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ABSTRACT 

SWARM INTELLIGENCE FOR CLUSTERING DYNAMIC DATA SETS FOR WEB USAGE 

MINING AND PERSONALIZATION 

Esin Saka 

April 27, 2010 

Swarm Intelligence (SI) techniques were inspired by bee swarms, ant colonies, and most 

recently, bird flocks. Flock-based Swarm Intelligence (FSI) has several unique features, namely 

decentralized control, collaborative learning, high exploration ability, and inspiration from "dynamic 

social" behavior. Thus FSI offers a natural choice for modeling dynamic social data and solving 

problems in such domains. One particular case of dynamic social data is online/web usage data 

which is rich in information about user activities, interests and choices. 

This natural analogy between SI and social behavior is the main motivation for the topic 

of investigation in this dissertation, with a focus on Flock based systems which have not been well 

investigated for this purpose. More specifically, we investigate the use of flock-based SI to solve 

two related and challenging problems by developing algorithms that form critical building blocks of 

intelligent personalized websites, namely, (i) providing a better understanding of the online users and 

their activities or interests, for example using clustering techniques that can discover the groups that 

are hidden within the data; and (ii) reducing information overload by providing guidance to the users 

on websites and services, typically by using web personalization techniques, such as recommender 

systems. Recommender systems aim to recommend items that will be potentially liked by a user. 

To support a better understanding of the online user activities, we developed clustering 

algorithms that address two challenges of mining online usage data: the need for scalability to 

large data and the need to adapt cluster sing to dynamic data sets. To address the scalability 

challenge, we developed new clustering algorithms using a hybridization of traditional Flock-based 

clustering with faster K-Means based partitional clustering algorithms. We tested our algorithms 
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on synthetic data, real VCI Machine Learning repository benchmark data, and a data set consisting 

of real Web user sessions. Having linear complexity with respect to the number of data records, 

the resulting algorithms are considerably faster than traditional Flock-based clustering (which has 

quadratic complexity). Moreover, our experiments demonstrate that scalability was gained without 

sacrificing quality. To address the challenge of adapting to dynamic data, we developed a dynamic 

clustering algorithm that can handle the following dynamic properties of online usage data: (1) 

New data records can be added at any time (example: a new user is added on the site); (2) Existing 

data records can be removed at any time. For example, an existing user of the site, who no longer 

subscribes to a service, or who is terminated because of violating policies; (3) New parts of existing 

records can arrive at any time or old parts of the existing data record can change. The user's record 

can change as a result of additional activity such as purchasing new products, returning a product, 

rating new products, or modifying the existing rating of a product. We tested our dynamic clustering 

algorithm on synthetic dynamic data, and on a data set consisting of real online user ratings for 

movies. Our algorithm was shown to handle the dynamic nature of data without sacrificing quality 

compared to a traditional Flock-based clustering algorithm that is re-run from scratch with each 

change in the data. 

To support reducing online information overload, we developed a Flock-based recommender 

system to predict the interests of users, in particular focusing on collaborative filtering or social 

recommender systems. Our Flock-based recommender algorithm (FlockRecom) iteratively adjusts 

the position and speed of dynamic flocks of agents, such that each agent represents a user, on a 

visualization panel. Then it generates the top-n recommendations for a user based on the ratings 

of the users that are represented by its neighboring agents. Our recommendation system was tested 

on a real data set consisting of online user ratings for a set of jokes, and compared to traditional 

user-based Collaborative Filtering (CF). Our results demonstrated that our recommender system 

starts performing at the same level of quality as traditional CF, and then, with more iterations 

for exploration, surpasses CF's recommendation quality, in terms of precision and recall. Another 

unique advantage of our recommendation system compared to traditional CF is its ability to generate 

more variety or diversity in the set of recommended items. 

Our contributions advance the state of the art in Flock-based 81 for clustering and making 

predictions in dynamic Web usage data, and therefore have an impact on improving the quality of 

online services. 
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CHAPTER 1 

INTRODUCTION 

In this chapter, we start by introducing the background and motivations behind our research. 

Then we state our objectives and give a summary of our developed methods and contributions and 

conclude with an overview of the organization of this document. 

1.1 Background and Motivations 

Inspiration from nature has driven many creative solutions to challenging real life problems. 

Many optimization methods have been inspired by such natural phenomena as neural systems, natu­

ral evolution, the immune system, and lately particle swarms. In particular, Swarm Intelligence (SI) 

techniques were inspired by bee swarms, ant colonies, and most recently, bird flocks. Flock-based 

Swarm Intelligence (FSI) has several unique features, specifically they are decentralized systems, 

they are collaborative, they are naturally characterized by high exploration, and they are based on 

"dynamic social" behavior. Thus FSI offers a natural choice for modeling dynamic social data and 

solving problems in such domains. One particular case of dynamic social data is online/web usage 

data which is rich in information about user activities, interests and choices. Web usage mining is 

used for a variety of purposes including mainly the following two tasks: (i) Providing a better under­

standing of the online users and their activities or interests, for example using clustering techniques 

that can discover the groups that are hidden within the data; (ii) Reducing information overload 

by providing guidance to the users on websites and services, typically by using web personalization 

techniques, such as recommender systems. Recommender systems aim to recommend items that 

will be potentially liked by a user. 

This dissertation explores the suitability of SI for the problem of mining dynamic online 

social behavior collected in the form of web usage data or in the form of web rating data. Thus in 

the following sections, we start by introducing the main themes for the components of our research, 

namely SI-based clustering, dynamic clustering, and web usage mining and personalization. 
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1.1.1 Swarm Intelligence for Clustering 

Clustering is the problem of finding groups in a dataset, according to some data properties 

and attributes which have a meaning in some context [60, 59]. Since no class information is used to 

cluster the data, it is called unsupervised learning. In addition to being an interesting and challenging 

problem, clustering has found success in many applications including customer segmentation in 

marketing, image segmentation, document organization, web usage mining, personalization, etc. 

One of the many different approaches used for clustering is swarm intelligence (SI) and it 

has been applied to problems that span a variety of domains, such as document clustering and Web 

session clustering. Swarm intelligence is an artificial intelligence paradigm which is mainly inspired 

from the dynamics of several societies in nature, such as ant-colonies, bird-flocks, fish-schools, etc. 

SI is based on the social, collective and structured behavior of decentralized, self-organized agents 

[65, 146]. Although these agents have a very limited individual capacity, cooperatively they per­

form many complex tasks. Some distinguishing characteristics of swarm intelligence include: 1) 

Collaboration: agents in the swarm collaborate or interact with the environment and each other; 

2) Collective intelligence: whereas agents in the swarm are mostly unintelligent, the collaborating 

system, or swarming mechanism results in an intelligent system; 3) Inspiration from nature; and 4) 

Decentralized control. In this research, we mainly focus on using SI for clustering. 

Given the above definition, the most popular swarm intelligence clustering algorithms are: 

1. Ant-clustering 

2. Particle swarm clustering 

3. Flocks of agents-based clustering 

There are two main approaches for ant-based clustering. In the first version, data is randomly 

placed on a grid. Then the ants move around the grid and form clusters by picking up and dropping 

the data items while moving [81]. Later, this version was improved in [144, 50, 51]. In the second 

version of the ant clustering algorithm, ANTCL UST, ants represent data items. Initially, none of the 

ants are assigned to a cluster, i.e. none of the ants have a label. During the clustering process, in each 

iteration, two randomly selected ants meet each other. Then, according to some defined behavioral 

rules, they may form a new cluster, one of the ants may be assigned to an existing cluster, one of the 

ants maybe removed from a cluster, or clustering quality measures may be updated [52, 72, 73, 74]. 

Clustering with particle swarms is based on particle swarm optimization (PSO) [65, 64]. In 
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the clustering problem, each particle encodes all cluster centroids. In other words, each particle 

represents a complete clustering solution [6, 142]. 

More recently, an approach based on flocks of agents, known as FClust, was used for data 

clustering [129, 128, 117, 116]. The flock-based approach holds a great promise, and being the most 

recent of all the swarm-based clustering approaches, it has been the least studied. This approach 

draws its inspiration from bird flocks, such that each agent of the flock represents a data point or 

record, and each agent is given a position in a 2D or 3D visualization panel. Basically, agents are 

attracted to similar agents and are repelled by different agents. Moreover, the distance between the 

agents depends on the similarity between the data items that are mapped to those agents. Therefore, 

the visualization panel will reflect the similarity relation between the data items. Initially, agents 

are placed on a planar surface (hereinafter referred to as the visualization panel ). Then, in each 

iteration, their speed gets updated according to their neighboring agents, until similar agents start 

moving together and form clusters. This behavior and the agents' possession of orientation makes 

FClust particularly useful, not only for clustering, but also for visualization of high-dimensional 

data. 

1.1.2 Dynamic Clustering 

One of the unique characteristics of flock- based clustering is its dynamic nature. Agents keep 

moving on the visualization panel until the algorithm is forced to stop. After a sufficient number of 

iterations, every state of the visualization panel may provide a clustering alternative for the dataset. 

This makes FClust suitable for simultaneous clustering and visualization of dynamic datasets. 

Unlike conventional clustering, in dynamic clustering, data is collected continuously over 

time, thus the whole data set is not available initially. Dynamic domains, such as practically any data 

generated on the Web, may require frequent costly updates of the clusters (and the visualization), 

whenever new data records are added to the dataset. The new coming data may be due to new user 

activity on a website (clickstreams) or a search engine (queries), or new Web pages in the case of 

document clustering, etc. Additionally, a concept drift in the data records may result in a change of 

clustering in time [137]. An example of this is the change in the interest of users on an online service. 

Therefore, clusters may need to be updated, thus leading to the need to mine dynamic clusters. When 

the data is moreover high-dimensional and sparse, the dynamic behavior makes an already difficult 

problem even more challenging. Swarm intelligence, mainly ant-based systems, has been used as well 

as many other methods including repeatedly running a given clustering algorithm, such as K-means, 



at each time step [122, 32, 79, 7]. Incremental clustering methods can also be adapted to this task, 

but they mostly ignore the dynamic nature of the data, which requires distinguishing between old 

and new data. 

1.1.3 Web Usage Mining and Personalization 

Every year, several exabytes of digital information are generated [84], which cause informa­

tion overload and make finding information on the Web harder. In particular, online usage data is 

rich in information about user activities, interests and choices. Modern websites strive to under­

stand the nature of their users in order to improve their services, specifically by helping users find 

the information that they need or that might interest them. Often, this results in increased profits 

for the website or online store owner (for instance Amazon, Netflix, etc), in addition to helping serve 

the user better in seeking their information [example: digital libraries or search engines]. Knowledge 

Discovery in Data (KDD) techniques have been used increasingly in the last decades in order to 

mine knowledge from large data sets, and in particular online or web activity data, giving rise to the 

domain of web usage mining. Web usage mining is used for a variety of purposes including mainly 

the following two tasks: 

• Providing a better understanding of the online users and their activities or interests, for ex­

ample using clustering techniques that can discover the groups that are hidden within the 

data. 

• Reducing information overload by providing guidance to the users on websites and services, 

typically by using web personalization techniques, such as recommender systems. Recom­

mender systems aim to recommend items that will be potentially liked by a user. 

There are several challenges associated with mining web usage data: 

• In the case of web clickstreams, we desire to understand the "mass" user activity patterns 

without any user-declared profiles, i.e. with only anonymous clickstreams (thUS respecting 

privacy. 

• Online usage data tends to have high dimensionality because of the large number (hundreds 

to thousands) of options that can be clicked, pages that can be viewed, items or products that 

can be rated or purchased, etc. The high dimensionality makes this data hard to analyze and 

visualize. 
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• In addition, online usage data is naturally dynamic because it represents the activities and 

interests of Human beings that follow dynamic behavior. 

Inspiration from the dynamic collaborative behavior of bird flocks can support the design 

of clustering techniques and recommender systems, i.e. systems that help understand the interests 

of the users, and systems that can help improve guide their navigation and decision making on the 

Web. 

1.2 Objectives 

The natural analogy between Swarm Intelligence systems and social behavior have been 

the main motivation for the topic of investigation in this dissertation, with a focus on Flock based 

systems which are a particularly attractive SI systems that possess unique properties for modeling 

dynamic online social activity, and yet have not been well investigated for this purpose. More 

specifically, we investigate the use of flock-based swarm intelligence for two related and challenging 

problems that form critical building blocks of intelligent personalized web servers, specifically 

(i) the problem of understanding the online activities of online users by discovering groups 

or clusters of similar users, and 

(ii) the problem of predicting the interests of online users in anticipation of further decision 

making goals, in particular focusing on collaborative filtering or social recommender systems. 

To solve the above two problems, our objectives are to design flock-based solutions to cluster­

ing and predicting online user behavior encoded into web usage data. We start by addressing some 

limitations of the existing Flock-based clustering algorithm FClust, then extend it in two directions 

to enhance scalability and to enable clustering dynamic data. Then we turn our attention toward 

developing a social recommendation strategy that is inspired from Flock-based swarm intelligence. 

The objectives can be summarized as follows. 

Objective 1: design a clustering method with improved scalability to handle large data sets. 

Objective 2: design a dynamic clustering algorithm that can handle the dynamic nature of online 

usage data that differs from previous dynamic clustering goals by addressing the following dynamic 

properties of online usage data: (1) New data records can be added at any time (example: a new 

user is added on the site); (2) Existing data records can be removed at any time. For example, 

an existing user of the site, who no longer subscribes to a service, or who is terminated because 

of violating policies (such as users who post spam or who have been inactive for a long period of 

time); (3) New parts of existing records can arrive at any time. In other words, the entire data 
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record associated with a user is rarely available initially. The user's record can change as a result of 

additional activity such as purchasing new products. returning a product, rating new products, or 

modifying the existing rating of a product. 

Objective 3: design a recommendation system strategy that takes advantage of online user data 

to recommend interesting items to similar users. 

1.3 Summary of Developed Methods 

To address some of the limitations of the standard flock-based clustering algorithm (FClust) 

on Web usage data, we have developed improvements, including the (SPKM + FClust) Hybrid al­

gorithm [8]. The hybrid approach uses a fast K-means based partitional clustering algorithm to 

initialize the agents' population on the visualization panel, then follows with flock-based clustering. 

Instead of representing each data point by an agent, each data point is represented by the nearest 

cluster centroid that was discovered by the partitional clustering algor it him during the initial phase. 

The result is a much smaller agent population size compared to the entire data set. Our hybrid 

approach reduces the quadratic complexity of FClust to linear complexity and performs similarly 

to FClust with fewer iterations for clustering high-dimensional data such as Web usage data. Our 

experiments confirm the superiority of the proposed hybrid approach, both in terms of quality of 

the final results and a significantly reduced computational cost. 

We developed a dynamic clustering algorithm Dynamic-FClust that solves the dynamic 

clustering problem for dynamic data. The most interesting scenario for using this dynamic clustering 

approach in real life is when a data record is a set of item ratings by a user, a session of viewed web 

pages, or a transaction of purchased items. In this case, an attribute of a record may correspond 

to one rating or to one item. Our approach works by adjusting the agent population in response 

to each one of the following exhibitions of dynamic behavior in the underlying data set: (1) a new 

data record that is added; (2) an existing data record that is removed; (3) a new part of an existing 

data record is received, or an existing part of this old data record is modified. We have tested our 

algorithm on synthetic dynamic data, and on a data set consisting of real online user ratings for 

movies. The resulting algorithm is shown to handle the dynamic nature of data without sacrificing 

quality compared to a traditional Flock-based clustering algorithm that is re-run from scratch with 

each change in the data. 

We used the flocks of agents-based Swarm Intelligence paradigm to develop a new recom­

mender system technique. In this approach, each user from the usage data is mapped to one agent on 
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the visualization panel. The Flock-based recommender algorithm (FlockRecom) iteratively adjusts 

the position and speed of dynamic flocks of agents, such that each agent represents a user, on the 

visualization panel. Then it generates the top-n recommendations for a user based on the ratings of 

the users that are represented by its neighboring agents. The algorithm works similarly to FClust. 

However, there is no explicit clustering process or goal. Instead, in each iteration, recommendations 

for a user are generated or updated using similar users that are represented by its neighboring agents 

on the visualization panel. In this approach, the agents move continuously through the visualiza­

tion panel unless they are forced to stop. This dynamic behavior of the agents allow a continuous 

exploration of different recommendation options, which means that FlockRecom can provide dy­

namic recommendations, and the additional exploration allows it to include more diversity among 

its recommended items. Variety or diversity is important in an environment where the users make 

repeated visit, such as social networks and online music and video channels. In such an environ­

ment, without continuous or dynamic exploration, the same recommendations would be repeatedly 

suggested because the system would eventually converge and stagnate on one set of choices. Our 

initial experimental results show that FlockRecom is a promising approach for recommendation in 

dynamic environments, thus having potential applications in social networking platforms [130]. 

Our recommendation system was tested on a real data set consisting of online user ratings 

for a set of jokes, and compared to traditional user-based Collaborative Filtering (CF). Our results 

demonstrated that our recommender system starts performing at the same level of quality as tradi­

tional CF, and then, with more iterations for exploration, surpasses CF's recommendation quality, 

in terms of precision and recall. Another unique advantage of our recommendation system compared 

to traditional CF is its ability to generate more variety or diversity in the set of recommended items. 

1.4 Contributions of this Dissertation 

Our main contributions can be summarized as follows: 

• New (K-means+FClust) and (SPKM+FClust) hybrid algorithms were developed. Our hybrid 

approach reduces the quadratic complexity of FClust to linear complexity, and performs simi­

larly to FClust, but has the advantage of fewer iterations for clustering large, high-dimensional 

data such as web usage data. Hybrid algorithms were tested on several datasets including UCI 

machine learning data sets and Web server logs and our experiments confirmed their superi­

ority, both in terms of quality of the final results and computational costs [128, 129]. 
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• A dynamic clustering and visualization approach that can perform dynamic clustering was 

developed and tested. This approach can handle the arrival of not only one data record at a 

time, but also one attribute at a time, in any order for one data record. It can also handle the 

modification or updating of an individual attribute (such as one item's rating) from a record 

and even the removal of a data record. 

• A new recommender system approach called the flocks-of-agents based recommender system 

(FlockRecom) was developed. The results were compared to the traditional user-based nearest 

neighbor Collaborative Filtering and FlockRecom was more successful at providing variety in 

the recommendations without losing recommendation quality [130j. 

• Under special simplifications we formulate the flocking behavior as a Gradient Descent opti­

mization that minimizes a criterion that agrees with the observed behavior in flocking in the 

case of attraction, namely grouping (agents getting closer to each other) and alignment. In 

addition it is minimizing the error between ideal and agent distance values, therefore seeking 

a visualization of the original data onto the 2D panel that is as faithful as possible. The 

mathematical derivations are included under the Future Visions in the Conclusions Chapter. 

According to our knowledge, this a mathematical interpretation of flocking behavior that has 

not been accomplished so far. And we plan to pursue it further in the future. 

1.5 Organization of this Document 

This dissertation is organized in six chapters. Chapter 2 presents the literature review, 

starting with a review of algorithms for clustering, incremental clustering, data visualization, swarm 

intelligence based clustering, and flocks of agents based clustering, then continuing with multi-agent 

systems and intelligent agents on the Web. Chapter 3 presents our contributions on FClust, such as 

the improved FClust, FClust Annealing, (K-means+FClust) hybrid algorithm, (SPKM+FClust) hy­

brid algorithm. Chapter 4 presents the flocks of agents based recommender system and experimental 

results. In Chapter 5 we present a dynamic data clustering algorithm using the flocks-of-agents based 

approach with experiments on synthetic and real-life datasets. Finally, our conclusion, in Chapter 

6, summarizes the study and discusses the vision for the future. 
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CHAPTER 2 

LITERATURE REVIEW 

In this chapter, we present the background information related to our research. We start by 

introducing clustering, dynamic clustering, and similarity measures which can be used for clustering. 

Then we continue with explaining clustering using swarm intelligence, and provide a deeper survey 

on flocks of agents-based clustering. At the end of the chapter, intelligent agents, and multi-agent 

systems are shortly overviewed, concluding with agents on the web and recommendation systems. 

2.1 Clustering 

Clustering is the problem of finding groups in a dataset, according to some data properties 

and attributes which have a meaning in some context [60]. Since no class information is used to 

cluster the data, it is also called unsupervised learning. In addition to being an interesting and 

challenging problem, clustering has many applications including: 

• Text Clustering: One of the applications of text clustering is the Web search engines. The 

documents on the Web are clustered for different purposes such as fast document retrieval, 

more related advertisements, better recommendations, etc. [35, 40]. Text clustering is also 

used for document organization, mostly in digital library applications. 

• Customer Segmentation in Marketing: Finding similar customers may be used for design­

ing targeted products, offering personalized services, etc. Additionally, insurance companies 

may use customer clusters for risk analysis. Recommendations by Amazon l is an example. 

• Web Usage Mining: Clustering users on the Web provides a better ground for mining 

knowledge from the user activity logs and personalized services. As a result, web pages can 

be re-designed and personalized, information retrieval systems (i.e. search engines) may be 

improved, etc. [95, 103]. 

1 http://www.amazon.com/ 
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• Image Segmentation and Image Clustering: Image segmentation has a wide area of 

applications from health sciences to video storage. Image segmentation can be used for sickness 

decision support in health sciences. Additionally, image clustering may be used for video 

and/or image compression and content-based image retrieval [151]. 

• Outlier Detection: With the help of clustering, certain anomalies may be determined in a 

dataset [105]. 

There are different ways to classify clustering algorithms [60, 136, 62]. The classical clas­

sification distinguishes hierarchical approaches from partitional approaches. However, more recent 

classifications also include density-based clustering [22]. In hierarchical clustering, a nested series of 

clusters are organized as a hierarchical tree, which is called a dendogram while partitional clustering 

methods produce only one level of clustering and divide the dataset into non-overlapping subsets 

(i.e. clusters) such that each data item belongs to one cluster. Although some density based cluster­

ing algorithms are partitional, the density based clustering algorithms directly seek dense locations 

in the data set, without explicitly seeking to divide the data into subsets [22, 97]. Another aspect 

distinguishing hierarchical approaches is the clustering process: If the algorithm assigns each data 

item in one cluster and merges clusters until a stopping criteria is met, it is called an agglomerative 

approach, whereas in the divisive approach, initially all data items are assigned to a single cluster 

and clusters are split until a stopping criterion is met. A third aspect relates to using the attributes 

sequentially or simultaneously. If all the attributes are used at the same time during clustering, it 

is called polythetic. If the attributes are used sequentially one at a time for clustering, it is called 

monothetic. More aspects and a survey about clustering can be found in [60] and [22]. 

Many different techniques has been used to solve the clustering problem such as K-Means, 

artificial neural networks (ANNs), self-organizing maps (SOM), etc. [60]. Lately, swarm intelligence 

has also been applied for clustering [129, 6, 52]. 
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2.1.1 Similarity Measures 

One of the factors deeply affecting the success of clustering is the measure used for similarity. 

Therefore, the choice of similarity measure is important. Similarity can be defined based on the 

distance (the closer the items are the more similar they are). Two popular distance metrics are the 

Manhattan (L1 or city-block) and Euclidean distances. 

Given that each data record Xi in the A dimensional real number space RA, i = 1, ... , n, is 

represented by a vector Xi = xL ... , xf, the Manhattan (L1 or city-block) distance between two data 

records Xi and Xj E RA is given by 

[49]: 

A 

Manhattan_distance(Xi,Xj) = L Ix~ - xjl, 
k=l 

The Euclidean distance is given by: 

A 

(1) 

Euclidean_distance(Xi, Xj) = (L Ix7 - xj 12)1/2 = Ilxi - Xj 112, (2) 
k=l 

The Minkowski distance is a generalization of both the Euclidean and Manhattan distances 

A 

Minkawski_distance(Xi,Xj) = (Llx~ _xjIP)l/P = Ilxi -:rjllp, (3) 
k=l 

where p is a positive integer. It represents the Manhattan distance when p = 1 and Euclidean 

distance when p = 2. 

