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Detailing patient specific modelling to aid clinical decision-making 

 

Richmond S, Al Ali AM, Beldie L, Chong YT, Cronin A, Djordjevic J, Drage NA, Evans DM, Jones 

D, Lu Y, Marshall D, Middleton J, Parker G, Paternoster L, Playle RA, Popat H, Rosin PL, Sidorov 

K, Toma AM, Walker B, Wilson C, Zhurov AI. 

 

Subtle facial differences make an individual unique and it is this uniqueness that needs to be 

recognized, defined, categorised and incorporated into a computerized patient specific model.  The 

craniofacial structures are complex and there are many clinical and non-clinical specialties that 

have a specific interest in the dental and oro-facial region.  Although there have been significant 

investments in research to explain development and facial variation, the mechanisms of how 

normal and abnormal growth/facial development occurs still remains unclear and subject to many 

theories.  Improving knowledge in how the facial tissues arise and function will enhance the validity 

of computerized models.  The aim of this chapter is to highlight advancements that have led to 

characterization of facial tissues and how these can be utilized and refined for computerized 

models to aid clinical decision-making. 

 

This chapter will address the progress made so far in determining a patient specific model in terms 

of: 

• Acquisition of facial data 

• Genetic and non-genetic factors contributing to facial variation 

• Modelling facial structures based on average estimates for surgical planning and simulation 

• Methods to determine facial movement pre and post-surgical intervention  

• On-going refinement of techniques: 

 Registration 

 Determination of the orientation of facial muscle fibres 

 

Acquiring facial data 

To model or visualise living anatomical structures it is important to capture clinical data in a non-

destructive way. Over the last 40 years there have been significant advances in imaging 

techniques, which have enabled visualisation and reconstruction of the living internal organs, which 

previously were only visible by operation or by dissection.  Static images of structures have been 

invaluable but more recently it has been realised that observing structures during function has 

added benefit, for example, cardiac magnetic resonance imaging to evaluate cardiac function 

(Hundley et al, 2010) and videofluoroscopy to study swallowing impairment in patients with 

neurological impairment (Kang et al, 2011).  

 

Therefore to develop a patient specific model to aid clinical decision making for the head and neck 
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we need not only information on the constitutive components on the head and neck but we also 

need imaging techniques to record and model the internal structures during rest and also 

undergoing a range of functions.  In addition it is important to diagnose craniofacial anomalies 

based on normal variation and plan the surgery necessary to normalise any facial disharmony if 

required. 

 

Every person has a unique soft tissue and skeletal facial structure and these structures are 

complex and require a variety of techniques to capture the full depth of facial tissues.  For surface 

scanning, static or video-imaging techniques are used (laser or photogrammetric techniques) (Kau, 

2010).  To capture the detail of the skeletal framework computed tomography (CT), Cone Beam 

Computed Tomography (CBCT) and Magnetic Resonance Imaging (MRI) can be applied (Drage 

and Rout, 2010).  To capture the detail of the underlying soft tissues (e.g. muscle and brain) 

techniques such as MRI, CT and ultrasound are required.  Examples of the images obtained from 

the image capture machines are shown later in the text.  Specialised techniques have been 

developed to identify muscle fibre orientation such as diffusion weighted imaging.  Capturing any 

facial data is complex and the data requires validation as certain capture techniques are subject to 

distortion due to variation in image uniformity (Bryant et al, 2008) and relative spatial position of 

these structures that make up the face (e.g. surface air interface in CT and MRI). 

 

Genetic and non-genetic factors contributing to facial variation 

The relative proportions of genetic and non-genetic factors contributing to dentofacial variation has 

evoked strong debate (Lundström, 1984).  Quantifying the heritability of craniofacial features is a 

prerequisite for understanding normal craniofacial development and elucidating how abnormal 

pathology arises. Evidence from twin, family and animal studies has suggested that much of the 

variation in craniofacial features is heritable (Kohn, 1991), although the majority of studies have 

involved small sample sizes, and/or less than ideal study designs. For example, most of the larger 

studies in craniofacial development have involved parent-offspring designs, which cannot 

distinguish between common environmental and genetic sources of variation, and thus may 

produce inflated estimates of the underlying heritability. 

 

With the advent of molecular genetic techniques over the past thirty years, attention has now 

turned to identifying the individual genes influencing craniofacial development. In this respect, 

mutation bearing genes have been identified for over 340 syndromes associated with oral facial 

clefts, and numerous candidate genes have been implicated by allelic association and linkage 

analyses (Cohen, 2002). Whilst considerable advances have been made in elucidating the genetic 

basis of pathological conditions, the identity of individual genetic variants which affect normal 

craniofacial development in population based samples are largely unknown. However, a recent 

genome-wide association study of normal facial morphology in 2,185 15-year-old children found a 
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robustly replicated association between a SNP in PAX3 (rs7559271) and the nasion to mid-

endocanthion distance (n-men) (Evans, et al, 2011). Although genetic studies of normal 

craniofacial variation are in their infancy, it is hoped that the insights they provide will inform 

clinicians on how the face develops and reacts to surgical interventions.

