
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

5-2011

Swarm intelligence for clustering dynamic data sets for web Swarm intelligence for clustering dynamic data sets for web

usage mining and personalization. usage mining and personalization.

Esin Saka
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Recommended Citation Recommended Citation
Saka, Esin, "Swarm intelligence for clustering dynamic data sets for web usage mining and
personalization." (2011). Electronic Theses and Dissertations. Paper 1248.
https://doi.org/10.18297/etd/1248

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the
author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F1248&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/1248
mailto:thinkir@louisville.edu

SWARM INTELLIGENCE FOR CLUSTERING DYNAMIC DATA
SETS FOR WEB USAGE MINING AND PERSONALIZATION

By

Esin Saka
B.S. (CEng), Middle East Technical University, Turkey, 2002
B.S. (Math), Middle East Technical University, TUrkey, 2002

M.S., Middle East Technical University, Turkey, 2005

A Dissertation Submitted To the Faculty of the
Graduate School of the University of Louisville

in Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

Department of Computer Engineering and Computer Science
University of Louisville

Louisville, Kentucky

May 2011

Copyright 2011 by Esin Saka

All rights reserved

SWARM INTELLIGENCE FOR CLUSTERING DYNAMIC DATA
SETS FOR WEB USAGE MINING AND PERSONALIZATION

By

Esin Saka
B.S. (CEng), Middle East Technical University, Thrkey, 2002
B.S. (Math), Middle East Technical University, Thrkey, 2002

M.S., Middle East Technical University, Turkey, 2005

A Dissertation Approved On

April 27, 2011

by the following Committee

Dissertation DirootQc
Dr. Olfa Nasraoui

Dr. Adel S. Elmaghraby

Or. James H. Graham

Dr. Mehmed M. Kantardzic

Dr. Joanna L. Wolk

ii

DEDICATION

Dedicated to my parents

N uran Saka and Erol Saka

and to my sister

Ernur Saka

iii

ACKNOWLEDGEMENTS

First, I would like to thank my advisor Olfa Nasraoui for believing in my potential and for

her endless support. Without the guidance and the freedom that she has provided, this experience

would not have been the same.

My journey at the University of Louisville (UofL) started with an email from Tamer Inanc,

a professor at UofL, and I would not be here without his introduction. Then I had great intern­

ships at Yahoo! and Microsoft Research. Thanks to Michael Rosett and David Kotchan for their

collaboration and guidance during my internships. Moreover, thanks to the CRA-W Grad Cohort

and Suzan Evans for emphasizing the importance of internships, because internships have changed

my pathway.

My experience at the Knowledge Discovery and Web Mining Lab would not have been

the same without our discussions, collaboration, seminars, and dinner meetings. Thanks to my

colleagues Jaafar Ben-Abdallah, Artur Abdullin, Nurcan Durak, Basheer Hawwash, Gurmit Kaur,

Carlos Rojas, Sofiane Sellah, Maha Soliman, Zhiyong Zhang, and Leyla Zhuhadar. I appreciate all

my professors who have helped me progress. I would also like to thank the rest of my dissertation

committee members, Adel Elmaghraby, James Graham, Mehmed Kantardzic, and Joanna Wolfe for

giving me the opportunity to learn from them.

During my journey, several friends have provided sometimes a smile, and at other times a

hand to hold on to ... Although I am not able to list all the names here, I would like to thank each

one of them. It was more fun with Melanie Rudolph. Frank Chen provided a different way to think.

Sertan Girgin generously shared his experience and opinions. Maciej Pietrzak showed me how to

walk through some rocky fields. Gok<;e Ylldmm was on my side whenever I needed her. Bur<;in

Sapaz provided moral support. Finally Sinan Kalkan was there for me every step of the way.

Most of all, I am so grateful to my family, in particular my mother Nuran, my father Erol,

and my sister Ernur for supporting me in every possible way unconditionally and selflessly. Sevgili

Annecigim, Babaclglm ve Ernurcugum: Sizi <;ok seviyorum!

iv

Last but not least, I would like to acknowledge the importance of science and discovery in

my life for filling me with curiosity, excitement, and fulfillment ...

v

ABSTRACT

SWARM INTELLIGENCE FOR CLUSTERING DYNAMIC DATA SETS FOR WEB USAGE

MINING AND PERSONALIZATION

Esin Saka

April 27, 2010

Swarm Intelligence (SI) techniques were inspired by bee swarms, ant colonies, and most

recently, bird flocks. Flock-based Swarm Intelligence (FSI) has several unique features, namely

decentralized control, collaborative learning, high exploration ability, and inspiration from "dynamic

social" behavior. Thus FSI offers a natural choice for modeling dynamic social data and solving

problems in such domains. One particular case of dynamic social data is online/web usage data

which is rich in information about user activities, interests and choices.

This natural analogy between SI and social behavior is the main motivation for the topic

of investigation in this dissertation, with a focus on Flock based systems which have not been well

investigated for this purpose. More specifically, we investigate the use of flock-based SI to solve

two related and challenging problems by developing algorithms that form critical building blocks of

intelligent personalized websites, namely, (i) providing a better understanding of the online users and

their activities or interests, for example using clustering techniques that can discover the groups that

are hidden within the data; and (ii) reducing information overload by providing guidance to the users

on websites and services, typically by using web personalization techniques, such as recommender

systems. Recommender systems aim to recommend items that will be potentially liked by a user.

To support a better understanding of the online user activities, we developed clustering

algorithms that address two challenges of mining online usage data: the need for scalability to

large data and the need to adapt cluster sing to dynamic data sets. To address the scalability

challenge, we developed new clustering algorithms using a hybridization of traditional Flock-based

clustering with faster K-Means based partitional clustering algorithms. We tested our algorithms

vi

on synthetic data, real VCI Machine Learning repository benchmark data, and a data set consisting

of real Web user sessions. Having linear complexity with respect to the number of data records,

the resulting algorithms are considerably faster than traditional Flock-based clustering (which has

quadratic complexity). Moreover, our experiments demonstrate that scalability was gained without

sacrificing quality. To address the challenge of adapting to dynamic data, we developed a dynamic

clustering algorithm that can handle the following dynamic properties of online usage data: (1)

New data records can be added at any time (example: a new user is added on the site); (2) Existing

data records can be removed at any time. For example, an existing user of the site, who no longer

subscribes to a service, or who is terminated because of violating policies; (3) New parts of existing

records can arrive at any time or old parts of the existing data record can change. The user's record

can change as a result of additional activity such as purchasing new products, returning a product,

rating new products, or modifying the existing rating of a product. We tested our dynamic clustering

algorithm on synthetic dynamic data, and on a data set consisting of real online user ratings for

movies. Our algorithm was shown to handle the dynamic nature of data without sacrificing quality

compared to a traditional Flock-based clustering algorithm that is re-run from scratch with each

change in the data.

To support reducing online information overload, we developed a Flock-based recommender

system to predict the interests of users, in particular focusing on collaborative filtering or social

recommender systems. Our Flock-based recommender algorithm (FlockRecom) iteratively adjusts

the position and speed of dynamic flocks of agents, such that each agent represents a user, on a

visualization panel. Then it generates the top-n recommendations for a user based on the ratings

of the users that are represented by its neighboring agents. Our recommendation system was tested

on a real data set consisting of online user ratings for a set of jokes, and compared to traditional

user-based Collaborative Filtering (CF). Our results demonstrated that our recommender system

starts performing at the same level of quality as traditional CF, and then, with more iterations

for exploration, surpasses CF's recommendation quality, in terms of precision and recall. Another

unique advantage of our recommendation system compared to traditional CF is its ability to generate

more variety or diversity in the set of recommended items.

Our contributions advance the state of the art in Flock-based 81 for clustering and making

predictions in dynamic Web usage data, and therefore have an impact on improving the quality of

online services.

vii

TABLE OF CONTENTS

DEDICATION
ACKNOWLEDGEMENTS
ABSTRACT
LIST OF TABLES
LIST OF FIGURES

CHAPTER

1 INTRODUCTION

1.1 Background and Motivations

1.1.1 Swarm Intelligence for Clustering

1.1.2 Dynamic Clustering

1.1.3 Web Usage Mining and Personalization.

1.2 Objectives

1.3 Summary of Developed Methods

1.4 Contributions of this Dissertation

1.5 Organization of this Document

2 LITERATURE REVIEW

2.1 Clustering

2.1.1 Similarity Measures.

2.1.2 K-Means Algorithm

2.1.3 The Spherical K-Means Algorithm

2.1.4 Cluster Validation .

2.1.5 Dynamic Clustering

2.2 Data Visualization

2.3 Simultaneous Data Visualization and Clustering

2.4 Swarm Intelligence-based Clustering

Vlll

Page

iii
iv
vi
xi

xiii

1

1

2

3

4

5

6

7

8

9

9

11

16

17

18

23

26

31

34

2.4.1 Particle Swarm Clustering

2.4.2 Ant Clustering

2.5 Using Flocks of Agents for Data Visualization and Clustering.

2.5.1 Flocks of Agents Based Data Visualization.

2.5.2 Flocks of Agents-Based Clustering

2.6 Intelligent Agents

2.7 Multi-Agent Systems and Societies of Agents

2.7.1 Multi-Agent Learning

2.8 Agents on/for The Web ...

2.8.1 Recommendation Systems According to User Granularity

35

36

39

40

41

47

48

48

49

53

2.8.2 A Taxonomy of Recommendation Systems 54

2.8.3 How Artificial Intelligence has been used for Web Recommendation Systems 58

2.8.4 Evaluating The Performance of Web Recommender Systems.

2.8.5 Summary of Agents on/for the Web

3 IMPROVED FLOCKS OF AGENTS-BASED CLUSTERING

3.1 Improved Distance Threshold Estimates.

3.1.1 Alternative Fixed Thresholding ..

3.1.2 Adaptive Thresholding using FClust Annealing

3.2 Hybrid Algorithms

3.2.1 The (K-means+FClust) Hybrid Algorithm.

3.2.2 The (SPKM+FClust) Hybrid Algorithm

3.3 Experimental Results

3.3.1 Datasets

3.3.2 Post Processing

3.3.3 Results.

3.4 Conclusions..

4 FLOCKS OF AGENTS BASED RECOMMENDER SYSTEM

4.1 Introduction

4.2 Flocks-of-Agents based Recommender System.

4.3 Experiments

4.3.1 Dataset and Pre-Processing

IX

64

65

67

67

67

68

69

69

71

73

73

74

76

89

96

96

97

100

100

4.3.2 Evaluation Metrics . .

4.3.3 Experimental Results.

4.4 Conclusion

100

102

110

5 A SWARM BASED APPROACH FOR DYNAMIC DATA CLUSTERING112

5.1 Introduction

5.2 Dynamic Data Clustering Paradigm

112

114

5.2.1 Differences Between Dynamic Clustering and Other Clustering Paradigms 115

5.3 Swarm-based Dynamic Clustering Algorithm 119

5.4

5.3.1 The Main Computational Constraint

5.3.2 Main Memory Constraints

5.3.3 Setting the Parameters for Dynamic-FClust

5.3.4 Cluster Formation in Dynamic-FClust ...

5.3.5 Teleportation in FClust and Effect on Cluster Formation.

5.3.6 Complexity Analysis of Dynamic-FClust

Experiments in Dynamic Clustering

5.4.1 Datasets

5.4.2 Clustering Evaluation

5.4.3 Results.

5.5 Conclusions..

6 CONCLUSIONS AND FUTURE DIRECTIONS

6.1 Summary of Contributions

6.2 Limitations of This Work

6.3 Vision for the Future ...

REFERENCES

CURRICULUM VITAE

x

122

123

124

125

125

127

128

128

129

129

146

148

150

150

151

155

169

TABLE

1

2

3

4

5

6

LIST OF TABLES

Comparison of different similarity measures.

Dimensional Scoring Summary [26]..

Comparison of different clustering and visualization algorithms.

How Big is an Exabyte? [84]

The size of the Internet in terabytes in 2002. [84]

Examples of Intelligent Personalization Systems, their user granularity, and their A.I.

paradigm

Page

15

28

33

49

50

64

7 Evaluation examples 65

8 Comparison of different stopping criteria. 71

9 Datasets................... 73

10 Several examples from the profiles of a Web usage data extracted using FClust where

8TH = 10 and ICTF = 0.1 .. 80

11 Some samples from the Web user profiles, extracted using FClust-Annealing where

8TH = 10 and ICTF = 0.1 83

12 Compared Results (Averaged over 10 runs). 91

13 Number of clusters extracted and corresponding error at different iteration steps for

10 different runs of clustering the Iris data using FClust-Annealing where dth =O.4,

dideaLth =0.04 .. 92

14 Average result of 10 different runs of clustering the Pima data set using FClust-

Annealing, where dth started from 1 and decreased to 0.04. 93

15 Average results (and standard deviations in brackets) of 10 different runs of FClust

algorithm, where dth == 0.04, ex = 2.5, 8TH = 10, ICT F = 0.10. 93

16 Average result (and standard deviations in brackets) of 10 different runs of the

(SPKM-FClust) hybrid algorithm with different K values, where d th = 0.4, dideaUh =

0.04, ex = 2.5, 8TH = 10, ICTF = 0.10. 94

xi

17 8 sample profiles out of a total of 19 Web user profiles visualized in Figure 20(d), and

extracted using the (SPKM+FClust) Hybrid with K = 100, 8TH = 10 and ICT F = 0.1. 95

18 Comparison of average system CPU times of 10 different runs for FClust (4000 and

10000 iterations) and (SPKM-FClust) hybrid algorithm with 4000 iterations, where

K = 100, dth = 0.4 in the Hybrid and 0.04 in FClust , dideaUh = 0.04, 0: = 2.5,

8TH = 10, ICTF = 0.10. 95

19 Dataset........... 100

20 The quality levels averaged over 10 runs of 1 active user at several iterations for the

FlockRecom and CF at 3 values of N. 111

21 Comparison of different clustering paradigms. 117

22 Comparison of different clustering and visualization algorithms. 118

23 Comparison of alternative solutions to satisfy computational constraints. . 123

24 Datasets. 128

25 Comparison of Dynamic-FClust vs. FClust, when the whole Movielens dataset has

just been read. A sample run results after post-processing, using wrap-around cluster

formation, where d th = dideaUh = 0.04, Simth = 0.22, N _MIN = 10. 138

26 Several examples from the profiles of MovieLens data extracted using Dynamic-FClust

where N _MIN = 10, timestep = 100,000. Movies with average ratings 2.00 or above

are listed in the table. .. 142

xii

LIST OF FIGURES

FIGURE

1 Visual validation using sorted and plotted similarity matrix [136] ..

2 Fractal projection of cancer document vectors [88]

3 Distribution of four sample subsections of the patent classification system on the

document map. The gray level indicates the logarithm of the number of patents in

Page

20

32

each node. Generated by SOM [67]. 32

4 An agent in its environment. Takes input from the outside world and produces an

output. 47

5 Modules and flow of typical recommendation systems. 53

6 A simple example of a decision tree-based recommender system using a demographic

attribute. .. 61

7 A simple example of a decision tree-based personalized search using a content-based

approach. 62

8 Cooling Schedule for dth for Annealing FClust. 69

9 Clustering a dataset with two clusters using FClust where dth =0.04, Simth=0.91. 76

10 Clustering a dataset with three clusters using FClust at iteration 24400. 77

11 Clustering a dataset with three clusters using FClust at iteration 30700. 78

12 Clustering the Web usage data using FClust with similarity threshold computed

according to Equation (24). (a) no convergence because of an improper similarity

threshold (b) Similarity histograms, (c) Log-log plot of similarities exhibiting power

law properties. 79

13 Generated profiles from web usage data using FClust in 10250 iterations. 80

14 Clustering a dataset with two clusters using FClust-annealing where dth=started from

1 down to 0.04, Simth==0.91. .. 81

15 Clustering a dataset with three clusters using FClust-annealing where dth=started

from 1 down to 0.04, Simth=0.91, dideaUh for FClust and post-processing is 0.04. .. 82

xiii

16 Clustering the Web usage session data using FClust-annealing where dth=started from

1 down to 0.04, Simth=0.15 , dideaLth for FClust and post-processing is 0.04. 84

17 Stable output of (K-means+FClust) hybrid on a 2 cluster-data set where Simth=0.88

(using Eqn.(24)), dth=' 004. dideaLth for FClust=0.04, dideaUh for forming clusters

= 0.08. ... 85

18 Stable output of (K-means+ FClust) hybrid on a 3 cluster-data set where Simth =0. 73

(using Eqn.(24)), dtF' 1.0. dideaLth for FClust=0.04, dideaUh for cluster forming

=0.08. ... 86

19 Evolution of the ideal distance error with iterations for clustering the Iris dataset

using (K-means+FClust) Hybrid algorithm. .. 87

20 Clustering the Web usage session data using FClust vs. (SPK~+FClust) Hybrid

where d th = 004, dideaLth = 0.04. .. 90

21 Flock-based recommender system (FR) compared to standard collaborative filtering

(CF) based on precision. .. 103

22 Flock-based recommender system (FR) compared to standard collaborative filtering

(CF) based on recall. " 103

23 Flock-based recommender system (FR) compared to standard collaborative filtering

(CF) based on F1. .. 104

24 The variety in the recommended items of Flock-based recommender system (FR)

compared to standard collaborative filtering-based recommender system (CF) for dif­

ferent numbers of top-5 recommendations, at iteration 100, 50 users. Averaged over

10 different runs per 1 active user. The x-axis represents the joke id " 105

25 Flock-based recommender system (FR) compared to standard collaborative filtering­

based recommender system (CF) based on the average precision values for different

numbers of top-n recommendations, over time. Averaged over 1 active user, 10 dif­

ferent runs. The x-axis represents the iteration number. 106

26 Flock-based recommender system (FR) compared to standard collaborative filtering­

based recommender system (CF) based on the average recall values for different num­

bers of top-n recommendations, over time. Averaged over 1 active user, 10 different

runs. The x-axis represents the iteration number. 106

xiv

27 Flock-based recommender system (FR) compared to standard collaborative filtering­

based recommender system (CF) based on the average F1 values for different numbers

of top-n recommendations, over time. Averaged over 1 active user, 10 different runs.

The x-axis represents the iteration number. .. 107

28 Flock-based recommender system (FR) compared to standard collaborative filtering

(CF) based on precision, 500 users. .. 108

29 Flock-based recommender system (FR) compared to standard collaborative filtering

(CF) based on recall, 500 users " 108

30 Flock-based recommender system (FR) compared to standard collaborative filtering

(CF) based on F1, 500 users. 109

31 The variety in the recommended items of Flock-based recommender system (FR)

compared to standard collaborative filtering-based recommender system (CF) for dif­

ferent numbers of top-.J recommendations, at iteration 100, 500 users. Averaged over

10 different runs per 1 active user. The x-axis represents the joke id. 109

32 Teleportation illustrated by one agent (red arrow showing direction of movement)

teleported from the left border to the right border. 126

33 Clustering a dataset with two clusters using FClust vs. Dynamic-FClust where dth =

34

35

36

dideaUh = 0.04, Simth = 0.91, N_MIN = 40. 130

The 3 cluster dataset. 131

Wrap-around cluster formation illustrated, the 3-cluster dataset is being clustered

using Dynamic-FClust, where d th = dideaUh = 0.04, Simth = 0.91, N_MIN = 20. .. 131

Illustrating cluster deletion and keeping the newest 500 data records. The 3-cluster

dataset is being clustered using Dynamic-FClust, where dth = dideaUh = 0.04,

Simth = 0.91, N_MIN = 20. 132

37 Illustrating freezing and an expanded neighborhood around a new agent. The 3-

cluster dataset is being clustered using Dynamic-FClust, where d th = dideaUh = 0.04,

Simth = 0.91. During freezing, d th = dideaUh = 0.4 for the modified/unfrozen/active

agent. .. 134

38 Average results (and standard deviations) of 10 different runs of clustering the Iris

data using FClust vs. Dynamic-FClust, compared via extracted cluster number and

cluster error computed using Algorithm 3 , where dth = dideaUh = 0.04, Simth = 0.85,

N_MIN = 7 ... 135

xv

39 (Average results (and standard deviations) of 10 different runs of clustering the Iris

data using FClust vs. Dynamic-FClust, compared via inter- and intra-cluster simi-

larity metrics, where d th = dideaLth = 0.04, Simth = 0.85, N _MIN = 7.

40 Visualization of incremental vs. dynamic data reading. (a) shows incremental and (b)

shows dynamic. Note that in dynamic data, the same entry can be re-rated multiple

136

times by the same user in any order, thus changes to the same user and item are

possible over time. .. 137

41 Number of users vs. time step vs. where dynamic-FClust reads one rating per time

step. .. 138

42 Pearson similarity was computed for 444, 153 user pairs for the Movielens dataset,

which has 943 users. The data shows power law properties. The average similarity

is 0.23.(a) Similarity histogram, (b) Log-log plot of similarities exhibiting power law

properties.

43 Ideal distances histogram for the Movielens dataset. Ideal distances are computed

using Equation (28). (a) Ideal distance histogram, (b) Log-log plot of ideal distances

exhibiting power law properties (linearity).

139

140

44 Clustering the Movielens dataset using Dynamic-FClust vs. FClust, visualization

panel with clustered agents where d th = dideaUh = 0.04, Simth = 0.22, N _MIN = 10. 141

45 Total number of movies rated vs. the time step for the 10 percent of the ratings in

the Movielens data set. 143

46 The average number of movies rated per user vs. the time step for the first 10 percent

of the MovieLens ratings. 143

47 The average rating per user vs. the time step for the first 10 percent of the MovieLens

ratings. ... 144

48 The average rating per movie vs. the time step for the first 10 percent of the Movie-

Lens ratings. .. 144

49 Average results (and standard deviations) of 10 different runs of clustering the first 10

percent of the MovieLens dataset using Dynamic-FClust after post-processing, where

d th = dideaUh = 0.04, Simth = 0.345, N _MIN = 2 " 145

50 Average results of clustering the MovieLens dataset using FClust and Dynamic-

FClust. Vertical interval marks represent standard deviation. 147

xvi

CHAPTER 1

INTRODUCTION

In this chapter, we start by introducing the background and motivations behind our research.

Then we state our objectives and give a summary of our developed methods and contributions and

conclude with an overview of the organization of this document.

1.1 Background and Motivations

Inspiration from nature has driven many creative solutions to challenging real life problems.

Many optimization methods have been inspired by such natural phenomena as neural systems, natu­

ral evolution, the immune system, and lately particle swarms. In particular, Swarm Intelligence (SI)

techniques were inspired by bee swarms, ant colonies, and most recently, bird flocks. Flock-based

Swarm Intelligence (FSI) has several unique features, specifically they are decentralized systems,

they are collaborative, they are naturally characterized by high exploration, and they are based on

"dynamic social" behavior. Thus FSI offers a natural choice for modeling dynamic social data and

solving problems in such domains. One particular case of dynamic social data is online/web usage

data which is rich in information about user activities, interests and choices. Web usage mining is

used for a variety of purposes including mainly the following two tasks: (i) Providing a better under­

standing of the online users and their activities or interests, for example using clustering techniques

that can discover the groups that are hidden within the data; (ii) Reducing information overload

by providing guidance to the users on websites and services, typically by using web personalization

techniques, such as recommender systems. Recommender systems aim to recommend items that

will be potentially liked by a user.

This dissertation explores the suitability of SI for the problem of mining dynamic online

social behavior collected in the form of web usage data or in the form of web rating data. Thus in

the following sections, we start by introducing the main themes for the components of our research,

namely SI-based clustering, dynamic clustering, and web usage mining and personalization.

1

1.1.1 Swarm Intelligence for Clustering

Clustering is the problem of finding groups in a dataset, according to some data properties

and attributes which have a meaning in some context [60, 59]. Since no class information is used to

cluster the data, it is called unsupervised learning. In addition to being an interesting and challenging

problem, clustering has found success in many applications including customer segmentation in

marketing, image segmentation, document organization, web usage mining, personalization, etc.

One of the many different approaches used for clustering is swarm intelligence (SI) and it

has been applied to problems that span a variety of domains, such as document clustering and Web

session clustering. Swarm intelligence is an artificial intelligence paradigm which is mainly inspired

from the dynamics of several societies in nature, such as ant-colonies, bird-flocks, fish-schools, etc.

SI is based on the social, collective and structured behavior of decentralized, self-organized agents

[65, 146]. Although these agents have a very limited individual capacity, cooperatively they per­

form many complex tasks. Some distinguishing characteristics of swarm intelligence include: 1)

Collaboration: agents in the swarm collaborate or interact with the environment and each other;

2) Collective intelligence: whereas agents in the swarm are mostly unintelligent, the collaborating

system, or swarming mechanism results in an intelligent system; 3) Inspiration from nature; and 4)

Decentralized control. In this research, we mainly focus on using SI for clustering.

Given the above definition, the most popular swarm intelligence clustering algorithms are:

1. Ant-clustering

2. Particle swarm clustering

3. Flocks of agents-based clustering

There are two main approaches for ant-based clustering. In the first version, data is randomly

placed on a grid. Then the ants move around the grid and form clusters by picking up and dropping

the data items while moving [81]. Later, this version was improved in [144, 50, 51]. In the second

version of the ant clustering algorithm, ANTCL UST, ants represent data items. Initially, none of the

ants are assigned to a cluster, i.e. none of the ants have a label. During the clustering process, in each

iteration, two randomly selected ants meet each other. Then, according to some defined behavioral

rules, they may form a new cluster, one of the ants may be assigned to an existing cluster, one of the

ants maybe removed from a cluster, or clustering quality measures may be updated [52, 72, 73, 74].

Clustering with particle swarms is based on particle swarm optimization (PSO) [65, 64]. In

2

the clustering problem, each particle encodes all cluster centroids. In other words, each particle

represents a complete clustering solution [6, 142].

More recently, an approach based on flocks of agents, known as FClust, was used for data

clustering [129, 128, 117, 116]. The flock-based approach holds a great promise, and being the most

recent of all the swarm-based clustering approaches, it has been the least studied. This approach

draws its inspiration from bird flocks, such that each agent of the flock represents a data point or

record, and each agent is given a position in a 2D or 3D visualization panel. Basically, agents are

attracted to similar agents and are repelled by different agents. Moreover, the distance between the

agents depends on the similarity between the data items that are mapped to those agents. Therefore,

the visualization panel will reflect the similarity relation between the data items. Initially, agents

are placed on a planar surface (hereinafter referred to as the visualization panel). Then, in each

iteration, their speed gets updated according to their neighboring agents, until similar agents start

moving together and form clusters. This behavior and the agents' possession of orientation makes

FClust particularly useful, not only for clustering, but also for visualization of high-dimensional

data.

1.1.2 Dynamic Clustering

One of the unique characteristics of flock- based clustering is its dynamic nature. Agents keep

moving on the visualization panel until the algorithm is forced to stop. After a sufficient number of

iterations, every state of the visualization panel may provide a clustering alternative for the dataset.

This makes FClust suitable for simultaneous clustering and visualization of dynamic datasets.

Unlike conventional clustering, in dynamic clustering, data is collected continuously over

time, thus the whole data set is not available initially. Dynamic domains, such as practically any data

generated on the Web, may require frequent costly updates of the clusters (and the visualization),

whenever new data records are added to the dataset. The new coming data may be due to new user

activity on a website (clickstreams) or a search engine (queries), or new Web pages in the case of

document clustering, etc. Additionally, a concept drift in the data records may result in a change of

clustering in time [137]. An example of this is the change in the interest of users on an online service.

Therefore, clusters may need to be updated, thus leading to the need to mine dynamic clusters. When

the data is moreover high-dimensional and sparse, the dynamic behavior makes an already difficult

problem even more challenging. Swarm intelligence, mainly ant-based systems, has been used as well

as many other methods including repeatedly running a given clustering algorithm, such as K-means,

at each time step [122, 32, 79, 7]. Incremental clustering methods can also be adapted to this task,

but they mostly ignore the dynamic nature of the data, which requires distinguishing between old

and new data.

1.1.3 Web Usage Mining and Personalization

Every year, several exabytes of digital information are generated [84], which cause informa­

tion overload and make finding information on the Web harder. In particular, online usage data is

rich in information about user activities, interests and choices. Modern websites strive to under­

stand the nature of their users in order to improve their services, specifically by helping users find

the information that they need or that might interest them. Often, this results in increased profits

for the website or online store owner (for instance Amazon, Netflix, etc), in addition to helping serve

the user better in seeking their information [example: digital libraries or search engines]. Knowledge

Discovery in Data (KDD) techniques have been used increasingly in the last decades in order to

mine knowledge from large data sets, and in particular online or web activity data, giving rise to the

domain of web usage mining. Web usage mining is used for a variety of purposes including mainly

the following two tasks:

• Providing a better understanding of the online users and their activities or interests, for ex­

ample using clustering techniques that can discover the groups that are hidden within the

data.

• Reducing information overload by providing guidance to the users on websites and services,

typically by using web personalization techniques, such as recommender systems. Recom­

mender systems aim to recommend items that will be potentially liked by a user.

There are several challenges associated with mining web usage data:

• In the case of web clickstreams, we desire to understand the "mass" user activity patterns

without any user-declared profiles, i.e. with only anonymous clickstreams (thUS respecting

privacy.

• Online usage data tends to have high dimensionality because of the large number (hundreds

to thousands) of options that can be clicked, pages that can be viewed, items or products that

can be rated or purchased, etc. The high dimensionality makes this data hard to analyze and

visualize.

4

• In addition, online usage data is naturally dynamic because it represents the activities and

interests of Human beings that follow dynamic behavior.

Inspiration from the dynamic collaborative behavior of bird flocks can support the design

of clustering techniques and recommender systems, i.e. systems that help understand the interests

of the users, and systems that can help improve guide their navigation and decision making on the

Web.

1.2 Objectives

The natural analogy between Swarm Intelligence systems and social behavior have been

the main motivation for the topic of investigation in this dissertation, with a focus on Flock based

systems which are a particularly attractive SI systems that possess unique properties for modeling

dynamic online social activity, and yet have not been well investigated for this purpose. More

specifically, we investigate the use of flock-based swarm intelligence for two related and challenging

problems that form critical building blocks of intelligent personalized web servers, specifically

(i) the problem of understanding the online activities of online users by discovering groups

or clusters of similar users, and

(ii) the problem of predicting the interests of online users in anticipation of further decision

making goals, in particular focusing on collaborative filtering or social recommender systems.

To solve the above two problems, our objectives are to design flock-based solutions to cluster­

ing and predicting online user behavior encoded into web usage data. We start by addressing some

limitations of the existing Flock-based clustering algorithm FClust, then extend it in two directions

to enhance scalability and to enable clustering dynamic data. Then we turn our attention toward

developing a social recommendation strategy that is inspired from Flock-based swarm intelligence.

The objectives can be summarized as follows.

Objective 1: design a clustering method with improved scalability to handle large data sets.

Objective 2: design a dynamic clustering algorithm that can handle the dynamic nature of online

usage data that differs from previous dynamic clustering goals by addressing the following dynamic

properties of online usage data: (1) New data records can be added at any time (example: a new

user is added on the site); (2) Existing data records can be removed at any time. For example,

an existing user of the site, who no longer subscribes to a service, or who is terminated because

of violating policies (such as users who post spam or who have been inactive for a long period of

time); (3) New parts of existing records can arrive at any time. In other words, the entire data

5

record associated with a user is rarely available initially. The user's record can change as a result of

additional activity such as purchasing new products. returning a product, rating new products, or

modifying the existing rating of a product.

Objective 3: design a recommendation system strategy that takes advantage of online user data

to recommend interesting items to similar users.

1.3 Summary of Developed Methods

To address some of the limitations of the standard flock-based clustering algorithm (FClust)

on Web usage data, we have developed improvements, including the (SPKM + FClust) Hybrid al­

gorithm [8]. The hybrid approach uses a fast K-means based partitional clustering algorithm to

initialize the agents' population on the visualization panel, then follows with flock-based clustering.

Instead of representing each data point by an agent, each data point is represented by the nearest

cluster centroid that was discovered by the partitional clustering algor it him during the initial phase.

The result is a much smaller agent population size compared to the entire data set. Our hybrid

approach reduces the quadratic complexity of FClust to linear complexity and performs similarly

to FClust with fewer iterations for clustering high-dimensional data such as Web usage data. Our

experiments confirm the superiority of the proposed hybrid approach, both in terms of quality of

the final results and a significantly reduced computational cost.

We developed a dynamic clustering algorithm Dynamic-FClust that solves the dynamic

clustering problem for dynamic data. The most interesting scenario for using this dynamic clustering

approach in real life is when a data record is a set of item ratings by a user, a session of viewed web

pages, or a transaction of purchased items. In this case, an attribute of a record may correspond

to one rating or to one item. Our approach works by adjusting the agent population in response

to each one of the following exhibitions of dynamic behavior in the underlying data set: (1) a new

data record that is added; (2) an existing data record that is removed; (3) a new part of an existing

data record is received, or an existing part of this old data record is modified. We have tested our

algorithm on synthetic dynamic data, and on a data set consisting of real online user ratings for

movies. The resulting algorithm is shown to handle the dynamic nature of data without sacrificing

quality compared to a traditional Flock-based clustering algorithm that is re-run from scratch with

each change in the data.

We used the flocks of agents-based Swarm Intelligence paradigm to develop a new recom­

mender system technique. In this approach, each user from the usage data is mapped to one agent on

{i

the visualization panel. The Flock-based recommender algorithm (FlockRecom) iteratively adjusts

the position and speed of dynamic flocks of agents, such that each agent represents a user, on the

visualization panel. Then it generates the top-n recommendations for a user based on the ratings of

the users that are represented by its neighboring agents. The algorithm works similarly to FClust.

However, there is no explicit clustering process or goal. Instead, in each iteration, recommendations

for a user are generated or updated using similar users that are represented by its neighboring agents

on the visualization panel. In this approach, the agents move continuously through the visualiza­

tion panel unless they are forced to stop. This dynamic behavior of the agents allow a continuous

exploration of different recommendation options, which means that FlockRecom can provide dy­

namic recommendations, and the additional exploration allows it to include more diversity among

its recommended items. Variety or diversity is important in an environment where the users make

repeated visit, such as social networks and online music and video channels. In such an environ­

ment, without continuous or dynamic exploration, the same recommendations would be repeatedly

suggested because the system would eventually converge and stagnate on one set of choices. Our

initial experimental results show that FlockRecom is a promising approach for recommendation in

dynamic environments, thus having potential applications in social networking platforms [130].

Our recommendation system was tested on a real data set consisting of online user ratings

for a set of jokes, and compared to traditional user-based Collaborative Filtering (CF). Our results

demonstrated that our recommender system starts performing at the same level of quality as tradi­

tional CF, and then, with more iterations for exploration, surpasses CF's recommendation quality,

in terms of precision and recall. Another unique advantage of our recommendation system compared

to traditional CF is its ability to generate more variety or diversity in the set of recommended items.

1.4 Contributions of this Dissertation

Our main contributions can be summarized as follows:

• New (K-means+FClust) and (SPKM+FClust) hybrid algorithms were developed. Our hybrid

approach reduces the quadratic complexity of FClust to linear complexity, and performs simi­

larly to FClust, but has the advantage of fewer iterations for clustering large, high-dimensional

data such as web usage data. Hybrid algorithms were tested on several datasets including UCI

machine learning data sets and Web server logs and our experiments confirmed their superi­

ority, both in terms of quality of the final results and computational costs [128, 129].

7

• A dynamic clustering and visualization approach that can perform dynamic clustering was

developed and tested. This approach can handle the arrival of not only one data record at a

time, but also one attribute at a time, in any order for one data record. It can also handle the

modification or updating of an individual attribute (such as one item's rating) from a record

and even the removal of a data record.

• A new recommender system approach called the flocks-of-agents based recommender system

(FlockRecom) was developed. The results were compared to the traditional user-based nearest

neighbor Collaborative Filtering and FlockRecom was more successful at providing variety in

the recommendations without losing recommendation quality [130j.

• Under special simplifications we formulate the flocking behavior as a Gradient Descent opti­

mization that minimizes a criterion that agrees with the observed behavior in flocking in the

case of attraction, namely grouping (agents getting closer to each other) and alignment. In

addition it is minimizing the error between ideal and agent distance values, therefore seeking

a visualization of the original data onto the 2D panel that is as faithful as possible. The

mathematical derivations are included under the Future Visions in the Conclusions Chapter.

According to our knowledge, this a mathematical interpretation of flocking behavior that has

not been accomplished so far. And we plan to pursue it further in the future.

1.5 Organization of this Document

This dissertation is organized in six chapters. Chapter 2 presents the literature review,

starting with a review of algorithms for clustering, incremental clustering, data visualization, swarm

intelligence based clustering, and flocks of agents based clustering, then continuing with multi-agent

systems and intelligent agents on the Web. Chapter 3 presents our contributions on FClust, such as

the improved FClust, FClust Annealing, (K-means+FClust) hybrid algorithm, (SPKM+FClust) hy­

brid algorithm. Chapter 4 presents the flocks of agents based recommender system and experimental

results. In Chapter 5 we present a dynamic data clustering algorithm using the flocks-of-agents based

approach with experiments on synthetic and real-life datasets. Finally, our conclusion, in Chapter

6, summarizes the study and discusses the vision for the future.

8

CHAPTER 2

LITERATURE REVIEW

In this chapter, we present the background information related to our research. We start by

introducing clustering, dynamic clustering, and similarity measures which can be used for clustering.

Then we continue with explaining clustering using swarm intelligence, and provide a deeper survey

on flocks of agents-based clustering. At the end of the chapter, intelligent agents, and multi-agent

systems are shortly overviewed, concluding with agents on the web and recommendation systems.

2.1 Clustering

Clustering is the problem of finding groups in a dataset, according to some data properties

and attributes which have a meaning in some context [60]. Since no class information is used to

cluster the data, it is also called unsupervised learning. In addition to being an interesting and

challenging problem, clustering has many applications including:

• Text Clustering: One of the applications of text clustering is the Web search engines. The

documents on the Web are clustered for different purposes such as fast document retrieval,

more related advertisements, better recommendations, etc. [35, 40]. Text clustering is also

used for document organization, mostly in digital library applications.

• Customer Segmentation in Marketing: Finding similar customers may be used for design­

ing targeted products, offering personalized services, etc. Additionally, insurance companies

may use customer clusters for risk analysis. Recommendations by Amazon l is an example.

