpolation
in H.264 video decoding. The filter is comprised of delay (Z−1), multiplication (X), and
addition (+) elements. Interpolation is performed using the coefficients 1, -5, 20, 20, -5 and
1.

utilization of the motion compensation stage, it is an excellent candidate for power savings

within the algorithm. In addition to comprising a computationally significant portion of

video decoding, motion compensation is followed by deblocking that smooths irregularities

along block borders. In the context of PCMOS, this deblocking process smooths small errors

introduced through BIVOS and provides error masking that improves perceptual quality.

5.2 FIR Architecture

To evaluate the area impact of a BIVOS implementation layout was performed for both

a BIVOS and a standard CMOS FIR filter design. In each case the motion-compensation

FIR accepts color intensity (an eight-bit input) and employs both positive and negative

coefficients for filtering. As such, the design calls for a 9-bit (8 bits for color intensity and

an extra bit to maintain sign), fixed-point FIR filter.

Similar to Section 4.1, design was first performed for a standard CMOS implementation.

The multiplier architecture utilizes a 9-bit-in (18-bit-out) array multiplier (Figure 65). As

the FIR filter design is intended solely for H.264 video decoding, the B inputs on each of

94

Figure 65: Standard CMOS implementation for an 8-bit-in, 16-bit-out, array multiplier.
Circuit inputs and outputs are routed to vertical edges in metal three.

Figure 66: Standard CMOS implementation for an 18-bit ripple-carry adder. Circuit inputs
and outputs are routed to vertical edges in metal three.

the six multipliers are hardwired to the appropriate coefficient values using Vdd and Gnd.

The adder architecture was implemented as an 18-bit-in (19-bit-out) ripple-carry adder

(Figure 66). Designing for 18-bits allowed no guard bits to prevent overflow, however, the

H.264 decoding coefficients ensure overflow will not occur. As overflow is guaranteed not

to occur, bit 19 was discarded from each full adder.

The delay elements were implemented as a series of d-type flip-flops and each device

required a pair of latches. Both the flip flops and the latches were designed using the Weste

text as a basis [86]. Latch transistors were sized at three times a standard inverter for

added drive strength with balanced rise and fall times (Figure 67). The flip-flop was then

comprised of a pair of latches along with inverters to form the memory element (Figure 68).

As Q was redundant, only Q was provided for the design. The flip-flop was sized to fit

95

Φ

VDD

GND

D Q

W=300n
L=200n

W=600n
L=200nΦ

W=600n
L=200n

W=300n
L=200n

(a) (b)

Figure 67: Latch implementation: (a) transistor schematic with transistor sizing for im-
proved drive strength and (b) VLSI layout with cell pitch set 4.8µm resulting in a width of
4.45µm and an area of 21.36µm2.

within the width of a full adder so that delay elements could be placed directly above the

multiplier elements they were intended to drive.

The taps were arranged using a three row, two column layout with multipliers forming

the outer edges and adders placed between (Figure 69). Delay elements were inserted

between each multiplier and the space left from an uneven number of adders was utilized

for the output buffer. A mesh network was utilized for clock distribution to minimize line

resistance and clock skew [25]. With each clock pulse, input data moves from the input

buffer above tap zero, down through tap two, across to tap three, and back up to tap five

before exiting the filter. Between pulses, coefficients are applied to filter inputs through the

multipliers at each tap position. Results are combined through the adders in the middle

of the circuit and filter results are buffered for output at the bottom of the circuit. The

resulting FIR filter is shown in Figure 70

FIR filter design was then repeated for a BIVOS implementation. The BIVOS multiplier

was again designed as a 9-bit-in (18-bit-out) array multiplier and, based on results from

Section 4.7, utilizes traditional level conversion with biasing split into two voltage bins

(Figure 71). The low-order, biasing, bin was sized at 13 bits and the remaining 5 bits

were placed in the high-order bin. As was the case for the standard CMOS design, filter

96

Figure 68: Standard CMOS implementation of a D-type flip-flop employing two latches
along with several inverters to implement a memory element. The cell footprint has been
sized to roughly fit within the width of a standard-cell full adder to allow for vertical
alignment during layout.

+

+

X

Z-1

X

Z-1

Z-1

X

Z-1

+

X

Z-1

X

Z-1

+

+

X

Z-1

Figure 69: Floor plan, including signal routing, for the FIR filter layout. Circuit inputs
enter at the upper left and propagate through the six tap position at each clock cycle. Tap
inputs are multiplied by filter coefficient along the outer edges of the circuit and accumulate
along the center of the circuit. Filtering results are then buffered before outputs exit through
the lower edge of the circuit.

97

Figure 70: Standard CMOS implementation of a 9-bit, FIR filter as required for H.264
video decoding. The resulting design is roughly square at 506.3µm by 292.3µm and a total
area of 0.147mm2.

coefficients are hardwired to B inputs on circuit multipliers.

Similar to the standard CMOS design, addition was implemented using a 18-bit-in (19-

bit-out) ripple-carry adder with no guard bits. As was the case for the multiplier, standard

level converters were used for voltage conversion. The design was again divided into two

voltage bins along bit 13. As was the case for the standard CMOS design, sign extension

was used for inputs that did not match data width. The resulting adder is shown in Figure

72.

Figure 71: BIVOS implementation for an 9-bit-in, 18-bit-out, array multiplier. Circuit
inputs and outputs are routed to vertical edges in metal three.

98

Figure 72: BIVOS implementation for an 18-bit ripple-carry adder. Circuit inputs and
outputs are routed to vertical edges in metal three.

Layout for the BIVOS FIR filter employed the same floor plan used for the standard

CMOS design with the added requirement of two voltage planes necessary for biasing. As

each cell (adders and multipliers) routed biasing voltages vertically in metal three, cells only

required horizontal alignment for vertical voltage distribution. In addition to the vertical

distribution provided by the adder and multiplier cells, the two voltage lines were routed

horizontally along the top and bottom of the circuit to join the voltage planes in each of

the four columns. Layout for the resulting BIVOS FIR filter design is shown in Figure 73.

5.3 Generation of Multiple Voltage Levels

By definition, BIVOS requires multiple voltage sources for operation. As many modern

embedded systems also require multiple voltage levels (although not to the extent required

by BIVOS), there are existing techniques for providing the necessary voltages. Typically

system energy comes from an off-chip power source. As power supply lines can be noisy

and the supplied voltage rarely matches the requirements for system operation, voltage

conversion is necessary. DC-DC converters transform this noisy input voltage into the

required output voltage, monitoring varying system loading in the process and regulating

the output voltage as needed.

Outlined in [48], there are several techniques for providing voltage regulation. Linear

regulators monitor output voltage for deviations and adjust supply current as necessary

to maintain proper output voltage under varying supply loads. By design they can only

99

Figure 73: BIVOS implementation of an 9-bit FIR filter as required for H.264 video de-
coding. The resulting design is roughly square at 514.4µm by 294.7µm and a total area of
0.151mm2.

provide step-down voltage conversion, are incapable of dynamic voltage scaling, and can be

inefficient at higher operating voltages. To overcome these shortcomings, switched capaci-

tor (or equivalently switched inductor) converters utilize an array of capacitors for charge

storage and a feedback circuit continuously switches between capacitors to maintain output

voltages. Single-inductor multiple-ouput (SIMO) DC-DC converters further improve on

switched capacitor designs by using a time-division multiplexing system to offer multiple

output voltages while only requiring a single inductor for operation.