   
Figure 1 Showing construction of the nasion to mid-endocanthion distance associated with the 

PAX3 gene.   

 

There are many other factors that can affect facial variation such as the age of the individual, 

ethnicity, gender and environment.  In a study of facial variation in 4747 children of the same age 

(15-years-old), 82 percent of variation could be explained by 14 principal components (Toma, et al, 

2011). The first 3 components explained 46% of variation.  These components were face height 

(28.8%), inter eye distance (10.4%) and nose prominence (6.7%) (Figure 2).   

 
Figure 2  Facial variation: Left column showing variation from long face (top) to short face (bottom); 

middle column eyes further apart (top) and eyes closer together (bottom) and right column large 

nose (top) to small nose (bottom). 

 

Significant facial variations have been highlighted between five different ethnic populations for 
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example similarities in facial shapes were identified between females in Wales and Hungary but 

less concordance with females in Wales and the USA (Kau et al, 2010).  The face changes 

throughout life, increasing in size and changing shape.  Puberty is when key facial differences 

between the sexes become defined (Figure 3).  Males tend to develop prominent noses and chins, 

with flatter infra-orbital regions than females between 12 and 17 years of age.  Females tend to 

reach puberty 12 to 14 years of age and males 14 to 16 years of age.  Subtle facial changes occur 

throughout life as the individual ages.   

 
Figure 3  Colour maps showing differences between females and males between 12 and 17 years 

of age: Females (top left), males (top right), females and males aged 12 (bottom left) and females 

and males at 12 years of age (bottom left) and at 17 years of age (bottom right).  Cooler colours 

(light and dark blues) show negative distances and warmer colours (oranges and reds) positive 

distances.  Male chins and noses grow significantly forward from age 12 to 17 years of age. 

 

There have been a few studies assessing the influence of medical conditions on facial variation.  In 

a study of insulin sensitivity in 2181 white 15-year-old children (1027 males, 1154 females) the first 

two principal components (facial height and inter-eye distance) were significantly, though weakly, 

associated with insulin sensitivity.  The average face of males with low insulin sensitivity was wider 

(up to 3.24 mm) with a shorter nose and less protrusive lips (up to 2.26 mm) compared with the 

average face of males with high insulin sensitivity.  The average face of females with low insulin 

sensitivity was also wider, with a more protrusive chin (up to 1.71 mm), shorter nose and less 

protrusive lips (up to 1.28 mm) compared with the average face of females with high insulin 

sensitivity (Djordjevic et al, 2010). 

 

A further study of the influence of asthma on facial development was conducted in 471 children 

who had been diagnosed as asthmatic at 91 months of age (Henderson et al, 2008).  The facial 

parameters were assessed against a control of 1637 healthy children.  The inter ala distance 
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(width of the nose) was 0.1mm wider and mid-face height was 0.4mm shorter in asthmatic females 

compared with non-asthmatic females.  No facial differences were detected in males. 

 

These few examples have shown that facial size and shape can be influenced by genetic and 

environmental influences.  There are a wide variety of shapes and sizes of cheeks, chins, noses 

and lips and as a consequence will grow differently and respond differently to surgical 

interventions. 

 

Modelling facial structures based on average estimates for surgical planning and surgical 

simulations 

It has been traditional for the assessment of facial discrepancies to be compared with average 

estimates for the normal population.  This is undertaken on relatively small population groups 

usually between the ages 12 to 18 years of age (Riolo et al, 1979; Bhatia and Leighton, 1993).  

There are relatively few repositories for 3D facial analyses.  A significant proportion of facial 

evaluations have been dependent on 2D cephalometric analyses and out-dated subjective 

assessments.  Although these assessments are helpful they do not characterise the numerous 

permutations and associations of facial characteristics.  

 

To date it is possible to acquire an accurate 3D facial shell (static and dynamic) using laser 

scanners or by photogrammetric techniques and skeletal topography using CBCT.  It has been 

challenging to acquire detail of the underlying tissues (fascia, fat, nerves, blood vessels and 

muscles) lying between the facial surfaces and underlying bone.  One possible solution is to apply 

average data acquired from forensic reconstruction (Richmond et al, 2010).  The muscles can be 

fashioned and placed in the approximate anatomical positions (Figure 4).   

 
Figure 4  The positioning of muscles on a segmented facial skeleton obtained from a CBCT (Left 

and middle).  The facial tissues can be modelled: Bone – rigid; Subcutaneous fat and skin – 

Mooney/Rivlin; Muscles – user defined; Nose cartilage/eyeball – linear elastic (right).  