The Manhattan based (L1) similarity of two data records Xi and Xj is given by 

A 

sim(Xi,Xj) = 1-- ~ L Ix~ - xjl, (4) 
k=l 

where A denotes the number of attributes and x7 denotes the kth attribute of data record Xi' When 

the data is linearly normalized to [0,1]' the Manhattan based similarity is the same as the 1-norm 

similarity, which is used in (4). 

The cosine and Jaccard similarities are common in Web mining. The Jaccard coefficient 

measures similarities between two sets A and B using the ratio of the number of elements contained 

in the intersection and the union of the sets [49]: 

. . IAnBI 
Jaccard_cae! Jtczent(A, B) = IA U BI (5) 

The cosine measure is commonly used to represent similarity between two high-dimensional 

data vectors, such as in the text mining and Web mining domains. Let Vi and Vj be two A dimensional 

data vectors. Their cosine similarity is defined as [49]: 
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V·, V· 

Cosine_similarity( Vi, Vj) = Ilvi'llll~j II (6) 

where the inner product Vi . Vj is the standard vector dot product and Ilvill is the norm defined as: 

(7) 

(8) 

All the above similarities consider each attribute to be different from and unrelated to every 

other attribute. This is not realistic, since in some problems, attributes tend to be semantically 

related. One example is web pages or URLs. For this reason, in Web mining, a similarity mea-

sure called syntactic similarity or Web session similarity used the Web site structure to first define 

similarities between URLs [104]. 

Let the ith user session be encoded as an A-dimensional binary attribute vector Vi with the 

following property: 

Vi = { 1, if user i accessed URL j 

0, otherwise 
(9) 

The entire Web site is modeled as a tree, where the nodes represent different URLs. The 

tree structure is similar to a file directory structure, with an edge connecting one node to another 

if the URL corresponding to the latter is hierarchically located under that of the former. Thus, a 

URL Ui is represented as: 

Ui = rootlunI/ .. .junz (10) 

where uni represents a node on the tree structure and z is a finite integer. 

Given the representation of a Url Ui, Pu, denotes the path traversed from the root node, the 

main page, to the node corresponding to the ith URL. Ipi I indicates the length of this path. 

The syntactic similarity between the ith and jth URLs is defined as 

S ( .. ) . (1 Ipi npjl ) 
u Z,] = mzn, (1 (1·1 I ·1) - 1) max ,max p, , PJ 

(11) 

This similarity measures the amount of overlap between the paths of the URLs. The simi-

larity values lies in [0,1]. The overall web session similarity is based on (11) and is given by: 
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A A 

L L vfiv7jSu(ki,kj) 
. ... k,=l kj=l 

web_sesszon_szmzlarzty( Vi, Vj) = A A (12) 

L vf' L V7
j 

ki=l kj=l 

A comparison between these different similarity measures is given in Table 1. On the table, 

attributes are classified into two: 1) Quantitative: Attributes which have numerical values, such as 1, 

0.001, etc. 2) Qualitative: Qualitative attributes are the ones such as color being blue, red, etc. Web 

session logs can be considered as both qualitative and quantitative attributed datasets. If a session is 

represented as a set/bag of words, we can consider it qualitative. However, if a session is represented 

as a vector, as given in Equation 9, then we say that the qualitative dataset is represented in a 

quantitative way. Among all the similarity measures given on Table 1, Manhattan is the simplest 

and has the minimum computational cost. Although Euclidean is more costly than Manhattan, it 

exaggerates the distance, creates bigger distinction between similar and dissimilar items. Minkowski 

distance-based similarities are mostly preferred with low dimensional datasets with quantitative 

attributes. Although qualitative attributes can be represented with numbers, since this does not 

present an order or nominality, Euclidean and Manhattan distance based similarities are not very 

suitable for qualitative data. When the data items are (i.e. can be) represented as sets, The 

Jaccard coefficient, is the ratio of the intersection of two data items to the unification of these data 

items. Therefore, it is suitable for qualitative datasets. One way to represent qualitative attributes 

is by representing existence in a data record, as given in Equation (9) or representing frequency 

instead of only existence. Thus, cosine similarity is suitable for datasets with both qualitative 

and quantitative attributes. Compared to cosine similarity, Web session similarity can perform a 

more detailed similarity analysis, since it compares how similar even different attribute values are. 

However, Web session similarity is computationally more costly than cosine. 

In our experiments, we used Manhattan distance-based similarity for experiments with nu-

merical data, because it was suitable to these datasets and we were able to compare our work with 

previous studies, since previous studies used Manhattan distance-based similarity. However, for the 

Web session datasets, which is a high-dimensional sparse dataset, Minkowski distance-based simi-

larities returned close-to-zero similarities. Therefore, they were not preferred. We chose the cosine 

similarity because it was proved to yield sufficient conditions for the centroid update equations 

to converge with SPKM[40], whereas the Web session based similarity or Jaccard coefficient were 

not proved to work with SPKM. In the future, we plan to investigate different similarity measures 
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wherever needed. 

In the case of ratings datasets, the similarity can be computed via comparing the rankings, 

as in the case of Pearson's correlation coefficient. 

Given two users U and v, Pearson's correlation coefficient is defined in (13) [78]. 

2)rU'i - rU)(rV,i - rv) 
iEC 

Pearson_correlation( u, v) = ----;=======----;====== 
2)rU,i - ru)2 
iEC 

2:(rV ,i - rv)2 
iEC 

(13) 

where C is the set of items that are rated by both of the users U and v; Ui and Vi are the rating of 

item i by user U and v respectively; and ru and rv are the average of ratings of U and v respectively. 

In the algorithms, if the correlation is negative, we consider it as 0 (zero). A disadvantage 

of the Pearson correlation is, given a subset user Us of a user u, such that Us is almost the same 

as u except that it does not include all the ratings, the similarity of the Us is not very close to 1. 

In other words, Pearson defavors/disapproves new users with small number of ratings. These new 

users will not be similar to any established users enough. 
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,.... 
CJl 

Similarity 
Measure 
Manhattan 

Euclidean 

Jaccard 

Cosine 
Web Session 

Quantitative Qualitative 
Data Data 
Yes No 

Yes No 

No Yes 

Yes Yes 
NA NA 

TABLE 1. Comparison of different similarity measures. 
High Dimensional Advantage Disadvantage 
Sparse Data 
No Simple and cost efficient Common 0 similarity 

on high dimensional data 
No Effective with low dimensional data Common 0 similarity 

on high dimensional data 
Yes Effective with qualitative data Not suitable for 

continuous valued attributes 
Yes Effective with high dimensional sparse data High computational cost 
Yes Specialized for datasets with Higher computational cost 

semantically related attributes (e.g. URLs) than cosine 



2.1.2 K-Means Algorithm 

The K-Means Algorithm is a popular, simple, unsupervised, learning algorithm for clustering. 

[85]. In this iterative, partitional clustering approach, each cluster is associated with a cluster 

centroid and each data point is assigned to the cluster with the closest centroid. 

The K-Means Algorithm, listed in Algorithm 1, aims to minimize an objective function, 

consisting of the sum of squared errors or distances between the data records and K cluster centroids, 

as given in Equation (14), by iteratively updating the cluster centroids and assigning data to the most 

similar centroid, until the total error between the data records and the assigned cluster centroids 

converges. Note that this procedure forms clusters with n-dimensional hyper-spherical boundaries, 

where cluster centroids represent the centers. 

d n 

E= LLlixi -c;(x)1 (14) 
j=l i=l 

In 14 n is the number of data records, d is the number of attributes and 1T(Xi) = cluster to 

which Xi is assigned. 

The complexity is O( n * K * I * d) where n is the number of points, K is the number of 

clusters, I is the number of iterations, and d is the number of attributes. 

Algorithm 1 K-Means Algorithm 

Input: Dataset X E ~d where Ixl=n; number of clusters: K :::; y'n. 
Output: A partition of the dataset into K disjoint clusters 1'1, ... ,I'K. 

1: Read data records Xi, i = 1, ... , n. 
2: Arbitrarily select K records as centroids out of the n data records. 
3: repeat 
4: for all Data record Xi do 
5: Find the closest centroid Ci using Euclidean Distance. 
6: Assign data record Xi to the cluster I'i. 
7: end for 
8: for all Cluster I'j do 

9: 

10: end for 
11: until stopping criterion is met. 
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2.1.3 The Spherical K-Means Algorithm 

The Spherical K-Means Algorithm (SPKM) is a popular algorithm for clustering high dimen-

sional and sparse data, such as transactions, text, and web usage or clickstream data [40]. SPKM is 

particularly suitable for data sets where the cosine similarity is more appropriate than the Euclidean 

distance (used in the K-Means), due mainly to the asymmetric nature of the features/dimensions. 

Asymmetric features are such that, when comparing two data vectors, the presence of the feature 

(positive value) is considered to be much more important than its absence (zero value). The SPKM, 

listed in Algorithm 2, aims to maximize the average cosine similarity between the data vectors and 

K cluster centroids, by iteratively updating the cluster centroids and assigning data to the most 

similar centroid, until the total cosine similarity between data vectors and assigned cluster centroids 

converges, as given in Equation 15. 

L = L X7 c 7r (x,) 

x, 

Algorithm 2 Spherical K-Means Algorithm 

Input: Dataset X E ~d where Ixl=n; number of clusters, K:::: yin. 
Output: A partition of the dataset into K disjoint dusters 11, ... , 1K. 

1: Read sessions. 
2: Normalize data records to be of unit length. 
3: Arbitrarily select K records as centroids out of the n data vectors. 
4: repeat 
5: for all Data vector Xi do 
6: Find the most similar centroid Ci using cosine similarity. 
7: Assign data vector Xi to the cluster "(i. 

8: end for 
9: for all Cluster "(j do 

LXjE")'t Xl 10: Update its centroid Cj= .,....-;=c"-'--''-'-'--------,;-
IIEXiE"Y, xiii 

11: end for 
12: until stopping criterion is met. 
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2.1.4 Cluster Validation 

Cohesion-Separation: Inter- and Intra- Cluster Similarities 

One of the methods to evaluate and compare the quality of clustering results is measuring 

the cluster cohesion (compactness, tightness), which determines how closely related the data items in 

a cluster are, and cluster separation (isolations), which determines how distinct or well separated a 

cluster from other clusters [136]. Thus, clustering results may be evaluated by computing the average 

inter-cluster and intra-cluster similarities. The inter-cluster similarity is the similarity between 

clusters and determines the cluster separation (isolation), whereas the intra-cluster similarity is 

the similarity between data points within a cluster and determines the cluster cohesion. A higher 

intra-cluster similarity and lower inter-cluster similarity represent better clustering quality. 

Silhouette Coefficient 

The method of silhouette coefficient combines both cohesion and separation. It is given in 

the means of distance in [136], and if we modify it for similarity, the silhouette coefficient is computed 

for a data item i as follows: 

• For the item i, compute the average similarity to all other data items in its cluster. Call this 

value ai. 

• For the item i and any other cluster not containing i, calculate the item's average similarity 

to all the items in the given cluster. Find the maximum such value with respect to all clusters 

and call this value bi . 

• For the i, the silhouette coefficient s(i) is computed as given in Equation (16). 

ai - bi 
Si = --,-----.,.-

max(ai, bi ) 
(16) 

The value of silhouette coefficient may vary between -1 and 1. The most desired case is 

silhouette coefficient being 1. Positive values as close to 1 is better because lim Si = 1. A 
a,->l,b,->O 

negative value shows that i is more similar to the items in another cluster than the items in its own 

cluster. 
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Davies-Bouldin (DB) Index 

Davies-Bouldin (DB) index is a measure which represents the average similarity between 

each cluster and its most similar one, in a clustering result [48]. Let Gi and Gj be two clusters in a 

clustering result. Let Si be a measure of dispersion of cluster Gi , and dij be a dissimilarity (distance) 

measure between clusters Gi and Gj . Then, a similarity measure Rij between clusters Gi and Gj is 

defined to satisfy: 

• If Si = 0 and Sj = 0 then Rij = O. 

A possible choice of Rij is given in Equation (17) [48]. 

Then the DB index is defined as given in Equation (18) [48] 

where Ri =. max . . Rij,i = 1, ... ,nc· 
t=1 1 ···,nc ,1,=f:.J 

(17) 

(18) 

Since DB index represents the average similarity between each cluster and its most similar 

one and it is desirable for the clusters to have the minimum possible similarity to each other; a 

clusterings that minimizes DB is more desirable. 

Similarity Matrix Approach 

Given the similarity matrix and cluster labels, another cluster evaluation approach is to 

compare the similarity matrix to an ideal similarity matrix [136]. In an ideal similarity matrix, 

the similarity is 1 if items are in the same cluster and 0 otherwise. Therefore, if we sort the rows 

and columns of the similarity matrix (and the ideal similarity matrix) so that all items belonging 

to the same cluster are together, then the ideal similarity matrix has a block diagonal structure. 

19 



High correlation between the ideal similarity matrix and the similarity matrix is desired, because it 

indicates that similar items in the same cluster and clusters are well separated. 

There is also a visual way of judging clustering by its similarity matrix [136]. As explained 

above order the similarity matrix with respect to clusters, and then plot it. If the color gets darker 

as the similarity approaches to 1, in the ideal case, blocks would be observed around the diagonal, 

representing clusters and the rest would be light colored. Clouds on the plot represent correlated 

clusters, which is not desired. Figure l(b) shows a plotted similarity matrix for well-separated 

clusters given in Figure l(a) and extracted by K-means [136]. 
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(a) Well-separated clusters. 
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(b) Simi larity matrix sorted by K-means cluster labels and 
colored. 

Figure 1. Visual validation using sorted and plotted similarity matrix [136]. 

Precision and Recall, MSE, Robust Cardinality 

As in the case of most applications, in Web usage mining, clusters can be modeled via 

prototypes. In the input to Web usage mining, a set of URLs visited by a specific user at a limited 

time is called a session. Therefore, in this case, a prototype may be called a profile and will be a set 

of URLs, which may optionally include the frequencies of URLs. 

The metrics precision and recall are defined as follows [126, 12]: Precision is the proportion 

of retrieved items that are really relevant and recall/coverage is the proportion of all items, known to 

be relevant, that are retrieved. The discovered profiles can also be considered as frequent itemsets, 

or patterns, and provide one way to form a summary of the input data. As a summary, profiles 

represent a reduced form of the data that is at the same time, as close as possible to the original input 

data. This description is reminiscent of an information retrieval scenario, in the sense that profiles 
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that are retrieved should be as close as possible to the original session data. Closeness should take 

into account both (i) precision (a summary profile's items are all correct or included in the original 

input data, i.e. they include only the true data items) and (ii) coverage/recall (a summary profile's 

items are complete compared to the data that is summarized, i.e. they include all the data items) 

[104]. 

To assign a session to a cluster a distance measure must be defined, typically to be inversely 

related to similarity, e.g. distance = 1 - similarity: 

Two different measures can be used to evaluate the final prototypes [97]: 

• The mean squared error (MSE) or average dissimilarity between cluster prototypes and data 

records . 

• Robust cardinality. 

The mean squared error or average dissimilarity, for the ith cluster is given by: 

(19) 

where s(k) is the kth session, Xi is the set of sessions assigned to the ith cluster, and dik is 

the distance from s(k) to Xi. 

The robust cardinality for the ith cluster is given by: 

Nt = L Wik (20) 
s(k)EXi 

where Wik is the robust weight, given by: 

(21) 

where ai2 is a scale measure that assesses the dispersion of the sessions around the cluster 

prototype. Wik, which is in [0,1]' is high for inliners/good data and low for outliers/noise. 

Cluster vs. Class Labels 

When there are class labels available, a cluster error may be computed by comparing the 

cluster and class labels. The procedure given in Algorithm 3 checks whether each item pair has the 

same class labels if they have same cluster labels or not. 

Additionally, surveys on cluster validation were presented in [47, 48, 136]. 
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Algorithm 3 Cluster Error Computation Algorithm 
Input: Dataset with class labels and cluster labels from FClust output. 
Output: Cluster error -a real number between 0 and 1-. 

1: Error f- 0 
2: for all Data record pairs (i, j), where i =I- j do 
3: if i and j have the same class label, but different cluster labels then 
4: Error + + 
5: else if i and j have different class labels, but the same cluster label then 
6: Error + + 
7: end if 
8: end for 
9: Return Error/Number of pairs 
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2.1.5 Dynamic Clustering 

Given the clustering definition in Section 2.1, we define dynamic clustering as follows: 

Dynamic clustering is the process of extracting clusters in a dataset in which the new data 

items becomes available, some new clusters may emerge, some existing clusters may disappear, or 

some data items may change in time. To the best of our knowledge, there have been no studies on 

dynamic clustering with "dynamic items", i.e. data items changing in time. 

However, there are some related studies. One of them is known as incremental clustering 

or online clustering in which, data becomes available in batches over time [43, 7, 32, 79, 77]. One 

common approach for incremental clustering is repeatedly applying a classical clustering algorithm, 

in which case a high computational cost may be prohibitive. Additionally such an approach does 

not differentiate new data from existing data. Incremental clustering was initially proposed as a 

solution to clustering on very large databases [43] and unlike dynamic clustering, does not consider 

change in "existing" data items. Moreover, in some application, the whole dataset may be avail­

able initially. However, if the dataset is huge, batches are formed by sampling, and clustering is 

performed incrementally [43]. In IncrementalDBSCAN, DBSCAN is used for incremental clustering 

and compared to DBSCAN [43]. IncrementalDBSCAN can handle emerging and disappearing clus­

ters, but does not handle data items that change in time. One common approach for incremental 

clustering is to repeatedly apply a classical clustering algorithm every time more data arrives or 

change in data occurs, in which case a high computational cost may be prohibitive. Additionally 

such an approach does not differentiate new data from existing data. In another algorithm called 

leader-follower clustering (LFC), a K-means type clustering is used [42]. Basically, when a new item 

is available, the closest cluster centroid is determined. If the new item is similar enough to this 

cluster centroid, the item is assigned to the cluster represented by that centroid. Otherwise, a new 

cluster is generated. The LFC algorithm is given in Algorithm 4 [80]. In another approach, clusters 

are generated according to the initially available data batch and as the new data arrives, new data 

is assigned to existing clusters [32]. 

Ant colony-based swarm intelligence algorithms are some of the most common approaches 

for solving incremental clustering in SI. In a study which uses ant clustering to cluster continuous 

data, despite the lack of a benchmark set, the results were promising [122]. Similarly, another study 

divided a dataset into different groups, assumed that each group was available at a given time step 

and used ant clustering to update the clusters [79]. Also in [32], the authors ran the fuzzy K-means 

algorithm to observe initial clusters and used ants, which were moving in a three dimensional space, 
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Algorithm 4 Leader Follower Algorithm [42] 

1: repeat 
2: Read new item i 
3: Find the closest cluster center c 
4: if Distance is above threshold then 
5: Create new cluster 
6: else 
7: Add i to cluster represented by c 
8: Update c 
9: end if 

10: until No more data is available 

for clustering the new coming data. 

We will define the difference between incremental clustering and dynamic clustering as the 

capability to handle generating new clusters as needed and updating the cluster for an item which 

changes in time. Therefore, it can be said that dynamic clustering includes incremental clustering 

as a special case. However, dynamic clustering is more suitable than incremental clustering for some 

dynamic environments, such as the Web. On the Web, some clusters may emerge while some others 

may disappear. Additionally, attributes of a data item may change in time, as in the case of an 

update of a Web page or a change in the likes and dislikes of a user on the Web. Therefore, clustering 

user profiles is an interesting domain for dynamic clustering. 

Another approach that may be similar to dynamic data clustering is stream clustering. 

Some application areas of stream clustering can be listed as network intrusion detection, weather 

monitoring, emergency response systems, stock trading, electronic business, telecommunication, 

planetary remote sensing, and web site analysis [31]. More information on stream clustering can 

be found in [31, 96] The difference between stream clustering and dynamic clustering is: in stream 

clustering each new coming input is a new data item, where as in dynamic clustering, new input 

can be an update of an existing data item. For example, assume there is a set of users and new 

inputs are user-urI pairs, user-query pairs, user-item pairs in short. The user may be a new user 

or an existing user. Since stream clustering algorithms does not store the data, they cannot handle 

"dynamic data" . 

As a new clustering paradigm, dynamic data clustering is compared to other clustering 

paradigms in more detail in Section 5.2. 
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Limitations of the Current State of the Art in Dynamic Data Clustering 

Dynamic clustering is an interesting subject to work on and requires more improvement. 

Current limitations include: 

• To the best of our knowledge, there is no clustering research considering a data item changing 

in time. 

• An efficient and low cost dynamic clustering algorithm for clustering high dimensional sparse 

data is not available. 

• Better algorithms are required which can handle emerging and disappearing clusters. 

• There is not enough benchmarks to compare different algorithms. 

• More study is needed to define dynamic, incremental, online, and stream clustering. 

• There is a lack of an approach which can cluster and visualize data simultaneously. 

• There is no research using flocks of agents for dynamic clustering. 
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2.2 Data Visualization 

Recent improvements in the hardware and software have allowed storing more and more 

information each day. Every year, exabytes of digital information is generated [84], which have 

made data mining and visualization even more valuable. Data visualization is the study of the 

visual representation of data [45, 118]. It is accepted that data visualization includes scientific 

visualization (Le. use of computer modeling and simulation in scientific and engineering practice) 

and information visualization (i.e. visualization of abstract and heterogeneous datasets such as as 

large-scale collections of non-numerical information) [118]. One of the advantages (or aims) of visual 

data exploration is to include the Human in the data mining process; by presenting the data in some 

visual form. Human perceptual abilities can be used to allow humans to get an insight into the data 

and interact with the data [63]. Including humans in the data mining process is especially useful 

when little is known about the data and the exploration goals are vague [63]. 

Depending on the data type, different visualization techniques can be used. For visualization 

of datasets with less than 4 dimension (i.e. 1D, 2D, and 3D), some common techniques for data 

visualization include x-y plots, x-y-z plots, line plots, and histograms [63]. When the data becomes 

multi-dimensional or unstructured, visualization becomes more challenging. In the case of text or 

hypertext datasets, data is typically transformed into description vectors [53, 63], whereas for multi­

dimensional data, multidimensional scaling can be used via computing item-to-item similarities and 

assigning each data item a new location in a low-dimensional space, which is suitable for making 

graphs or plots [25, 34]. Self-organizing maps (SOM) are also a popular way for data visualization 

and some of its applications include the visualization of web-based social networks [119, 143]. Lately, 

swarm intelligence has also been used for data visualization [128, 129, 117]. 

Visualization Evaluation 

Publications on visualization show that, visualization does not only have an engineering 

approach but also has an artistic angle [88, 26, 139, 138, 141]. Therefore, while some people have been 

evaluating the visualizations from an artistic view and trying to explain why some visualizations are 

better and more efficient than others, some other researchers have been trying to define visualization 

metrics. In fact the latter claim that visualization metrics are still an active and challenging research 

area which needs improvement [88, 26]. 

Prof. Tufte looks into visualization not only from a scientific view but also from an artistic 
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angle. In [139, 138]. In [138], he shows the effect of selecting correct visualization parameters 

and techniques by comparing success and failure via visual representation, where he compares the 

success in the cholera epidemic in London versus the failure in the decision to launch the Space 

Shuttle Challenger. 

"Clutter and confusion are failures of design, not attributes of information", says Edward 

Tufte in [140], (page 51), and presents the fundamental principles of excellent graphics, i.e. analysis 

and display of data, in [141]: 

• Comparisons: "Show comparisons, contrasts, differences." 

• Causality, Mechanism, Structure, Explanation: "Comparisons may lead to reasoning." 

• Multivariate Analysis: "Show more than one or two variables (Le. attributes, such as time, 

location, direction, temperature and date simultaneously)." 

• Integration of Evidence: "Completely integrate words, numbers, images and diagrams." 

