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Abstract—Electricity price forecasting is considered as an 
important tool for energy-related utilities and power 
generation industries. The deregulation of power market, as 
well as the competitive financial environment, which have 
introduced new market players in this field, makes the 
electricity price forecasting problem a demanding mission. The 
main focus of this paper is to investigate the performance of 
asymmetric neuro-fuzzy network models for day-ahead 
electricity price forecasting. The proposed model has been 
developed from existing Takagi–Sugeno–Kang fuzzy systems 
by substituting the IF part of fuzzy rules with an asymmetric 
Gaussian function. In addition, a clustering method is utilised 
as a pre-processing scheme to identify the initial set and 
adequate number of clusters and eventually the number of 
rules in the proposed model. The results corresponding to the 
minimum and maximum electricity price have indicated that 
the proposed forecasting scheme could be considered as an 
improved tool for the forecasting accuracy. 

Keywords—Electricity price forecasting; neurofuzzy systems; 
neural networks; clustering; prediction 

I. INTRODUCTION 

During the past two decades, liberalization and 
deregulation policies have been applied in energy sector in 
most of EU countries. With the introduction of abolishing the 
public nature of electric power industry, the price of 
electricity has become probably the central point of all 
activities in this market [1]. Electricity price forecasting is a 
challenging task and is considered as a very important 
parameter in such competitive electricity market.  

However the problem of electricity price forecasting is, 
in some ways, different from that of load forecasting. 
Although both load and the price are linked, such relation is 
mainly non-linear. Electricity load is affected by parameters 
such as seasonal changes in energy demand, energy-saving 
behavior of energy consumers and mainly by the fact the 
electricity load is not a substitute for storability. Price, 
alternatively, is influenced by the same factors as well as 
additional features such as financial regulations, competitors’ 
load pricing, dynamic market factors, and other macro/micro 
economic conditions. Hence, electricity price can be 
considered as more volatile than the electricity load. It is 
worth mentioned, that during the introduction of dynamic 
pricing strategies, electricity prices become even more 
volatile, where the daily average price were changed by up to 

50% while other commodities exhibited about 5% change 
[2].  

Both power market players as well as independent 
operator regulators (ISO) are alarmed with such price 
evolution. Market electricity price prediction is thus 
important information for producers’ production planning 
and price bidding strategies. Obviously, various methods 
have been adopted for the forecasting of future prices. One 
approach for market behaviour prediction is the usage of 
regression methods. The fundamental idea is to utilise 
historical electricity prices, power load forecast as well as 
temperature information to predict the market-clearing price 
(MCPs). However, the utilisation of such simple linear 
regression model cannot capture the complicated nonlinear 
dynamic relation between load and electricity prices [3].  
Classic ARMA models on the other hand utilise historical 
time-series data, but again they fail to consider the effect of 
other factors on electricity prices. With the presence of small 
number outliers, the fitting error of such model may greatly 
increase. Hence, this “defect” limits its application 
extensively. 

Neural Network (NNs) and other intelligent schemes 
have enjoyed a great applicability in electricity price 
forecasting, which is due to their simple and flexible 
architecture. Among existing intelligent schemes, genera-
lized regression neural network (GRNN) incorporated with 
principal components analysis (PCA) have shown potential 
in electricity price forecasting [4]. Although, according to 
literature, the majority of applied case studies are referred to 
day-ahead predictions, the MLP network has been utilized in 
hour-ahead time forecasting [5]. The role of MLP is to 
enhance the performance of classic time series models (for 
example an ARIMA). RBF is another type of NNs that is 
utilized in the case study of [6]. This specific model is able to 
simulate complex nonlinear relationships, sometimes with 
greater accuracy than MLP networks. Support Vector 
Machines (SVMs) provide also a non-linear mapping of the 
dataset into a  high-dimensional space. The boundaries of 
this new high-dimensional space are distinguished by linear 
functions. SVMs provide a global solution to a problem 
unlike MLPs which operate by minimising problem’s 
objective function. Such interesting characteristic has been 
acknowledged in many case studies related to the electricity 
load and price forecasting area [7].  