 

A finite element model was created using Simpleware® (Simpleware Ltd., 2008) and 

Oasys.PRIMER (Oasys Ltd & Arup, 2009). The material properties for different components were 

given as: the skeletal structure –rigid; subcutaneous – Neo-Hookean; facial skin, nose cartilage 

and eyeballs – linear elastic; facial muscles – user defined materials or linear elastic (Figure 4) 
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(Beldie et al, 2010).  For the finite element model to produce valid predictions, an accurate 

constitutive model of the muscles is critical (Richmond et al, 2010).  The constitutive muscle model 

was formulated based on Hill’s one-dimensional model and can be described as active, quasi-

incompressible, fibre reinforced and hyperelastic (Hill, 1938). The model was validated against 

experimental data under passive and active elongation simulations and was proved to be capable 

of simulating active and passive behaviour (Lu et al, 2011).  The constitutive model was 

implemented into LS-DYNA (Livermore software technology corporation, 2007) through user-

defined material (UMAT) and utilised to simulate facial expressions.  Facial expressions were 

achieved by activating the facial muscle groups.  For example disgust was achieved by stimulating 

the levator labii superioris alaeque nasi, orbicularis oculi and depressor anguli oris muscles 

simultaneously and smiling was achieved by activating the orbicularis oculi, zygomaticus minor and 

zygomaticus major muscles simultaneously (Figure 5).  

 

   
  

Figure 5. Facial expressions rest (left), smiling (middle) and disgust (right) 

 

Surgical planning and simulation 

A 20-year-old patient expressed an interest in improving his appearance by reducing the 

prominence of his chin.  At his first appointment full records were taken and the plan was to align 

his teeth prior to surgery.  Once his teeth were aligned a surface facial laser scan (with colour 

texture) and a CBCT was performed.  The surface scan was fitted to the surface of the CBCT 3D 

construction.  An average facial template for an 18 to 22-year-old male was fitted to the patients 

facial shell using best-fit with both shells aligned to the mid-intercanthal line (Zhurov et al, 2010).  A 

colour deviation map was used to highlight differences between the individual and the average 

face (Figure 6).  The patient’s cheeks showed a deficiency of 5mm although the chin was in a 

similar anterior-posterior position and the facial height was 3 to 4mm longer than the average male.  

Analysing these data it was decided to move the maxilla upwards by 4mm and forwards by 5mm. 

The movement of the maxilla will correct the mid-face discrepancy.  The mandible was moved to 
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the best-fit of the upper and lower teeth.  Achieving the best occlusal interdigitation was a priority 

although by doing this it was recognised that the position of the chin would be less prominent than 

the average face.  The relationship of the soft tissues to the hard tissues have changed 

substantially pre- and post-operatively (Figure 7).  The finite element predictions showed a very 

similar outcome to that achieved with small areas of discrepancy at 3 and 6 months.  The green 

areas indicate that the surgical prediction was generally within 0.8mm of the actual surgical 

correction (Fig. 7).  

  
Figure 6 Colour textured image overlaid on average face for males 18 to 22 years of age (left);  

colour deviation map of patient compared with a facial average highlighting a deficiency in the 

middle part of the face by 5mm (right). 

 

  
 

 
Figure 7 Pre-surgical (top left) and post-surgical plan (top right).  3 month and 6 month post 
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surgical evaluation of the surgical plan and actual outcome.  There is a high level of concordance 

between the surgical plan and surgical outcome at 3 and 6 months (green represents difference of 

less than 0.8mm).  Greater errors were particularly associated with the lower lip (3.5mm).  This 

reconstruction was undertaken on static images but it is also important to evaluate facial changes 

during normal function (speech, expressions and mastication). 

 

Methods to determine facial movement pre and post-surgical intervention 

Our facial appearance and expressive behaviours have a major impact on how we are perceived 

and how others in society perceive us.  The inability to express oneself via facial movement can 

have serious social consequences as both verbal and non-verbal movements communicate our 

emotional state of mind to others.  Such patients who may be affected include those with facial 

nerve paralysis, those with dentofacial deformities and patients with cleft lip.  Many of these 

patients will opt to have reconstructive or orthognathic surgery to correct their aesthetic and 

functional deficits.  It is important that there are adequate measures for objectively quantifying pre- 

and post-operative function for these patients as this will help in diagnosing the severity of the 

impairment and aid in outcome assessment (Nooreyazdan et al, 2004, Mishima et al, 2009, 

Okudaira et al, 2008). 

 

The first consideration in facial movement analysis pre- and post-operation is what facial gesture is 

most appropriate to use to measure movement. The choice of action can broadly be classified into 

verbal and non-verbal facial gestures (Popat et al, 2011).  In principle, any facial gestures can be 

employed for the assessment of facial movement.  However facial gestures that may be 

appropriate for use in psychology assessments for example may not be so for assessment in pre- 

and post-operation.  One must therefore consider the application carefully.   

 

In addition, when monitoring facial movement over time or through intervention the measure of 

facial movement used should be repeatable.  If this is not the case, then individual variation or 

difference in the performed facial gesture between two time points will induce error into the 

assessment.  Verbal facial gestures tend to exhibit higher reproducibility when compared to facial 

expressions (Popat et al, 2010).    