• Documentation: "Thoroughly describe the evidence. Provide a detailed title, indicate the 

authors and sponsors, document the data sources, show complete measurement scales, point 

out relevant issues." 

• Content counts most of all: "Analytical presentations ultimately stand or fall depending 

on the quality, relevance, and integrity of their content." 

In [26], Richard Brath proposed metrics for 3D visualizations: 

• Number of Data Points: The number of data items represented on a visualization screen 

at an instant. 

• Data Density: The number of data points per pixel. In Equation 22, the number of pixels 

does not include the pixels in the window borders, menus, etc. 

• Number of Simultaneous Dimensions and Cognitive Overhead: As the number of 

dimensions increase, the cognitive complexity increases. Tufte also mentions that unnecessary 

information should not be visualized. 

• Dimensional Score and Cognitive Complexity: Dimensional score aims to determine the 

effectiveness of mapping between data dimensions and visualized dimensions. The higher the 
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TABLE 2 

Dimensional Scoring Summary [26]. 

Mapping Score 
n - to-1 3Xn 
1 - to - 1 general 2 
1 - to - 1 intuitive 1 
preexisting representation 0 

dimensional score, the higher the cognitive complexity. The computation of score is summa-

rized in Table 2. In the table, n is the dimension. General mapping is a mapping where the 

user needs to remember what the dimension on visualization represent, on the contrary, an 

intuitive mapping is one where the user is not expected to remember, such as the attribute 

size is named size on the visualization screen. The last row is for preexisting common visual-

izations such as market share and histograms. However, this score does not handle n - to - m 

mappings, where 1 < m < n . 

• Percentage of Occlusion: Occlusion percentage is the ratio of the number of data points 

completely obscured over the number of data points. The less the occlusion is the better . 

• Reference Context and Percentage of Identifiable Points: This measures the capability 

to show location of data items in reference to the other data items and computed as given in 

Equation 2.2. The higher the ratio is the better. 

D D 
. number of data points 

ata ensity = . .. . 
number of pIxels on the vlsuahzatlOn panel 

Percentage of identifiable points = 
no of visible data oints identifiable in relation to ever other visible data oint 

no visible ata points 

(22) 

It should be noted that these metrics are defined for visualization of data itself. Whereas, 

what we visualize is the relation between data items, the similarity between data items and between 

data clusters. 

Another common method to compare different visual systems is by arranging usability eval-

uations [151]. In a usability evaluation, a number of people are asked to compare different systems. 

In our research, dynamic visualization aims to support tracking changes in clusters, such as emerg-

ing, merging, separating, and disappearing clusters as well as visualizing the similarity between data 
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items and between data clusters. Thus, a usability test would compare dynamic FClust to original 

FClust. A usability test template may be given as follows: Let's assume that we have 5 different 

synthetic datasets each with the following 5 cases: 

• One emerging cluster. 

• Two merging clusters. 

• One cluster being separated into two. 

• One cluster disappearing. 

• No change, (i.e. although new data is added in time, there is no change in the cluster number 

and cluster profiles). 

We may select 5 users, with no clustering background. The visualizations of the above 5 

cases may be shown to each user either by original FClust or dynamic-FClust. Thus, each user will 

see 1) Each dataset once 2) 2 or 3 results by FClust 3) 2 or 3 results by dynamic-FClust. The users 

may be asked to tell: 

1. What happened and how easy it was to determined what happened, on a 5-point scale. 

2. How easy was it to determine similar groups, on a 5-point scale. 

3. How easy was it to compare similarity between different data items, on a 5-point scale. 

However, the task should be presented in a better task description. A task description may be given 

as follows: "For your social sciences class project, you are expected to determine the user profile 

changes in one month at the University of Louisville web domain. Please determine how are the 

different user groups are changing in 5 different months. Please also record how many different 

profiles exist for each month. For each month, mark on the 5-point scale satisfaction sheet 1) Can 

you tell how similar the user groups are? 2) Can you compare similarity between two random data 

points. 3) How easy was it to determine what kind of changes happened." 

To sum up, some visualization measures that may be used to evaluate dynamic clustering 

visualization are: 

• Number of data points and data density. Number of data items represented per pixel or per 

unit area. 

• Number of dimensions and cognitive overhead. 
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• Percentage of occlusion. 

• Reference context and percentage of identifiable points. 

• Usability: User studies are organized where users are asked to evaluate and compare different 

visualization panels. 

Limitations of the Current State of the Art in Data Visualization 

Below, we list some of the reasons why more efforts are needed in data visualization: 

• Better algorithms are needed which are capable of clustering and visualizing simultaneously. 

• There is a lack of algorithms on simultaneous dynamic clustering and dynamic data visualiza­

tion. 
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2.3 Simultaneous Data Visualization and Clustering 

One of the advantages of FClust over many other clustering algorithms is the capability of 

visualizing and clustering data simultaneously. Thus, another criterion of the expected Dynamic­

FClust algorithm is the ability to visualize the similarity between data items and clusters. In [88], 

Self-Organizing Maps (SOM) was used to project text documents onto a Tree fractal. Figure 2 shows 

a sample visualization by the system [88]. This system focuses on visualization and not clustering, 

and the provided visualization was static. Alternative ways for cluster visualization in self-organizing 

maps are presented in [87], however, the experiments were on a very small dataset, with 16 items and 

13 attributes and includes no dynamic clustering or visualization. Later, the SOM algorithm was 

scaled up to be able to deal with clustering and visualization of large amounts of high-dimensional 

data [67]. Figure 3 shows a sample visualization by the system. However, this algorithm did not 

propose dynamic clustering and visualization, either. In [21], the neurons on the perimeter of the 

map are kept active and a dynamic update of SOM is proposed to achieve incremental clustering. 

However, the inner nodes are static, and after training SOM, an ascendant hierarchical clustering 

was applied to cluster the neurons. Thus, similar clusters from different learning periods may be 

separated on the map, and incremental SOM may not visualize the data as original SOM does. 

Additionally, some other points that needed more clarification and were not addressed in [21] are: 

1)What was the size of the map (i.e. the initial number of neurons) initially for SOM and incremental 

SOM, 2)Was the size of the map updated for each learning period for the classical SOM, 3)If not, 

why not? 4) How does the incremental SOM handle splitting and merging clusters. Thus, better 

explanation and further experiments are needed to show the workings of the proposed approach. 

Although there have been a few studies on dynamic SOM [82], to the best of our knowledge, no 

dynamic SOM clustering and visualization algorithms have been published. 

Table 3 gives a comparison of different approaches. To sum up, many categorization systems 

have the inability to perform classification and visualization on a continuous basis or to have new 

data-items self-organize into the existing clusters (or into new clusters if necessary), unless a new 

processing and analysis happens. This disadvantage is also present in more recent approaches using 

Self-Organizing Maps, as in Kohonen maps [122]. Therefore, while a benchmark comparison of the 

above cited methods should be interesting to explore, any serious comparison will be complicated 

by the ability of the dynamic FClust algorithm to perform continuous mappings with simultaneous 

continuous visualization and the inability of the SOM to accomplish it. 
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Figure 2. Fractal projection of cancer document vectors [88]. 

Figure 3. Distribution of four sample subsections of the patent classification system on the document 
map. The gray level indicates the logarithm of the number of patents in each node. Generated by 
SOM [67]. 
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c...:> 
c...:> 

Algorithm 

IncrementalDBSCAN [43] 
Incremental Ant 
Clustering [122] 
LFC [42] 
SOM [88, 87, 67] 
Incremental SOM [21] 
FClust[117] 
Dynamic FClust 

--

~ -
TABLE 3. Comparison of different clustering and visualization algorithms 

Incremental Emerging/ Changing Cluster No Visualization 
Clustering Disappearing Data Extraction 

Clusters Items 
Yes Yes No Yes No 
Yes Yes No No No 

Yes Only Emerging No Yes No 
No No No Yes Yes 
Yes Only Emerging No Yes No 
No No No Yes Yes 
Yes Yes Yes Yes Yes 

-

Dynamic Typically 
Visualization Compared 

to 
No DBSCAN 
No Static Ant 

Clustering 
No K-Means 
No NA 
No SOM 
No K-Means 
Yes FClust 



2.4 Swarm Intelligence-based Clustering 

"The whole is greater than the sum of its parts" - Aristotle 

Swarm intelligence is an artificial intelligence paradigm based on social, collective and struc­

tured behavior of decentralized, self-organized agents [65, 146]. Algorithms in this domain mainly 

depend on an inspiration from nature, in particular from social insects like bees, ants, termites; flocks 

of birds, and fish schools. These animals have a very limited individual capacity. Yet, cooperatively, 

they perform many complex tasks such as searching for and storing food and flying collectively over 

long distances. The characteristics of swarm intelligence are: 

• Collaboration : Agents in the swarm collaborate or interact with the environment and with 

each other. 

• Collective intelligence: Whereas agents in the swarm are mostly unintelligent, the collaborating 

system, or swarming mechanism results in an intelligent system. 

• Inspiration from nature: Agents' properties tend to be derived from analogous creatures such 

as ants, bees, or birds. 

• Decentralized control: Agents behave and interact without a centralization mechanism. 

The five basic principles of swarm intelligence are [89]: 

• Proximity principle: The group should be able to perform simple space and time compu­

tations. 

• Quality principle: The group should be able to respond to quality factors in the environment. 

• Principle of diverse response: The group should not allocate all of its resources along 

excessively narrow channels. 

• Principle of stability: The group should not change its behavior with every change in the 

environment. 

• Principle of adaptability: The group should change its behavior if it is beneficial. 

In this chapter, we will mainly focus on using 81 for clustering. Most common 81 algorithms 

for clustering are: 

1. Ant-clustering 
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2. Particle swarm clustering 

3. Flocks of agents clustering 

In the following subsections, general information about ant-clustering and particle swarm 

clustering is provided. Following this section. we will discuss elustering using flocks of agents in 

detail. 

2.4.1 Particle Swarm Clustering 

Clustering with partiele swarms is based on particle swarm optimization (PSO) [65, 64]' 

which was initially inspired from bird flocks. Though the initial motive was modeling human social 

behavior, PSO later became a very popular search and optimization technique. 

In PSO, the population is a group of particles and each particle is a candidate solution to 

the problem. Therefore in the swarm intelligence concept with PSO, a swarm is a solution set. Each 

partiele flies through a multi-dimensional problem space, and every position represents a different 

solution. After each move, the position is evaluated by a fitness function as shown in Line 8 of 

Algorithm 5. The fitness function aims to evaluate the performance of each particle which is the 

eloseness of the solution represented by the partiele to the global optimum solution. The personal 

best solution which is the best position visited by the partiele so far is calculated and kept (Line 10 of 

the Algorithm 5). The partiele's best position and the global best, which is the best solution found 

in the neighborhood, are used for computing the particle's new location (Line 12 of the Algorithm 

5). Depending on the definition of neighborhood, there exist two different versions of PSO: l)gbest: 

the neighborhood is the entire swarm 2) lbest: a swarm is divided into overlapping neighborhoods 

of particles and the best partiele is determined in the neighborhood. 

The PSO Clustering algorithm was first applied in image elustering [108, 109], which took 

the number of elusters as input and used the gbest version of PS~. In the elustering problem, each 

partiele is constructed from all cluster centroids. In other words, each partiele represents a clustering 

solution [6, 142]. 

A hybrid model combining PSO clustering with the K-means clustering algorithm was pre­

sented in [142], where one of the partieles was initialized with the result of K-means. Another 

(PSO+K-means) hybrid model was used for document clustering in [35, 36], where the results illus­

trated that the hybrid PSO algorithm can generate more compact results than K-means and PS~. 

A survey and a modified PSO-based elustering algorithm was presented in [6]. 
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Algorithm 5 The PSO Clustering Algorithm 
Input: Dataset and the number of clusters K. 
Output: Clustered data. 

1: Initialize each particle to contain K random cluster centroids. 
2: for iteration=1 to max do 
3: for all particle i do 
4: for all data record x do 
5: Calculate the Euclidean distance of x to all cluster centroids in i. 
6: Assign x to the closest cluster. 
7: end for 
8: Calculate the fitness of the particle. 
9: end for 

10: Find the global best position (among all particles) and personal best position of each particle. 

11: Update the velocity of each particle based on the global and personal best positions. 
12: Update the cluster centroids based on the particles' velocities. 
13: end for 

2.4.2 Ant Clustering 

There are mainly two approaches for ant-based clustering. In the first version, Ant Clustering 

Algorithm (A CA), data is randomly placed in the environment, which is generally a two-dimensional 

plane with a square grid. As shown in Algorithm 6, the ants move around the grid, via a random 

walk or jumping to form clusters by picking up, transporting, and dropping the data items while 

moving around [81]. The picking and dropping operations are influenced by the similarity of the sur­

rounding data items and the density of the ant's local neighborhood f(Xi). Generally, the size of the 

neighborhood is 3 x 3. The probability of picking up increases when the data item is surrounded by 

dissimilar data items or the density of the neighborhood is low. Similarly, the probability of dropping 

increases when similar data items are encountered. After ACA is stopped, a post-processing algo-

rithm such as an agglomerative clustering algorithm is run for cluster retrieval [50]. More recently, 

performance analysis and strategies for increased robustness were presented [50, 51]. Improvements 

were also proposed by adding a progressive vision scheme and including pheromone on the grid cells 

[144]. A good review can be found in [52]. 

In the second version of the ant clustering algorithm, ANTCLUST, each ant represents a 

data item. Initially, none of the ants are assigned to a cluster, i.e. none of the ants have a label. 

Then, during the clustering process, in each iteration, two randomly selected ants meet each other. 

According to some defined behavioral rules, they may form a new cluster, one of the ants may be 

assigned to an existing cluster, one of the ants may be removed from a cluster, or clustering quality 

measures may be updated [72, 73, 74]. The basic idea is that agents who carry similar data items 
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Algorithm 6 The Ant Clustering Algorithm (ACA) 

Input: Dataset. 
Output: Clustered data. 

1: Randomly scatter data items on the grid. 
2: Randomly scatter ants on the grid. 
3: for iteration=1 to max do 
4: for all ant ai do 
5: if ai is unladen and ai's grid position is occupied by item Xi then 
6: Calculate f(Xi) and calculate probpick-up(Xi) using f(Xi). 
7: if probpiCk-up(Xi) 2: randomO then 
8: Let ai pick up item Xi. 
9: end if 

10: else if ai is carrying item Xi and ai's grid position is empty then 
11: Calculate f(Xi) and calculate probdrop(Xi) using f(x;). 
12: if probdrop(Xi) 2: randomO then 
13: Let ai drop item Xi to i's current grid position. 
14: end if 
15: end if 
16: Move ai to a randomly selected, neighboring, unoccupied grid position. 
17: end for 
18: iteration++ 
19: end for 

attract each other, while agents who carry dissimilar agents repel each other, which results in the 

formation of groups. A general outline of the ANTCLUST Algorithm is given in Algorithm 7 and 

behavioral rules are given below. 

Ant Behavioral Rules in ANTCLUST: 

1. New nest creation: If two ants without clusters meet each other and they are similar enough, 

they form a new cluster. 

2. Adding an unlabeled ant to an existing nest: If a labeled ant ai meets an unlabeled ant 

aj, and if they are similar enough, aj is labeled with the same label of ai, i.e. added to the 

cluster of ai. 

3. Positive meeting between two nest-mates: If two ants ai and aj have the same labels 

and they are similar enough, then the quality measures are increased for these ants and the 

cluster they belong to. 

4. Negative meeting between two nest-mates: If two ants ai and aj have the same labels 

and they are not similar enough, then the quality measures are decreased for these ants, and 

the ant with smaller quality measure is unlabeled. 

5. Meeting between two ants of different nests: If two ants ai and aj have different labels 
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but they are similar enough, then the quality measures are decreased for these ants and the 

cluster they belong to. Then, the ant belonging to the smaller nest is moved to the other ant's 

bigger nest. 

6. Default rule: If none of the above applies, do nothing. 

Algorithm 7 The Ant Clustering Algorithm ANTCLUST 

Input: Dataset. 
Output: Clustered data. 

1: Map ants to data items and initialize ants' quality measures. Initially ants do not have any 
labels, i.e. they do not belong to any cluster. 

2: for iteration=l to max do 
3: Randomly choose two ants and apply the behavioral rules above. 
4: iteration++ 
5: end for 
6: Delete nests that do not contain enough ants. 
7: Reassign ants without labels to the most similar nests. 

Another clustering algorithm called AntTree uses the ability of building mechanical struc­

tures of ants and builds a tree structure [11]. In this version, each data to be clustered represents a 

node of the tree and the algorithm searches for the optimal edges. 
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2.5 Using Flocks of Agents for Data Visualization and Clustering 

A recent swarm intelligence approach used a flock of agents. One of the definitions given for 

a flock is "a number of animals of one kind, esp. sheep, goats, or birds, that keep or feed together 

or are herded together" 2 . 

"The motion of a flock of birds is one of nature's delights" according to Craig Reynolds 

who has simulated this phenomenon in computer animation, where the bird-like, birdoid object was 

called boid [124]. One of the biggest differences between a particle and a boid in simulation is that 

boids have orientation, which makes them suitable for data visualization as well as clustering. 

Studies about flocks of agents in computer science have mainly started with simulating 

moving bird flocks, based on two balanced and opposing behaviors of natural flocks, namely, 1) 

Desire to stay close to the flock, and 2) Desire to avoid collisions. These are simulated in the 

following three behaviors [124]. 

Natural Bird Flock Behaviors: 

1. Collision A voidance / Separation: Steering away from the other boids to avoid collision. 

2. Alignment/Velocity Matching: Aiming to match the moving direction (i.e. heading) and 

speed to that of nearby flockmates. 

3. Cohesion/Flock Centering: Attempting to adjust steering toward the average position of 

local flockmates and to stay close to the neighbors. 

While cohesion and velocity matching represent the attraction forces, which keep the boids 

together, collision avoidance formed the rejection/repelling force. Other studies also tried to present 

behavioral rules and model collective behavior of animals [55, 33]. Later studies also focused on 

visualizing data using flocks of agents. Each individual boid represented one data item and a fourth 

behavior was added to represent moving with similar data items [120]: 

4. Information Flocking: Attempting to move with similar boids. 

The fourth behavior is pretty similar to the second behavior, velocity matching. However, 

in the fourth behavior, the aim is not moving together with all neighbors, but only with the ones 

similar enough to form a group. This behavior provided a suitable ground for using flocks of agents 

for data visualization and offered a motivation for data clustering. 

2 http://dictionary.reference.com/browse/ flock 
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It should be noted that, just as a flock can be formed of birds, it can also be formed by other 

boids such as fish, sheep, etc. Therefore, for the sake of generality, in this study, instead of the word 

boid, we use the word "agent". 

The Multiple Species Flocking clustering model (MSF) [37] used flock clustering for data 

clustering and implemented a distributed multi-agent system. In that study, MSF was compared 

to Ant clustering and K-Means clustering algorithms. MSF converged faster than ant clustering. 

However, the clustering results for MSF were manually generated. The user looked at the visualiza­

tion panel and selected the clusters. The results showed that MSF performed better than K-Means. 

Lately, in [117], a detailed flock clustering algorithm (FClust) was presented with a stopping criterion 

and automated cluster extraction algorithm. An application of this approach to Web usage mining 

can be found in [128]. In the following sections, we will describe the FClust algorithm, discuss its 

limitations, and suggest improvements with real life application examples. 

2.5.1 Flocks of Agents Based Data Visualization 

I don't paint things. I only paint the difference between things. 

Henri Matisse 

Data visualization using flocks of agents is suitable for any kind of data set where one can 

define a similarity measure between data items. A flock consists of several agents, with each agent 

representing one data record. As mentioned in Section 2.5, flocks are different from ordinary particles 

because they have orientation. Agents in a flock are attracted to similar agents and are repelled by 

the different agents. Moreover, the distance between the agents depends on the similarity between 

the data items that are mapped to those agents. Therefore, the visualization panel visualizes the 

similarity relation between the data items. Normally, data sets with at most three attributes can 

be visualized by a simple plot. However, when there are more than three attributes, this becomes 

harder. In particular, when there is a huge number of attributes, as in web usage data, data 

visualization becomes a challenging job. 

When flocks of agents are compared to other swarm intelligence algorithms, such as ants 

and particle swarms, we find that flocks are more suitable for data visualization. In the case of ants, 

data items are moved on a rigidly structured grid by ants and placed on the same stack with similar 

items. However, the distance between ants or data items does not necessarily reflect the similarity 

between the original data items, as in the case of flocks. The distance between two neighboring 

agents in a flock is inversely proportional to the similarity between their corresponding data items, 
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whereas the similarity between two ants only increases the chance of data items being neighbors, 

but does not define how close/far they are. The distance between two more similar data items may 

be bigger than the distance between two other items which are less similar. In the case of particle 

swarms, each particle does not represent one data item, but rather represents a clustering solution 

itself. Therefore, particle swarms may not be as suitable for data visualization, either. 

It has been mentioned that neural networks can also be used for data visualization. How­

ever, most neural networks have a rather static structure whereas a flock of agents is inherently 

dynamic [120]. Also, neural networks are a centralized learning mechanism, whereas agent flocks are 

decentralized. 

2.5.2 Flocks of Agents-Based Clustering 

In the clustering with flocks of agents approach [117], each agent represents one data item. 

Initially, agents are placed on the visualization panel, which is a 2 or 3-dimensional continuous space, 

where x, y (and if applicable z) coordinate values range between 0 and 1. Agents may be placed 

randomly or some background information can be used to place them. Then, they start moving 

around. As they meet other agents in a defined neighborhood, they try to remain at an ideal 

distance to each other, which is determined according to the similarity of the original data items 

that agents are representing. The more the data items are similar, the smaller the ideal distance will 

be. Ideal distances are computed for each agent pair once at the beginning of the algorithm based 

on the intrinsic properties or attributes of the data items. If neighboring agents are further apart 

than the ideal distance, there will be an attraction force between them and the agents will try to 

move closer to each other. In contrast, if the distance is less than the ideal distance, then there will 

be a rejection force, and agents will move apart from each other. Given this basic idea, Algorithm 

8 gives the procedure for Flocks of Agents Clustering (FClust). 

In steps 1 and 2, the initialization is performed. The velocity vector V, is a unit vector, (i.e. 

Ilvll = 1), representing the direction. In step 3, the ideal distances between agents are computed 

via Equation (23). Later, for each agent i, the neighboring agents that are close enough to i on 

the visualization panel, are extracted in Line 6, where d(i,j) is the 2D Euclidean distance between 

agents i and j. Then, for each neighbor: 

• If the distance between the agents i and j is equal to the ideal distance between them (Line 

7), there is no attempt to change i's velocity due to j (Line 8). 
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Algorithm 8 FClust Algorithm [117] 

Input: Dataset. 
Output: Visualization of interaction between the data items. Agents corresponding to more similar 
items are located closer in the 2D visualization panel. 

1: Initially place the agents on the visualization panel 
2: Initialize velocities of all agents 
3: Compute the ideal distances, dideal, between agents. 
4: repeat 
5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

for each agent i do 
for all j such that d(j, i) :::; dth and i #- j do 

if d(i,j) = dideal(i,j) then 
(3( i, j) <-- 0 

else if d(i,j) > dideal(i,j) then / / attraction 

(3(i,j) <-- 4 X (d(i,j)-didcal(i;j»)2 
dth -d,deal (',J) 

else / / repulsion 

(3( ' ') 4 (1 d(i,j»)2 
t,] <-- - x - di,deal(i,j) 

end if 
Vresulting(i,j) <-- v(j) + (3(i,j) x vcap(i,j) 

end for 
if :l j such that d(j, i) :::; dth and i #- j then 

w( i) = normalize ( L Vresulting (i, j)) 
jld(j,i)~dth&i#j 

18: if The angle between v( i) and w( i) is less than or equal to 90 degrees then 
19: vnext (i) <-- w( i) 
20: else 
21: vnext(i) <-- v(i) 
22: end if 
23: else 
24: vnext (i) <-- v( i) 
25: end if 
26: ampnext(i) <-- ampdej + 20X(neigl:;,'O~_no(i)+1) 
27: end for 
28: for each agent i do 
29: compute new position Pnext (i) <-- Pcurrent (i) + ampnext (i) x vnext (i) 
30: end for 
31: Move all agents to the updated positions and update current velocities. 
32: until Clusters are formed 

• If the distance between the agents i and j is greater than the ideal distance between them 

(Line 9), an attraction force will move i closer to j, with a more similar velocity to j (Line 10) . 