In one of the first applications utilising fuzzy logic to 
electricity price forecasting, a combination of fuzzy c-means 
clustering and a neural recurrent network has been 
considered [8]. Another approach in electricity price 
forecasting is the use of hybrid neurofuzzy systems. An 
adaptive-network-based fuzzy inference system (ANFIS) has 
been investigated and results proved that such scheme is 
superior to MLP approaches [9]. 

In the majority of electricity price forecasting studies, 
especially for the hourly price case, only one model is 
normally utilized to forecast the next 24 hourly prices. 
However, it is a rather difficult task to associate all the 
characteristics of 24 different hourly prices by a single 
model. Thus, the model may become under-fitting for some 
hourly predictions, while at the same time, it may become  
over-fitting for some others, which eventually leads to 
unsatisfactory results. An obvious disadvantage of such 
approach is related to the high complexity of the network 
structure (i.e. a system with 24 output nodes) in terms of 
training time and performance. Alternatively, a recurrent 
structure could provide similar characteristics, however in 
practice its performance would be deteriorated due to the 
feedback error accumulation. An alternative approach has 
been proposed in recent past [10] and it has been adopted 
also in this paper. The core of the proposed modular 
forecasting system is the 24 multi-input-single-output 
(MISO) modeling blocks. One of the advantages of the 
proposed modular system is its possible use also for long-
range forecasting schemes. 

In this paper, neurofuzzy models are considered to 
compute the forecasted price in ISO New England market. 
The ISO New England market is coordinated by an 
independent system operator (ISO) (http://www.iso-ne.com). 
It has been observed that although the daily load curves 
retain a similar pattern, the equivalent daily price curves are 
however volatile. Hence, the forecasting of Locational 
Marginal Prices (LMPs) becomes important as it helps the 
determination of the bidding market strategies as well as in 
risk management. In this research, the training/testing data 
set was created from the period 2006-2007. Both training and 
testing sets were classified into 24 time series, each one 
corresponding to a different hour of the day. More 
specifically, 600 data were allocated to training subset, while 
123 data for the testing one. 

An Asymmetric Gaussian Fuzzy Inference Neural 
Network (AGFINN), utilizing a Takagi–Sugeno–Kang 
(TSK) structure, has been considered as an identification 
model for electricity price forecasting. Unlike the ANFIS 
system, AGFINN involves a clustering component which 
reduces the number of fuzzy rules, minimizing thus the 
“curse of dimensionality” problem. A fuzzy c-means (FCM) 
clustering algorithm has been applied at the sample data in 
order to categorize feature vectors into clusters. In the 
following result section, only results that correspond to hours 
with the maximum (22:00 h) and minimum (04:00 h) 
electricity prices are illustrated. The proposed modeling 
scheme is compared against ANFIS, AFLS and MLP NN 
forecasting schemes utilized for the same case study in order 
to evaluate its performance as an efficient prediction scheme. 

 

II. ASYMMETRIC NEUROFUZZY MODEL (AGFINN) 

In this section, the proposed Asymmetric Gaussian Fuzzy 
Inference Neural Network (AGFINN) is presented an 
alternative neurofuzzy modelling approach. Although 
AGFINN follows the classic TSK- defuzzification structure, 
it includes a FCM clustering scheme for structural / 
initialization purposes. Although standard symmetric 
Gaussian membership functions has been utilised widely, 
AGFINN utilizes an asymmetric function acting as input 
linguistic node. Since the asymmetric Gaussian membership 
function’s variability and flexibility are higher than the 
standard one, it can partition input space more effectively 
[11]. In this paper, AGFINN has been optimised through the 
gradient descent learning algorithm. The architecture of the 
proposed neurofuzzy (NF) network shown in Fig 1 consists 
of five layers.  

