1,274 research outputs found

    Application of Particle Swarm Optimization to Formative E-Assessment in Project Management

    Get PDF
    The current paper describes the application of Particle Swarm Optimization algorithm to the formative e-assessment problem in project management. The proposed approach resolves the issue of personalization, by taking into account, when selecting the item tests in an e-assessment, the following elements: the ability level of the user, the targeted difficulty of the test and the learning objectives, represented by project management concepts which have to be checked. The e-assessment tool in which the Particle Swarm Optimization algorithm is integrated is also presented. Experimental results and comparison with other algorithms used in item tests selection prove the suitability of the proposed approach to the formative e-assessment domain. The study is presented in the framework of other evolutionary and genetic algorithms applied in e-education.Particle Swarm Optimization, Genetic Algorithms, Evolutionary Algorithms, Formative E-assessment, E-education

    Swarm intelligence for clustering dynamic data sets for web usage mining and personalization.

    Get PDF
    Swarm Intelligence (SI) techniques were inspired by bee swarms, ant colonies, and most recently, bird flocks. Flock-based Swarm Intelligence (FSI) has several unique features, namely decentralized control, collaborative learning, high exploration ability, and inspiration from dynamic social behavior. Thus FSI offers a natural choice for modeling dynamic social data and solving problems in such domains. One particular case of dynamic social data is online/web usage data which is rich in information about user activities, interests and choices. This natural analogy between SI and social behavior is the main motivation for the topic of investigation in this dissertation, with a focus on Flock based systems which have not been well investigated for this purpose. More specifically, we investigate the use of flock-based SI to solve two related and challenging problems by developing algorithms that form critical building blocks of intelligent personalized websites, namely, (i) providing a better understanding of the online users and their activities or interests, for example using clustering techniques that can discover the groups that are hidden within the data; and (ii) reducing information overload by providing guidance to the users on websites and services, typically by using web personalization techniques, such as recommender systems. Recommender systems aim to recommend items that will be potentially liked by a user. To support a better understanding of the online user activities, we developed clustering algorithms that address two challenges of mining online usage data: the need for scalability to large data and the need to adapt cluster sing to dynamic data sets. To address the scalability challenge, we developed new clustering algorithms using a hybridization of traditional Flock-based clustering with faster K-Means based partitional clustering algorithms. We tested our algorithms on synthetic data, real VCI Machine Learning repository benchmark data, and a data set consisting of real Web user sessions. Having linear complexity with respect to the number of data records, the resulting algorithms are considerably faster than traditional Flock-based clustering (which has quadratic complexity). Moreover, our experiments demonstrate that scalability was gained without sacrificing quality. To address the challenge of adapting to dynamic data, we developed a dynamic clustering algorithm that can handle the following dynamic properties of online usage data: (1) New data records can be added at any time (example: a new user is added on the site); (2) Existing data records can be removed at any time. For example, an existing user of the site, who no longer subscribes to a service, or who is terminated because of violating policies; (3) New parts of existing records can arrive at any time or old parts of the existing data record can change. The user\u27s record can change as a result of additional activity such as purchasing new products, returning a product, rating new products, or modifying the existing rating of a product. We tested our dynamic clustering algorithm on synthetic dynamic data, and on a data set consisting of real online user ratings for movies. Our algorithm was shown to handle the dynamic nature of data without sacrificing quality compared to a traditional Flock-based clustering algorithm that is re-run from scratch with each change in the data. To support reducing online information overload, we developed a Flock-based recommender system to predict the interests of users, in particular focusing on collaborative filtering or social recommender systems. Our Flock-based recommender algorithm (FlockRecom) iteratively adjusts the position and speed of dynamic flocks of agents, such that each agent represents a user, on a visualization panel. Then it generates the top-n recommendations for a user based on the ratings of the users that are represented by its neighboring agents. Our recommendation system was tested on a real data set consisting of online user ratings for a set of jokes, and compared to traditional user-based Collaborative Filtering (CF). Our results demonstrated that our recommender system starts performing at the same level of quality as traditional CF, and then, with more iterations for exploration, surpasses CF\u27s recommendation quality, in terms of precision and recall. Another unique advantage of our recommendation system compared to traditional CF is its ability to generate more variety or diversity in the set of recommended items. Our contributions advance the state of the art in Flock-based 81 for clustering and making predictions in dynamic Web usage data, and therefore have an impact on improving the quality of online services

    On Recommendation of Learning Objects using Felder-Silverman Learning Style Model