• If the distance between the agents i and j is smaller than the ideal distance between them 

(Line 11), a repelling force will move i further from j, with a less similar velocity to j (Line 

12). 

In line 14, the velocity effect on i due to neighbor j is computed where v cap ( i, j) is the unit 

vector pointing from i to j. Next is the computation of the updated velocity of agent i, vnext(i), 
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between lines 16 and 25. First, if i has neighbors, then their resulting velocities on i are summed up 

and normalized. If the total, normalized velocity W, does not change the agent's current direction 

more than 90 degrees, then the updated velocity is assigned as W. Otherwise the velocity is kept 

unchanged for the next iteration. Similarly, if agent i does not have any neighbors -note that an 

agent is not considered to be a neighbor of itself- then the velocity will be kept the same for the 

next iteration. In line 26, the amplitude is computed depending on the number of neighbors and 

distance threshold, where ampdeJ is the default minimum amplitude. If the amplitude is too low, 

it may increase the number of iterations to converge. However, if the amplitude is too high, the 

agents may move further than the desired location. The minimum amplitude is empirically set to 

t x dth [117]. At the end of each iteration, the updated agent coordinates are computed, and all the 

agents are moved to their updated positions simultaneously (lines 28 to 31). Moving agents around 

the visualization panel is performed until a stopping criteria is met and/or clusters are formed. 
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Setting the Parameters for FClust 

The selection of parameters has a big impact on the convergence of the FClust algorithm. 

The first parameter is dth' the distance threshold, which defines the neighborhood size (see line 6 in 

Algorithm 8), and the latter affects the ideal distance via Equation (23) (see line 26 in Algorithm 8) 

and amplitude. When dth is too small, the agents cannot affect each other, and when it is too high, 

the algorithm does not converge. One method to compute the ideal distance between two agents, 

dideal, is given in Equation (23). If the ideal distances are overestimated, then the clusters cannot 

be observed on the visualization panel. 

.. 1 - sim(i,j) 
dideal(~,J) = 1 . x dth . 

- S~mth 
(23) 

The similarity threshold, Simth' in (23) is computed via Equation (24). If the similarity 

threshold is too large, then the algorithm will fail to converge, and if it is too small, then different 

clusters risk being combined into one cluster. 

. sirnaverage + simmax 
s~mth = 2 (24) 

Stopping Criteria for FClust 

The most common method for stopping the algorithm is using human experts [120,37, 117]. 

An expert keeps watching the visualization panel until stable clusters are formed. At that time, the 

algorithm is stopped. 

However, an automated method was also presented in [117], which used the spatial entropy 

of the agents relative to their location on a grid imposed on the agent space. In this approach, 

the visualization panel was mapped onto a 20X20 matrix. For each cell (i, j) of this matrix, the 

proportion of p( i, j) of agents that are located in this cell was computed. Then the spatial entropy 

at iteration t was computed by using Equation (25). If the observed minimum of entropy has not 

been improved since the last 3 x n iterations, where n is the number of agents, then the algorithm 

stops. The problem with this criterion is that the entropy may remain unchanged for a long while 

whenever new neighbors do not meet, but after a meeting occurs, changes may start re-occurring. 

Thus, the above stopping criterion cannot capture these delayed dynamics, and the algorithm risks 

to be stopped before convergence. Additionally, how many cells are needed to map the visualization 

screen and how many iterations are needed to observe minimum entropy change were determined 
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experimentally and may not work for some datasets. 

20 20 

Spatial Entropy(t) = - L LP(i,j) x In(p(i,j)) 
;=1 j=l 

Cluster Formation in FClust 

Algorithm 9 Cluster Formation Algorithm 

Input: Agents' coordinates at a stable/converged state. 
Output: Clusters of agents. 

1: for each agent i do 
2: if i's cluster is not assigned then 
3: Form a new cluster c 
4: Assign i to c 

(25) 

5: for all agent j such that there exists an agent k such that k E c and distance(k,j)::::: dth and 
sim(k,j) > Simth do 

6: Assign j to c 
7: end for 
8: end if 
9: end for 

When FClust is run, flocks of agents are visually observable. However, the clusters are not 

explicitly formed and the data is not yet assigned to clusters. Similar to the stopping criterion, 

one method of forming clusters is using human experts. The person marks the clusters and assigns 

agents to the clusters. Since there is a one-to-one mapping between agents and data records, the 

data will also end up being clustered. In addition to this, an automated procedure was presented 

in [117], which is given in Algorithm 9. Basically, a new cluster is created for an unlabeled agent. 

Then the neighboring agents of this cluster are explored, and all the agents which are similar to at 

least one of the agents in the cluster are inserted into this cluster. New agents are inserted to the 

cluster until no more agents can be inserted. Then the procedure restarts by creating another new 

cluster, and stops when all the agents are labeled. 

After cluster formation, a post processing phase is needed to cluster the original (input) 

data, to validate the results, and if possible to interpret the clusters. 

Complexity Analysis of FClust 

The FClust algorithm, given in Algorithm 8, needs to compare every agent to every other 

agent in order to compute the ideal distance initially, and then to update the agent's velocity 

based on its neighboring agents. Despite some complexity reduction suggestions, such as using a 

neighborhood matrix, [117], the worst case time complexity remains O(n2 ), where n is the number 
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of data records. Similarly, the memory complexity is also 0(n2
) to keep the ideal distances, III 

addition to O(n) memory needed for keeping agent locations, velocities and amplitudes. 

Limitations of FClust 

Although the experimental results given in [117] were acceptable, we observed that the 

standard deviations of the number of clusters, the cluster error, and the number of required iterations 

were high. Moreover, FClust was not successful for each data set. Another disadvantage was the 

high computational cost which makes FClust unsuitable for many real time applications. 

In addition to the above limitations, we observed that convergence strongly depends on the 

similarity threshold. When the similarity threshold is too high, the algorithm may not converge, 

and when the threshold is too low, the algorithm may not differentiate between different clusters, 

and thus may end up combining some of them. Therefore, Equation (24) is not suitable for every 

dataset. Furthermore, if the data similarity values follow a power low distribution, then the similarity 

threshold given in Equation (24) will produce a very high similarity threshold. Therefore agents will 

not be able to form clusters. In other words, the clustering algorithm will not converge. Another 

problem occurs when there are connecting agents between clusters, meaning the presence of a bridge 

of data points connecting two clusters. As a result, the clusters are labeled as the same, even though 

they should be labeled differently. To solve this problem to some extent, an alternative formulation 

will be presented in Section 3.1. Moreover, the ideal distance formula in [117] requires mostly unique 

data records. Otherwise, if many similarity values are 1, the ideal distance computation results in 

an infinite value in Equation 23 because simu! = 1. An alternative formulation, which can handle 

many I-similarities is given in Section 3.1.1. 
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2.6 Intelligent Agents 

An agent is anything that perceives its environment through its sensors and gives a response 

through its effectors [127], [145]. A human, a robot, a personalized agent on the Web are examples 

of agents. Figure 4 gives the prototype of an agent. 

Input ---I.~( Agent J---. Response 

Environment 

Figure 4. An agent in its environment. Takes input from the outside world and produces an output. 

In the computing community, an agent is a computer system in its environment, sensing and 

acting autonomously in order to meet its design objectives, in order to meet its goal [145, 147]. That 

said, the properties of an agent can be defined below [147]. 

• Autonomy is being able to act, i.e. operate, without direct intervention of humans or others 

and having some control over an agent's internal state and actions [145, 147]. In [93], autonomy 

also includes being able to adapt to changes in the environment. 

• Reactivity is the ability of perceiving one's environment and responding in a timely fashion to 

the changes that occur in the environment in order to manage one's goal [145, 147]. 

• Pm-activity is the ability to display goal-directed behaviour by taking the initiative [145, 147]. 

• Social Ability is the ability of interacting, i.e. communicating, with other agents via some kind 

of agent communication language in order to meet a goal [145, 147]. 

It should be noted that, there may not be general recognition of terms like agent, autonomy, 

intelligent agent, etc. One example is available above: According to some definitions, autonomy also 

includes reactivity, which may sound awkward. 

Every agent is considered to be autonomous according to [145, 147]. An agent is considered 

to be intelligent if it is also reactive, pro-active and social. 
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2.7 Multi-Agent Systems and Societies of Agents 

A multi-agent system is a system in which more than one agent exist. This is a way of dis­

tributed computing. Agents may communicate, and agent communication and interaction protocols 

are some of the design parameters of an agent society. 

Flocks of agents, ant colonies are some examples of multi-agent systems. The survey in [110] 

points to the striking similarities between the \Veb and natural environments, and gives an overview 

of applications of artificial life principles to searching and managing techniques, including an agent 

based approach called InfoSpider. 

2.7.1 Multi-Agent Learning 

Typically, the ability of an agent to learn is a necessary and satisfactory condition for the 

agent to be described as intelligent [145]. There are two types of learning in multi-agent systems 

[145]: 

• Centralized learning: which is also called isolated learning. Learning is executed by only one 

agent without any interaction with other agents. 

• Decentralized learning: which is also called interactive learning. In this category, more than 

one agent interact to execute the same learning process. 

A multi-agent system may have several centralized learners trying to learn the same goal. 

Similarly a multi-agent system may have several decentralized agents trying to learn the same goal. 
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TABLE 4 
How Big is an Exabyte? [84] 

Kilobyte (KB) 2 Kilobytes: A Typewritten page. 

100 Kilobytes: A low-resolution photograph. 

1 Megabyte: A small novel OR a 3.5 inch floppy disk. 

Megabyte (MB) 5 Megabytes: The complete works of Shakespeare. 

10 Megabytes: A minute of high-fidelity sound. 

Gigabyte (GB) 20 Gigabytes: A good collection of the works of Beethoven. 

Terabytes (TB) 400 Terabytes: National Climactic Data Center (NOAA) 

database. 

Petabytes (PB) 2 Petabytes: All U.S. academic research libraries. 

Exabytes (EB) 5 Exabytes: All words ever spoken by human beings. 

2.8 Agents on/for The Web 

Today, the World Wide Web (WWW) is one of the most vital sources of information. Yet, 

there exists so much information on the Web, and most of it is so unorganized, that it is causing 

severe information overload. This section presents a survey of intelligent Web decision support 

systems, such as recommender systems that can help alleviate the problem of information overload, 

and discuss them within the context of the main paradigms in Artificial Intelligence, which include 

knowledge and reasoning, searching, planning, and learning. 

In recent years, we have witnessed an explosive growth in the amount of information. Each 

day, more books and journals are published, more newspaper articles are written, more web pages 

are posted online, more office documents are prepared, more photos are taken, and more movies 

are created. According to two recent reports, 92 - 93% of newly created information is in digital 

form [66, 84]. In 1999, the worldwide production of original content, stored digitally using standard 

compression methods, was at least 1 terabyte/year for books, 2 terabytes/year for newspapers, 1 

terabytes/year for periodicals and 19 terabytes/year for office documents [83]. In 2002, 5 exabytes 

of new information was produced [84], of which 4.6 exabytes of new information was in digital form. 

To get a feel of how big these amounts are, see Table 4. Table 5 gives an estimate of the size of the 

Internet. 

According to studies and results given above, there were billions of documents on the World 

Wide Web (WWW), as of 2005. This over-abundance of information contributes to the reasons why 

we can get hundreds or even thousands of results for a simple search, and why we can find it hard 

to arrive at the resources that we need by wading through endless labyrinths of Web pages and 
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TABLE 5 
The size of the Internet in terabytes in 2002. [84] 

Surface Web 167 

Deep Web 91,850 

Email (originals) 440,606 

Instant messaging 274 

TOTAL 532,897 

Websites. This problem is commonly referred to as information overload. 

The Human brain is a fast and intelligent decision making organism, but when significant 

information overload is encountered, some additional external guidance may be needed. Systems 

that strive to achieve this aim may be known under different names such as decision support systems, 

recommender systems, customer relationship management systems, executive support systems, ex-

ecutive information systems, or personalized agents. We will refer to them as Web decision support 

systems throughout this chapter. 

Most Web decision support systems rely on powerful techniques for sifting through large 

amounts of Web data in order to support decision making. The most powerful data sifting methods 

fall within the Web mining family of techniques, and these in turn tend to be classified into the 

following categories [70], [29], [70], [15]: 

1. Web Content Mining (WCM): is concerned with mining knowledge from the actual content of 

Web pages. 

2. Web Usage Mining (WUM): is concerned with mining knowledge from the user activity logs 

or access history data. 

3. Web Structure Mining (WSM): is concerned with mining knowledge from the data that consists 

of the hyper-link structure between Web pages. 

To date, information overload has been handled by several approaches, including 

• Information Retrieval and Query Modification: Search engines try to deal with infor-

mation overload by allowing the user to query for only the web pages that satisfy a specific 

information need [12], [126]. Most commercial server-based search engines3 try to deal with 

information overload by building an index of the Web space beforehand, known as a Web 

3http://searchenginewatch.com/showPage.html?page=2156221 
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index, and then performing simple Boolean matching of a user's query against this index [12], 

[126]. The Web index maps the occurrence of a term to the web pages where it is contained. 

Instead of searching an index, some client-based search agents will search the Web by following 

hyper-links to locate the most relevant documents. However, this approach may take too long 

and tends to suffer from low coverage. That is, some relevant web pages may never be reached 

by the search. Despite advances in Web search engines, the biggest obstacle toward finding 

relevant information is the inadequacy of user queries: Users often do not succeed in expressing 

their information needs in a way that optimizes retrieval. For this reason, query modification 

[134] has been proposed as one approach to improve users' queries by, for example adding more 

specific terms, in order to filter out irrelevant results. 

• User modeling: User Modeling aims at identifying and representing the interests of a user. 

This in turn, allows to guide the user toward more relevant resources. The most well known 

challenge in user modeling is building a model of the users that is accurate and complete. For 

example, user profiles that are discovered through clustering the user records or user sessions 

on a website are one way to build aggregate user models [100], [91], [148]. However this 

approach requires powerful clustering algorithms that must not only search a large space of 

solutions to yield "accurate" partitions and cluster "representations", but also must be able 

to handle very large and high-dimensional data sets (such as clickstreams or user sessions). 

Among the techniques used for this purpose, we note several specialized evolutionary clustering 

algorithms, such as the Hierarchical Unsupervised Niche Clustering (HUNC), based on Genetic 

Algorithms [106], and Tracking Evolving Clusters in Noisy data Streams (TECNO-Streams), 

which is based on Artificial Immune Systems [96]. 

• Information Filtering: Information Filtering aims at sifting through many documents/Web 

pages in order to identify those that are relevant to a user. One type of information filtering is 

Personalized or Adaptive search that tailors the search process to a particular user [20], [19]. 

Hence the goal of information filtering is essentially to reduce the pool of information that the 

user will have to examine to a smaller subset. It can be done post-search, by classifying the 

results of a search so that those Web pages that do not fall within a user's interests can be 

weeded out. It can also be done in tandem with search, by incorporating the user's interests 

in a proactive manner as the search progresses in a personalized agent style. 

• Information Organization: This task aims at changing the layout or structure of a large 
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amount of otherwise flatly organized documents or resources in such a way that the new 

structure (for example, a tree or hierarchy of documents) makes it easier for the users to 

locate relevant information [12], [126], [29], [20], [19]. A typical example of an organization 

of Web pages that albeit, was done by humans, is the Yahoo directory4. However, there is 

an increasing interest in performing such an organization automatically. For instance, a good 

organization can be obtained by clustering the original documents. One successful application 

of clustering can be found on certain search engine interfaces (e.g. Vivisim05), where the 

results are clustered into separate categories instead of being simply listed. Presenting the 

results as separate subsets or clusters, tends to separate the results according to meaningful 

topics that help disambiguating documents with similar terms but different meaning . 

• Personalization: aims at adapting a website to the user [94]. Personalization can be imple-

mented in several different modes, including plain customization such as users configuring the 

layout and contents of the homepage (e.g. MyYahoo 6 or NetVibes 7 Web pages). However, the 

most powerful type of personalization may be automated recommendation systems that can 

adapt a Website or suggest items that are deemed to be relevant to a user, based on their 

recent activity. Adaptive Websites have been proposed as a challenge to the artificial intelli­

gence community by Perkowitz and Etzioni [115], where websites can be built to "adapt" to 

their users automatically and hence become personalized and combat information overload. 

Several pioneering efforts in this direction include Web Watcher, Letizia, and Personal Web-

Watcher [10], [61], [76], [90]. Another even earlier effort to combat information overload was 

the Internet Softbot project [44], which has developed intelligent agents known as softbots 

that are based on planning, knowledge representation, and machine learning. Softbots rely 

on a metaphor viewing the Internet as an information food chain, and agents as information 

carnivores that must search for the relevant information on the Internet on behalf of a specific 

user. 

In the following sections, we will focus on recommendation systems, since they represent 

the family of methods aiming to combat information overload, by adhering the most to Artificial 

Intelligence conventions. Figure 5 shows the basic modules of a typical personalization system. 

4http://dir.yahoo.com 
5http://vivisimo.com 
6http://my.yahoo.com 
7http://www.netvibes.com 
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Figure 5. Modules and flow of typical recommendation systems. 

2.8.1 Recommendation Systems According to User Granularity 

In order to provide a personalized Web user experience that reduces information overload, 

most recommendation systems rely on user modeling as an important component. Elaine Rich 

provided a taxonomy of user models which have originated within the Human Computer Interaction 

field [125], and where user models can be classified into several dimensions: (a) individual versus 

group when dealing with the granularity of the user model, or (b) explicit versus implicit which 

concerns the way the model is extracted (i.e. with or without explicit input from the user or 

system designer), and (c) short versus long-term dimension when dealing with the scope of the user 

information over time. To classify Web decision support system models according to modeling the 

users individually or as a group, the former is called individual user modeling while the latter may 

be called general access modeling, mass user modeling, group modeling or canonical modeling. These 

two schemes are discussed in the rest of this section. 

Group Modeling 

Group modeling recommendation systems are systems that are based on models of groups. 

In general, the idea is to find the clusters representing different user profiles first, then create a 

strategy for each cluster, and finally classify a new user to one of the clusters and use the strategy 

generated for that cluster. Group modeling-based recommendation systems are mostly specialized 

for a specific website/domain. In this kind of system, the entire content of the website is known, and 

all the users' activities can be exploited by the system. Collaborative filtering systems [123],[56], 
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[46], [113] constitute the most common server side recommender systems. 

Sources of data on a server-based group modeling recommender systems include visitor activ­

ity information, web server log files, web server instrumentation (plug-ins), TCP lIP packet sniffing 

(network collection), application server instrumentation, transactions, marketing programs (banner 

ads, emails.etc).demographicdata(registration.third party overlay), supply chain (inventory and 

fulfillment), and other sources of data [17]. 

Advantages of server-side group modeling recommenders include the availability of a website 

index, query modification, and being able to combine and thus allow sharing of different users' 

interests. 

Individual User Modeling 

Individual user modeling-based recommender systems tend to be personalized agents [76], 

[90] that are specialized for a single user. Even though they can be located either on the server 

side or client side, the client side solution is more common and easier to implement. The idea is to 

learn the user behavior, their likes and dislikes, and produce recommendations. These systems can 

update themselves as the user's behavior changes. Input data for personal agents can be in many 

different formats: web click streams, rankings entered by the user, document files, emails, calendars, 

and many more... [17] 

Personal assistants are mostly based on learning. Rankings can be used to guide supervised 

learning mechanisms [14]. Content-based filtering can also be used. Content-based approaches 

[16], [113] can be used alone or to assist collaborative filtering. Systems that use a combination 

of these two approaches [14] are called hybrid systems. Some advantages of individual modeling 

over group modeling include: taking into account the documents which are in use at the time of 

recommendation, and capturing the user's individual interests better. Query modification is also 

possible. Disadvantages of individual modeling systems include the unavailability of information 

about other users, and thus a stagnation on only the current user's past interests. 

2.8.2 A Taxonomy of Recommendation Systems 

Recommender systems can be classified in a variety of ways [133], but we adopt the following 

classification that depends on three main components defining the system: 

1. Past information or data available to the recommender system before the recommendation 

time, such as user transactions, clickstreams, ratings, or demographic data, 
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2. Current or active user information inputs (such as which products were viewed/ purchased 

during the current session/transaction) at recommendation time, 

3. Algorithm or procedure that combines the above two sources of data in order to come up with 

a list of recommended products. 

When it comes to items (1) and (2) above, we notice that recommender systems can vary 

widely in their inputs Hence, depending on how the above three components are used and inter­

related, automatic Web personalization can analyze the data to compute recommendations in dif­

ferent ways, including: 

1. Content-based or Item-based filtering 

2. Collaborative filtering 

3. Knowledge Engineering or Rule-based filtering 

4. Demographic filtering 

5. Hybrids 

These categories are discussed in the next sections. More information can be found in [113]. 

Content-based or Item-based Filtering 

Content-based filtering systems recommend items to a given user, which are deemed to be 

similar to the items that the same user liked in the past or similar to the user profile in attributes. 

Item similarity is typically based on domain specific item attributes (such as author and subject 

for book items, artist and genre for music items), which are thus part of the items or user profile. 

Classical examples include Syskill and Webert [112], and Fab [13]. This approach has the advantage 

of easily including brand new items in the recommendation process, since there is no need for any 

previous implicit or explicit group user ratings or purchase data to make recommendations. Content­

based filtering systems suffer from several limitations. First, they tend to be limited to certain types 

of content such as text and movies. Even in this case, the extracted features are limited in that 

they only capture certain aspects of the content. Second, they tend to provide over-specialized 

recommendations based only on user profiles or items that are similar to items previously rated 

by the user. Hence, users cannot explore new items that are different from those included in their 

profiles. 
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Collaborative Filtering 

Based on the assumption that users with similar past behaviors (rating, browsing, or pur­

chase history) have similar interests, a collaborative filtering system recommends items that are liked 

by other users with similar interests [132, 133]. This approach relies on a historic record of all user 

interests such as can be inferred from their ratings of the items on a website (products or web pages). 

Rating can be explicit (explicit ratings, previous purchases, customer satisfaction questionnaires) 

or implicit (browsing activity on a website or clickstreams). Typical examples include GroupLens 

[68][131] and a survey can be found in [132]. The recent Netflix price increased the attention on col­

laborative filtering8 [69]. Collaborative filtering can be either user-based or item-based. In user-based 

collaborative filtering, historic data such as purchases, visits, or ratings of items such as products 

or web pages, is used to form user neighborhoods of similar users. Later, for a new user, items are 

recommended if they are liked by this user's neighbors. In item-based collaborative filtering, historic 

data is used to form associations between items that tend to be liked by the same user. Later, for 

a new user with known ratings for a few items, other items that are associated with the known 

rated items are recommended. Computing recommendations can be based on lazy or eager learning 

to model the user interests. In lazy learning all previous user activities are simply stored, until 

recommendation time, when a new user is compared against all previous users to identify those who 

are similar, and in turn generate recommended items that are part of these similar users' interests. 

Lazy models are fast in training/learning, but they take up huge amounts of memory to store all 

user activities, and can be slow at recommendation time because of all the required comparisons. 

On the other hand, eager learning relies on data mining techniques to learn a summarized model of 

user interests (a decision tree, clusters/profiles, etc) that typically requires only a small fraction of 

the memory needed in lazy approaches. While eager learning can be slow, and is thus performed 

offline, using a learned model at recommendation time is generally much faster than lazy approaches. 