To estimate the area impact of voltage regulation, several SIMO designs were surveyed

for various technology generations. Shown in Figure 74, area requirements range from

13.3mm2 in a 0.5µm process to 1mm2 in a 0.13µm process. The area-per-output plot shows

a clear trend in area improvements with successive technology generations. The spread in

per-output area requirements for 0.5µm technology designs does, however, indicate that

design can have a significant impact on total area consumption. This is further evidenced

by the fact that designs with roughly equivalent output counts (designs 3 and 6) have vastly

different area requirements. From the survey, best and worst case area per voltage source

is estimated at 0.36mm2 and 3.33mm2 respectively. This amounts to area requirements of

100

1

4

5

6

7

8

9

12
13

14

1

4

5

6

7

8

9

12

13

14

3

2

(a) (b)

Figure 74: A comparison of various single-inductor multiple-output DC-DC voltage con-
verter designs across five technology generations: 0.5µm, 0.35µm, 0.25µm, 0.18µm, 0.13µm.
(a) Design area versus voltage outputs. (b) Area per output for each design. Design clearly
determines area requirements per output, however, technology dictates overall area con-
sumption.

1: Woo 2-Output Buck/Boost [96] 6: Seol 5-Output Buck/Boost [73] 11: Belloni 4-Output Buck [5]
2: Ma 2-Output Boost [49, 50] 7: Belloni 2-Output Buck [6] 12: Parayandeh 4-Output Buck [64]
3: Belloni 4-Output Boost [4] 8: Lee 6-Output Buck [44] 13: Belloni 2-Output Buck [6]
4: Belloni 4-Output Buck [6] 9: Huang 4-Output Buck/Boost [31] 14: Zhang 2-Output Boost [102]
5: Le 5-Output Boost [43] 10: Bondade 3-Output Buck/Boost [10] 15: Bondade 2-Output Buck [9]

0.72mm2 in the best case and 6.66mm2 in the worst to provide 2 distinct voltages levels.

To address the voltage regulator losses, the same 15 SIMO voltage converters were

compared for efficiency (Figure 75). As BIVOS requires step-up voltage conversion, best and

worse case Buck converters are considered: Belloni’s 2-output converter [6] and Bondade’s

2-output converter [9]. Based on these two designs, SIMO efficiency is estimated between

87% and 74%, best and worst case respectively.

5.4 H.264 Video Decoding Software

An open-source software decoder written by Martin Fiedler was chosen as the evaluation

platform for H.264 video decoding [24]. The decoder was written in C and implements a

minimal H.264 decoding solution. It was modified to incorporate the previously outlined

C++ simulator to act as a PCMOS emulator. Under this configuration, a six-tap, 9-bit, FIR

filter was implemented using the C++ simulator. The FIR filter design was then compiled

to a library and integrated with the H.264 video decoding software (Figure 76).

When decoding videos, the decoder software first initializes the FIR filter library for

101

1

4

5
6

7

10
9

11

13

15

3

2

Figure 75: A comparison of the minimum reported voltage conversion efficiency for 15
single-inductor multiple-output DC-DC voltage converter designs across 5 technology gen-
erations: 0.5µm, 0.35µm, 0.25µm, 0.18µm, 0.13µm. Technology largely drives voltage-
conversion efficiency, however, designs 7 and 13 indicate that circuit design does play a role
in efficiency.

1: Woo 2-Output Buck/Boost [96] 6: Seol 5-Output Buck/Boost [73] 11: Belloni 4-Output Buck [5]
2: Ma 2-Output Boost [49, 50] 7: Belloni 2-Output Buck [6] 12: Parayandeh 4-Output Buck [64]
3: Belloni 4-Output Boost [4] 8: Lee 6-Output Buck [44] 13: Belloni 2-Output Buck [6]
4: Belloni 4-Output Buck [6] 9: Huang 4-Output Buck/Boost [31] 14: Zhang 2-Output Boost [102]
5: Le 5-Output Boost [43] 10: Bondade 3-Output Buck/Boost [10] 15: Bondade 2-Output Buck [9]

C++ Simulator
Library

FIR

H.264 Video Decoder

Entropy

Deblocking

Motion
Compensation

FIR
Inputs

Outputs

Quantizer
-1

Transform
-1

Figure 76: H.264 simulator data flow where the FIR filter within the motion compensation
stage of the video decoder has been replaced with a PCMOS emulator. Data intended
for the FIR filter is offloaded to a pre-compiled PCMOS FIR filter library that simulates
probabilistic behavior. FIR filter outputs are then returned to the video decoder to continue
standard processing.

102

Table 11: FIR Layout Implementations

Design Width Height Area Penalty
(µm) (µm) (mm2) (%)

Nominal 506.3 292.3 0.147 –
BIVOS 515.4 294.7 0.151 2.6%

specific bias parameters. As part of the motion estimation algorithm, normal FIR filter

processing is bypassed and FIR filter inputs are delivered to the C++ simulator library.

The library processes the inputs, injecting errors as determined by the biasing parameters,

and returns the resulting output. Once the FIR filter output is received by the decoding

software, it continues normal operation to generate the resulting frame. Once decoding is

complete, ideal and test frames are compared to determine SNR.

5.5 Video Decoding Results

Outlined in Table 11, the resulting nominal FIR filter design required 0.147mm2 silicon

area with a height of 292.3µm and a width of 506.3µm. By comparison, the BIVOS design

required 0.151mm2 with a height of 294.7µm and a width of 515.4µm. The primary area

expense for the BIVOS design was the necessary inclusion of five inverter/level-converter

pairs for voltage conversion at each of the array multipliers (the inverter/level-converter

pairs fit within dead space in the standard adder).

Beyond the area required for layout, the BIVOS design requires additional area for DC-

DC converters needed to generate the two distinct voltage levels. Using the area per-output

data from the 15 SIMO designs surveyed in Section 5.3, best and worst-case area require-

ments for voltage conversion are estimated at 0.72mm2 and 6.66mm2 respectively. When

compared to the 0.151mm2 required for the BIVOS FIR filter implementation, it is clear

that voltage regulation can render BIVOS solutions impractical from designs with tight area

constraints. To some extent this regulation cost can be offset by employing the same regu-

lators over multiple components operating on a single PCMOS co-processor. With several

units utilizing the same biasing configuration the combined area could potentially approach

that required for voltage conversion. Still, DC-DC converters represent a substantial area

103

Table 12: FIR Filter Energy Consumption and SNR

Design Energy Reduction PSNR PSNR PSNR
(pJ/clock) (%) (dB @ 1f) (dB @ 18f) (dB @ 36f)

Nominal 18.6 - - - -
Reduced 15.3 26.1 37.2 20.1 14.3

BIVOS (1.4V) 14.7 29.1 50.0 40.6 38.1
BIVOS (1.2V) 13.7 33.9 45.8 37.2 35.0

requirement in BIVOS designs even when voltage binning is employed to place limits on

the number of voltages required.

Simulated using the previously outlined H.264 decoder software, configurations were

tested for nominal CMOS, reduced-precision, and BIVOS operation. Data normalization

was employed for both reduced-precision and BIVOS operation to mitigate the impact of

any bit errors. This was accomplished by left-shifting each coefficient three bit positions to

fully utilize the available bit width and right-shifting results by three bit positions to realign

data. As each inter (predicted) frame is based on a previously rendered frame, any errors

that occurred were accumulated across multiple frames resulting in the highest error rates

at the end of an inter-frame sequence. To indicate the impact of each solution at various

sizes of inter-frame sequences, peak-signal-to-noise ratio (PSNR) was compared at frames

1, 18, and 36 of a single sequence.

