4,964 research outputs found

    Determination of land surface temperature using Landsat 8 images: Comparative study of algorithms on the city of Granada

    Get PDF
    [EN] The use of satellite images has become, in recent decades, one of the most common ways to determine the Land Surface Temperature (LST). One of them is through the use of Landsat 8 images that requires the use of single-channel (MC) and two-channel (BC) algorithms. In this study, the LST of a medium-sized city, Granada (Spain) has been determined over a year by using five Landsat 8 algorithms that are subsequently compared with ambient temperatures. Few studies compare the data source with the seasonal variations of the same metropolis, which together with its geographical location, high pollution and the significant thermal variations it experiences make it a suitable place for the development of this research. As a result of the statistical analysis process, the regression coefficients R2, mean square error (RMSE), mean error bias (MBE) and standard deviation (SD) were obtained. The average results obtained reveal that the LST derived from the BC algorithms (1.0 °C) are the closest to the ambient temperatures in contrast to the MC (-5.6 °C), although important variations have been verified between the different zones of the city according to its coverage and seasonal periods. Therefore, it is concluded that the BC algorithms are the most suitable for recovering the LST of the city under study.[ES] El empleo de imĂĄgenes satelitales se ha convertido, en las Ășltimas dĂ©cadas, en una de las formas mĂĄs habituales para determinar la Temperatura de la Superficie Terrestre (TST). Una de ellas es mediante el empleo de imĂĄgenes Landsat 8 que requiere del uso de algoritmos del tipo monocanal (MC) y bicanal (BC). En este estudio se ha determinado la TST de una ciudad de tamaño medio, Granada (España) a lo largo de un año mediante el empleo de cinco algoritmos Landsat 8 que posteriormente se comparan con las temperaturas ambientales. Pocos estudios comparan la fuente de datos con las variaciones estacio-temporales de una misma metrĂłpolis lo que unido a su situaciĂłn geogrĂĄfica, alta contaminaciĂłn y las importantes variaciones tĂ©rmicas que experimenta la convierten en un lugar adecuado para el desarrollo de esta investigaciĂłn. Como resultado del proceso de anĂĄlisis estadĂ­stico se obtuvieron los coeficientes de regresiĂłn R2, el error medio cuadrĂĄtico (RMSE), sesgo medio del error (MBE) y la desviaciĂłn estĂĄndar (DE). Los resultados medios obtenidos revelan que las TST derivada de los algoritmos BC (1,0 °C) son las mĂĄs prĂłximas a las temperaturas ambientales en contraposiciĂłn con los MC (-5,6 °C) aunque se han verificado importantes variaciones entre las distintas zonas de la urbe segĂșn su cobertura y los periodos estacionales. Por todo ello, se concluye que los algoritmos BC son los mĂĄs adecuados para recuperar la TST de la urbe objeto de estudio.Hidalgo-GarcĂ­a, D. (2021). DeterminaciĂłn de la temperatura de la superficie terrestre mediante imĂĄgenes Landsat 8: Estudio comparativo de algoritmos sobre la ciudad de Granada. Revista de TeledetecciĂłn. 0(58):1-21. https://doi.org/10.4995/raet.2021.14538OJS121058Avdan, U., Jovanovska, G. 2016. Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. Journal of Sensors, 2016, 1480307. https://doi.org/10.1155/2016/1480307Barbieri, T., Despini, F., Teggi, S. 2018. A multi-temporal analyses of Land Surface Temperature using Landsat-8 data and open source software: The case study of Modena, Italy. Sustainability (Switzerland), 10(5), 1678. https://doi.org/10.3390/ su10051678Becker, F., Li, Z. 1995. Surface temperature and emissivity at various scales: definition, measurement and related problems. Remote sensing reviews, 12(3-4), 225-253. https://doi.org/10.1080/02757259509532286Carlson, T.N., Ripley, D.A. 1997. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment, 62(3), 241-252. https://doi.org/10.1016/S0034-4257(97)00104-1Chavez, P.S. 1988. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment, 24(3), 459-479. https://doi.org/10.1016/0034-4257(88)90019-3Coll, C., Caselles, V., Galve, J.M., Valor, E., NiclĂČs, R., SĂĄnchez, J.M., Rivas, R. 2005. Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data. Remote Sensing of Environment, 97(3), 288-300. https://doi.org/10.1016/j.rse.2005.05.007Coll, C., Valor, E., Galve, J.M., Mira, M., Bisquert, M., GarcĂ­a-Santos, V., Caselles, E., Caselles, V. 2012. Long-term accuracy assessment of land surface temperatures derived from the Advanced Along-Track Scanning Radiometer. Remote Sensing of Environment, 116, 211-225. https://doi.org/10.1016/j.rse.2010.01.027Congedo, L. 2016. Semi-Automatic Classification Plugin Documentation Release 4.8.0.1. Release, 4(0.1), 29. https://doi.org/10.13140/RG.2.2.29474.02242/1De Castro, M., Gallardo, C., Jylha, K., Tuomenvirta, H. 2007. The use of a climate-type classification for assessing climate change effects in Europe from an ensemble of nine regional climate models. Climatic Change, 81, 329-341. https://doi.org/10.1007/s10584-006-9224-1Du, C., Ren, H., Qin, Q., Meng, J., Zhao, S. 2015. A practical split-window algorithm for estimating land surface temperature from Landsat 8 data. Remote Sensing, 7(1), 647-665. https://doi.org/10.3390/rs70100647Du, J., Xiang, X., Zhao, B., y Zhou, H. 2020. Impact of urban expansion on land surface temperature in Fuzhou, China using Landsat imagery. Sustainable Cities and Society, 61(June), 102346. https://doi.org/10.1016/j.scs.2020.102346Gallo, K., Hale, R., Tarpley, D., Yu, Y. 2011. Evaluation of the relationship between air and land surface temperature under clear- and cloudy-sky conditions. Journal of Applied Meteorology and Climatology, 50(3), 767-775. https://doi.org/10.1175/2010JAMC2460.1GarcĂ­a-Santos, V., Cuxart, J., MartĂ­nez-Villagrasa, D., JimĂ©nez, M.A., SimĂł, G. 2018. Comparison of three methods for estimating land surface temperature from Landsat 8-TIRS Sensor data. Remote Sensing, 10(9), 1-13. https://doi.org/10.3390/rs10091450Gerace, A., Montanaro, M. 2017. Derivation and validation of the stray light correction algorithm for the thermal infrared sensor onboard Landsat 8. Remote Sensing of Environment, 191, 246-257. https://doi.org/10.1016/j.rse.2017.01.029JimĂ©nez-Muñoz, J.C., Sobrino, J.A., Skoković, D., Mattar, C., CristĂłbal, J. 2014. Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data. IEEE Geoscience and Remote Sensing Letters, 11(10), 1840-1843. https://doi.org/10.1109/LGRS.2014.2312032Jin, M., Li, J., Wang, C., Shang, R. 2015. A practical split-window algorithm for retrieving land surface temperature from Landsat-8 data and a case study of an urban area in China. Remote Sensing, 7(4), 4371-4390. https://doi.org/10.3390/rs70404371Kafer, P.S., Rolim, S.B.A., Iglesias, M.L., Da Rocha, N.S., Diaz, L.R. 2019. Land surface temperature retrieval by Landsat 8 thermal band: Applications of laboratory and field measurements. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(7), 2332-2341. https://doi.org/10.1109/JSTARS.2019.2913822Keeratikasikorn, C., Bonafoni, S. 2018. Urban heat island analysis over the land use zoning plan of Bangkok by means of Landsat 8 imagery. Remote Sensing, 10(3), 440. https://doi.org/10.3390/ rs10030440Keramitsoglou, I., Kiranoudis, C.T., Ceriola, G., Weng, Q., Rajasekar, U. 2011. Identification and analysis of urban surface temperature patterns in Greater Athens, Greece, using MODIS imagery. Remote Sensing of Environment, 115(12), 3080-3090. https://doi.org/10.1016/j.rse.2011.06.014Khalaf, A. 2018. Utilization of thermal bands of Landsat 8 data and geographic information system for analysis of urban heat island in Baghdad governorate 2016. MATEC Web of Conferences, 162, 1-5. https://doi.org/10.1051/matecconf/201816203026Lemus-Canovas, M., Martin-Vide, J., Moreno-Garcia, M.C., Lopez-Bustins, J.A. 2020. Estimating Barcelona's metropolitan daytime hot and cold poles using Landsat-8 Land Surface Temperature. Science of the Total Environment, 699, 134307. https://doi.org/10.1016/j.scitotenv.2019.134307Li, T., Meng, Q. 2018. A mixture emissivity analysis method for urban land surface temperature retrieval from Landsat 8 data. Landscape and Urban Planning, 179(July), 63-71. https://doi.org/10.1016/j.landurbplan.2018.07.010Li, Z.L., Tang, B.H., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I.F., Sobrino, J.A. 2013. Satellite-derived land surface temperature: Current status and perspectives. Remote