Collaborative filtering methods do not suffer from the over-specialized recommendations of content 

based filtering because they can suggest completely new types of items that are different from pre­

viously rated items, just because there are similar users who seem to be interested in these new 

items. Hence, they benefit from a surprise effect. However, they do suffer from a problem, known 

as the cold-start problem, which occurs when the system is faced with making recommendations to 

a new user that has not rated or purchased any item yet. Despite their limitations, collaborative 

filtering approaches exhibit a very desirable quality in that they are completely independent of the 

8http://www.netflixprize.com 
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intrinsic properties of the items being rated or recommended. In particular, items that may be hard 

to describe using attributes, such as audio and images, as well as semantically rich text data can 

still be recommended based on latent similarities that are only captured through the social process 

of collaborative filtering. 

Knowledge Engineering or Rule-based Filtering 

In this approach, used frequently to customize products on e-commerce sites, the user answers 

several questions, until receiving a customized result such as a list of products or a custom-built 

configuration of a product (e.g. Dell's web pag(9 ). This approach is mostly based on heavy planning 

of a judicious set of questions and possible answer combinations by an expert, and establishing this 

dialog depends on manually coded scenarios that assume heavy knowledge about how each item fills 

the needs of a particular user. 

Demographic Recommender Systems 

In this approach, items are recommended to users based on their demographic attributes, 

such as gender, age, location, salary, etc. The recommendations can be based on handcrafted 

stereotypes derived from marketing research or on machine learning techniques [113] that learn to 

predict users' preferences from their demographic attributes. For instance, users can be classified 

into one of several classes based on their personal attributes, and this class information can form 

the basis for recommendations. 

Hybrids 

As we have already noted, each recommendation strategy has its own strengths and weak­

nesses. Hence it is not surprising that combining several recommendation strategies may provide 

better results than either strategy alone, as long as the combined scheme is able to tap on the 

strengths of the individual methods, while circumventing their individual weaknesses. There are 

several ways to categorize hybrid recommender systems [8, 113, 28, 92]. On a very general level, 

they can be classified into two general families depending on whether they combine several input 

data sources (e.g. user and item data) or several recommendation strategies (e.g. collaborative and 

content-based filtering) in order to form the recommended list. 

9http://www.dell.com/ 
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2.8.3 How Artificial Intelligence has been used for Web Recommendation Systems 

The human brain can be quite fast at decision making, but cannot deal with the information 

overload problem encountered by users of the ·Web. Since a Web recommender system is expected 

to help with this problem, it is expected to be "intelligent". ·Without getting into a discussion of 

what being intelligent means for a recommender system, in this section we will discuss how basic 

artificial intelligence (AI) approaches have been applied for these systems. In particular, we will 

examine four approaches: Knowledge and Reasoning, Planning, Searching, and Learning. 

Knowledge and Reasoning 

Knowledge and reasoning constitute one class of artificial intelligence problem solving tech­

niques [127]. In a logical knowledge-based problem solving system, there exists some knowledge 

about the problem domain, and logical reasoning is used to produce more knowledge and/or actions 

to perform. When compared to the Web decision support problem, it can be seen that this is one 

of the basic ideas behind recommender systems. The system has some knowledge about the user 

and/or items, such as likes, dislikes, similarity, being in the same shopping cart, etc; and the goal 

is to produce more information about likes, dislikes, similarity, etc. Consider content-based filtering 

as an example. Content-based filtering tries to generate a knowledge base which includes likes and 

dislikes of a user, using the similarity between items based on content. It assumes that anybody 

will like an item if it is similar to another item that they also liked. In other words, content-based 

filtering has the assumption that: 

-Vi, Person; likes items that are similar to each other 

We need to have a knowledge base including the preferences of the user and the knowledge about 

similarities between items: The knowledge base might be of the form: 

-Person; likes itemk' 

-Itemk is similar to iteml' 

Then the inference will be: 

- IF Person; likes itemk AND Person; likes items that are similar to each other AND itemk 

and iteml are similar THEN person; likes iteml' 

It is important to note, here, that assessing the "similarity" between items based on their content 

may be the most challenging task, and needs an accurate representation of content. 

Let's present the problem in the context of collaborative filtering. In this case, we need 

to generate a knowledge base which includes which users have similar likes and dislikes, or who 
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likes/dislikes what. We need to have a knowledge base including the knowledge about similarities 

between people: 

-Personi and personj like similar sets of items. 

-Personj likes itemk' 

Then the inference mechanism will work as follows: 

-IF Personj likes itemk AND Personi and Personj like similar sets of items THEN Personi 

likes itemk' 

As in content-based filtering, creating the part of the knowledge base that defines the "similarity" 

between users and the neighborhoods of similar users may be the most challenging aspect. 

Another approach that uses Knowledge and Reasoning was presented in [95], where a knowl­

edge base consisting of fuzzy rules was used to make an inference about the user's most likely interest. 

Each rule was built from a user profile, and the profiles were automatically discovered by clustering 

the user Web clickstream sessions. This approach proved to be as good as K-Nearest Neighbors 

based collaborative filtering, but worked with a knowledge base of very modest size compared to 

K-Nearest Neighbors. 

A recent approach to enrich and automate efforts that counteract information overload is 

the Semantic Web. The Semantic Web is a project to create a universal medium for information 

exchange by putting documents with computer-processable meaning (semantics) on the World Wide 

Web [23, 1]. Most Semantic Web efforts so far have been based on knowledge representation efforts 

that try to create, encode, and make use of ontologies that offer one way to represent knowledge 

about facts and objects. For this purpose, several languages and conventions have been proposed to 

handle and process such ontologies, such as O\VL and RDF to represent information, and how to 

reason with this knowledge, for example by making reasonable inference. 

Searching 

Another problem that is very central to AI is the search problem. Even though the WWW 

domain is a connected domain, because of its extraordinary size, search can become a huge challenge. 

There may be millions, or even billions of possibilities for the starting point and too many options 

to follow at each step. Moreover, there may be no unique definition for a final goal or an "optimum 

goal" other than the user's satisfaction, which is extremely subjective and dynamic. All commercial 

server-based search engines try to deal with this problem by building an index of the Web space 

beforehand, and then performing simple Boolean matching of a user's query against this index [12], 
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[126], [29], [20], [19]. Instead of searching an index, some client-based search agents will perform 

a graph style traversal or search of the Web by following hyper-links to locate the most relevant 

documents. However, this approach may take too long and tends to suffer from low coverage. Some 

relevant web pages may never be reached by the search. 

Best-first Internet search is common in search engines. Search techniques including A * are 

mostly used while crawling [15]. In a client-based search algorithm called fish search [38, 39], the 

problem is searching for information on the WWW. The algorithm finds a starting point for the 

search, retrieves documents over the Internet, and scans for relevant information on the client side, 

then gets more links to continue searching. This is an example where the goodness of a hyper-link 

to follow is assessed before committing to follow it, for example by estimating its relevance score 

based on the existence of links between it and some other web pages with known relevance, or by 

estimating this score based on the "anchor text" that describes this hyper-link. 

Another common search problem occurs when trying to create group user models by dis­

covering the user profiles. Given Web server logs as input, in [104, 106, 97], a genetic algorithm 

based technique called Hierarchical Niche Clustering (HUNC) searches for user profiles and discovers 

associations between URL pages on a site . The input to the search consists of user sessions which 

are sets of URLs visited in each session. The output of the system consists of the set of URLs that 

represent groups of similar sessions (clusters) in an "optimal way". Generally speaking, there is 

no consensus on a unique definition for the "optimal representation". However, the most desirable 

solution is one where the ultimate cluster representatives (profiles) approximate the user sessions 

with precision and recall that are as high as possible [107]. This search problem also happens to be 

a clustering problem, that tries to find the clusters to represent the sessions in the "optimal way" . 

Recently, flocks of agents [116] and Ant Colony Optimization (ACO) [41, 73] methods have 

also been used for clustering. In the flock of agents approach, each agent represents one data item. 

The aim of the agents is to move with similar agents. They have simple local rules and evolve 

together in a 2D environment to accomplish this aim. The survey in [110] points to the striking 

similarities between the Web and natural environments, and gives an overview of applications of 

artificial life principles to searching and managing techniques, including an agent based approach 

called InfoSpider. Infospiders are adaptive agents that use a Genetic algorithm in their search 

strategy for food in the environment in order to optimize their energy. In addition to the above, 

more Evolutionary-based methods have found their use in Web information retrieval methods that 

are reviewed in [71]. 
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Figure 6. A simple example of a decision tree-based recommender system using a demographic 
attribute. 

Planning 

The third problem solving technique in AI is planning. In AI, planning is defined as solving 

the problem by forming a search for a solution over a space of plans, where beliefs about actions 

and their consequences are used [127]. When navigating the WWW, an action can be considered as 

following a specific link, purchasing a product, closing the connection, etc. The state may represent 

the current page, and mayor may not include click history, demographic data, ratings, etc. Finally 

the goal is generally expected to be finding the needed information, making a desired purchase, 

entering a good rating, or visiting a specific link, etc. Even though planning is not considered to be 

a popular method for Web decision support systems, it is very commonly used in Expert Systems. An 

expert can define the actions, states, and goals as a recommendation strategy. However, as discussed 

in Section 2.8.2, since it heavily depends on human input, this approach may be cumbersome for 

large websites. 

In Web decision support systems, one of the most common structures used in planning is 

decision trees. In a decision tree structure, each edge represents a question, and branches represent 

specific conditions satisfied by the attributes. Finally, leaf nodes can be considered as the final 

decision (e.g. class label). Figure 6 shows a simple example of a decision tree-based recommender 

system with demographic attributes, whereas Figure 7 presents a simple example of a decision tree-

based Web decision support system with a content-based approach. 

Decision trees may also be known under the names classification trees or reduction trees 

in the literature. In some approaches, leaf nodes of decision trees may have probabilistic results, 

such as a leaf with 3 classes, representing class a with probability Pa, class b with probability Pb 

and class c with probability 1 - (Pa + Pb). This adds a fuzziness to the decision mechanism. These 

kinds of trees are called probabilistic decision trees and they are known to handle missing values 

[27]. When probability is considered, Bayesian belief networks (or just belief networks) also come to 
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Was user searching for 
computers in the last 5 

minutes? 

Show a list including 
computers on top. 

user: searching for apple I 

searchi g for foo 
in the I 5 minutes? 

Show a list including 
fruits on top. 

Was user searching for 
neither computer nor food 

in the last 5 minutes? 

Figure 7. A simple example of a decision tree-based personalized search using a content-based 
approach. 

mind [114]. Planning may be considered to be conceptually related to Knowledge-Engineering Web 

decision support system approaches. 

Learning 

In AI terminology, the idea behind learning is the ability to observe the results of interaction 

with the world and to use these observations to improve the decision making process [127]. Learning 

is very common in Web decision support systems. Whenever a system is able to deduce some new 

information about a user or a user profile, the system is said to be "learning". Two types of learning 

can be discussed: 1) Lazy and 2) Eager. In lazy learning, all the examples are kept and an answer to 

a query is produced by using the examples. No explicit model output is produced in lazy learning. 

However, in eager learning, training examples are used to generate a model output, and queries are 

answered by using this model output. A model output can be in the form of a tree, a set of rules, 

a function, a neural network, a set of cluster representatives, etc. Although lazy learners have low 

computational cost during training (which is close to zero), they require high storage (memory) cost 

and computational cost at decision time. Lazy learning is more resistant to noisy data and responds 

better to dynamic data. On the other hand, when the data set changes, one may need to rebuild 

an eager learning model output. K-Nearest Neighbors is one of the most popular lazy learning 

algorithms, while neural networks and decision trees are examples of eager learning methods. Syskill 

and Webert [111] is an early example of a Web decision support system, that achieved information 

filtering using several lazy and eager approaches including K-Nearest Neighbors, Bayesian classifiers, 

and Decision Trees to learn which Web pages are interesting to a particular user. The work in [24] 

presents a Neural Network approach to learn the interests of a user from the previous ratings of 

similar users. This approach falls within the realm of collaborative filtering recommender systems. 

Below, we will discuss some of these approaches. We start with decision trees that were 
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also discussed in Section 2.8.3. In working with a decision tree, there are two stages: 1) Forming or 

learning the tree, and 2) Applying the tree on new inputs to make predictions. The most common 

method for forming the tree is learning. ID3, C4.5, C5.0, CART are the most common algorithms 

to generate/learn decision trees [121]. There are two ways to use decision trees in recommender 

systems: 1) representing the recommender system as a decision tree, and 2) using decision trees 

for determining the important attributes, as is used in text categorization. An example of text 

categorization using decision trees can be found in [111] and [75]. 

Neural Networks (NNs) constitute a learning paradigm inspired by the biological nervous 

system [127, 54]. In intelligent decision support systems, NNs can be used for classifying users or 

items, clustering users or items, predicting a user's next move, adaptive filtering [20, 19], or user 

modeling [103]. Most of the NNs are used for supervised learning. However, self-organizing maps 

have been used for clustering within an unsupervised learning framework. An application of self­

organizing maps for the visual exploration of the Internet is WEBSOM [67, 58]. In the system, 

similar documents are located near each other on a two-dimensional map. 

Reinforcement learning [135] is mostly common in user or client-based support systems, 

frequently known as "personal agents". Rankings, ratings or clicks made by the user are used 

as reward and punishment mechanisms [61]. Web Watcher is a good example of a learning-based 

personalization system, that acts like a learning tour guide for the WWW [10, 61]. When the user 

is browsing the web, the Web Watcher agent accompanies the user and highlights the suggested 

hyper-links, while learning from its experience in order to improve its advice-giving skills. There 

are three approaches used in learning: 1) Learning from previous tours, 2) Learning from hypertext 

structure, and 3) Combination of the first two. Learning from previous tours is like a combination 

of content-based filtering and collaborative filtering with learning. According to the user interest 

-which are the keywords that the user typed at the beginning of the tour- the system gets the most 

related links from the current page. This can be considered as an application of content-based 

filtering. On the other hand, the definitions (or annotations) of the hyper-links are enriched (in 

other words learned) by the user interest (i.e. keywords typed) when the user follows the hyper­

link. Later, this knowledge is used for advising other users with similar interests. This idea adheres 

to the principles of collaborative filtering. The second learning approach, learning from hypertext 

structure, is based on reinforcement learning. In this method, a hyperlink is augmented using the 

words encountered in the pages downstream from it. Q-learning is used with states corresponding 

to Web pages and actions corresponding to hyper-links. The reward function, in this case, is a kind 
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TABLE 6 
Examples of Intelligent Personalization Systems, their user granularity, and their A.1. paradigm 

Research(SysteIll Main Author Application Input ReCOIllITlendation User AI 

Year Data Paradigm Granularity Task 

Letizia Lieberman Behav ior- based User':o browsing Content-based Individual Learning 

[76] 1995 User interface agent behavior and 

that assists browsing Search 

Armstrong Learning Users browsing Content-based Group Learning 

WebWatcher 1995 tour guide behavior and 

[10J, [61] .loachims which Collaborative 

1997 assists browsing 

Personal Web Watcher Mladenic Learning agent Users' browsing Content-based Individual Learning 

IgOr 1996 that assists browsing behavior (Text) 

Syskill & Wehert Pazzani A software agent User's ratings Content-based Individual Learning 

[111], [112] 1996 that learns to rate 

pages on the WWW 

Fab Balabanovic Hybrid, adaptive U;;cr's browsing Content-based Individual Learning 

[14],[13] 1997 rccofilillendation system behavior and and and Search 

for browsing user ran kings Collaborative Group Heuristics 

of similarity between the Web page and the user interests or keywords. Table 6 lists some examples 

of intelligent recommender/personalization systems, their user granularity, and their A.1. paradigm. 

2.8.4 Evaluating The Performance of Web Recommender Systems 

Evaluating a recommender system can be nearly as hard as designing and implementing 

the system, in part because no simple, objective, and general agreed upon mathematical formula 

is always available to measure success [12, 126, 20, 19]. One problem suffered by some systems is 

over-specialization. When the recommendations are limited to the user's behavior or user's profile, 

the user can be restricted to seeing only similar items, and there will be no randomness. In AI, this 

problem is known as, the exploration/exploitation dilemma. Collaborative filtering can counteract 

over-specialization by suggesting different items. 

Evaluating information retrieval systems can be done if one has available, a set of user queries 

and a labeled set of search results (relevant and non-relevant). In this case, precision (proportion 

of retrieved items that are really relevant) and recall/coverage (proportion of all items, known to 

be relevant, that are retrieved) are typically used as goodness metrics [126, 12]. One method for 

evaluating a Web recommender system is asking for a ranking or a rating of the results from the 

users. However, this can be subjective. Moreover, if the study is for research purposes, it can be hard 

to find a sufficient number of real users with diverse interests for the experiment. For this reason, 

historical data has also been used in research studies. In this case, the output of a Web recommender 

system is compared to the real moves of the user in the historical data, and metrics such as precision 

and coverage are computed [126, 12]. One popular way to assess the success of a system is to compare 
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Research/System 
Letizia 
(Lieberman, 1995 
[76]) 
Webwatcher 
(Armstrong, 1995 
Joachims, 1997 
[10], [61]) 
Personal Web Watcher 
(Mladenic, 1996 
[90]) 
Syskill & Webert 
(Pazzani, 1996 
[111], [112]) 

Fab 
(Balabanovic, 1997 
[14],[13]) 

TABLE 7 
Evaluation examples 

Evaluation Style 
No evaluation was given in [76] 

1) Random, Popularity Match, Annotate, RL 
suggestions are compared according to accuracy 
2) Random, Annotate, Human 
suggestions are compared according to accuracy 
Precision (1, if a correct suggestion; 0 else) 
and percent of correctly classified examples 
with different parameters. 
Accuracy computation using user ratings 
with different algorithms like Nearest Neighbor, 
PEBLS, ID3, Rocchio's algorithms, neural nets 
and Bayesian classifier for different domains. 
Predict user's rankings 
and compute the distance 
according to ndpm measure([149]) 

it, for example with recommending the default, most popular, or even a randomly selected item. 

In Fab [14, 13], a performance evaluation based on ranking was presented. Although evaluating 

the success of a recommendation is subjective, there may exist formulas for defining the users or 

items. Some systems create profiles, then generate recommendations using these profiles [95, 103]. 

Therefore, evaluating the accuracy of the profiling may give an early evaluation of the Web decision 

support system. The discovered profiles can also be considered as frequent itemsets, or patterns, 

and provide one way to form a summary of the input data. As a summary, profiles represent a 

reduced form of the data that is at the same time, as close as possible to the original input data. 

This description is reminiscent of an information retrieval scenario, in the sense that profiles that 

are retrieved should be as close as possible to the original session data. Closeness should take into 

account both (i) precision (a summary profile's items are all correct or included in the original input 

data, i.e. they include only the true data items) and (ii) coverage/recall (a summary profile's items 

are complete compared to the data that is summarized, i.e. they include all the data items). Table 

7 presents examples of evaluations used with some Web decision support systems. 

2.8.5 Summary of Agents on/for the Web 

We have presented an overview of methods and paradigms used in \Veb recommender sys-

tems, which are indispensable to counteract the severe information overload problems encountered 
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by users of the Web. Most of these systems try to counteract information overload by resorting 

to some way to sift through large amounts of 'Veb data, such as by Web mining, and can provide 

a solution through Web search, user modeling, information filtering, information organization, or 

personalization. When taking into account the user-based granularity of these systems, we can dis­

tinguish between group and individual user modeling, with each level of granularity having its own 

strengths and weaknesses. When dealing with huge populations of users, the individual level that 

may be optimal and faithful to reality from a knowledge representation point of view, may not even 

be feasible or practical to work with from a computational and memory storage point of view. This is 

where group user modeling is needed. We have focused on recommender systems as the type of Web 

decision support systems that adheres the most to the principles and expectations of an Artificial 

Intelligence paradigm, and have explained how the main A.I. paradigms have been embodied within 

these systems. In particular, we have elaborated on Web recommender or personalization systems 

that rely on Knowledge and Reasoning, Searching, Planning, and Learning. Even though most com­

mercial systems prefer group modeling, individual modeling is becoming more popular these days. 

Increasing personalized searches, requiring users to login on some websites, and personalized news 

are all first and basic steps of these moves. However, they may conflict with the user's expectations 

of privacy. Although, the importance of Web decision support systems is obvious, profiling, defining, 

and recognizing users is not easy. On the WWW, both users' behavior and the Internet structure 

and content are highly dynamic. Therefore, systems must be able to function in an online and 

realtime setting for the best effectiveness. 

Finally, to take a glimpse toward the future, we must note that with the advent of the Web 

2.0, which is characterized by the proliferation of social and collaborative networks (e.g. Face book, 

Linkedln) , folksonomies that include tagging and sharing bookmarks and content (e.g. Flickr and 

del.icio. us), and collaborative user generated content (e.g. Wikipedia, Wikimapia, Digg, Amazon 

reviews, Blogs, etc.), the Web info sphere is taking a significantly different shape. Another phe­

nomenon that will contribute to reducing information overload is the advent of the semantic Web. 

One of the most desirable outcomes of Web 2.0 is an emerging self-organization and user-driven 

distributed information enrichment (e.g. tagging) of the Web. Social and collaborative networks 

and folksonomies have not only led to the creation of new types of data that will challenge all efforts 

in analyzing and exploiting such data, but also provided an additional layer of organization and 

implicit knowledge that may hold even more power against information overload. 
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CHAPTER 3 

IMPROVED FLOCKS OF AGENTS-BASED CLUSTERING 

In this Chapter we describe our proposed improvements to flocks of agents based static 

clustering. We first discuss automated parameter estimation in Section 3.1.1. Then in Section 3.1.2, 

we present an annealing approach for adaptive thresholding. in Section 3.2.1 and 3.2.2, the new 

(K-means+FClust) and (SPKM+FClust) Hybrid algorithms are presented respectively. We also 

validate each development using experiments in Section 3.3. 

3.1 Improved Distance Threshold Estimates 

Setting the distance threshold parameter in FClust plays a big role in defining the quality of 

results and convergence of FClust. In fact, most clustering algorithms crucially depend on a similar 

parameter either directly or indirectly. In this section, we present an improved way to automatically 

set this parameter in FClust. 

3.1.1 Alternative Fixed Thresholding 

In our experiments, we observed that the original FClust was not suitable for some very high 

dimensional sparse datasets, such as Web usage data. Therefore, we had to find a new formulation 

for the similarity threshold as given by Equation (26). When the maximum similarity is very high 

and the average similarity very low, the similarity threshold computed by (24) is too high for FClust 

to converge. Equation (26) includes a flexible way to tune the similarity threshold, using a tuning 

factor a, where 1 < a < simm"x . 
- - stmaver'age 

Simth = a x simaverage (26) 

Another problem observed is that the ideal distance computation results in an infinite value 

via Equation (23) if many similarity values are 1, because Simth = 1. Equation (27) proposes an 

alternative formulation, which can handle many I-similarities. 
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{ 

I-sim(i,j) X d 

(
. .) _ I-simth th, 

dideal 2,J -
0, 

(27) 
Simth = 1 

Additionally, when the number of data records is small, setting the distance threshold is 

very hard because, if it is too low, the agents cannot meet each other, while if it is too high, the 

ideal distances computed via Equations (23) and (27) will be too high, and cluster formation will 

not occur. As a solution, a new parameter for ideal distance tuning is added, as given in Equation 

(28). The ideal distance threshold constant, dideaUh, used in Equation (28), is also used, replacing 

dth during the cluster formation given in Algorithm 9, line 5. 

{ 

I-sim(i,j) X d. 

(
. .) I-simth ?,deaLth, 

dideal 2,J = 
0, 

Simth =1= 1 
(28) 

Simth = 1 

In addition to these simple tuning modifications, an annealing version of FClust is proposed 

in Section 3.1.2. 