• Web Usage Mining: Clustering users on the Web provides a better ground for mining

knowledge from the user activity logs and personalized services. As a result, web pages can

be re-designed and personalized, information retrieval systems (i.e. search engines) may be

improved, etc. [95, 103].

1 http://www.amazon.com/

9

• Image Segmentation and Image Clustering: Image segmentation has a wide area of

applications from health sciences to video storage. Image segmentation can be used for sickness

decision support in health sciences. Additionally, image clustering may be used for video

and/or image compression and content-based image retrieval [151].

• Outlier Detection: With the help of clustering, certain anomalies may be determined in a

dataset [105].

There are different ways to classify clustering algorithms [60, 136, 62]. The classical clas­

sification distinguishes hierarchical approaches from partitional approaches. However, more recent

classifications also include density-based clustering [22]. In hierarchical clustering, a nested series of

clusters are organized as a hierarchical tree, which is called a dendogram while partitional clustering

methods produce only one level of clustering and divide the dataset into non-overlapping subsets

(i.e. clusters) such that each data item belongs to one cluster. Although some density based cluster­

ing algorithms are partitional, the density based clustering algorithms directly seek dense locations

in the data set, without explicitly seeking to divide the data into subsets [22, 97]. Another aspect

distinguishing hierarchical approaches is the clustering process: If the algorithm assigns each data

item in one cluster and merges clusters until a stopping criteria is met, it is called an agglomerative

approach, whereas in the divisive approach, initially all data items are assigned to a single cluster

and clusters are split until a stopping criterion is met. A third aspect relates to using the attributes

sequentially or simultaneously. If all the attributes are used at the same time during clustering, it

is called polythetic. If the attributes are used sequentially one at a time for clustering, it is called

monothetic. More aspects and a survey about clustering can be found in [60] and [22].

Many different techniques has been used to solve the clustering problem such as K-Means,

artificial neural networks (ANNs), self-organizing maps (SOM), etc. [60]. Lately, swarm intelligence

has also been applied for clustering [129, 6, 52].

10

2.1.1 Similarity Measures

One of the factors deeply affecting the success of clustering is the measure used for similarity.

Therefore, the choice of similarity measure is important. Similarity can be defined based on the

distance (the closer the items are the more similar they are). Two popular distance metrics are the

Manhattan (L1 or city-block) and Euclidean distances.

Given that each data record Xi in the A dimensional real number space RA, i = 1, ... , n, is

represented by a vector Xi = xL ... , xf, the Manhattan (L1 or city-block) distance between two data

records Xi and Xj E RA is given by

[49]:

A

Manhattan_distance(Xi,Xj) = L Ix~ - xjl,
k=l

The Euclidean distance is given by:

A

(1)

Euclidean_distance(Xi, Xj) = (L Ix7 - xj 12)1/2 = Ilxi - Xj 112, (2)
k=l

The Minkowski distance is a generalization of both the Euclidean and Manhattan distances

A

Minkawski_distance(Xi,Xj) = (Llx~ _xjIP)l/P = Ilxi -:rjllp, (3)
k=l

where p is a positive integer. It represents the Manhattan distance when p = 1 and Euclidean

distance when p = 2.

The Manhattan based (L1) similarity of two data records Xi and Xj is given by

A

sim(Xi,Xj) = 1-- ~ L Ix~ - xjl, (4)
k=l

where A denotes the number of attributes and x7 denotes the kth attribute of data record Xi' When

the data is linearly normalized to [0,1]' the Manhattan based similarity is the same as the 1-norm

similarity, which is used in (4).

The cosine and Jaccard similarities are common in Web mining. The Jaccard coefficient

measures similarities between two sets A and B using the ratio of the number of elements contained

in the intersection and the union of the sets [49]:

. . IAnBI
Jaccard_cae! Jtczent(A, B) = IA U BI (5)

The cosine measure is commonly used to represent similarity between two high-dimensional

data vectors, such as in the text mining and Web mining domains. Let Vi and Vj be two A dimensional

data vectors. Their cosine similarity is defined as [49]:

11

V·, V·

Cosine_similarity(Vi, Vj) = Ilvi'llll~j II (6)

where the inner product Vi . Vj is the standard vector dot product and Ilvill is the norm defined as:

(7)

(8)

All the above similarities consider each attribute to be different from and unrelated to every

other attribute. This is not realistic, since in some problems, attributes tend to be semantically

related. One example is web pages or URLs. For this reason, in Web mining, a similarity mea-

sure called syntactic similarity or Web session similarity used the Web site structure to first define

similarities between URLs [104].

Let the ith user session be encoded as an A-dimensional binary attribute vector Vi with the

following property:

Vi = { 1, if user i accessed URL j

0, otherwise
(9)

The entire Web site is modeled as a tree, where the nodes represent different URLs. The

tree structure is similar to a file directory structure, with an edge connecting one node to another

if the URL corresponding to the latter is hierarchically located under that of the former. Thus, a

URL Ui is represented as:

Ui = rootlunI/ .. .junz (10)

where uni represents a node on the tree structure and z is a finite integer.

Given the representation of a Url Ui, Pu, denotes the path traversed from the root node, the

main page, to the node corresponding to the ith URL. Ipi I indicates the length of this path.

The syntactic similarity between the ith and jth URLs is defined as

S (..) . (1 Ipi npjl)
u Z,] = mzn, (1 (1·1 I ·1) - 1) max ,max p, , PJ

(11)

This similarity measures the amount of overlap between the paths of the URLs. The simi-

larity values lies in [0,1]. The overall web session similarity is based on (11) and is given by:

12

A A

L L vfiv7jSu(ki,kj)
. ... k,=l kj=l

web_sesszon_szmzlarzty(Vi, Vj) = A A (12)

L vf' L V7
j

ki=l kj=l

A comparison between these different similarity measures is given in Table 1. On the table,

attributes are classified into two: 1) Quantitative: Attributes which have numerical values, such as 1,

0.001, etc. 2) Qualitative: Qualitative attributes are the ones such as color being blue, red, etc. Web

session logs can be considered as both qualitative and quantitative attributed datasets. If a session is

represented as a set/bag of words, we can consider it qualitative. However, if a session is represented

as a vector, as given in Equation 9, then we say that the qualitative dataset is represented in a

quantitative way. Among all the similarity measures given on Table 1, Manhattan is the simplest

and has the minimum computational cost. Although Euclidean is more costly than Manhattan, it

exaggerates the distance, creates bigger distinction between similar and dissimilar items. Minkowski

distance-based similarities are mostly preferred with low dimensional datasets with quantitative

attributes. Although qualitative attributes can be represented with numbers, since this does not

present an order or nominality, Euclidean and Manhattan distance based similarities are not very

suitable for qualitative data. When the data items are (i.e. can be) represented as sets, The

Jaccard coefficient, is the ratio of the intersection of two data items to the unification of these data

items. Therefore, it is suitable for qualitative datasets. One way to represent qualitative attributes

is by representing existence in a data record, as given in Equation (9) or representing frequency

instead of only existence. Thus, cosine similarity is suitable for datasets with both qualitative

and quantitative attributes. Compared to cosine similarity, Web session similarity can perform a

more detailed similarity analysis, since it compares how similar even different attribute values are.

However, Web session similarity is computationally more costly than cosine.

In our experiments, we used Manhattan distance-based similarity for experiments with nu-

merical data, because it was suitable to these datasets and we were able to compare our work with

previous studies, since previous studies used Manhattan distance-based similarity. However, for the

Web session datasets, which is a high-dimensional sparse dataset, Minkowski distance-based simi-

larities returned close-to-zero similarities. Therefore, they were not preferred. We chose the cosine

similarity because it was proved to yield sufficient conditions for the centroid update equations

to converge with SPKM[40], whereas the Web session based similarity or Jaccard coefficient were

not proved to work with SPKM. In the future, we plan to investigate different similarity measures

13

wherever needed.

In the case of ratings datasets, the similarity can be computed via comparing the rankings,

as in the case of Pearson's correlation coefficient.

Given two users U and v, Pearson's correlation coefficient is defined in (13) [78].

2)rU'i - rU)(rV,i - rv)
iEC

Pearson_correlation(u, v) = ----;=======----;======
2)rU,i - ru)2
iEC

2:(rV ,i - rv)2
iEC

(13)

where C is the set of items that are rated by both of the users U and v; Ui and Vi are the rating of

item i by user U and v respectively; and ru and rv are the average of ratings of U and v respectively.

In the algorithms, if the correlation is negative, we consider it as 0 (zero). A disadvantage

of the Pearson correlation is, given a subset user Us of a user u, such that Us is almost the same

as u except that it does not include all the ratings, the similarity of the Us is not very close to 1.

In other words, Pearson defavors/disapproves new users with small number of ratings. These new

users will not be similar to any established users enough.

14

,....
CJl

Similarity
Measure
Manhattan

Euclidean

Jaccard

Cosine
Web Session

Quantitative Qualitative
Data Data
Yes No

Yes No

No Yes

Yes Yes
NA NA

TABLE 1. Comparison of different similarity measures.
High Dimensional Advantage Disadvantage
Sparse Data
No Simple and cost efficient Common 0 similarity

on high dimensional data
No Effective with low dimensional data Common 0 similarity

on high dimensional data
Yes Effective with qualitative data Not suitable for

continuous valued attributes
Yes Effective with high dimensional sparse data High computational cost
Yes Specialized for datasets with Higher computational cost

semantically related attributes (e.g. URLs) than cosine

2.1.2 K-Means Algorithm

The K-Means Algorithm is a popular, simple, unsupervised, learning algorithm for clustering.

[85]. In this iterative, partitional clustering approach, each cluster is associated with a cluster

centroid and each data point is assigned to the cluster with the closest centroid.

The K-Means Algorithm, listed in Algorithm 1, aims to minimize an objective function,

consisting of the sum of squared errors or distances between the data records and K cluster centroids,

as given in Equation (14), by iteratively updating the cluster centroids and assigning data to the most

similar centroid, until the total error between the data records and the assigned cluster centroids

converges. Note that this procedure forms clusters with n-dimensional hyper-spherical boundaries,

where cluster centroids represent the centers.

d n

E= LLlixi -c;(x)1 (14)
j=l i=l

In 14 n is the number of data records, d is the number of attributes and 1T(Xi) = cluster to

which Xi is assigned.

The complexity is O(n * K * I * d) where n is the number of points, K is the number of

clusters, I is the number of iterations, and d is the number of attributes.

Algorithm 1 K-Means Algorithm

Input: Dataset X E ~d where Ixl=n; number of clusters: K :::; y'n.
Output: A partition of the dataset into K disjoint clusters 1'1, ... ,I'K.

1: Read data records Xi, i = 1, ... , n.
2: Arbitrarily select K records as centroids out of the n data records.
3: repeat
4: for all Data record Xi do
5: Find the closest centroid Ci using Euclidean Distance.
6: Assign data record Xi to the cluster I'i.
7: end for
8: for all Cluster I'j do

9:

10: end for
11: until stopping criterion is met.

16

2.1.3 The Spherical K-Means Algorithm

The Spherical K-Means Algorithm (SPKM) is a popular algorithm for clustering high dimen-

sional and sparse data, such as transactions, text, and web usage or clickstream data [40]. SPKM is

particularly suitable for data sets where the cosine similarity is more appropriate than the Euclidean

distance (used in the K-Means), due mainly to the asymmetric nature of the features/dimensions.

Asymmetric features are such that, when comparing two data vectors, the presence of the feature

(positive value) is considered to be much more important than its absence (zero value). The SPKM,

listed in Algorithm 2, aims to maximize the average cosine similarity between the data vectors and

K cluster centroids, by iteratively updating the cluster centroids and assigning data to the most

similar centroid, until the total cosine similarity between data vectors and assigned cluster centroids

converges, as given in Equation 15.

L = L X7 c 7r (x,)

x,

Algorithm 2 Spherical K-Means Algorithm

Input: Dataset X E ~d where Ixl=n; number of clusters, K:::: yin.
Output: A partition of the dataset into K disjoint dusters 11, ... , 1K.

1: Read sessions.
2: Normalize data records to be of unit length.
3: Arbitrarily select K records as centroids out of the n data vectors.
4: repeat
5: for all Data vector Xi do
6: Find the most similar centroid Ci using cosine similarity.
7: Assign data vector Xi to the cluster "(i.

8: end for
9: for all Cluster "(j do

LXjE")'t Xl 10: Update its centroid Cj= .,....-;=c"-'--''-'-'--------,;-
IIEXiE"Y, xiii

11: end for
12: until stopping criterion is met.

17

(15)

2.1.4 Cluster Validation

Cohesion-Separation: Inter- and Intra- Cluster Similarities

One of the methods to evaluate and compare the quality of clustering results is measuring

the cluster cohesion (compactness, tightness), which determines how closely related the data items in

a cluster are, and cluster separation (isolations), which determines how distinct or well separated a

cluster from other clusters [136]. Thus, clustering results may be evaluated by computing the average

inter-cluster and intra-cluster similarities. The inter-cluster similarity is the similarity between

clusters and determines the cluster separation (isolation), whereas the intra-cluster similarity is

the similarity between data points within a cluster and determines the cluster cohesion. A higher

intra-cluster similarity and lower inter-cluster similarity represent better clustering quality.

Silhouette Coefficient

The method of silhouette coefficient combines both cohesion and separation. It is given in

the means of distance in [136], and if we modify it for similarity, the silhouette coefficient is computed

for a data item i as follows:

• For the item i, compute the average similarity to all other data items in its cluster. Call this

value ai.

• For the item i and any other cluster not containing i, calculate the item's average similarity

to all the items in the given cluster. Find the maximum such value with respect to all clusters

and call this value bi .

• For the i, the silhouette coefficient s(i) is computed as given in Equation (16).

ai - bi
Si = --,-----.,.-

max(ai, bi)
(16)

The value of silhouette coefficient may vary between -1 and 1. The most desired case is

silhouette coefficient being 1. Positive values as close to 1 is better because lim Si = 1. A
a,->l,b,->O

negative value shows that i is more similar to the items in another cluster than the items in its own

cluster.

18

Davies-Bouldin (DB) Index

Davies-Bouldin (DB) index is a measure which represents the average similarity between

each cluster and its most similar one, in a clustering result [48]. Let Gi and Gj be two clusters in a

clustering result. Let Si be a measure of dispersion of cluster Gi , and dij be a dissimilarity (distance)

measure between clusters Gi and Gj . Then, a similarity measure Rij between clusters Gi and Gj is

defined to satisfy:

• If Si = 0 and Sj = 0 then Rij = O.

A possible choice of Rij is given in Equation (17) [48].

Then the DB index is defined as given in Equation (18) [48]

where Ri =. max . . Rij,i = 1, ... ,nc·
t=1 1 ···,nc ,1,=f:.J

(17)

(18)

Since DB index represents the average similarity between each cluster and its most similar

one and it is desirable for the clusters to have the minimum possible similarity to each other; a

clusterings that minimizes DB is more desirable.

Similarity Matrix Approach

Given the similarity matrix and cluster labels, another cluster evaluation approach is to

compare the similarity matrix to an ideal similarity matrix [136]. In an ideal similarity matrix,

the similarity is 1 if items are in the same cluster and 0 otherwise. Therefore, if we sort the rows

and columns of the similarity matrix (and the ideal similarity matrix) so that all items belonging

to the same cluster are together, then the ideal similarity matrix has a block diagonal structure.

19

High correlation between the ideal similarity matrix and the similarity matrix is desired, because it

indicates that similar items in the same cluster and clusters are well separated.

There is also a visual way of judging clustering by its similarity matrix [136]. As explained

above order the similarity matrix with respect to clusters, and then plot it. If the color gets darker

as the similarity approaches to 1, in the ideal case, blocks would be observed around the diagonal,

representing clusters and the rest would be light colored. Clouds on the plot represent correlated

clusters, which is not desired. Figure l(b) shows a plotted similarity matrix for well-separated

clusters given in Figure l(a) and extracted by K-means [136].

0.8

~~t
0.6 -., -
0.4

~
0.2

%·L----o~2~--~nL4--~0~.6~--~O.~8--~
x

(a) Well-separated clusters.

!l

~

20 40 60 80 100 SimIlarity
Points

(b) Simi larity matrix sorted by K-means cluster labels and
colored.

Figure 1. Visual validation using sorted and plotted similarity matrix [136].

Precision and Recall, MSE, Robust Cardinality

As in the case of most applications, in Web usage mining, clusters can be modeled via

prototypes. In the input to Web usage mining, a set of URLs visited by a specific user at a limited

time is called a session. Therefore, in this case, a prototype may be called a profile and will be a set

of URLs, which may optionally include the frequencies of URLs.

The metrics precision and recall are defined as follows [126, 12]: Precision is the proportion

of retrieved items that are really relevant and recall/coverage is the proportion of all items, known to

be relevant, that are retrieved. The discovered profiles can also be considered as frequent itemsets,

or patterns, and provide one way to form a summary of the input data. As a summary, profiles

represent a reduced form of the data that is at the same time, as close as possible to the original input

data. This description is reminiscent of an information retrieval scenario, in the sense that profiles

20

that are retrieved should be as close as possible to the original session data. Closeness should take

into account both (i) precision (a summary profile's items are all correct or included in the original

input data, i.e. they include only the true data items) and (ii) coverage/recall (a summary profile's

items are complete compared to the data that is summarized, i.e. they include all the data items)

[104].

To assign a session to a cluster a distance measure must be defined, typically to be inversely

related to similarity, e.g. distance = 1 - similarity:

Two different measures can be used to evaluate the final prototypes [97]:

• The mean squared error (MSE) or average dissimilarity between cluster prototypes and data

records .

• Robust cardinality.

The mean squared error or average dissimilarity, for the ith cluster is given by:

(19)

where s(k) is the kth session, Xi is the set of sessions assigned to the ith cluster, and dik is

the distance from s(k) to Xi.

The robust cardinality for the ith cluster is given by:

Nt = L Wik (20)
s(k)EXi

where Wik is the robust weight, given by:

(21)

where ai2 is a scale measure that assesses the dispersion of the sessions around the cluster

prototype. Wik, which is in [0,1]' is high for inliners/good data and low for outliers/noise.

Cluster vs. Class Labels

When there are class labels available, a cluster error may be computed by comparing the

cluster and class labels. The procedure given in Algorithm 3 checks whether each item pair has the

same class labels if they have same cluster labels or not.

Additionally, surveys on cluster validation were presented in [47, 48, 136].

21

Algorithm 3 Cluster Error Computation Algorithm
Input: Dataset with class labels and cluster labels from FClust output.
Output: Cluster error -a real number between 0 and 1-.

1: Error f- 0
2: for all Data record pairs (i, j), where i =I- j do
3: if i and j have the same class label, but different cluster labels then
4: Error + +
5: else if i and j have different class labels, but the same cluster label then
6: Error + +
7: end if
8: end for
9: Return Error/Number of pairs

22

2.1.5 Dynamic Clustering

Given the clustering definition in Section 2.1, we define dynamic clustering as follows:

Dynamic clustering is the process of extracting clusters in a dataset in which the new data

items becomes available, some new clusters may emerge, some existing clusters may disappear, or

some data items may change in time. To the best of our knowledge, there have been no studies on

dynamic clustering with "dynamic items", i.e. data items changing in time.

However, there are some related studies. One of them is known as incremental clustering

or online clustering in which, data becomes available in batches over time [43, 7, 32, 79, 77]. One

common approach for incremental clustering is repeatedly applying a classical clustering algorithm,

in which case a high computational cost may be prohibitive. Additionally such an approach does

not differentiate new data from existing data. Incremental clustering was initially proposed as a

solution to clustering on very large databases [43] and unlike dynamic clustering, does not consider

change in "existing" data items. Moreover, in some application, the whole dataset may be avail­

able initially. However, if the dataset is huge, batches are formed by sampling, and clustering is

performed incrementally [43]. In IncrementalDBSCAN, DBSCAN is used for incremental clustering

and compared to DBSCAN [43]. IncrementalDBSCAN can handle emerging and disappearing clus­

ters, but does not handle data items that change in time. One common approach for incremental

clustering is to repeatedly apply a classical clustering algorithm every time more data arrives or

change in data occurs, in which case a high computational cost may be prohibitive. Additionally

such an approach does not differentiate new data from existing data. In another algorithm called

leader-follower clustering (LFC), a K-means type clustering is used [42]. Basically, when a new item

is available, the closest cluster centroid is determined. If the new item is similar enough to this

cluster centroid, the item is assigned to the cluster represented by that centroid. Otherwise, a new

cluster is generated. The LFC algorithm is given in Algorithm 4 [80]. In another approach, clusters

are generated according to the initially available data batch and as the new data arrives, new data

is assigned to existing clusters [32].

Ant colony-based swarm intelligence algorithms are some of the most common approaches

for solving incremental clustering in SI. In a study which uses ant clustering to cluster continuous

data, despite the lack of a benchmark set, the results were promising [122]. Similarly, another study

divided a dataset into different groups, assumed that each group was available at a given time step

and used ant clustering to update the clusters [79]. Also in [32], the authors ran the fuzzy K-means

algorithm to observe initial clusters and used ants, which were moving in a three dimensional space,

23

Algorithm 4 Leader Follower Algorithm [42]

1: repeat
2: Read new item i
3: Find the closest cluster center c
4: if Distance is above threshold then
5: Create new cluster
6: else
7: Add i to cluster represented by c
8: Update c
9: end if

10: until No more data is available

for clustering the new coming data.

We will define the difference between incremental clustering and dynamic clustering as the

capability to handle generating new clusters as needed and updating the cluster for an item which

changes in time. Therefore, it can be said that dynamic clustering includes incremental clustering

as a special case. However, dynamic clustering is more suitable than incremental clustering for some

dynamic environments, such as the Web. On the Web, some clusters may emerge while some others

may disappear. Additionally, attributes of a data item may change in time, as in the case of an

update of a Web page or a change in the likes and dislikes of a user on the Web. Therefore, clustering

user profiles is an interesting domain for dynamic clustering.

Another approach that may be similar to dynamic data clustering is stream clustering.

Some application areas of stream clustering can be listed as network intrusion detection, weather

monitoring, emergency response systems, stock trading, electronic business, telecommunication,

planetary remote sensing, and web site analysis [31]. More information on stream clustering can

be found in [31, 96] The difference between stream clustering and dynamic clustering is: in stream

clustering each new coming input is a new data item, where as in dynamic clustering, new input

can be an update of an existing data item. For example, assume there is a set of users and new

inputs are user-urI pairs, user-query pairs, user-item pairs in short. The user may be a new user

or an existing user. Since stream clustering algorithms does not store the data, they cannot handle

"dynamic data" .

As a new clustering paradigm, dynamic data clustering is compared to other clustering

paradigms in more detail in Section 5.2.

24

Limitations of the Current State of the Art in Dynamic Data Clustering

Dynamic clustering is an interesting subject to work on and requires more improvement.

Current limitations include:

• To the best of our knowledge, there is no clustering research considering a data item changing

in time.

• An efficient and low cost dynamic clustering algorithm for clustering high dimensional sparse

data is not available.

• Better algorithms are required which can handle emerging and disappearing clusters.

• There is not enough benchmarks to compare different algorithms.

• More study is needed to define dynamic, incremental, online, and stream clustering.

• There is a lack of an approach which can cluster and visualize data simultaneously.

• There is no research using flocks of agents for dynamic clustering.

25

2.2 Data Visualization

Recent improvements in the hardware and software have allowed storing more and more

information each day. Every year, exabytes of digital information is generated [84], which have

made data mining and visualization even more valuable. Data visualization is the study of the

visual representation of data [45, 118]. It is accepted that data visualization includes scientific

visualization (Le. use of computer modeling and simulation in scientific and engineering practice)

and information visualization (i.e. visualization of abstract and heterogeneous datasets such as as

large-scale collections of non-numerical information) [118]. One of the advantages (or aims) of visual

data exploration is to include the Human in the data mining process; by presenting the data in some

visual form. Human perceptual abilities can be used to allow humans to get an insight into the data

and interact with the data [63]. Including humans in the data mining process is especially useful

when little is known about the data and the exploration goals are vague [63].

Depending on the data type, different visualization techniques can be used. For visualization

of datasets with less than 4 dimension (i.e. 1D, 2D, and 3D), some common techniques for data

visualization include x-y plots, x-y-z plots, line plots, and histograms [63]. When the data becomes

multi-dimensional or unstructured, visualization becomes more challenging. In the case of text or

hypertext datasets, data is typically transformed into description vectors [53, 63], whereas for multi­

dimensional data, multidimensional scaling can be used via computing item-to-item similarities and

assigning each data item a new location in a low-dimensional space, which is suitable for making

graphs or plots [25, 34]. Self-organizing maps (SOM) are also a popular way for data visualization

and some of its applications include the visualization of web-based social networks [119, 143]. Lately,

swarm intelligence has also been used for data visualization [128, 129, 117].

Visualization Evaluation

Publications on visualization show that, visualization does not only have an engineering

approach but also has an artistic angle [88, 26, 139, 138, 141]. Therefore, while some people have been

evaluating the visualizations from an artistic view and trying to explain why some visualizations are

better and more efficient than others, some other researchers have been trying to define visualization

metrics. In fact the latter claim that visualization metrics are still an active and challenging research

area which needs improvement [88, 26].

Prof. Tufte looks into visualization not only from a scientific view but also from an artistic

26

angle. In [139, 138]. In [138], he shows the effect of selecting correct visualization parameters

and techniques by comparing success and failure via visual representation, where he compares the

success in the cholera epidemic in London versus the failure in the decision to launch the Space

Shuttle Challenger.

"Clutter and confusion are failures of design, not attributes of information", says Edward

Tufte in [140], (page 51), and presents the fundamental principles of excellent graphics, i.e. analysis

and display of data, in [141]:

• Comparisons: "Show comparisons, contrasts, differences."

• Causality, Mechanism, Structure, Explanation: "Comparisons may lead to reasoning."

• Multivariate Analysis: "Show more than one or two variables (Le. attributes, such as time,

location, direction, temperature and date simultaneously)."

• Integration of Evidence: "Completely integrate words, numbers, images and diagrams."

• Documentation: "Thoroughly describe the evidence. Provide a detailed title, indicate the

authors and sponsors, document the data sources, show complete measurement scales, point

out relevant issues."

• Content counts most of all: "Analytical presentations ultimately stand or fall depending

on the quality, relevance, and integrity of their content."

In [26], Richard Brath proposed metrics for 3D visualizations:

• Number of Data Points: The number of data items represented on a visualization screen

at an instant.

• Data Density: The number of data points per pixel. In Equation 22, the number of pixels

does not include the pixels in the window borders, menus, etc.

• Number of Simultaneous Dimensions and Cognitive Overhead: As the number of

dimensions increase, the cognitive complexity increases. Tufte also mentions that unnecessary

information should not be visualized.

• Dimensional Score and Cognitive Complexity: Dimensional score aims to determine the

effectiveness of mapping between data dimensions and visualized dimensions. The higher the

27

TABLE 2

Dimensional Scoring Summary [26].

Mapping Score
n - to-1 3Xn
1 - to - 1 general 2
1 - to - 1 intuitive 1
preexisting representation 0

dimensional score, the higher the cognitive complexity. The computation of score is summa-

rized in Table 2. In the table, n is the dimension. General mapping is a mapping where the

user needs to remember what the dimension on visualization represent, on the contrary, an

intuitive mapping is one where the user is not expected to remember, such as the attribute

size is named size on the visualization screen. The last row is for preexisting common visual-

izations such as market share and histograms. However, this score does not handle n - to - m

mappings, where 1 < m < n .

• Percentage of Occlusion: Occlusion percentage is the ratio of the number of data points

completely obscured over the number of data points. The less the occlusion is the better .

• Reference Context and Percentage of Identifiable Points: This measures the capability

to show location of data items in reference to the other data items and computed as given in

Equation 2.2. The higher the ratio is the better.

D D
. number of data points

ata ensity =
number of pIxels on the vlsuahzatlOn panel

Percentage of identifiable points =
no of visible data oints identifiable in relation to ever other visible data oint

no visible ata points

(22)

It should be noted that these metrics are defined for visualization of data itself. Whereas,

what we visualize is the relation between data items, the similarity between data items and between

data clusters.

Another common method to compare different visual systems is by arranging usability eval-

uations [151]. In a usability evaluation, a number of people are asked to compare different systems.

In our research, dynamic visualization aims to support tracking changes in clusters, such as emerg-

ing, merging, separating, and disappearing clusters as well as visualizing the similarity between data

28

items and between data clusters. Thus, a usability test would compare dynamic FClust to original

FClust. A usability test template may be given as follows: Let's assume that we have 5 different

synthetic datasets each with the following 5 cases:

• One emerging cluster.

• Two merging clusters.

• One cluster being separated into two.

• One cluster disappearing.

• No change, (i.e. although new data is added in time, there is no change in the cluster number

and cluster profiles).

We may select 5 users, with no clustering background. The visualizations of the above 5

cases may be shown to each user either by original FClust or dynamic-FClust. Thus, each user will

see 1) Each dataset once 2) 2 or 3 results by FClust 3) 2 or 3 results by dynamic-FClust. The users

may be asked to tell:

1. What happened and how easy it was to determined what happened, on a 5-point scale.

2. How easy was it to determine similar groups, on a 5-point scale.

3. How easy was it to compare similarity between different data items, on a 5-point scale.

However, the task should be presented in a better task description. A task description may be given

as follows: "For your social sciences class project, you are expected to determine the user profile

changes in one month at the University of Louisville web domain. Please determine how are the

different user groups are changing in 5 different months. Please also record how many different

profiles exist for each month. For each month, mark on the 5-point scale satisfaction sheet 1) Can

you tell how similar the user groups are? 2) Can you compare similarity between two random data

points. 3) How easy was it to determine what kind of changes happened."

To sum up, some visualization measures that may be used to evaluate dynamic clustering

visualization are:

• Number of data points and data density. Number of data items represented per pixel or per

unit area.

• Number of dimensions and cognitive overhead.

29

• Percentage of occlusion.

• Reference context and percentage of identifiable points.

• Usability: User studies are organized where users are asked to evaluate and compare different

visualization panels.

Limitations of the Current State of the Art in Data Visualization

Below, we list some of the reasons why more efforts are needed in data visualization:

• Better algorithms are needed which are capable of clustering and visualizing simultaneously.

• There is a lack of algorithms on simultaneous dynamic clustering and dynamic data visualiza­

tion.

30

2.3 Simultaneous Data Visualization and Clustering

One of the advantages of FClust over many other clustering algorithms is the capability of

visualizing and clustering data simultaneously. Thus, another criterion of the expected Dynamic­

FClust algorithm is the ability to visualize the similarity between data items and clusters. In [88],

Self-Organizing Maps (SOM) was used to project text documents onto a Tree fractal. Figure 2 shows

a sample visualization by the system [88]. This system focuses on visualization and not clustering,

and the provided visualization was static. Alternative ways for cluster visualization in self-organizing

maps are presented in [87], however, the experiments were on a very small dataset, with 16 items and

13 attributes and includes no dynamic clustering or visualization. Later, the SOM algorithm was

scaled up to be able to deal with clustering and visualization of large amounts of high-dimensional

data [67]. Figure 3 shows a sample visualization by the system. However, this algorithm did not

propose dynamic clustering and visualization, either. In [21], the neurons on the perimeter of the

map are kept active and a dynamic update of SOM is proposed to achieve incremental clustering.

However, the inner nodes are static, and after training SOM, an ascendant hierarchical clustering

was applied to cluster the neurons. Thus, similar clusters from different learning periods may be

separated on the map, and incremental SOM may not visualize the data as original SOM does.

Additionally, some other points that needed more clarification and were not addressed in [21] are:

1)What was the size of the map (i.e. the initial number of neurons) initially for SOM and incremental

SOM, 2)Was the size of the map updated for each learning period for the classical SOM, 3)If not,

why not? 4) How does the incremental SOM handle splitting and merging clusters. Thus, better

explanation and further experiments are needed to show the workings of the proposed approach.

Although there have been a few studies on dynamic SOM [82], to the best of our knowledge, no

dynamic SOM clustering and visualization algorithms have been published.

Table 3 gives a comparison of different approaches. To sum up, many categorization systems

have the inability to perform classification and visualization on a continuous basis or to have new

data-items self-organize into the existing clusters (or into new clusters if necessary), unless a new

processing and analysis happens. This disadvantage is also present in more recent approaches using

Self-Organizing Maps, as in Kohonen maps [122]. Therefore, while a benchmark comparison of the

above cited methods should be interesting to explore, any serious comparison will be complicated

by the ability of the dynamic FClust algorithm to perform continuous mappings with simultaneous

continuous visualization and the inability of the SOM to accomplish it.

31

/
~"':" ", ' .

.. ~~ '/.:- .~ ,i.
... . 1

;;::.' ;a

:~ .-': .. .

t,;: :::

~'.. ,';

,:.-
"

'I I.
r-
0' " , "

, -

.. , ...

- ~S .. ,

.. \
. . -=-.;..

..: -=--.

.~.;-:-~: '. .

Figure 2. Fractal projection of cancer document vectors [88].

Figure 3. Distribution of four sample subsections of the patent classification system on the document
map. The gray level indicates the logarithm of the number of patents in each node. Generated by
SOM [67].

32

c...:>
c...:>

Algorithm

IncrementalDBSCAN [43]
Incremental Ant
Clustering [122]
LFC [42]
SOM [88, 87, 67]
Incremental SOM [21]
FClust[117]
Dynamic FClust

--

~ -
TABLE 3. Comparison of different clustering and visualization algorithms

Incremental Emerging/ Changing Cluster No Visualization
Clustering Disappearing Data Extraction

Clusters Items
Yes Yes No Yes No
Yes Yes No No No

Yes Only Emerging No Yes No
No No No Yes Yes
Yes Only Emerging No Yes No
No No No Yes Yes
Yes Yes Yes Yes Yes

-

Dynamic Typically
Visualization Compared

to
No DBSCAN
No Static Ant

Clustering
No K-Means
No NA
No SOM
No K-Means
Yes FClust

2.4 Swarm Intelligence-based Clustering

"The whole is greater than the sum of its parts" - Aristotle

Swarm intelligence is an artificial intelligence paradigm based on social, collective and struc­

tured behavior of decentralized, self-organized agents [65, 146]. Algorithms in this domain mainly

depend on an inspiration from nature, in particular from social insects like bees, ants, termites; flocks

of birds, and fish schools. These animals have a very limited individual capacity. Yet, cooperatively,

they perform many complex tasks such as searching for and storing food and flying collectively over

long distances. The characteristics of swarm intelligence are:

• Collaboration : Agents in the swarm collaborate or interact with the environment and with

each other.

• Collective intelligence: Whereas agents in the swarm are mostly unintelligent, the collaborating

system, or swarming mechanism results in an intelligent system.

• Inspiration from nature: Agents' properties tend to be derived from analogous creatures such

as ants, bees, or birds.

• Decentralized control: Agents behave and interact without a centralization mechanism.

The five basic principles of swarm intelligence are [89]:

• Proximity principle: The group should be able to perform simple space and time compu­

tations.

• Quality principle: The group should be able to respond to quality factors in the environment.

• Principle of diverse response: The group should not allocate all of its resources along

excessively narrow channels.

• Principle of stability: The group should not change its behavior with every change in the

environment.

• Principle of adaptability: The group should change its behavior if it is beneficial.

In this chapter, we will mainly focus on using 81 for clustering. Most common 81 algorithms

for clustering are:

1. Ant-clustering

34

2. Particle swarm clustering

3. Flocks of agents clustering

In the following subsections, general information about ant-clustering and particle swarm

clustering is provided. Following this section. we will discuss elustering using flocks of agents in

detail.

2.4.1 Particle Swarm Clustering

Clustering with partiele swarms is based on particle swarm optimization (PSO) [65, 64]'

which was initially inspired from bird flocks. Though the initial motive was modeling human social

behavior, PSO later became a very popular search and optimization technique.

In PSO, the population is a group of particles and each particle is a candidate solution to

the problem. Therefore in the swarm intelligence concept with PSO, a swarm is a solution set. Each

partiele flies through a multi-dimensional problem space, and every position represents a different

solution. After each move, the position is evaluated by a fitness function as shown in Line 8 of

Algorithm 5. The fitness function aims to evaluate the performance of each particle which is the

eloseness of the solution represented by the partiele to the global optimum solution. The personal

best solution which is the best position visited by the partiele so far is calculated and kept (Line 10 of

the Algorithm 5). The partiele's best position and the global best, which is the best solution found

in the neighborhood, are used for computing the particle's new location (Line 12 of the Algorithm

5). Depending on the definition of neighborhood, there exist two different versions of PSO: l)gbest:

the neighborhood is the entire swarm 2) lbest: a swarm is divided into overlapping neighborhoods

of particles and the best partiele is determined in the neighborhood.

The PSO Clustering algorithm was first applied in image elustering [108, 109], which took

the number of elusters as input and used the gbest version of PS~. In the elustering problem, each

partiele is constructed from all cluster centroids. In other words, each partiele represents a clustering

solution [6, 142].

A hybrid model combining PSO clustering with the K-means clustering algorithm was pre­

sented in [142], where one of the partieles was initialized with the result of K-means. Another

(PSO+K-means) hybrid model was used for document clustering in [35, 36], where the results illus­

trated that the hybrid PSO algorithm can generate more compact results than K-means and PS~.

A survey and a modified PSO-based elustering algorithm was presented in [6].

35

Algorithm 5 The PSO Clustering Algorithm
Input: Dataset and the number of clusters K.
Output: Clustered data.

1: Initialize each particle to contain K random cluster centroids.
2: for iteration=1 to max do
3: for all particle i do
4: for all data record x do
5: Calculate the Euclidean distance of x to all cluster centroids in i.
6: Assign x to the closest cluster.
7: end for
8: Calculate the fitness of the particle.
9: end for

10: Find the global best position (among all particles) and personal best position of each particle.