Energy consumption and PSNR for each of the configurations tested is summarized in

Table 12. BIVOS configurations were simulated over a range of operating points to highlight

the opportunity to trade accuracy for energy savings based on application requirements. In

all cases, BIVOS designs provide higher energy savings with a better PSNR than a reduced-

precision solution. A BIVOS solution optimized for image quality (biased at 1.4V) allows

a 29.1% reduction in energy consumption with a PSNR of 38.1dB. Optimized for energy

consumption (biased at 1.2V), a BIVOS solution yields 33.9% energy savings with a PSNR

of 35.0dB. By comparison, an optimal reduced-precision solution at 11 bits results in a

26.1% energy reduction with a PSNR of 14.3dB.

Frames comparing the “low-energy” BIVOS and reduced-precision implementations are

104

(a) (b)

Figure 77: Identical frames from the movie X-Men 2 as decoded using (a) BIVOS and
(b) reduced-precision implementations. The BIVOS solution achieved an energy reduction
of 33.9% at a PSNR of 38.1dB compared to a 26.1% energy reduction at 14.3dB for the
reduced-precision solution.

(a) (b)

Figure 78: Noise introduced into identical frames from the movie X-Men 2 as decoded using
(a) BIVOS and (b) reduced-precision implementations. The BIVOS solution achieved an
energy reduction of 33.9% at a PSNR of 38.1dB compared to a 26.1% energy reduction at
14.3dB for the reduced-precision solution.

shown in Figures 77 and 78. Where the reduced-precision solution severely degrades image

quality, the BIVOS solution only slightly alters pixel intensity. At low resolution, as de-

picted here, the impact of BIVOS is largely imperceptible. Full resolution images for each

configuration tested are shown in Appendix F.

Based on the bounds established in Section 5.3 for voltage-regulator losses, energy con-

sumption with voltage-converter efficiency is summarized in Table 13. From Table 13, it is

evident that regulation efficiency is a critical factor in the effectiveness of a BIVOS solution.

Assuming minimal regulator efficiency, neither BIVOS implementation (with energy sav-

ings of only 4.2% and 10.6% for the “high-quality”and “low-power” biases respectively) is

105

Table 13: Efficiency Comparison

Design Energy Efficiency Total Energy Reduction
(pJ/clock) (%) (pJ/clock) (%)

Nominal 18.6 90 20.7 -
Reduced 15.3 90 17.0 17.8

BIVOS (1.4V) 14.7 74 19.8 04.2
87 16.8 18.5

BIVOS (1.2V) 13.7 74 18.5 10.6
87 15.7 24.0

able to compete with the 17.8% energy savings realized through reduced-precision CMOS.

Assuming regulator efficiency on par with that used for a standard design, however, yields

BIVOS solutions that surpass a reduced-precision solution with energy savings at 18.5%

and 24.0% (again, for the “high-quality”and “low-power” biases respectively). As outlined

in Table 12, this is accomplished while substantially improving on SNR when compared to

a reduced-precision design.

Shown here for H.264 video decoding, BIVOS solutions outperform an energy-equivalent,

reduced-precision solution given the appropriate design conditions. The primary drawback

to a implementing a BIVOS solution is the additional requirements imposed by voltage reg-

ulation. From Table 13, it is obvious that regulator efficiency is critical to the effectiveness

of a BIVOS implementation. If regulator efficiency is not on par with single voltage designs,

any savings realized through BIVOS can easily be overwhelmed. Further, the area penalty

incurred for regulation of multiple voltage planes can quickly eliminate BIVOS for designs

with little area to spare. For designs that can meet the voltage regulation requirements,

however, a BIVOS solution can deliver substantial energy reductions with minimal impact

to application quality.

106

CHAPTER VI

CONCLUSIONS AND POTENTIAL DIRECTIONS

6.1 Contributions: Biased Voltage Overscaling

For applications that inherently require probability, probabilistic computing is an obvious

fit. When realized through PCMOS, solutions offer a high quality source of randomness that

substantially reduces computational complexity compared to more conventional approaches.

This translates to PCMOS designs that reduce the consumption of both silicon area and

power. Applied to probabilistic applications, the result can be enormous power savings over

more conventional designs.

It is much less obvious how probabilistic computing applies to applications that are

inherently deterministic. These applications were designed with the assumption that the

underlying hardware operates in a deterministic fashion. Errors are not anticipated and,

as a general rule, the expectation is that errors should not be permitted. While previous

works allowed for computational errors, any that did so corrected the resulting errors under

the assumption that deterministic operation was a necessity.

The primary contribution of this work is the extension of probabilistic computing to

these inherently deterministic applications. Specifically, the novel biasing technique pre-

sented here represents a highly unorthodox solution that makes application resiliency possi-

ble. By biasing error generation to low-order bit positions, error magnitude is limited such

that the resulting computational approximations are tolerable at the application level.

When realized through PCMOS, BIVOS solutions are capable of significantly reducing

the power consumption of CMOS devices. While these solutions are unable to match the

extreme power savings PCMOS offers for probabilistic applications, BIVOS provides power

savings beyond what is possible with standard implementations. The inability to realize the

potential of probabilistic applications stems primarily from the massive hardware reductions

that are possible by implementing probabilistic algorithms in PCMOS. Where probabilistic

107

applications are able to capitalize on probability to reduce hardware complexity, resilient

applications must operate in spite of it.

Beyond the hardware benefits enjoyed by probabilistic applications, there are a variety

of other factors further limiting the overall effectiveness of a BIVOS solution. Application

accuracy requirements ultimately determine what degree of voltage overscaling is possible.

These requirements place an upper limit on the number of bits that can be biased within a

circuit, beyond which biasing is impossible due to the error magnitude introduced through

probabilistic operation. Independent of the accuracy requirements, the act of biasing places

a lower limit on the number of bits that can be biased within a circuit by creating prop-

agation waves that increase power consumption at unbiased, higher-order bit positions.

Combined with circuit structure, the resulting upper and lower biasing bounds allow a lim-

ited operational range for BIVOS solutions. Once this operating range is coupled with the

added overhead of voltage generation and conversion, BIVOS design can be challenging.

Despite the difficulties imposed by BIVOS design, BIVOS solutions perform well when

compared to other error-prone techniques. Reduced-precision designs achieve equivalent

energy savings, however, the technique is incapable of matching the accuracy delivered by

BIVOS. Similarly, standard (uniform) voltage overscaling is also capable of decreasing power

consumption, although the accuracy sacrifice is well beyond that required by BIVOS designs.

As a result, BIVOS offers the potential for resilient applications to minimize sacrifices in

application quality while maximizing energy savings.

While the work presented here has shown the applicability of BIVOS to a specific com-

puting technology with a specific noise source, namely CMOS and thermal noise, the appli-

cability of the technique is far broader. Independent of the underling noise source, or com-

puting technology, the work here has shown that it is possible to perform useful computation

in a non-deterministic fashion. The biasing technique shows how accuracy requirements can

be relaxed in a way that maintains application performance. In a similar fashion, biasing

can be applied to other noise sources and technologies to realize energy savings through

probabilistic computing.

108

6.2 Investigating Delay as a Source of Noise

Propagation delay, in particular, represents a “noise” source that could potentially be well

suited for PCMOS operation. In conventional, synchronous logic a circuit is sampled at

fixed intervals to determine signal states. Switching signal states takes time at each CMOS

transistor and signals can only be sampled after CMOS transistors have had ample time

to process any input signals. Because not all paths through a circuit are equivalent, the

time required for changing input signals to propagate to circuit outputs is variable. As a

result, the circuit sampling rate, or clock period, is determined to accommodate worst case

propagation delays.

In practice, however, the worst case propagation paths are rarely activated. Instead,

propagation delay through the circuit will vary with changing input patterns. In a fashion

similar to reducing the noise margin for thermal noise, increasing the circuit sampling rate

will reduce the margin for propagation delay. Shown in Figure 79, if a circuit is sampled after

a changing input signal has had time to propagate through the entire circuit, the associated

output signals are correct. If the circuit has not had time to propagate changing signals

through the entire circuit, however, the associated output signals are incorrect resulting in

a bit error.