Sensing of Environment, 131, 14-37. https://doi.org/10.1016/j.rse.2012.12.008Lin, W., Yu, T., Chang, X., Wu, W., Zhang, Y. 2015. Calculating cooling extents of green parks using remote sensing: Method and test. Landscape and Urban Planning, 134, 66-75. https://doi. org/10.1016/j.landurbplan.2014.10.012Liu, L., Zhang, Y. 2011. Urban heat island analysis using the landsat TM data and ASTER Data: A case study in Hong Kong. Remote Sensing, 3(7), 1535-1552. https://doi.org/10.3390/rs3071535Macarof, P., Statescu, F. 2017. Comparasion of NDBI and NDVI as Indicators of Surface Urban Heat Island Effect in Landsat 8 Imagery: A Case Study of Iasi. Present Environment and Sustainable Development, 11(2), 141-150. https://doi.org/10.1515/pesd-2017-0032Mao, K., Qin, Z., Shi, J., Gong, P. 2005. A practical split-window algorithm for retrieving land-surface temperature from MODIS data. International Journal of Remote Sensing, 26(15), 3181-3204. https://doi.org/10.1080/01431160500044713Meng, X., Cheng, J., Zhao, S., Liu, S., y Yao, Y. 2019. Estimating land surface temperature from Landsat-8 data using the NOAA JPSS enterprise algorithm. Remote Sensing, 11(2), 155. https://doi.org/10.3390/rs11020155Mukherjee, F., Singh, D. 2020. Assessing Land Use-Land Cover Change and Its Impact on Land Surface Temperature Using LANDSAT Data: A Comparison of Two Urban Areas in India. Earth Systems and Environment, 4(2), 385-407. https://doi.org/10.1007/s41748-020-00155-9Prata, A., Caselles, V., Coll, C., Sobrino, J.A., OttlĂ©, C. 1995. Thermal remote sensing of land surface temperature from satellites: current status and future prospects. Remote sensing reviews, 12(3-4), 175-224. https://doi.org/10.1080/02757259509532285Peres, L.F., Sobrino, J.A., Libonati, R., JimĂ©nez Muñoz, J.C., Dacamara, C.C., Romaguera, M. 2008. Validation of a temperature emissivity separation hybrid method from airborne hyperspectral scanner data and ground measurements in the SEN2FLEX field campaign. International Journal of Remote Sensing, 29(24), 7251-7268. https://doi.org/10.1080/01431160802036532Qin, Z., Karnieli, A., Berliner, P. 2001. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. International Journal of Remote Sensing, 22(18), 3719-3746. https://doi.org/10.1080/01431160010006971Reuter, D.C., Richardson, C.M., Pellerano, F.A., Irons, J.R., Allen, R.G., Anderson, M., Jhabvala, M.D., Lunsford, A.W., Montanaro, M., Smith, R.L., Tesfaye, Z., Thome, K.J. 2015. The thermal infrared sensor (tirs) on Landsat 8: Design overview and pre-launch characterization. Remote Sensing, 7(1), 1135-1153. https://doi.org/10.3390/rs70101135Rongali, G., Keshari, A.K., Gosain, A.K., Khosa, R. 2018. A mono-window algorithm for land surface temperature estimation from Landsat 8 thermal infrared sensor data: A case study of the beas river basin, India. Pertanika Journal of Science and Technology, 26(2), 829-840. https://doi.org/10.1007/s41651-018-0021-yRozenstein, O., Qin, Z., Derimian, Y., Karnieli, A. 2014. Derivation of land surface temperature for landsat-8 TIRS using a split window algorithm. Sensors (Switzerland), 14(4), 5768-5780. https://doi.org/10.3390/s140405768Saaroni, H., Amorim, J.H., Hiemstra, J.A., Pearlmutter, D. 2018. Urban Green Infrastructure as a tool for urban heat mitigation: Survey of research methodologies and findings across different climatic regions. Urban Climate, 24(October 2017), 94-110. https://doi.org/10.1016/j.uclim.2018.02.001Sabol, D.E., Gillespie, A.R., Abbott, E., Yamada, G. 2009. Field validation of the ASTER Temperature Emissivity Separation algorithm. Remote Sensing of Environment, 113(11), 2328-2344. https://doi. org/10.1016/j.rse.2009.06.008Sekertekin, A. 2019. Validation of Physical Radiative Transfer Equation-Based Land Surface Temperature Using Landsat 8 Satellite Imagery and SURFRAD in-situ Measurements. Journal of Atmospheric and Solar-Terrestrial Physics, 196(July), 105161. https://doi.org/10.1016/j.jastp.2019.105161Sekertekin, A., Bonafoni, S. 2020. Land surface temperature retrieval from Landsat 5, 7, and 8 over rural areas: Assessment of different retrieval algorithms and emissivity models and toolbox implementation. Remote Sensing, 12(2), 294. https://doi.org/10.3390/rs12020294Sobrino, J.A., Raissouni, N. 2000. Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco. International Journal of Remote Sensing, 21(2), 353-366. https://doi.org/10.1080/014311600210876Sobrino, J.A., JimĂ©nez-Muñoz, J.C., SĂČria, G., Romaguera, M., Guanter, L., Moreno, J., Plaza, A., MartĂ­nez, P. 2008. Land surface emissivity retrieval from different VNIR and TIR sensors. IEEE Transactions on Geoscience and Remote Sensing, 46(2), 316-327. https://doi.org/10.1109/TGRS.2007.904834Srivanit, M., Hokao, K., Phonekeo, V. 2012. Assessing the Impact of Urbanization on Urban Thermal Environment: A Case Study of Bangkok Metropolitan. International Journal of Applied Science and Technology, 2(7), 243-256. Recuperado de http://www.ijastnet.com/journals/Vol_2_No_7_ August_2012/26.pdf (Último acceso octubre 2020).Srivastava, P.K., Majumdar, T.J., Bhattacharya, A.K. 2009. Surface temperature estimation in Singhbhum Shear Zone of India using Landsat-7 ETM+ thermal infrared data. Advances in Space Research, 43(10), 1563-1574. https://doi.org/10.1016/j.asr.2009.01.023Stisen, S., Sandholt, I., NĂžrgaard, A., Fensholt, R., Eklundh, L. 2007. Estimation of diurnal air temperature using MSG SEVIRI data in West Africa. Remote Sensing of Environment, 110(2), 262-274. https://doi.org/10.1016/j.rse.2007.02.025Tan, K., Liao, Z., Du, P., Wu, L. 2017. Land surface temperature retrieval from Landsat 8 data and validation with geosensor network. Frontiers of Earth Science, 11(1), 20-34. https://doi.org/10.1007/s11707-016-0570-7Trigo, I.F., Monteiro, I.T., Olesen, F., Kabsch, E. 2008. An assessment of remotely sensed land surface temperature. Journal of Geophysical Research Atmospheres, 113(17), 1-12. https://doi. org/10.1029/2008JD010035USGS. 2017. Landsat 8 surface reflectance derived spectral indices. VersiĂłn 3.6. in: sioux falls, SD.Wan, Z., Dozier. J. 1996. A generalized split window algorithm for retrieving land-surface temperature from space. IEEE Transactions on Geoscience and Remote Sensing, 34(4), 892-905. https://doi.org/10.1109/36.508406Wang, F., Qin, Z., Song, C., Tu, L., Karnieli, A., Zhao, S. 2015a. An improved mono-window algorithm for land surface temperature retrieval from Landsat 8 thermal infrared sensor data. Remote Sensing, 7(4), 4268-4289. https://doi.org/10.3390/rs70404268Wang, L., Lu, Y., Yao, Y. 2019. Comparison of three algorithms for the retrieval of land surface temperature from landsat 8 images. Sensors (Switzerland), 19(22), 5049. https://doi.org/10.3390/s19225049Wang, S., He, L., Hu, W. 2015b. A temperature and emissivity separation algorithm for landsat-8 thermal infrared sensor data. Remote Sensing, 7(8), 9904-9927. https://doi.org/10.3390/rs70809904Wu, C., Li, J., Wang, C., Song, C., Chen, Y., Finka, M., La Rosa, D. 2019. Understanding the relationship between urban blue infrastructure and land surface temperature. Science of the Total Environment, 694, 133742. https://doi.org/10.1016/j.scitotenv.2019.133742Yang, C., Yan, F., Zhang, S. 2020. Comparison of land surface and air temperatures for quantifying summer and winter urban heat island in a snow climate city. Journal of Environmental Management, 265(March), 110563. https://doi.org/10.1016/j.jenvman.2020.110563Yu, X., Guo, X., Wu, Z. 2014. Land surface temperature retrieval from landsat 8 TIRS comparison between radiative transfer equation based method, split window algorithm and single channel method. Remote Sensing, 6(10), 9829-9852. https://doi.org/10.3390/rs6109829Yu, Y., Liu, Y., Yu, P., Liu, Y., Yu, P. 2017. Land surface temperature product development for JPSS and GOES-R missions. Comprehensive Remote Sensing, 1-9, 284-303. https://doi.org/10.1016/B978-0-12- 409548-9.10522-6Zhan, W., Chen, Y., Zhou, J., Wang, J., Liu, W., Voogt, J., Zhu, X., Quan, J., Li, J. 2013. Disaggregation of remotely sensed land surface temperature: Literature survey, taxonomy, issues, and caveats. Remote Sensing of Environment, 131(19), 119-139. https://doi.org/10.1016/j.rse.2012.12.014Zhang, Y., Chen, L., Wang, Y., Chen, L., Yao, F., Wu, P., Wang, B., Li, Y., Zhou, T., Zhang, T. 2015. Research on the contribution of urban land surface moisture to the alleviation effect of urban land surface heat based on Landsat 8 data. Remote Sensing, 7(8), 10737-10762. https://doi.org/10.3390/rs7081073