 

Data analysis 

Research into facial movement utilises statistical modelling techniques to analyse the dynamic 3D 

data acquired.  A sequence of facial movement may typically contain a set of 3D images at 30-60 

frames per second (Figure 9).    
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Figure 9  Selected sequential frames of a patient saying the word /rope/ 

 

Images from the sequence must be registered within the same 3D space.  This allows valid 

comparison of facial movement between frames from within a sequence but also between different 

groups and time points.  Using 3D facial landmarks, the coordinates of interest can then extracted 

from images along the timeline to form the dataset.  Landmark trajectories can be plotted and inter-

landmark distances measured to give information on facial movement pre- and post-operation to 

assess functional change.  To explore variability in facial shape however and isolate 

patterns/relationships between the areas of facial movement more sophisticated methods of 

modelling are required such as Principal Component analysis (PCA).   

 

Here we illustrate a patient with a prominent chin who was part of a cohort that underwent 

orthognathic surgery to both upper and lower jaws.  The change in lip movement pre- and post-

operation is statistically modelled using the x, y and z coordinates of 6 anthropometric landmarks: 

labiale superius (ls) - the midpoint of the upper vermilion line, labiale inferius (li) – the midpoint of 

the lower vermilion line, crista philtri (cph L/R) – the point on the left and right elevated margins of 

the philtrum above the vermilion line and cheilion (ch L/R) – the point located at the left and right 

labial commissure (Farkas, 1993).  Data of the patient saying several words were acquired 

immediately pre- and 6 months post-operation using a 3D motion capture system (Figure 10).    
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Figure 10  Patient with a severe Class 3 dentofacial deformity pre- and post-operation at rest and 

articulating the word /rope/ 

 

The 3D facial shells at rest and at maximum displacement for each word both pre- and post 

operation were registered (aligned) in space using Generalised Procrustes Analysis by removing 

translation and rotation (Dryden and Mardia, 1998).  Scaling was not incorporated to preserve lip 

size and shape.  The mean position of each landmark (centroid) was plotted with 2 standard 

deviations to give a 3D ellipsoid representing 95 percent of the variation in lip shape for each time 

point.  Figure 11 shows the difference in lip shape for the group from pre- to post-operation.  Post-

operation the mean lip height has been reduced and the mean lip width increased.   
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Figure 11 3D ellipsoid plot (mean ± 2 SD) showing the difference in lip shape pre- and post-

operation (pre- yellow, post- black) 

 

The effect of this on lip movement can be visualised in Figure 12 where 3D ellipsoids have been 

used to plot pre- and post-operation movement for the word /rope/ against a control or average 

group.  Post-operation, there is less protrusion and more downward movement of the corners of 

the mouth, which when compared with the control group shows that both the dentofacial aesthetics 

and function have been normalised (Figure 12). 

 

 
Figure 12 3D ellipsoid plot (mean ± 2 SD) showing lip shape for maximum articulation of the word 

/rope/ comparing normal movement (red) to pre-operation (blue) and post-operation (white) 

 

 



 12 

 
Figure 12  Pre- and post-operation facial appearance.  Surgery has brought the maxilla forwards 

and moved the mandible backwards enabling an excellent interdigitation of the upper an lower 

dentitions. 

 

Although treatment aims for patients have always been to restore aesthetics and function, 

traditionally methods to monitor facial function has lacked precision and objectivity.  With 3D 

motion capture systems, statistical modelling techniques are a valuable technique in processing 

large volumes of data resulting in a concise and meaningful interpretation of facial function. 

 

Tracking movement of the mandible 

Although surface movement is important for daily interactions it is also necessary to reliably record 

movement of the mandible also during function and especially prior to surgical planning.  There 

have been several methods employed in the past such as the photography (Wood, 1979), 

Kinesiograph (Martin et al, 2000) and radiographic (Kim et al, 2010).  However any motion capture 

system should also incorporate mandible movement.  An example is shown in Figure 13 whereby 4 

spheres have been attached to an upper and lower framework, which is then attached to upper 

and lower teeth using two orthodontic brackets.  Movement of the spheres in space will determine 

the trajectory of mandibular movement.  Documenting this movement will be useful to plan the path 

of opening and closure of the jaw during surgery for individuals presenting with facial, trauma, oro-

facial cancer and facial disharmony.  All that is needed is a CBCT and at least 3 spheres located to 

the upper and lower dentition.  The reliability of this system is generally within 1mm.  An example is 

shown of an individual with bilateral fractures of the condyle and instead of the condyle articulating 

in the glenoid fossa the broken fragment is seen articulating with the zygomatic arch (Figure 13). 
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Figure 13 Tracking movement of the mandible using 4 spheres on a frame attached to upper and 

lower teeth (left 18mm opening; middle 42mm opening).  The image on the right tracks mandibular 

movement for an individual with bilateral fractures of the condyle whereby the mandible pivots on 

the zygomatic arch as oppose to the condyle articulating with the glenoid fossa (right). 