3.1.2 Adaptive Thresholding using FClust Annealing 

The distance threshold, dth' has a great effect on the convergence of clustering. When 

dth is too high, too many agents affect a given agent. This results in an attempt to satisfy too 

many constraints at once, and the algorithm does not converge. However, when dth is too low, the 

neighborhood tends to be too narrow for agents to see each other. Therefore they may not affect 

each other. Even when convergence is possible, it takes too many iterations. 

One way to decrease the sensitivity to a fixed threshold is by using an annealing schedule for 

dth' where dth is highest at the beginning and then decreases as the number of iterations increases. 

In that case, dideal is computed using Equation (28). A possible cooling schedule for dth is given in 

Equation (29) and shown in Figure 8. 

d () = dth(O) - dth(N) d (N) 
th t h( lOxt) + th cos "N"" 

(29) 

where, t is the iteration number and N is the number of iterations. d th starts from dth(O) and 

decreases down to dth (N). 

During the cluster formation process, in line 5 of Algorithm 9, dideaUh is used to define the 

neighbor hood. 
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Figure 8. Cooling Schedule for dth for Annealing FClust. 

3.2 Hybrid Algorithms 

K-means and SPKM are fast algorithms with O(n) time complexity. However, the number 

of expected clusters, K , needs to be given as an input to the K-means and SPKM algorithms. 

Additionally, K-means and SPKM may not cluster the data successfully if the cluster boundaries 

are not hyper-spherical. Unlike K-means and SPKM, FClust has an adaptive way to extract a 

reasonable number of clusters without any boundary restrictions. However , the complexity cost for 

FClust is higher than K-means and SPKM. In this section, we propose the (K-means+FClust) and 

(SPKM+FClust) Hybrid Algorithms which aim to benefit from the advantages of K-means, SPKM, 

and FClust. 

3.2 .1 The (K-means+FClust) Hybrid Algorithm 

K-means is a fast algorithm with O(n) time complexity. However, the number of expected 

clusters, K , needs to be given as an input to the K-means algorithm. Moreover, K-means can 

only find clusters with hyperspherical shapes. Therefore, if the clusters are not hyperspherical, 

K-means may not estimate the cluster boundaries correctly. A hybrid algorithm of K-means and 

FClust is presented in Algorithm 10 to take advantage of the speed of K-means while also benefiting 

from the power of automatically determining the number of clusters in FClust. In the hybrid 

algorithm, initially, K-means is run with a high number of clusters which is more than the expected 

number of clusters. The cluster centroids are t hen extracted to get cluster representatives, and these 

representatives are mapped to the agent domain. Next, FClust is run on this smaller number of 

agents (relative to the size of the input data set) and the clustering results are mapped back to 

the input data domain. Note that , in t he hybrid approach, each agent is mapped to the closest 
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group of data records via its group centroid, since each agent represents a group centroid. The time 

complexity for K-means, lines 1 to 2 in Algorithm 10, is O(n), and the time complexity of the FClust 

part, in lines 3 to 4, is O(K2). Since the number of agents K is very small compared to the number 

of agents n, as long as K ::; yfri (which is always the case in practice), the time complexity and 

memory complexity of the (K-means+FClust) hybrid is o (n). Therefore the hybrid version reduces 

the time and memory complexities from quadratic to linear. 

Algorithm 10 (K-means+FClust) Hybrid Algorithm 

Input: Dataset with n data records, an over-specified number of initial clusters, K ::; yfri. 
Output: Visualization of interaction between the data items and agent-cluster formation. 

1: Run K-means on the original dataset with K clusters, where K ::; yfri). 
2: Extract K cluster centroids from K-means' results, 
3: Map each cluster centroid to an agent for FClust, 
4: Run FClust with K agents. 

Advantages of the (K-means+FClust) Hybrid Algorithm 

The advantages of the (K-means+FClust) Hybrid algorithm can be listed as: 

• Linear complexity: Unlike FClust, the (FClust+K-means) Hybrid algorithm has linear com-

plexity inherited from K-means. 

• Unlike K-means, the (FClust+K-means) Hybrid algorithm has an adaptive way to extract a 

reasonable number of clusters. 

• Unlike K-means, the (FClust+K-means) Hybrid algorithm suffers from no hyperspherical 

boundary restrictions on the extracted clusters. 

Stopping Criterion 

During the movement of the agents, the goal of each agent is to move such that the agent 

will be located at an ideal distance to all neighboring agents. Therefore, the procedure can be 

considered as a constraint satisfaction problem [145], where having the ideal distance between every 

agent pair represents the optimal goal. The difference between the real distance between two agents 

and their ideal distance is called the ideal distance error in this document as shown in Equation 

(30). One proposed stopping criterion is to halt if the difference in total ideal distances between all 

agent pairs in two consecutive iterations is small enough. Since this stopping criterion is feasible 
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TABLE 8 

Comparison of different stopping criteria. 

Algorithm Advantage Disadvantage 
Human experts Takes advantage of Since not automated, 
[120, 37, 117] human intelligence. more costly and error prone. 
Spatial Entropy- Automated. Can stop early, 
based [117] Has lower thus separate some clusters. 

computational complexity Harder implementation. 
than ideal distance- Experimentally set parameters 
based stopping. may not work for other datasets. 

Ideal distance-based Automated. High computational 
Serves the constraint complexity O(n2

), 

satisfaction nature of FClust. thus applicable only 
Easy implementation. on small datasets. 

when the number of agents is small, it will be used for the (K-means+FClust) Hybrid algorithm in 

the experiments of Section 3.3.3. 

ideal distance error(i,j) = Idideal(i,j) - d(i,j)1 (30) 

Table 8 presents a comparison of this stopping criterion and the stopping criteria presented 

in Section 2.5.2. 

3.2.2 The (SPKM+FClust) Hybrid Algorithm 

SPKM is a fast algorithm with O(n) time complexity for clustering high dimensional and 

sparse data sets. However, the number of expected clusters, K, needs to be given as an input to 

SPKM. A hybrid of SPKM and FClust is presented in Algorithm 11 to take advantage of the speed 

of SPKM while also benefiting from FClust's aptitude to automatically determine the number of 

clusters. In the hybrid algorithm, initially SPKM is run with a high number of clusters K which 

is more than the expected number of clusters. The cluster centroids are then extracted to get a 

representative of the data from each cluster, and only these cluster representatives are mapped to 

the agent domain. Next, FClust is run on this smaller number of agents (relative to the size of 

the input data set) and the clustering results are mapped back to the input data domain. Note 

that, in the hybrid approach, each agent is mapped to the closest group of data records via its 

group centroid, since each agent represents a group centroid. The time complexity for SPKM, lines 

1 to 2 in Algorithm 11, is o (n), and the time complexity of the FClust part, in lines 3 to 4, is 

O(K2). Since the number of agents K is very small compared to the number of agents n, as long 

as K ::; yin (which is always the case in practice), the time complexity and memory complexity of 
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the (SPKM+FClust) hybrid is o (n). Therefore the hybrid version reduces the time and memory 

complexities from quadratic to linear. 

Algorithm 11 (SPKM+FClust) Hybrid Algorithm 

Input: Data set X E ~d where Ixl=n; An over-specified number of initial clusters, K S fo. 
Output: Visualization of interaction between the data items and agent-cluster formation. 

1: Run SPKM on the original data set with K clusters, where K S fo). 
2: Extract K cluster centroids from SPKM' results, 
3: Map each cluster centroid to an agent for FClust, 
4: Run FClust with K agents. 

Stopping Criterion 

The (SPKM+FClust) hybrid algorithm uses two different stopping criteria, one for SPKM 

and one for FClust. For SPKM, the most common criterion is tracing the increase in the total 

similarity, as mentioned in Section 2.1.3. For FClust the most common method for stopping the 

algorithm is using human experts [120, 37, 117]. An expert keeps watching the visualization panel 

until stable clusters are formed. At that time, the algorithm is stopped. However, an automated 

method was also presented in [117], which used the spatial entropy of the agents relative to their 

location on a grid imposed on the agent space. The problem with this criterion is that the entropy 

may remain unchanged for a long while whenever new neighbors do not met, but after a meeting 

occurs, changes may start re-occurring. Thus, the above stopping criterion cannot capture these 

delayed dynamics, and the algorithm risks to be stopped before convergence. During the movement 

of the agents, the goal of each agent is to move such that the agent will be located at an ideal distance 

to all neighboring agents. Therefore, the procedure can be considered as a constraint satisfaction 

problem where having the ideal distance between every agent pair represents the optimal goal. The 

difference between the real distance between two agents and their ideal distance is called the ideal 

distance error in this document as shown in (30). One proposed stopping criterion is to halt if 

the difference in total ideal distances between all agent pairs in two consecutive iterations is small 

enough. Since this stopping criterion is feasible when the number of agents is small, it will be used 

for the (SPKM+FClust) Hybrid algorithm in the experiments of Section 3.3.3. 
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Dataset Number 
ID of Items 
I 1600 
II 811 

WebM 1704 (sessions) 
Iris 150 

Pima 768 

3.3 Experimental Results 

TABLE 9 
Datasets. 

Number of Number of 
Attributes Clusters 
2 2 
2 3 
343 (urIs) NA 
4 3 
8 2 

Maximum Average 
Similarity Similarity 
0.999948 0.814345 
0.997500 0.732619 
1.000000 0.059718 
1.0 0.709334 
0.986171 0.832665 

In this section, we describe our experiments and their results for FClust, FClust-Annealing, 

(K-means+FClust) Hybrid, and (SPKM+FClust) Hybrid. We start by describing the datasets that 

we will use in our experiments, in Section 3.3.1. Then we proceed to explaining how post processing 

is applied to extract clusters in Section 3.3.2. Finally, Section 3.3.3 presents the experimental results 

observed for FClust, FClust-Annealing, (K-means+FClust) Hybrid, and (SPKM+FClust) Hybrid 

on different datasets. No experiments are presented for (K-means+FClust) and (SPKM+FClust) 

Hybrid-Annealing because, the aim behind annealing is to have a bigger neighborhood initially and 

reducing it in time to speed the convergence of clusters. However, in the hybrid versions, since the 

number of agents is already small, a bigger distance threshold, thus a wider neighborhood size, is 

being used, and naturally convergence is very fast. Therefore, annealing is not used for the hybrid 

experiments. 

3.3.1 Datasets 

As shown in Table 9, datasets I and II are synthetic datasets, whereas dataset WebM consists 

of real Web usage sessions. Iris and Pima are also real life datasets from the UCI machine learning 

repository 1. Datasets I and II have 2 attributes and are thus suitable to show the clustering results 

visually. To compare the proposed improvements and the (K-Means+FClust) hybrid algorithm with 

the original FClust algorithm, datasets Iris and Pima are also used. 

Dataset WebM, the Web usage data, consists of Web usage sessions logged by the server 

of the CECS Department at the University of Missouri-Columbia (considered as a benchmark data 

set) based on the pre-processing method and results in [98]. Each session is a set of URLs that were 

visited during that session. Since each URL or item can be considered as one dimension, this results 

1 http://archive.ics. uci.edu/ml/ 
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in a huge dimensionality. In the dataset, there exist 1704 sessions and 343 URLs, representing the 

number of data records and attributes, respectively. The maximum similarity between sessions is 

1.00 and the average similarity is 0.06. 

In the experiments, two different similarity measures are used, the Manhattan based sim-

ilarity for datasets I and II, and the cosine similarity for dataset WebM. The Manhattan based 

similarity is used for the linearly normalized Iris and Pima datasets. 

The Manhattan based (Ll) similarity of two data records Xi and Xj is given by Equation 4. 

When the data is linearly normalized to [0, 1], the Manhattan based similarity is the same as the 

I-norm similarity, which is used in (4). 

Given that Si and Sj are two sessions, each formed of a list of ISil and ISjl URLs visited in 

each user session respectively, the cosine similarity is computed as follows: 

(31) 

3.3.2 Post Processing 

After the agent clusters are formed, a post-processing phase is needed to cluster the data and 

validate the results. Post-processing depends on the data properties. If the data has 3 attributes or 

less, the data points are plotted with different colors depending on the cluster assigned. If the data 

has a class attribute, then the cluster error, given in Algorithm 3, is also computed. 

Algorithm 12 Synthetic Data Post-Processing Algorithm 
Input: Agents' coordinates and their cluster labels, Original data set, 8TH: minimum cluster size 
Output: Clustered data, plot of agents and data set colored according to their cluster label. 

1: Create as many clusters as formed for the agents. 
2: Label each data record with the same label as the agent representing that data record. 
3: Keep only the clusters with enough data records (i.e. size is above 8TH). 
4: Plot agents on the visualization panel, colored according to cluster label. 
5: If the data is in 2D or 3D, then plot the data records, colored according to the cluster label (for 

validation) . 
6: If the data has a class label, compute the cluster error via Algorithm 3. 

Moreover, if the data consists of Web user sessions, then profiles are extracted as shown 

in Algorithm 13, line 6. In Algorithm 12, line 3, Algorithm 13, line 3, Algorithm 14, line 5, and 

Algorithm 15, line 4, 8T H, denotes the session threshold, i.e. the minimum number of sessions 

required for a cluster to be valid. If a data record is a bag of items, as in the case of Web usage 

data, the value of item_counLthreshold used in Algorithm 13, line 6 is given in Equation (32), where 

ICTF denotes the Item Count Threshold Frequency, where O~ICTF~ 1 is a real number. As a 
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Algorithm 13 Web Usage Data Post-Processing Algorithm 
Input: Agents' coordinates and their cluster labels, Original data set, 8TH : minimum cluster size 
Output: Clustered data, plot of agents colored according to their cluster label, and user profiles. 

1: Create as many clusters as formed for the agents 
2: Label each session with the same label as the agent representing that session. 
3: Keep the clusters with more than 8TH sessions. 
4: Plot agents on the visualization panel, colored according to their cluster label. 
5: for all Clusters do 
6: Find the URLs which are visited more than item_counLthreshold in all the sessions of that 

cluster. 
7: end for 

result, each set of URLs, extracted in line 6 of Algorithm 13, can be considered as a pattern that 

represents a Web user profile that summarizes the sessions assigned to that cluster. 

item_counLthreshold = ICTF * cluster_size (32) 

Algorithm 14 (K-Means+FClust) Post-Processing Algorithm 

Input: Cluster means produced by K-means, agents' coordinates and cluster labels from FClust's 
output. 
Output: Clustered data, and plot of agents and dataset, colored according to their cluster label. 

1: Create as many clusters as formed for the agents 
2: Map data records to the cluster means of K-means, in other word to agents. 
3: If data is in 2D or 3D, plot data records, colored according to their cluster labels from K-means. 
4: Label each data record with the same label as the FClust-generated label of the agent repre-

senting that data record. 
5: Keep the clusters with more data records than 8TH. 

6: Plot agents on the visualization panel, colored according to their cluster label. 
7: If data is in 2D or 3D, plot data records, colored according to their cluster label from FClust. 
8: If the data has a class label, compute the cluster error via Algorithm 3. 

Algorithm 15 (SPKM+FClust) Web Usage Data Post-Processing. 

Input: Agents' coordinates and their cluster labels from FClust output, Original data set, 8TH : 

minimum cluster size, Data cluster labels from SPKM output, URL list. 
Output: Clustered data, plot of agents colored according to their cluster label, and extracted user 
profiles as sets of URLs. 

1: Create as many clusters as formed for the agents using Algorithm 9. 
2: Map data records to the cluster centroids of SPKM, in other words to agents. 
3: Label each session with the same label as the FClust-generated label of the agent representing 

that session. 
4: Keep the clusters with more than 8TH sessions. 
5: Plot agents on the visualization panel, colored according to their cluster label. 
6: for all Clusters do 
7: Find the URLs which are visited more than item_ counLthreshold in all the sessions of that 

cluster. 
8: end for 
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After the (SPKM+FClust) hybrid algorithm, Algorithm 9 is used to form agent clusters. 

Then, Web session clusters are formed and cluster profiles are generated using Algorithm 15, where 

each profile is represented by a URL set. To evaluate and compare the quality of clusters, the average 

inter-cluster (or between-cluster) and intra-cluster (or within-cluster) similarities are computed. The 

similarity of any cluster to an empty cluster (in the case of evaluating the results before post-

processing) is assumed to be O. 

3.3.3 Results 

In Sections 3.3.3, we start with 2D datasets to allow us to do a visual evaluation. Then we 

proceed with the Web usage data as a challenging, high dimensional, real life data example. Finally, 

we present our results for the Iris and Pima datasets and compare the clustering outputs to the data 

class provided as part of the datasets. 
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Figure 9. Clustering a dataset with two clusters using FClust where dth=O.04, Simth=O.91. 
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Figure 10. Clustering a dataset with three clusters using FClust at iteration 24400. 

FClust Results for 2D and Web Usage Datasets 

Figure 9(a) shows an example of a data set with two clusters, and the resulting agents space 

are shown in Figure 9(b). In Figure 9(d) , agent clusters which include more than 8TH data records 

are shown. And in Figure 9(c) , the clustered data is shown. Figure 10 shows the clustering result for 

a more complicated data set, given in Figure 10(a) , using the Manhattan similarity given in Equation 

(4), and dth=0.04, Simth=0 .86 . Likewise, Figure 10(d) is the post-processed version of Figure 10(b). 

When we compare the results in Figure 9(c) and Figure lO(c) , we observe that, when the data 

clusters are not strictly separated, the cluster formation algorithm, Algorithm 9, may suffer from a 

bridging effect that results in merging two distinct clusters. Note that, since the synthetic datasets 

used in our experiments already had attributes between 0 and 1, we did not linearly normalize them 

in [0,1] . 

Figure 11 shows the results after more iterations compared to Figure 10 (dth = 0.04, Simth = 

0.86). This shows that, if the agents' movement is stopped in a wrong state, different clusters may be 

assigned to the same cluster. Therefore, the stopping criteria is crucially important for overlapping 

data sets. 
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Figure 11. Clustering a dataset with three clusters using FClust at iteration 30700. 

The next results are for two weeks worth of Web usage data for a Computer Engineering 

and Computer Science Department's website. We have chosen this data set, because it has have 

previously undergone extensive experiments and validation in [102, 101, 99], and hence it is consid­

ered a benchmark data set. In Figure 12(a), the algorithm did not converge because the similarity 

threshold computed according to Equation (24) was too high to form good clusters. With the av-

erage similarity and maximum similarity given in Table 9, the similarity threshold is computed as 

0.53, which is very high given that the average similarity is 0.06. Therefore this example visually 

shows that the similarity threshold given in Equation (24) is not suitable for data with similarities 

distributed as a power law, as can be verified in Figure 12(b) and Figure 12(c) (the log-log plot 

exhibiting several linear segments) . 

78 



Iteration = 12000 

X coordinate 

(a) Agents for Web usage data, 

12 

10 

g 8 ., 
:J 
0-
j!! 

LL 6 

4 

2 

0.2 0.4 0.6 0.8 
Similarity 

(b) Cosine similarity histogram, 

lO'r---------------------~---.., 

10' 

10' 

10'L-------~----~-------------~ 
~ ~ 

Iog(RankofsllT'lllanly) 

(c) Log-log plot of similarities. 

Figure 12. Clustering the Web usage data using FClust with similarity threshold computed according 
to Equation (24). (a) no convergence because of an improper similarity threshold (b) Similarity 
histograms, (c) Log-log plot of similarities exhibiting power law properties. 
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TABLE 10 
Several examples from the profiles of a Web usage data extracted using FClust where 8TH = 10 and 
ICTF = 0.1 

URL URL 
Frequency 

P rofile 1 (includes 211 sessions) 
0.92 / 
0.79 / cecs_computer . class 
0.53 / courses.html 
0.52 / coursesjndex. html 
0.51 / courses 1 00. html 
0.27 / people.html 
0.27 / peoplejndex.html 
0.27 / faculty. html 
0.20 / courses300.html 
0.19 /degrees.html 
0.15 / courses200.html 
0.13 / grad_people.html 
0.12 / research.html 
0.11 / courses_webpg.html 
0.11 / index.html 
0.10 /staff.htm 

Profile 2 (Includes 43 sessions) 
0.93 r joshi/ courses / cecs352 
0.33 /-joshi/ courses/ cecs352/slides-index.html 
0.26 /-joshi/courses/cecs352/outline.html 
0.23 /-joshi/courses/cecs352/text.html 
0.23 /-joshi/courses/cecs352/handout.html 
0.21 /-joshi/ courses/ cecs352/proj 
0.19 r joshi 
0.16 /-joshi/ courses/ cecs352/proj/proj1 .html 
0.14 /-joshi/ courses/ cecs352/proj/ overview .html 
0.12 r joshi/ courses / cecs438 
0.12 / - j oshi / courses / cecs35 2 / environment. htm 
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(a) Clustered agents before pruning. (b) After post-processing with Algorithm 13. 

Figure 13. Generated profiles from web usage data using FClust in 10250 iterations. 
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(c) Agent clusters generated after post processing (d) Agent clusters generated after post processing 
and assigning agents to clusters. and assigning agents to clusters. 

Figure 14. Clustering a dataset with two clusters using FClust-annealing where dth=started from 1 
down to 0.04, Simth=0.91. 

When we compute the similarity threshold using (26) , it is 0.15. The value of a was set 

to 2.5 in this set of experiments. We obtain convergence as shown in Figure 13, where dth = 0.04, 

Simth = 0.15, 3TH = 10, and JeT F = 0.10. Several examples of the extracted profiles are presented 

in Table 10. For example, Profile1 represents a group of users (possibly prospective students) 

checking the department 's main web pages. Profile2 represents a group of student users taking the 

course CECS 352 (Joshi is the instructor teaching the course). 

FClust-Annealing Results for 2D and Web Usage Datasets 

Figure 14 shows the clustering results for the dataset with 2 clusters using FClust-Annealing. 

Comparing this result with Figure 9, we can see that the annealing results in fewer iterations to 

convergence (1410 vs. 2792 iterations). 

Figure 15 also shows that annealing not only accelerates the convergence, but also results in 

better quality clusters (no bridging effect). In Figure 10, even though there were 3 separate clusters 

in the agent space, after 24,400 iterations, as seen in Figures 10(b} and lO(d} , clustering the data 

domain as shown in Figure 10(c} showed that the clustering process did not converge. Figure 11 also 
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(d ) Agent clusters generated after post processing 
and assigning agents to clusters. 

Figure 15. Clustering a dataset with three clusters using FClust-annealing where dth=started from 
1 down to 0.04, Simth=0.91 , dideaUh for FClust and post-processing is 0.04. 

confirms the fact that there is a tendency to combine three clusters into one cluster unless a better 

cluster formation algorithm is applied. Although the classical FClust suffers from these problems, 

FClust-Annealing clearly differentiates between these clusters. In addition to being more successful 

in clustering, FClust-Annealing converges in fewer iterations (3,435) , compared to 24,400 iterations 

for FClust, i.e. it was 7 times faster. 