11: Update the velocity of each particle based on the global and personal best positions.
12: Update the cluster centroids based on the particles' velocities.
13: end for

2.4.2 Ant Clustering

There are mainly two approaches for ant-based clustering. In the first version, Ant Clustering

Algorithm (A CA), data is randomly placed in the environment, which is generally a two-dimensional

plane with a square grid. As shown in Algorithm 6, the ants move around the grid, via a random

walk or jumping to form clusters by picking up, transporting, and dropping the data items while

moving around [81]. The picking and dropping operations are influenced by the similarity of the sur­

rounding data items and the density of the ant's local neighborhood f(Xi). Generally, the size of the

neighborhood is 3 x 3. The probability of picking up increases when the data item is surrounded by

dissimilar data items or the density of the neighborhood is low. Similarly, the probability of dropping

increases when similar data items are encountered. After ACA is stopped, a post-processing algo-

rithm such as an agglomerative clustering algorithm is run for cluster retrieval [50]. More recently,

performance analysis and strategies for increased robustness were presented [50, 51]. Improvements

were also proposed by adding a progressive vision scheme and including pheromone on the grid cells

[144]. A good review can be found in [52].

In the second version of the ant clustering algorithm, ANTCLUST, each ant represents a

data item. Initially, none of the ants are assigned to a cluster, i.e. none of the ants have a label.

Then, during the clustering process, in each iteration, two randomly selected ants meet each other.

According to some defined behavioral rules, they may form a new cluster, one of the ants may be

assigned to an existing cluster, one of the ants may be removed from a cluster, or clustering quality

measures may be updated [72, 73, 74]. The basic idea is that agents who carry similar data items

36

Algorithm 6 The Ant Clustering Algorithm (ACA)

Input: Dataset.
Output: Clustered data.

1: Randomly scatter data items on the grid.
2: Randomly scatter ants on the grid.
3: for iteration=1 to max do
4: for all ant ai do
5: if ai is unladen and ai's grid position is occupied by item Xi then
6: Calculate f(Xi) and calculate probpick-up(Xi) using f(Xi).
7: if probpiCk-up(Xi) 2: randomO then
8: Let ai pick up item Xi.
9: end if

10: else if ai is carrying item Xi and ai's grid position is empty then
11: Calculate f(Xi) and calculate probdrop(Xi) using f(x;).
12: if probdrop(Xi) 2: randomO then
13: Let ai drop item Xi to i's current grid position.
14: end if
15: end if
16: Move ai to a randomly selected, neighboring, unoccupied grid position.
17: end for
18: iteration++
19: end for

attract each other, while agents who carry dissimilar agents repel each other, which results in the

formation of groups. A general outline of the ANTCLUST Algorithm is given in Algorithm 7 and

behavioral rules are given below.

Ant Behavioral Rules in ANTCLUST:

1. New nest creation: If two ants without clusters meet each other and they are similar enough,

they form a new cluster.

2. Adding an unlabeled ant to an existing nest: If a labeled ant ai meets an unlabeled ant

aj, and if they are similar enough, aj is labeled with the same label of ai, i.e. added to the

cluster of ai.

3. Positive meeting between two nest-mates: If two ants ai and aj have the same labels

and they are similar enough, then the quality measures are increased for these ants and the

cluster they belong to.

4. Negative meeting between two nest-mates: If two ants ai and aj have the same labels

and they are not similar enough, then the quality measures are decreased for these ants, and

the ant with smaller quality measure is unlabeled.

5. Meeting between two ants of different nests: If two ants ai and aj have different labels

37

but they are similar enough, then the quality measures are decreased for these ants and the

cluster they belong to. Then, the ant belonging to the smaller nest is moved to the other ant's

bigger nest.

6. Default rule: If none of the above applies, do nothing.

Algorithm 7 The Ant Clustering Algorithm ANTCLUST

Input: Dataset.
Output: Clustered data.

1: Map ants to data items and initialize ants' quality measures. Initially ants do not have any
labels, i.e. they do not belong to any cluster.

2: for iteration=l to max do
3: Randomly choose two ants and apply the behavioral rules above.
4: iteration++
5: end for
6: Delete nests that do not contain enough ants.
7: Reassign ants without labels to the most similar nests.

Another clustering algorithm called AntTree uses the ability of building mechanical struc­

tures of ants and builds a tree structure [11]. In this version, each data to be clustered represents a

node of the tree and the algorithm searches for the optimal edges.

38

2.5 Using Flocks of Agents for Data Visualization and Clustering

A recent swarm intelligence approach used a flock of agents. One of the definitions given for

a flock is "a number of animals of one kind, esp. sheep, goats, or birds, that keep or feed together

or are herded together" 2 .

"The motion of a flock of birds is one of nature's delights" according to Craig Reynolds

who has simulated this phenomenon in computer animation, where the bird-like, birdoid object was

called boid [124]. One of the biggest differences between a particle and a boid in simulation is that

boids have orientation, which makes them suitable for data visualization as well as clustering.

Studies about flocks of agents in computer science have mainly started with simulating

moving bird flocks, based on two balanced and opposing behaviors of natural flocks, namely, 1)

Desire to stay close to the flock, and 2) Desire to avoid collisions. These are simulated in the

following three behaviors [124].

Natural Bird Flock Behaviors:

1. Collision A voidance / Separation: Steering away from the other boids to avoid collision.

2. Alignment/Velocity Matching: Aiming to match the moving direction (i.e. heading) and

speed to that of nearby flockmates.

3. Cohesion/Flock Centering: Attempting to adjust steering toward the average position of

local flockmates and to stay close to the neighbors.

While cohesion and velocity matching represent the attraction forces, which keep the boids

together, collision avoidance formed the rejection/repelling force. Other studies also tried to present

behavioral rules and model collective behavior of animals [55, 33]. Later studies also focused on

visualizing data using flocks of agents. Each individual boid represented one data item and a fourth

behavior was added to represent moving with similar data items [120]:

4. Information Flocking: Attempting to move with similar boids.

The fourth behavior is pretty similar to the second behavior, velocity matching. However,

in the fourth behavior, the aim is not moving together with all neighbors, but only with the ones

similar enough to form a group. This behavior provided a suitable ground for using flocks of agents

for data visualization and offered a motivation for data clustering.

2 http://dictionary.reference.com/browse/ flock

39

It should be noted that, just as a flock can be formed of birds, it can also be formed by other

boids such as fish, sheep, etc. Therefore, for the sake of generality, in this study, instead of the word

boid, we use the word "agent".

The Multiple Species Flocking clustering model (MSF) [37] used flock clustering for data

clustering and implemented a distributed multi-agent system. In that study, MSF was compared

to Ant clustering and K-Means clustering algorithms. MSF converged faster than ant clustering.

However, the clustering results for MSF were manually generated. The user looked at the visualiza­

tion panel and selected the clusters. The results showed that MSF performed better than K-Means.

Lately, in [117], a detailed flock clustering algorithm (FClust) was presented with a stopping criterion

and automated cluster extraction algorithm. An application of this approach to Web usage mining

can be found in [128]. In the following sections, we will describe the FClust algorithm, discuss its

limitations, and suggest improvements with real life application examples.

2.5.1 Flocks of Agents Based Data Visualization

I don't paint things. I only paint the difference between things.

Henri Matisse

Data visualization using flocks of agents is suitable for any kind of data set where one can

define a similarity measure between data items. A flock consists of several agents, with each agent

representing one data record. As mentioned in Section 2.5, flocks are different from ordinary particles

because they have orientation. Agents in a flock are attracted to similar agents and are repelled by

the different agents. Moreover, the distance between the agents depends on the similarity between

the data items that are mapped to those agents. Therefore, the visualization panel visualizes the

similarity relation between the data items. Normally, data sets with at most three attributes can

be visualized by a simple plot. However, when there are more than three attributes, this becomes

harder. In particular, when there is a huge number of attributes, as in web usage data, data

visualization becomes a challenging job.

When flocks of agents are compared to other swarm intelligence algorithms, such as ants

and particle swarms, we find that flocks are more suitable for data visualization. In the case of ants,

data items are moved on a rigidly structured grid by ants and placed on the same stack with similar

items. However, the distance between ants or data items does not necessarily reflect the similarity

between the original data items, as in the case of flocks. The distance between two neighboring

agents in a flock is inversely proportional to the similarity between their corresponding data items,

40

whereas the similarity between two ants only increases the chance of data items being neighbors,

but does not define how close/far they are. The distance between two more similar data items may

be bigger than the distance between two other items which are less similar. In the case of particle

swarms, each particle does not represent one data item, but rather represents a clustering solution

itself. Therefore, particle swarms may not be as suitable for data visualization, either.

It has been mentioned that neural networks can also be used for data visualization. How­

ever, most neural networks have a rather static structure whereas a flock of agents is inherently

dynamic [120]. Also, neural networks are a centralized learning mechanism, whereas agent flocks are

decentralized.

2.5.2 Flocks of Agents-Based Clustering

In the clustering with flocks of agents approach [117], each agent represents one data item.

Initially, agents are placed on the visualization panel, which is a 2 or 3-dimensional continuous space,

where x, y (and if applicable z) coordinate values range between 0 and 1. Agents may be placed

randomly or some background information can be used to place them. Then, they start moving

around. As they meet other agents in a defined neighborhood, they try to remain at an ideal

distance to each other, which is determined according to the similarity of the original data items

that agents are representing. The more the data items are similar, the smaller the ideal distance will

be. Ideal distances are computed for each agent pair once at the beginning of the algorithm based

on the intrinsic properties or attributes of the data items. If neighboring agents are further apart

than the ideal distance, there will be an attraction force between them and the agents will try to

move closer to each other. In contrast, if the distance is less than the ideal distance, then there will

be a rejection force, and agents will move apart from each other. Given this basic idea, Algorithm

8 gives the procedure for Flocks of Agents Clustering (FClust).

In steps 1 and 2, the initialization is performed. The velocity vector V, is a unit vector, (i.e.

Ilvll = 1), representing the direction. In step 3, the ideal distances between agents are computed

via Equation (23). Later, for each agent i, the neighboring agents that are close enough to i on

the visualization panel, are extracted in Line 6, where d(i,j) is the 2D Euclidean distance between

agents i and j. Then, for each neighbor:

• If the distance between the agents i and j is equal to the ideal distance between them (Line

7), there is no attempt to change i's velocity due to j (Line 8).

41

Algorithm 8 FClust Algorithm [117]

Input: Dataset.
Output: Visualization of interaction between the data items. Agents corresponding to more similar
items are located closer in the 2D visualization panel.

1: Initially place the agents on the visualization panel
2: Initialize velocities of all agents
3: Compute the ideal distances, dideal, between agents.
4: repeat
5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

for each agent i do
for all j such that d(j, i) :::; dth and i #- j do

if d(i,j) = dideal(i,j) then
(3(i, j) <-- 0

else if d(i,j) > dideal(i,j) then / / attraction

(3(i,j) <-- 4 X (d(i,j)-didcal(i;j»)2
dth -d,deal (',J)

else / / repulsion

(3(' ') 4 (1 d(i,j»)2
t,] <-- - x - di,deal(i,j)

end if
Vresulting(i,j) <-- v(j) + (3(i,j) x vcap(i,j)

end for
if :l j such that d(j, i) :::; dth and i #- j then

w(i) = normalize (L Vresulting (i, j))
jld(j,i)~dth&i#j

18: if The angle between v(i) and w(i) is less than or equal to 90 degrees then
19: vnext (i) <-- w(i)
20: else
21: vnext(i) <-- v(i)
22: end if
23: else
24: vnext (i) <-- v(i)
25: end if
26: ampnext(i) <-- ampdej + 20X(neigl:;,'O~_no(i)+1)
27: end for
28: for each agent i do
29: compute new position Pnext (i) <-- Pcurrent (i) + ampnext (i) x vnext (i)
30: end for
31: Move all agents to the updated positions and update current velocities.
32: until Clusters are formed

• If the distance between the agents i and j is greater than the ideal distance between them

(Line 9), an attraction force will move i closer to j, with a more similar velocity to j (Line 10) .

• If the distance between the agents i and j is smaller than the ideal distance between them

(Line 11), a repelling force will move i further from j, with a less similar velocity to j (Line

12).

In line 14, the velocity effect on i due to neighbor j is computed where v cap (i, j) is the unit

vector pointing from i to j. Next is the computation of the updated velocity of agent i, vnext(i),

42

between lines 16 and 25. First, if i has neighbors, then their resulting velocities on i are summed up

and normalized. If the total, normalized velocity W, does not change the agent's current direction

more than 90 degrees, then the updated velocity is assigned as W. Otherwise the velocity is kept

unchanged for the next iteration. Similarly, if agent i does not have any neighbors -note that an

agent is not considered to be a neighbor of itself- then the velocity will be kept the same for the

next iteration. In line 26, the amplitude is computed depending on the number of neighbors and

distance threshold, where ampdeJ is the default minimum amplitude. If the amplitude is too low,

it may increase the number of iterations to converge. However, if the amplitude is too high, the

agents may move further than the desired location. The minimum amplitude is empirically set to

t x dth [117]. At the end of each iteration, the updated agent coordinates are computed, and all the

agents are moved to their updated positions simultaneously (lines 28 to 31). Moving agents around

the visualization panel is performed until a stopping criteria is met and/or clusters are formed.

43

Setting the Parameters for FClust

The selection of parameters has a big impact on the convergence of the FClust algorithm.

The first parameter is dth' the distance threshold, which defines the neighborhood size (see line 6 in

Algorithm 8), and the latter affects the ideal distance via Equation (23) (see line 26 in Algorithm 8)

and amplitude. When dth is too small, the agents cannot affect each other, and when it is too high,

the algorithm does not converge. One method to compute the ideal distance between two agents,

dideal, is given in Equation (23). If the ideal distances are overestimated, then the clusters cannot

be observed on the visualization panel.

.. 1 - sim(i,j)
dideal(~,J) = 1 . x dth .

- S~mth
(23)

The similarity threshold, Simth' in (23) is computed via Equation (24). If the similarity

threshold is too large, then the algorithm will fail to converge, and if it is too small, then different

clusters risk being combined into one cluster.

. sirnaverage + simmax
s~mth = 2 (24)

Stopping Criteria for FClust

The most common method for stopping the algorithm is using human experts [120,37, 117].

An expert keeps watching the visualization panel until stable clusters are formed. At that time, the

algorithm is stopped.

However, an automated method was also presented in [117], which used the spatial entropy

of the agents relative to their location on a grid imposed on the agent space. In this approach,

the visualization panel was mapped onto a 20X20 matrix. For each cell (i, j) of this matrix, the

proportion of p(i, j) of agents that are located in this cell was computed. Then the spatial entropy

at iteration t was computed by using Equation (25). If the observed minimum of entropy has not

been improved since the last 3 x n iterations, where n is the number of agents, then the algorithm

stops. The problem with this criterion is that the entropy may remain unchanged for a long while

whenever new neighbors do not meet, but after a meeting occurs, changes may start re-occurring.

Thus, the above stopping criterion cannot capture these delayed dynamics, and the algorithm risks

to be stopped before convergence. Additionally, how many cells are needed to map the visualization

screen and how many iterations are needed to observe minimum entropy change were determined

44

experimentally and may not work for some datasets.

20 20

Spatial Entropy(t) = - L LP(i,j) x In(p(i,j))
;=1 j=l

Cluster Formation in FClust

Algorithm 9 Cluster Formation Algorithm

Input: Agents' coordinates at a stable/converged state.
Output: Clusters of agents.

1: for each agent i do
2: if i's cluster is not assigned then
3: Form a new cluster c
4: Assign i to c

(25)

5: for all agent j such that there exists an agent k such that k E c and distance(k,j)::::: dth and
sim(k,j) > Simth do

6: Assign j to c
7: end for
8: end if
9: end for

When FClust is run, flocks of agents are visually observable. However, the clusters are not

explicitly formed and the data is not yet assigned to clusters. Similar to the stopping criterion,

one method of forming clusters is using human experts. The person marks the clusters and assigns

agents to the clusters. Since there is a one-to-one mapping between agents and data records, the

data will also end up being clustered. In addition to this, an automated procedure was presented

in [117], which is given in Algorithm 9. Basically, a new cluster is created for an unlabeled agent.

Then the neighboring agents of this cluster are explored, and all the agents which are similar to at

least one of the agents in the cluster are inserted into this cluster. New agents are inserted to the

cluster until no more agents can be inserted. Then the procedure restarts by creating another new

cluster, and stops when all the agents are labeled.

After cluster formation, a post processing phase is needed to cluster the original (input)

data, to validate the results, and if possible to interpret the clusters.

Complexity Analysis of FClust

The FClust algorithm, given in Algorithm 8, needs to compare every agent to every other

agent in order to compute the ideal distance initially, and then to update the agent's velocity

based on its neighboring agents. Despite some complexity reduction suggestions, such as using a

neighborhood matrix, [117], the worst case time complexity remains O(n2), where n is the number

45

of data records. Similarly, the memory complexity is also 0(n2
) to keep the ideal distances, III

addition to O(n) memory needed for keeping agent locations, velocities and amplitudes.

Limitations of FClust

Although the experimental results given in [117] were acceptable, we observed that the

standard deviations of the number of clusters, the cluster error, and the number of required iterations

were high. Moreover, FClust was not successful for each data set. Another disadvantage was the

high computational cost which makes FClust unsuitable for many real time applications.

In addition to the above limitations, we observed that convergence strongly depends on the

similarity threshold. When the similarity threshold is too high, the algorithm may not converge,

and when the threshold is too low, the algorithm may not differentiate between different clusters,

and thus may end up combining some of them. Therefore, Equation (24) is not suitable for every

dataset. Furthermore, if the data similarity values follow a power low distribution, then the similarity

threshold given in Equation (24) will produce a very high similarity threshold. Therefore agents will

not be able to form clusters. In other words, the clustering algorithm will not converge. Another

problem occurs when there are connecting agents between clusters, meaning the presence of a bridge

of data points connecting two clusters. As a result, the clusters are labeled as the same, even though

they should be labeled differently. To solve this problem to some extent, an alternative formulation

will be presented in Section 3.1. Moreover, the ideal distance formula in [117] requires mostly unique

data records. Otherwise, if many similarity values are 1, the ideal distance computation results in

an infinite value in Equation 23 because simu! = 1. An alternative formulation, which can handle

many I-similarities is given in Section 3.1.1.

46

2.6 Intelligent Agents

An agent is anything that perceives its environment through its sensors and gives a response

through its effectors [127], [145]. A human, a robot, a personalized agent on the Web are examples

of agents. Figure 4 gives the prototype of an agent.

Input ---I.~(Agent J---. Response

Environment

Figure 4. An agent in its environment. Takes input from the outside world and produces an output.

In the computing community, an agent is a computer system in its environment, sensing and

acting autonomously in order to meet its design objectives, in order to meet its goal [145, 147]. That

said, the properties of an agent can be defined below [147].

• Autonomy is being able to act, i.e. operate, without direct intervention of humans or others

and having some control over an agent's internal state and actions [145, 147]. In [93], autonomy

also includes being able to adapt to changes in the environment.

• Reactivity is the ability of perceiving one's environment and responding in a timely fashion to

the changes that occur in the environment in order to manage one's goal [145, 147].

• Pm-activity is the ability to display goal-directed behaviour by taking the initiative [145, 147].

• Social Ability is the ability of interacting, i.e. communicating, with other agents via some kind

of agent communication language in order to meet a goal [145, 147].

It should be noted that, there may not be general recognition of terms like agent, autonomy,

intelligent agent, etc. One example is available above: According to some definitions, autonomy also

includes reactivity, which may sound awkward.

Every agent is considered to be autonomous according to [145, 147]. An agent is considered

to be intelligent if it is also reactive, pro-active and social.

47

2.7 Multi-Agent Systems and Societies of Agents

A multi-agent system is a system in which more than one agent exist. This is a way of dis­

tributed computing. Agents may communicate, and agent communication and interaction protocols

are some of the design parameters of an agent society.

Flocks of agents, ant colonies are some examples of multi-agent systems. The survey in [110]

points to the striking similarities between the \Veb and natural environments, and gives an overview

of applications of artificial life principles to searching and managing techniques, including an agent

based approach called InfoSpider.

2.7.1 Multi-Agent Learning

Typically, the ability of an agent to learn is a necessary and satisfactory condition for the

agent to be described as intelligent [145]. There are two types of learning in multi-agent systems

[145]:

• Centralized learning: which is also called isolated learning. Learning is executed by only one

agent without any interaction with other agents.

• Decentralized learning: which is also called interactive learning. In this category, more than

one agent interact to execute the same learning process.

A multi-agent system may have several centralized learners trying to learn the same goal.

Similarly a multi-agent system may have several decentralized agents trying to learn the same goal.

48

TABLE 4
How Big is an Exabyte? [84]

Kilobyte (KB) 2 Kilobytes: A Typewritten page.

100 Kilobytes: A low-resolution photograph.

1 Megabyte: A small novel OR a 3.5 inch floppy disk.

Megabyte (MB) 5 Megabytes: The complete works of Shakespeare.

10 Megabytes: A minute of high-fidelity sound.

Gigabyte (GB) 20 Gigabytes: A good collection of the works of Beethoven.

Terabytes (TB) 400 Terabytes: National Climactic Data Center (NOAA)

database.

Petabytes (PB) 2 Petabytes: All U.S. academic research libraries.

Exabytes (EB) 5 Exabytes: All words ever spoken by human beings.

2.8 Agents on/for The Web

Today, the World Wide Web (WWW) is one of the most vital sources of information. Yet,

there exists so much information on the Web, and most of it is so unorganized, that it is causing

severe information overload. This section presents a survey of intelligent Web decision support

systems, such as recommender systems that can help alleviate the problem of information overload,

and discuss them within the context of the main paradigms in Artificial Intelligence, which include

knowledge and reasoning, searching, planning, and learning.

In recent years, we have witnessed an explosive growth in the amount of information. Each

day, more books and journals are published, more newspaper articles are written, more web pages

are posted online, more office documents are prepared, more photos are taken, and more movies

are created. According to two recent reports, 92 - 93% of newly created information is in digital

form [66, 84]. In 1999, the worldwide production of original content, stored digitally using standard

compression methods, was at least 1 terabyte/year for books, 2 terabytes/year for newspapers, 1

terabytes/year for periodicals and 19 terabytes/year for office documents [83]. In 2002, 5 exabytes

of new information was produced [84], of which 4.6 exabytes of new information was in digital form.

To get a feel of how big these amounts are, see Table 4. Table 5 gives an estimate of the size of the

Internet.

According to studies and results given above, there were billions of documents on the World

Wide Web (WWW), as of 2005. This over-abundance of information contributes to the reasons why

we can get hundreds or even thousands of results for a simple search, and why we can find it hard

to arrive at the resources that we need by wading through endless labyrinths of Web pages and

49

TABLE 5
The size of the Internet in terabytes in 2002. [84]

Surface Web 167

Deep Web 91,850

Email (originals) 440,606

Instant messaging 274

TOTAL 532,897

Websites. This problem is commonly referred to as information overload.

The Human brain is a fast and intelligent decision making organism, but when significant

information overload is encountered, some additional external guidance may be needed. Systems

that strive to achieve this aim may be known under different names such as decision support systems,

recommender systems, customer relationship management systems, executive support systems, ex-

ecutive information systems, or personalized agents. We will refer to them as Web decision support

systems throughout this chapter.

Most Web decision support systems rely on powerful techniques for sifting through large

amounts of Web data in order to support decision making. The most powerful data sifting methods

fall within the Web mining family of techniques, and these in turn tend to be classified into the

following categories [70], [29], [70], [15]:

1. Web Content Mining (WCM): is concerned with mining knowledge from the actual content of

Web pages.

2. Web Usage Mining (WUM): is concerned with mining knowledge from the user activity logs

or access history data.

3. Web Structure Mining (WSM): is concerned with mining knowledge from the data that consists

of the hyper-link structure between Web pages.

To date, information overload has been handled by several approaches, including

• Information Retrieval and Query Modification: Search engines try to deal with infor-

mation overload by allowing the user to query for only the web pages that satisfy a specific

information need [12], [126]. Most commercial server-based search engines3 try to deal with

information overload by building an index of the Web space beforehand, known as a Web

3http://searchenginewatch.com/showPage.html?page=2156221

50

index, and then performing simple Boolean matching of a user's query against this index [12],

[126]. The Web index maps the occurrence of a term to the web pages where it is contained.

Instead of searching an index, some client-based search agents will search the Web by following

hyper-links to locate the most relevant documents. However, this approach may take too long

and tends to suffer from low coverage. That is, some relevant web pages may never be reached

by the search. Despite advances in Web search engines, the biggest obstacle toward finding

relevant information is the inadequacy of user queries: Users often do not succeed in expressing

their information needs in a way that optimizes retrieval. For this reason, query modification

[134] has been proposed as one approach to improve users' queries by, for example adding more

specific terms, in order to filter out irrelevant results.

• User modeling: User Modeling aims at identifying and representing the interests of a user.

This in turn, allows to guide the user toward more relevant resources. The most well known

challenge in user modeling is building a model of the users that is accurate and complete. For

example, user profiles that are discovered through clustering the user records or user sessions

on a website are one way to build aggregate user models [100], [91], [148]. However this

approach requires powerful clustering algorithms that must not only search a large space of

solutions to yield "accurate" partitions and cluster "representations", but also must be able

to handle very large and high-dimensional data sets (such as clickstreams or user sessions).

Among the techniques used for this purpose, we note several specialized evolutionary clustering

algorithms, such as the Hierarchical Unsupervised Niche Clustering (HUNC), based on Genetic

Algorithms [106], and Tracking Evolving Clusters in Noisy data Streams (TECNO-Streams),

which is based on Artificial Immune Systems [96].

• Information Filtering: Information Filtering aims at sifting through many documents/Web

pages in order to identify those that are relevant to a user. One type of information filtering is

Personalized or Adaptive search that tailors the search process to a particular user [20], [19].

Hence the goal of information filtering is essentially to reduce the pool of information that the

user will have to examine to a smaller subset. It can be done post-search, by classifying the

results of a search so that those Web pages that do not fall within a user's interests can be

weeded out. It can also be done in tandem with search, by incorporating the user's interests

in a proactive manner as the search progresses in a personalized agent style.

• Information Organization: This task aims at changing the layout or structure of a large

51

amount of otherwise flatly organized documents or resources in such a way that the new

structure (for example, a tree or hierarchy of documents) makes it easier for the users to

locate relevant information [12], [126], [29], [20], [19]. A typical example of an organization

of Web pages that albeit, was done by humans, is the Yahoo directory4. However, there is

an increasing interest in performing such an organization automatically. For instance, a good

organization can be obtained by clustering the original documents. One successful application

of clustering can be found on certain search engine interfaces (e.g. Vivisim05), where the

results are clustered into separate categories instead of being simply listed. Presenting the

results as separate subsets or clusters, tends to separate the results according to meaningful

topics that help disambiguating documents with similar terms but different meaning .

• Personalization: aims at adapting a website to the user [94]. Personalization can be imple-

mented in several different modes, including plain customization such as users configuring the

layout and contents of the homepage (e.g. MyYahoo 6 or NetVibes 7 Web pages). However, the

most powerful type of personalization may be automated recommendation systems that can

adapt a Website or suggest items that are deemed to be relevant to a user, based on their

recent activity. Adaptive Websites have been proposed as a challenge to the artificial intelli­

gence community by Perkowitz and Etzioni [115], where websites can be built to "adapt" to

their users automatically and hence become personalized and combat information overload.

Several pioneering efforts in this direction include Web Watcher, Letizia, and Personal Web-

Watcher [10], [61], [76], [90]. Another even earlier effort to combat information overload was

the Internet Softbot project [44], which has developed intelligent agents known as softbots

that are based on planning, knowledge representation, and machine learning. Softbots rely

on a metaphor viewing the Internet as an information food chain, and agents as information

carnivores that must search for the relevant information on the Internet on behalf of a specific

user.

In the following sections, we will focus on recommendation systems, since they represent

the family of methods aiming to combat information overload, by adhering the most to Artificial

Intelligence conventions. Figure 5 shows the basic modules of a typical personalization system.

4http://dir.yahoo.com
5http://vivisimo.com
6http://my.yahoo.com
7http://www.netvibes.com

52

Knowledge & Reasoning.
Searching. Planning.
Learning. Data Mining. etc.

t
Pre-processing

t
Data Collection

server side,
client side,

demographic,

ranking, etc.

__ """I.~ Decision Makingl

Recommendation

Figure 5. Modules and flow of typical recommendation systems.

2.8.1 Recommendation Systems According to User Granularity

In order to provide a personalized Web user experience that reduces information overload,

most recommendation systems rely on user modeling as an important component. Elaine Rich

provided a taxonomy of user models which have originated within the Human Computer Interaction

field [125], and where user models can be classified into several dimensions: (a) individual versus

group when dealing with the granularity of the user model, or (b) explicit versus implicit which

concerns the way the model is extracted (i.e. with or without explicit input from the user or

system designer), and (c) short versus long-term dimension when dealing with the scope of the user

information over time. To classify Web decision support system models according to modeling the

users individually or as a group, the former is called individual user modeling while the latter may

be called general access modeling, mass user modeling, group modeling or canonical modeling. These

two schemes are discussed in the rest of this section.

Group Modeling

Group modeling recommendation systems are systems that are based on models of groups.

In general, the idea is to find the clusters representing different user profiles first, then create a

strategy for each cluster, and finally classify a new user to one of the clusters and use the strategy

generated for that cluster. Group modeling-based recommendation systems are mostly specialized

for a specific website/domain. In this kind of system, the entire content of the website is known, and

all the users' activities can be exploited by the system. Collaborative filtering systems [123],[56],

53

[46], [113] constitute the most common server side recommender systems.

Sources of data on a server-based group modeling recommender systems include visitor activ­

ity information, web server log files, web server instrumentation (plug-ins), TCP lIP packet sniffing

(network collection), application server instrumentation, transactions, marketing programs (banner

ads, emails.etc).demographicdata(registration.third party overlay), supply chain (inventory and

fulfillment), and other sources of data [17].

Advantages of server-side group modeling recommenders include the availability of a website

index, query modification, and being able to combine and thus allow sharing of different users'

interests.

Individual User Modeling

Individual user modeling-based recommender systems tend to be personalized agents [76],

[90] that are specialized for a single user. Even though they can be located either on the server

side or client side, the client side solution is more common and easier to implement. The idea is to

learn the user behavior, their likes and dislikes, and produce recommendations. These systems can

update themselves as the user's behavior changes. Input data for personal agents can be in many

different formats: web click streams, rankings entered by the user, document files, emails, calendars,

and many more... [17]

Personal assistants are mostly based on learning. Rankings can be used to guide supervised

learning mechanisms [14]. Content-based filtering can also be used. Content-based approaches

[16], [113] can be used alone or to assist collaborative filtering. Systems that use a combination

of these two approaches [14] are called hybrid systems. Some advantages of individual modeling

over group modeling include: taking into account the documents which are in use at the time of

recommendation, and capturing the user's individual interests better. Query modification is also

possible. Disadvantages of individual modeling systems include the unavailability of information

about other users, and thus a stagnation on only the current user's past interests.

2.8.2 A Taxonomy of Recommendation Systems

Recommender systems can be classified in a variety of ways [133], but we adopt the following

classification that depends on three main components defining the system:

1. Past information or data available to the recommender system before the recommendation

time, such as user transactions, clickstreams, ratings, or demographic data,

54

2. Current or active user information inputs (such as which products were viewed/ purchased

during the current session/transaction) at recommendation time,

3. Algorithm or procedure that combines the above two sources of data in order to come up with

a list of recommended products.

When it comes to items (1) and (2) above, we notice that recommender systems can vary

widely in their inputs Hence, depending on how the above three components are used and inter­

related, automatic Web personalization can analyze the data to compute recommendations in dif­

ferent ways, including:

1. Content-based or Item-based filtering

2. Collaborative filtering

3. Knowledge Engineering or Rule-based filtering

4. Demographic filtering

5. Hybrids

These categories are discussed in the next sections. More information can be found in [113].

Content-based or Item-based Filtering

Content-based filtering systems recommend items to a given user, which are deemed to be

similar to the items that the same user liked in the past or similar to the user profile in attributes.

Item similarity is typically based on domain specific item attributes (such as author and subject

for book items, artist and genre for music items), which are thus part of the items or user profile.

Classical examples include Syskill and Webert [112], and Fab [13]. This approach has the advantage

of easily including brand new items in the recommendation process, since there is no need for any

previous implicit or explicit group user ratings or purchase data to make recommendations. Content­

based filtering systems suffer from several limitations. First, they tend to be limited to certain types

of content such as text and movies. Even in this case, the extracted features are limited in that

they only capture certain aspects of the content. Second, they tend to provide over-specialized

recommendations based only on user profiles or items that are similar to items previously rated

by the user. Hence, users cannot explore new items that are different from those included in their

profiles.

5.5

Collaborative Filtering

Based on the assumption that users with similar past behaviors (rating, browsing, or pur­

chase history) have similar interests, a collaborative filtering system recommends items that are liked

by other users with similar interests [132, 133]. This approach relies on a historic record of all user

interests such as can be inferred from their ratings of the items on a website (products or web pages).

Rating can be explicit (explicit ratings, previous purchases, customer satisfaction questionnaires)

or implicit (browsing activity on a website or clickstreams). Typical examples include GroupLens

[68][131] and a survey can be found in [132]. The recent Netflix price increased the attention on col­

laborative filtering8 [69]. Collaborative filtering can be either user-based or item-based. In user-based

collaborative filtering, historic data such as purchases, visits, or ratings of items such as products

or web pages, is used to form user neighborhoods of similar users. Later, for a new user, items are

recommended if they are liked by this user's neighbors. In item-based collaborative filtering, historic

data is used to form associations between items that tend to be liked by the same user. Later, for

a new user with known ratings for a few items, other items that are associated with the known

rated items are recommended. Computing recommendations can be based on lazy or eager learning

to model the user interests. In lazy learning all previous user activities are simply stored, until

recommendation time, when a new user is compared against all previous users to identify those who

are similar, and in turn generate recommended items that are part of these similar users' interests.

Lazy models are fast in training/learning, but they take up huge amounts of memory to store all

user activities, and can be slow at recommendation time because of all the required comparisons.

On the other hand, eager learning relies on data mining techniques to learn a summarized model of

user interests (a decision tree, clusters/profiles, etc) that typically requires only a small fraction of

the memory needed in lazy approaches. While eager learning can be slow, and is thus performed

offline, using a learned model at recommendation time is generally much faster than lazy approaches.

Collaborative filtering methods do not suffer from the over-specialized recommendations of content

based filtering because they can suggest completely new types of items that are different from pre­

viously rated items, just because there are similar users who seem to be interested in these new

items. Hence, they benefit from a surprise effect. However, they do suffer from a problem, known

as the cold-start problem, which occurs when the system is faced with making recommendations to

a new user that has not rated or purchased any item yet. Despite their limitations, collaborative

filtering approaches exhibit a very desirable quality in that they are completely independent of the

8http://www.netflixprize.com

56

intrinsic properties of the items being rated or recommended. In particular, items that may be hard

to describe using attributes, such as audio and images, as well as semantically rich text data can

still be recommended based on latent similarities that are only captured through the social process

of collaborative filtering.

Knowledge Engineering or Rule-based Filtering

In this approach, used frequently to customize products on e-commerce sites, the user answers

several questions, until receiving a customized result such as a list of products or a custom-built

configuration of a product (e.g. Dell's web pag(9). This approach is mostly based on heavy planning

of a judicious set of questions and possible answer combinations by an expert, and establishing this

dialog depends on manually coded scenarios that assume heavy knowledge about how each item fills

the needs of a particular user.

Demographic Recommender Systems

In this approach, items are recommended to users based on their demographic attributes,

such as gender, age, location, salary, etc. The recommendations can be based on handcrafted

stereotypes derived from marketing research or on machine learning techniques [113] that learn to

predict users' preferences from their demographic attributes. For instance, users can be classified

into one of several classes based on their personal attributes, and this class information can form

the basis for recommendations.

Hybrids

As we have already noted, each recommendation strategy has its own strengths and weak­

nesses. Hence it is not surprising that combining several recommendation strategies may provide

better results than either strategy alone, as long as the combined scheme is able to tap on the

strengths of the individual methods, while circumventing their individual weaknesses. There are

several ways to categorize hybrid recommender systems [8, 113, 28, 92]. On a very general level,

they can be classified into two general families depending on whether they combine several input

data sources (e.g. user and item data) or several recommendation strategies (e.g. collaborative and

content-based filtering) in order to form the recommended list.

9http://www.dell.com/

57

2.8.3 How Artificial Intelligence has been used for Web Recommendation Systems

The human brain can be quite fast at decision making, but cannot deal with the information

overload problem encountered by users of the ·Web. Since a Web recommender system is expected

to help with this problem, it is expected to be "intelligent". ·Without getting into a discussion of

what being intelligent means for a recommender system, in this section we will discuss how basic

artificial intelligence (AI) approaches have been applied for these systems. In particular, we will

examine four approaches: Knowledge and Reasoning, Planning, Searching, and Learning.

Knowledge and Reasoning

Knowledge and reasoning constitute one class of artificial intelligence problem solving tech­

niques [127]. In a logical knowledge-based problem solving system, there exists some knowledge

about the problem domain, and logical reasoning is used to produce more knowledge and/or actions

to perform. When compared to the Web decision support problem, it can be seen that this is one

of the basic ideas behind recommender systems. The system has some knowledge about the user

and/or items, such as likes, dislikes, similarity, being in the same shopping cart, etc; and the goal

is to produce more information about likes, dislikes, similarity, etc. Consider content-based filtering

as an example. Content-based filtering tries to generate a knowledge base which includes likes and

dislikes of a user, using the similarity between items based on content. It assumes that anybody

will like an item if it is similar to another item that they also liked. In other words, content-based

filtering has the assumption that:

-Vi, Person; likes items that are similar to each other

We need to have a knowledge base including the preferences of the user and the knowledge about

similarities between items: The knowledge base might be of the form:

-Person; likes itemk'

-Itemk is similar to iteml'

Then the inference will be:

- IF Person; likes itemk AND Person; likes items that are similar to each other AND itemk

and iteml are similar THEN person; likes iteml'

It is important to note, here, that assessing the "similarity" between items based on their content

may be the most challenging task, and needs an accurate representation of content.

Let's present the problem in the context of collaborative filtering. In this case, we need

to generate a knowledge base which includes which users have similar likes and dislikes, or who

58

likes/dislikes what. We need to have a knowledge base including the knowledge about similarities

between people:

-Personi and personj like similar sets of items.

