120 research outputs found

    First operational BRDF, albedo nadir reflectance products from MODIS

    Get PDF
    With the launch of NASA’s Terra satellite and the MODerate Resolution Imaging Spectroradiometer (MODIS), operational Bidirectional Reflectance Distribution Function (BRDF) and albedo products are now being made available to the scientific community. The MODIS BRDF/Albedo algorithm makes use of a semiempirical kernel-driven bidirectional reflectance model and multidate, multispectral data to provide global 1-km gridded and tiled products of the land surface every 16 days. These products include directional hemispherical albedo (black-sky albedo), bihemispherical albedo (white-sky albedo), Nadir BRDF-Adjusted surface Reflectances (NBAR), model parameters describing the BRDF, and extensive quality assurance information. The algorithm has been consistently producing albedo and NBAR for the public since July 2000. Initial evaluations indicate a stable BRDF/Albedo Product, where, for example, the spatial and temporal progression of phenological characteristics is easily detected in the NBAR and albedo results. These early beta and provisional products auger well for the routine production of stable MODIS-derived BRDF parameters, nadir reflectances, and albedos for use by the global observation and modeling communities

    Reducing the Uncertainties in Direct Aerosol Radiative Forcing

    Get PDF
    Airborne particles, which include desert and soil dust, wildfire smoke, sea salt, volcanic ash, black carbon, natural and anthropogenic sulfate, nitrate, and organic aerosol, affect Earth's climate, in part by reflecting and absorbing sunlight. This paper reviews current status, and evaluates future prospects for reducing the uncertainty aerosols contribute to the energy budget of Earth, which at present represents a leading factor limiting the quality of climate predictions. Information from satellites is critical for this work, because they provide frequent, global coverage of the diverse and variable atmospheric aerosol load. Both aerosol amount and type must be determined. Satellites are very close to measuring aerosol amount at the level-of-accuracy needed, but aerosol type, especially how bright the airborne particles are, cannot be constrained adequately by current techniques. However, satellite instruments can map out aerosol air mass type, which is a qualitative classification rather than a quantitative measurement, and targeted suborbital measurements can provide the required particle property detail. So combining satellite and suborbital measurements, and then using this combination to constrain climate models, will produce a major advance in climate prediction

    Evaluation of Landsat-8 and Sentinel-2A Aerosol Optical Depth Retrievals Across Chinese Cities and Implications for Medium Spatial Resolution Urban Aerosol Monitoring

    Get PDF
    In urban environments, aerosol distributions may change rapidly due to building and transport infrastructure and human population density variations. The recent availability of medium resolution Landsat-8 and Sentinel-2 satellite data provide the opportunity for aerosol optical depth (AOD) estimation at higher spatial resolution than provided by other satellites. AOD retrieved from 30 m Landsat-8 and 10 m Sentinel-2A data using the Land Surface Reflectance Code (LaSRC) were compared with coincident ground-based Aerosol Robotic Network (AERONET) Version 3 AOD data for 20 Chinese cities in 2016. Stringent selection criteria were used to select contemporaneous data; only satellite and AERONET data acquired within 10 min were considered. The average satellite retrieved AOD over a 1470 m1470 m window centered on each AERONET site was derived to capture fine scale urban AOD variations. AERONET Level 1.5 (cloud-screened) and Level 2.0 (cloud-screened and also quality assured) data were considered. For the 20 urban AERONET sites in 2016 there were 106 (Level 1.5) and 67 (Level 2.0) Landsat-8 AERONET AOD contemporaneous data pairs, and 118 (Level 1.5) and 89 (Level 2.0) Sentinel-2A AOD data pairs. The greatest AOD values (>1.5) occurred in Beijing, suggesting that the Chinese capital was one of the most polluted cities in China in 2016. The LaSRC Landsat-8 and Sentinel-2A AOD retrievals agreed well with the AERONET AOD data (linear regression slopes > 0.96; coefficient of determination r(exp 2) > 0.90; root mean square deviation < 0.175) and demonstrate that the LaSRC is an effective and applicable medium resolution AOD retrieval algorithm over urban environments. The Sentinel-2A AOD retrievals had better accuracy than the Landsat-8 AOD retrievals, which is consistent with previously published research.The implications of the research and the potential for urban aerosol monitoring by combining the freely available Landsat-8 and Sentinel-2 satellite data are discussed