Over the course of many samples propagation delay through the circuit will vary. The

resulting frequency of these varying propagation delays then forms a probability density

function (PDF), not unlike that formed by thermal noise. For a given clock period the

probability of an error (1 − p), and conversely the probability of correctness (p), can then

be determined from the PDF.

Operating as a pseudo-noise source, propagation delay then presents two opportunities

for gains through PCMOS operation. First, for a fixed, nominal voltage distribution, a

circuit’s clock rate can be increased beyond that permitted by deterministic operation al-

lowing for increased performance without a power penalty. Conversely, a circuit’s clock rate

can be maintained while the voltage distribution is reduced allowing for decreased energy

consumption without a performance penalty. Combining the two, PCMOS operation can

potentially yield increased performance with reduced energy consumption.

109

Signal

+Vdd / 2

+Gap

+Gap -Gap

-Gap

Probability of
an Error

(1-p)

Propagation
Delay

Distribution

Clock
Period

t

Gaussian
Noise

Probability of
an Error

(1-p)

+Vdd / 2

+Vdd / 2

Signal

V
Transition Transition

Clock Clock

T
h

e
rm

a
l
N

o
is

e D
e
la

y
 "N

o
is

e
"

Figure 79: Treated as a pseudo-noise source, propagation delay shows several similarities to
thermal noise. By over clocking a circuit, the frequency of the resulting propagation delays
forms a probability-density function that can then be used to estimate the probability of
an error based on clock period.

6.3 Implications for Optical Computing

Beyond CMOS, probabilistic computing and biasing holds promise as a more general power

saving technique. Optical computing is one emerging technology were BIVOS could stand

to make a substantial impact. The technology transmits data using light, or photons, rather

than electric current. Because light paths will not interfere with each other, crossing signals

can simply be overlapped reducing interconnect overhead. More importantly, the use of

photons for data transmission has the advantage of resistance-free transmission channels.

Where electrical wires suffer from electrical resistance resulting in induced heat, optical

channels virtually eliminate waste heat generation [97].

Due to these resistance free-transmission channels, optical computing should consume

less power than an electronic equivalent. In practice, however, this is hardly the case.

Shot noise, a result of fluctuations in the number of detectable photons, quickly overcomes

optical signals requiring a boost in signal strength and an associated increase in power

consumption. Since the shot noise in an optical channel is greater than the thermal noise in

110

an electrical channel, optical channels require more power to overcome the underlying noise

sources. Over long distances the transmission losses incurred through electrical resistance

will outweigh any shot losses incurred by an optical channel, however, at the lengths required

to span a silicon die an optical device will end up consuming more power than an electronic

equivalent.

In many ways, shot noise is already affecting optical computing in a fashion similar to

that projected of thermal noise and electronic computing. Both are additive noise sources

and both are statistically random processes—shot noise follows a Poisson distribution as

opposed to the Gaussian distribution observed by thermal noise. More importantly, shot

noise places lower limits on the energy consumption of optical systems requiring a baseline

of transmission power to maintain noise margins. This behavior is identical to the projected

impact of thermal noise on voltage scaling in future CMOS generations.

While optical computing is far from mainstream, BIVOS represents a solution that could

benefit the technology immediately. Chances are that other, yet to be discovered, computing

techniques and technologies could benefit from the application of biased computing in a

similar fashion. As a technique, biasing offers a solution to perform useful computations

using approximations rather than absolutes. It is this departure from the more conventional

mindset of deterministic computation that represents the innovation of this work.

Reducing the power consumption of computing systems is a theme that spans the his-

tory of electronic computation. From the earliest vacuum-tube machines to the modern

processors in use today, there has been a persistent need for improvements in energy effi-

ciency. Given the power wall that the computing industry is facing and projections that

this wall will continue to be a barrier to computing, it is likely that there will be a need for

energy-efficient computation well into the future.

111

APPENDIX A

STANDARD CELL IMPLEMENTATIONS

112

VDD

GND

A A

W=600n
L=200n

W=300n
L=200n

(a) (b)

Figure 80: Inverter implementation: (a) transistor schematic with transistor sizing for
minimal, balanced input capacitance and (b) VLSI layout with cell pitch set 4.8µm resulting
in a width of 3.65µm and an area of 17.52µm2.

D0

Y

VDD

GND

W=600n
L=200n

W=300n
L=200n

VDD

GND

W=600n
L=200n

W=300n
L=200n

D1

S S

S S

D0 D1

W=600n
L=200n

W=600n
L=200n

W=300n
L=200n

W=300n
L=200n

(a) (b)

Figure 81: Multiplexor implementation: (a) transistor schematic with transistor sizing for
minimal, balanced input capacitanceand (b) VLSI layout with cell pitch set 4.8µm resulting
in a width of 3.95µm and an area of 18.96µm2.

113

A

Y

VDD

GND

W=600n
L=200n

W=300n
L=200n

VDD

GND

W=600n
L=200n

W=300n
L=200n

A

B B

A A

B

W=600n
L=200n

W=600n
L=200n

W=300n
L=200n

W=300n
L=200n

B

(a) (b)

Figure 82: Exclusive-or implementation: (a) transistor schematic with transistor sizing for
minimal, balanced input capacitanceand (b) VLSI layout with cell pitch set 4.8µm resulting
in a width of 3.95µm and an area of 18.96µm2.

Y

VDD

GND

W=450n
L=200n

A

B W=450n
L=200n

W=450n
L=200n

A B W=450n
L=200n

(a) (b)

Figure 83: Nand implementation: (a) transistor schematic with transistor sizing for mini-
mal, balanced input capacitanceand (b) VLSI layout with cell pitch set 4.8µm resulting in
a width of 3.80µm and an area of 18.24µm2.

114

Y

VDD

GND

W=600n
L=200n

A

B W=600n
L=200n

A W=300n
L=200n

W=300n
L=200n

B C W=300n
L=200n

W=300n
L=200n

D

C W=600n
L=200n

D W=600n
L=200n

(a)

(b)

Figure 84: Four-input NAND implementation: (a) transistor schematic with transistor
sizing for minimal, balanced input capacitanceand (b) VLSI layout with cell pitch set 4.8µm
resulting in a width of 5.10µm and an area of 24.48µm2.

115

A

Y

VDD

GND

W=600n
L=200n

W=300n
L=200n

VDD

GND

W=600n
L=200n

W=300n
L=200n

A

B B

A A

B

W=600n
L=200n

W=600n
L=200n

W=300n
L=200n

W=300n
L=200n

B

(a) (b)

Figure 85: And-or-invert implementation: (a) transistor schematic with transistor sizing for
minimal, balanced input capacitanceand (b) VLSI layout with cell pitch set 4.8µm resulting
in a width of 4.65µm and an area of 22.32µm2.

A A

W=300n
L=200n

W=800n
L=200n

VDD

GND

Y

(a) (b)

Figure 86: Level converter implementation: (a) transistor schematic with transistor sizing
for minimal power consumptionand (b) VLSI layout with cell pitch set 4.8µm resulting in
a width of 3.60µm and an area of 17.52µm2.

116

APPENDIX B

CMOS RIPPLE-CARRY ADDER

117

Figure 87: Standard CMOS implementation for an 8-bit, ripple-carry adder. Full adders
are divided into four, two-bit rows to create a roughly square design at 36.6µm by 20.1µm
and a total area of 735.66µm2.

Figure 88: Standard CMOS implementation for an 8-bit, block-propagate adder. Full
adders are divided into four, two-bit rows with propagate logic inserted between resulting
in a rectangular design at 63.5µm by 24.4µm and a total area of 1549.40µm2.