-Personj likes itemk'

Then the inference mechanism will work as follows:

-IF Personj likes itemk AND Personi and Personj like similar sets of items THEN Personi

likes itemk'

As in content-based filtering, creating the part of the knowledge base that defines the "similarity"

between users and the neighborhoods of similar users may be the most challenging aspect.

Another approach that uses Knowledge and Reasoning was presented in [95], where a knowl­

edge base consisting of fuzzy rules was used to make an inference about the user's most likely interest.

Each rule was built from a user profile, and the profiles were automatically discovered by clustering

the user Web clickstream sessions. This approach proved to be as good as K-Nearest Neighbors

based collaborative filtering, but worked with a knowledge base of very modest size compared to

K-Nearest Neighbors.

A recent approach to enrich and automate efforts that counteract information overload is

the Semantic Web. The Semantic Web is a project to create a universal medium for information

exchange by putting documents with computer-processable meaning (semantics) on the World Wide

Web [23, 1]. Most Semantic Web efforts so far have been based on knowledge representation efforts

that try to create, encode, and make use of ontologies that offer one way to represent knowledge

about facts and objects. For this purpose, several languages and conventions have been proposed to

handle and process such ontologies, such as O\VL and RDF to represent information, and how to

reason with this knowledge, for example by making reasonable inference.

Searching

Another problem that is very central to AI is the search problem. Even though the WWW

domain is a connected domain, because of its extraordinary size, search can become a huge challenge.

There may be millions, or even billions of possibilities for the starting point and too many options

to follow at each step. Moreover, there may be no unique definition for a final goal or an "optimum

goal" other than the user's satisfaction, which is extremely subjective and dynamic. All commercial

server-based search engines try to deal with this problem by building an index of the Web space

beforehand, and then performing simple Boolean matching of a user's query against this index [12],

59

[126], [29], [20], [19]. Instead of searching an index, some client-based search agents will perform

a graph style traversal or search of the Web by following hyper-links to locate the most relevant

documents. However, this approach may take too long and tends to suffer from low coverage. Some

relevant web pages may never be reached by the search.

Best-first Internet search is common in search engines. Search techniques including A * are

mostly used while crawling [15]. In a client-based search algorithm called fish search [38, 39], the

problem is searching for information on the WWW. The algorithm finds a starting point for the

search, retrieves documents over the Internet, and scans for relevant information on the client side,

then gets more links to continue searching. This is an example where the goodness of a hyper-link

to follow is assessed before committing to follow it, for example by estimating its relevance score

based on the existence of links between it and some other web pages with known relevance, or by

estimating this score based on the "anchor text" that describes this hyper-link.

Another common search problem occurs when trying to create group user models by dis­

covering the user profiles. Given Web server logs as input, in [104, 106, 97], a genetic algorithm

based technique called Hierarchical Niche Clustering (HUNC) searches for user profiles and discovers

associations between URL pages on a site . The input to the search consists of user sessions which

are sets of URLs visited in each session. The output of the system consists of the set of URLs that

represent groups of similar sessions (clusters) in an "optimal way". Generally speaking, there is

no consensus on a unique definition for the "optimal representation". However, the most desirable

solution is one where the ultimate cluster representatives (profiles) approximate the user sessions

with precision and recall that are as high as possible [107]. This search problem also happens to be

a clustering problem, that tries to find the clusters to represent the sessions in the "optimal way" .

Recently, flocks of agents [116] and Ant Colony Optimization (ACO) [41, 73] methods have

also been used for clustering. In the flock of agents approach, each agent represents one data item.

The aim of the agents is to move with similar agents. They have simple local rules and evolve

together in a 2D environment to accomplish this aim. The survey in [110] points to the striking

similarities between the Web and natural environments, and gives an overview of applications of

artificial life principles to searching and managing techniques, including an agent based approach

called InfoSpider. Infospiders are adaptive agents that use a Genetic algorithm in their search

strategy for food in the environment in order to optimize their energy. In addition to the above,

more Evolutionary-based methods have found their use in Web information retrieval methods that

are reviewed in [71].

60

Is user an instructor?

that sJhe is offering

Is user a student? I

Show final exam schedule for the courses
that sJhe is taking

Figure 6. A simple example of a decision tree-based recommender system using a demographic
attribute.

Planning

The third problem solving technique in AI is planning. In AI, planning is defined as solving

the problem by forming a search for a solution over a space of plans, where beliefs about actions

and their consequences are used [127]. When navigating the WWW, an action can be considered as

following a specific link, purchasing a product, closing the connection, etc. The state may represent

the current page, and mayor may not include click history, demographic data, ratings, etc. Finally

the goal is generally expected to be finding the needed information, making a desired purchase,

entering a good rating, or visiting a specific link, etc. Even though planning is not considered to be

a popular method for Web decision support systems, it is very commonly used in Expert Systems. An

expert can define the actions, states, and goals as a recommendation strategy. However, as discussed

in Section 2.8.2, since it heavily depends on human input, this approach may be cumbersome for

large websites.

In Web decision support systems, one of the most common structures used in planning is

decision trees. In a decision tree structure, each edge represents a question, and branches represent

specific conditions satisfied by the attributes. Finally, leaf nodes can be considered as the final

decision (e.g. class label). Figure 6 shows a simple example of a decision tree-based recommender

system with demographic attributes, whereas Figure 7 presents a simple example of a decision tree-

based Web decision support system with a content-based approach.

Decision trees may also be known under the names classification trees or reduction trees

in the literature. In some approaches, leaf nodes of decision trees may have probabilistic results,

such as a leaf with 3 classes, representing class a with probability Pa, class b with probability Pb

and class c with probability 1 - (Pa + Pb). This adds a fuzziness to the decision mechanism. These

kinds of trees are called probabilistic decision trees and they are known to handle missing values

[27]. When probability is considered, Bayesian belief networks (or just belief networks) also come to

61

Was user searching for
computers in the last 5

minutes?

Show a list including
computers on top.

user: searching for apple I

searchi g for foo
in the I 5 minutes?

Show a list including
fruits on top.

Was user searching for
neither computer nor food

in the last 5 minutes?

Figure 7. A simple example of a decision tree-based personalized search using a content-based
approach.

mind [114]. Planning may be considered to be conceptually related to Knowledge-Engineering Web

decision support system approaches.

Learning

In AI terminology, the idea behind learning is the ability to observe the results of interaction

with the world and to use these observations to improve the decision making process [127]. Learning

is very common in Web decision support systems. Whenever a system is able to deduce some new

information about a user or a user profile, the system is said to be "learning". Two types of learning

can be discussed: 1) Lazy and 2) Eager. In lazy learning, all the examples are kept and an answer to

a query is produced by using the examples. No explicit model output is produced in lazy learning.

However, in eager learning, training examples are used to generate a model output, and queries are

answered by using this model output. A model output can be in the form of a tree, a set of rules,

a function, a neural network, a set of cluster representatives, etc. Although lazy learners have low

computational cost during training (which is close to zero), they require high storage (memory) cost

and computational cost at decision time. Lazy learning is more resistant to noisy data and responds

better to dynamic data. On the other hand, when the data set changes, one may need to rebuild

an eager learning model output. K-Nearest Neighbors is one of the most popular lazy learning

algorithms, while neural networks and decision trees are examples of eager learning methods. Syskill

and Webert [111] is an early example of a Web decision support system, that achieved information

filtering using several lazy and eager approaches including K-Nearest Neighbors, Bayesian classifiers,

and Decision Trees to learn which Web pages are interesting to a particular user. The work in [24]

presents a Neural Network approach to learn the interests of a user from the previous ratings of

similar users. This approach falls within the realm of collaborative filtering recommender systems.

Below, we will discuss some of these approaches. We start with decision trees that were

62

also discussed in Section 2.8.3. In working with a decision tree, there are two stages: 1) Forming or

learning the tree, and 2) Applying the tree on new inputs to make predictions. The most common

method for forming the tree is learning. ID3, C4.5, C5.0, CART are the most common algorithms

to generate/learn decision trees [121]. There are two ways to use decision trees in recommender

systems: 1) representing the recommender system as a decision tree, and 2) using decision trees

for determining the important attributes, as is used in text categorization. An example of text

categorization using decision trees can be found in [111] and [75].

Neural Networks (NNs) constitute a learning paradigm inspired by the biological nervous

system [127, 54]. In intelligent decision support systems, NNs can be used for classifying users or

items, clustering users or items, predicting a user's next move, adaptive filtering [20, 19], or user

modeling [103]. Most of the NNs are used for supervised learning. However, self-organizing maps

have been used for clustering within an unsupervised learning framework. An application of self­

organizing maps for the visual exploration of the Internet is WEBSOM [67, 58]. In the system,

similar documents are located near each other on a two-dimensional map.

Reinforcement learning [135] is mostly common in user or client-based support systems,

frequently known as "personal agents". Rankings, ratings or clicks made by the user are used

as reward and punishment mechanisms [61]. Web Watcher is a good example of a learning-based

personalization system, that acts like a learning tour guide for the WWW [10, 61]. When the user

is browsing the web, the Web Watcher agent accompanies the user and highlights the suggested

hyper-links, while learning from its experience in order to improve its advice-giving skills. There

are three approaches used in learning: 1) Learning from previous tours, 2) Learning from hypertext

structure, and 3) Combination of the first two. Learning from previous tours is like a combination

of content-based filtering and collaborative filtering with learning. According to the user interest

-which are the keywords that the user typed at the beginning of the tour- the system gets the most

related links from the current page. This can be considered as an application of content-based

filtering. On the other hand, the definitions (or annotations) of the hyper-links are enriched (in

other words learned) by the user interest (i.e. keywords typed) when the user follows the hyper­

link. Later, this knowledge is used for advising other users with similar interests. This idea adheres

to the principles of collaborative filtering. The second learning approach, learning from hypertext

structure, is based on reinforcement learning. In this method, a hyperlink is augmented using the

words encountered in the pages downstream from it. Q-learning is used with states corresponding

to Web pages and actions corresponding to hyper-links. The reward function, in this case, is a kind

63

TABLE 6
Examples of Intelligent Personalization Systems, their user granularity, and their A.1. paradigm

Research(SysteIll Main Author Application Input ReCOIllITlendation User AI

Year Data Paradigm Granularity Task

Letizia Lieberman Behav ior- based User':o browsing Content-based Individual Learning

[76] 1995 User interface agent behavior and

that assists browsing Search

Armstrong Learning Users browsing Content-based Group Learning

WebWatcher 1995 tour guide behavior and

[10J, [61] .loachims which Collaborative

1997 assists browsing

Personal Web Watcher Mladenic Learning agent Users' browsing Content-based Individual Learning

IgOr 1996 that assists browsing behavior (Text)

Syskill & Wehert Pazzani A software agent User's ratings Content-based Individual Learning

[111], [112] 1996 that learns to rate

pages on the WWW

Fab Balabanovic Hybrid, adaptive U;;cr's browsing Content-based Individual Learning

[14],[13] 1997 rccofilillendation system behavior and and and Search

for browsing user ran kings Collaborative Group Heuristics

of similarity between the Web page and the user interests or keywords. Table 6 lists some examples

of intelligent recommender/personalization systems, their user granularity, and their A.1. paradigm.

2.8.4 Evaluating The Performance of Web Recommender Systems

Evaluating a recommender system can be nearly as hard as designing and implementing

the system, in part because no simple, objective, and general agreed upon mathematical formula

is always available to measure success [12, 126, 20, 19]. One problem suffered by some systems is

over-specialization. When the recommendations are limited to the user's behavior or user's profile,

the user can be restricted to seeing only similar items, and there will be no randomness. In AI, this

problem is known as, the exploration/exploitation dilemma. Collaborative filtering can counteract

over-specialization by suggesting different items.

Evaluating information retrieval systems can be done if one has available, a set of user queries

and a labeled set of search results (relevant and non-relevant). In this case, precision (proportion

of retrieved items that are really relevant) and recall/coverage (proportion of all items, known to

be relevant, that are retrieved) are typically used as goodness metrics [126, 12]. One method for

evaluating a Web recommender system is asking for a ranking or a rating of the results from the

users. However, this can be subjective. Moreover, if the study is for research purposes, it can be hard

to find a sufficient number of real users with diverse interests for the experiment. For this reason,

historical data has also been used in research studies. In this case, the output of a Web recommender

system is compared to the real moves of the user in the historical data, and metrics such as precision

and coverage are computed [126, 12]. One popular way to assess the success of a system is to compare

64

Research/System
Letizia
(Lieberman, 1995
[76])
Webwatcher
(Armstrong, 1995
Joachims, 1997
[10], [61])
Personal Web Watcher
(Mladenic, 1996
[90])
Syskill & Webert
(Pazzani, 1996
[111], [112])

Fab
(Balabanovic, 1997
[14],[13])

TABLE 7
Evaluation examples

Evaluation Style
No evaluation was given in [76]

1) Random, Popularity Match, Annotate, RL
suggestions are compared according to accuracy
2) Random, Annotate, Human
suggestions are compared according to accuracy
Precision (1, if a correct suggestion; 0 else)
and percent of correctly classified examples
with different parameters.
Accuracy computation using user ratings
with different algorithms like Nearest Neighbor,
PEBLS, ID3, Rocchio's algorithms, neural nets
and Bayesian classifier for different domains.
Predict user's rankings
and compute the distance
according to ndpm measure([149])

it, for example with recommending the default, most popular, or even a randomly selected item.

In Fab [14, 13], a performance evaluation based on ranking was presented. Although evaluating

the success of a recommendation is subjective, there may exist formulas for defining the users or

items. Some systems create profiles, then generate recommendations using these profiles [95, 103].

Therefore, evaluating the accuracy of the profiling may give an early evaluation of the Web decision

support system. The discovered profiles can also be considered as frequent itemsets, or patterns,

and provide one way to form a summary of the input data. As a summary, profiles represent a

reduced form of the data that is at the same time, as close as possible to the original input data.

This description is reminiscent of an information retrieval scenario, in the sense that profiles that

are retrieved should be as close as possible to the original session data. Closeness should take into

account both (i) precision (a summary profile's items are all correct or included in the original input

data, i.e. they include only the true data items) and (ii) coverage/recall (a summary profile's items

are complete compared to the data that is summarized, i.e. they include all the data items). Table

7 presents examples of evaluations used with some Web decision support systems.

2.8.5 Summary of Agents on/for the Web

We have presented an overview of methods and paradigms used in \Veb recommender sys-

tems, which are indispensable to counteract the severe information overload problems encountered

65

by users of the Web. Most of these systems try to counteract information overload by resorting

to some way to sift through large amounts of 'Veb data, such as by Web mining, and can provide

a solution through Web search, user modeling, information filtering, information organization, or

personalization. When taking into account the user-based granularity of these systems, we can dis­

tinguish between group and individual user modeling, with each level of granularity having its own

strengths and weaknesses. When dealing with huge populations of users, the individual level that

may be optimal and faithful to reality from a knowledge representation point of view, may not even

be feasible or practical to work with from a computational and memory storage point of view. This is

where group user modeling is needed. We have focused on recommender systems as the type of Web

decision support systems that adheres the most to the principles and expectations of an Artificial

Intelligence paradigm, and have explained how the main A.I. paradigms have been embodied within

these systems. In particular, we have elaborated on Web recommender or personalization systems

that rely on Knowledge and Reasoning, Searching, Planning, and Learning. Even though most com­

mercial systems prefer group modeling, individual modeling is becoming more popular these days.

Increasing personalized searches, requiring users to login on some websites, and personalized news

are all first and basic steps of these moves. However, they may conflict with the user's expectations

of privacy. Although, the importance of Web decision support systems is obvious, profiling, defining,

and recognizing users is not easy. On the WWW, both users' behavior and the Internet structure

and content are highly dynamic. Therefore, systems must be able to function in an online and

realtime setting for the best effectiveness.

Finally, to take a glimpse toward the future, we must note that with the advent of the Web

2.0, which is characterized by the proliferation of social and collaborative networks (e.g. Face book,

Linkedln) , folksonomies that include tagging and sharing bookmarks and content (e.g. Flickr and

del.icio. us), and collaborative user generated content (e.g. Wikipedia, Wikimapia, Digg, Amazon

reviews, Blogs, etc.), the Web info sphere is taking a significantly different shape. Another phe­

nomenon that will contribute to reducing information overload is the advent of the semantic Web.

One of the most desirable outcomes of Web 2.0 is an emerging self-organization and user-driven

distributed information enrichment (e.g. tagging) of the Web. Social and collaborative networks

and folksonomies have not only led to the creation of new types of data that will challenge all efforts

in analyzing and exploiting such data, but also provided an additional layer of organization and

implicit knowledge that may hold even more power against information overload.

66

CHAPTER 3

IMPROVED FLOCKS OF AGENTS-BASED CLUSTERING

In this Chapter we describe our proposed improvements to flocks of agents based static

clustering. We first discuss automated parameter estimation in Section 3.1.1. Then in Section 3.1.2,

we present an annealing approach for adaptive thresholding. in Section 3.2.1 and 3.2.2, the new

(K-means+FClust) and (SPKM+FClust) Hybrid algorithms are presented respectively. We also

validate each development using experiments in Section 3.3.

3.1 Improved Distance Threshold Estimates

Setting the distance threshold parameter in FClust plays a big role in defining the quality of

results and convergence of FClust. In fact, most clustering algorithms crucially depend on a similar

parameter either directly or indirectly. In this section, we present an improved way to automatically

set this parameter in FClust.

3.1.1 Alternative Fixed Thresholding

In our experiments, we observed that the original FClust was not suitable for some very high

dimensional sparse datasets, such as Web usage data. Therefore, we had to find a new formulation

for the similarity threshold as given by Equation (26). When the maximum similarity is very high

and the average similarity very low, the similarity threshold computed by (24) is too high for FClust

to converge. Equation (26) includes a flexible way to tune the similarity threshold, using a tuning

factor a, where 1 < a < simm"x .
- - stmaver'age

Simth = a x simaverage (26)

Another problem observed is that the ideal distance computation results in an infinite value

via Equation (23) if many similarity values are 1, because Simth = 1. Equation (27) proposes an

alternative formulation, which can handle many I-similarities.

67

{

I-sim(i,j) X d

(
. .) _ I-simth th,

dideal 2,J -
0,

(27)
Simth = 1

Additionally, when the number of data records is small, setting the distance threshold is

very hard because, if it is too low, the agents cannot meet each other, while if it is too high, the

ideal distances computed via Equations (23) and (27) will be too high, and cluster formation will

not occur. As a solution, a new parameter for ideal distance tuning is added, as given in Equation

(28). The ideal distance threshold constant, dideaUh, used in Equation (28), is also used, replacing

dth during the cluster formation given in Algorithm 9, line 5.

{

I-sim(i,j) X d.

(
. .) I-simth ?,deaLth,

dideal 2,J =
0,

Simth =1= 1
(28)

Simth = 1

In addition to these simple tuning modifications, an annealing version of FClust is proposed

in Section 3.1.2.

3.1.2 Adaptive Thresholding using FClust Annealing

The distance threshold, dth' has a great effect on the convergence of clustering. When

dth is too high, too many agents affect a given agent. This results in an attempt to satisfy too

many constraints at once, and the algorithm does not converge. However, when dth is too low, the

neighborhood tends to be too narrow for agents to see each other. Therefore they may not affect

each other. Even when convergence is possible, it takes too many iterations.

One way to decrease the sensitivity to a fixed threshold is by using an annealing schedule for

dth' where dth is highest at the beginning and then decreases as the number of iterations increases.

In that case, dideal is computed using Equation (28). A possible cooling schedule for dth is given in

Equation (29) and shown in Figure 8.

d () = dth(O) - dth(N) d (N)
th t h(lOxt) + th cos "N""

(29)

where, t is the iteration number and N is the number of iterations. d th starts from dth(O) and

decreases down to dth (N).

During the cluster formation process, in line 5 of Algorithm 9, dideaUh is used to define the

neighbor hood.

68

0.2

0.1

oL-~--~~========~==~~ o 20 40 60 80 100 120
t

Figure 8. Cooling Schedule for dth for Annealing FClust.

3.2 Hybrid Algorithms

K-means and SPKM are fast algorithms with O(n) time complexity. However, the number

of expected clusters, K , needs to be given as an input to the K-means and SPKM algorithms.

Additionally, K-means and SPKM may not cluster the data successfully if the cluster boundaries

are not hyper-spherical. Unlike K-means and SPKM, FClust has an adaptive way to extract a

reasonable number of clusters without any boundary restrictions. However , the complexity cost for

FClust is higher than K-means and SPKM. In this section, we propose the (K-means+FClust) and

(SPKM+FClust) Hybrid Algorithms which aim to benefit from the advantages of K-means, SPKM,

and FClust.

3.2 .1 The (K-means+FClust) Hybrid Algorithm

K-means is a fast algorithm with O(n) time complexity. However, the number of expected

clusters, K , needs to be given as an input to the K-means algorithm. Moreover, K-means can

only find clusters with hyperspherical shapes. Therefore, if the clusters are not hyperspherical,

K-means may not estimate the cluster boundaries correctly. A hybrid algorithm of K-means and

FClust is presented in Algorithm 10 to take advantage of the speed of K-means while also benefiting

from the power of automatically determining the number of clusters in FClust. In the hybrid

algorithm, initially, K-means is run with a high number of clusters which is more than the expected

number of clusters. The cluster centroids are t hen extracted to get cluster representatives, and these

representatives are mapped to the agent domain. Next, FClust is run on this smaller number of

agents (relative to the size of the input data set) and the clustering results are mapped back to

the input data domain. Note that , in t he hybrid approach, each agent is mapped to the closest

69

group of data records via its group centroid, since each agent represents a group centroid. The time

complexity for K-means, lines 1 to 2 in Algorithm 10, is O(n), and the time complexity of the FClust

part, in lines 3 to 4, is O(K2). Since the number of agents K is very small compared to the number

of agents n, as long as K ::; yfri (which is always the case in practice), the time complexity and

memory complexity of the (K-means+FClust) hybrid is o (n). Therefore the hybrid version reduces

the time and memory complexities from quadratic to linear.

Algorithm 10 (K-means+FClust) Hybrid Algorithm

Input: Dataset with n data records, an over-specified number of initial clusters, K ::; yfri.
Output: Visualization of interaction between the data items and agent-cluster formation.

1: Run K-means on the original dataset with K clusters, where K ::; yfri).
2: Extract K cluster centroids from K-means' results,
3: Map each cluster centroid to an agent for FClust,
4: Run FClust with K agents.

Advantages of the (K-means+FClust) Hybrid Algorithm

The advantages of the (K-means+FClust) Hybrid algorithm can be listed as:

• Linear complexity: Unlike FClust, the (FClust+K-means) Hybrid algorithm has linear com-

plexity inherited from K-means.

• Unlike K-means, the (FClust+K-means) Hybrid algorithm has an adaptive way to extract a

reasonable number of clusters.

• Unlike K-means, the (FClust+K-means) Hybrid algorithm suffers from no hyperspherical

boundary restrictions on the extracted clusters.

Stopping Criterion

During the movement of the agents, the goal of each agent is to move such that the agent

will be located at an ideal distance to all neighboring agents. Therefore, the procedure can be

considered as a constraint satisfaction problem [145], where having the ideal distance between every

agent pair represents the optimal goal. The difference between the real distance between two agents

and their ideal distance is called the ideal distance error in this document as shown in Equation

(30). One proposed stopping criterion is to halt if the difference in total ideal distances between all

agent pairs in two consecutive iterations is small enough. Since this stopping criterion is feasible

70

TABLE 8

Comparison of different stopping criteria.

Algorithm Advantage Disadvantage
Human experts Takes advantage of Since not automated,
[120, 37, 117] human intelligence. more costly and error prone.
Spatial Entropy- Automated. Can stop early,
based [117] Has lower thus separate some clusters.

computational complexity Harder implementation.
than ideal distance- Experimentally set parameters
based stopping. may not work for other datasets.

Ideal distance-based Automated. High computational
Serves the constraint complexity O(n2

),

satisfaction nature of FClust. thus applicable only
Easy implementation. on small datasets.

when the number of agents is small, it will be used for the (K-means+FClust) Hybrid algorithm in

the experiments of Section 3.3.3.

ideal distance error(i,j) = Idideal(i,j) - d(i,j)1 (30)

Table 8 presents a comparison of this stopping criterion and the stopping criteria presented

in Section 2.5.2.

3.2.2 The (SPKM+FClust) Hybrid Algorithm

SPKM is a fast algorithm with O(n) time complexity for clustering high dimensional and

sparse data sets. However, the number of expected clusters, K, needs to be given as an input to

SPKM. A hybrid of SPKM and FClust is presented in Algorithm 11 to take advantage of the speed

of SPKM while also benefiting from FClust's aptitude to automatically determine the number of

clusters. In the hybrid algorithm, initially SPKM is run with a high number of clusters K which

is more than the expected number of clusters. The cluster centroids are then extracted to get a

representative of the data from each cluster, and only these cluster representatives are mapped to

the agent domain. Next, FClust is run on this smaller number of agents (relative to the size of

the input data set) and the clustering results are mapped back to the input data domain. Note

that, in the hybrid approach, each agent is mapped to the closest group of data records via its

group centroid, since each agent represents a group centroid. The time complexity for SPKM, lines

1 to 2 in Algorithm 11, is o (n), and the time complexity of the FClust part, in lines 3 to 4, is

O(K2). Since the number of agents K is very small compared to the number of agents n, as long

as K ::; yin (which is always the case in practice), the time complexity and memory complexity of

71

the (SPKM+FClust) hybrid is o (n). Therefore the hybrid version reduces the time and memory

complexities from quadratic to linear.

Algorithm 11 (SPKM+FClust) Hybrid Algorithm

Input: Data set X E ~d where Ixl=n; An over-specified number of initial clusters, K S fo.
Output: Visualization of interaction between the data items and agent-cluster formation.

1: Run SPKM on the original data set with K clusters, where K S fo).
2: Extract K cluster centroids from SPKM' results,
3: Map each cluster centroid to an agent for FClust,
4: Run FClust with K agents.

Stopping Criterion

The (SPKM+FClust) hybrid algorithm uses two different stopping criteria, one for SPKM

and one for FClust. For SPKM, the most common criterion is tracing the increase in the total

similarity, as mentioned in Section 2.1.3. For FClust the most common method for stopping the

algorithm is using human experts [120, 37, 117]. An expert keeps watching the visualization panel

until stable clusters are formed. At that time, the algorithm is stopped. However, an automated

method was also presented in [117], which used the spatial entropy of the agents relative to their

location on a grid imposed on the agent space. The problem with this criterion is that the entropy

may remain unchanged for a long while whenever new neighbors do not met, but after a meeting

occurs, changes may start re-occurring. Thus, the above stopping criterion cannot capture these

delayed dynamics, and the algorithm risks to be stopped before convergence. During the movement

of the agents, the goal of each agent is to move such that the agent will be located at an ideal distance

to all neighboring agents. Therefore, the procedure can be considered as a constraint satisfaction

problem where having the ideal distance between every agent pair represents the optimal goal. The

difference between the real distance between two agents and their ideal distance is called the ideal

distance error in this document as shown in (30). One proposed stopping criterion is to halt if

the difference in total ideal distances between all agent pairs in two consecutive iterations is small

enough. Since this stopping criterion is feasible when the number of agents is small, it will be used

for the (SPKM+FClust) Hybrid algorithm in the experiments of Section 3.3.3.

72

Dataset Number
ID of Items
I 1600
II 811

WebM 1704 (sessions)
Iris 150

Pima 768

3.3 Experimental Results

TABLE 9
Datasets.

Number of Number of
Attributes Clusters
2 2
2 3
343 (urIs) NA
4 3
8 2

Maximum Average
Similarity Similarity
0.999948 0.814345
0.997500 0.732619
1.000000 0.059718
1.0 0.709334
0.986171 0.832665

In this section, we describe our experiments and their results for FClust, FClust-Annealing,

(K-means+FClust) Hybrid, and (SPKM+FClust) Hybrid. We start by describing the datasets that

we will use in our experiments, in Section 3.3.1. Then we proceed to explaining how post processing

is applied to extract clusters in Section 3.3.2. Finally, Section 3.3.3 presents the experimental results

observed for FClust, FClust-Annealing, (K-means+FClust) Hybrid, and (SPKM+FClust) Hybrid

on different datasets. No experiments are presented for (K-means+FClust) and (SPKM+FClust)

Hybrid-Annealing because, the aim behind annealing is to have a bigger neighborhood initially and

reducing it in time to speed the convergence of clusters. However, in the hybrid versions, since the

number of agents is already small, a bigger distance threshold, thus a wider neighborhood size, is

being used, and naturally convergence is very fast. Therefore, annealing is not used for the hybrid

experiments.

3.3.1 Datasets

As shown in Table 9, datasets I and II are synthetic datasets, whereas dataset WebM consists

of real Web usage sessions. Iris and Pima are also real life datasets from the UCI machine learning

repository 1. Datasets I and II have 2 attributes and are thus suitable to show the clustering results

visually. To compare the proposed improvements and the (K-Means+FClust) hybrid algorithm with

the original FClust algorithm, datasets Iris and Pima are also used.

Dataset WebM, the Web usage data, consists of Web usage sessions logged by the server

of the CECS Department at the University of Missouri-Columbia (considered as a benchmark data

set) based on the pre-processing method and results in [98]. Each session is a set of URLs that were

visited during that session. Since each URL or item can be considered as one dimension, this results

1 http://archive.ics. uci.edu/ml/

73

in a huge dimensionality. In the dataset, there exist 1704 sessions and 343 URLs, representing the

number of data records and attributes, respectively. The maximum similarity between sessions is

1.00 and the average similarity is 0.06.

In the experiments, two different similarity measures are used, the Manhattan based sim-

ilarity for datasets I and II, and the cosine similarity for dataset WebM. The Manhattan based

similarity is used for the linearly normalized Iris and Pima datasets.

The Manhattan based (Ll) similarity of two data records Xi and Xj is given by Equation 4.

When the data is linearly normalized to [0, 1], the Manhattan based similarity is the same as the

I-norm similarity, which is used in (4).

Given that Si and Sj are two sessions, each formed of a list of ISil and ISjl URLs visited in

each user session respectively, the cosine similarity is computed as follows:

(31)

3.3.2 Post Processing

After the agent clusters are formed, a post-processing phase is needed to cluster the data and

validate the results. Post-processing depends on the data properties. If the data has 3 attributes or

less, the data points are plotted with different colors depending on the cluster assigned. If the data

has a class attribute, then the cluster error, given in Algorithm 3, is also computed.

Algorithm 12 Synthetic Data Post-Processing Algorithm
Input: Agents' coordinates and their cluster labels, Original data set, 8TH: minimum cluster size
Output: Clustered data, plot of agents and data set colored according to their cluster label.

1: Create as many clusters as formed for the agents.
2: Label each data record with the same label as the agent representing that data record.
3: Keep only the clusters with enough data records (i.e. size is above 8TH).
4: Plot agents on the visualization panel, colored according to cluster label.
5: If the data is in 2D or 3D, then plot the data records, colored according to the cluster label (for

validation) .
6: If the data has a class label, compute the cluster error via Algorithm 3.

Moreover, if the data consists of Web user sessions, then profiles are extracted as shown

in Algorithm 13, line 6. In Algorithm 12, line 3, Algorithm 13, line 3, Algorithm 14, line 5, and

Algorithm 15, line 4, 8T H, denotes the session threshold, i.e. the minimum number of sessions

required for a cluster to be valid. If a data record is a bag of items, as in the case of Web usage

data, the value of item_counLthreshold used in Algorithm 13, line 6 is given in Equation (32), where

ICTF denotes the Item Count Threshold Frequency, where O~ICTF~ 1 is a real number. As a

74

Algorithm 13 Web Usage Data Post-Processing Algorithm
Input: Agents' coordinates and their cluster labels, Original data set, 8TH : minimum cluster size
Output: Clustered data, plot of agents colored according to their cluster label, and user profiles.

1: Create as many clusters as formed for the agents
2: Label each session with the same label as the agent representing that session.
3: Keep the clusters with more than 8TH sessions.
4: Plot agents on the visualization panel, colored according to their cluster label.
5: for all Clusters do
6: Find the URLs which are visited more than item_counLthreshold in all the sessions of that

cluster.
7: end for

result, each set of URLs, extracted in line 6 of Algorithm 13, can be considered as a pattern that

represents a Web user profile that summarizes the sessions assigned to that cluster.

item_counLthreshold = ICTF * cluster_size (32)

Algorithm 14 (K-Means+FClust) Post-Processing Algorithm

Input: Cluster means produced by K-means, agents' coordinates and cluster labels from FClust's
output.
Output: Clustered data, and plot of agents and dataset, colored according to their cluster label.

1: Create as many clusters as formed for the agents
2: Map data records to the cluster means of K-means, in other word to agents.
3: If data is in 2D or 3D, plot data records, colored according to their cluster labels from K-means.
4: Label each data record with the same label as the FClust-generated label of the agent repre-

senting that data record.
5: Keep the clusters with more data records than 8TH.

6: Plot agents on the visualization panel, colored according to their cluster label.
7: If data is in 2D or 3D, plot data records, colored according to their cluster label from FClust.
8: If the data has a class label, compute the cluster error via Algorithm 3.

Algorithm 15 (SPKM+FClust) Web Usage Data Post-Processing.

Input: Agents' coordinates and their cluster labels from FClust output, Original data set, 8TH :

minimum cluster size, Data cluster labels from SPKM output, URL list.
Output: Clustered data, plot of agents colored according to their cluster label, and extracted user
profiles as sets of URLs.

1: Create as many clusters as formed for the agents using Algorithm 9.
2: Map data records to the cluster centroids of SPKM, in other words to agents.
3: Label each session with the same label as the FClust-generated label of the agent representing

that session.
4: Keep the clusters with more than 8TH sessions.
5: Plot agents on the visualization panel, colored according to their cluster label.
6: for all Clusters do
7: Find the URLs which are visited more than item_ counLthreshold in all the sessions of that

cluster.
8: end for

75

After the (SPKM+FClust) hybrid algorithm, Algorithm 9 is used to form agent clusters.

Then, Web session clusters are formed and cluster profiles are generated using Algorithm 15, where

each profile is represented by a URL set. To evaluate and compare the quality of clusters, the average

inter-cluster (or between-cluster) and intra-cluster (or within-cluster) similarities are computed. The

similarity of any cluster to an empty cluster (in the case of evaluating the results before post-

processing) is assumed to be O.

3.3.3 Results

In Sections 3.3.3, we start with 2D datasets to allow us to do a visual evaluation. Then we

proceed with the Web usage data as a challenging, high dimensional, real life data example. Finally,

we present our results for the Iris and Pima datasets and compare the clustering outputs to the data

class provided as part of the datasets.

0.'

0.'

°o~----~o.~,----~o.-.----~o .• ~--~o .• -----J

(a) Dataset .

~1Ion-2792

0.'

... "" ... ""

o~o----~----~----~----~--~'

(c) Clustering result for dataset.

ItwfIdot1 - 2792

• 0
o 0

o.
0.'

o~o----~o.,~--~----~~~o~.--~·

(b) Clustering result for all agents.

1bwwo1lon-2792

0.'

I

1
> 0.'

0.'

0
0 0.' " 0.'

(d) Agent clusters generated after post processing
and assigning agents to clusters.

Figure 9. Clustering a dataset with two clusters using FClust where dth=O.04, Simth=O.91.

76

(a) Dataset.

.....,

...... 2
du .. ,"

(c) Clustering result for dataset.

..
0.'

0.'

0 ~0 ----7.,,~--~0~.----7.0.'~--~0~'--~

(b) Clustering result for all agents.

0.2

°0~--~02~--7. •• ~--~0.'--~0~' --~ x_
(d) Agent clusters generated after post processing
and assigning agents to clusters.

Figure 10. Clustering a dataset with three clusters using FClust at iteration 24400.

FClust Results for 2D and Web Usage Datasets

Figure 9(a) shows an example of a data set with two clusters, and the resulting agents space

are shown in Figure 9(b). In Figure 9(d) , agent clusters which include more than 8TH data records

are shown. And in Figure 9(c) , the clustered data is shown. Figure 10 shows the clustering result for

a more complicated data set, given in Figure 10(a) , using the Manhattan similarity given in Equation

(4), and dth=0.04, Simth=0 .86 . Likewise, Figure 10(d) is the post-processed version of Figure 10(b).

When we compare the results in Figure 9(c) and Figure lO(c) , we observe that, when the data

clusters are not strictly separated, the cluster formation algorithm, Algorithm 9, may suffer from a

bridging effect that results in merging two distinct clusters. Note that, since the synthetic datasets

used in our experiments already had attributes between 0 and 1, we did not linearly normalize them

in [0,1] .

Figure 11 shows the results after more iterations compared to Figure 10 (dth = 0.04, Simth =

0.86). This shows that, if the agents' movement is stopped in a wrong state, different clusters may be

assigned to the same cluster. Therefore, the stopping criteria is crucially important for overlapping

data sets.

77

--

(a) Dataset.

ItefItIon-JQ700

I
>

oL-__ ~ __ ~4-__ ~ ____ ~ __ ~

o 04 0.8 X_
(c) Clustering result for dataset .

tt..aor.-30100

I O •• ~ -1/
)- 0.4 •

y .

0~0----~02~--~"~--~----~~~
x_

(b) Clustering result for all agents.

0.'

I .~

0.'

°o~--~o~., --~o~,--~~--~--~
X_

(d) Agent clusters generated after post processing
and assigning agents to clusters.

Figure 11. Clustering a dataset with three clusters using FClust at iteration 30700.

The next results are for two weeks worth of Web usage data for a Computer Engineering

and Computer Science Department's website. We have chosen this data set, because it has have

previously undergone extensive experiments and validation in [102, 101, 99], and hence it is consid­

ered a benchmark data set. In Figure 12(a), the algorithm did not converge because the similarity

threshold computed according to Equation (24) was too high to form good clusters. With the av-

erage similarity and maximum similarity given in Table 9, the similarity threshold is computed as

0.53, which is very high given that the average similarity is 0.06. Therefore this example visually

shows that the similarity threshold given in Equation (24) is not suitable for data with similarities

distributed as a power law, as can be verified in Figure 12(b) and Figure 12(c) (the log-log plot

exhibiting several linear segments) .

78

Iteration = 12000

X coordinate

(a) Agents for Web usage data,

12

10

g 8 .,
:J
0-
j!!