    Assessing change in the Earth's land surface albedo with moderate resolution satellite imagery

    Full text link
    Land surface albedo describes the proportion of incident solar radiant flux that is reflected from the Earth's surface and therefore is a crucial parameter in modeling and monitoring attempts to capture the current climate, hydrological, and biogeochemical cycles and predict future scenarios. Due to the temporal variability and spatial heterogeneity of land surface albedo, remote sensing offers the only realistic method of monitoring albedo on a global scale. While the distribution of bright, highly reflective surfaces (clouds, snow, deserts) govern the vast majority of the fluctuation, variations in the intrinsic surface albedo due to natural and human disturbances such as urban development, fire, pests, harvesting, grazing, flooding, and erosion, as well as the natural seasonal rhythm of vegetation phenology, play a significant role as well. The development of times series of global snow-free and cloud-free albedo from remotely sensed observations over the past decade and a half offers a unique opportunity to monitor and assess the impact of these alterations to the Earth's land surface. By utilizing multiple satellite records from the MODerate-resolution Imaging Spectroradiometer (MODIS), the Multi-angle Imaging Spectroradiometer (MISR) and the Visible Infrared Imaging Radiometer Suite (VIIRS) instruments, and developing innovative spectral conversion coefficients and temporal gap-filling strategies, it has been possible to utilize the strengths of the various sensors to improve the spatial and temporal coverage of global land surface albedo retrievals. The availability of these products is particularly important in tropical regions where cloud cover obscures the forest for significant periods. In the Amazon, field ecologists have noted that some areas of the forest ecosystem respond rapidly with foliage growth at the beginning of the dry season, when sunlight can finally penetrate fully to the surface and have suggested this phenomenon can continue until reductions in water availability (particularly in times of drought) impact the growth cycle. While it has been difficult to capture this variability from individual optical satellite sensors, the temporally gap-filled albedo products developed during this research are used in a case study to monitor the Amazon during the dry season and identify the extent of these regions of foliage growth

    View angle dependence of cloud optical thicknesses retrieved by MODIS

    Get PDF
    This study examines whether cloud inhomogeneity influences the view angle dependence of MODIS cloud optical thickness (tau) retrieval results. The degree of cloud inhomogeneity is characterized through the local gradient in 11 microns brightness temperature. The analysis of liquid phase clouds in a one year long global dataset of Collection 4 MODIS data reveals that while optical thickness retrievals give remarkably consistent results for all view directions if clouds are homogeneous, they give much higher tau-values for oblique views than for overhead views if clouds are inhomogeneous and the sun is fairly oblique. For solar zenith angles larger than 55deg, the mean optical thickness retrieved for the most inhomogeneous third of cloudy pixels is more than 30% higher for oblique views than for overhead views. After considering a variety of possible scenarios, the paper concludes that the most likely reason for the increase lies in three-dimensional radiative interactions that are not considered in current, one-dimensional retrieval algorithms. Namely, the radiative effect of cloud sides viewed at oblique angles seems to contribute most to the enhanced tau-values. The results presented here will help understand cloud retrieval uncertainties related to cloud inhomogeneity. They complement the uncertainty estimates that will start accompanying MODIS cloud products in Collection 5 and may eventually help correct for the observed view angle dependent biases