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The e-learning recommender system in learning institutions is increasingly becoming the preferred mode of delivery, as it enables learning anytime, anywhere. However, delivering personalised course learning objects based on learner preferences is still a challenge. Current mainstream recommendation algorithms, such as the Collaborative Filtering (CF) and Content-Based Filtering (CBF), deal with only two types of entities, namely users and items with their ratings. However, these methods do not pay attention to student preferences, such as learning styles, which are especially important for the accuracy of course learning objects prediction or recommendation. Moreover, several recommendation techniques experience cold-start and rating sparsity problems. To address the challenge of improving the quality of recommender systems, in this paper a novel recommender algorithm for machine learning is proposed, which combines students actual rating with their learning styles to recommend Top-N course learning objects (LOs). Various recommendation techniques are considered in an experimental study investigating the best technique to use in predicting student ratings for e-learning recommender systems. We use the Felder-Silverman Learning Styles Model (FSLSM) to represent both the student learning styles and the learning object profiles. The predicted rating has been compared with the actual student rating. This approach has been experimented on 80 students for an online course created in the MOODLE Learning Management System, while the evaluation of the experiments has been performed with the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). The results of the experiment verify that the proposed approach provides a higher prediction rating and significantly increases the accuracy of the recommendation

    Business intelligence framework using ant colony optimization for feature selection in higher education institution

    Get PDF
    Recently, business intelligence (BI) has become an important tool for effective decision-making. BI is a mathematical framework to gain information and knowledge through the process of extracting, transforming, managing, and analyzing data. The demand for accurate knowledge in higher education sector needs a correct technique to extract the exact information for decision-making. However, current BI frameworks and systems lack the ability to transform data into information, and these caused users not to able to fully utilize the BI outcome. This research developed a BI framework for the higher education that is able to explore, analyse and visualize the relevant data into information for use by the top management. This framework identifies the best set of attributes and evaluates the performance of the model with the help of 27 input features. In this case study, the framework used Ant Colony Optimization (ACO) technique mainly to identify the best set of attributes, and the performance was validated using Support Vector Machine (SVM). The framework consists of four layers which are data source, data integration, analytic, and access. Each layer contributes to decision making in terms of processing data, selection of significant features and data visualization. In this study, 46,658 input data were processed for identification of Graduate on Time (GOT) decision in the context of higher education referred as Masters and Doctor of Philosophy (PhD) postgraduates who completed their study within a specified period. The performance evaluation of the data achieved accuracies of 86.44% for PhD and 96.2% for Master’s. Based on the findings, the results showed that the BI dashboard as an output from the framework is capable of providing a good decision-making tool for education management

    A Hybrid Chimp Optimization Algorithm and Generalized Normal Distribution Algorithm with Opposition-Based Learning Strategy for Solving Data Clustering Problems

    Full text link
    This paper is concerned with data clustering to separate clusters based on the connectivity principle for categorizing similar and dissimilar data into different groups. Although classical clustering algorithms such as K-means are efficient techniques, they often trap in local optima and have a slow convergence rate in solving high-dimensional problems. To address these issues, many successful meta-heuristic optimization algorithms and intelligence-based methods have been introduced to attain the optimal solution in a reasonable time. They are designed to escape from a local optimum problem by allowing flexible movements or random behaviors. In this study, we attempt to conceptualize a powerful approach using the three main components: Chimp Optimization Algorithm (ChOA), Generalized Normal Distribution Algorithm (GNDA), and Opposition-Based Learning (OBL) method. Firstly, two versions of ChOA with two different independent groups' strategies and seven chaotic maps, entitled ChOA(I) and ChOA(II), are presented to achieve the best possible result for data clustering purposes. Secondly, a novel combination of ChOA and GNDA algorithms with the OBL strategy is devised to solve the major shortcomings of the original algorithms. Lastly, the proposed ChOAGNDA method is a Selective Opposition (SO) algorithm based on ChOA and GNDA, which can be used to tackle large and complex real-world optimization problems, particularly data clustering applications. The results are evaluated against seven popular meta-heuristic optimization algorithms and eight recent state-of-the-art clustering techniques. Experimental results illustrate that the proposed work significantly outperforms other existing methods in terms of the achievement in minimizing the Sum of Intra-Cluster Distances (SICD), obtaining the lowest Error Rate (ER), accelerating the convergence speed, and finding the optimal cluster centers.Comment: 48 pages, 14 Tables, 12 Figure

    Decision Support System Design for Informatics Student Final Projects Using C4.5 Algorithm

    Get PDF
    Academic consultation activities between students and academic supervisors are necessary to help students carry out academic activities. Based on the transcript of grades obtained, many students do not choose the appropriate final project/thesis specialization fields based on their academic abilities, resulting in a lot of inconsistencies between the course grades and the final project specialization fields. The purpose of this research is to minimize the subjectivity aspect of students in choosing their final project academic supervisors and minimize the inconsistencies between the course grades and the final project specialization fields. The method used in this research is classification data mining using the Decision Tree and C4.5 Algorithm methods, with the attributes involved being courses, course grades, and specialization courses. The C4.5 Decision Tree algorithm is used to transform data (tables) into a tree model and then convert the tree model into rules. The implementation of the C4.5 Decision Tree algorithm in the specialization field decision support system has been successfully carried out, with an accuracy rate of 70% from the total calculation data. The data used in this research is a sample data from several senior students in the Informatics program at Ubhara-Jaya. The results of the research decision support system can be used as a good recommendation for the Informatics program and senior students to direct their final project research. It is expected that further research will use more sample data so that the accuracy rate will be better and can be implemented in website or mobile-based applications
    corecore