Figure 16 shows the results of clustering real life Web usage data, listed in Table 9, using 

FClust with annealing. Example profiles are shown in Table 11. Compared to Figure 13 which took 

10,250 iterations, better quality clusters are now formed in only 6,840 iterations. Also 30 clusters 

were formed in Figure 13 whereas, with annealing, 25 clusters are formed . By checking the post­

processed profiles, we observed that the decrease in the number is not a loss of information but 

rather a better convergence (broken clusters were combined) . In FClust, some clusters were broken 

and their agents could not meet each other on the agents visualization panel and therefore could not 

be unified. 
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TABLE 11 
Some samples from the Web user profiles, extracted using FClust-Annealing where 5TH = 10 and 
ICTF = 0.1 

URL URL 
Frequency 

Profile 1 (includes 116 sessions) 
0.90 / 
0.69 / cecs_computer .class 
0.43 / coursesjndex.html 
0.42 / courseslOO.html 
0.41 / courses.html 
0.29 /people.html 
0.28 /people_index.html 
0.28 /faculty.html 
0.20 / courses300.html 
0.18 / degrees.html 
0.17 / courses200.html 
0.13 / general.html 
0.13 / generaUndex.html 
0.13 /facts.html 
0.13 / research.html 
0.11 / grad_people.html 

Profile 2 (Includes 31 sessions) 
0.90 / joshi/courses/cecs352 
0.35 / joshi/courses / cecs352 / slides-index.html 
0.35 / joshi/ courses/ cecs352/handout.html 
0.35 / joshi/courses/cecs352/outline.html 
0.29 / joshi/ courses/ cecs352/text.html 
0.26 / joshi/courses / cecs35 2 / environment. html 
0.13 / joshi 
0.13 / 
0.13 / joshi/courses/cecs438 
0.13 / joshi/courses/cecs352/proj 

(K-means+ FClust) Hybrid Results for 2D Datasets 

Figure 17 shows the results of the (K-means+FClust) Hybrid algorithm for Dataset I. The 

disadvantage of K-means is that it requires the number of clusters as input, however FClust can 

extract the number of clusters automatically. With the hybrid approach, 8 clusters are generated 

with K-means, as shown in Figure 17(b), where each agent was mapped to one cluster center gen-

erated by K-means. From these, FClust generated the 2 clusters, shown in Figure 17(c). Figure 

17(b) represents the K-means result, (i.e. before starting the iterations of FClust). Compared to 

Figure 9, where 2,792 steps were needed for FClust's convergence, only 122 iterations were needed 

for the Hybrid version. Although the hybrid version speeds up the process considerably, it does not 

necessarily suffer from the bridging effect observed during the cluster extraction in post-processing. 
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(C) Agent clusters generated after post-processing and as-
signing agents to clusters. 

Figure 16. Clustering the Web usage session data using FClust-annealing where dth=started from 
1 down to 0.04, simth=0.15 , dideaLth for FClust and post-processing is 0.04. 

Figure 18 is a collection of figures showing the results of the (K-means+FClust) Hybrid 

Algorithm given in Algorithm 10 for Dataset II . When the results are compared with the simple 

FClust Algorithm in Figures 10 and 11 , it can be observed that the hybrid algorithm is faster thanks 

to fewer iterations and to the modest linear computational cost. 
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(c) Agent clusters after applying thresholding. (d) Data clusters after applying thresholding. 

Figure 17. Stable output of (K-means+ FClust) hybrid on a 2 cluster-data set where Simth=0.88 

(using Eqn.(24)) , dth= 0.4. d ideaLth for FClust=0.04, d ideaLth for forming clusters = 0.08. 

FClust, FClust-Annealing and (K-means+FClust) Hybrid Results for Iris and Pima 

Datasets 

Table 12 compares the FClust , FClust Annealing, and (K-Means+FClust) Hybrid algorithms 

on t he datasets Iris and Pima, which were also used in [117J. The results were averaged over 10 

different runs , and the numbers inside the parentheses represent the standard deviations. We have 

also observed, in the Iris dataset experiments, that the original FClust algorithm tends to get stuck 

in local optimum for a long time, but after enough iterations, it can find a better clustering. For 

example, in one run, FClust produced 4 clusters around 1500 iterations, with a cluster error rate of 

approximately 0.25, computed via Algorithm 3, while around 2500 iterations, it formed 3 clusters. 

However, the error rate was still high (0.27) . Later, the number of clusters dropped to 2 and around 

7000 iterations, it found 3 clusters with an error rate of 0.08. More iterations resulted in high error 

rates (around 0.22) again with 2 clusters. So the system will cycle between 2, 3 and 4 clusters. These 

are different but somehow stable clustering options. However, it was observed that, results with more 

than 5 clusters with the given parameters, are a result of an insufficient number of iterations. Again 

85 



0.' 

0.' 

Inpul Dllta 

(a) Dataset. 

lterrion"169 

r--~--r--~--r---, d ""'" 
dustllr2 
dustllr J 

........... 

(c) Agent clusters after applying thresholding. 

net.lion -O 

0.' 

.. - -

(b) Data clustered into K=8 clusters using K­
means. 

lterrion"169 

r--~--r--~--r---, dUlltlr 1 

... + ... 

""",,, 
du",,, ' 

(d) Data clusters after applying thresholding. 

Figure 18. Stable output of (K-means+FClust) hybrid on a 3 cluster-data set where Simth=0.73 

(using Eqn.(24)), dth= 1.0. dideaLth for FClust=0.04, d ideaLth for cluster forming =0.08. 

as we have noted in Section 3.2 .1, since every pairwise ideal distance is one constraint/ objective to 

be satisfied, there are n x (n - 1) / 2 objectives. Theoretically this can lead to up to n x (n - 1)/2 

Pareto solutions on the Pareto front. The actual number in practice is much less however, since 

several of these constraints can be satisfied simultaneously. 

The FClust-Annealing version decreases the number of iterations drastically. It starts form-

ing cluster centers from the first iterations, and even though the centers are created in less than 

10 or 20 steps, they still seem to be reasonably good. For the first few iterations, the cluster 

centers changed rapidly since the neighborhoods were wide. Yet clusters were still formed after 

post-processing. Finally, the clustering scheme which gave the minimum error was reported. An­

nealing converges to a meaningful cluster formation faster than FClust. Moreover, in just a few 

iterations, it can already present different possible clustering options. This process and the changes 

in the formed cluster numbers and their errors with the iterations, for 10 different runs on the Iris 

dataset, are shown in Table 13. For each run, the first row is the number of clusters generated at 

the corresponding iteration number , which is given as the column label. Similarly, the second row 

shows the error computed via Algorithm 3. 
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Figure 19. Evolution of the ideal distance error with iterations for clustering the Iris dataset using 
(K-means+FClust) Hybrid algorithm. 

In FClust-Annealing and the (K-means+FClust) Hybrid, since the neighborhood is wider , 

clusters are formed faster , and there will be fewer agents on the visualization panel between agent 

flocks. Later (in the case of annealing), when the neighborhoods become narrow, the chance of flocks 

meeting and affecting each other decreases, which causes a decrease in the exploration for better 

clustering options. Therefore FClust Annealing and the (K-means+ FClust) Hybrid are more prone 

to getting stuck in local optima. Some random moves could be added to the algorithm to increase 

the opportunity for exploration. One of the problems observed with the (K-means+FClust) Hybrid 

on the Iris data set was that the algorithm may separate the members of the first cluster into two 

groups. During the clustering using the Hybrid algorithm, K was set to 8 in K-means, d ideaLth was 

0.04, and during post processing, it was 0.08. 

To stop the Hybrid algorithm, the ideal distance error, for each pair of agents is computed, 

and when its difference compared to the previous iteration fell below 0.009, the algorithm was 

stopped. Figure 19 shows the ideal distance error versus the iteration number for the Iris dataset 

using the (K-means+FClust) Hybrid algorithm. The irregularities observed as sudden increases in 

the error correspond to the time when clusters reached the border of the visualization panel and 

continued moving, thus wrapping around toward the opposite side of the panel. That said, the 

(K-means+FClust) Hybrid algorithm produced reasonable clustering results in fewer iterations on 

the Iris dataset . 

In the experiments with the Pima data, FClust formed 2 or 3 clusters, for dth =0.04 with 
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an error rate around 0.50. Manual stopping terminated earlier than automated stopping because, 

a Human typically follows the bigger flocks of agents, thus the agents which are spread around the 

visualization panel do not affect the human observer as much as they may affect the automated 

stopping. In the FClust-Annealing algorithm, 2 clusters of the Pima dataset were formed around 20 

to 30 iterations, with a cluster error rate between 0.45 and 0.50. For the Pima data set, with smaller 

cluster size threshold values, clusters would be observed in fewer iterations. However, we kept this 

threshold constant as n/20 to be able to compare the proposed algorithms with the original FClust 

algorithm. Table 14 shows that an average of 1651 iterations for FClust-annealing were sufficient 

to get a state of the visualization panel which would require an average of 3995 iterations of the 

original FClust algorithm. Similarly, K was 8 and dideaUh was 0.04 for the the Hybrid algorithm. 

During post processing, dideaUh was 0.08. We also observed that, for both the Iris and Pima data 

sets, minimum cluster errors were observed for the FClust-Annealing experiments (0.11 for Iris and 

0.43 for Pima) compared to all other algorithms. 

(SPKM+FClust) Hybrid Results for the Web Usage Dataset 

Using the Web usage data set, the (SPKM+FClust) hybrid algorithm was tested and com­

pared to FClust. In both algorithms, the ideal distance was computed using (28). Our experiments 

showed that since Web usage data followed a power low distribution [129], (24) resulted in a grossly 

over-estimated similarity threshold and led to no cluster formation, as mentioned in Section 2.5.2. 

Although FClust managed to converge thanks to the similarity threshold modification, and 

although meaningful profiles were extracted, we observed that the results contained too many invalid 

clusters (i.e. clusters with less than STH sessions), as shown in Table 15. In fact, on the average, 

after 4000 iterations, only 31 out of 502 clusters were valid. Note that the notations Intm Sim and 

Inter Sim stand for intra- and inter-cluster similarities, which ideally, should be highest and lowest, 

respectively. Gen. Glust. is the number of generated clusters, before pruning the clusters with fewer 

than ST H sessions. Final Glust. represents the final number of clusters after pruning. The values 

in parenthesis are the standard deviations over 10 runs. 

Table 16 lists the evaluation metrics for the (SPKM+FClust) Hybrid, averaged over 10 

different runs, and compares results for different K values used for the number of clusters in SPKM. 

As expected, when the number of agents decreases, the number of iterations needed to converge 

also decreases. Selecting the number of agents, K, not only affects the number of iterations but 

also affects the quality of the resulting clusters. Increasing K, increases the number of (agent-space 
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distance to ideal distance matching) constraints that need to be satisfied. However, a higher value 

of K is also crucial to give a chance for collaboration to actually take place, and thus extract higher 

quality clusters. The presence of more agents leads to stronger collaboration, whereas a sparse agent 

space is very risky because it reduces the potential for collaboration, the very mechanism by which 

this social learning paradigm actually works. 

Figure 20 compares the clustering results of FClust and our proposed Hybrid approach. 

Even though a very small number of agents can degrade the collaborative power of the algorithm, 

having a smaller number of agents on the visualization panel makes it easier to observe the simi­

larity relationships between the data records. Figures 20(a) and 20(b) show that while the hybrid 

algorithm has converged around 4000 iterations, FClust needed more iterations to cluster the un­

labeled agents. Table 18 compares the average system CPU time computed by 10 different runs 

of the tested algorithms, showing a big advantage for the hybrid approach mainly because it does 

not have to compute a complete distance/similarity matrix for the entire data, but rather only for 

the reduced cluster centroids resulting from SPKM. The dominant part of the computation time is 

the computation of ideal distances amongst agent pairs, which is performed only once at the start. 

Thus, the difference in computation times between 4,000 and 10,000 is small This is also expected 

from the complexity analysis in Sec. 2.5.2. Furthermore, Tables 15 and 16 show that the quality of 

the discovered clusters is also higher in the proposed hybrid algorithm, since the average similarity 

within clusters is almost two times higher (thus better), and the average inter-cluster similarity is 

almost 5 times lower (thus better). During our experiments, we observed that even at a whoop­

ing 40,000 iterations, FClust still could not reach the quality levels of the proposed hybrid on the 

evaluation metric. A few sample profiles from Figure 20(d) are listed in Table 17 (paucity of space 

prevented us from listing all 19 profiles), showing results that fare very well with the results in [98] 

on this same benchmark data set: A significant number of good profiles were discovered, and the 

profiles are interpreted as meaningful groups (thus patterns) of user activities on the website that 

range from casual visitors of the website to students who are more focused on particular courses. 

3.4 Conclusions 

Flocks-of-agents based swarm intelligence holds a great promise, and being the most recent 

of all the swarm-based clustering approaches, it has been the least studied. To address some of 

the limitations of the standard flock-based clustering algorithm (FClust) on Web usage data, we 

developed some improvements, including the K-means variant Hybrid algorithm. Our hybrid ap-
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Figure 20. Clustering the Web usage session data using FClust vs. (SPKM+FClust) Hybrid where 
dth = 0.4, d ideaUh = 0.04. 

proach reduces the quadratic complexity of FClust to linear complexity and performs similarly to 

FClust with fewer iterations for clustering high-dimensional data such as web usage data and text 

documents. Our experiments confirmed the superiority of the proposed hybrid approach, both in 

terms of quality of the final results and computational cost. 
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TABLE 12. Compared Results (Averaged over 10 runs). 
FClust FClust Annealing FClust Hybrid 

Average Avg. Avg. Average Avg. Avg. Average Avg. Avg. 
Clusters Error Iter. Clusters Error Iter. Clusters Error Iter. 
Found No Found No Found No 
3.1 0.18 1811 2.9 0.16 11.6 4.5 0.22 41.5 
(0.32) (0.04) (400.1) (0.32) (0.03) (4.33) (0.85) (0.06) (22.45) 
2 0.47 3995.1 2 0.475 19.9 3.8 0.45 41.7 
(0) (0.01) (984.6) (0) (0.Q2) (4.95) (1.5) (0.03) (18.58) 
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TABLE 13. Number of clusters extracted and corresponding error at different iteration steps for 10 different runs of clustering the Iris data using 
FClust-Annealing where dth=O.4, di deaLth=0.04 

[ Iteration No [ 1 1 10 1 50 1 100 1 200 1 .. 300 1 400 [ 500 I!OOO 1 1500 11{jOO L~ 
Run 1 1 3 6 6 5 6 5 4 4 4 3 4 

0.67 0.16 0.26 0.26 0.24 0.24 0.18 0.16 0.15 0.15 0.13 0.15 
Run 2 0 3 2 2 2 2 2 2 2 2 3 2 

0.15 0.23 0.23 0.23 0.23 0.23 0.22 0.23 0.24 0.22 0.22 
Run 3 0 1 5 5 7 7 5 4 4 4 2 3 

0.67 0.23 0.21 0.24 0.24 0.21 0.19 0.19 0.19 0.22 0.18 
Run 4 0 2 2 2 2 2 2 3 3 4 4 3 

0.24 0.23 0.22 0.22 0.23 0.22 0.17 0.17 0.18 0.19 0.09 
Run 5 0 2 4 4 4 4 4 4 2 3 3 4 

0.32 0.23 0.27 0.27 0.28 0.28 0.28 0.23 0.18 0.18 0.11 
Run 6 1 0 4 4 3 3 4 3 5 5 4 4 

0.67 0.28 0.2 0.17 0.18 0.27 0.22 0.21 0.22 0.18 0.19 
Run 7 0 1 3 5 4 4 3 3 3 4 4 4 

0.67 0.19 0.16 0.14 0.17 0.15 0.16 0.15 0.1 0.13 0.11 
Run 8 0 0 5 6 4 5 4 4 4 2 2 2 

0.26 0.28 0.22 0.2 0.22 0.22 0.26 0.22 0.22 0.22 
Run 9 1 0 5 3 3 3 3 3 2 2 2 2 

0.67 0.19 0.13 0.15 0.13 0.14 0.14 0.22 0.22 0.22 0.22 
Run 10 0 1 4 4 4 6 4 3 3 2 2 3 

0.67 0.27 0.22 0.24 0.22 0.13 0.16 0.17 0.22 0.23 0.1 

Avg. No of Clusters 0.3 1.3 4 4.1 3.8 4.2 3.6 3.3 3.2 3.2 2.9 3.1 
Average Error 0.67 0.411 0.237 0.218 0.212 0.212 0.203 0.192 0.198 0.192 0.192 0.159 



TABLE 14 
Average result of 10 different runs of clustering the Pima data set using FClust-Annealing, where 
dth started from 1 and decreased to 0.04. 

Found Clusters Error Iteration No 
Average 2 0.47 1651.1 
(Standard Deviation) (0.01 ) (587.3) 

TABLE 15 
Average results (and standard deviations in brackets) of 10 different runs of FClust algorithm, where 
dth = 0.04, a = 2.5, 8TH = 10, JeT F = 0.10. 

FClust Before Post Processing FClust After Post Processing 
Intra Inter Inter/ Gen. Intra Inter Inter/ Final Iter. 
Sim Sim Intra Clust. Sim Sim Intra Clust. 
0.891 0.014 0.016 501.8 0.352 0.108 0.307 31.4 4000 
(0.004) (6E-04) (8E-04) (12.5) (0.013) (0.015) (0.048) (1.96) (0) 
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TABLE 16. Average result (and standard deviations in brackets) of 10 different runs of the (SPKM-FClust) hybrid algorithm with different K values, 
where d th = 0.4, dideaUh = 0.04,0: = 2.5, 8T H = 10, JeT F = 0.10. 

SPKM FClust Hybrid Before Post-Processing FClust Hybrid After Post-Processing 
Intra Inter Inter/ K Intra Inter Inter/ Gen. Intra Inter Inter/ Final Iter. 
Sim Sim Intra Sim Sim Intra Clust. Sim Sim Intra Clust. 
0.537 0.029 0.0538 100 0.428 0.007 0.016 54.5 0.572 0.021 0.037 25 3870.8 
(0.019) ( 0.003) (0.0044) (0) (0.034) (0.002) (0.005) (6.6) (0.018) ( 0.007) ( 0.012) (5.6) (2410.1) 
0.511 0.032 0.0621 50 0.441 0.013 0.029 30.4 0.498 0.02 0.04 22.9 934.2 
(0.031) (0.007) (0.0145) (0) ( 0.045) (0.005) (0.01) (5.04) (0.032) (0.005) ( 0.008) (5.02) (600.9) 
0.496 0.033 0.0679 30 0.463 0.021 0.045 23 0.452 0.025 0.056 19.8 112.8 
(0.032) (0.007) (0.0163) (0) (0.054) (0.008) (0.018) (2.16) (0.039) (0.008) (0.019) (2.97) (127.82) 



TABLE 17 
8 sample profiles out of a total of 19 Web user profiles visualized in Figure 20( d), and extracted 
using the (SPKM+FClust) Hybrid with K = 100, 5TH = 10 and JOTF = 0.1. 

URL URL URL URL 
Freq. Freq. 

Profile 1 Profile 11 
0.47 / 0.72 / shi/cecs345 
0.37 / cecs_computer . class 0.50 / shi/cecs345/Homeworks/1.html 
0.23 / courses~ndex.html 0.42 / shi/cecs345/Projects/1.html 

Profile 2 Profile 7 
1.00 1 / yshang/CECS341.html 0.97 1 /access 
0.60 / yshang/W98CECS341 0.85 / access/ details.html 

Profile 6 Profile 13 
0.82 / saab/cecs333/private 0.94 / degrees_grad .html 
0.70 / saab/cecs333 0.88 / degrees_grad~ndex.html 
0.48 / saab / cecs333 / private / assignments 0.84 / deg_grad_genor .html 
0.41 / saab/cecs333/private/lecture_program 0.64 / degrees.html 

Profile 10 Profile 19 
0.97 / c697168/cecs227/labs/main.html 0.98 / saab/cecs303/private 
0.97 / c697168/cecs227/labs/lab1.html 0.90 / saab / cecs303 
0.96 / c697168/cecs227/labs/left.html 0.83 / saab/cecs303/private/solution 

TABLE 18 
Comparison of average system CPU times of 10 different runs for FClust (4000 and 10000 iterations) 
and (SPKM-FClust) hybrid algorithm with 4000 iterations, where K = 100, dth = 0.4 in the Hybrid 
and 0.04 in FClust , dideaLth = 0.04, a = 2.5, 5TH = 10, JOT F = 0.10. 

FClust-4000 FClust-lOOOO Hybrid 
Avg. CPU Time (s) 6.98 7.28 0.04 
(Standard Deviation) (0.1) (0.2) (0.02) 
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CHAPTER 4 

FLOCKS OF AGENTS BASED RECOMMENDER SYSTEM 

In this chapter, we define a new Swarm Intelligence-based recommender system (FlockRe­

com) based on the collaborative behavior of bird flocks for generating Top-N recommendations. 

The flock-based recommender algorithm (FlockRecom) iteratively adjusts the position and speed of 

dynamic flocks of agents on a visualization panel. By using the neighboring agents on the visual­

ization panel, top-n recommendations are generated. The performance of FlockRecom is evaluated 

using the Jester Dataset-2 [2] and is compared with a traditional collaborative filtering based recom­

mender system. Experiments on real data illustrate the workings of the recommender system and 

its advantages over its CF baseline. 

4.1 Introduction 

In recent years, we have witnessed an explosive growth in the amount of information. Each 

day, more books and journals are published, more newspaper articles are written, more web pages 

are posted online, more office documents are prepared, more photos are taken, and more movies are 

created. This over-abundance of information contributes to the reasons why we can get hundreds or 

even thousands of results for a simple search, and why we can find it hard to arrive at the resources 

that we need by wading through endless labyrinths of Web pages and Websites. This problem is 

commonly referred to as information overload. 

Recommender systems aim to assist users in handling the information overload problem. 

Two of the many approaches to build recommender systems include collaborative filtering (CF) and 

swarm intelligence (SI), both built on the collaboration of users. Based on the assumption that 

users with similar past behaviors (rating, browsing, or purchase history) have similar interests, a 

collaborative filtering system recommends items that are liked by other users with similar interests 

[132, 133, 69]. More information on CF and other approaches are presented in Section 2.8. In this 

chapter, we present a new recommender system approach using a Swarm Intelligence algorithm, 

inspired from bird flocks and called flocks-of-agents based recommender system (FlockRecom). In 
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this approach, each user is mapped to one agent, i.e. each agent of the flock represents a user. 

Initially, agents are placed on a planar surface (hereinafter referred to as the visualization panel). 

Then, in each iteration, similar agents attract each other, while dissimilar agents repel each other. 

Thus, the agents' speed gets updated according to their neighboring agents. In time, similar agents 

start moving together and closer, forming clusters [129, 128, 117]. Moreover, the distance between 

the agents depends on the similarity between the users that are mapped to those agents. At each 

iteration, recommendations are generated/updated using the neighboring agents. Agents keep mov­

ing until they are forced to stop. Thus, the dynamic character of the FlockRecom provides dynamic 

recommendations, making FlockRecom stronger at exploring different recommendation options and 

providing more variety for recommendations. Variety or diversity is important in the environments 

that users keep visiting repeatedly. Additionally, initial experimental results show that, FlockRecom 

is a promising approach for recommendation in dynamic environments, thus holding a potential for 

social networking platforms. 

In the rest of this chapter, we present FlockRecom in Section 4.2 and experiments on a real 

life dataset in Section 4.3. Finally, we make our conclusions and discuss future work in Section 4.4. 

4.2 Flocks-of-Agents based Recommender System 

The inspiration behind the flocks-of-agents-based recommender system stems directly from 

the collaboration among bird flocks in nature. Flocks of agents-based recommender system is suitable 

for any kind of data set where one can define a similarity measure between users. Each agent 

represents one user. Initially, agents are placed on a visualization panel, which is a 2 or 3-dimensional 

continuous space, where x, y (and if applicable z) coordinate values range between 0 and 1. Agents 

may be placed randomly or some background information can be used to place them. Then, they 

start moving around. As they meet other agents in a defined neighborhood, they try to remain 

within an ideal distance to each other, which is determined according to the similarity of the users 

that agents are representing. The more the users are similar, the smaller the ideal distance will be. 

Ideal distances are computed for each agent pair once at the beginning of the algorithm based on 

the intrinsic properties or ratings of the users. If neighboring agents are further apart than the ideal 

distance, there will be an attraction force between them and the agents will try to move closer to 

each other. In contrast, if the distance is less than the ideal distance, then there will be a rejection 

force, and agents will move apart from each other. Given this basic idea, Algorithm 16 gives the 

procedure for Flocks of Agents Recommender System (FlockRecom). 
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Algorithm 16 FlockRecom Algorithm 
Input: Dataset. 
Output: Top-N recommendations. 