 
Fig. 1. Structure of AGFINN system 

The first three layers L1, L2 and L3 correspond to IF part of 
fuzzy rules whereas layer L5 contains information about 
THEN part of these rules and perform the defuzzification 
task. In layer L4 a normalization process is performed for all 
rules derived from L3.  

A. FCM Clustering Algorithm 
Fuzzy c-means (FCM) clustering is probably the most well-
known fuzzy unsupervised clustering algorithm which is 
based on minimizing an objective function that represents the 
distance from any given data point to a cluster centre 
weighted by that data point’s membership value. Given n  
data patterns, 1 2 nx , x ,..., x , fuzzy clustering partitions the 

data patterns into c  clusters which centred at ic . The 
objective function for FCM is defined by 
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where ijμ  is the degree of membership of object j  in cluster 

i , m  is the fuzzy weighting exponent varying in the range 
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In FCM, ic  is updated via an interactive procedure, using 
last iteration’s membership values. This algorithm shifts 
objects between clusters until the objective function cannot 
be decreased further. In the present study, cluster centres 
have been utilized as initial values for the centres of fuzzy 
membership functions, while the number of if–then rules for 
AGFINN modelling is equal to the number of clusters 
obtained through FCM approach. The spread values for each 
membership functionσ ij  are initialized according to  
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These values are calculated based on the matrix U , where its 
elements correspond to the fuzzy memberships of input kx  

in the thi  cluster and have centre values obtained again from 
FCM.  

B. Feed-forward analysis of AGFINN  
The clustering algorithm provides the fuzzy c-partition of the 
sample data and practically generates the fuzzy rules base for 
the AGFINN scheme. Fuzzy IF-THEN rules can be written 
in the following form: 

 1 1 0 1 1IF (  is  AND....AND  is ) THEN ( .. )= + + +i i i i i
q q q qx U x U y w w x w x      (5) 

where U  are fuzzy sets defined based on c-partition of 
learning data X. The structure of the AGFINN is explained 
below layer by layer: 

• Layer 1: This layer is the input layer. Nodes at this 
layer simply forward the input signals 1 2, ,..., nx x x  
to L2. 

• Layer 2: This layer is the fuzzification layer, and 
its nodes are associated with the fuzzy sets used in 
the antecedent parts of the fuzzy rules. Each 
fuzzification node determines the degree to which 
an input belongs to the node’s fuzzy set. The 
outputs of this layer are the values of the 
asymmetric Gaussian membership function (MF) 
for the input values.  
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From the above equation, it is obvious that the 

proposed MF utilizes two spreads, namely left
ijσ and 

right
ijσ respectively. Both of these parameters 

transform the traditional Gaussian function to a 
more asymmetric style which can provide greater 
flexibility from the original one. A schematic of the 
proposed MF is shown in Fig. 2. 

 
  Fig. 2. Asymmetric membership function 

• Layer 3: This layer is the firing strength calculation 
layer. Each fuzzy rule’s antecedent part has AND 
connection operator, thus firing strength is 
calculated through the product T-norm operator. In 
this case, the multiplication has been used, and the 
output of this layer has the following form: 
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n
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• Layer 4: This layer is the normalization layer. Each 
node in this layer calculates the normalized 
activation firing of each rule by:  
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• Layer 5: This layer is associated with the 
defuzzification part of the AGFINN. Each node at 
this layer combines the output of each node in L4 by 
algebraic sum operation after being multiplied by 
the output weight value jf : 

1=
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c

j j
j

O f R    (9) 

where j j1 1 jn n j(n 1)f w x ... w x w += + + +  represent the 

“consequent parameters” of the TSK-style 
defuzzification scheme. 

The learning algorithm of AGFINN utilises gradient descent 
(GD) method for optimization the various network 
parameters. During the backward “training” passes, the error 
signals are calculating from the output layer backward to the 
premise (i.e. membership) layers, and parameters at both 
defuzzification and fuzzification sections are fine-tuned.  