Figure 89: Standard CMOS implementation for an 8-bit carry-select adder. Full adders are
divided into six, two-bit rows with the replicated select logic residing on rows three, four,
five, and six. The resulting design is roughly square at 43.9µm by 31.4µm and a total area
of 1378.46µm2.

118

APPENDIX C

INVERTER BIVOS RIPPLE-CARRY ADDER

119

Figure 90: BIVOS implementation for an 8-bit, ripple-carry adder. Full adders are divided
into four, two-bit rows to create a rectangular design at 40.2µm by 24.6µm and a total area
of 988.92µm2.

Figure 91: BIVOS implementation for an 8-bit, block-propagate adder. Full adders are di-
vided into four, two-bit rows with propagate logic inserted between resulting in an elongated
design at 75.4µm by 25.3µm and a total area of 1907.62µm2.

Figure 92: BIVOS implementation for an 8-bit, carry-select adder. Full adders are divided
into six, two-bit rows with the additional logic replicated for the select portion on the lower
four row. The resulting design is roughly square at 46.9µm by 34.8µm and a total area of
1632.12µm2.

120

APPENDIX D

LEVEL-CONVETER BIVOS RIPPLE-CARRY ADDER

121

Figure 93: BIVOS implementation for an 8-bit, ripple-carry adder utilizing traditional level
conversion. Full adders are divided into four, two-bit rows to create a rectangular design at
40.2µm by 21.6µm and a total area of 868.32µm2.

Figure 94: BIVOS implementation for an 8-bit, block-propagate adder utilizing traditional
level conversion. Full adders are divided into four, two-bit rows with propagate logic in-
serted between resulting in an elongated design at 67.3µm by 24.6µm and a total area of
1655.58µm2.

Figure 95: BIVOS implementation for an 8-bit, carry-select adder utilizing traditional
level conversion. Full adders are divided into six, two-bit rows with the additional logic
replicated for the select portion on the lower four row. The resulting design is roughly
square at 43.9µm by 32.6µm and a total area of 1431.14µm2.

122

APPENDIX E

H.264 VIDEO DECODING FRAMES

123

Figure 96: H.264 video decoding of the movie X-Men 2 using 18-bit, standard CMOS for
frame 1 in a sequence of 36 inter (prediction) frames.

Figure 97: H.264 video decoding of the movie X-Men 2 using 18-bit, standard CMOS for
frame 18 in a sequence of 36 inter (prediction) frames.

124

Figure 98: H.264 video decoding of the movie X-Men 2 using 18-bit, standard CMOS for
frame 36 in a sequence of 36 inter (prediction) frames.

Figure 99: H.264 video decoding of the movie X-Men 2 using 11-bit, reduced-precision
CMOS for frame 1 in a sequence of 36 inter (prediction) frames. At frame one, blocking is
already present around the actor on the right.

125

Figure 100: H.264 video decoding of the movie X-Men 2 using 11-bit, reduced-precision
CMOS for frame 18 in a sequence of 36 inter (prediction) frames. By frame 18, both actors
faces are fully obscured due to noise introduced through reduced-precision operation.

Figure 101: H.264 video decoding of the movie X-Men 2 using 11-bit, reduced-precision
CMOS for frame 36 in a sequence of 36 inter (prediction) frames. At frame 36, a large
portion of the scene is obscured due to noise introduced through reduced-precision operation.

126

Figure 102: H.264 video decoding of the movie X-Men 2 using 18-bit, BIVOS biased to
1.4V for frame 1 in a sequence of 36 inter (prediction) frames. At frame one, no discernable
noise is evident due to BIVOS operation.

Figure 103: H.264 video decoding of the movie X-Men 2 using 18-bit, BIVOS biased to
1.4V for frame 18 in a sequence of 36 inter (prediction) frames. At frame 18, still no clear
evidence of noise is present.

127

Figure 104: H.264 video decoding of the movie X-Men 2 using 18-bit, BIVOS biased to
1.4V for frame 36 in a sequence of 36 inter (prediction) frames. Even at frame 18, it is
difficult to detect the noise introduced through BIVOS operation.

Figure 105: H.264 video decoding of the movie X-Men 2 using 18-bit, BIVOS biased to
1.2V for frame 1 in a sequence of 36 inter (prediction) frames. No discernable noise is
evident due to BIVOS operation.

128

Figure 106: H.264 video decoding of the movie X-Men 2 using 18-bit, BIVOS biased to
1.2V for frame 18 in a sequence of 36 inter (prediction) frames. Slight pixelation is evident
in the actor’s faces at full resolution due to BIVOS operation.

Figure 107: H.264 video decoding of the movie X-Men 2 using 18-bit, BIVOS biased to
1.2V for frame 36 in a sequence of 36 inter (prediction) frames. As in frame 18, slight
pixelation is evident in the actor’s faces at full resolution due to BIVOS operation.

129

APPENDIX F

H.264 VIDEO DECODING NOISE

130

Figure 108: H.264 video decoding of the movie X-Men 2 using 11-bit, reduced-precision
CMOS for frame 1 in a sequence of 36 inter (prediction) frames. Noise is barely discernable
at frame one.

Figure 109: H.264 video decoding of the movie X-Men 2 using 11-bit, reduced-precision
CMOS for frame 18 in a sequence of 36 inter (prediction) frames. By frame 18 the noise
has accumulated significantly.

131

Figure 110: H.264 video decoding of the movie X-Men 2 using 11-bit, reduced-precision
CMOS for frame 36 in a sequence of 36 inter (prediction) frames. At frame 36, the noise
becomes strong throughout the entire frame.

Figure 111: H.264 video decoding of the movie X-Men 2 using 18-bit, BIVOS biased to
1.4V for frame 1 in a sequence of 36 inter (prediction) frames. As was the case in the actual
frame, noise is difficult to detect.

132

Figure 112: H.264 video decoding of the movie X-Men 2 using 18-bit, BIVOS biased to
1.4V for frame 18 in a sequence of 36 inter (prediction) frames. Again, noise is difficult to
detect.

Figure 113: H.264 video decoding of the movie X-Men 2 using 18-bit, BIVOS biased to
1.4V for frame 36 in a sequence of 36 inter (prediction) frames. Even at frame 36, noise is
still difficult to detect.

133

Figure 114: H.264 video decoding of the movie X-Men 2 using 18-bit, BIVOS biased to
1.2V for frame 1 in a sequence of 36 inter (prediction) frames. Similar to the higher voltage
solution, noise is difficult to detect at frame one.

Figure 115: H.264 video decoding of the movie X-Men 2 using 18-bit, BIVOS biased to
1.2V for frame 18 in a sequence of 36 inter (prediction) frames. By frame 18, noise is slightly
discernable.

134

Figure 116: H.264 video decoding of the movie X-Men 2 using 18-bit, BIVOS biased to
1.2V for frame 36 in a sequence of 36 inter (prediction) frames. More pronounced than
frame 18, noise at frame 36 is still only slightly detectable.

135

REFERENCES

[1] Apple, “Apple Computers: Electrical Specifications.” Available at: http://
support.apple.com/kb/TA37853?viewlocale=en_US, Sept. 2010.

[2] Apple, “Macbook air technical specifications.” Available at: http://www.apple.
com/macbookair/specs.html, Oct. 2010.

[3] Austin, T., Blaauw, D., Mudge, T., and Flautner, K., “Making typical silicon
matter with razor,” Computer, vol. 37, no. 3, pp. 57–65, 2004.

[4] Belloni, M., Bonizzoni, E., Kiseliovas, E., Malcovati, P., Maloberti, F.,
Peltola, T., and Teppo, T., “A 4-output single-inductor DC-DC buck converter
with self-boosted switch drivers and 1.2A total output current,” in Solid-State Cir-
cuits Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE International,
pp. 444 –626, Feb. 2008.