LL 6

4

2

0.2 0.4 0.6 0.8
Similarity

(b) Cosine similarity histogram,

lO'r---------------------~---..,

10'

10'

10'L-------~----~-------------~
~ ~

Iog(RankofsllT'lllanly)

(c) Log-log plot of similarities.

Figure 12. Clustering the Web usage data using FClust with similarity threshold computed according
to Equation (24). (a) no convergence because of an improper similarity threshold (b) Similarity
histograms, (c) Log-log plot of similarities exhibiting power law properties.

79

TABLE 10
Several examples from the profiles of a Web usage data extracted using FClust where 8TH = 10 and
ICTF = 0.1

URL URL
Frequency

P rofile 1 (includes 211 sessions)
0.92 /
0.79 / cecs_computer . class
0.53 / courses.html
0.52 / coursesjndex. html
0.51 / courses 1 00. html
0.27 / people.html
0.27 / peoplejndex.html
0.27 / faculty. html
0.20 / courses300.html
0.19 /degrees.html
0.15 / courses200.html
0.13 / grad_people.html
0.12 / research.html
0.11 / courses_webpg.html
0.11 / index.html
0.10 /staff.htm

Profile 2 (Includes 43 sessions)
0.93 r joshi/ courses / cecs352
0.33 /-joshi/ courses/ cecs352/slides-index.html
0.26 /-joshi/courses/cecs352/outline.html
0.23 /-joshi/courses/cecs352/text.html
0.23 /-joshi/courses/cecs352/handout.html
0.21 /-joshi/ courses/ cecs352/proj
0.19 r joshi
0.16 /-joshi/ courses/ cecs352/proj/proj1 .html
0.14 /-joshi/ courses/ cecs352/proj/ overview .html
0.12 r joshi/ courses / cecs438
0.12 / - j oshi / courses / cecs35 2 / environment. htm

It-.tlon a l0250 1!endon-IQ250

' ft1i iF ,,t , ti.I_,e "' ... , ekI.'1

~,, ' 4.. ~
"' ... , " "'""- ca..'9

0.'
cIu •• r5 "' .. " dulltte ckJ_21

.. ;4 ca. .. r 7 ctJ 22
cluller8 1$.111_23
ckI1J1er9 ctdll.24 . cklsl.l0 Wilw25

I·A- '*"*11 '" ; 0.' " cklllllr21
c:t...ter13 "

1 -1/ et....,"
.";te '" " ,).

-i "
~ .
~ '"

Jt . •
0

0 0._ 0.' 0.' x_.
(a) Clustered agents before pruning. (b) After post-processing with Algorithm 13.

Figure 13. Generated profiles from web usage data using FClust in 10250 iterations.

80

..... co.

ooL----~0~,----~0~.----~----70.8~--~

(a) Dataset.

tt.1IIon - '. '0

0.8

" i

1
>

0 ~0 --~~--70.'~--~"--~0~8--~

1!4nIion _'410

0.'

,', , .'
" .. 02

"t.
i . ., ..
, ;,: ..

° 0~---7.L---~0~' ----~0.'----~0~' --~

(b) Clustering result for all agents.

,*-don _, ol I0

0.8

0.' , 1
02

0
0 0.'

(c) Agent clusters generated after post processing (d) Agent clusters generated after post processing
and assigning agents to clusters. and assigning agents to clusters.

Figure 14. Clustering a dataset with two clusters using FClust-annealing where dth=started from 1
down to 0.04, Simth=0.91.

When we compute the similarity threshold using (26) , it is 0.15. The value of a was set

to 2.5 in this set of experiments. We obtain convergence as shown in Figure 13, where dth = 0.04,

Simth = 0.15, 3TH = 10, and JeT F = 0.10. Several examples of the extracted profiles are presented

in Table 10. For example, Profile1 represents a group of users (possibly prospective students)

checking the department 's main web pages. Profile2 represents a group of student users taking the

course CECS 352 (Joshi is the instructor teaching the course).

FClust-Annealing Results for 2D and Web Usage Datasets

Figure 14 shows the clustering results for the dataset with 2 clusters using FClust-Annealing.

Comparing this result with Figure 9, we can see that the annealing results in fewer iterations to

convergence (1410 vs. 2792 iterations).

Figure 15 also shows that annealing not only accelerates the convergence, but also results in

better quality clusters (no bridging effect). In Figure 10, even though there were 3 separate clusters

in the agent space, after 24,400 iterations, as seen in Figures 10(b} and lO(d} , clustering the data

domain as shown in Figure 10(c} showed that the clustering process did not converge. Figure 11 also

81

--

(a) Dataset.

1tMWon-3435

0 ~0 --~07' --~0~.--~7---~--~
x"",""""

...,."

...,."
clulter 3

(c) Clustering result for dataset .

Iw.IIo!l- 3435

0.'
, .

0.' ..
o. : . . . : .

0 0 0.' 0.' 0.'

(b) Clustering result for all agents.

IIefIICIon a 3435

0.8

• 0.'

0~0--~~--~0~' --~07. --~7---~ x_
(d) Agent clusters generated after post processing
and assigning agents to clusters.

Figure 15. Clustering a dataset with three clusters using FClust-annealing where dth=started from
1 down to 0.04, Simth=0.91 , dideaUh for FClust and post-processing is 0.04.

confirms the fact that there is a tendency to combine three clusters into one cluster unless a better

cluster formation algorithm is applied. Although the classical FClust suffers from these problems,

FClust-Annealing clearly differentiates between these clusters. In addition to being more successful

in clustering, FClust-Annealing converges in fewer iterations (3,435) , compared to 24,400 iterations

for FClust, i.e. it was 7 times faster.

Figure 16 shows the results of clustering real life Web usage data, listed in Table 9, using

FClust with annealing. Example profiles are shown in Table 11. Compared to Figure 13 which took

10,250 iterations, better quality clusters are now formed in only 6,840 iterations. Also 30 clusters

were formed in Figure 13 whereas, with annealing, 25 clusters are formed . By checking the post­

processed profiles, we observed that the decrease in the number is not a loss of information but

rather a better convergence (broken clusters were combined) . In FClust, some clusters were broken

and their agents could not meet each other on the agents visualization panel and therefore could not

be unified.

82

TABLE 11
Some samples from the Web user profiles, extracted using FClust-Annealing where 5TH = 10 and
ICTF = 0.1

URL URL
Frequency

Profile 1 (includes 116 sessions)
0.90 /
0.69 / cecs_computer .class
0.43 / coursesjndex.html
0.42 / courseslOO.html
0.41 / courses.html
0.29 /people.html
0.28 /people_index.html
0.28 /faculty.html
0.20 / courses300.html
0.18 / degrees.html
0.17 / courses200.html
0.13 / general.html
0.13 / generaUndex.html
0.13 /facts.html
0.13 / research.html
0.11 / grad_people.html

Profile 2 (Includes 31 sessions)
0.90 / joshi/courses/cecs352
0.35 / joshi/courses / cecs352 / slides-index.html
0.35 / joshi/ courses/ cecs352/handout.html
0.35 / joshi/courses/cecs352/outline.html
0.29 / joshi/ courses/ cecs352/text.html
0.26 / joshi/courses / cecs35 2 / environment. html
0.13 / joshi
0.13 /
0.13 / joshi/courses/cecs438
0.13 / joshi/courses/cecs352/proj

(K-means+ FClust) Hybrid Results for 2D Datasets

Figure 17 shows the results of the (K-means+FClust) Hybrid algorithm for Dataset I. The

disadvantage of K-means is that it requires the number of clusters as input, however FClust can

extract the number of clusters automatically. With the hybrid approach, 8 clusters are generated

with K-means, as shown in Figure 17(b), where each agent was mapped to one cluster center gen-

erated by K-means. From these, FClust generated the 2 clusters, shown in Figure 17(c). Figure

17(b) represents the K-means result, (i.e. before starting the iterations of FClust). Compared to

Figure 9, where 2,792 steps were needed for FClust's convergence, only 122 iterations were needed

for the Hybrid version. Although the hybrid version speeds up the process considerably, it does not

necessarily suffer from the bridging effect observed during the cluster extraction in post-processing.

83

Iteration· 6840

(a) Clustering result for all agents.

Iteration· 6840

0.2 0.4 0 .• 0.8

X coordil\8te

(b) C lustered agents before pruning.

Iteration,. 6840

l(\~,?pa~o
cluster 1
cluster 2
cluster 3

." clUS18r4
clusllllr5

0.8 cluster 6
cluster 7

'¥ cluster 8 · duster 9

• • ~ ~++
ctuSCer10 · duster 11

j
0 .• cluSCer 12

~ • ,,~. • *+ + cluster 13
cluster 14

§ + + ++

""
cluster 15
duster 16 · cluster 17

0.4

~~
,. cluster 18

01"
duster 19

00 o? duster 20
duster 21 .. ~ •• cluster 22 · cluster 23

0.2 ~ cluster 24

~ ... cluster 25 ·
~

J,.. .,.. ..
0

0 0.2 04 0 .• 0.8

X coordil\8te

(C) Agent clusters generated after post-processing and as-
signing agents to clusters.

Figure 16. Clustering the Web usage session data using FClust-annealing where dth=started from
1 down to 0.04, simth=0.15 , dideaLth for FClust and post-processing is 0.04.

Figure 18 is a collection of figures showing the results of the (K-means+FClust) Hybrid

Algorithm given in Algorithm 10 for Dataset II . When the results are compared with the simple

FClust Algorithm in Figures 10 and 11 , it can be observed that the hybrid algorithm is faster thanks

to fewer iterations and to the modest linear computational cost.

84

"",0"

" D.'

D.' D.

0
D.'

0
0 D.' D.' D.' 0 D.'

X""""'" Xc:oordIn.!,

(a) Dataset . (b) Data clustered into K = 8 clusters using K-
mea ns.

"rlld(In_l22

OUtt ... O 0
oust.' ,

D.'

I " I " J
D.' D'

0.2 D2

0 0
0 D' 0 D2 D' D.' D.' .. "', ,, X_ •

(c) Agent clusters after applying thresholding. (d) Data clusters after applying thresholding.

Figure 17. Stable output of (K-means+ FClust) hybrid on a 2 cluster-data set where Simth=0.88

(using Eqn.(24)) , dth= 0.4. d ideaLth for FClust=0.04, d ideaLth for forming clusters = 0.08.

FClust, FClust-Annealing and (K-means+FClust) Hybrid Results for Iris and Pima

Datasets

Table 12 compares the FClust , FClust Annealing, and (K-Means+FClust) Hybrid algorithms

on t he datasets Iris and Pima, which were also used in [117J. The results were averaged over 10

different runs , and the numbers inside the parentheses represent the standard deviations. We have

also observed, in the Iris dataset experiments, that the original FClust algorithm tends to get stuck

in local optimum for a long time, but after enough iterations, it can find a better clustering. For

example, in one run, FClust produced 4 clusters around 1500 iterations, with a cluster error rate of

approximately 0.25, computed via Algorithm 3, while around 2500 iterations, it formed 3 clusters.

However, the error rate was still high (0.27) . Later, the number of clusters dropped to 2 and around

7000 iterations, it found 3 clusters with an error rate of 0.08. More iterations resulted in high error

rates (around 0.22) again with 2 clusters. So the system will cycle between 2, 3 and 4 clusters. These

are different but somehow stable clustering options. However, it was observed that, results with more

than 5 clusters with the given parameters, are a result of an insufficient number of iterations. Again

85

0.'

0.'

Inpul Dllta

(a) Dataset.

lterrion"169

r--~--r--~--r---, d ""'"
dustllr2
dustllr J

...........

(c) Agent clusters after applying thresholding.

net.lion -O

0.'

.. - -

(b) Data clustered into K=8 clusters using K­
means.

lterrion"169

r--~--r--~--r---, dUlltlr 1

... + ...

""",,,
du",,, '

(d) Data clusters after applying thresholding.

Figure 18. Stable output of (K-means+FClust) hybrid on a 3 cluster-data set where Simth=0.73

(using Eqn.(24)), dth= 1.0. dideaLth for FClust=0.04, d ideaLth for cluster forming =0.08.

as we have noted in Section 3.2 .1, since every pairwise ideal distance is one constraint/ objective to

be satisfied, there are n x (n - 1) / 2 objectives. Theoretically this can lead to up to n x (n - 1)/2

Pareto solutions on the Pareto front. The actual number in practice is much less however, since

several of these constraints can be satisfied simultaneously.

The FClust-Annealing version decreases the number of iterations drastically. It starts form-

ing cluster centers from the first iterations, and even though the centers are created in less than

10 or 20 steps, they still seem to be reasonably good. For the first few iterations, the cluster

centers changed rapidly since the neighborhoods were wide. Yet clusters were still formed after

post-processing. Finally, the clustering scheme which gave the minimum error was reported. An­

nealing converges to a meaningful cluster formation faster than FClust. Moreover, in just a few

iterations, it can already present different possible clustering options. This process and the changes

in the formed cluster numbers and their errors with the iterations, for 10 different runs on the Iris

dataset, are shown in Table 13. For each run, the first row is the number of clusters generated at

the corresponding iteration number , which is given as the column label. Similarly, the second row

shows the error computed via Algorithm 3.

86

The Ideal Distance Error

~ 18

" Cl
<C
c

16 " " ~
Q)

"' 1l 14
c

~
is 12 a;

" a::
" c

10 '" " g
~
is
a;

" :s!
'0
1l
c

~ 4
is

~ 2 >--
0 10 15 20 25 30 35 40 45

Iteration

Figure 19. Evolution of the ideal distance error with iterations for clustering the Iris dataset using
(K-means+FClust) Hybrid algorithm.

In FClust-Annealing and the (K-means+FClust) Hybrid, since the neighborhood is wider ,

clusters are formed faster , and there will be fewer agents on the visualization panel between agent

flocks. Later (in the case of annealing), when the neighborhoods become narrow, the chance of flocks

meeting and affecting each other decreases, which causes a decrease in the exploration for better

clustering options. Therefore FClust Annealing and the (K-means+ FClust) Hybrid are more prone

to getting stuck in local optima. Some random moves could be added to the algorithm to increase

the opportunity for exploration. One of the problems observed with the (K-means+FClust) Hybrid

on the Iris data set was that the algorithm may separate the members of the first cluster into two

groups. During the clustering using the Hybrid algorithm, K was set to 8 in K-means, d ideaLth was

0.04, and during post processing, it was 0.08.

To stop the Hybrid algorithm, the ideal distance error, for each pair of agents is computed,

and when its difference compared to the previous iteration fell below 0.009, the algorithm was

stopped. Figure 19 shows the ideal distance error versus the iteration number for the Iris dataset

using the (K-means+FClust) Hybrid algorithm. The irregularities observed as sudden increases in

the error correspond to the time when clusters reached the border of the visualization panel and

continued moving, thus wrapping around toward the opposite side of the panel. That said, the

(K-means+FClust) Hybrid algorithm produced reasonable clustering results in fewer iterations on

the Iris dataset .

In the experiments with the Pima data, FClust formed 2 or 3 clusters, for dth =0.04 with

87

an error rate around 0.50. Manual stopping terminated earlier than automated stopping because,

a Human typically follows the bigger flocks of agents, thus the agents which are spread around the

visualization panel do not affect the human observer as much as they may affect the automated

stopping. In the FClust-Annealing algorithm, 2 clusters of the Pima dataset were formed around 20

to 30 iterations, with a cluster error rate between 0.45 and 0.50. For the Pima data set, with smaller

cluster size threshold values, clusters would be observed in fewer iterations. However, we kept this

threshold constant as n/20 to be able to compare the proposed algorithms with the original FClust

algorithm. Table 14 shows that an average of 1651 iterations for FClust-annealing were sufficient

to get a state of the visualization panel which would require an average of 3995 iterations of the

original FClust algorithm. Similarly, K was 8 and dideaUh was 0.04 for the the Hybrid algorithm.

During post processing, dideaUh was 0.08. We also observed that, for both the Iris and Pima data

sets, minimum cluster errors were observed for the FClust-Annealing experiments (0.11 for Iris and

0.43 for Pima) compared to all other algorithms.

(SPKM+FClust) Hybrid Results for the Web Usage Dataset

Using the Web usage data set, the (SPKM+FClust) hybrid algorithm was tested and com­

pared to FClust. In both algorithms, the ideal distance was computed using (28). Our experiments

showed that since Web usage data followed a power low distribution [129], (24) resulted in a grossly

over-estimated similarity threshold and led to no cluster formation, as mentioned in Section 2.5.2.

Although FClust managed to converge thanks to the similarity threshold modification, and

although meaningful profiles were extracted, we observed that the results contained too many invalid

clusters (i.e. clusters with less than STH sessions), as shown in Table 15. In fact, on the average,

after 4000 iterations, only 31 out of 502 clusters were valid. Note that the notations Intm Sim and

Inter Sim stand for intra- and inter-cluster similarities, which ideally, should be highest and lowest,

respectively. Gen. Glust. is the number of generated clusters, before pruning the clusters with fewer

than ST H sessions. Final Glust. represents the final number of clusters after pruning. The values

in parenthesis are the standard deviations over 10 runs.

Table 16 lists the evaluation metrics for the (SPKM+FClust) Hybrid, averaged over 10

different runs, and compares results for different K values used for the number of clusters in SPKM.

As expected, when the number of agents decreases, the number of iterations needed to converge

also decreases. Selecting the number of agents, K, not only affects the number of iterations but

also affects the quality of the resulting clusters. Increasing K, increases the number of (agent-space

88

distance to ideal distance matching) constraints that need to be satisfied. However, a higher value

of K is also crucial to give a chance for collaboration to actually take place, and thus extract higher

quality clusters. The presence of more agents leads to stronger collaboration, whereas a sparse agent

space is very risky because it reduces the potential for collaboration, the very mechanism by which

this social learning paradigm actually works.

Figure 20 compares the clustering results of FClust and our proposed Hybrid approach.

Even though a very small number of agents can degrade the collaborative power of the algorithm,

having a smaller number of agents on the visualization panel makes it easier to observe the simi­

larity relationships between the data records. Figures 20(a) and 20(b) show that while the hybrid

algorithm has converged around 4000 iterations, FClust needed more iterations to cluster the un­

labeled agents. Table 18 compares the average system CPU time computed by 10 different runs

of the tested algorithms, showing a big advantage for the hybrid approach mainly because it does

not have to compute a complete distance/similarity matrix for the entire data, but rather only for

the reduced cluster centroids resulting from SPKM. The dominant part of the computation time is

the computation of ideal distances amongst agent pairs, which is performed only once at the start.

Thus, the difference in computation times between 4,000 and 10,000 is small This is also expected

from the complexity analysis in Sec. 2.5.2. Furthermore, Tables 15 and 16 show that the quality of

the discovered clusters is also higher in the proposed hybrid algorithm, since the average similarity

within clusters is almost two times higher (thus better), and the average inter-cluster similarity is

almost 5 times lower (thus better). During our experiments, we observed that even at a whoop­

ing 40,000 iterations, FClust still could not reach the quality levels of the proposed hybrid on the

evaluation metric. A few sample profiles from Figure 20(d) are listed in Table 17 (paucity of space

prevented us from listing all 19 profiles), showing results that fare very well with the results in [98]

on this same benchmark data set: A significant number of good profiles were discovered, and the

profiles are interpreted as meaningful groups (thus patterns) of user activities on the website that

range from casual visitors of the website to students who are more focused on particular courses.

3.4 Conclusions

Flocks-of-agents based swarm intelligence holds a great promise, and being the most recent

of all the swarm-based clustering approaches, it has been the least studied. To address some of

the limitations of the standard flock-based clustering algorithm (FClust) on Web usage data, we

developed some improvements, including the K-means variant Hybrid algorithm. Our hybrid ap-

89

1*8IIon -..aoo

(a) Clustered agents beforepruning (FClust) . _"

D ~D ~~D~2---D~'--~~~~~ x_
(c) Agent clusters generated
a fter post-processing and
assigning agents to clusters
(FClust) .

"""" '*'-, " '*'''''. c:tultllr5
dust.rf5
c:tultllr1
dust.rf5
""'~,

c:utlrl0 -" c:utlr 12

-" -" c:utlr 15 " dustlr 17

•• _ ••••• _ ••• _ ••• _ ••••• _ •••••• J •.• _ ••• _ •• •• ••••••• _ •• •••• •.•• _ .

t +

(b) Clustered agents beforepruning (Hybrid).

.... _-_ ... __ ... _--_ .. __ .. _--_ .. . _-_ . .. _--_ . . _._- --- _._---

i
(d) Agent clusters generated
after post-processing and
assigning agents to clusters
(Hybrid).

Figure 20. Clustering the Web usage session data using FClust vs. (SPKM+FClust) Hybrid where
dth = 0.4, d ideaUh = 0.04.

proach reduces the quadratic complexity of FClust to linear complexity and performs similarly to

FClust with fewer iterations for clustering high-dimensional data such as web usage data and text

documents. Our experiments confirmed the superiority of the proposed hybrid approach, both in

terms of quality of the final results and computational cost.

90

co

Dataset

Iris

Pima

Number
of Items
150

768

rn
Q.l ...,
;:l rn
~ Q.l rn r.. rn ...,

~ ...,
< U
0 0
r.. r..
Q.l Q.l

~ ~

S S
;:l ;:l

Z Z

4 3

8 2

TABLE 12. Compared Results (Averaged over 10 runs).
FClust FClust Annealing FClust Hybrid

Average Avg. Avg. Average Avg. Avg. Average Avg. Avg.
Clusters Error Iter. Clusters Error Iter. Clusters Error Iter.
Found No Found No Found No
3.1 0.18 1811 2.9 0.16 11.6 4.5 0.22 41.5
(0.32) (0.04) (400.1) (0.32) (0.03) (4.33) (0.85) (0.06) (22.45)
2 0.47 3995.1 2 0.475 19.9 3.8 0.45 41.7
(0) (0.01) (984.6) (0) (0.Q2) (4.95) (1.5) (0.03) (18.58)

co
I:'-'

TABLE 13. Number of clusters extracted and corresponding error at different iteration steps for 10 different runs of clustering the Iris data using
FClust-Annealing where dth=O.4, di deaLth=0.04

[Iteration No [1 1 10 1 50 1 100 1 200 1 .. 300 1 400 [500 I!OOO 1 1500 11{jOO L~
Run 1 1 3 6 6 5 6 5 4 4 4 3 4

0.67 0.16 0.26 0.26 0.24 0.24 0.18 0.16 0.15 0.15 0.13 0.15
Run 2 0 3 2 2 2 2 2 2 2 2 3 2

0.15 0.23 0.23 0.23 0.23 0.23 0.22 0.23 0.24 0.22 0.22
Run 3 0 1 5 5 7 7 5 4 4 4 2 3

0.67 0.23 0.21 0.24 0.24 0.21 0.19 0.19 0.19 0.22 0.18
Run 4 0 2 2 2 2 2 2 3 3 4 4 3

0.24 0.23 0.22 0.22 0.23 0.22 0.17 0.17 0.18 0.19 0.09
Run 5 0 2 4 4 4 4 4 4 2 3 3 4

0.32 0.23 0.27 0.27 0.28 0.28 0.28 0.23 0.18 0.18 0.11
Run 6 1 0 4 4 3 3 4 3 5 5 4 4

0.67 0.28 0.2 0.17 0.18 0.27 0.22 0.21 0.22 0.18 0.19
Run 7 0 1 3 5 4 4 3 3 3 4 4 4

0.67 0.19 0.16 0.14 0.17 0.15 0.16 0.15 0.1 0.13 0.11
Run 8 0 0 5 6 4 5 4 4 4 2 2 2

0.26 0.28 0.22 0.2 0.22 0.22 0.26 0.22 0.22 0.22
Run 9 1 0 5 3 3 3 3 3 2 2 2 2

0.67 0.19 0.13 0.15 0.13 0.14 0.14 0.22 0.22 0.22 0.22
Run 10 0 1 4 4 4 6 4 3 3 2 2 3

0.67 0.27 0.22 0.24 0.22 0.13 0.16 0.17 0.22 0.23 0.1

Avg. No of Clusters 0.3 1.3 4 4.1 3.8 4.2 3.6 3.3 3.2 3.2 2.9 3.1
Average Error 0.67 0.411 0.237 0.218 0.212 0.212 0.203 0.192 0.198 0.192 0.192 0.159

TABLE 14
Average result of 10 different runs of clustering the Pima data set using FClust-Annealing, where
dth started from 1 and decreased to 0.04.

Found Clusters Error Iteration No
Average 2 0.47 1651.1
(Standard Deviation) (0.01) (587.3)

TABLE 15
Average results (and standard deviations in brackets) of 10 different runs of FClust algorithm, where
dth = 0.04, a = 2.5, 8TH = 10, JeT F = 0.10.

FClust Before Post Processing FClust After Post Processing
Intra Inter Inter/ Gen. Intra Inter Inter/ Final Iter.
Sim Sim Intra Clust. Sim Sim Intra Clust.
0.891 0.014 0.016 501.8 0.352 0.108 0.307 31.4 4000
(0.004) (6E-04) (8E-04) (12.5) (0.013) (0.015) (0.048) (1.96) (0)

93

<:0 ..,.

TABLE 16. Average result (and standard deviations in brackets) of 10 different runs of the (SPKM-FClust) hybrid algorithm with different K values,
where d th = 0.4, dideaUh = 0.04,0: = 2.5, 8T H = 10, JeT F = 0.10.

SPKM FClust Hybrid Before Post-Processing FClust Hybrid After Post-Processing
Intra Inter Inter/ K Intra Inter Inter/ Gen. Intra Inter Inter/ Final Iter.
Sim Sim Intra Sim Sim Intra Clust. Sim Sim Intra Clust.
0.537 0.029 0.0538 100 0.428 0.007 0.016 54.5 0.572 0.021 0.037 25 3870.8
(0.019) (0.003) (0.0044) (0) (0.034) (0.002) (0.005) (6.6) (0.018) (0.007) (0.012) (5.6) (2410.1)
0.511 0.032 0.0621 50 0.441 0.013 0.029 30.4 0.498 0.02 0.04 22.9 934.2
(0.031) (0.007) (0.0145) (0) (0.045) (0.005) (0.01) (5.04) (0.032) (0.005) (0.008) (5.02) (600.9)
0.496 0.033 0.0679 30 0.463 0.021 0.045 23 0.452 0.025 0.056 19.8 112.8
(0.032) (0.007) (0.0163) (0) (0.054) (0.008) (0.018) (2.16) (0.039) (0.008) (0.019) (2.97) (127.82)

TABLE 17
8 sample profiles out of a total of 19 Web user profiles visualized in Figure 20(d), and extracted
using the (SPKM+FClust) Hybrid with K = 100, 5TH = 10 and JOTF = 0.1.

URL URL URL URL
Freq. Freq.

Profile 1 Profile 11
0.47 / 0.72 / shi/cecs345
0.37 / cecs_computer . class 0.50 / shi/cecs345/Homeworks/1.html
0.23 / courses~ndex.html 0.42 / shi/cecs345/Projects/1.html

Profile 2 Profile 7
1.00 1 / yshang/CECS341.html 0.97 1 /access
0.60 / yshang/W98CECS341 0.85 / access/ details.html

Profile 6 Profile 13
0.82 / saab/cecs333/private 0.94 / degrees_grad .html
0.70 / saab/cecs333 0.88 / degrees_grad~ndex.html
0.48 / saab / cecs333 / private / assignments 0.84 / deg_grad_genor .html
0.41 / saab/cecs333/private/lecture_program 0.64 / degrees.html

Profile 10 Profile 19
0.97 / c697168/cecs227/labs/main.html 0.98 / saab/cecs303/private
0.97 / c697168/cecs227/labs/lab1.html 0.90 / saab / cecs303
0.96 / c697168/cecs227/labs/left.html 0.83 / saab/cecs303/private/solution

TABLE 18
Comparison of average system CPU times of 10 different runs for FClust (4000 and 10000 iterations)
and (SPKM-FClust) hybrid algorithm with 4000 iterations, where K = 100, dth = 0.4 in the Hybrid
and 0.04 in FClust , dideaLth = 0.04, a = 2.5, 5TH = 10, JOT F = 0.10.

FClust-4000 FClust-lOOOO Hybrid
Avg. CPU Time (s) 6.98 7.28 0.04
(Standard Deviation) (0.1) (0.2) (0.02)

95

CHAPTER 4

FLOCKS OF AGENTS BASED RECOMMENDER SYSTEM

In this chapter, we define a new Swarm Intelligence-based recommender system (FlockRe­

com) based on the collaborative behavior of bird flocks for generating Top-N recommendations.

The flock-based recommender algorithm (FlockRecom) iteratively adjusts the position and speed of

dynamic flocks of agents on a visualization panel. By using the neighboring agents on the visual­

ization panel, top-n recommendations are generated. The performance of FlockRecom is evaluated

using the Jester Dataset-2 [2] and is compared with a traditional collaborative filtering based recom­

mender system. Experiments on real data illustrate the workings of the recommender system and

its advantages over its CF baseline.

4.1 Introduction

In recent years, we have witnessed an explosive growth in the amount of information. Each

day, more books and journals are published, more newspaper articles are written, more web pages

are posted online, more office documents are prepared, more photos are taken, and more movies are

created. This over-abundance of information contributes to the reasons why we can get hundreds or

even thousands of results for a simple search, and why we can find it hard to arrive at the resources

that we need by wading through endless labyrinths of Web pages and Websites. This problem is

commonly referred to as information overload.

Recommender systems aim to assist users in handling the information overload problem.

Two of the many approaches to build recommender systems include collaborative filtering (CF) and

swarm intelligence (SI), both built on the collaboration of users. Based on the assumption that

users with similar past behaviors (rating, browsing, or purchase history) have similar interests, a

collaborative filtering system recommends items that are liked by other users with similar interests

[132, 133, 69]. More information on CF and other approaches are presented in Section 2.8. In this

chapter, we present a new recommender system approach using a Swarm Intelligence algorithm,

inspired from bird flocks and called flocks-of-agents based recommender system (FlockRecom). In

96

this approach, each user is mapped to one agent, i.e. each agent of the flock represents a user.

Initially, agents are placed on a planar surface (hereinafter referred to as the visualization panel).

Then, in each iteration, similar agents attract each other, while dissimilar agents repel each other.

Thus, the agents' speed gets updated according to their neighboring agents. In time, similar agents

start moving together and closer, forming clusters [129, 128, 117]. Moreover, the distance between

the agents depends on the similarity between the users that are mapped to those agents. At each

iteration, recommendations are generated/updated using the neighboring agents. Agents keep mov­

ing until they are forced to stop. Thus, the dynamic character of the FlockRecom provides dynamic

recommendations, making FlockRecom stronger at exploring different recommendation options and

providing more variety for recommendations. Variety or diversity is important in the environments

that users keep visiting repeatedly. Additionally, initial experimental results show that, FlockRecom

is a promising approach for recommendation in dynamic environments, thus holding a potential for

social networking platforms.

In the rest of this chapter, we present FlockRecom in Section 4.2 and experiments on a real

life dataset in Section 4.3. Finally, we make our conclusions and discuss future work in Section 4.4.

4.2 Flocks-of-Agents based Recommender System

The inspiration behind the flocks-of-agents-based recommender system stems directly from

the collaboration among bird flocks in nature. Flocks of agents-based recommender system is suitable

for any kind of data set where one can define a similarity measure between users. Each agent

represents one user. Initially, agents are placed on a visualization panel, which is a 2 or 3-dimensional

continuous space, where x, y (and if applicable z) coordinate values range between 0 and 1. Agents

may be placed randomly or some background information can be used to place them. Then, they

start moving around. As they meet other agents in a defined neighborhood, they try to remain

within an ideal distance to each other, which is determined according to the similarity of the users

that agents are representing. The more the users are similar, the smaller the ideal distance will be.

Ideal distances are computed for each agent pair once at the beginning of the algorithm based on

the intrinsic properties or ratings of the users. If neighboring agents are further apart than the ideal

distance, there will be an attraction force between them and the agents will try to move closer to

each other. In contrast, if the distance is less than the ideal distance, then there will be a rejection

force, and agents will move apart from each other. Given this basic idea, Algorithm 16 gives the

procedure for Flocks of Agents Recommender System (FlockRecom).

97

Algorithm 16 FlockRecom Algorithm
Input: Dataset.
Output: Top-N recommendations.

1: Initially place the agents on the visualization panel
2: Initialize velocities of all agents
3: Compute the ideal distances, dideal, between agents.
4: while 1 do
5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

for each agent i do
for all j such that d(j, i) ::; dth and i =I- j do

if d(i, j) = dideal (i, j) then
(3(i,j) ~ 0

else if d(i, j) > dideal (i, j) then / / attraction

(3(i]') ~ 4 X (d(i,j)-d,dcal(i,j))2
, dth -d,deal (',J)

else / / repulsion

(3(") 4 (1 d(i,j)))2
t,] ~ - x - d,deal(i,j)

end if
Vresulting(i,j) ~ v(i) + v(j) + (3(i,j) x vcap(i,j)

end for
if :3 j such that d(j, i) ::; dth and i =I- j then

w(i) = normalize (L Vresulting(i,j))
jld(j,i):5.dt/,&i¥j

if The angle between v(i) and w(i) is less than or equal to 90 degrees then
vnext(i) ~ w(i)

else
vnext(i) ~ v(i)

end if
else

vnext(i) ~ v(i)
end if

L Vresulting (i, j)
jld(j,i):5.dt/,&i¥j

ampnext(i) ~ ampdej + 100

end for
for each agent i do

compute new position Pnext(i) ~ Pcurrent(i) + ampnext(i) x vnext(i)
end for

31: Move all agents to the updated positions and update current velocities.
32: for Each user u that will be provided recommendations do
33: Let iu be the agent representing u
34: Let S (u) = {users corresponding to neighboring agents of iu within distance dideaLth
35: Compute average rating per item among all users in S(u)
36: Select top-N items as N items with highest average rating
37: Recommend Top-N items to user u
38: end for
39: end while

In steps 1 and 2, the initialization is performed. The velocity vector V, is a unit vector, (Le.

Ilvll = 1), representing the direction. In step 3, the ideal distances between agents are computed via

Equation (27), where sim(i,j) is the similarity between the users that agents i and j are representing,

98

and Simth is the similarity threshold. We use cosine similarity to compute the similarity between

two users, as shown in Equation (6).

Later, for each agent i, the neighboring agents that are close enough to i on the visualization

panel, are extracted in Line 6, where d(i,j) is the 2D Euclidean distance between agents i and j,

and dth is the distance threshold. Then, for each neighbor:

• If the distance between the agents i and j is equal to the ideal distance between them (Line

7), there is no attempt to change i's velocity due to j (Line 8).

• If the distance between the agents i and j is greater than the ideal distance between them

(Line 9), an attraction force will move i closer to j, with a more similar velocity to j (Line 10).

• If the distance between the agents i and j is smaller than the ideal distance between them

(Line 11), a repelling force will move i further from j, with a less similar velocity to j (Line

12).

In line 14, the velocity effect on i due to neighbor j is computed where vcap(i,j) is the unit

vector pointing from i to j. Next is the computation of the updated velocity of agent i, vnext(i),

between lines 16 and 25. First, if i has neighbors, then their resulting velocities on i are summed up

and normalized. If the total, normalized velocity w, does not change the agent's current direction

more than 90 degrees, then the updated velocity is assigned as w. Otherwise the velocity is kept

unchanged for the next iteration. Similarly, if agent i does not have any neighbors -note that an

agent is not considered to be a neighbor of itself- then the velocity will be kept the same for the

next iteration. In line 26, the amplitude is computed depending on the number of neighbors and

distance threshold, where ampdeJ is the default minimum amplitude. The minimum amplitude is

empirically set to 0.02. At the end of each iteration, the updated agent coordinates are computed,

and all the agents are moved to their updated positions simultaneously (lines 28 to 31). Then the

next step is to generate recommendations. Let's call active users to the users that recommendations

are generated for. For each active user, a set of users are determined via the agent neighborhood

on the visualization screen. In other words, for the active user u's corresponding agent iu, neighbor

agents set S(j) is determined such that d(i,j) :s; dideaUh and i i- j. Then, average item ratings are

computed for all users represented by the agents in S(j). Finally, n items with the highest average

ratings are recommended to user u. These n items are called top-n items.

99

4.3 Experiments

The experiments were conducted on a dataset extracted from the Jester Dataset-2, which is

available online on the website of the University of California, Berkeley [2]. In addition to FlockRe-

com, a traditional collaborative filtering based recommender system was also implemented to test

the performance of our system, and performances were evaluated and compared using precision,

recall, and F1 metrics as well as variety in the recommendations.

4.3.1 Dataset and Pre-Processing

Dataset
ID

Jester
Jester II

TABLE 19
Dataset.

Number Number of
of Users Items
50 150
500 150

Avg.
Sim.
0.29
0.3

In our experiments, we used the Jester Dataset-2, which is a collection of user ratings for

150 different jokes [2]. The dataset has 63,978 users, and the ratings range on a real value scale from

-10 to +10 (-10 and +10 are included). As shown in Table 19, in the experiments, the first 50 or

500 users were used with all 150 jokes, thus 1911 or 19771 ratings were used. The user ratings for

jokes were in the scale of -10 to +10. In the pre-processing phase these ratings were normalized in

the scale 0 to 1, where 0 indicates that the item is rated -10 or is not rated by the corresponding

user [18].

4.3.2 Evaluation Metrics

Evaluating a recommender system can be nearly as hard as designing and implementing

the system, in part because no simple, objective, and general agreed upon mathematical formula is

always available to measure success [132, 12, 126, 20, 19]. One problem suffered by some systems is

over-specialization. When the recommendations are limited to the user's behavior, user's profile, or

user's ratings, the user can be restricted to seeing only similar items, and there will be no randomness.

In artificial intelligence, this problem is known as, the exploration/exploitation dilemma.

Evaluating information retrieval systems can be done if one has available, a set of user queries

and a labeled set of search results (relevant and non-relevant). In this case, precision (proportion

100

of retrieved items that are really relevant) and recall/coverage (proportion of all items, known to

be relevant, that are retrieved) are typically used as goodness metrics [126, 12]. One method for

evaluating a recommender system relies on asking for a ranking or a rating of the results from the

users. However, this can be subjective. Moreover, if the study is for research purposes, it can be hard

to find a sufficient number of real users with diverse interests for the experiment. For this reason,

historical data has also been used in research studies. In this case, the output of a recommender

system is compared to the real interests of the user in the historical data, and metrics such as

precision and coverage are computed [126, 12]. One popular way to assess the success of a system

is to compare it, for example with recommending the default, most popular, or even a randomly

selected item.