    Assessment of methods for land surface temperature retrieval from Landsat-5 TM images applicable to multiscale tree-grass ecosystem modeling

    Get PDF
    Land Surface Temperature (LST) is one of the key inputs for Soil-Vegetation-Atmosphere transfer modeling in terrestrial ecosystems. In the frame of BIOSPEC (Linking spectral information at different spatial scales with biophysical parameters of Mediterranean vegetation in the context of global change) and FLUXPEC (Monitoring changes in water and carbon fluxes from remote and proximal sensing in Mediterranean “dehesa” ecosystem) projects LST retrieved from Landsat data is required to integrate ground-based observations of energy, water, and carbon fluxes with multi-scale remotely-sensed data and assess water and carbon balance in ecologically fragile heterogeneous ecosystem of Mediterranean wooded grassland (dehesa). Thus, three methods based on the Radiative Transfer Equation were used to extract LST from a series of 2009–2011 Landsat-5 TM images to assess the applicability for temperature input generation to a Landsat-MODIS LST integration. When compared to surface temperatures simulated using MODerate resolution atmospheric TRANsmission 5 (MODTRAN 5) with atmospheric profiles inputs (LSTref), values from Single-Channel (SC) algorithm are the closest (root-mean-square deviation (RMSD) = 0.50 °C); procedure based on the online Radiative Transfer Equation Atmospheric Correction Parameters Calculator (RTE-ACPC) shows RMSD = 0.85 °C; Mono-Window algorithm (MW) presents the highest RMSD (2.34 °C) with systematical LST underestimation (bias = 1.81 °C). Differences between Landsat-retrieved LST and MODIS LST are in the range of 2 to 4 °C and can be explained mainly by differences in observation geometry, emissivity, and time mismatch between Landsat and MODIS overpasses. There is a seasonal bias in Landsat-MODIS LST differences due to greater variations in surface emissivity and thermal contrasts between landcover components