[5] Belloni, M., Bonizzoni, E., and Maloberti, F., “On the design of single-inductor
multiple-output DC-DC buck converters,” in Circuits and Systems, 2008. ISCAS
2008. IEEE International Symposium on, pp. 3049 –3052, May 2008.

[6] Belloni, M., Bonizzoni, E., and Maloberti, F., “On the design of single-inductor
multiple-output DC-DC buck converters,” in Circuits and Systems, 2008. ISCAS
2008. IEEE International Symposium on, pp. 3049 –3052, May 2008.

[7] Bhanu, A., Lau, M. S. K., Ling, K.-V., Mooney III, V. J., and Singh, A.,
“A more precise model of noise based pcmos errors,” in Proceedings of the 2010 Fifth
IEEE International Symposium on Electronic Design, Test & Applications, DELTA
’10, (Washington, DC, USA), pp. 99–102, IEEE Computer Society, 2010.

[8] Boliolo, A., Benini, L., de Micheli, G., and Ricco, B., “Gate-level power and
current simulation of CMOS integrated circuits,” Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, vol. 5, pp. 473 –488, Dec. 1997.

[9] Bondade, R. and Ma, D., “A DLL-regulated SIMO power converter for DVS-
enabled power-aware VLSI systems,” in Circuits and Systems, 2009. MWSCAS ’09.
52nd IEEE International Midwest Symposium on, pp. 961 –964, Aug. 2009.

[10] Bondade, R. and Ma, D., “Hardware-software co-design of an embedded power
management module with adaptive on-chip power processing schemes,” in Cir-
cuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on,
pp. 617 –620, May 2010.

[11] Burr, J. and Peterson, A., “Ultra low power CMOS technology,” in Idaho Univ.,
The 1991 3rd NASA Symposium on VLSI Design 12 p (SEE N94-18337 04-33), 1991.

[12] Calhoun, B. H. and Chandrakasan, A., “Characterizing and modeling minimum
energy operation for subthreshold circuits,” in ISLPED ’04: Proceedings of the 2004
international symposium on Low power electronics and design, pp. 90–95, 2004.

136

[13] Calhoun, B. H., Daly, D. C., Verma, N., Wentzloff, D. D., Wang, A.,
Cho, S.-H., and Chandrakasan, A. P., “Design considerations for ultra-low energy
wireless microsensor nodes,” IEEE Transactions on Computers, vol. 54, no. 6, pp. 727–
740, 2005.

[14] Carpenter, B. E., “Observed relationships between size measures of the Internet,”
SIGCOMM Comput. Commun. Rev., vol. 39, no. 2, pp. 5–12, 2009.

[15] Carpenter, B. E., “Observed relationships between size measures of the Inter-
net or is the Internet really just a star network after all?.” Available at: http:
//apricot.vip.net.id/www.apricot2010.net/__data/assets/pdf_file/00%07/
18844/APOPS-Plenary-I_01_BGP-Growth-over-15-years_Brian-Carpenter.pdf,
2009.

[16] Chakrapani, L., Akgul, B. E. S., Cheemalavagu, S., Korkmaz, P., Palem,
K., and Seshasayee, B., “Ultra-efficient (embedded) SOC architectures based on
probabilistic CMOS (PCMOS) technology,” Proc. of Design Automation and Test in
Europe (DATE), Mar. 2006.

[17] Chandrakasan, A. P. and Brodersen, R. W., Low power digital CMOS design.
Norwell, MA: Kluwer Academic Publishers, 1995.

[18] Chang, J. and Pedram, M., “Energy minimization using multiple supply voltages,”
Proc. of IEEE Transactions on VLSI Systems, vol. 5, pp. 436 – 443, Dec. 1997.

[19] Cheemalavagu, S., Korkmaz, P., and Palem, K. V., “Ultra low-energy com-
puting via probabilistic algorithms and devices: CMOS device primitives and the
energy-probability relationship,” in Proc. of The 2004 International Conference on
Solid State Devices and Materials, (Tokyo, Japan), pp. 402 – 403, Sept. 2004.

[20] Cheemalavagu, S., Korkmaz, P., Palem, K. V., Akgul, B. E. S., and Chakra-
pani, L. N., “A probabilistic CMOS switch and its realization by exploiting noise,”
in Proc. of In IFIP-VLSI SoC, (Perth, Western Australia), Oct. 2005.

[21] Chong, W., Hariyama, M., and Kameyama, M., “Low-power field-programmable
vlsi using multiple supply voltages,” IEICE Transactions on Fundamentals of Elec-
tronics, Communications and Computer Sciences, vol. E88-A, pp. 3298–3305, Dec.
2005.

[22] Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., and Totterdell, I. J.,
“Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate
model,” Nature, vol. 408, pp. 184–187, Nov. 2000.

[23] Cremer, C., Eichhammer, W., Friedewald, M., Georgieff, P., Rieth-
Hoerst, S., Schlomann, B., and Zoche, P., “Energy consumption of information
and communication technology (ICT) in Germany up to 2010.” Available at: http:
//publica.fraunhofer.de/eprints/urn:nbn:de:0011-n-223629.pdf, Jan. 2003.

[24] Fiedler, M., “H.264 decoder; c-source code.” Available at: http://keyj.s2000.
ws/?page_id=41, May 2008.

[25] Friedman, E., “Clock distribution networks in synchronous digital integrated cir-
cuits,” Proceedings of the IEEE, vol. 89, pp. 665 –692, May 2001.

137

[26] George, B., Yeap, G., Wloka, M., Tyler, S., and Gossain, D., “Power analysis
for semi-custom design,” in Custom Integrated Circuits Conference, 1994., Proceedings
of the IEEE 1994, pp. 249 –252, May 1994.

[27] George, J., Marr, B., Akgul, B. E. S., and Palem, K. V., “Probabilistic arith-
metic and energy efficient embedded signal processing,” in CASES ’06: Proceedings
of the 2006 international conference on Compilers, architecture and synthesis for em-
bedded systems, (New York, NY, USA), pp. 158–168, ACM, 2006.

[28] Gwennap, L., “What is a microprocessor?.” Available at: http://www.mdronline.
com/editorial/edit24_39.html, Sept. 2010.

[29] Hanchate, N. and Ranganathan, N., “A new technique for leakage reduction in
CMOS circuits using self-controlled stacked transistors,” in VLSID ’04: Proceedings of
the 17th International Conference on VLSI Design, (Washington, DC, USA), p. 228,
IEEE Computer Society, 2004.

[30] Hedge, R. and Shanbhag, N. R., “Soft digital signal processing,” IEEE Transac-
tions on VLSI, vol. 9, pp. 813 – 823, Dec. 2001.

[31] Huang, M.-H. and Chen, K.-H., “Single-inductor multi-output (SIMO) DC-DC
converters with high light-load efficiency and minimized cross-regulation for portable
devices,” Solid-State Circuits, IEEE Journal of, vol. 44, pp. 1099 –1111, Apr. 2009.

[32] IBM, “7090 Data Processing System.” Available at: http://www-03.ibm.com/ibm/
history/exhibits/mainframe/mainframe_PP7090.html, Sept. 2010.

[33] Johnson, M. C., Somasekhar, D., Chiou, L.-Y., and Roy, K., “Leakage control
with efficient use of transistor stacks in single threshold CMOS,” IEEE Trans. Very
Large Scale Integr. Syst., vol. 10, no. 1, pp. 1–5, 2002.

[34] Kalva, H., “The H.264 video coding standard,” Multimedia, IEEE, vol. 13, pp. 86
–90, Oct. 2006.

