11,351 research outputs found

    Comparison of different strategies of utilizing fuzzy clustering in structure identification

    Get PDF
    Fuzzy systems approximate highly nonlinear systems by means of fuzzy "if-then" rules. In the literature, various algorithms are proposed for mining. These algorithms commonly utilize fuzzy clustering in structure identification. Basically, there are three different approaches in which one can utilize fuzzy clustering; the ïżœfirst one is based on input space clustering, the second one considers clustering realized in the output space, while the third one is concerned with clustering realized in the combined input-output space. In this study, we analyze these three approaches. We discuss each of the algorithms in great detail and o€er a thorough comparative analysis. Finally, we compare the performances of these algorithms in a medical diagnosis classiïżœcation problem, namely Aachen Aphasia Test. The experiment and the results provide a valuable insight about the merits and the shortcomings of these three clustering approaches

    Development of Neurofuzzy Architectures for Electricity Price Forecasting

    Get PDF
    In 20th century, many countries have liberalized their electricity market. This power markets liberalization has directed generation companies as well as wholesale buyers to undertake a greater intense risk exposure compared to the old centralized framework. In this framework, electricity price prediction has become crucial for any market player in their decision‐making process as well as strategic planning. In this study, a prototype asymmetric‐based neuro‐fuzzy network (AGFINN) architecture has been implemented for short‐term electricity prices forecasting for ISO New England market. AGFINN framework has been designed through two different defuzzification schemes. Fuzzy clustering has been explored as an initial step for defining the fuzzy rules while an asymmetric Gaussian membership function has been utilized in the fuzzification part of the model. Results related to the minimum and maximum electricity prices for ISO New England, emphasize the superiority of the proposed model over well‐established learning‐based models

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    General fuzzy min-max neural network for clustering and classification

    Get PDF
    This paper describes a general fuzzy min-max (GFMM) neural network which is a generalization and extension of the fuzzy min-max clustering and classification algorithms of Simpson (1992, 1993). The GFMM method combines supervised and unsupervised learning in a single training algorithm. The fusion of clustering and classification resulted in an algorithm that can be used as pure clustering, pure classification, or hybrid clustering classification. It exhibits a property of finding decision boundaries between classes while clustering patterns that cannot be said to belong to any of existing classes. Similarly to the original algorithms, the hyperbox fuzzy sets are used as a representation of clusters and classes. Learning is usually completed in a few passes and consists of placing and adjusting the hyperboxes in the pattern space; this is an expansion-contraction process. The classification results can be crisp or fuzzy. New data can be included without the need for retraining. While retaining all the interesting features of the original algorithms, a number of modifications to their definition have been made in order to accommodate fuzzy input patterns in the form of lower and upper bounds, combine the supervised and unsupervised learning, and improve the effectiveness of operations. A detailed account of the GFMM neural network, its comparison with the Simpson's fuzzy min-max neural networks, a set of examples, and an application to the leakage detection and identification in water distribution systems are given

    Day ahead hourly Price Forecast in ISO New England Market using Neuro-Fuzzy Systems

    Get PDF
    Accurate electricity price forecasting is an alarming challenge for market participants and managers owing to high volatility of the electricity prices. Price forecasting is also the most important management goal for market participants since it forms the basis of maximizing profits. These markets are usually organized in power pools and administrated by the independent system operator (ISO). The aim of this study is to examine the performance of asymmetric neuro-fuzzy network models for day-ahead electricity price forecasting in the ISO New England market. The implemented model has been developed with two alternative defuzzification models. The first model follows the Takagi–Sugeno–Kang scheme, while the second the traditional centre of average method. A clustering scheme is employed as a pre-processing technique to find out the initial set and adequate number of clusters and ultimately the number of rules in the network. Simulation results corresponding to the minimum and maximum electricity price indicate that the proposed network architectures could provide a considerable improvement for the forecasting accuracy compared to alternative learning-based scheme

    Electricity Price Forecasting using Asymmetric Fuzzy Neural Network Systems

    Get PDF
    Electricity price forecasting is considered as an important tool for energy-related utilities and power generation industries. The deregulation of power market, as well as the competitive financial environment, which have introduced new market players in this field, makes the electricity price forecasting problem a demanding mission. The main focus of this paper is to investigate the performance of asymmetric neuro-fuzzy network models for day-ahead electricity price forecasting. The proposed model has been developed from existing Takagi–Sugeno–Kang fuzzy systems by substituting the IF part of fuzzy rules with an asymmetric Gaussian function. In addition, a clustering method is utilised as a pre-processing scheme to identify the initial set and adequate number of clusters and eventually the number of rules in the proposed model. The results corresponding to the minimum and maximum electricity price have indicated that the proposed forecasting scheme could be considered as an improved tool for the forecasting accuracy
    • 

    corecore