III. RESULTS & DISCUSSION 

Electricity price is a nonlinear problem with many input 
variables, including past own values as well as past and 
forecasted values of any exogenous variables such as 
electricity consumption. To deal with this fact, three different 
models have been considered for this study, in order to 
extract conclusions about the most appropriate forecasting 
scheme. In general, historical values of the parameter under 
study have been considered as input candidates for 
forecasting problems. In electricity price analysis, load factor 
has been considered as the most important external variable. 
In this study, we assume that next day’s forecasted load is 
also available. There is a similarity between price and load 
parameters. While the load level rises, a constant increase of 
price is observed too.  

A. Model A 
The objective of this first model is to examine the simple 
configuration, used by various researchers, where electricity 
prices at previous days and hours, as well as forecasted (for 
the targeted hour/day) load demand are utilized as input 
variables. Thus, for electricity price modelling for a specific 
hour (i) and day (j), the following five input variables have 
been considered:  

Target:  

Price(i,j): electricity price at the ith hour on the (j)th day,  

Inputs: 

Price(i, j-1): price at the ith hour on the (j-1)th day, 

Price(i, j-2): price at the ith hour on the (j-2)th day, 

Price(i-1, j-1): price at the (i-1)th hour on the (j-1)th day, 

Price(i-2, j-1): price at the (i-2)th hour on the (j-1)th day, 

Load(i,j): electricity load at the ith hour on the jth day, 

Based on this configuration, AGFINN model has been 
involved in forecasting the maximum (22h) and minimum 
(04h) price respectively. Best results were produced by 
including 20 fuzzy rules for the case of 22h, while 15 rules 
was considered as adequate number for the case of 04h. 
Although the classic GD method utilized as a learning 
scheme, the training time was completed in less than 1000 
epochs, much faster from the equivalent time used to train 
the MLP NN. The performance of the forecasting model was 
determined by the root mean squared error (RMSE), the 
Mean absolute percentage error (MAPE) (%) and finally and 
the standard error of prediction (SEP). 

TABLE I 
PERFORMANCE INDICES 

Statistical index for AGFINN  

(Model A) 

Testing Data sets

22h 04h

Root mean square error (RMSE) 7.9028 3.3783

Mean absolute percentage error (MAPE) (%) 5.0385 7.0090

Standard error of prediction (SEP) (%) 6.5310 7.5578

 

The complete results for the hours with minimum and 
maximum electricity price, are illustrated in Table I. The 

RMSE index is calculated between the desired and output 
values and then averaged across all data and it can be used as 
an estimation of the goodness of fit of the models. It can also 
provide information about how consistent the model would 
be in the long run. The MAPE term is the average absolute 
percent error for each time period or forecast minus actual, 
divided by actual. The SEP index is determined as the 
relative deviation of the mean prediction values and it has the 
advantage of being independent on the magnitude of the 
measurements. Based on these indices, the AGFINN scheme 
achieved a very good performance, especially for the case of 
maximum price [12]. 

In order to evaluate the goodness of the current 
performance of the proposed AGFINN scheme, a 
comparison against NN and neurofuzzy models that have 
been employed for the specific datasets has been carried out. 
Table II provide a summary of those statistical performances.  
More specifically, the AGFINN scheme has been compared 
against a multilayer perceptron (MLP) and neurofuzzy (NF) 
ANFIS and AFLS systems. 

TABLE II 
PERFORMANCE INDICES – COMPARISON 

 
Statistical index (22h) AFLS ANFIS MLP

Root mean square error (RMSE) 8.6060 10.3569 12.8880

Mean absolute percentage error (MAPE) (%) 5.4587 6.3012 7.4165

Standard error of prediction (SEP) (%) 7.1122 8.5591 10.6508

 

Statistical index (04h) AFLS ANFIS MLP

Root mean square error (RMSE) 4.5427 7.5882 10.4905

Mean absolute percentage error (MAPE) (%) 9.4320 13.6217 21.3592

Standard error of prediction (SEP) (%) 10.1630 16.9763 23.4693

 