In our experiments, we test how well the recommendations can represent the user while

providing a variety of recommendations to address the exploration-exploitation dilemma. Thus,

recommendations should be as close as possible to the real interests of the user. In our experiments,

the ground truth is the set of items liked by the active user. An item is considered liked by the

user if its rating exceeds 0.7, after normalization to a scale of 0 to 1, where 0.7 was chosen based on

existing literature [57].

Evaluation should take into account both (i) precision (the recommended items are all correct

or included in the ground truth set of items)

Ihnlel precision = '---:-=-...,....:....:.
IIRI

(33)

and (ii) coverage/recall (the recommended items are complete compared to the ground truth

set, i.e. they include all the ground truth items).

II
_ IIR n lei

reca - IIel

where Ie = {Items liked by user} represent the ground truth set of items and

IR = {Items recommended by system} represent the set of recommended items.

(34)

A precision score of 1 indicates that every recommended item was part of the ground truth

set, whereas, a recall score of 1 represents that all the ground truth items were recommended.

Precision and recall can be combined in the F1 measure, given in Equation (35)[57]. Higher values

of the F1 measure indicate a more balanced combination of high precision and recall.

101

F 2
precision x recall

1 = x '--------,.,.
precision + recall

(35)

In addition to precision, recall, and F1, we compute variety or diversity by counting the

number of unique items recommended to the user.

Definition 1 Variety = The n'umber of distinct recommended items = IIRI

4.3.3 Experimental Results

In the experiments, using FlockRecom, we generated top-n recommendations for active users

at each iteration of our dynamic FlockRecom algorithm, and we varied n from 1 to 30. In our previous

studies on using FClust for clustering, having a distance threshold small as 0.04 was superior for

many other datasets. However, by trial and error we observed that having the distance threshold

dth as high as 0.4 produced better results.

To compare the results, a traditional user-based nearest neighbor CF algorithm [132] was

used. In the collaborative filtering approach, the neighbors of an active user u are defined as the

users that are similar to u above a similarity threshold Simth as given in Equation (36). After the

neighbors are computed, the average item ratings per active user are evaluated using Equation (37),

where u is the active user and i is an item.

CF_neighbor(u) = {tlsimilarity(u, t) ?: Simth' t -=1= u} (36)

L rating(t, i)
. . tECF _neighbor (u)

AverageJatmg(u,l) = ICF_neighbor(u) I (37)

In the experiments, the cosine similarity was used to compute the similarity between users.

After trial and error, the similarity threshold Simth was set to 0.07, whereas the distance threshold

dth was set to 0.4. The evaluation metrics were averaged over 10 different active users and 10

different runs per active user.

Figures 21 to 23 show the results of evaluations for the flocks-of-agents based recommender

system (FlockRecom - FR) in comparison to the results of collaborative filtering (CF) for 50 users,

where Simth = 0.07, dth = 0.4, and dideauh = 0.1. The parameters were set by trial and error. The

comparisons are based on the average precision, recall, and F1 values for varying n-values for top-n

102

.8

.7

.6

.5

.4

. 3

lIIML
~

.i

.,

0
'00

! -- --

200 300

r~

400

....

500
iteration

---e- CF N=5
-+-CFN=10
---- CF N=30
~FRN=5

-+- FRN=10
FR N"'30

~ ...Ii.+ """'-">

~~ ---

600 700 800 900 '000

Figure 21. Flock-based recommender system (FR) compared to standard collaborative filtering (CF)
based on precision.

0.8,---,-------,----,---,---,-----,----,---,------,---,

0.5

J 04b ... _ - ~ - M IIIMI ... I11111 ~

0.3_----==~~=====
0.2

0.'

'00 200 300 400 500
Iteration

600 700 800

--e-CFN=5
-+-CFN=10
____ CFN=30

---e--- FR N=5
--+-FRN:l0

FR N=30

900 '000

Figure 22. Flock-based recommender system (FR) compared to standard collaborative filtering (CF)
based on recall.

recommendations, over time. The figures display the quality versus iteration or time averaged over

all 10 users and 10 runs per active user.

From Figure 21 , we observe that the precision values for FlockRecom are slightly better

than those for CF, especially, for small N. Additionally, FlockRecom provides more variety in the

103

0.6

0.7

0.6

o. 5

~ 0.4

o. 3r- ---
o. 2

Ir"""
...

,.-.
o.

0
'00 200 300 400 500

Iteration

....

600 700

...T .

....

600

---e- CF N=5
~CFN:10
__ CFN:3Q
---e- FR N=5
--+-- FR N:10

FR N=30

-..,

900 '000

Figure 23. Flock-based recommender system (FR) compared to standard collaborative filtering (CF)
based on Fl.

recommendations. Similarly, as seen in Figure 22, FlockRecom produced slightly higher recall values

than CF. As expected, both for FlockRecom and CF, recall values increased as N, the number of

recommended items, was increased. As a result, the Fl metric was higher for FlockRecom, especially

for N = 5, as Figure 23 shows.

The fluctuations in Figures 21 to 23 are due to the exploration in FlockRecom, thus showing

that, unlike CF, FlockRecom does not recommended the same items over and over. Figure 24

presents the number of times each joke is recommended for a specific user over 10 different runs.

While CF kept recommending the same items, FlockRecom added exploration and variety without

losing from the precision, recall, and Fl quality.

To sum up, FlockRecom produced slightly better results than CF, after a sufficient number

of iterations. For small values of N (which is preferred to avoid overloading users with too many

recommendations), FlockRecom computed better recommendations, suggesting a more effective and

realistic recommendation strategy. Morever, FlockRecom is more successful in exploration and in

overcoming over-specialization.

Figures 25 to 27 show the results for a typical active user. The figures display the quality

versus time in comparison with the traditional collaborative filtering (CF). In Figure 25, plots labeled

FR (FlockRecom) show that precision gets significantly improved in the first 400 iterations and later

keeps increasing slowly. As expected, when a smaller number of items are recommended, precision

104

10

o o 10 20 30 40 50
Joke 10

I_ CFI
_ FR

60 70 80 90 100

Figure 24. The variety in the recommended items of Flock-based recommender system (FR) com­
pared to standard collaborative filtering-based recommender system (CF) for different numbers of
top-5 recommendations, at iteration 100, 50 users. Averaged over 10 different runs per 1 active user .
The x-axis represents the joke id.

was higher. Comparing FR to CF in Figure 25 , we observe that precision values are better for FR for

small N, and similar for FlockRecom and CF for bigger N. Moreover, FlockRecom provides more

variety in the recommendations. Similarly, in FlockRecom, recall was improved with the number

of iterations, as seen in Figure 26. For small N , FlockRecom produced better results. For big N,

FlockRecom needed more iterations to compute similar recall values to CF. For both FlockRecom

and CF, recall values increased as N, the number of recommended items, was increased, as shown

in Figure 26.

To sum up, Figure 25, Figure 26, and Figure 27 show that, as the number of iterations

increases, the neighborhood quality increases, thus the quality of the recommendations increases.

We notice that FlockRecom continues to improve its recommendations, eventually reaching higher

quality levels compared to standard CF. After enough number of iterations, FlockRecom produced

better results than CF. Moreover , FlockRecom was more successful at exploration and overcoming

over-specialization. These improvements are hence due solely to the dynamic nature of the flock-

ing behavior of the agents that form dynamic neighborhoods that do not cause stagnation in the

105

0.8,----,-------,------r---,------,-----,----,-------:,--Mflr-----,----::-..----,

0.7

0.6

:1 0.4'1---".
a.

O ·~,tT,tt.H--------------------:~~~ ~CF N"'5

0.1

100 200 300 400 500
Iteration

600

--+- CF N"'10
__ CFN:30

~FRN=5

--+- FRN=10
FR N=30

700 800 900 1000

Figure 25. Flock-based recommender system (FR) compared to standard collaborative filtering­
based recommender system (OF) based on the average precision values for different numbers of
top-n recommendations, over time. Averaged over 1 active user , 10 different runs. The x-axis
represents the iteration number.

0.8,--,-------,------r---,------,-----,------,,----,----r __ '====::C;;=FN;:;=:::=il
S

-+--CF N=10
__ CF N=30
---e- FRN=5
--+-- FR N=10

0.7

FR N=30

~ 04
cr

0.3

100 200 300 400 500
Iteration

600 700 800 900 1000

Figure 26 . Flock-based recommender system (FR) compared to standard collaborative filtering­
based recommender system (OF) based on the average recall values for different numbers of top-n
recommendations, over time. Averaged over 1 active user, 10 different runs. The x-axis represents
the iteration number.

106

0.8,---,------.-----.----,------,------r---r----,----r:::I: __ ~C;::;F=:;:N=:::;:5'1l

-+-CFN::o:10
_ CFN::3Q
-e- FRN::5
--+- FRN=10

0.7

FR N=30

0.6

iteration

Figure 27. Flock-based recommender system (FR) compared to standard collaborative filtering­
based recommender system (CF) based on the average F1 values for different numbers of top-n
recommendations, over time. Averaged over 1 active user , 10 different runs . The x-axis represents
the iteration number.

recommendations.

Table 20 shows the quality levels over several iterations for the two methods for 3 values

of N. Note how FlockRecom clearly outperforms CF by "continuing" to learn and thus improving

recommendations with time.

The next experiment expands the previous experiemnt that used the first 50 users, by using

a bigger data set with 10 times as many users , thus totalling 500 users. Figures 28 to 30 show

the results of evaluations for the flocks-of-agents based recommender system (FlockRecom - FR)

in comparison to the results of collaborative filtering (CF) based on the first 500 users, where

Simth = 0.07, d th = 0.4, and dideaLth = 0.1. The parameters were set by trial and error. The

comparisons are based on the average precision, recall, and F1 values for varying n-values for top-n

recommendations, over time. The figures display the quality versus iteration or time averaged over

all 10 users and 10 runs per active user.

From Figure 28, we observe that the precision values for FlockRecom become slightly better

than those for CF, starting after iteration 200 and reach their highest values around 500 iterations.

Additionally, FlockRecom provides more variety in the recommendations, as will be shown more

clearly later. Similarly, as seen in Figure 29, FlockRecom produced slightly higher recall values

107

0 .8,_--_,__--_r--~---,_--_,__--_r--~---,__-r=:::::::::====il

0.7

0 .1

100 200 300 400 500
iteration

600 700 800 900 1000

Figure 28. Flock-based recommender system (FR) compared to standard collaborative filtering (CF)
based on precision, 500 users.

0.8

0.7

0.6

0.5

~ 0.'
er

0.3

0.2

o. 1

100 200

..-i r_io

300 400

..t..

500
neration

. .-.

T .
-e-CFN=S
~CFN"10

_ CFN=30
-e- FRN:5
~FRN"10

FR N:z3Q

.- .i x .

600 700 800 900 1000

Figure 29. Flock-based recommender system (FR) compared to standard collaborative filtering (CF)
based on recall, 500 users .

than CF, especially for small N (5 and 10) , which are the realistic values for reasonable real life

recommender systems. As expected, both for FlockRecom and CF, recall values increased as N, the

number of recommended items, was increased. As a result, the F1 metric was higher for FlockRecom,

especially for N = 5, as Figure 30 shows.

108

0.8

0 .7

0.6

o. 5

u. O. 4

o. 3

..-.1. ..t..iA.
o. 2

......-
~

o. 1

0
100 200 300 400

-
500

Iteration

--
600

-.
-

700

~CF N-5

-+-CFN=10
__ CF N=30
---&- FR N:::5
--t-- FR N"' 10

FR N"'30

..L.

800 900 1000

Figure 30. Flock-based recommender system (FR) compared to standard collaborative filtering (CF)
based on F1 , 500 users .

10

10 20 30 40 50
Joke 10

60

I_ CFI
_ FR

70 80 90 100

Figure 31. The variety in the recommended items of Flock-based recommender system (FR) com­
pared to standard collaborative filtering-based recommender system (CF) for different numbers of
top-5 recommendations, at iteration 100, 500 users. Averaged over 10 different runs per 1 active
user. The x-axis represents the joke id.

109

The fluctuations in Figures 28 to 30 are due to the exploration in FlockRecom, thus showing

that, unlike CF, FlockRecom does not recommended the same items over and over. To further verify

this desirable characteristic, Figure 31 presents the number of times each joke is recommended for

a specific user over 10 different runs. While CF kept recommending the same items, FlockRecom

added exploration and variety without losing from the precision, recall, and F1 quality.

4.4 Conclusion

In this research, a new recommender system approach called the flocks-of-agents based rec­

ommender system (FlockRecom) was presented. This new approach is based on swarm intelligence,

specifically, the dynamic collaboration between bird flocks in nature. The results were compared to

the traditional user-based nearest neighbor collaborative filtering. Although the implementation and

parameter setting is easier in collaborative filtering, FlockRecom was more successful at providing

variety in the recommendations without losing recommendation quality. One problem suffered by

some recommender systems is over-specialization. When the recommendations are limited to the

user's behavior or user's profile, the user can be restricted to seeing only similar items, and there will

be no randomness. In artificial intelligence, this problem is known as the exploration/exploitation

dilemma. Although collaborative filtering can counteract over-specialization by suggesting different

items, the dynamic structure of the FlockRecom algorithm makes it more successful at solving the

exploration/exploitation dilemma, which is also practically observed in the experimental results.

110

>-'
>-'
>-'

TABLE 20. The quality levels averaged over 10 runs of 1 active user at several iterations for the FlockRecom and CF at 3 values of N.
FloekReeom CF

N=5 N=10 N=30 N=5 N=10 N=30 Iter.
Pree. Ree. Pree. Ree. Pree. Ree. Pree. Ree. Pree. Ree. Pree. Ree.
0.28 0.05 0.42 0.16 0.46 0.54 0.20 0.04 0.4 0.15 0.5 0.58 200
0.62 0.12 0.57 0.22 0.50 0.58 0.20 0.04 0.4 0.15 0.5 0.58 400
0.84 0.16 0.68 0.26 0.52 0.60 0.20 0.04 0.4._ . 0.15 0.5 0.58 850

CHAPTER 5

A SWARM BASED APPROACH FOR DYNAMIC DATA

CLUSTERING

The dynamism of life reflects on information generation and empowers the information over­

load problem. Our previous work using a special type of swarms, known as flocks of agents, provided

algorithms for clustering high-dimensional sparse data and evaluations were performed on several

VCI machine learning data sets and Web usage session data [128, 129]. However, dynamic domains,

such as practically any data generated on the Web, may require frequent costly updates of the

clusters (and the visualization), whenever new data records are added to the dataset. Additionally,

change in the data records may result in a change of clustering over time. An example of this is the

change in the interest of users of a given Web service. Therefore, clusters may need to be updated,

thus leading to the need to mine dynamic clusters. Moreover, when the data is high-dimensional

and sparse, the dynamic behavior makes an already difficult problem even more challenging. This

chapter classifies different clustering paradigms related to dynamic clustering, then discusses the dis­

tinctions between dynamic data clustering and other paradigms, and describes a Dynamic-FClust

Algorithm, which is based on flocks of agents as a biological metaphor. This algorithm falls within

the swarm-based clustering family, which is unique compared to other approaches, because its model

is an ongoing swarm of agents that socially interact with each other, and is therefore inherently dy­

namic. Experiments on real and artificial data illustrate the workings of the dynamic algorithm and

its advantages over its FClust baseline.

5.1 Introduction

As defined earlier, clustering is the problem of finding groups in a dataset, according to some

data properties and attributes which have a meaning in some context [60, 59]. Depending on the

characteristics of the dataset and the goal of the knowledge discovery process, different clustering

paradigms have emerged, namely static (or conventional), incremental, and stream [43, 30, 9]. And

112

more recently, we saw an interest in dynamic data clustering which concentrates not only on concept

drift but also on data items that change in time.

Unlike conventional clustering, in dynamic clustering, data is collected continuously over

time, thus the whole data set is not available initially. Dynamic domains, such as practically any data

generated on the Web, may require frequent costly updates of the clusters (and the visualization),

whenever new data records are added to the dataset. The new coming data may be due to new

user activity on a website (clickstreams) or a search engine (queries), or new Web pages in the

case of document clustering, etc. Additionally, a concept drift in the data records may result in

a change of clustering in time [137]. An example of this is the change in the interest of users on

an online service. Therefore, clusters may need to be updated, thus leading to the need to mine

dynamic clusters. When the data is moreover high-dimensional and sparse, the dynamic behavior

makes an already difficult problem even more challenging. Swarm intelligence methods, mainly

ant-based systems, have been used as well as several other methods including repeatedly running

a given clustering algorithm, such as K-means, at each time step [122, 79]. Incremental clustering

methods can also be adapted to this task, but they mostly ignore the dynamic nature of the data,

which requires distinguishing between old and new data. Similarly, stream clustering methods can

be used for this task, but they mostly emphasize not storing the whole dataset and thus cannot

handle dynamic data records. This chapter describes our design of a simultaneous clustering and

visualization algorithm for dynamic data and proposes the Dynamic-FClust Algorithm, which is

based on flocks of agents as a biological metaphor. As a swarm-based algorithm our algorithm

distinguishes itself from most other approaches by learning a model in the form of an ongoing swarm

of agents that socially interact with each other, and is therefore inherently dynamic. A flock-based

model has clear advantages over the particle swarm model, because the agents in a set of flocks

are inherently associated with data, and are thus directly amenable to visualization tasks; whereas

particle swarms tend to not be associated with data, but rather with candidate solutions to an

optimization criterion. Moreover, the dynamic structure of the algorithm and the social interaction

between agents provides a suitable foundation for modeling dynamic human behavior on the Web

with many interesting applications such as creating dynamic online recommender systems.

This chapter starts by explaining the dynamic data clustering paradigm in Section 5.2 and

comparing it with other clustering paradigms in Section 5.2.1. Then, we present a new dynamic

clustering algorithm Dynamic-FClust in Section 5.3. In Section 5.4, we describe our contributions

so far, then present our experiments and evaluation techniques. Finally, we make our conclusions

113

and discuss future work in Section 5.5.

5.2 Dynamic Data Clustering Paradigm

Given the clustering definition in Section 5.1, we define dynamic data clustering (in short,

dynamic clustering) as follows: Extracting clusters in a dataset in which new data records may be

added to the dataset, some data records may diminish with time and may even be removed from the

dataset, while other data records may change in time. Moreover, in the case of a concept drift

[137], a dynamic clustering algorithm should have the capability to handle generating new clusters

and follow evolving clusters as needed. (See Section 5.3 for more details on our approach.)

The characteristics of the dynamic data clustering process are:

• The ability to cluster the available data: This is in fact the basic definition of static

(conventional) clustering. If a batch of data is available to the application, we expect the

system to form groups of similar items after an acceptable number of iterations.

• Cluster Number Extraction: It is expected that the number of clusters is not given as an

input to the algorithm since it can change with time especially.

• When new data items are added, avoid clustering the updated dataset from

scratch: When new data batches are available, the algorithm should use the clustering in­

formation from the previous state and produce clustering results for the updated dataset. In

other words, it is not expected to re-start from scratch whenever new data arrives.

• The ability to handle emerging and disappearing clusters: With the addition of new

data items, new clusters may emerge and in that case, the application should create new

clusters in an acceptable number of iterations. Additionally, some old clusters may vanish and

the algorithm is expected to update the data clusters in such a case.

• Dynamic Data Records: A dynamic data record is a data record whose attributes may

change with time. An example is a user on a web site, whose likes and dislikes may change in

time. A dynamic clustering algorithm should consider the existence of dynamic data records

and update clustering results as the data record changes.

114

5.2.1 Differences Between Dynamic Clustering and Other Clustering Paradigms

Given the dynamic clustering paradigm in Section 5.2, a classification of clustering paradigms

is presented in this section.

The most common and most studied paradigm is conventional a.k.a static clustering [60, 85,

30, 129], where the goal is to cluster a dataset that is fully available before and during the clustering

process.

Another paradigm is known as incremental clustering or online clustering in which, data

becomes available in batches over time [43, 7, 32, 79]. Incremental clustering was initially proposed

as a solution to clustering on very large databases [43] and unlike dynamic clustering, does not

consider change in "existing" data items. Moreover, in some application, the whole dataset may be

available initially. However, if the dataset is huge, batches are formed by sampling, and clustering is

performed incrementally [43]. IncrementalDBSCAN can handle emerging and disappearing clusters,

but does not handle data items that change in time [43]. One common approach for incremental

clustering is to repeatedly apply a classical clustering algorithm every time more data arrives or

change in data occurs, in which case a high computational cost may be incurred. Additionally, such

an approach does not differentiate new data from existing data. In another algorithm, called leader­

follower clustering (LFC), a K-means type clustering is used [42]. In another approach, clusters are

generated according to the initially available data batch and as the new data arrives, new data is

assigned to existing clusters [32]. Ant colony-based swarm intelligence algorithms are some of the

most common approaches for solving incremental clustering in SI [122, 79, 32].

The next paradigm is the stream clustering paradigm, where a stream of data is modeled

preferably in one-pass, i.e. by reading each data item only once [9, 96], and the aging or disappearing

clusters may be handled via a forgetting mechanism. Data may be stored partially for a window

frame. Stream clustering methods can be used for clustering datasets with concept drift, but they

generally do not store the whole dataset and thus cannot handle dynamic data items.

Table 21 gives a comparison of different paradigms and Table 22 gives sample approaches

from these different paradigms. To sum up, many clustering algorithms are unable to handle dynamic

data items. Moreover, most approaches are unable to perform clustering and visualization on a

continuous basis or to have new data-items self-organize into the existing clusters (or into new

clusters if necessary), unless a new and additional processing and analysis phase is applied. This

disadvantage is also present in more recent approaches using Self-Organizing Maps, as in Kohonen

maps [122]. Therefore, while a benchmark comparison of the above cited methods with Dynamic-

115

FClust should be interesting to explore, any serious comparison will be complicated by the ability

of the dynamic FClust algorithm to a) handle dynamic data items, b) perform continuous mappings

with simultaneous continuous visualization compared to the inability of the remaining techniques to

116

......

......
-l

Paradigm
Paradigm
Static
Incremental
Stream
Dynamic

Requires Stores
All Data Data
Yes Yes
No Yes
No No
No Yes

- - - -
TABLE 21. Comparison of different clustering paradigms

Emerging Disappearing Evolution Dynamic Sample
Clusters Clusters Tracking Record Dataset
No No No No Iris Dataset[5]
Maybe No No No Birch Dataset[150]
Yes Possible (via forgetting) Possible No KDD Cup 1999 Dataset[3]
Yes Yes Yes Yes Movielens Dataset[4]

>-'
>-'
00

Algorithm

KMeans [85]
IncrementalD BSCAN [43]
Incremental Ant
Clustering [122]
LFC [42]
SOM [88, 87, 67]
Incremental SOM [21]
CluStream [9]
FClust[117]
Dynamic-FClust

- - -TABLE 22. Comparison of different clustering and visualization algorithms
>=1 >=1 Incremental Emerging/ Changing Cluster No Typically Paradigm .s u .s

Clustering Disappearing Data Extraction +> ·8 +> Compared Ct\ Ct\

Clusters Items
N Ct\ N

to ~ >=1 ~
;:j >, ;:j
00 Q 00

;> ;>

No No No No No No All Static
Yes Yes No Yes No No DBSCAN Incremental
Yes Yes No No No No Static Ant Incremental

Clustering
Yes Only Emerging No Yes No No K-Means Incremental
No No No Yes Yes No NA Static
Yes Only Emerging No Yes No No SOM Incremental
Yes Yes No Yes No No STREAM Stream
No No No Yes Yes No K-Means Static
Yes Yes Yes Yes Yes Yes FClust Dynamic

accomplish them both.

5.3 Swarm-based Dynamic Clustering Algorithm

The clustering goals defined in Section 5.2 are specialized for dynamic clustering [60, 122].

Additionally, any flock-based clustering approach has the simultaneous clustering and visualization

goal, which makes dynamic-FClust naturally suitable for cluster evolution tracking.

Although "dynamic items" were studied in different problem domains such as classification,

information retrieval, and recommender systems, (ex: Rocchio Classification [86]), to the best of

our knowledge, there have been no studies on dynamic clustering with "dynamic items", i.e. data

items changing in time. Thus, although there are applications capable of handling some of the above

expectations of dynamic data clustering given in Section 5.2, to the best of our knowledge, there are

no existing algorithms that can satisfy all the above expectations.

In the original FClust algorithm, it was assumed that the dataset was fully available and

static, whereas in the proposed Dynamic-FClust algorithm, data entries are observed one at a time.

Moreover, information regarding a data item may be updated in different time steps. After a small

number of iterations, the initial clusters are formed, then the clusters continue to be updated with

each new coming record or update to a record.

Algorithm 17 gives a detailed explanation of Dynamic-FClust. At each iteration, if data

removal is expected in the problem domain, we start by removing the agents that represent data

records that have been removed. Then, we assume that one new data entry is read per iteration.

If the data is related to a data item, which is not represented by an agent on the system, a new

agent is created and initialized in Line 15 to Line 17. In the next step, the ideal distances of the

modified agents are updated. Note that in the Algorithm, the velocity vector V, is a unit vector,

(i.e. Ilvll = 1), representing the direction of an agent. Later, for each agent i, the neighboring agents

that are close enough to i on the visualization panel, are extracted in Line 25, where d(i,j) is the 2D

Euclidean distance between agents i and j. Then, in line 27, the velocity effect on i due to neighbor

j is computed where vcap(i,j) is the unit vector pointing from i to j and the coefficient (3(i,j) is

computed using Algorithm 18. For each neighbor, three cases arise as shown in Algorithm 18.

Case 1: If the distance between the agents i and j is equal to the ideal distance between them (Line

1), there is no attempt to change i's velocity due to j (Line 2).

Case 2: If the distance between the agents i and j is greater than the ideal distance between them

(Line 3), an attraction force will move i closer to j, with a more similar velocity to j (Line 4).

119

Algorithm 17 The Flocks of Agent-based Dynamic Clustering Algorithm Dynamic-FClust

Input: Dataset; datad:Expired data; dataa:added data
Output: Dynamic visualization of interaction between the data items. Agents corresponding to more
similar items are located closer in the 2D visualization panel. Extracted clusters (on request).

1: repeat
2: repeat
3: if A data record datad has expired then
4: Remove the agent d corresponding to datad from the visualization panel.
5: Delete datad from the dataset.
6: end if
7:

8:

9:

10:
11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

31:

32:

33:
34:

35:

36:

37:

38:

39:

40:

41:

42:

43:

44:
45:

46:

47:

48:

until There is no expired data record
repeat

Read data entry related to data record dataa
if dataa does not exist in the existing data then

if Maximum number of agents is reached then
Choose an agent to discard.
Remove the data record corresponding to this agent.

end if
Create a new agent and map dataa to agent a.
Place agent a on the visualization panel (e.g. randomly or based on domain knowledge).
Initialize the velocity of agent a (e.g. randomly or based on domain knowledge).

else / / Data record exists and will be updated
Update the data record with the new data entry.
Find agent a that represents dataa.

end if
Update the ideal distances, dideal, between a and the rest of the agents based on their associated
data in the original data space.

until There is no new data entry
for each agent i do

for all j such that d(j, i) :s; dth and i i= j do
Call Algorithm 18 (compute (3).
Vresulting(i,j) f- v(j) + (3(i,j) x vcap(i,j)

end for
if :J j such that d(j, i) :s; dth and i i= j then

w(i) = normalize (L Vresulting (i, j))
jld(j,i)$,dth&i#j

if The angle between v(i) and w(i) is less than or equal to 90 degrees then
vnext (i) f- w(i)

else
vnext (i) f- v(i)

end if
else

vnext (i) f- v(i)
end if
amp (I') f- amp + d1 deql tb next de! 20x(neighbor_no(i)+1)

end for
for each agent i do

compute new position Pnext(i) f- Pcurrent(i) + ampnext(i) x Vnext(i)
end for
Move all agents to the updated positions and update current velocities.
Update visualization screen with the updated positions and updated velocities.
if Clustering results are requested then

Extract Clusters using Algorithm 9.
end if

49: until System is stopped.

120

Algorithm 18 Compute Beta
Input: Agents i and j.
Output: (3(i, j) E R .

1: if d(i, j) = dideal (i, j) then
2: (3(i,j) <- 0
3: else if d(i, j) > dideal (i, j) then / / attraction
4: (3(i,j) <- 4 X (d(i,j)-d.,deal(i:J»)2

dth -d,deal (t,))

5: else / / repulsion
6: (3(i,j) <- -4 x (1- d(i,j».)2

dtdeal (t,])

7: end if
8: return (3(i, j)

Case 3: If the distance between the agents i and j is smaller than the ideal distance between them

(Algorithm 18, Line 5), a repelling force will move i away from j, with a less similar velocity to

j (Line 6). Next is the computation of the updated velocity of agent i, Vnext(i) , between lines 29

and 38. First, if i has neighbors, then their resulting velocities on i are added and normalized.

If the total, normalized velocity ill, does not change the agent's current direction more than 90

degrees, then the updated velocity is set to w. Otherwise, the velocity is kept unchanged for the

next iteration. Similarly, if agent i does not have any neighbors -note that an agent is not a neighbor

of itself- then the velocity will be kept the same.

In the algorithm, ampdej is the default minimum amplitude which is empirically set to

~ X dideaUh and the computation of the coefficient (3(i, j) in Algorithm 18 is from the existing

literature [117].

Below, we present our analysis of the design constraints and provide guidelines that need to

be considered.

Design guidelines and constraints:

• Number of agents on visualization panel: Computational and main memory constraints

impose a limitation on the number of agents. In addition, too many agents may cause cluttering

in the visualization panel.

• Amount of data that is represented in the visualization panel: Not only do computa-

tional and main memory constraints impose a limitation on the number of agents, but a limit

on the age of the data that should be visualized may be required (e.g. visualizing only data

that arrived during the last 24 hours).

In order to observe the above guidelines, we observe that we may replace some data items

when the upper bound on the number of agents is reached. This opens three possibilities that need to

121

be weighed very carefully in light of the specific context and goals of the clustering and visualization.

The three options, which may be applied exclusively of one another, using a priority rule, or even

mixed together in a stochastic strategy, are:

1. Always replace the oldest data item.

2. Always replace the least interesting (e.g. redundant) data item. The notion of interesting

data is crucial here, since it is not always associated with unique or non-redundant data. For

example in the case of a query dataset, the interesting data items may be the sessions with

more profitable queries, the sessions including the keywords with the highest bid values, the

sessions related to e-commerce search or to emergency situations, etc.

3. Always replace one of the outlying data items.

5.3.1 The Main Computational Constraint

In dynamic clustering algorithms, it is expected that the clustering of existing data items is

done by the time new data arrives. Let Tct , be the time needed to cluster existing data items at

time ti, the next data batch arrive at time ti+l and fJ.t i = ti+l - t i .

TCtj :::; fJ.ti =? There is no problem with the above timing constraint.

TCtj > fJ.t i =? This violates the above timing constraint.

In the case where the clustering of existing items can be finalized by the time a new data

batch arrives, there is no problem. Otherwise, some alternative options should be considered to

handle this problem:

• Sampling: Instead of comparing all neighboring agents, a subset of neighbors can be compared

to update the velocity and amplitude. How many agents are going to be sampled depends on

the problem and requires further study. The selection of agents can be done randomly or

k-nearest neighbors can be selected .

• Improved initialization: Initial location of the agents affects the convergence time [117].

Some heuristics for initialization of location and velocity can be developed. When a 2 dimen­

sional visualization panel is considered:

- If the data is 2 dimensional and has numerical attributes:

122

TABLE 23

Comparison of alternative solutions to satisfy computational constraints.

Solution Advantage Disadvantage
Sampling Decreases the May decrease

computational cost. the accuracy.
Improved May increase Increases the
initialization the accuracy. computational cost.
Delayed input Easy implementation. Does not guarantee

a solution.

* Data can be normalized to be of unit length and agent location can be assigned to

be the normalized data record.

* The data can be linearly normalized to [0,1] and agent locations can be assigned to

be the normalized data record.

* Data can be normalized to be of unit length and agent velocities can be assigned to

be the normalized data record.

* The data can be linearly normalized to [0, 1] and agent locations can be assigned to

be a unit vector computed from the normalized data record.

- If the data has more than 2 dimensions, 2 dimensions can be selected by

* Expert knowledge

* Data analysis techniques such as principal component analysis and multiple corre-

spondence analysis.

- The agent velocities can be oriented in a centrifugal way with respect to the center of the

2D environment [117] .

• Delayed input: Instead of adding every new batch as it arrives, the addition of a new batch

may be delayed for 8t iterations, where ° ::; 8t ::; the time between the current new data batch

and next new data batch.

Table 23 gives a comparison of different options if the clustering of existing items is not

finalized by the time a new data batch arrives. Different solution or hybrid-solutions may be applied

depending on the dataset.

5.3.2 Main Memory Constraints

Main memory constraints impose a limitation on the number of agents. Let Na be the

number of agents and N amax be the maximum number of agents that can be loaded, predetermined

123

based on the available memory space to be allocated. This opens three possibilities that need to be

weighed very carefully in light of the specific context and goals of the clustering and visualization.

The three options, which may be applied either exclusively of one another, or using a priority rule,

or even mixed together in a stochastic strategy, are:

1. Always replace the agent that is mapped to the oldest data item.

2. Always replace the least interesting (e.g. redundant) data item. The notion of interesting data

is crucial here, since it is not always associated with unique or non-redundant data. For a web

search query log dataset, the interesting data items may be the sessions with more profitable

queries, the sessions including the keywords with the highest bid values, the sessions related

to e-commerce search, etc.

3. Always replace one of the outlying data items. An outlying data item can be determined as

the data item which is mapped to the agent with the minimum number of neighboring agents.

If removing the outlying items is adopted, this would increase the computational time re­

quired to determine these outlying agents. The definition of "interesting" deeply affects the efficiency

of removing the least interesting item.

5.3.3 Setting the Parameters for Dynamic-FClust

The selection of parameters has a big impact on the convergence of the Dynamic-FClust

algorithm. The first parameter is dth , the distance threshold, which defines the neighborhood size

(see line 25 in Algorithm 17). When dth is too small, the agents cannot affect each other, and

when it is too high, the algorithm may not converge. Another parameter dideaUh affects the ideal

distance via Equation (28) and the amplitude of the velocity (see line 39 in Algorithm 17). When

dideaLth is too small, the agents position themselves too close to each other on the visualization

panel, visualization of clusters may be harder, and the clustering process may require too many

iterations since the amplitude of the motion is not high enough. On the other hand, when dideaUh is

too high, even similar agents may have big ideal distances, agents do not attract each other, and thus

the algorithm does not converge. One method to compute the ideal distance between two agents,

dideaZ, is given in Equation (28). If the ideal distances are overestimated, then the clusters cannot

be observed on the visualization panel.

The similarity threshold, simth, in (28) may be updated incrementally via Equation (26),

which is a flexible way to tune the similarity threshold, by a tuning factor D, where 1 ::::: D :::::

124

Max{Sim(i,j)} , when sim is the average of sim(i,j). Or, the Simth can first be given as an input
stm

to the clustering algorithm based on the average in the initial batch of data, and then updated

periodically. If the similarity threshold is too large, then the algorithm will fail to converge, whereas

if it is too small, then different clusters risk being combined into one cluster.

5.3.4 Cluster Formation in Dynamic-FClust

Cluster formation can be determined via different methods such as human experts, as well as

entropy and ideal distance error calculations [129, 128, 117]. This is because when Dynamic-FClust

is performed, flocks of agents are visually observable. However, the clusters are not explicitly formed

and the data is not yet assigned to clusters. One method of forming clusters is using Human experts.

The person marks the clusters and assigns agents to the clusters. Since there is a 1-to-1 mapping

between agents and data records, the data will also end up being clustered. In addition to this, an

automated procedure was presented in [117], which is given in Algorithm 9. Basically, a new cluster

is created for an unlabeled agent. Then the neighboring agents of this cluster are explored, and all

the agents which are similar to at least one of the agents in the cluster are inserted into this cluster.

New agents are inserted to the cluster until no more agents can be inserted. Then the procedure

restarts by creating another new cluster, and stops when all the agents are labeled. After cluster

formation, a post processing phase is needed to cluster the original (input) data, to validate the

results, and if possible to interpret the clusters.

5.3.5 Teleportation in FClust and Effect on Cluster Formation

In previous research using FClust, the 2D Euclidean distance between agents on the vi-

sualization panel has been used to determine the distance in Algorithm 9, step 5. However, this

computation may split clusters at the borders of the panel: When an agent is traveling on the

visualization panel, it reaches the borders of the visualization panel from time to time. In that

condition, the agent passes the border and continues to move from the other side which brings into

our mind the concept of teleportation. The word teleportation is defined as a hypothetical mode of

instantaneous transportation in the dictionary 1. Thus we define teleportation in FClust as follows:

Definition 2 Teleportation in FClust is the mode of instantaneous transportation that occurs when

an agent crosses the border of the visualization panel and continues from the opposite side of the

visualization panel.

1 Webster's online dictionary

125

Iteration " 13

0.8

0.6 -0.4

0.2

o L-------~------~------~------~----~ o U M M M
X coordinate

(a) Before teleportation.

Iteration" 14

0.8

0.6

-
0.4

0.2

°OL-------O~.2-------0~.4~----~0.6~----~0.8~----~

X coordinate

(b) During teleportation.

Iteration::: 15

0.8

0.6 -
0.4

0.2

o L-------~------~------~------~----~
o U M M M

X coordinate

(c) After teleportation.

Figure 32. Teleportation illustrated by one agent (red arrow showing direction of movement) tele­
ported from the left border to the right border.

Figure 32 illustrates an agent teleporting from the left border to the right border of the

panel. Due to teleportation, a part of the cluster may pass the border and continue from the other

126

side, in which case, the 2D Euclidean distance would become too big to consider the two separated

parts as one cluster and the cluster gets split. To solve this problem, we first define a modified

2D wrap-around distance in Equation (38) and then use a modified wrap-around cluster formation,

which uses this 2D wrap-around distance, instead of the 2D Euclidean distance, thus compensating

for the agent teleportation effect.