 

Refinement of techniques 

Registration  

It is often the case in medical imaging that important information is contained in more than one 

image (ensemble). A practical example of this would be latitudinal or longitudinal ensembles of 

facial 3D surface scans, obtained with surface scanners which are becoming a common and a 

valuable diagnostic tool. It is convenient to refer to 2D and 3D images, as well as surface scans, 

henceforth as simply “images”. 

 

Typically, analysis of image ensembles involves construction of some statistical model. In contrast 

to hand-crafted models, which are inevitably inflexible and often inaccurate, modern statistical 

modelling methods allow for automatic construction of models directly from data. Before any 

meaningful analysis, statistical or otherwise, can be performed on an ensemble of images, 

correspondences between analogous parts of the images, across the entire ensemble, must first 

be established. This is accomplished by a procedure called registration. In other words, registration 

is a necessary prerequisite to extracting and aggregating useful information from an ensemble of 

images. 

 

The methods for registration are classified according to the nature and modality of imagery to 

which they are applicable, according to the separation of samples (spatial, temporal, or both), by 

interactivity (manual, semi-automatic, automatic), by feature understanding (sparse, or feature-

based, as opposed to dense, or area-based), by the model of admissible deformations, by 

multiplicity paradigm (pairwise or groupwise), and other properties (Sidorov, 2010).  

 

Manual registration of large ensembles of images is tedious and error prone – while humans can 
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easily determine correspondences between salient features (e.g. eyes), they fail to establish 

correspondences between points in featureless regions (e.g. cheeks). Further, while manual 

annotation of 2D imagery is easily possible, in three dimensions it becomes prohibitively difficult for 

practical reasons. Hence, advances of computer vision are employed to perform registration tasks 

automatically. 

 

Here, we briefly address automatic dense non-rigid groupwise registration applied to craniofacial 

3D surface scans. Principal registration problems are: to register an ensemble of temporally 

separated images of the same subject (over various lengths of time: e.g. video of a person 

speaking; longitudinal study of growth over several years), and to register ensembles of images of 

several subjects, termed intra- and inter- subject registration accordingly. 

 

Let us call what is actually observed by the imaging device (or the eye) the appearance of an 

image.  Changes in appearance result from variations in the shape of the object e.g. deformation of 

the face during function, and from variations in the texture of the object e.g. blushing, shadows and 

facial hair.  Both factors are usually present when images are obtained from different subjects. 

Changes in appearance due to variations in shape are typically highly non-linear and a priori 

unpredictable – simple changes in shape may cause complicated changes in appearance. 

The purpose of registration is to determine the underlying deformation process that leads to the 

observed changes in appearance, and so determine how every point in one image is transformed 

into the analogous point in another image. 

 

Depending on the range of admissible deformations, registration methods are roughly subdivided 

into rigid and non-rigid.  Rigid methods crudely align the samples together, by computing global 

rigid transformations that bring all samples into alignment.  Non-rigid methods allow for more 

general, local deformations to be recovered; this, however, comes at a much higher computational 

cost, as a substantially larger search space has to be explored.  Some modern algorithms 

(Sidorov, 2009, Sidorov, 2011) explore the space of all possible deformation models in addition to 

exploring the space of parameters of a particular model, when searching for optimal 

correspondences.  

 

Traditionally, when registering an ensemble of images, one image would be chosen as a 

“reference” and a pairwise registration method would be applied repeatedly to establish 

correspondences between the reference image and every other image in the ensemble, so 

establishing the correspondences between all pairs of images via the intermediate reference (the 

problem of registering a pair of images has been well-researched (Zitova 2003)).  However, it has 

been recently shown (Cootes 2010, Sidorov 2009, Sidorov 2011) that this approach is suboptimal. 

Indeed, in such approaches the results is inevitably biased to the choice of the reference image; 
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and an unfortunate choice of the reference, for example one that is uncharacteristic of the rest of 

the ensemble, complicates matters further.  More importantly, it has been shown (Cootes 2010, 

Sidorov 2009, Sidorov 2011) that a superior paradigm is to utilise as much information from the 

entire ensemble, rather than from only a pair at a time.  Only by considering multiple examples 

simultaneously can corresponding structures be reliably identified. Registration methods that 

operate on this principle are called groupwise.  Typically (Cootes 2010, Sidorov 2009, Sidorov 

2011), groupwise registration amounts to constructing a common reference model of texture (to 

account for the variation in texture) and computing a set of models of deformation such that 

variation in the ensemble can be parsimoniously explained in terms of applying computed 

deformations to the model of texture.  Accuracy and reliability of modern groupwise registration 

methods is typically higher than that of the pairwise registration, and higher than that of manual 

annotation (especially for relatively featureless imagery). 