[35] Kim, N., Austin, T., Blaauw, D., Mudge, T., Flautner, K., Hu, J., Irwin,
M., Kandemir, M., and Vijaykrishnan, N., “Leakage current - Moore’s law meets
static power,” IEEE Computer, vol. 36, pp. 68–75, Dec. 2003.

[36] Kish, L. B., “End of Moore’s law: Thermal (noise) death of integration in micro and
nano electronics,” Physics Letters A, vol. 305, pp. 144–149, Dec. 2002.

[37] Kogge, P., Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally,
W., Denneau, M., Franzon, P., Harrod, W., Hill, K., and et al., “Exascale
computing study: Technology challenges in achieving exascale systems.” DARPA In-
formation Processing Techniques Office, Jan. 2008.

[38] Kohler, A. and Erdmann, L., “Expected environmental impacts of pervasive com-
puting,” Human and Ecological Risk Assessment, vol. 10, pp. 831 – 852, Oct. 2004.

[39] Koomey, J., “Estimating total power consumption by servers in the U.S. and the
world.” Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.87.5562&rep=re%p1&type=pdf, Feb. 2007.

138

[40] Korkmaz, P., Akgul, B. E. S., Palem, K. V., and Chakrapani, L. N., “Advo-
cating noise as an agent for ultra-low energy computing: Probabilistic CMOS devices
and their characteristics,” Japanese Journal of Applied Physics, SSDM Special Issue
Part 1, pp. 3307–3316, Apr. 2006.

[41] Kulkarni, S. H. and Sylvester, D., “Power distribution techniques for dual Vdd
circuits,” in Proc. of the 2006 conference on Asia South Pacific design automation,
(Yokohama, Japan), pp. 838 – 843, 2006.

[42] Landauer, R., “Irreversibility and heat generation in the computing process,” IBM
Journal of Research and Development, vol. 5, pp. 183 –191, July 1961.

[43] Le, H.-P., Chae, C.-S., Lee, K.-C., Cho, G.-H., Wang, S.-W., Cho, G.-H.,
and il Kim, S., “A single-inductor switching DC-DC converter with 5 outputs and
ordered power-distributive control,” in Solid-State Circuits Conference, 2007. ISSCC
2007. Digest of Technical Papers. IEEE International, pp. 534 –620, Feb. 2007.

[44] Lee, K.-C., Chae, C.-S., Cho, G.-H., and Cho, G.-H., “A PLL-based high-
stability single-inductor 6-channel output DC-DC buck converter,” in Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE International,
pp. 200 –201, Feb. 2010.

[45] M. Lau, K. V. Ling, A. B. and III, V. J. M., “Error rate prediction for probabilis-
tic circuits with more general structures,” in The 16th Workshop on Synthesis And
System Integration of Mixed Information technologies (SASIMI2010), pp. 220–225,
2010.

[46] M. Lau, K. V. Ling, Y. C. C. and Bhanu, A., “A general mathematical model of
probabilistic ripple-carry adders,” in Design Automation and Test in Europe (DATE),
Mar. 2010.

[47] M. Lau, K. V. Ling, Y. C. C. and Bhanu, A., “Modeling and optimization of
probabilistic ripple-carry adders,” in Proceedings of the 2010 Fifth IEEE International
Symposium on Electronic Design, Test & Applications, pp. 201–206, Jan. 2010.

[48] Ma, D. and Bondade, R., “Enabling power-efficient DVFS operations on silicon,”
Circuits and Systems Magazine, IEEE, vol. 10, no. 1, pp. 14 –30, 2010.

[49] Ma, D., Ki, W.-H., Tsui, C.-Y., and Mok, P., “A 1.8 V single-inductor dual-
output switching converter for power reduction techniques,” in VLSI Circuits, 2001.
Digest of Technical Papers. 2001 Symposium on, pp. 137 –140, 2001.

[50] Ma, D., Ki, W.-H., Tsui, C.-Y., and Mok, P., “Single-inductor multiple-output
switching converters with time-multiplexing control in discontinuous conduction
mode,” Solid-State Circuits, IEEE Journal of, vol. 38, pp. 89 – 100, Jan. 2003.

[51] Manzak, A. and Chaktrabarti, C., “Variable voltage task scheduling algorithms
for minimizing energy/power,” Proc. of IEEE Transactions on Very Large Scale In-
tegration (VLSI) Systems, vol. 11, pp. 270 – 276, Apr. 2003.

[52] Meindl, J. and Davis, J., “The fundamental limit on binary switching energy for
terascale integration (TSI),” Solid-State Circuits, IEEE Journal of, vol. 35, pp. 1515
–1516, Oct. 2000.

139

[53] Min, K., Kawaguchi, H., and Sakurai, T., “Zigzag super cut-off CMOS (ZSCC-
MOS) block activation with self-adaptive voltage level controller: An alternative to
clock-gating scheme in leakage dominant era,” in Proc. of the 28th European Solid-
State Circuits Conference, pp. 679 – 682, Sept. 2002.

[54] Mitra, S. K., Digital Signal Processing A Computer Based Approach. McGraw-Hill,
third ed., 2006.

[55] Mudge, T., “Power: A first-class architectural design constraint,” IEEE Computer,
vol. 34, pp. 52–58, Apr. 2001.

[56] Mutho, S., Douseki, T., Matsuya, Y., Aoki, T., Shigematsu, S., and Yamada,
J., “1-V power suppy high-speed digital circuit technology with multithreshold-voltage
cmos,” IEEE Journal of Solid-State Circuits, vol. 30, pp. 847–854, Aug. 1995.

[57] Narendra, S., Borkar, S., De, V., Antoniadis, D., and Chandrakasan, A.,
“Scaling of stack effect and its application for leakage reduction,” in ISLPED ’01:
Proceedings of the 2001 international symposium on Low power electronics and design,
(New York, NY, USA), pp. 195–200, ACM, 2001.

[58] Natori, K. and Sano, N., “Scaling limit of digital circuits due to thermal noise,”
Journal of Applied Physics, vol. 83, pp. 5019–5024, May 1998.

[59] Padgett, W. T. and Anderson, D. V., Fixed-point Signal Processing. Synthesis
Lectures on Signal Processing, Morgan & Claypool Publishers, 2009.

[60] Palem, K. V., “Proof as experiment: Probabilistic algorithms from a thermody-
namic perspective,” in Proc. Intl. Symposium on Verification (Theory and Practice),
(Taormina, Sicily), June 2003.

[61] Palem, K. V., “Proof as experiment: Probabilistic algorithms from a thermody-
namic perspective,” in Proc. Intl. Symposium on Verification (Theory and Practice),
(Taormina, Sicily), June 2003.

[62] Palem, K. V., “Energy aware computing through probabilistic switching: A study
of limits,” IEEE Trans. Computer, vol. 54, no. 9, pp. 1123–1137, 2005.

[63] Palem, K. V., Chakrapani, L. N., Akgul, B. E. S., and Korkmaz, P., “Realiz-
ing ultra low-energy application specific SoC architectures through novel probabilistic
CMOS (PCMOS) technology,” in Proc. of the International Conference on Solid State
Devices and Materials, (Tokyo, Japan), pp. 678 – 679, Sept. 2005.

[64] Parayandeh, A., Stupar, A., and Prodic, A., “Programmable digital controller
for multi-output DC-DC converters with a time-shared inductor,” in Power Electron-
ics Specialists Conference, 2006. PESC ’06. 37th IEEE, pp. 1 – 6, June 2006.

[65] Park, J. C. and Mooney, V. J., “Sleepy stack leakage reduction,” IEEE Trans.
Very Large Scale Integr. Syst., vol. 14, no. 11, pp. 1250–1263, 2006.