The “Adaptive Fuzzy Logic System” (AFLS) model is a 
advanced MIMO NF systems which incorporates a novel 
defuzzification scheme, while differs from conventional 
fuzzy rule-table approaches that utilize the “look-up table” 
concept [13]. The AFLS scheme does not follow classic 
TSK’s architecture, as the number of memberships for each 
input variable is directly associated to the number of rules, 
hence, the “curse of dimensionality” problem is significantly 
reduced. The fuzzification section in AFLS is similar to 
AGFINN, with the exception of the FCM clustering step as 
well as the absence of asymmetric MFs. Similar to AGFINN 
and MLP, AFLS also utilizes the same GD learning method 
for training. For this specific case study, 20 fuzzy rules for 
the case of 22h, and 15 rules for the case of 04h were used as 
a final configuration. Results shown at Table II reveal that 
AFLS could be considered as the closest to AGFINN in 
terms of performance. An MLP network was also 
constructed for this case study, using the same input vector. 
After a few trials, utilizing different internal structures, a NN 
was implemented with two hidden layers (with 20 and 8 
nodes respectively). Although AGFINN, AFLS and MLP 
share the same learning training algorithm, the different 
“philosophy” in building the neurofuzzy architecture, 
allowed those systems to achieve a superior performance. 
Finally an ANFIS NF model has been constructed, utilising 



32 fuzzy rules. As the number of MFs in AGFINN is equal 
to the numbers of rules, this architecture has advantages over 
the classic ANFIS model. The increased number of Gaussian 
membership functions increases the localization of the input 
signal while in the same time maintains the required number 
of rules at low level. 

B. Model B 
Research has indicated that current hour electricity price 
shows a high correlation with those of hour h-24 and h-168, 
a fact that indicates some daily and weekly periodicity. The 
objective of this model is to investigate this specific issue. 
No exogenous input variables are considered in this specific 
case study. Thus, for electricity price modeling for a specific 
hour (i) and day (j), the following six input variables have 
been considered:  

Target:  

Price(i,j): electricity price at the ith hour on the (j)th day,  

Inputs: 

Price(i, j-1): price at the ith hour on the (j-1)th day, 

Price(i, j-2): price at the ith hour on the (j-2)th day, 

Price(i, j-3): price at the ith hour on the (j-3)th day, 

Price(i, j-7): price at the ith hour on the (j-7)th day, 

Price(i-1, j-1): price at the (i-1)th hour on the (j-1)th day, 

Price(i-2, j-1): price at the (i-2)th hour on the (j-1)th day, 

The complete results for the hours with minimum and 
maximum electricity price, for the AGFINN case are 
illustrated in Table III. The information related to weekly 
periodicity indeed resulted in an improved forecasting 
performance compared to Model A. Best results were 
produced by including 25 fuzzy rules for the case of 22h, 
while 20 rules were adequate for the case of 04h. All 
statistical performance indices were improved at this case 
study, compared to Model A. This was due to the expansion 
of input variables vector by adding additional past electricity 
prices on the same hour. In fact, the assumption that 
electricity prices “contain” a periodicity effect was verified 
by this simulation.  

TABLE III 
PERFORMANCE INDICES 

 
Statistical index for AGFINN  

(Model B) 

Testing Data sets

22h 04h

Root mean square error (RMSE) 7.3320 3.3089

Mean absolute percentage error (MAPE) (%) 4.5763 6.2654

Standard error of prediction (SEP) (%) 6.0593 7.4027

 

Results shown at Table IV illustrate results from alternative 
methods. For this case study, an AFLS model was 
constructed with 25 rules for the case of 22h, while 20 rules 
were used for the case of 04h. The MLP NN retained the 
same network configuration, while under these conditions, 
ANFIS performed satisfactory, its performance however was 
achieved with a high computational cost, by utilizing two 

membership functions for each input variables and 64 fuzzy 
rules. ANFIS is a classic representative of TSK-based neuro-
fuzzy systems. Its main drawback is that the number of fuzzy 
rules increases exponentially with respect to the number of 
inputs n .  