 

The problem of registration is ill-defined in the sense that there is no obvious criterion for optimality 

of registration results. Typically, the aim is to find a model of the underlying deformation process 

such that it best explains the changes of appearance in the simplest possible way. 

Having registered the samples (that is, having found, for every point in each sample, the 

corresponding positions of the analogous points in every other sample), one can perform statistical 

analysis on the corresponding features. 

 

To illustrate the usefulness of inter-subject registration, we took a corpus of 32 facial scans of 

different individuals, applied our registration algorithm to it (the evolution of the reference model is 

illustrated in Figure 8) and, having found the dense correspondences, computed a generative 

appearance model (Cootes 1998). The principal modes of variation, automatically found by 

registration and statistical modelling, are shown.  We can use these registration techniques to 

explore facial expressions and speech. 
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a) Example different surfaces from the inter-subject dataset. 

 
b) Evolution of the texture model in the flat parametric space as the registration progresses 

 
c)  Same as row above showing mean surface and texture in 3D 

 
d) The three most significant modes of appearance variation automatically found by registration 

and statistical modelling. 

Figure 8 Illustrates the evolution of the reference model; a) shows the original data; b) the texture 

model in the flat parametric space; c) mean surface and texture in 3D; d results - the three most 

significant modes of appearance variation automatically found by registration and statistical 

modelling. 
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Determination of the orientation of facial muscle fibres 

Previously we used average estimates for facial muscle positioning, however each individual has 

different muscle masses and different origins and insertions. The manner in which a muscle 

delivers mechanical force is strongly dependant on its fibrous architecture has been understood for 

some time (Bovendeerd et al, 1994). Thus, to improve the understanding of subject-specific 

muscle mechanics, accurate estimations of fibre orientation must first be obtained in vivo. Some of 

the first successful non-invasive techniques worked by inspection of muscle fibre striation patterns 

visible through high-resolution structural MRI (Engstrom et al, 1991). Unfortunately, within MRI, not 

all muscles produce visible striations at feasible image resolutions and so, with the lack of any 

other inherent orientational information within structural MRI, such approaches were limited to the 

study of large muscles. It was not until the introduction of diffusion-weighted MRI (DW-MRI) 

(Steskal et al, 1965) that we could begin to probe tissue microstructure and begin to retrieve voxel-

wise orientational information.  

 

In principle, DW-MRI measures the rate of diffusion of water along a given orientation within a 

volume of interest. At first glance this appears disconnected from the retrieval of in vivo muscle 

fibre orientations; however, it was noticed that the particular cellular organisations (i.e. regularly 

arranged elongated fibrous cells) would produce distinct variations in the rate of diffusion of water 

relative to their macroscopic orientation. In other words, water may diffuse faster along a fibre than 

across fibres because it will encounter fewer hydrophobic cellular boundaries per unit length; in 

doing so this produces a measurable, modellable, diffusion anisotropy. From these observations 

various techniques were developed to turn raw directionally encoded 4D DW-MRI images into 

voxel-wise estimates of fibre orientation (Figure 14).  

 
Figure 14 Voxel-wise estimates of fibre orientation retrieved through DT-MRI (Ellipsoidal 

representation). Image depicts a slice through the human brain. Direction is encoded through 

colour with blue representing orientations into and out of the plane, green forwards/backwards and 
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red left/right (otherwise known as directionally encoded colour) 

 

One of the earliest, and potentially still the most popular of such techniques is Diffusion Tensor 

MRI (DT-MRI) (Basser et al, 1994). DT-MRI model assumes that fibrous diffusion can be modelled 

as a three-dimensional Gaussian diffusion tensor (i.e. an ellipsoid with the axis of greatest diffusion 

pointed down the fibre trajectory); by fitting this model to observed DW-signals, Eigen-analysis can 

reveal fibre orientation (the first Eigenvector) and a host of other useful quantitative parameters 

such including Fractional Anisotropy (FA), a ratio of longitudinal to radial diffusion (provided by the 

Eigenvalues) that might be useful to in the analysis of tissue integrity (Basser and Pierpaoli, 1996).  

 

A logical step from voxel-wise measurements of orientation is to attempt to retrieve some 

representation of connectivity; to determine where a particular fibrous structure begins, where it 

ends and the path it follows along the way. To achieve this goal we employ a class of techniques 

collectively known as tractography (Basser et al, 2000). An extremely basic algorithm would be as 

follows: Position seed points in a regular grid across the target image, from each seed point, 

anchor two streamlines (remembering that fibres are axially-symmetric). Each streamline takes the 

orientation of its host voxel (or its inverse) and follows that path until reaching a boundary with a 

new voxel; checking the angle between its own orientation and the dominant orientation within the 

new voxel, a streamline will either (1) terminate if the angle is above a predefined threshold or (2) 

proceed through the new voxel taking on that voxels orientation until it reaches another voxel 

boundary and repeats the process. Once all streamlines have terminated or reached an image 

boundary, those sharing a common start point can then be joined to create a single coherent path. 