Given that each agent ai's location, in the 2 dimensional real number space R2, is represented

by a vector Xi, Yi, where 0 ~ Xi ~ 1, 0 ~ Yi ~ 1, the 2D wrap-around distance between two agents

ai and aj is given by Equation (38).

no wrap-arround

J(l -IXi - Xjl)2 + (Yi - .Yj)2, vertical borders connected

J(Xi - Xj)2 + (1 -IYi - .Yjl)2, horizontal borders connected

J(l-lxi - Xjl)2 + (l-IYi - 'Yjl)2, both borders connected

(38)

The modified wrap-around cluster formation algorithm, which uses the wrap-around distance

to define the neighborhood, is given in Algorithm 19.

Algorithm 19 Wrap-around Cluster Formation Algorithm
Input: Agents' coordinates.
Output: Clusters of agents.

1: for each agent i do
2: if i's cluster is not assigned then
3: Form a new cluster c
4: Assign i to c
5: for all agent j such that there exists an agent k E c and d_wrap-around(k,j)~ dth and

sim(k,j) > Simth do
6: Assign j to c
7: end for
8: end if
9: end for

5.3.6 Complexity Analysis of Dynamic-FClust

The Dynamic-FClust algorithm, given in Algorithm 17, compares a new agent to every other

agent to update the ideal distance, which is O(n), with n being the number of agents in use. Later,

it compares every agent to every other agent to update the agent's velocity based on its neighboring

agents. Although some suggestions for reducing the complexity such as using a neighborhood matrix,

were given [117], the worst case time complexity remains O(n2), where n is the number of agents

127

TABLE 24 Datasets
Dataset Number Number of Number of Maximum Average

ID of Items Attributes Clusters Similarity Similarity
I 1600 2 2 0.999948 0.814345
II 811 2 3 0.997500 0.732619

Iris 150 4 3 1.0 0.709334
Movielens 10,000 ratings 1682 movies NA 1.00 0.23

943 users

in use. Similarly, the memory complexity is also O(n2) to keep the ideal distances, in addition to

O(n) memory needed for keeping the agent locations, velocities and amplitudes.

5.4 Experiments in Dynamic Clustering

In this section, we describe our datasets, experiments, and evaluation metrics; and discuss

our results.

5.4.1 Datasets

Table 24 presents the datasets used in Dynamic-FClust experiments. Dataset I and Iris are

the same datasets that were used in the previous chapters. As a reminder, dataset I 2 is a synthetic

dataset, whereas Iris is a real life dataset from the DCI machine learning repository 3.

The third dataset used in the experiments is the MovieLens dataset4 , which is also a real

life data.

Datasets I has 2 attributes and is thus suitable to show the emerging and disappearing clus-

tering results visually. In the literature, FClust has been compared to other algorithms and one of the

datasets used was the Iris dataset. Thus, to compare the Dynamic-FClust Algorithm with the orig-

inal FClust algorithm, the Iris dataset is also used. Finally, the Movielens dataset is a dataset with

dynamic data items. At each time step, one rating in the format of < userid, movieid, rating, time>

is provided to the dynamic-FClust system.

In the experiments, the Manhattan based similarity, given in Equation (4) is used for dataset

I and for the linearly normalized Iris dataset. For the MovieLens, the Pearson correlation, in

Equation (13), is used.

2http://webmining.spd.louisville.edu/NSF_Career/datasets.htm
3http://archive.ics.uci.edu/ml/
4http://www.grouplens.org/node/73

128

5.4.2 Clustering Evaluation

To evaluate and compare the quality of clustering results the average inter-cluster and intra­

cluster similarities are computed. The inter-cluster similarity is the similarity between clusters

and the intra-cluster similarity is the similarity between data points within a cluster. A higher

intra-cluster similarity and lower inter-cluster similarity represent better clustering quality. More

information is presented in Section 2.1.4.

Additionally, when there are class labels available, a cluster error may be computed by

comparing the cluster and class labels. The procedure given in Algorithm 3 checks whether each

item pair has the same class label if they have the same cluster labels or not.

5.4.3 Results

Our experimental results show that Dynamic-FClust is capable of handling emerging and

disappearing clusters, as well as dynamic data items, while producing similar clustering and visu­

alization results to FClust in terms of the number of clusters extracted, cluster error, inter-, and

intra-cluster similarity.

In the figures, N _M I N represents the minimum cardinality, which is the minimum number

of data records required for a cluster to be considered valid.

Figure 33 shows the process of clustering a dataset with two clusters using Dynamic-FClust

vs. FClust. This experiment also illustrates the ability to capture emerging clusters using Dynamic­

FClust. Initially, the dataset consisted of only one cluster. Figure 33(a) shows that, before con­

vergence, Dynamic-FClust extracted 3 data clusters. Around 2000 iterations, Dynamic-FClust con­

verged as shown in Figure 33(b). Around 2500 iterations, new data items from a new cluster emerged.

Without re-starting the clustering process, Dynamic-FClust captured the emerging cluster success­

fully, as shown in Figure 33(d). Figures 33(e) and 33(f) visually show that Dynamic-FClust produced

similar clustering and visualization results to FClust, although initially, the dataset was not fully

available for dynamic clustering. Additionally, in some cases, FClust may take longer to converge

than Dynamic-FClust.

129

0.'

I
0.'

> 0.'

0.2

0
0 0.2

Itersl.ioo - 100

0.' O.
Xc:oorcIinete

0.'

""''"'' duater2 ,."
iteration- 2000

cluster 1 ...

0.'

• 0.'

I
0.' •
0.2

0
0 0.2 0.' 0.' 0.'

Xooordinete

(a) Clustered dataset after first cluster was read in (b) Clustered dataset after first cluster was correctly
Dynamic-FClust (iteration=700). clustered using Dynamic-FClust (iteration=2000).

tteratlon- 2508 Iteratlon· .OOO

au.ter1 ... cluster 1
clU8ter2

0.'

1
0.'

> 0.' • .~ ":'
02

°0~-----70.2~--~0~.-----70 .• ~--~07 .• -----".

X coordinate

cIuIter2
cluater3
dueter"

(c) Clustered dataset . Emerging cluster being
cessed using Dynamic-FClust(iteration=2500) .

I
>

0.'

0.'

°0~----~0.2~--~0~.'----~0'~--~0~'-----"·

du,"" ,
c:luster2
dueler 3

0.'

I
0.'

>

0~0-----70.2~--~0~.'-----0~.'~--~0.~'-----"
Xc:oorcIinate

pro- (d) Clustered dataset.
ered, cl ustering process
FClust(iteration=4000).

Emerging cluster discov­
converged using Dynamic-

Iteration- 9030

0.'

J
0.'

°0~----~0.2~--~0~'-----0~.'~--~0.-'-----"

X coordinate

cluster 1
"" .. ,,2

(e) Clustering process using FClust (iteration 4034). (f) Clustering process converged using FClust (itera­
tion 9000).

Figure 33. Clustering a dataset with two clusters using FClust vs. Dynamic-FClust where dth

dideaLth = 0.04, Simth = 0.91, NMIN = 40.

130

°OL--~~02~~~~----~"~--~0.~'------"·

Figure 34. The 3 cluster dataset.

Figure 34 shows the 3 cluster dataset that was also used in experiments in Chapter 3.

fI"

0.'

02

(a) Agent clusters on t he visualization screen il­
lustrating t he wrap-around cluster formation.

o ~o --~~--~o~.----~---o~.-----"
x""""",,,

(b) Data clusters visualized to illustrate the wrap­
around cluster formation result.

Figure 35. Wrap-around cluster formation illustrated, the 3-cluster dataset is being clustered using
Dynamic-FClust, where d th = dideaLth = 0.04, Simth = 0.91 , N MIN = 20.

Figure 35 illustrates the wrap-around cluster formation on the agent visualization panel

while clustering the 3-cluster dataset using Dynamic-FClust. Having the same color on Figure 35(a)

means that the agents are in the same cluster. Additionally, cluster colors for the agent domain

represent the same clusters in the data domain, on Figure 35(b).

One of the capabilities of dynamic clustering is the ability to delete clusters and data records

131

lter8tion -500

--
0.'

.!
0 6

i
> 0.'

0.2

0
0 02 0.' 0.6

xooortlinete
0.'

dual. 1
dust. 2
dusterJ
duster.

tlenltlon -500

0.'

1
0.6

>- 0.4

0~0--~~0.72 ----~0.~'----~0~~--~0.'~---"

duster'
""''''' 2
""""" ""'

(a) Agent clusters on the visualization screen, the (b) Data clusters, the newest 500 data records are clus­
newest 500 data records are represented (time tered (time step=500).
step=500).

It8fBlion . 1000 1t8f1lltlon- 1000

dUll.' - duster 1
"",,,,,2 duster 2
duster 3 ~ .

. duster 3

0.' o.

• 0.6 • 0.'

i j
O. > 0.'

02 02

0 0
0 0.2 0.' 0.6 0.' 0 0.2 0.' 0.' 0.'

X coordnale Xooon:tinate

(c) Agent clusters on the visualization screen, the (d) Dat a clust ers, the newest 500 data records are clus­
newest 500 data records are represented (t ime tered (time step=1000).
step= 1000).

0.'

I
0.6

> 0.'

0.2

0
0 0.2

Iteration· 10000

0.' 0.6
Xeoon:tinate

0.6

dUller'
duster 2

08

• 0.6

i
> 0.'

02

0
0 0.2

iteration . ,0000

0.' 0.6
XCOOtdinaie

0.6

cluster'
CiulSter 2

(e) Agent clusters on the visualization screen, t he (f) Data clusters, the newest 500 data records are clus­
newest 500 data records are represented (time tered (t ime step=10000).
step= 10000).

Figure 36. Illustrating cluster deletion and keeping the newest 500 data records. The 3-cluster
dataset is being clustered using Dynamic-FClust, where d th = d ideaLth = 0.04, Simth = 0.91,
N_MIN = 20.

with time if desired. The data record may be expired and removed from the dataset, given in the

Dynamic-FClust Algorithm, Algorithm 17, line 5, or there may be an upper bound for the number of

agents due to memory or computational limitations, as presented in line 13 of Algorithm 17. Figure

132

36 illustrates that Dynamic-FClust is capable of handling data removal, and is able to update the

clustering results during data removal. Unlike other static clustering algorithms, Dynamic-FClust

does not require a re-start. In the experiments, it is assumed that the most recent (up to 500) records

are wanted while the older or expired data records are to be deleted. Thus, at most 500 agents were

used. It is assumed that, at each time step, one record was available. Thus, Dynamic-FClust keeps

inserting the new agents in the first 500 time steps. Staring from the 501st time step, Dynamic

FClust keeps the most recent 500 data records and deletes the previous data records. Figure 36(c)

shows the original data colored by the cluster label assigned by Dynamic-FClust. This explains that,

in the first 500 time steps, data records were from the 2 clusters of the original dataset located on

the lower left corner and they are clustered into 4 clusters by Dynamic-FClust. Dynamic-FClust

would need more time to achieve the final clustering results. In the mean time, until time step 812,

input data feeds to the Dynamic-FClust. With the addition of each new arriving data record, the

oldest data records gets removed from the dataset, accompanied by the removal of the representing

agent from the visualization panel. Dynamic-FClust keeps iterating and updating the clustering

results. At time step 1000, Figure 36(d) shows that the remaining data records are from the upper

right cluster. With the removal of the data records from the lower left corner, the clusters that

they belong to are also removed and the newest 500 data records are clustered into 3 clusters by

Dynamic-FClust. As the time to improve clustering results is given to Dynamic-FClust, results

continue improving and the remaining data gets clustered into 2 clusters, as shown in Figure 36(e)

and Figure 36(f). Additionally, looking at the visualization panel given in Figure 36(e), we observe

that the two clusters extracted are very similar and may get merged after more iterations. To sum

up, Dynamic-FClust is capable of handling both data addition and data removal in time, all the

while updating clusters accordingly, including deleting data clusters if needed.

If desired, different approaches such as freezing and modified neighborhood definition can

be tested to see the effects on clustering. In freezing, when there is a new data entry, all the

agents except the active agent, which represents the new data entry, stops moving. The active agent

updates its position and velocity using the feedback (a.k.a attractive and repelling forces) from its

neighborhood, thus becoming closer to other similar agents. Another option is to have a bigger

neighborhood for the active agent to provide more feedback from the neighbors. The benefits of

133

Iteration:: 146

0.8

.::~- -
0.6

0.4 '.
0.2

-:..

- "
0

0 0.2 0.4 0.6 0.8
X coordinate

(a) Visualization panel before a new rating is read and after all
agents updated their velocities and locations (time step=146).

Iteration:: 141

- ' ,
0.8

:::'S _ _

.......

~
0.6

~
§ ,.

0.4 '.
0.2

--
-

0
0 0.2 0.4 0.6 0.8

X COOf'dinale

(b) Visualization panel when t he new rating is read at time
step=147. All other agents are frozen and the newly updated
agent uses a bigger neighborhood and amplitude.

Iteration:: 141

"' -

0.8

::: 'S _ _

.. 0.6 ~ ..

. ~
12
§ ,.

0.4 '.
0.2

,.

-
0

0 0.2 0 .4 0.6 0.8
X coordinate

(c) Visualization panel showing that the newly updated agent
keeps updating it's position and velocity while a ll other agents
are frozen.

Figure 37. Illustrating freezing and an expanded neighborhood around a new agent. The 3-cluster
dataset is being clustered using Dynamic-FClust, where d th = dideaLth = 0.04, Simth = 0.91. During
freezing, dth = dideaLth = 0.4 for the modified/ unfrozen/ active agent.

134

using an adaptive neighborhood threshold, which gets smaller in time, were presented for static

clustering, as part of the FClust-Annealing algorithm in Section 3.1.2. Thus, Figure 37 illustrates

the freezing and modified neighborhood for a newly updated agent. In Figure 37(a), all the agents

update their positions and velocities. Later, new data arrives. All agents except the active agent

froze. The blue arrow in Figure 37(b) and Figure 37(c) represents the active agent. While all the

other agents are frozen , the active agent keeps moving on the visualization screen. Additionally,

to provide a wider observation opportunity, the distance threshold is increased to 0.4, dth = 0.4

for only the active agent. The arrow lengths on the visualization panel represent the amplitude

of the velocity of the agents, and the amplitude of the velocity of the active agent is increased by

setting dideaUh = 0.4. During freezing, the worst case computational complexity is O(n). After

the active agent is done with updating its position and velocity, the freezing stops, Dynamic-FClust

continues normally, and thus, all agents update their velocities and positions. Since our results of

Dynamic-FClust are already superior to static FClust, we will not go into the details of improving

the results by freezing and/or adaptive thresholding in Dynamic-FClust.

5.5r---c--::--~-~--r-r=---&--===:FC:=,",::It ===;l

~Dynamic-FCluSI

4.5

2.5

1.50 1000 1500 1600 2000 2500 5000 1 0000
Iteration Number

(a) Number of clusters generated via FClust vs. Dynamic­
FClust . Interval marks represent standard deviation.

0.3

0.28

0.26

0.24

~0.22
w
~ 0.2
-;
0 0.18

0.16

0 .14

0 .1 2

o. 1

I ~FCIUSI
-e- Oynamic-FClust

t--

~ ~ ~ V ~

1000 1500 1800 2000 2500 5000 10000
Iteration Number

(b) Cluster error , FClust vs. Dynamic-FClust. Interval marks
represent standard deviation .

Figure 38. Average results (and standard deviations) of 10 different runs of clustering the Iris
data using FClust vs. Dynamic-FClust, compared via extracted cluster number and cluster error
computed using Algorithm 3 , where dth = dideaUh = 0.04, Simth = 0.85, N_MIN = 7.

135

0.72

0.7
I ---e-- FCtust J
-e-Dynamic-FOust

0.68

0.6

~ k:-" ---,
~ V .-----'

~ ..---

0.66

0.64

0.62

0.58

0.58

0.540 1000 1500 1800 2000 2500 5000 10000
tteration Number

(a) Inter-similarity of FClust vs. Dynamic FClust. Interval
marks represent standard deviation.

0.9 1

0.9
.~

~ in 0.89

~ o 0.88

~
0.8 7

0 .86

0.85

I---e-- FCluSI
~Dynamic-FClust

~ ---,

V ~ ~ ~

o 1000 1500 1800 2000 2500 5000 10000
Iteration Number

(b) Intra-similarity of FClust vs. Dynamic FClust. Interval
marks represent standard deviation .

0.8

0 .7

0.76

8

! 0.74
~
fij 0.72

j 0.7
o
~ 0.68

" ~ 0.66

0.64

0.62

I -&- FciUSI
-e-DynamlC-FCtusl

~c:::: ---' [/< ~ --.

1000 1500 1800 2000 2500 5000 10000
Iteration Number

(c) The ratio of inter-similarity to intra similarity, FClust vs.
Dynamic-FClust. Interval marks represent standard deviation.

Figure 39. (Average results (and standard deviations) of 10 different runs of clustering the Iris data
using FClust vs. Dynamic-FClust, compared via inter- and intra-cluster similarity metrics , where
d th = dideaLth = 0.04, Simth = 0.85, N_MIN = 7.

Figure 38 and Figure 39 compare the results of 10 different runs of clustering the Iris data

using FClust and using Dynamic-FClust. The horizontal lines show the average values whereas the

vertical lines represent the standard deviations. Figure 38(a) shows that Dynamic-FClust extracts

a similar number of clusters as FClust, and clusters keep getting updated as long as the algorithm

runs. Figure 38(b) shows that the cluster error has a similar range in both Dynamic-FClust and

FClust. Due to the data availability difference, Dynamic-FClust and FClust may find similar results

136

\

' user ' record 259

~ [~--us-e-r-'-r-ec-o-r-d-8-5-1-~

(a) Incremental data input style
example.

I' item 255 rating I
r--u- s-e-r-'-r-ec-o-r-d-2-5-9-"-I1 --.J " item 173 rating I

L , item 1074 rating I

,..----------.1 ~, item 687 rating
user ' record 851 .

'--_______ ---J ~, item 255 rating

,..-______ ---.1 ~, item 200 rating
user ' record 259 .

~, item 173 rating

(b) Dynamic data input style example.

Figure 40. Visualization of incremental vs. dynamic data reading. (a) shows incremental and (b)
shows dynamic. Note that in dynamic data, the same entry can be re-rated multiple times by the
same user in any order, thus changes to the same user and item are possible over time.

in different iteration numbers. Figure 39 compares the two clustering approaches in terms of the

inter- and intra-cluster similarity. In Figure 39(c), Dynamic-FClust creates better clusters initially,

although the whole data was only available to Dynamic-FClust after 150 iterations. T his may be

because fewer data items result in a lower number of constraints. Dynamic-FClust satisfies some

of the constraints better, before accepting more constraints to satisfy. Although both FClust and

Dynamic-FClust act similarly in the long term, with its lower number of iterations, Dynamic-FClust

may be preferred over FClust for clustering the Iris dataset. To summarize the results, Figure 38

and F igure 39 confirm the fact that Dynamic-FClust and FClust extract clusters with similar quality

and that they may require a different number of iterations to find an optimal solution.

Clustering M ovie lens : Dataset w ith dynamic data records

Figure 40 presents the difference between data reading in incremental vs. dynamic reading.

In dynamic data, the same entry can be re-rated multiple times by the same user in any order, thus

changes to the same data record and data item are possible over time.

Figure 41 shows the number of users joining the dataset vs . the time step, where one rating

is available at each iteration. All 943 users become available at iteration 99, 940 whereas the whole

dataset becomes available after 100,000 iterations.

Figure 42 presents the similarity histogram and log-log plot similarities for the MovieLens

dataset. Figure fig:movielensDIdealHist presents the ideal distances measured using the similarities

137

1000,------,------,-----,------,------,------,------,------,------,------,

900

800

700

600

500

400

300

200

100

O~-----L------~----~----~------~----~------~----~------~----~ o 5 6 10
Time Step I Rating Count (one rating at a time))(10"

Figure 41. Number of users vs. time step vs. where dynamic-FClust reads one rating per time step.

TABLE 25

Comparison of Dynamic-FClust vs. FClust , when the whole Movielens dataset has just been
read. A sample run results after post-processing, using wrap-around cluster formation, where
dth = dideaUh = 0.04, Simth = 0.22, N MIN = 10.

Algorithm Cluster No Outlier No Inter-Sim Intra-Sim Inter/Intra
FClust 22 485 0.24 0.25 0.93
Dynamic-FClust 7 33 0.23 0.26 0.90

in Figure 42.

Figure 44 shows the results of clustering the Movielens dataset using Dynamic-FClust and

using FClust. In the experiments, the Movilens data is sorted by rating time and at each iteration,

one line of information, which is in the form of < user id, movie id, rating, rating time> is supplied to

the Dynamic-FClust. It is observed that, Dynamic-FClust is capable of handling dynamic clusters

and dynamic data items. At time t, when the whole dataset is available, as a static clustering

algorithm, FClust has no information coming from the time step t' where t' < t. Whereas in

Dynamic-FClust, at time t, some cluster information is already available from the previous time step

t'. This example clearly shows the advantage of Dynarnic-FClust over static clustering algorithms,

such as of FClust.

Table 25 compares the results of Dynamic-FClust vs. FClust, when the whole Movielens

dataset has just been read. This table exemplifies the advantage of Dynamic-FClust over FClust.

When the whole dataset becomes available at time step 100,000, Dynamic-FClust uses the infor-

mation from previous time steps, whereas as a static clustering algorithm, FClust starts with no

previous information. Clearly, results of Dynamic-FClust are better than FClust. The difference is

mostly observable via the number of users that were marked as outliers. Such a big difference in

138

:;;
0
c:

" " <7
i!'
!:S
8'
...J

X 10'
2.5 ;:....:.=--------r---,---.------.---...,----,-----.--.--------r--

0.1 0.2 0.3 0.4 0.5
Similarity

0.6 0.7

(a) Pearson simila rity histogram.

O.S 0.9

10· .-------------~--~--~-~-~----r-__.

10'

10'

103L-_______ ~ ___ ~ __ ~~_~_~_~~_~

1~ 1~
Log (Rank of Similarity)

(b) Log-log plot of similarities.

Figure 42. Pearson similarity was computed for 444,153 user pairs for the Movielens dataset , which
has 943 users. The data shows power law properties. The average similarity is 0.23.(a) Similarity
histogram, (b) Log-log plot of similarities exhibiting power law properties.

outlier no shows that FClust has not converged yet.

Table 26 shows same sample profiles extracted just when the whole dataset became available.

Movies with average ratings 2.00 or above are listed in the table. Looking at the profiles, we observe

139

X 10
5

2

1.8

1.6

1.4

1;' 1.2
c:
!!l
~ 1

LL

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Ideal Distance

(a) Ideal dista nce histogram.

106r-------_----_--_-_-_-__ -...----,

10
5

>;

" c:

'" " 0-e
~

8'
...J

10'

103L-______ ~ ____ ~ __ ~_~_~_~~_'----'

1~ 1~
Log (Rank of Ideal Distance)

(b) Log-log plot of ideal distances.

Figure 43. Ideal distances histogram for the Movielens dataset . Ideal distances are computed using
Equation (28). (a) Ideal distance histogram, (b) Log-log plot of ideal distances exhibiting power law
properties (linearity).

that users in cluster 5 rate more frequently and give higher ratings. It looks like Star Wars (1977)

is a favorite of all profiles but some groups of people like it more than others.

Figure 45 presents the total number of movies rated by at least one user until the corre-

140

08

j O.S

i
> 0.4

0.2

Iteration· 100000

Xcoordinal:e

~.,

cluster 1
clustBr2
cluster 3
cluster.
cluster 5
clusterS
clustar7
clusterS

(a) Dynamic-FClust, when the whole dataset has just been
read.

0.8

j
0.6

i
> 0.4

0.2

0.2

Iteration· 120000

0.4 0 .•

X eootdinate
08

clustor 1
duster 2
duster 3
duster.
dusterS
clusterS

(b) Dynamic-FClust , at 20000 iterations after t he whole
dataset has been read .

0.8

~ ..
i
> 0.4

02

0
0 0.2

Iteration '" 20000

04

. . ,. ... ~ ... '.t:.' jl ...
~~:
''1 . .t. .. .

OS OS

x eootdinate

+ •
+ +

clustor1
cluster 2
duster 3
clusl8r.
cluster 5
clusterS
cluster 7
cluster 8

(c) FClust, at 20000 iterations after the whole dataset is
read.

Figure 44 . Clustering the Movielens dataset using Dynamic-FClust vs. FClust , visualization panel
with clustered agents where d th = d ideaUh = 0.04, Simth = 0.22 , N _MIN = 10.

sponding time step for the first 10, 000 ratings. In a dynamic dataset, same movie may be rated by

different users as well as it can be re-rated by the same user.

141

TABLE 26
Several examples from the profiles of MovieLens data extracted using Dynamic-FClust where
N_MIN = 10, timestep = 100,000. Movies with average ratings 2.00 or above are listed in the
table.

Average
M ovie M ovie
Rating

P rofile 1 (includes 310 users)
2.58 Star Wars (1977)
2.35 Fargo (1996)
2.15 English Patient, The (1996)
2.06 Return of the Jedi (1983)
2.00 Raiders of the Lost Ark (1981)

Profile 2 (Includes 43 users)
2.71 Star Wars (1977)
2.22 Return of the Jedi (1983)
2.09 Contact (1997)
2.00 Fargo (1996)

P rofile 3 (Includes 40 users)
2.45 English Patient, The (1996)
2.30 Star Wars (1977)
2.08 Contact (1997)
2.03 Scream (1996)
2.00 Fargo (1996)

Profile 5 (Includes 42 users)
3.93 Star Wars (1977)
3.40 Return of the Jedi (1983)
2.71 Fargo (1996)
2.48 Raiders of the Lost Ark (1981)
2.45 Godfather , The (1972)
2.33 Independence Day (ID4) (1996)
2.33 Contact (1997)
2.26 Toy Story (1995)
2.17 Mr. Holland's Opus (1995)
2.12 Empire Strikes Back, The (1980)
2.12 Star Trek: First Contact (1996)
2.02 Monty Python and the Holy Grail (1974)

Figure 46 presents the average number of movies rated per user vs. the time step. The user

may submit ratings in consecutive time steps or there may be a time gap between ratings from the

same user. The addition of new users cause vertical drops in the plot. In the MovieLens dataset,

the number of movies represents the dimensionality. In high dimensional datasets, the more the user

rates movies, the better. When a user rates a relatively small number of movies, the data becomes

sparse. Comparing the number of movies in Figure 45 and the average number of rated movies per

user in Figure 46 , we observe that the MovieLens dataset is a sparse dataset, which makes clustering

more challenging.

142

"'0
Q)
ro
0:: 1000
en
Q)

>
0
~ 500
~

0
=t:t:
ro

0 0
I- 0 5000 10000

Time Step

Figure 45. Total number of movies rated vs. the time step for the 10 percent of the ratings in the
Movielens data set.

~
:::>

8.

* a:

~
"0 ..
t

40

30

20

10

0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time Step (one rating at a lime)

Figure 46 . The average number of movies rated per user vs. the time step for the first 10 percent of
the MovieLens ratings.

Figure 47 presents the average rating per user vs. the time step. In the MovieLens dataset, a

higher rating means user liked the movie. Addit ionally, a high rating average may imply an optimist

user.

Figure 48 presents the average rating per movie vs. time step. Some movies may be rated

higher when they are newer and more popular. Thus, the average of ratings may decrease in time.

When the movies become old and/ or no longer popular , they may be considered as uninteresting by

the users and they may not be rated as often.

Figure 49 presents the average results of 10 different runs of clustering 10 percent of the

143

4.5

3: ~t-J"'4..""-_""""L..~ __ -~_~-~-----:J
~ 3

8.
go 2.5

~
ci> 2
~

1.5

0.5

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time Step (one rating at a time)

Figure 47. The average rating per user vs. the time step for the first 10 percent of the MovieLens
ratings.

4.5

3:~
.~ '-"----------------1
~ 3

g' 2.5

~
t 2

1.5

0.5

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time Step (one rating at a lime)

Figure 48. The average rating per movie vs. the t ime step for the first 10 percent of the MovieLens
ratings.

MovieLens dataset using Dynamic-FClust. In the experiments, one rating becomes available to

Dynamic-FClust , at each time step, for the first 10, 000 time steps. Thus, the whole dataset is

available to Dynamic-FClust starting from time step 10, 000. The horizontal lines show the average

values whereas the vertical lines represent the standard deviations. Figure 49(a) show that after

some iterations, the clustering results stabilize.

Figure 50 illustrates the advantage of dynamic clustering over static clustering by comparing

the results of Dynamic-FClust to FClust. The results are average (and standard deviations) of 3

different runs of clustering the MovieLens dataset using FClust and Dynamic-FClust after post-

processing, using the wrap-around cluster formation, where dth = dideaLth = 0.04 , Simth = 0.345,

and N .-AI I N = 10. Vertical interval marks represent standard deviation. The results are compared

via inter-similarity, intra-similarity, inter-similarity over int ra-similarity, and extracted cluster num-

144

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Time Step (one rating at a time)

(a) Inter-cluster and intra-cl uster similarities. Vertical interval marks represent standard deviation.

12 ', --ClusterNo

10

c

.3 6

o~~-~---~--~---~---~--~---~--~~---L---~ o 0.2 0.8 1 1.2 1.4 1.6 1.8
Time Step (one rating at a time)

(b) Number of clusters extracted. Interva l marks represent standard deviation.

Figure 49. Average results (and standard deviations) of 10 different runs of clustering the first
10 percent of the MovieLens dataset using Dynamic-FClust after post-processing, where dth =
d ideaLth = 0.04, Simth = 0.345 , N _MIN = 2.

ber. The plots show the results starting from the first t ime step where the entire dataset becomes

available, and goes 100, 000 more time steps. Clusters were evaluated as soon as the whole dataset

became available and both Dynamic-FClust and FClust updated the agents ' properties, such as

position and amplitude, for one iteration. There is no more data input to any of the algorithms

after that time step, thus both algorithms cont inue updating their agent properties, i.e. improving

their clustering results . Meanwhile, cluster evaluations are repeated at every 10 ,000th time step.

Dynamic-FClust receives one-rating at a time, then updates its clustering results, and stores the

information it was able to extract. When the 100, 000th rating was available, Dynamic-FClust up-

dated its agent population and continued improving its cluster formation. On the other hand, FClust

started clustering from scratch when the whole dataset became available, thus, it took approximately

20, 000 time steps for FClust to produce similar results to Dynamic-FClust. These results illustrate

t he effectiveness of using the information from the past and advantages of Dynamic-FClust over

145

FClust.

5.5 Conclusions

Our previous studies on various synthetic and real life datasets showed that algorithms that

are based on flocks of agents can cluster and visualize the data simultaneously [128, 129J. In this

chapter, we developed an algorithm for dynamic clustering and visualization, which is capable of

handling dynamic data items as well. We observed that, similar to FClust, in Dynamic-FClust

parameter setting plays a crucial role in convergence. FClust has quadratic complexity. Our experi­

mental results showed that Dynamic-FClust can cluster and visualize dynamic data simultaneously,

while capturing emerging clusters and producing clustering and visualization results that are com­

parable to FClust.

146

0.9

O.B

0.7

.0
~ 0.6
::;;

0.5

0.4

16

14

12

~ 10

§ 400
<3

300

Time Slep (one rating at a time)

--e--- Dynamic-Felus! Inter
---+- Dynamic-FClust Intra
--e-Dynamic-FClust Inter/Intra
--er- FClusllnter
____ FClusllntra

--e- Felus! Inter/Intra

(a) Inter-cluster and intra-cluster similarities using FClust and Dynamic-FClust.

--+- Dynamic-FeluS! ClusterNo
--+- FClust ClusterNo

Time Step (one rating at a time)

(b) Number of clusters extracted using FClust and Dynamic-FClust.

--+- Dynamic-FeluS! OutlierNo
--+- FClust OutJierNo

Time Step (one rating at a time)

(c) Number of outliers extracted, FClust vs. Dynamic-FClust.

Figure 50 . Average results of clustering the MovieLens dataset using FClust and Dynamic-FClust.
Vertical interval marks represent standard deviation.

147

CHAPTER 6

CONCLUSIONS AND FUTURE DIRECTIONS

The natural analogy between Swarm Intelligence (SI) systems and social behavior have been

the main motivation for the topic of investigation in this dissertation, with a focus on Flock based

systems which are a particularly attractive SI systems that possess unique properties for modeling

dynamic online social activity, and yet have not been well investigated for this purpose. More

specifically, we investigate the use of flock-based swarm intelligence for two related and challenging

problems that form critical building blocks of intelligent personalized web servers, specifically

(i) the problem of understanding the online activities of online users by discovering groups

or clusters of similar users, and

(ii) the problem of predicting the interests of online users in anticipation of further decision

making goals, in particular focusing on collaborative filtering or social recommender systems.

The most popular SI clustering techniques are Particle swarm clustering and Ant-based

clustering. More recently, clustering using flocks of agents proved to be promising as well. Since in

this approach, each agent represents a data item, and the distance between agents on the visualization

panel depends on the similarity between the data records represented by these agents, the flocks­

of-agents approach, known as FClust, offers a solution not only for clustering but also for data

visualization. Additionally, FClust possesses a dynamic structure. Agents keep moving on the

visualization panel until the algorithm is forced to stop. After a sufficient number of iterations,

every state of the visualization panel may provide a clustering alternative for the dataset. This

makes FClust suitable for clustering and visualization of dynamic datasets. Although the initial

experimental results with FClust were acceptable, it suffered from several limitations, namely lack

of scalability, and inadequacy to for clustering high dimensional sparse dataset, in particular dynamic

transactional data.

To overcome some of the observed limitations , we have proposed some improvements in­

cluding FClust-annealing, the (K-means+FClust) Hybrid, and the (SPKM+ FClust) Hybrid algo­

rithms. Annealing decreased the number of iterations to convergence and improved the quality of

148

the clusters. The effect of different cooling functions should be studied further. In addition to these

improvements, the proposed (K-means+FClust) hybrid algorithm reduces the quadratic complexity

of FClust to linear complexity and performs similarly to FClust with fewer iterations during the

experiments.

Our work on Web server access log data, a special case of high-dimensional and sparse

data, showed that algorithms that are based on flocks of agents can cluster and visualize the data

simultaneously [128, 129]. Our (SPKM+FClust) hybrid approach reduces the quadratic complexity

of FClust to linear complexity, and performs similarly to FClust, but has the advantage of fewer

iterations for clustering large, high-dimensional data such as web usage data. For Web usage data,

our experiments confirmed the superiority of the proposed hybrid approach, both in terms of quality

of the final results and computational cost.

We have also developed a new recommender system approach called the flocks-of-agents

based recommender system (FlockRecom). This new approach is based on swarm intelligence,

specifically, the dynamic collaboration between bird flocks in nature. The results were compared to

the traditional user-based nearest neighbor collaborative filtering and FlockRecom was more success­

ful at providing variety in the recommendations without losing recommendation quality (in terms

of precision and recall). One problem suffered by some recommender systems is over-specialization.

When the recommendations are limited to the user's behavior or user's profile, the user can be

restricted to seeing only similar items, and there will be no randomness. In artificial intelligence,

this problem is known as the exploration/exploitation dilemma. Although collaborative filtering

can counteract over-specialization by suggesting different items, the dynamic structure of the Flock­

Recom algorithm makes it more successful at solving the exploration/exploitation dilemma, which

is also practically observed in the experimental results. This and the dynamic nature of the algo­

rithm suggests that the proposed nature inspired recommendation system looks very promising for

dynamic environments, characterized by change in the data and its underlying concepts.

Finally, we introduced a new clustering paradigm: Dynamic Data Clustering (or dynamic

clustering in short) and proposed a flocks-of-agents based dynamic clustering algorithm, Dynamic­

FClust. In this new approach, not only clusters but data records themselves may change in time.

For example, if the data records are users from a movie rental website, user records change as users

update their reviews for the movies. In Dynamic-FClust, clusters are updated as more information

becomes available. Unlike static clustering algorithms, the clustering process is not started from

scratch. Rather, at time t, Dynamic-FClust uses the information coming from time t - 1 to update

149

its knowledge base. Our experiments on synthetic and real life datasets have presented Dynamic­

FClust's advantages over static FClust.

6.1 Summary of Contributions

Our main contributions can be summarized as follows:

• New (K-means+FClust) and (SPKM+FClust) hybrid algorithms were developed. Our hybrid

approach reduces the quadratic complexity of FClust to linear complexity, and performs simi­

larly to FClust, but has the advantage of fewer iterations for clustering large, high-dimensional

data such as web usage data. Hybrid algorithms were tested on several datasets including syn­

thetic data, real data from UCI machine learning repository, and real Web server logs and

our experiments confirmed their superiority, both in terms of quality of the final results and

computational costs [128, 129].

• A dynamic clustering and visualization approach that can perform dynamic clustering was

developed and tested. This approach can handle the arrival of not only one data record at a

time, but also "part" of a data record, such as one attribute at a time, in any order for one

data record. It can also handle the modification or updating of an individual attribute (such

as one item's rating) from a record and even the removal of a data record. To our knowledge,

no existing clustering technique handles "partial" data addition, modification, or removal in

one record.

• A new recommender system approach called the flocks-of-agents based recommender system

(FlockRecom) was developed. The results were compared to the traditional user-based nearest

neighbor collaborative filtering and FlockRecom was more successful at providing variety in

the recommendations without losing recommendation quality [130].

• Under special simplifications we formulate the flocking behavior as a Gradient Descent opti­

mization that minimizes a criterion that agrees with the observed behavior in flocking in the

case of attraction, namely grouping (agents getting closer to each other) and alignment. In

addition it is minimizing the error between ideal and agent distance values, therefore seeking

a visualization of the original data onto the 2D panel that is as faithful as possible. The

mathematical derivations are included under the Future Visions in the Conclusions Chapter.

According to our knowledge, this a mathematical interpretation of flocking behavior that has

not been accomplished so far. And we plan to pursue it further in the future.

150

6.2 Limitations of This Work

• As is common with all clustering techniques, our algorithms require fixing several parameters

before being applied, and finding the best parameter configuration often requires trial and

error for each new dataset.