    Remote Sensing Monitoring of Land Surface Temperature (LST)

    Get PDF
    This book is a collection of recent developments, methodologies, calibration and validation techniques, and applications of thermal remote sensing data and derived products from UAV-based, aerial, and satellite remote sensing. A set of 15 papers written by a total of 70 authors was selected for this book. The published papers cover a wide range of topics, which can be classified in five groups: algorithms, calibration and validation techniques, improvements in long-term consistency in satellite LST, downscaling of LST, and LST applications and land surface emissivity research

    Sea ice-atmosphere interaction. Application of multispectral satellite data in polar surface energy flux estimates

    Get PDF
    Satellite data for the estimation of radiative and turbulent heat fluxes is becoming an increasingly important tool in large-scale studies of climate. One parameter needed in the estimation of these fluxes is surface temperature. To our knowledge, little effort has been directed to the retrieval of the sea ice surface temperature (IST) in the Arctic, an area where the first effects of a changing climate are expected to be seen. The reason is not one of methodology, but rather our limited knowledge of atmospheric temperature, humidity, and aerosol profiles, the microphysical properties of polar clouds, and the spectral characteristics of the wide variety of surface types found there. We have developed a means to correct for the atmospheric attenuation of satellite-measured clear sky brightness temperatures used in the retrieval of ice surface temperature from the split-window thermal channels of the advanced very high resolution radiometer (AVHRR) sensors on-board three of the NOAA series satellites. These corrections are specified for three different 'seasons' and as a function of satellite viewing angle, and are expected to be applicable to the perennial ice pack in the central Arctic Basin

    Spatial and Multi-Temporal Analysis of Land Surface Temperature through Landsat 8 Images: Comparison of Algorithms in a Highly Polluted City (Granada)

    Get PDF
    Over the past decade, satellite imaging has become a habitual way to determine the land surface temperature (LST). One means entails the use of Landsat 8 images, for which mono window (MW), single channel (SC) and split window (SW) algorithms are needed. Knowing the precision and seasonal variability of the LST can improve urban climate alteration studies, which ultimately help make sustainable decisions in terms of the greater resilience of cities. In this study we determine the LST of a mid-sized city, Granada (Spain), applying six Landsat 8 algorithms that are validated using ambient temperatures. In addition to having a unique geographical location, this city has high pollution and high daily temperature variations, so that it is a very appropriate site for study. Altogether, 11 images with very low cloudiness were taken into account, distributed between November 2019 and October 2020. After data validation by means of R2 statistical analysis, the root mean square error (RMSE), mean bias error (MBE) and standard deviation (SD) were determined to obtain the coefficients of correlation. Panel data analysis is presented as a novel element with respect to the methods usually used. Results reveal that the SC algorithms prove more effective and reliable in determining the LST of the city studied here.ERDF (European Rural Development Fund)Ministry of Science and Innovation (State Research Agency) EQC2018-004702-

    Development of an empirical model for chlorophyll-a and Secchi Disk Depth estimation for a Pampean shallow lake (Argentina)

    Get PDF
    Shallow Pampean lakes are located in the most productive plain of Argentina. They are highly variable in salinity, turbidity and surface area. Laguna ChascomĂșs has been monitored as a representative example of them. We developed a linear model based on satellite images validated against field measurements (2001–2011 period). A vegetation index and Landsat Surface Reflectance (Band 4) produced the best correlations with chlorophyll-a (Chl-a) and Secchi Disk Depth (SDD), respectively. In a second instance, a retrospective analysis (1986–2013) was performed. As a result, significant positive trends were observed for SDD and Chl-a. In addition, both variables displayed trends related to rainfall and site depth.Fil: Bohn, Vanesa Yael. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca; Argentina. Universidad Nacional del Sur. Departamento de GeografĂ­a y Turismo; ArgentinaFil: Carmona, Facundo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Rectorado. Instituto de HidrologĂ­a de Llanuras - Sede Tandil. Provincia de Buenos Aires. GobernaciĂłn. ComisiĂłn de Investigaciones CientĂ­ficas. Instituto de HidrologĂ­a de Llanuras - Sede Tandil; ArgentinaFil: Rivas, RaĂșl Eduardo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Rectorado. Instituto de HidrologĂ­a de Llanuras - Sede Tandil. Provincia de Buenos Aires. GobernaciĂłn. ComisiĂłn de Investigaciones CientĂ­ficas. Instituto de HidrologĂ­a de Llanuras - Sede Tandil; ArgentinaFil: Lagomarsino, Leonardo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de Investigaciones BiotecnolĂłgicas. Instituto de Investigaciones BiotecnolĂłgicas "Dr. RaĂșl AlfonsĂ­n" (sede ChascomĂșs). Universidad Nacional de San MartĂ­n. Instituto de Investigaciones BiotecnolĂłgicas. Instituto de Investigaciones BiotecnolĂłgicas "Dr. RaĂșl AlfonsĂ­n" (sede ChascomĂșs); ArgentinaFil: Diovisalvi, Nadia Rosalia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de Investigaciones BiotecnolĂłgicas. Instituto de Investigaciones BiotecnolĂłgicas "Dr. RaĂșl AlfonsĂ­n" (sede ChascomĂșs). Universidad Nacional de San MartĂ­n. Instituto de Investigaciones BiotecnolĂłgicas. Instituto de Investigaciones BiotecnolĂłgicas "Dr. RaĂșl AlfonsĂ­n" (sede ChascomĂșs); ArgentinaFil: Zagarese, Horacio Ernesto. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de Investigaciones BiotecnolĂłgicas. Instituto de Investigaciones BiotecnolĂłgicas "Dr. RaĂșl AlfonsĂ­n" (sede ChascomĂșs). Universidad Nacional de San MartĂ­n. Instituto de Investigaciones BiotecnolĂłgicas. Instituto de Investigaciones BiotecnolĂłgicas "Dr. RaĂșl AlfonsĂ­n" (sede ChascomĂșs); Argentin