In this way a streamline can follow an orientationally coherent string of voxel-wise orientations 

while filtering out un-natural reconstructions (it is highly unlikely that a muscle fibre will deviate 

more than 35-40o per 2-3mm step). The streamline can then be rendered as a 3D line with vertices 

at visited voxel boundaries, facilitating a more intuitive visual inspection. In reality such a simplistic 

approach would never be used, modern tractography will often employ techniques such as fibre 

orientation interpolation (placing vertices at fixed separations and computing point specific 

estimates of fibre orientation), probabalistic filtering (Parker et al, 2003) (to filter out erroneous 

streamlines) and support for more complicated DW-signal processing models (to be discussed 

shortly). An example of DT-MRI based tractography visualizing all tracts passing through the image 

slice is depicted in Figure 15. 
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Figure 15  Result of DT-MRI based tractography displaying all tracts originating from or traversing 

through the slice of human brain depicted in Figure 14. Easily identifiable structures include 

sections of the brain stem (red) and corpus callosum (orange). Note that is far easier to identify 

connectivity through inspection of tractography than through voxel-wise data alone. 

 

Unfortunately, DT-MRI is not without limitations. While DT-MRI derived estimates of fibre 

orientation can generally be considered reliable in voxels containing a single axially aligned fibre 

population, the tensor model is unable to resolve the 'crossing-fibres' problem that occurs when a 

voxel intersects two or more non-collinear fibre populations (Alexander et al, 2001). This is 

generally not a problem with larger muscles (relative to voxel dimensions) – explaining successful 

applications of DT-MRI to large muscle groups; legs (Heemskerk et aL, 2010; Kan et al, 2009), 

heart (Zhukov and Barr 2003; Kim et al, 2005) where one can derive important biomechanical 

properties such as the pennation angle (Heemskerk et al, 2005; Damon et al, 2002) – however as 

muscle size decreases relative to the size of a voxel, the frequency of intra-voxel orientational 

complexity increases (Figure 16) and thus the tensor model fails more frequently.  

 
Figure 16  A demonstration of crossing-fibres.  Here we have segmented visible portions of the 

masseter (green) and risorius (pink), red denotes shared voxels. Note that the largest portion of the 
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risorius lies within this shared region and thus the majority of the muscle would not be retrievable 

through DT-MRI. The masseter on the other hand is relatively easy to reconstruct, its relative size 

limits the effect of crossing fibre errors to smaller portions of its total volume. 

 

Consequentially, when examining complex fibre architecture e.g. the tongue (Kim et al, 2005), 

successful DT-MRI often requires an image resolution that is not practical in vivo on clinical 

scanners (mostly due to SNR considerations at low field strengths 1.5-3T). 

 

The challenge for muscle reconstruction in particular originates from the shorter T2 of muscle fibre 

(35-45ms depending on activity (Rumeur et al, 1994)) in comparison to that of white matter (80ms) 

where study of complex fibre architecture is more prevalent. The resultant additional T2 weighted 

signal losses, in combination with other factors more frequently encountered in in vivo studies of 

muscle (such as geometric distortions generated by magnetic inhomogeneities due to nearby air-

tissue boundaries (Morgan et al, 2004)), imposes greater restrictions on voxel dimensions to 

ensure that the diffusion-weighted signal intensities are above the Rician noise floor (Jones and 

Basser, 2004). While white matter studies may reliable image at high resolutions, SNR 

considerations with in vivo muscle have typically forced use of a coarser 3 x 3 x 3mm resolution 

(our own situation) or lower. 

 

Where DT-MRI has been applied to muscle structure in vivo, e.g. Gilberts study of the human 

tongue (Gibert and Napadow, 2005), SNR considerations forced a spatial resolution of 3 x 3 x 6-

8mm. This coarse resolution then prevented the extraction of meaningful fibre orientations and 

instead forced a reliance on fractional anisotropy to imply structure – i.e. voxels with low anisotropy 

imply the presence of crossing fibre, from which inferences can be made through comparison with 

classical anatomy. Compared to later work by the same author (Gibert et al, 2006), which achieved 

successful lingual core tractography through diffusion spectrum imaging (DSI (Wedeen et al, 

2005), one of many newer techniques designed to resolve crossing-fibres) of an ex vivo sample at 

voxel volumes ranging from 2 to 4 mm3, it is clear that in vivo DT-MRI lacks the fidelity required to 

provide accurate subject specific biometric information. Unfortunately the high b-values required for 

DSI (a diffusion weighting affecting the weight of DW-signal attenuation with respect to measured 

diffusion weight) would result in unacceptably low in vivo SNR throughout the cranial-facial region 

on clinical hardware.  

