819 research outputs found

    Facial Asymmetry Analysis Based on 3-D Dynamic Scans

    Get PDF
    Facial dysfunction is a fundamental symptom which often relates to many neurological illnesses, such as stroke, Bell’s palsy, Parkinson’s disease, etc. The current methods for detecting and assessing facial dysfunctions mainly rely on the trained practitioners which have significant limitations as they are often subjective. This paper presents a computer-based methodology of facial asymmetry analysis which aims for automatically detecting facial dysfunctions. The method is based on dynamic 3-D scans of human faces. The preliminary evaluation results testing on facial sequences from Hi4D-ADSIP database suggest that the proposed method is able to assist in the quantification and diagnosis of facial dysfunctions for neurological patients

    Semi-automatic registration of 3D orthodontics models from photographs

    Get PDF
    International audienceIn orthodontics, a common practice used to diagnose and plan the treatment is the dental cast. After digitization by a CT-scan or a laser scanner, the obtained 3D surface models can feed orthodontics numerical tools for computer-aided diagnosis and treatment planning. One of the pre-processing critical steps is the 3D registration of dental arches to obtain the occlusion of these numerical models. For this task, we propose a vision based method to automatically compute the registration based on photos of patient mouth. From a set of matched singular points between two photos and the dental 3D models, the rigid transformation to apply to the mandible to be in contact with the maxillary may be computed by minimizing the reprojection errors. During a precedent study, we established the feasibility of this visual registration approach with a manual selection of singular points. This paper addresses the issue of automatic point detection. Based on a priori knowledge, histogram thresholding and edge detection are used to extract specific points in 2D images. Concurrently, curvatures information detects 3D corresponding points. To improve the quality of the final registration, we also introduce a combined optimization of the projection matrix with the 2D/3D point positions. These new developments are evaluated on real data by considering the reprojection errors and the deviation angles after registration in respect to the manual reference occlusion realized by a specialist. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    Automatic landmark annotation and dense correspondence registration for 3D human facial images

    Full text link
    Dense surface registration of three-dimensional (3D) human facial images holds great potential for studies of human trait diversity, disease genetics, and forensics. Non-rigid registration is particularly useful for establishing dense anatomical correspondences between faces. Here we describe a novel non-rigid registration method for fully automatic 3D facial image mapping. This method comprises two steps: first, seventeen facial landmarks are automatically annotated, mainly via PCA-based feature recognition following 3D-to-2D data transformation. Second, an efficient thin-plate spline (TPS) protocol is used to establish the dense anatomical correspondence between facial images, under the guidance of the predefined landmarks. We demonstrate that this method is robust and highly accurate, even for different ethnicities. The average face is calculated for individuals of Han Chinese and Uyghur origins. While fully automatic and computationally efficient, this method enables high-throughput analysis of human facial feature variation.Comment: 33 pages, 6 figures, 1 tabl

    Three-dimensional evaluation of the root resorption of maxillary incisors after the orthodontic traction of bicortically impacted canines : case reports

    Get PDF
    Background: The root resorption of the maxillary incisors after the orthodontic traction of impacted canines is a concern for clinicians. The aim of this case series report was to evaluate the root resorption of the maxillary incisors after traction until the occlusal plane of the bicortically impacted canines (placed between the two cortical bones in the middle of the alveolar process) located in a complex position using three-dimensional superimposition. This case series report describes the root resorption of the maxillary incisors after orthodontic traction with NiTi closed coil springs and a heavy anchorage appliance in three cases of bilateral impacted canines located in a complex position (bicortically) near to midline. Cone-beam computed tomographies (CBCTs) were obtained before and after traction. Root resorption in all root surfaces of the maxillary incisors was evaluated with color-coded maps using the ITK-SNAP and the 3D Slicer software to indicate loss of the root surface (in red) or gain of the surface (in blue) and was quantified in millimeters by the superimposition method. Results: The root changes mainly occurred in the apical third of the maxillary incisor root and did not exceed 2 mm. Conclusions: Root resorption of the maxillary incisors after the traction of bicortically impacted canines located in a complex position was observed mainly in the apex region, and the amount of root resorption was smaller than 2 mm in all root surfaces

    The virtual human face – superimposing the simultaneously captured 3D photorealistic skin surface of the face on the untextured skin image of the CBCT Scan

    Get PDF
    The aim of this study was to evaluate the impact of simultaneous capture of the three-dimensional (3D) surface of the face and cone beam computed tomography (CBCT) scan of the skull on the accuracy of their registration and superimposition. 3D facial images were acquired in 14 patients using the Di3d (Dimensional Imaging, UK) imaging system and i-CAT CBCT scanner. One stereophotogrammetry image was captured at the same time as the CBCT and another one hour later. The two stereophotographs were then individually superimposed over the CBCT using VRmesh. Seven patches were isolated on the final merged surfaces. For the whole face and each individual patch; maximum and minimum range of deviation between surfaces, absolute average distance between surfaces, and standard deviation for the 90th percentile of the distance errors were calculated. The superimposition errors of the whole face for both captures revealed statistically significant differences (P=0.00081). The absolute average distances in both separate and simultaneous captures were 0.47mm and 0.27mm, respectively. The level of superimposition accuracy in patches from separate captures ranged between 0.3 and 0.9mm, while that of simultaneous captures was 0.4mm. Simultaneous capture of Di3d and CBCT images significantly improved the accuracy of superimposition of these image modalities

    Detailing patient specific modelling to aid clinical decision-making

    Get PDF
    The anatomy of the craniofacial skeleton has been described through the aid of dissection identifying hard and soft tissue structures. Although the macro and microscopic investigation of internal facial tissues have provided invaluable information on constitution of the tissues it is important to inspect and model facial tissues in the living individual. Detailing the form and function of facial tissues will be invaluable in clinical diagnoses and planned corrective surgical interventions such as management of facial palsies and craniofacial disharmony/anomalies. Recent advances in lower-cost, non-invasive imaging and computing power (surface scanning, Cone Beam Computerized Tomography (CBCT) and Magnetic Resonance (MRI)) has enabled the ability to capture and process surface and internal structures to a high resolution. The three-dimensional surface facial capture has enabled characterization of facial features all of which will influence subtleties in facial movement and surgical planning. This chapter will describe the factors that influence facial morphology in terms of gender and age differences, facial movement—surface and underlying structures, modeling based on average structures, orientation of facial muscle fibers, biomechanics of movement—proof of principle and surgical intervention

    3D tooth wear assessment in dentistry and orthodontics

    Get PDF
    Tooth wear is the loss of tooth substance during everyday functioning by means other than dental caries. It is expected at a certain level in every person, and it increases with age. In the last decades, due to increased life expectancy and high patient demands, it has become an important problem modern dentistry has to face. Early diagnosis is imperative for the timely management of tooth wear, to avoid subsequent esthetic and functional problems. However, the conventional clinically applicable diagnostic tools involve qualitative assessments by using indices, and thus, are subjective and lack precision. In contrast, 3D quantitative methods on dental models are more objective and can be highly accurate, detecting even minor tooth wear amounts. The present thesis developed accurate, clinically applicable 3D tooth wear assessment methods, through the superimposition of serial 3D digital dental models. These methods were applied to assess tooth wear progression in a treated orthodontic patient population over a thirteen-year period, from adolescence to adulthood. The study revealed the very high tooth wear occurrence in the population, already at early adulthood. The findings emphasize the importance of wear monitoring at an individual level to enable the better understanding of the problem and allow timely targeted interventions for patients in need, aiming to stop wear progress and improve esthetics and function
    • 

    corecore