TABLE IV 
PERFORMANCE INDICES – COMPARISON 

Statistical index (22h) AFLS ANFIS MLP

Root mean square error (RMSE) 7.9278 9.8380 11.6525

Mean absolute percentage error (MAPE) (%) 4.8062 6.1757 6.9578

Standard error of prediction (SEP) (%) 6.5517 8.1302 9.6298

 

Statistical index (04h) AFLS ANFIS MLP

Root mean square error (RMSE) 4.6194 6.0034 8.7796

Mean absolute percentage error (MAPE) (%) 9.5050 12.3199 10.6214

Standard error of prediction (SEP) (%) 10.3345 13.4307 19.6418

 

C. Model C 
The objective of this model is to expand Model B, by adding 
the exogenous input of the forecasted electricity load. Thus, 
for electricity price modeling for a specific hour (i) and day 
(j), the following seven input variables have been 
considered: 

Target:  

Price(i,j): electricity price at the ith hour on the (j)th day,  

Inputs: 

Price(i, j-1): price at the ith hour on the (j-1)th day, 

Price(i, j-2): price at the ith hour on the (j-2)th day, 

Price(i, j-3): price at the ith hour on the (j-3)th day, 

Price(i, j-7): price at the ith hour on the (j-7)th day, 

Price(i-1, j-1): price at the (i-1)th hour on the (j-1)th day, 

Price(i-2, j-1): price at the (i-2)th hour on the (j-1)th day, 

Load(i,j): electricity load at the ith hour on the jth day, 

The complete results for the hours with minimum and 
maximum electricity price, for the AGFINN case are 
illustrated in Table V. The information related to weekly 
periodicity as well as the exogenous load parameter indeed 
resulted in an improved forecasting performance compared 
to previous case studies.  

TABLE V 
PERFORMANCE INDICES 

 
Statistical index for AGFINN  

(Model C) 

Testing Data sets

22h 04h

Root mean square error (RMSE) 6.8514 2.9988

Mean absolute percentage error (MAPE) (%) 4.2418 5.4832

Standard error of prediction (SEP) (%) 5.6621 6.7089

 

Best results were produced by including 25 fuzzy rules for 
the case of 22h, while 20 rules were considered adequate for 



the case of 04h. Figures 3 and 4 illustrate the testing 
performances for minimum and maximum electricity price 
forecasting using Model C. 

 

Fig. 3. Forecasting for Electricity Price at 22:00, (AGFINN-Model C) 

 

Fig. 4. Forecasting for Electricity Price at 04:00, (AGFINN-Model C) 

Similarly, to previous case studies, AFLS, ANFIS and MLP 
NN have been applied to this specific case study and their 
performances are presented at Table VI. ANFIS’s 
performance was achieved however with a huge 
computational cost, by utilizing 128 fuzzy rules. 

TABLE VI 
PERFORMANCE INDICES – COMPARISON 

Statistical index (22h) AFLS ANFIS MLP

Root mean square error (RMSE) 7.7340 9.1584 11.4835

Mean absolute percentage error (MAPE) (%) 4.4775 5.3308 6.0115

Standard error of prediction (SEP) (%) 6.3915 7.5686 9.4901

 

Statistical index (04h) AFLS ANFIS MLP

Root mean square error (RMSE) 4.3667 5.4409 8.0055

Mean absolute percentage error (MAPE) (%) 7.6772 8.3168 16.5878

Standard error of prediction (SEP) (%) 9.7692 12.1724 17.9098

IV. CONCLUSIONS 

An approach is proposed in this paper for short-term 
electricity prices forecasting, based on an asymmetric neuro-
fuzzy identification model. The application of the proposed 
approach to electricity prices forecasting on the ISO New 
England market is novel in terms of network architecture and 
forecasting performance. The effectiveness of this approach 
has been thoroughly assessed by comparing it with 
alternative neural or neurofuzzy techniques, via three case 
studies. Future research includes the incorporation in the 
modeling process additional exogenous parameters. 
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