 

Constrained spherical harmonic deconvolution (CSHD (Tournier et al, 2004)) provides one 

possible way forward. However, despite the increasing number of applications of CSD to white 

matter, use on other fibrous tissue is largely undocumented (either in or ex vivo). The principle 

assumption of all spherical deconvolution approaches (numerous examples exist) is that the fibre 

orientation distribution function (i.e., a set of vectors describing the principle orientations of fibrous 
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tissue within the voxel) can be obtained through deconvolution of a 'common' single fibre response 

function (a representation of a DW-signal produced by a single-fibre population of the same tissue 

type) from the observed DW-signal – spherical deconvolution is no longer limited to one orientation 

per voxel. In practice, this common response function is not known a priori and thus an 

estimated/simulated fibre response must be used. Selection of an appropriate response is 

particularly important when applying CSDH as limitations inherent to its spherical harmonic data 

representation make it particularly unforgiving of errors at this point (Figure 17 left) (Parker and 

Jones, 2011). Fortunately however, our group has devised a simple, yet effective, automated 

response function selection technique (Parker and Jones, 2011) allowing us to apply CSHD with 

reasonable success, achieving anatomically viable reconstructions of the Temporalis (Figure 17 

right), Massetter (Figure 18a), Buccinator (Figure 18b), Risorius  and other smaller muscles where 

data quality permits (Figure 19).   

 

 
Figure 17 The effects of calibration on CSHD derived estimates of fibre orientation, a look at the 

temporalis muscle. An example of inappropriate calibration (the selected response function was of 

higher anisotropy than muscle tissue), typical errors include spurious fibre tracts with no basis in 

anatomy (marked red) and premature tract termination, especially in regions with higher curvature 

(marked green) (left). Tractography applied through the same volume as A, but with appropriate 

CSHD response function selection. Note that the reconstruction appears fuller in general, 

premature tract termination is greatly reduced and additional detail is visible at the muscles 

insertions into the mandible. Tractography at the upper edge is prematurely terminated in both A 

and B due to limited image coverage (right).  
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Figure 18 Example of a near complete masseter muscle reconstruction achieved through CSHD 

tractography (left). Example of a partial buccinator reconstruction, while image distortion within the 

cheek prevents a complete reconstruction crossing fibre resolution has been successfully achieved 

at the masseter-buccinator intersection (leftmost segment of the image) and the three main muscle 

components are clearly distinguishable (right).  

 

Figure 19 Selection of muscles shown in context. Green: Temporalis, Grey: masseter, Purple: 

buccinator, Blue: risorius, Cyan: genioglossus, Red: depressor/levator anguli oris. Unfortunately as 

we examine lower cranial-facial regions, DW-signal quality is such that reliable reconstruction is no 

longer achievable. 

 

While advances have been made towards the signal-processing end our pipeline, image 

acquisition still remains problematic. Of the available imaging coils within our laboratory, the 8 

channel brain imaging array provides the best coverage of our area of interest but, understandably, 

being optimized for brain imaging, tends to suffer from signal roll-off towards the below the subjects 

eyes. In combination with previously mentioned geometric distortions and T2 related signal losses, 

data quality within the lower regions, particularly within the cheeks, about the lips and within the 

mandible can be particularly poor, resulting in incomplete or missing tractography. We are hopeful 

that with the addition of a new purpose built RF coil and introduction of a susceptibility matched 

medium into the subject’s oral cavity, data quality will improve.  
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Conclusion 

There are many genetic and non-genetic factors that influence facial shape and it is likely that 

further genotype and phenotype associations as well as environmental influences will be 

discovered as soon as larger 3D facial databases combined with genetic information become 

established.  Appreciating individual facial features is important when evaluating changes as a 

result of growth and surgical interventions.  A simple example of this is when a scalpel incision is 

made on the surface of the skin.  The clinician often examines the lines on the skin surface and if 

the incision is made in line with the skin creases (Langer lines) scarring is often less visible as 

opposed to an incision made perpendicular to Langer lines.  In the case of correcting facial 

disharmony the vast majority of surgery is performed intra-orally with minimal “invisible” scarring.  

However repositioning the bony surgical fragments will have an effect on the shape of the surface 

tissues and clinicians need to define the surface morphology and how the specific morphologies 

change with the magnitude of movement and spatial positioning.  Surprisingly, with the wide 

variation in facial features, simple classifications such as, long/short, thin and wide still persist for 

individual facial features and shape is often ignored.  Further work is needed to provide data for 

valid constituent modelling and to detail changes in the soft tissues during function.  Nevertheless 

employing average parameters for soft tissues has provided an accurate model to predict facial 

surgery.  Methods for automatic construction of craniofacial appearance models will in the future 

underpin much of craniofacial research, including realistic modelling of influences of non-invasive 

and invasive treatment modalities, management of facial injuries, predicting the effects of ageing, 

simulation of surgical intervention, post-surgical evaluation of a patient’s appearance leading to the 

optimisation and refinement of surgical procedures. It is hoped that these significant advances will 

find their way into routine clinical practice in the near future. 
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