    Effective Cloud Detection and Segmentation using a Gradient-Based Algorithm for Satellite Imagery; Application to improve PERSIANN-CCS

    Full text link
    Being able to effectively identify clouds and monitor their evolution is one important step toward more accurate quantitative precipitation estimation and forecast. In this study, a new gradient-based cloud-image segmentation technique is developed using tools from image processing techniques. This method integrates morphological image gradient magnitudes to separable cloud systems and patches boundaries. A varying scale-kernel is implemented to reduce the sensitivity of image segmentation to noise and capture objects with various finenesses of the edges in remote-sensing images. The proposed method is flexible and extendable from single- to multi-spectral imagery. Case studies were carried out to validate the algorithm by applying the proposed segmentation algorithm to synthetic radiances for channels of the Geostationary Operational Environmental Satellites (GOES-R) simulated by a high-resolution weather prediction model. The proposed method compares favorably with the existing cloud-patch-based segmentation technique implemented in the PERSIANN-CCS (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network - Cloud Classification System) rainfall retrieval algorithm. Evaluation of event-based images indicates that the proposed algorithm has potential to improve rain detection and estimation skills with an average of more than 45% gain comparing to the segmentation technique used in PERSIANN-CCS and identifying cloud regions as objects with accuracy rates up to 98%

    Remote sensing, numerical modelling and ground truthing for analysis of lake water quality and temperature