[66] Park, J. C., Mooney, V. J., and Srinivasan, S. K., “Combining data remap-
ping and voltage/frequency scaling of second level memory for energy reduction in
embedded systems,” Microelectronics Journal, vol. 34, no. 11, pp. 1019–1024, 2003.

140

[67] Pratt, V., “Anatomy of the pentium bug,” in TAPSOFT ’95: Theory and Practice
of Software Development, volume 915 of Lecture Notes in Computer Science, pp. 97–
107, Springer-Verlag, 1995.

[68] Puri, R., Stok, L., Cohn, J., Kung, D., Pan, D., Sylvester, D., Srivastava,
A., and Kulkarni, S., “Pushing ASIC performance in a power envelope,” in Proc.
of the 40th Design Automation Conference (DAC’03), p. 788, 2003.

[69] Puttaswamy, K., Choi, K.-W., Park, J. C., Mooney, V. J., Chatterjee, A.,
and Ellervee, P., “System level power-performance trade-offs in embedded systems
using voltage and frequency scaling of off-chip buses and memory,” in Proceedings of
the 15th International Symposium of Systems Synthesis, (Kyoto, Japan), pp. 225–230,
2002.

[70] Roth, K. W. and McKenney, K., “Energy consumption by consumer electronics
in U.S. residences.” Available at: http://www.ce.org/AboutCEA/CEAInitiatives/
3638.asp, Jan. 2007.

[71] Sabolc Pal, Zeljko Lukac, M. D., “H.264 decoder,” in XIII Telekomunikacioni
forum TELFOR, (Beograd, Serbia), Nov. 2005.

[72] Sarin, H. and McNelly, A., “A power modelling and characterization method for
logic simulation,” in Custom Integrated Circuits Conference, 1995., Proceedings of the
IEEE 1995, pp. 363 –366, May 1995.

[73] Seol, K.-S., Woo, Y.-J., Cho, G.-H., Cho, G.-H., Lee, J.-W., and il Kim,
S., “Multiple-output step-up/down switching DC-DC converter with vestigial current
control,” in Solid-State Circuits Conference - Digest of Technical Papers, 2009. ISSCC
2009. IEEE International, pp. 442 –443, Feb. 2009.

[74] Sharangpani, H. and Barton., M., “Statistical analysis of floating point
flaws in the pentium processor.” Available at: http://www.intel.com/support/
processors/pentium/sb/cs-013005.htm, 1994.

[75] Shepard, K. L., “Conquering noise in deep-submicron digital ICs,” IEEE Design
and Test of Computers, vol. 15, pp. 51 – 62, Jan. - Mar. 1998.

[76] Stein, K.-U., “Noise-induced error rate as limiting factory for energy per operation
in digital ICs,” Solid-State Circuits, IEEE Journal of, vol. 12, pp. 527 – 530, Oct.
1977.

[77] The World Bank, “Energy use (kg of oil equivalent per capita).” Available at:
http://data.worldbank.org/topic/energy-and-mining, Jan. 2011.

[78] U.S. Department of Energy, “International energy outlook 2007.” Available at:
http://www.eia.doe.gov/oiaf/ieo/index.html, May 2007.

[79] U.S. Department of Energy, “American recovery & reinvestment act.” Available
at: http://www1.eere.energy.gov/recovery/, Jan. 2011.

[80] U.S. Energy Information Administration, “Frequently Asked Questions
- Electricity.” Available at: http://www.eia.doe.gov/ask/electricity_faqs.
asp#electricity_use_home, Sept. 2010.

141

[81] U.S. Energy Information Administration, “Annual energy review 2009.” Avail-
able at: http://www.eia.doe.gov/emeu/aer/consump.html, Jan. 2011.

[82] Usami, K. and Horowitz, M., “Clustered voltage scaling technique for low-power
design,” in ISLPED ’95: Proceedings of the 1995 international symposium on Low
power design, pp. 3–8, 1995.

[83] Vitousek, P. M., “Beyond global warming: Ecology and global change,” Ecology,
vol. 75, pp. 1861–1876, Oct. 1994.

[84] Von Neumann, J. and Burks, A. W., Theory of self-reproducing automata. Urbana,
IL: University of Illinois Press, 1966.

[85] Wang, A. and Chandrakasan, A., “A 180-mV subthreshold FFT processor using a
minimum energy design methodology,” IEEE Journal of Solid-State Circuits, vol. 40,
pp. 310–319, Jan. 2005.

[86] Weste, N. H. E. and Harris, D., CMOS VLSI Design: A Circuits and Systems
Perspective, 3/E. Addison-Wesley, 2005.

[87] Wiegand, T., Sullivan, G., Bjontegaard, G., and Luthra, A., “Overview of
the H.264/AVC video coding standard,” Circuits and Systems for Video Technology,
IEEE Transactions on, vol. 13, pp. 560 –576, July 2003.

[88] Wikipedia, “Colossus computer.” Available at: http://en.wikipedia.org/wiki/
Colossus_computer, Sept. 2010.

[89] Wikipedia, “ENIAC.” Available at: http://en.wikipedia.org/wiki/ENIAC, Sept.
2010.

[90] Wikipedia, “Grid Compass.” Available at: http://en.wikipedia.org/wiki/Grid_
Compass, Sept. 2010.

[91] Wikipedia, “History of computing hardware.” Available at: http://en.wikipedia.
org/wiki/History_of_computing_hardware#Colossus, Sept. 2010.

[92] Wikipedia, “IBM 7090.” Available at: http://en.wikipedia.org/wiki/IBM_7090,
Sept. 2010.

[93] Wikipedia, “MOBIDIC.” Available at: http://en.wikipedia.org/wiki/MOBIDIC,
Sept. 2010.

[94] Wikipedia, “Pentium FDIV bug.” Available at: http://en.wikipedia.org/wiki/
Pentium_FDIV_bug, Oct. 2010.

[95] Wikipedia, “Vacuum tube.” Available at: http://en.wikipedia.org/wiki/
Vacuum_tube, Sept. 2010.

[96] Woo, Y.-J., Le, H.-P., Cho, G.-H., Cho, G.-H., and Kim, S.-I., “Load-
independent control of switching DC-DC converters with freewheeling current feed-
back,” in Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical
Papers. IEEE International, pp. 446 –626, Feb. 2008.

142

[97] Woods, D. and Naughton, T. J., “Optical computing,” Applied Mathematics and
Computation (Special issue on Physics and Computation), vol. 215, pp. 1417–1430,
Oct. 2009.

[98] Yajnanarayana, V., Subramaniyan, R., and Schuette, M., “Techniques to
improve motion compensation performance of H264 video decoder using a vector
processor,” in Communications and Information Technologies, 2007. ISCIT ’07. In-
ternational Symposium on, pp. 1082 –1087, Oct. 2007.

[99] Yeap, G. K., Practical low power digital VLSI design. Norwell, MA, USA: Kluwer
Academic Publishers, 1998.

[100] Yeh, Y. and Kuo, S., “An optimization-based low-power voltage scaling technique
using multiple supply voltages,” in Proc. of IEEE Internaitonal Symposium on ISCAS
2001, vol. 5, pp. 535 – 538, May 2001.

[101] Yeh, Y., Kuo, S., and Jou, J., “Converter-free multiple-voltage scaling techniques
for low-power CMOS digital design,” Proc. of IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 20, pp. 172 – 176, Jan. 2001.

[102] Zhang, Y. and Ma, D., “Digitally controlled integrated pseudo-CCM SIMO con-
verter with adaptive freewheel current modulation,” in Applied Power Electronics
Conference and Exposition (APEC), 2010 Twenty-Fifth Annual IEEE, pp. 284 –288,
Feb. 2010.

143