    Aerosol Climatology Over Nile Delta Based on MODIS, MISR and OMI Satellite Data

    Get PDF
    Since 1999 Cairo and the Nile delta region have suffered from air pollution episodes called the “black cloud” during the fall season. These have been attributed to either burning of agriculture waste or long-range transport of desert dust. Here we present a detailed analysis of the optical and microphysical aerosol properties, based on satellite data. Monthly mean values of Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) at 550 nm were examined for the 10 yr period from 2000–2009. Significant monthly variability is observed in the AOD with maxima in April or May (_0.5) and October (_0.45), and a minimum in December and January (_0.2). Monthly mean values of UV Aerosol Index (UVAI) retrieved by the Ozone Monitoring Instrument (OMI) for 4 yr (2005–2008) exhibit the same AOD pattern. The carbonaceous aerosols during the black cloud periods are confined to the planetary boundary layer (PBL), while dust aerosols exist over a wider range of altitudes, as shown by Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) aerosol profiles. The monthly climatology of Multi-angle Imaging Spectro-Radiometer (MISR) data show that the aerosols during the black cloud periods are spherical with a higher percentage of small and medium size particles, whereas the spring aerosols are mostly large non-spherical particles. All of the results show that the air quality in Cairo and the Nile delta region is subject to a complex mixture of air pollution types, especially in the fall season, when biomass burning contributes to a background of urban pollution and desert dust

    LINKING MULTIVARIATE OBSERVATIONS OF THE LAND SURFACE TO VEGETATION PROPERTIES AND ECOSYSTEM PROCESSES

    Get PDF
    Remotely sensed images from satellites and aircrafts, as well as regional networks and monitoring stations such as eddy flux towers, are collecting large volumes of multivariate data that contain information about the land surface and ecosystem processes. To derive from these systems information and knowledge relevant to how the Earth system functions and how it is changing, we need tools that to filter and mine the large data streams currently being acquired at different spatial and temporal scales. A challenge for Earth System Science lies in accurately identifying and portraying the relationships between the measurements at the sensor and quantity o f interest (i.e. ecosystem process or land surface property)

    Updated MISR over-water research aerosol retrieval algorithm – Part 2: A multi-angle aerosol retrieval algorithm for shallow, turbid, oligotrophic, and eutrophic waters

    Get PDF
    Coastal waters serve as transport pathways to the ocean for all agricultural and other runoff from terrestrial sources, and many are the sites for upwelling of nutrient-rich, deep water; they are also some of the most biologically productive on Earth. Estimating the impact coastal waters have on the global carbon budget requires relating satellite-based remote-sensing retrievals of biological productivity (e.g., chlorophyll a concentration) to in situ measurements taken in near-surface waters. The Multi-angle Imaging SpectroRadiometer (MISR) can uniquely constrain the “atmospheric correction” needed to derive ocean color from remote-sensing imagers. Here, we retrieve aerosol amount and type from MISR over all types of water. The primary limitation is an upper bound on aerosol optical depth (AOD), as the algorithm must be able to distinguish the surface. This updated MISR research aerosol retrieval algorithm (RA) also assumes that light reflection by the underlying ocean surface is Lambertian. The RA computes the ocean surface reflectance (Rrs) analytically for a given AOD, aerosol optical model, and wind speed. We provide retrieval examples over shallow, turbid, and eutrophic waters and introduce a productivity and turbidity index (PTI), calculated from retrieved spectral Rrs, that distinguished water types (similar to the the normalized difference vegetation index, NDVI, over land). We also validate the new algorithm by comparing spectral AOD and Ångström exponent (ANG) results with 2419 collocated AErosol RObotic NETwork (AERONET) observations. For AERONET 558&thinsp;nm interpolated AOD&thinsp;&lt;&thinsp;1.0, the root-mean-square error (RMSE) is 0.04 and linear correlation coefficient is 0.95. For the 502 cloud-free MISR and AERONET collocations with an AERONET AOD&thinsp;&gt;&thinsp;0.20, the ANG RMSE is 0.25 and r is 0.89. Although MISR RA AOD retrieval quality does not appear to be substantially impacted by the presence of turbid water, the MISR-RA-retrieved Ångström exponent seems to suffer from increased uncertainty under such conditions. MISR supplements current ocean color sources in regions where sunglint precludes retrievals from single-view-angle instruments. MISR atmospheric correction should also be more robust than that derived from single-view instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS). This is especially true in regions of shallow, turbid, and eutrophic waters, locations where biological productivity can be high, and single-view-angle retrieval algorithms struggle to separate atmospheric from oceanic features.</p
    • …
    corecore