    Get PDF
    Freshwater accounts for just 2.5% of the earth’s water resources, and its quality and availability are becoming an issue of global concern in the 21st century. Growing human population, over-exploitation of water sources and pressures of global warming mean that both water quantity and quality are affected. In order to effectively manage water quality there is a need for increased monitoring and predictive modelling of freshwater resources. To address these concerns in New Zealand inland waters, an approach which integrates biological and physical sciences is needed. Remote sensing has the potential to allow this integration and vastly increase the temporal and spatial resolution of current monitoring techniques, which typically involve collecting grab-samples. In a complementary way, lake modelling has the potential to enable more effective management of water resources by testing the effectiveness of a range of possible management scenarios prior to implementation. Together, the combination of remote sensing and modelling data allows for improved model initialisation, calibration and validation, which ultimately aid in understanding of complex lake ecosystem processes. This study investigated the use of remote sensing using empirical and semi-analytical algorithms for the retrieval of chlorophyll a (chl a), tripton, suspended minerals (SM), total suspended sediment (SS) and water surface temperature. It demonstrated the use of spatially resolved statistical techniques for comparing satellite estimated and 3-D simulated water quality and temperature. An automated procedure was developed for retrieval of chl a from Landsat Enhanced Thematic Mapper (ETM+) imagery, using 106 satellite images captured from 1999 to 2011. Radiative transfer-based atmospheric correction was applied to images using the Second Simulation of the Satellite in the Solar Spectrum model (6sv). For the estimation of chl a over a time series of images, the use of symbolic regression resulted in a significant improvement in the precision of chl a hindcasts compared with traditional regression equations. Results from this investigation suggest that remote sensing provides a valuable tool to assess temporal and spatial distributions of chl a. Bio-optical models were applied to quantify the physical processes responsible for the relationship between chl a concentrations and subsurface irradiance reflectance used in regression algorithms, allowing the identification of possible sources of error in chl a estimation. While the symbolic regression model was more accurate than traditional empirical models, it was still susceptible to errors in optically complex waters such as Lake Rotorua, due to the effect of variations of SS and CDOM on reflectance. Atmospheric correction of Landsat 7 ETM+ thermal data was carried out for the purpose of retrieval of lake water surface temperature in Rotorua lakes, and Lake Taupo, North Island, New Zealand. Atmospheric correction was repeated using four sources of atmospheric profile data as input to a radiative transfer model, MODerate resolution atmospheric TRANsmission (MODTRAN) v.3.7. The retrieved water temperatures from 14 images between 2007 and 2009 were validated using a high-frequency temperature sensor deployed from a mid-lake monitoring buoy at the water surface of Lake Rotorua. The most accurate temperature estimation for Lake Rotorua was with radiosonde data as an input into MODTRAN, followed by Moderate Resolution Imaging Spectroradiometer (MODIS) Level 2, Atmospheric Infrared Sounder (AIRS) Level 3, and NASA data. Retrieved surface water temperature was used for assessing spatial heterogeneity of surface water temperature simulated with a three-dimensional (3-D) hydrodynamic model (ELCOM) of Lake Rotoehu, located approximately 20 km east of Lake Rotorua. This comparison demonstrated that simulations reproduced the dominant horizontal variations in surface water temperature in the lake. The transport and mixing of a geothermal inflow and basin-scale circulation patterns were inferred from thermal distributions from satellite and model estimations of surface water temperature and a spatially resolved statistical evaluation was used to validate simulations. This study has demonstrated the potential of accurate satellite-based thermal monitoring to validate water surface temperature simulated by 3-D hydrodynamic models. Semi-analytical and empirical algorithms were derived to determine spatial and temporal variations in SS in Lake Ellesmere, South Island, New Zealand, using MODIS band 1. The semi-analytical model and empirical model had a similar level of precision in SS estimation, however, the semi-analytical model has the advantage of being applicable to different satellite sensors, spatial locations, and SS concentration ranges. The estimations of SS concentration (and estimated SM concentration) from the semi-analytical model were used for a spatially resolved validation of simulations of SM derived from ELCOM-CAEDYM. Visual comparisons were compared with spatially-resolved statistical techniques. The spatial statistics derived from the Map Comparison Kit allowed a non-subjective and quantitative method to rank simulation performance on different dates. The visual and statistical comparison between satellite estimated and model simulated SM showed that the model did not perform well in reproducing both basin-scale and fine-scale spatial variation in SM derived from MODIS satellite imagery. Application of the semi-analytical model to estimate SS over the lifetime of the MODIS sensor will greatly extend its spatial and temporal coverage for historical monitoring purposes, and provide a tool to validate SM simulated by 1-D and 3-D models on a daily basis. A bio-optical model was developed to derive chl a, SS concentrations, and coloured dissolved organic matter /detritus absorption at 443 nm, from MODIS Aqua subsurface remote sensing reflectance of Lake Taupo, a large, deep, oligotrophic lake in North Island, New Zealand. The model was optimised using in situ inherent optical properties (IOPs) from the literature. Images were atmospherically corrected using the radiative transfer model 6sv. Application of the bio-optical model using a single chl a-specific absorption spectrum (a*ϕ(λ)) resulted in low correlation between estimated and observed values. Therefore, two different absorption curves were used, based on the seasonal dominance of phytoplankton phyla with differing absorption properties. The application of this model resulted in reasonable agreement between modelled and in situ chl a concentrations. Highest concentrations were observed during winter when Bacillariophytes (diatoms) dominated the phytoplankton assemblage. On 4 and 5 March 2004 an unusually large turbidity current was observed originating from the Tongariro River inflow in the south-east of the lake. In order to resolve fine details of the plume, empirical relationships were developed between MODIS band 1 reflectance (250 m resolution) and SS estimated from MODIS bio-optical features (1 km resolution) were used estimate SS at 250 m resolution. Complex lake circulation patterns were observed including a large clockwise gyre. With the development of this bio-optical model MODIS can potentially be used to remotely sense water quality in near real time, and the relationship developed for B1 SS allows for resolution of fine-scale features such turbidity currents
    • 

    corecore