• Our hybrid approach approximates the entire agent population by using a smaller population

extracted by fast partitional clustering of the agent population in a preliminary phase. This

allows an agent to represent more than one data record, thus increases scalability. However,

the quality of this preliminary clustering is expected to depend on the number of clusters and

the parameters. Also, it would be challenging to adapt the hybrid approach to a dynamic

setting because the preliminary phases of partitional clustering would have to be adapted to a

dynamic setting, which would make it part of the dynamic clustering and no longer a separate

preliminary phase.

• The requirement to compute all pairwise similarities remains a heavy burden on the non-hybrid

approaches, due to the quadratic computational and memory complexity involved.

6.3 Vision for the Future

Unlike ant-based and particle-swarm based web mining methods, flocks-of-agents based solu­

tions are less studied. Our research should open the doors for more studies based on flocks-of-agents

based methods. In particular, our research can be expanded along the following directions:

1. Visualization: In the dissertation, the visualization part of FClust was implemented using

C, C++, and Gnuplot. However, using Gnuplot did not provide enough interaction with the

user. We have started improving the visualization using C++, OpenGL, and QT and initial

results are promising in that we can produce a video of the agent movement in time, with

different colors assigned to the agents depending on their clusters.

2. Cluster Evolution Tracking: The Dynamic-FClust presents a suitable platform for tracking

cluster evolution. This can be done qualitatively by observing cluster behavior on the visu­

alization panel, and quantitatively by defining new metrics that measure changes in clusters,

such as increase in size, merging between two clusters, or a split of one cluster into several

clusters.

151

3. Dynamic Recommender System: We proposed a recommender system using an idea sim-

ilar to static FClust. In the future, we plan to work on implementing a dynamic recommender

system using an approach similar to Dynamic-FClust. In the experiments, the KDD Cup 2011

dataset will be considered. The challenge will be recommending Music Items based on the

Yahoo! Music Dataset1 .

4. Convergence Proof: Previous research shows that flock-of-agents-based clustering converges

given suitable parameters and enough iterations. One desired goal would be to mathematically

prove the convergence of the agent population to a stable state. One way to accomplish this

is to rewrite and combine the agent i's movement steps from our algorithms into one position

update equation. In fact, it is possible to show that the change in the previous position X~-l

of agent ai at time step t is given by:

L (v~-l+f(~Dtjl,dth))(X~-l-X~-l)
~xt = [K + dideaUh] .,.,.....a_j E_N_, ________________ ..,,-

~ (o-lNil + 1)
L (v~-l+f(~Dtjl,dth))(X~-l-X~-l)

ajEN,

where K, n, dideaUh, and dth are constants that depend on the algorithm parameters, Ni is

the set of neighboring agents to agent ai, v;-l and X~-l are the velocity and position of agent

aj at the previous time step, respectively, and f is either an attraction or repulsion function

depending on the sign of ~Dt/ = dt-1(i,j) - dideal(i,j).

5. Formulating Flocking as an Optimization Problem:

Given that the position of the ith agent of the flock is

(39)

where

adejault + 20 x (neighbor_no(i) + 1) (40)

dth
(41)

and Ni = {j I d(j, i) :s: dth & i;;f j}

1 http://kddcup.yahoo.com/datasets.php (Accessed April 27, 2011)

152

Let A = K + Qx(I~:I+l)

Then taking into account only the attraction effects from agent i's neighbors, we can write the

change in the position of this agent as

~t ~t-l
Xi -Xi

"" (o-!t (D.Dfj)2 =ff; =ff;) 6 Vj + 4 x d _ d (i .) x (xj - xi)
. Nt th tdeal, J

Ax _JE __ ~, ______________ ~ __ ..-______________ ___

IIFatt II
(42)

where

~ ((D.Dt .) 2) D.Dfj = ~(i,j) - dideal(i,j) and Fatt = L ~ + 4 x d _ d tJ C .) x (X] - i1)
JEN; th tdeal Z, J

If we assume that IIFatt II is close to 1 or does not change much from one iteration to the

next (i.e. it is approximately constant), then we can rewrite the position change as an update

equation corresponding to one iteration of Gradient Descent for a cost function, as follows

r500st
r5xt t

r500st
-'rJ-­

r5X1
(43)

(44)

It can be verified that one cost function that can result in the above gradient is the one

minimized in the following optimization problem:

(45)

In other words, the update equations, when taking only the attraction effects in account,

amount to minimizing the total errors between the visualization panel distance values between

agent i and its neighbors j and the ideal distance between the original data points, i.e., D.Dij

as well as minimizing the distances between the ith agent and its neighbors on the visualization

panel IIXj - X1112, while also maximizing ~jEN; vj • X1, which is the dot product between the

153

ith agent's position :q and the mean of all its neighbors' velocities LjENf Vj. Maximization

of the dot product between two vectors is equivalent to maximizing the cosine of the angle

between two vectors, therefore resulting in minimizing the angle between those two vectors, in

other words, seeking the best alignment. This optimization criterion agrees with the observed

behavior in flocking in the case of attraction, namely grouping (agents getting closer to each

other) and alignment. In addition it is minimizing the error between ideal and agent distance

values, therefore seeking a visualization of the original data onto the 2D panel that is as faithful

as possible. Reformulation for the case of repulsion can follow similar steps, generally leading

to dispersing the agents away from each other (because of the negation in the velocity).

6. Distributed Computing: Although complexity was not the main goal of this work, the

distributed nature of the swarm intelligence paradigm holds obvious potential for scalability

and robustness with cloud-based implementations. One way to achieve this goal is to distribute

the data on multiple nodes, perform swarm intelligence based clustering locally, and then

combine the results. This would require a judicious partitioning of the dataset. Another

direction would be to distribute the operations of the flock-based clustering even if it is only for

a limited number of iterations on multiple processors. The main challenge would be managing

the communication between nodes in such a way as to limit communication overhead.

154

REFERENCES

[1] http://www.w3.org/2001/swj.

[2] Jester dataset, http://eigentaste.berkeley.edu/datasetj.

[3] Kdd cup 1999 data, http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

[4] Movielens dataset, http://www.grouplens.org/node/73.

[5] Uei machine learning repository, http://archive.ics.uei.edu/ml/.

[6] Ajith Abraham, Swagatam Das, and Sandip Roy. Soft Computing for Knowledge Discovery

and Data Mining, chapter Swarm Intelligence Algorithms for Data Clustering, pages 279-313.

Springer US, 2008.

[7] A. J. Abrantes and J. S. Marques. A method for dynamic clustering of data. In Proceedings

of the 9 thBritish Conference, 1998.

[8] G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: A

survey of the state-of-the-art and possible extensions): , 2005. IEEE Trans. Knowl. Data

Eng., 17(6), 2005.

[9] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S. Yu. A framework for clustering

evolving data streams. In Proceedings of the 29th international conference on Very large data

bases - Volume 29, VLDB '2003, pages 81-92. VLDB Endowment, 2003.

[10] Robert Armstrong, Dayne Freitag, Thorsten Joachims, and Tom Mitchell. Webwatcher: A

learning apprentice for the world wide web. In AAAI Spring Symposium on Information

Gathering, pages 6-12. AAAI Press, 1995.

[11] H. Azzag, N. Monmarche, M. Slimane, and G. Venturini. Anttree: a new model for clustering

with artificial ants. Evolutionary Computation, 2003. CEC '03. The 2003 Congress on, 4:2642-

2647 Vol.4, Dec. 2003.

155

[12] R Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. ACM Press / Addison­

Wesley, 1999.

[13] Marko Balabanovic. An adaptive web page recommendation service. In AGENTS '97: Pro­

ceedings of the first international conference on Autonomous agents, pages 378-385, New York,

NY, USA, 1997. ACM.

[14] Marko Balabanovic and Yoav Shoham. Fab: content-based, collaborative recommendation.

Commun. ACM, 40(3):66-72,1997.

[15] P.F. Baldi, P. Frasconi, and P. Smyth. Modeling the Internet and the Web. Probabilistic

Methods and Algorithms. Wiley, May 2003.

[16] C. Basu, H. Hirsh, and W. Cohen. Recommendation as classification: Using social and content­

based information in recommendation. In Proceedings of the Fifteenth National Conference on

Artificial Intelligence, pages 714-720, 1998.

[17] J. Becher and R Kohavi. Tutorial on e-commerce and clickstream mining. In First SIAM

International Conference on Data Mining, Apr 5 2001.

[18] R Sharma H. Kaur Bedi, P. Recommender system based on collaborative behavior of ants.

Journal of Artificial Intelligence, 2:40-55, 2009.

[19] R K. Belew. Finding out about: a cognitive perspective on search engine technology and the

WWw. Cambridge University Press, New York, NY, USA, 2000.

[20] RK. Belew. Adaptive information retrieval: using a connectionist representation to retrieve

and learn about documents. In Proceedings of the 12th annual international ACM SIGIR

conference on Research and development in information retrieval, pages 11 - 20, Cambridge,

Massachusetts, United States, 1989.

[21] K. Benabdeslem and Y. Bennani. An incremental som for web navigation patterns clustering.

In 26th International Conference on Information Technology Interfaces Proceedings, pages

209-213 VoLl, June 2004.

[22] Pavel Berkhin. Survey of clustering data mining techniques. Technical report, 2002.

[23] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American, 2001.

156

[24] D. Billsus and M. Pazzani. Learning collaborative information filters. In Proc. 15th Interna­

tional Con! on Machine Learning, pages 46-54, San Francisco, CA, 1998. Morgan Kaufmann.

[25] Ingwer Borg and Patrick Groenen. Modern multidimensional scaling: theory and applications.

New York; London: Springer, 2005.

[26] Richard Brath. Concept demonstration: Metrics for effective information visualization. In

Proceedings For IEEE Symposium On Information Visualization, pages 108-111, IEEE Service

Center, Phoenix, AZ, 1997.

[27] W. Buntine. Learning classification trees. Statistics and Computing, 2(2):63-73, June 1992.

[28] R. Burke. Hybrid recommmender systems: Survey and experiments. In User Modeling and

User-Adapted Interaction, 12(4):331-370,2002.

[29] S. Chakrabarti. Mining the Web: Discovering Knowledge from Hypertext Data. Morgan­

Kaufmann Publishers" 2003.

[30] Moses Charikar, Chandra Chekuri, Tomas Feder, and Rajeev Motwani. Incremental clustering

and dynamic information retrieval. In Proceedings of the twenty-ninth annual ACM symposium

on Theory of computing, STOC '97, pages 626-635, New York, NY, USA, 1997. ACM.

[31] Yixin Chen and Li Th. Density-based clustering for real-time stream data. In Proceedings of

the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

(KDD'07), pages 133 - 142, 2007.

[32] Zhuo Chen and Qing-Chun Meng. An incremental clustering algorithm based on swarm in­

telligence theory. Machine Learning and Cybernetics, 2004. Proceedings of 2004 International

Conference on, 3:1768-1772 vol.3, Aug. 2004.

[33] lain D. Couzin, J. E. N. S. Krause, Richard James, Graeme D. Ruxton, and Nigel R. Franks.

Collective memory and spatial sorting in animal groups. Journal of Theoretical Biology,

218(1):1-11, September 2002.

[34] Trevor F. Cox and Michael A.A. Cox. Multidimensional scaling. Boca Raton, Fla. : Chapman

& Hall/CRC, 2001.

[35] X. Cui and T. E. Pot ok. Document clustering analysis based on hybrid pso+kmeans algorithm.

Journal of Computer Sciences (Special Issue), Special Issue:27-33, 2005.

1.'57

[36] X. Cui, T. E. Potok, and P. Palathingal. Document clustering using particle swarm optimiza­

tion. In IEEE Swarm Intelligence Symposium, 2005.

[37] Xiaohui Cui and Thomas E. Potok. A distributed agent implementation of multiple species

flocking model for document partitioning clustering. In Cooperative Information Agents X

(Lecture Notes in Compnter Science), volume 4149/2006, pages 124-137. Springer Berlin /

Heidelberg, 2006.

[38] P. M. E. De Bra and R. D. J. Post. Information retrieval in distributed hypertexts. In RIA 0-94

Conference" New York, October 1994.

[39] P. M. E. De Bra and R. D. J. Post. Information retrieval in the World-Wide Web: Making

client-based searching feasible. In First WWW Conference, Geneva, April 1994.

[40] Inderjit S. Dhillon and Dharmendra S. Modha. Concept decompositions for large sparse text

data using clustering. Machine Learning, 42(1-2):143-175,2001.

[41] M. Dorigo and T. Sttzle. Ant Colony Optimization. MIT Press, 2004.

[42] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern classification. New York,

Wiley, 2001.

[43] Martin Ester, Hans peter Kriegel, Michael Wimmer, and Xiaowei Xu. Incremental clustering

for mining in a data warehousing environment. In In Proc. 24th Int. Con! Very Large Data

Bases, VLDB, pages 323--333, 1998.

[44] Oren Etzioni. Moving up the information food chain: Deploying softbots on the world wide

web. In Proceedings of the Thirteenth National Conference on Artificial Intelligence, 1996.

Revised version reprinted in AI Magazine special issue, Summer '97. 109, pages 1322-1326,

1996.

[45] Usama Fayyad, Georges G. Grinstein, and Andreas Wierse, editors. Information Visualization

in Data Mining and Knowledge Discovery. Morgan Kaufmann, 2001.

[46] Nathaniel Good, J. Ben Schafer, Joseph A. Konstan, Al Borchers, Badrul Sarwar, Jon Her­

locker, and John Riedl. Combining collaborative filtering with personal agents for better

recommendations. In In Proceedings of the Sixteenth National Conference on Artificial Intel­

ligence, pages 439-446. AAAI Press, 1999.

158

[47] Maria Halkidi, Yannis Batistakis, and Michalis Vazirgiannis. Cluster validity methods: Part

i. ACM SIGMOD Record, 31(2):40 - 45, June 2002.

[48] Maria Halkidi, Yannis Batistakis, and Michalis Vazirgiannis. Cluster validity checkingmethods:

Part ii. ACM SIGMOD Record, 31(3):19-27, September 2002.

[49] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques. Morgan Kauf­

mann Publishers, 2001.

[50] J. Handl, J. Knowles, and M. Dorigo. On the performance of ant-based clustering. In Pro­

ceedings of the Third International Conference on Hybrid Intelligent Systems, 2003.

[51] J. Handl, J. Knowles, and M. Dorigo. Strategies for the increased robustness of ant-based

clustering. In Engineering Self-Organising Systems, volume Volume 2977/2004 of Lecture

Notes in Computer Science, pages 90-104. Springer Berlin / Heidelberg, 2004.

[52] Julia Handl and Bernd Meyer. Ant-based and swarm-based clustering. Swarm Intelligence,

1(2):95-113,2007.

[53] S. Havre, E. Hetzler, P. Whitney, and L. Nowell. Themeriver: visualizing thematic changes

in large document collections. Visualization and Computer Graphics, IEEE Transactions on,

8(1):9-20, Jan/Mar 2002.

[54] S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall, 1998.

[55] F. Heppner and U. Grenander. A stochastic nonlinear model for coordinated bird flocks. In

S. Krasner, editor, The Ubiquity of Chaos, pages 233-238. AAAS, Washington, 1990.

[56] Jonathan L. Herlocker, Joseph A. Konstan, and John Riedl. Explaining collaborative filter­

ing recommendations. In Proceedings of the 2000 ACM conference on Computer Supported

Cooperative Work, pages 241-250, Philadelphia, Pennsylvania, United States, 2000.

[57] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T. Riedl. Evaluating

collaborative filtering recommender systems. ACM Trans. In! Syst., 22:5-53, January 2004.

[58] T. Honkela, S. Kaski, K. Lagus, and T. Kohonen. Newsgroup exploration with websom method

and browsing interface. Technical report, Technical Report A32, Helsinki University of Tech­

nology, Laboratory of Computer and Information Science, Espoo, Finland" 1996.

[59] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall, 1988.

159

[60] A. K. Jain, M.N. Murthy, and P.J. Flynn. Data clustering: A review. ACM Computing

Reviews, November 1999.

[61] T. Joachims, D. Freitag, and T. Mitchell. Webwatcher: A tour guide for the world wide web.

In Proceedings of the 1997 IJCAI, August 1997.

[62] Mehmed Kantardzic. Data Mining: Concepts, Models, Methods and Algorithms. Wiley-IEEE

Press, 2002.

[63] D.A. Keirn. Information visualization and visual data mining. Visualization and Computer

Graphics, IEEE Transactions on, 8(1):1-8, Jan/Mar 2002.

[64] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings. of the IEEE

International Conference on Neural Networks, volume 4, pages 1942-1948, 1995.

[65] J. Kennedy, RC. Eberhart, and Y. Shi. Swarm Intelligence. Morgan Kaufmann Publishers

Inc., 2001.

[66] H. K. Kim, J. K. Kim, and Y. H. Cho. A collaborative filtering recommendation methodology

for peer-to-peer systems'. In E-Commerce and Web Technologies. Berlin / Heidelberg Springer,

2005.

[67] T. Kohonen, S. Kaski, K. Lagus, J. Salojrvi, J. Honkela, V. Paatero, and A. Saarela. Self

organization of a massive document collection. IEEE Transactions on Neural Networks, Special

Issue on Neural Networks for Data Mining and Knowledge Discovery, 11(3):574-585, May

2000.

[68] Joseph A. Konstan, Bradley N. Miller, David Maltz, Jonathan L. Herlocker, Lee R. Gordon,

and John Riedl. Grouplens: Applying collaborative filtering to usenet news. Communications

of the ACM, 40(3):77-87, 1997.

[69] Yehuda Koren. Collaborative filtering with temporal dynamics. In Proceedings of the 15th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2009.

[70] Raymond Kosala and Hendrik Blockeel. Web mining research: A survey. ACM SIGKDD

Explorations, 2:1-15, 2000.

[71] I. Kushchu. Web-based evolutionary and adaptive information retrieval. Evolutionary Com­

putation, IEEE Transactions on, 9(2):117-125, April 2005.

160

[72] N. Labroche, N. Monmarche, and G. Venturini. A new clustering algorithm based on the chem­

ical recognition system of ants. In Proceedings of the 15th European Conference on Artificial

Intelligence, 2002.

[73] N. Labroche, N. Monmarche, and G. Venturini. Antclust: Ant clustering and web usage

mining. In Proc. of GECCO-2003, pages 25-36. Springer, LNCS, 2003.

[74] N. Labroche, N. Monmarche, and G. Venturini. Web sessions clustering with artificial ants

colonies. In WWW2003, The Twelfth International World Wide Web Conference, Budapest,

Hungary, 2003.

[75] D. D. Lewis and J. Catlett. Heterogeneous uncertainty sampling for supervised learning. In

W. W. Cohen and H. Hirsh, editors, In Proceedings of ICML 94, 11th International Conference

on Machine Learning, pages 148-156. San Francisco, CA: Morgan Kaufmann, 1994.

[76] Henry Lieberman. Letizia: an agent that assists web browsing. In In 1995 International Joint

Conference on Aritifical Intelligence, pages 924-929, 1995.

[77] D. Lilt and F. Kubala. Online speaker clustering. Acoustics, Speech, and Signal Processing,

2004. Proceedings. (ICASSP '04). IEEE International Conference on, 1:1-333-6 voLl, May

2004.

[78] Bing Liu. Web Data Mining Exploring Hyperlinks , Contents, and Usage Data. Springer, 2008.

[79] Bo Liu, Jiuhui Pan, and R I (Bob) McKay. Incremental Clustering Based on Swarm In­

telligence, pages 189-196. Lecture Notes in Computer Science. in Simulated Evolution and

Learning, Springer Berlin / Heidelberg, 2006.

[80] Daben Liu and Francis Kubala. Online speaker clustering. volume 1, pages 1-333-6 voLl, May

2004.

[81] Erik D. Lumer and Baldo Faieta. Diversity and adaptation in populations of clustering ants.

In Proceedings of the third international conference on Simulation of adaptive behavior: from

animals to animats 3, pages 501 - 508. MIT Press Cambridge, MA, USA, 1994.

[82] Kegang Luo, Yuanchao Liu, and Xiaolong Wang. A dynamic som algorithm for clustering large­

scale document collection. Advanced Language Processing and Web Information Technology,

2007. ALPIT 2007. Sixth International Conference on, pages 15-20, Aug. 2007.

161

[83] Peter Lyman and Hal R. Varian. How much information 2000. Retrieved from

http://www.sims.berkeley.edu/how-much-info on [01.19.2009], 2000.

[84] Peter Lyman and Hal R. Varian. How much information 2003. Retrieved from

http://www.sims.berkeley.edu/how-much-info-2003 on [01.19.2009], 2003.

[85] J. MacQueen. Some methods for classification and analysis of multivariate observations. In

Lucien M. Le Cam and Jerzy Neyman, editors, Proceedings of the Fifth Berkeley Symposium

on Mathematical Statistics and Probability, volume 1, pages 281~297. University of California

Press, 1967.

[86] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schtze. Introduction to Informa­

tion Retrieval. Cambridge University Press, 2008.

[87] Dieter Merkl and Andreas Rauber. Alternative ways for cluster visualization in self-organizing

maps. In In Proc. of the Workshop on Self-Organizing Maps (WSOM97, pages 106~111, 1997.

[88] Nancy Miller, Elizabeth G. Hetzler, Grant Nakamura, and Paul Whitney. The need for metrics

in visual information analysis. In Workshop on New Paradigms in Information Visualization

and Manipulation, pages 24~28, 1997.

[89] M. M. Millonas. Swarms, phase transition, and collective intelligence. In In C. G. Langton,

(Eds.) , Artificial life III. Addison - Wesley, MA, 1994.

[90] D. Mladenic. Personal webwatcher: design and implementation. Technical Report Technical

Report IJS-DP-7472, School of Computer Science, Carnegie-Mellon University, Pittsburgh,

USA, 1996.

[91] B. Mobasher, H. Dai, T. Luo, M. Nakagawa, Y. Sun, and J. Wiltshire. Discovery of aggregate

usage profiles for web personalization. In Proceedings of the WebKDD Workshop, 2000.

[92] B. Mobasher, H. Dai, T. Luo, Y. Sung, and J. Zhu. Integrating web usage and content mining

for more effective personalization. In In Proc. of the International Conference on E-Commerce

and Web Technologies (ECWeb2000), Greenwich, UK, September 2000.

[93] Robin R. Murphy. Introduction to AI Robotics. The MIT Press, 2000.

[94] O. Nasraoui. World wide web personalization. In J. Wang, editor, Invited chapter in Encyclo­

pedia of Data Mining and Data Warehousing. Idea Group, 2005.

162

[95] O. Nasraoui and C. Petenes C. Combining web usage mining and fuzzy inference for website

personalization. In Proc. of WebKDD 2003 KDD Workshop on Web mining as a Premise to

Effective and Intelligent Web Applications, page 37, Washington DC, August 2003.

[96] O. Nasraoui, C. Cardona, C. Rojas, and F. Gonzalez. Mining evolving user profiles in noisy web

clickstream data with a scalable immune system clustering algorithm. In Proc. of WebKDD

2003, pages 71-81, Washington DC, Aug 2003.

[97] O. Nasraoui and R. Krishnapuram. One step evolutionary mining of context sensitive asso­

ciations and web navigation patterns. In in Proc. SIAM conference on Data Mining, pages

531-547, Arlington, VA, April 2002.

[98] O. Nasraoui, R. Krishnapuram, H. Frigui, and Joshi A. Extracting web user profiles using

relational competitive fuzzy clustering. International Journal of Artificial Intelligence Tools,

9(4):509-526,2000.

[99] O. Nasraoui, R. Krishnapuram, H. Frigui, and Joshi A. Extracting web user profiles using

relational competitive fuzzy clustering. International Journal on Artificial Intelligence Tools,

9(4):509-526,2000.

[100] O. Nasraoui, R. Krishnapuram, and A. Joshi. Mining web access logs using a relational

clustering algorithm based on a robust estimator. In 8th International World Wide Web

Conference, pages 40-41, Toronto, Canada, 1999.

[101] O. Nasraoui, R. Krishnapuram, and A. Joshi. Mining web access logs using a relational

clustering algorithm based on a robust estimator. In Proc. of the Eighth International World

Wide Web Conference, pages 40-41, Toronto, 1999.

[102] O. Nasraoui, R. Krishnapuram, and A. Joshi. Relational clustering based on a new robust

estimator with application to web mining. In Proceedings of the North American Fuzzy Infor­

mation Society, pages 705-709, New York City, 1999.

[103] O. Nasraoui and M. Pavuluri. Complete this puzzle: A connectionist approach to accurate web

recommendations based on a committee of predictors. In B. Mobasher, B. Liu, B. Masand, and

O. Nasraoui, editors, In Proceedings of WebKDD- 2004 workshop on Web Mining and Web

Usage Analysis, part of the ACM KDD: Knowledge Discovery and Data Mining Conference,

Seattle, WA, 2004.

163

[104] O. Nasraoui, M. Soliman, E. Saka, A. Badia, and R. Germain. A web usage mining framework

for mining evolving user profiles in dynamic web sites. Knowledge and Data Engineering,

IEEE Transactions on, 20(2):202-215, Feb. 2008.

[105] Olfa Nasraoui. An evolutionary approach to mining robust multiresolution web profiles and

context sensitive urI associations. Intl Journal of Computational Intelligence and Applications,

2:339-348, 2002.

[106] R. Krishnapuram O. Nasraoui. A new evolutionary approach to web usage and context sensitive

associations mining. International Journal of Computational Intelligence and Applications,

Special Issue on Internet Intelligent Systems, 2(3:339-348, Sep. 2002.

[107] S. Goswami O. Nasraoui. Mining and validating localized frequent itemsets with dynamic

tolerance. In Proc. SIAM conference on Data Mining, Bethesda, MD, April 2006.

[108] M. Omran, A. P. Engelbrecht, and A. Salman. Particle swarm optimization method for image

clustering. International Journal of Pattern Recognition and Artificial Intelligence, 19(3):297-

322,2005.

[109] M. Omran, A. Salman, and A. P. Engelbrecht. Image classification using particle swarm

optimization. In In Conference on Simulated Evolution and Learning, volume 1, pages 370-

374, 2002.

[110] Luigi Pagliarini, Ariel Dolan, Filippo Menczer, and Henrik Hautop Lund. Alife meets web:

Lessons learned. In VW '98: Proceedings of the First International Conference on Virtual

Worlds, pages 156-167, London, UK, 1998. Springer-Verlag.

[111] M. Pazzani, J. Muramatsu, and D. Billsus. Syskill & webert: Identifying interesting web sites.

In Proceedings of the National Conference on Artificial Intelligence, pages 54-61, 1996.

[112] Michael pazzani and Daniel Billsus. Learning and revising user profiles: The identification

ofinteresting web sites. Mach. Learn., 27(3):313-331, 1997.

[113] Michael J. Pazzani. A framework for collaborative, content-based and demographic filtering.

Artificial Intelligence Review, 13(5-6):393-408, 1999.

[114] J. Pearl. Fusion, propagation, and structuring in belief networks. Artificial Intelligence,

29(3):241 - 288, 1986.

164

[115] Mike Perkowitz and Oren Etzioni. Adaptive web sites: an ai challenge. In In Proceedings of

the Fifteenth International Joint Conference on Artificial Intelligence, pages 16-23, 1997.

[116] F. Picarougne, H. Azzag, G. Venturini, and C. Guinot. On data clustering with a flock of

artificial agents. In Proceedings of the 16th IEEE International Conference on Tools with

Artificial Intelligence (ICTAI'04), November 2004.

[117] Fabien Picarougne, Hanene Azzag, Gilles Venturini, and Christiane Guinot. A new approach

of data clustering using a flock of agents. Evolutionary Computation, 15(3):345-367, 2007.

[118] Frits H. Post, Gregory M. Nielson, and Georges-Pierre Bonneau., editors. Data Visualization

The State of the Art. Boston; Dordrecht : Kluwer, 2003.

[119] Beatriz Prieto, Fernando Thcas, Juan J. Merelo, Antonio Mora, and Alberto Prieto. Vi­

sualizing the evolution of a web-based social network. Journal of Network and Computer

Applications, 31(4):677-698,2008.

[120] Glenn Proctor and Chris Winter. Information flocking: Data visualisation in virtual worlds

using emergent behaviours. Lecture Notes in Computer Science, 1434:168-176, 1998.

[121] J.R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81-106, 1986.

[122] Vitorino Ramos and Ajith Abraham. Swarms on continuous data. Evolutionary Computation,

2003. CEC '03. The 2003 Congress on, 2:1370-1375 Vol.2, Dec. 2003.

[123] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John Riedl. Grou­

plens: An open architecture for collaborative filtering of netnews. In Proceedings of ACM 1994

Conference on Computer Supported Cooperative Work, pages 175-186, Chapel Hill, NC, 1994.

ACM Press.

[124] Craig W. Reynolds. Flocks, herds, and schools: A distributed behavioral model. Computer

Graphics, 21(4):25-34,1987.

[125] Elaine Rich. Users are individuals: individualizing user models. International Journal of

Man-Machine Studies, 18:199-214, 1983.

[126] C. J. Rijsbergen. Information Retrieval. Butterworth-Heinemann, 22nd edition, 1979.

[127] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall

Series in Artificial Intelligence, 1995.

165

[128] Esin Saka and Olfa Nasraoui. Simultaneous clustering and visualization of web usage data

using swarm-based intelligence. In Proceedings of the 20th IEEE International Conference on

Tools with Artificial Intelligence (ICTAI'08), 2008.

[129] Esin Saka and Olfa Nasraoui. Improvements in flock-based collaborative clustering algorithms.

In Christine Mumford and Lakhmi Jain, editors, Computational Intelligence Collabomtion,

Fusion and Emergence, Intelligent Systems Reference Libmry, pages 639-672. Springer, 2009.

[130] Esin Saka and Olfa Nasraoui. A recommender system based on the collaborative behavior of

bird flocks. In Proceedings of the 6th International Conference on Collabomtive Computing:

Networking, Applications and Worksharing (CollabomteCom'10), 2010.

[131] Badrul M. Sarwar, Joseph A. Konstan, Al Borchers, Jon Herlocker, Brad Miller, and John

Riedl. Using filtering agents to improve prediction quality in the grouplens research collabora­

tive filtering system. In In Proceedings of the 1998 ACM Conference on Computer Supported

Coopemtive Work, pages 345-354, Seattle, Washington, 1998.

[132] J. Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen. Collaborative filtering rec­

ommender systems. In The Adaptive Web, LNCS 4321, pages 291-324. 2007.

[133] J.B. Schafer, J. Konstan, and J. Reidel. Recommender systems in e-commerce. In Proceedings

of ACM Conference on E-commerce, pages 158-166, 1999.

[134] A. F. Smeaton and C. J. van Rijsbergen. The retrieval effects of query expansion on a feedback

document retrieval system. The Computer Journal, 26(3):239-246, 1983.

[135] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Brad­

ford Book, The MIT Press, Cambridge, Massachusetts London, England, 1998.

[136] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data Mining. Addison­

Wesley, 2005.

[137] Alexey Tsymbal. The problem of concept drift: Definitions and related work. Technical report,

2004.

[138] Edward R. Tufte. Visual Explanations: Images and Quantities, Evidence and Narrative.

Graphics Press, 1997.

166

[139] Edward R. Thfte. The Visual Display of Quantitative Information. Graphics Press; 2 edition,

2001.

[140] Edward Rolf Tufte. Envisioning Information. Graphics Press, 8th printing, June 2001, 1990.

[141] Edward Rolf Tufte. Beautiful Evidence. Graphics Press, 2006.

[142] D. W. van der Merwe and A. P. Engelbrecht. Data clustering using particle swarm opti­

mization. In Proceedings of IEEE Congress on Evolutionary Computation 2003 (CEC 2003),

volume 1, pages 215- 220,2003.

[143] Juha Vesanto. Som-based data visualization methods. Intelligent Data Analysis, 3:111-126,

1999.

[144] A. 1. Vizine, 1. N. de Castro, E. R. Hruschka, and R. R. Gudwin. Towards improving clustering

ants: an adaptive ant clustering algorithm. informatica, 29, 143154. Informatica, 29:143-154,

2005.

[145] Gerhard Weiss, editor. Multiagent Systems: A Modern Approach To Distributed Artificial

Intelligence. The MIT Press Cambridge, Massachusetts London, England, 2000.

[146] T. White and B. Pagurek. Towards multi-swarm problem solving in networks. In Y. Demazeau,

editor, Proceedings of the 3rd International Conference on Multi-Agent Systems (ICMAS'9S),

Paris, France, 1998. IEEE Press.

[147] Michael Wooldridge and Nicholas R. Jennings. Intelligent agents: Theory and practice. Knowl­

edge Engineering Review, 10:115-152,1995.

[148] T. Yan, M. Jacobsen, H. Garcia-Molina, and U. Dayal. From user access patterns to dynamic

hypertext linking. In Proceedings of the 5th International World Wide Web conference, Paris,

France, 1996.

[149] Y. Y. Yao. Measuring retrieval effectiveness based on user preference of documents. Journal

of the American Society for Information Science (JASIS), 46(2):133-145, March 1995.

[150] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: an efficient data clustering

method for very large databases. In Proceedings of the 1996 ACM SIGMOD international

conference on Management of data, SIGMOD '96, pages 103-114, New York, NY, USA, 1996.

ACM.

167

[151] Zhiyong Zhang. Focused Image Search in the Social Web. PhD thesis, University of Louisville,

2008.

168

NAME:

ADDRESS:

EDUCATION:

PREVIOUS

RESEARCH:

EXPERIENCE:

CURRICULUM VITAE

Esin SAKA

Department of Computer Science and Computer Engineering

University of Louisville

Louisville, KY 40292

M.S. Computer Enginering

Middle East Technical University

2005

B.S. Computer Enginering

Middle East Technical University

2002

B.S. Mathematics

Middle East Technical University

2002

Genetic Algorithms

Multi-Agent Systems

Natural Language Processing

Machine Learning

University of Louisville Research Assistant

Microsoft Research Intern

Yahoo! Inc. Engineering Intern

Middle East Technical University Assistant

The Scientific and Technical Research Council of Turkey

169

TEACHING:

AWARDS:

PUBLICATIONS:

CECS 121 Program Design in C - TA

CEng561 Artificial Intelligence - TA

CEng334 Operating Systems - TA

CEng140 C Programming - TA

CEng111 Scheme programming - TA

2011 Graduate Dean's Citation, 2011

Who's Who Among Students, 2010

NSF travel fellowship to attend ICDE 2010

Best graduate poster, KY-WIC, 2010

Google WSDM Conf. Grant and Travel Award, 2009

IEEE Outstanding CECS Student Award, UofL 2008

Yahoo! Sponsored Search Contest 1st Team, 2007

Grace Hopper NSF Scholarship, 2008-2010

Reasoning Web Grant, 2008

Compulogj ALP Summer School on Logic Prog., 2008

CRA-W Grad Cohort, 2006-2008

Google Workshop for Women Engineers, 2006

Turkey Team Deputy Leader, BOI 2002

Milliyet Knowledge Competition Turkey 8th Degree, 1994

Book Chapters:

Esin Saka, Olfa Nasraoui, "Improvements in Flock-based

Collaborative Clustering Algorithms", book chapter in

Computational Intelligence, Collaboration, Fusion and

Emergence" , Springer Intelligent Systems Reference Library, 2009.

Olfa Nasraoui, Esin Saka, "Web Usage Mining in Noisy

and Ambiguous Environments: Exploring the Role of Concept

Hierarchies, Compression, and Robust User Profiles",

In Berendt, B., Hotho, A., & Semeraro, G. (Eds.).

170

WebMine 2006, Berlin, Germany, September 2006, Revised

Selected and Invited Papers. Springer Lecture Notes in

Artificial Intelligence, 2007.

Journal Papers:

Featured article of February 2008 issue: O. Nasraoui,

M. Soliman, E. Saka, A. Badia, R. Germain, "A Web Usage

Mining Framework for Mining Evolving User Profiles in

Dynamic Web Sites", IEEE Transactions on Knowledge and

Data Eng., 2008.

Conference Papers:

E. Saka, O. Nasraoui, "A Recommender System Based on

the Collaborative Behavior of Bird Flocks", CollaborateCom,

2010.

E. Saka, O. Nasraoui, "On Dynamic Data Clustering and

Visualization using Swarm Intelligence", ICDE PhD Workshop, 2010.

Esin Saka, Olfa. Nasraoui, "Dynamic Clustering and

Visualization using Swarm Intelligence", GRC09 PhD Forum, 2009.

Esin Saka, Olfa Nasraoui, "Simultaneous Clustering and

Visualization of Web Usage Data using Swarm-based Intelligence",

Proceedings of the 20th IEEE International Conference on Tools

with Artificial Intelligence (ICTAI'08), 2008.

C. Rojas, O. Nasraoui, N. Durak, L. Zuhadar, S. Sellah,

Z. Zhang, B. Rawwash, E. Saka, E. Leon, J. Gomez, F. Gonzalez,

M. Soliman, "Knowledge Discovery in Data with selected Java

Open Source Software, Proceedings of the 2008 Workshop on

Building Computational Intelligence and Machine Learning

171

Virtual Organizations, 2008.

O. Nasraoui , Z. Zhang, and E. Saka , "Web Recommender

System Implementations in Multiple Flavors: Fast and (Care)

Free for All. In Proceedings of the ACM-SIGIR Open Source

Information Retrieval workshop, Seattle, WA , Aug. 2006.

Posters

Esin Saka, "Flock-based Clustering and Data Visualization

of Web Clickstreams", presented at Grace Hopper Celebration

of Women in Computing (GHC) 2008, Keystone Resort, Colorado,

October 1-4, 2008, Kentucky Women in Computing Conference,

February 26-27, 2010.

Esin Saka, "The Wind of Flocks for Clustering and Data

Visualization", presented at Engineering Exposition

(E-Expo) 2008, Louisville and CRA-W Grad Cohort for Women

Program, Seattle, March 13-14, 2008.

Esin Saka, "Intelligent \Veb Recommender Systems

(with a Fast Open Source Implementation) ", presented

at CRA-W Grad Cohort for Women Program, San Francisco,

March 2-3, 2007.

172

	Swarm intelligence for clustering dynamic data sets for web usage mining and personalization.
	Recommended Citation

	tmp.1423685735.pdf.6P5iz