1: Initially place the agents on the visualization panel 
2: Initialize velocities of all agents 
3: Compute the ideal distances, dideal, between agents. 
4: while 1 do 
5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

20: 

21: 

22: 

23: 

24: 

25: 

26: 

27: 

28: 

29: 

30: 

for each agent i do 
for all j such that d(j, i) ::; dth and i =I- j do 

if d( i, j) = dideal (i, j) then 
(3(i,j) ~ 0 

else if d( i, j) > dideal (i, j) then / / attraction 

(3( i ]') ~ 4 X (d(i,j)-d,dcal(i,j))2 
, dth -d,deal (',J) 

else / / repulsion 

(3( ") 4 (1 d(i,j)))2 
t,] ~ - x - d,deal(i,j) 

end if 
Vresulting(i,j) ~ v(i) + v(j) + (3(i,j) x vcap(i,j) 

end for 
if :3 j such that d(j, i) ::; dth and i =I- j then 

w(i) = normalize ( L Vresulting(i,j)) 
jld(j,i):5.dt/,&i¥j 

if The angle between v( i) and w( i) is less than or equal to 90 degrees then 
vnext(i) ~ w(i) 

else 
vnext(i) ~ v(i) 

end if 
else 

vnext(i) ~ v(i) 
end if 

L Vresulting (i, j) 
jld(j,i):5.dt/,&i¥j 

ampnext(i) ~ ampdej + 100 

end for 
for each agent i do 

compute new position Pnext(i) ~ Pcurrent(i) + ampnext(i) x vnext(i) 
end for 

31: Move all agents to the updated positions and update current velocities. 
32: for Each user u that will be provided recommendations do 
33: Let iu be the agent representing u 
34: Let S ( u) = {users corresponding to neighboring agents of iu within distance dideaLth 
35: Compute average rating per item among all users in S( u) 
36: Select top-N items as N items with highest average rating 
37: Recommend Top-N items to user u 
38: end for 
39: end while 

In steps 1 and 2, the initialization is performed. The velocity vector V, is a unit vector, (Le. 

Ilvll = 1), representing the direction. In step 3, the ideal distances between agents are computed via 

Equation (27), where sim(i,j) is the similarity between the users that agents i and j are representing, 
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and Simth is the similarity threshold. We use cosine similarity to compute the similarity between 

two users, as shown in Equation (6). 

Later, for each agent i, the neighboring agents that are close enough to i on the visualization 

panel, are extracted in Line 6, where d(i,j) is the 2D Euclidean distance between agents i and j, 

and dth is the distance threshold. Then, for each neighbor: 

• If the distance between the agents i and j is equal to the ideal distance between them (Line 

7), there is no attempt to change i's velocity due to j (Line 8). 

• If the distance between the agents i and j is greater than the ideal distance between them 

(Line 9), an attraction force will move i closer to j, with a more similar velocity to j (Line 10). 

• If the distance between the agents i and j is smaller than the ideal distance between them 

(Line 11), a repelling force will move i further from j, with a less similar velocity to j (Line 

12). 

In line 14, the velocity effect on i due to neighbor j is computed where vcap(i,j) is the unit 

vector pointing from i to j. Next is the computation of the updated velocity of agent i, vnext(i), 

between lines 16 and 25. First, if i has neighbors, then their resulting velocities on i are summed up 

and normalized. If the total, normalized velocity w, does not change the agent's current direction 

more than 90 degrees, then the updated velocity is assigned as w. Otherwise the velocity is kept 

unchanged for the next iteration. Similarly, if agent i does not have any neighbors -note that an 

agent is not considered to be a neighbor of itself- then the velocity will be kept the same for the 

next iteration. In line 26, the amplitude is computed depending on the number of neighbors and 

distance threshold, where ampdeJ is the default minimum amplitude. The minimum amplitude is 

empirically set to 0.02. At the end of each iteration, the updated agent coordinates are computed, 

and all the agents are moved to their updated positions simultaneously (lines 28 to 31). Then the 

next step is to generate recommendations. Let's call active users to the users that recommendations 

are generated for. For each active user, a set of users are determined via the agent neighborhood 

on the visualization screen. In other words, for the active user u's corresponding agent iu, neighbor 

agents set S(j) is determined such that d(i,j) :s; dideaUh and i i- j. Then, average item ratings are 

computed for all users represented by the agents in S(j). Finally, n items with the highest average 

ratings are recommended to user u. These n items are called top-n items. 
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4.3 Experiments 

The experiments were conducted on a dataset extracted from the Jester Dataset-2, which is 

available online on the website of the University of California, Berkeley [2]. In addition to FlockRe-

com, a traditional collaborative filtering based recommender system was also implemented to test 

the performance of our system, and performances were evaluated and compared using precision, 

recall, and F1 metrics as well as variety in the recommendations. 

4.3.1 Dataset and Pre-Processing 

Dataset 
ID 

Jester 
Jester II 

TABLE 19 
Dataset. 

Number Number of 
of Users Items 
50 150 
500 150 

Avg. 
Sim. 
0.29 
0.3 

In our experiments, we used the Jester Dataset-2, which is a collection of user ratings for 

150 different jokes [2]. The dataset has 63,978 users, and the ratings range on a real value scale from 

-10 to +10 (-10 and +10 are included). As shown in Table 19, in the experiments, the first 50 or 

500 users were used with all 150 jokes, thus 1911 or 19771 ratings were used. The user ratings for 

jokes were in the scale of -10 to +10. In the pre-processing phase these ratings were normalized in 

the scale 0 to 1, where 0 indicates that the item is rated -10 or is not rated by the corresponding 

user [18]. 

4.3.2 Evaluation Metrics 

Evaluating a recommender system can be nearly as hard as designing and implementing 

the system, in part because no simple, objective, and general agreed upon mathematical formula is 

always available to measure success [132, 12, 126, 20, 19]. One problem suffered by some systems is 

over-specialization. When the recommendations are limited to the user's behavior, user's profile, or 

user's ratings, the user can be restricted to seeing only similar items, and there will be no randomness. 

In artificial intelligence, this problem is known as, the exploration/exploitation dilemma. 

Evaluating information retrieval systems can be done if one has available, a set of user queries 

and a labeled set of search results (relevant and non-relevant). In this case, precision (proportion 
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of retrieved items that are really relevant) and recall/coverage (proportion of all items, known to 

be relevant, that are retrieved) are typically used as goodness metrics [126, 12]. One method for 

evaluating a recommender system relies on asking for a ranking or a rating of the results from the 

users. However, this can be subjective. Moreover, if the study is for research purposes, it can be hard 

to find a sufficient number of real users with diverse interests for the experiment. For this reason, 

historical data has also been used in research studies. In this case, the output of a recommender 

system is compared to the real interests of the user in the historical data, and metrics such as 

precision and coverage are computed [126, 12]. One popular way to assess the success of a system 

is to compare it, for example with recommending the default, most popular, or even a randomly 

selected item. 

In our experiments, we test how well the recommendations can represent the user while 

providing a variety of recommendations to address the exploration-exploitation dilemma. Thus, 

recommendations should be as close as possible to the real interests of the user. In our experiments, 

the ground truth is the set of items liked by the active user. An item is considered liked by the 

user if its rating exceeds 0.7, after normalization to a scale of 0 to 1, where 0.7 was chosen based on 

existing literature [57]. 

Evaluation should take into account both (i) precision (the recommended items are all correct 

or included in the ground truth set of items) 

Ihnlel precision = '---:-=-...,....:....:. 
IIRI 

(33) 

and (ii) coverage/recall (the recommended items are complete compared to the ground truth 

set, i.e. they include all the ground truth items). 

II 
_ IIR n lei 

reca - IIel 

where Ie = {Items liked by user} represent the ground truth set of items and 

IR = {Items recommended by system} represent the set of recommended items. 

(34) 

A precision score of 1 indicates that every recommended item was part of the ground truth 

set, whereas, a recall score of 1 represents that all the ground truth items were recommended. 

Precision and recall can be combined in the F1 measure, given in Equation (35)[57]. Higher values 

of the F1 measure indicate a more balanced combination of high precision and recall. 
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F 2 
precision x recall 

1 = x '--------,.,. 
precision + recall 

(35) 

In addition to precision, recall, and F1, we compute variety or diversity by counting the 

number of unique items recommended to the user. 

Definition 1 Variety = The n'umber of distinct recommended items = IIRI 

4.3.3 Experimental Results 

In the experiments, using FlockRecom, we generated top-n recommendations for active users 

at each iteration of our dynamic FlockRecom algorithm, and we varied n from 1 to 30. In our previous 

studies on using FClust for clustering, having a distance threshold small as 0.04 was superior for 

many other datasets. However, by trial and error we observed that having the distance threshold 

dth as high as 0.4 produced better results. 

To compare the results, a traditional user-based nearest neighbor CF algorithm [132] was 

used. In the collaborative filtering approach, the neighbors of an active user u are defined as the 

users that are similar to u above a similarity threshold Simth as given in Equation (36). After the 

neighbors are computed, the average item ratings per active user are evaluated using Equation (37), 

where u is the active user and i is an item. 

CF_neighbor(u) = {tlsimilarity(u, t) ?: Simth' t -=1= u} (36) 

L rating(t, i) 
. . tECF _neighbor ( u) 

AverageJatmg(u,l) = ICF_neighbor(u) I (37) 

In the experiments, the cosine similarity was used to compute the similarity between users. 

After trial and error, the similarity threshold Simth was set to 0.07, whereas the distance threshold 

dth was set to 0.4. The evaluation metrics were averaged over 10 different active users and 10 

different runs per active user. 

Figures 21 to 23 show the results of evaluations for the flocks-of-agents based recommender 

system (FlockRecom - FR) in comparison to the results of collaborative filtering (CF) for 50 users, 

where Simth = 0.07, dth = 0.4, and dideauh = 0.1. The parameters were set by trial and error. The 

comparisons are based on the average precision, recall, and F1 values for varying n-values for top-n 
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Figure 21. Flock-based recommender system (FR) compared to standard collaborative filtering (CF) 
based on precision. 
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Figure 22. Flock-based recommender system (FR) compared to standard collaborative filtering (CF) 
based on recall. 

recommendations, over time. The figures display the quality versus iteration or time averaged over 

all 10 users and 10 runs per active user. 

From Figure 21 , we observe that the precision values for FlockRecom are slightly better 

than those for CF, especially, for small N. Additionally, FlockRecom provides more variety in the 
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Figure 23. Flock-based recommender system (FR) compared to standard collaborative filtering (CF) 
based on Fl. 

recommendations. Similarly, as seen in Figure 22, FlockRecom produced slightly higher recall values 

than CF. As expected, both for FlockRecom and CF, recall values increased as N, the number of 

recommended items, was increased. As a result, the Fl metric was higher for FlockRecom, especially 

for N = 5, as Figure 23 shows. 

The fluctuations in Figures 21 to 23 are due to the exploration in FlockRecom, thus showing 

that, unlike CF, FlockRecom does not recommended the same items over and over. Figure 24 

presents the number of times each joke is recommended for a specific user over 10 different runs. 

While CF kept recommending the same items, FlockRecom added exploration and variety without 

losing from the precision, recall, and Fl quality. 

To sum up, FlockRecom produced slightly better results than CF, after a sufficient number 

of iterations. For small values of N (which is preferred to avoid overloading users with too many 

recommendations), FlockRecom computed better recommendations, suggesting a more effective and 

realistic recommendation strategy. Morever, FlockRecom is more successful in exploration and in 

overcoming over-specialization. 

Figures 25 to 27 show the results for a typical active user. The figures display the quality 

versus time in comparison with the traditional collaborative filtering (CF). In Figure 25, plots labeled 

FR (FlockRecom) show that precision gets significantly improved in the first 400 iterations and later 

keeps increasing slowly. As expected, when a smaller number of items are recommended, precision 
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Figure 24. The variety in the recommended items of Flock-based recommender system (FR) com­
pared to standard collaborative filtering-based recommender system (CF) for different numbers of 
top-5 recommendations, at iteration 100, 50 users. Averaged over 10 different runs per 1 active user . 
The x-axis represents the joke id. 

was higher. Comparing FR to CF in Figure 25 , we observe that precision values are better for FR for 

small N, and similar for FlockRecom and CF for bigger N. Moreover, FlockRecom provides more 

variety in the recommendations. Similarly, in FlockRecom, recall was improved with the number 

of iterations, as seen in Figure 26. For small N , FlockRecom produced better results. For big N, 

FlockRecom needed more iterations to compute similar recall values to CF. For both FlockRecom 

and CF, recall values increased as N, the number of recommended items, was increased, as shown 

in Figure 26. 

To sum up, Figure 25, Figure 26, and Figure 27 show that, as the number of iterations 

increases, the neighborhood quality increases, thus the quality of the recommendations increases. 

We notice that FlockRecom continues to improve its recommendations, eventually reaching higher 

quality levels compared to standard CF. After enough number of iterations, FlockRecom produced 

better results than CF. Moreover , FlockRecom was more successful at exploration and overcoming 

over-specialization. These improvements are hence due solely to the dynamic nature of the flock-

ing behavior of the agents that form dynamic neighborhoods that do not cause stagnation in the 
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Figure 25. Flock-based recommender system (FR) compared to standard collaborative filtering­
based recommender system (OF) based on the average precision values for different numbers of 
top-n recommendations, over time. Averaged over 1 active user , 10 different runs. The x-axis 
represents the iteration number. 
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Figure 26 . Flock-based recommender system (FR) compared to standard collaborative filtering­
based recommender system (OF) based on the average recall values for different numbers of top-n 
recommendations, over time. Averaged over 1 active user, 10 different runs. The x-axis represents 
the iteration number. 
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Figure 27. Flock-based recommender system (FR) compared to standard collaborative filtering­
based recommender system (CF) based on the average F1 values for different numbers of top-n 
recommendations, over time. Averaged over 1 active user , 10 different runs . The x-axis represents 
the iteration number. 

recommendations. 

Table 20 shows the quality levels over several iterations for the two methods for 3 values 

of N. Note how FlockRecom clearly outperforms CF by "continuing" to learn and thus improving 

recommendations with time. 

The next experiment expands the previous experiemnt that used the first 50 users, by using 

a bigger data set with 10 times as many users , thus totalling 500 users. Figures 28 to 30 show 

the results of evaluations for the flocks-of-agents based recommender system (FlockRecom - FR) 

in comparison to the results of collaborative filtering (CF) based on the first 500 users, where 

Simth = 0.07, d th = 0.4, and dideaLth = 0.1. The parameters were set by trial and error. The 

comparisons are based on the average precision, recall, and F1 values for varying n-values for top-n 

recommendations, over time. The figures display the quality versus iteration or time averaged over 

all 10 users and 10 runs per active user. 

From Figure 28, we observe that the precision values for FlockRecom become slightly better 

than those for CF, starting after iteration 200 and reach their highest values around 500 iterations. 

Additionally, FlockRecom provides more variety in the recommendations, as will be shown more 

clearly later. Similarly, as seen in Figure 29, FlockRecom produced slightly higher recall values 
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Figure 28. Flock-based recommender system (FR) compared to standard collaborative filtering (CF) 
based on precision, 500 users. 
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Figure 29. Flock-based recommender system (FR) compared to standard collaborative filtering (CF) 
based on recall, 500 users . 

than CF, especially for small N (5 and 10) , which are the realistic values for reasonable real life 

recommender systems. As expected, both for FlockRecom and CF, recall values increased as N, the 

number of recommended items, was increased. As a result, the F1 metric was higher for FlockRecom, 

especially for N = 5, as Figure 30 shows. 
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Figure 30. Flock-based recommender system (FR) compared to standard collaborative filtering (CF) 
based on F1 , 500 users . 
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Figure 31. The variety in the recommended items of Flock-based recommender system (FR) com­
pared to standard collaborative filtering-based recommender system (CF) for different numbers of 
top-5 recommendations, at iteration 100, 500 users. Averaged over 10 different runs per 1 active 
user. The x-axis represents the joke id. 
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The fluctuations in Figures 28 to 30 are due to the exploration in FlockRecom, thus showing 

that, unlike CF, FlockRecom does not recommended the same items over and over. To further verify 

this desirable characteristic, Figure 31 presents the number of times each joke is recommended for 

a specific user over 10 different runs. While CF kept recommending the same items, FlockRecom 

added exploration and variety without losing from the precision, recall, and F1 quality. 

4.4 Conclusion 

In this research, a new recommender system approach called the flocks-of-agents based rec­

ommender system (FlockRecom) was presented. This new approach is based on swarm intelligence, 

specifically, the dynamic collaboration between bird flocks in nature. The results were compared to 

the traditional user-based nearest neighbor collaborative filtering. Although the implementation and 

parameter setting is easier in collaborative filtering, FlockRecom was more successful at providing 

variety in the recommendations without losing recommendation quality. One problem suffered by 

some recommender systems is over-specialization. When the recommendations are limited to the 

user's behavior or user's profile, the user can be restricted to seeing only similar items, and there will 

be no randomness. In artificial intelligence, this problem is known as the exploration/exploitation 

dilemma. Although collaborative filtering can counteract over-specialization by suggesting different 

items, the dynamic structure of the FlockRecom algorithm makes it more successful at solving the 

exploration/exploitation dilemma, which is also practically observed in the experimental results. 

110 



>-' 
>-' 
>-' 

TABLE 20. The quality levels averaged over 10 runs of 1 active user at several iterations for the FlockRecom and CF at 3 values of N. 
FloekReeom CF 

N=5 N=10 N=30 N=5 N=10 N=30 Iter. 
Pree. Ree. Pree. Ree. Pree. Ree. Pree. Ree. Pree. Ree. Pree. Ree. 
0.28 0.05 0.42 0.16 0.46 0.54 0.20 0.04 0.4 0.15 0.5 0.58 200 
0.62 0.12 0.57 0.22 0.50 0.58 0.20 0.04 0.4 0.15 0.5 0.58 400 
0.84 0.16 0.68 0.26 0.52 0.60 0.20 0.04 0.4._ . 0.15 0.5 0.58 850 



CHAPTER 5 

A SWARM BASED APPROACH FOR DYNAMIC DATA 

CLUSTERING 

The dynamism of life reflects on information generation and empowers the information over­

load problem. Our previous work using a special type of swarms, known as flocks of agents, provided 

algorithms for clustering high-dimensional sparse data and evaluations were performed on several 

VCI machine learning data sets and Web usage session data [128, 129]. However, dynamic domains, 

such as practically any data generated on the Web, may require frequent costly updates of the 

clusters (and the visualization), whenever new data records are added to the dataset. Additionally, 

change in the data records may result in a change of clustering over time. An example of this is the 

change in the interest of users of a given Web service. Therefore, clusters may need to be updated, 

thus leading to the need to mine dynamic clusters. Moreover, when the data is high-dimensional 

and sparse, the dynamic behavior makes an already difficult problem even more challenging. This 

chapter classifies different clustering paradigms related to dynamic clustering, then discusses the dis­

tinctions between dynamic data clustering and other paradigms, and describes a Dynamic-FClust 

Algorithm, which is based on flocks of agents as a biological metaphor. This algorithm falls within 

the swarm-based clustering family, which is unique compared to other approaches, because its model 

is an ongoing swarm of agents that socially interact with each other, and is therefore inherently dy­

namic. Experiments on real and artificial data illustrate the workings of the dynamic algorithm and 

its advantages over its FClust baseline. 

5.1 Introduction 

As defined earlier, clustering is the problem of finding groups in a dataset, according to some 

data properties and attributes which have a meaning in some context [60, 59]. Depending on the 

characteristics of the dataset and the goal of the knowledge discovery process, different clustering 

paradigms have emerged, namely static (or conventional), incremental, and stream [43, 30, 9]. And 
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more recently, we saw an interest in dynamic data clustering which concentrates not only on concept 

drift but also on data items that change in time. 

Unlike conventional clustering, in dynamic clustering, data is collected continuously over 

time, thus the whole data set is not available initially. Dynamic domains, such as practically any data 

generated on the Web, may require frequent costly updates of the clusters (and the visualization), 

whenever new data records are added to the dataset. The new coming data may be due to new 

user activity on a website (clickstreams) or a search engine (queries), or new Web pages in the 

case of document clustering, etc. Additionally, a concept drift in the data records may result in 

a change of clustering in time [137]. An example of this is the change in the interest of users on 

an online service. Therefore, clusters may need to be updated, thus leading to the need to mine 

dynamic clusters. When the data is moreover high-dimensional and sparse, the dynamic behavior 

makes an already difficult problem even more challenging. Swarm intelligence methods, mainly 

ant-based systems, have been used as well as several other methods including repeatedly running 

a given clustering algorithm, such as K-means, at each time step [122, 79]. Incremental clustering 

methods can also be adapted to this task, but they mostly ignore the dynamic nature of the data, 

which requires distinguishing between old and new data. Similarly, stream clustering methods can 

be used for this task, but they mostly emphasize not storing the whole dataset and thus cannot 

handle dynamic data records. This chapter describes our design of a simultaneous clustering and 

visualization algorithm for dynamic data and proposes the Dynamic-FClust Algorithm, which is 

based on flocks of agents as a biological metaphor. As a swarm-based algorithm our algorithm 

distinguishes itself from most other approaches by learning a model in the form of an ongoing swarm 

of agents that socially interact with each other, and is therefore inherently dynamic. A flock-based 

model has clear advantages over the particle swarm model, because the agents in a set of flocks 

are inherently associated with data, and are thus directly amenable to visualization tasks; whereas 

particle swarms tend to not be associated with data, but rather with candidate solutions to an 

optimization criterion. Moreover, the dynamic structure of the algorithm and the social interaction 

between agents provides a suitable foundation for modeling dynamic human behavior on the Web 

with many interesting applications such as creating dynamic online recommender systems. 

This chapter starts by explaining the dynamic data clustering paradigm in Section 5.2 and 

comparing it with other clustering paradigms in Section 5.2.1. Then, we present a new dynamic 

clustering algorithm Dynamic-FClust in Section 5.3. In Section 5.4, we describe our contributions 

so far, then present our experiments and evaluation techniques. Finally, we make our conclusions 

113 



and discuss future work in Section 5.5. 

5.2 Dynamic Data Clustering Paradigm 

Given the clustering definition in Section 5.1, we define dynamic data clustering (in short, 

dynamic clustering) as follows: Extracting clusters in a dataset in which new data records may be 

added to the dataset, some data records may diminish with time and may even be removed from the 

dataset, while other data records may change in time. Moreover, in the case of a concept drift 

[137], a dynamic clustering algorithm should have the capability to handle generating new clusters 

and follow evolving clusters as needed. (See Section 5.3 for more details on our approach.) 

The characteristics of the dynamic data clustering process are: 

• The ability to cluster the available data: This is in fact the basic definition of static 

(conventional) clustering. If a batch of data is available to the application, we expect the 

system to form groups of similar items after an acceptable number of iterations. 

• Cluster Number Extraction: It is expected that the number of clusters is not given as an 

input to the algorithm since it can change with time especially. 

• When new data items are added, avoid clustering the updated dataset from 

scratch: When new data batches are available, the algorithm should use the clustering in­

formation from the previous state and produce clustering results for the updated dataset. In 

other words, it is not expected to re-start from scratch whenever new data arrives. 

• The ability to handle emerging and disappearing clusters: With the addition of new 

data items, new clusters may emerge and in that case, the application should create new 

clusters in an acceptable number of iterations. Additionally, some old clusters may vanish and 

the algorithm is expected to update the data clusters in such a case. 

• Dynamic Data Records: A dynamic data record is a data record whose attributes may 

change with time. An example is a user on a web site, whose likes and dislikes may change in 

time. A dynamic clustering algorithm should consider the existence of dynamic data records 

and update clustering results as the data record changes. 
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5.2.1 Differences Between Dynamic Clustering and Other Clustering Paradigms 

Given the dynamic clustering paradigm in Section 5.2, a classification of clustering paradigms 

is presented in this section. 

The most common and most studied paradigm is conventional a.k.a static clustering [60, 85, 

30, 129], where the goal is to cluster a dataset that is fully available before and during the clustering 

process. 

Another paradigm is known as incremental clustering or online clustering in which, data 

becomes available in batches over time [43, 7, 32, 79]. Incremental clustering was initially proposed 

as a solution to clustering on very large databases [43] and unlike dynamic clustering, does not 

consider change in "existing" data items. Moreover, in some application, the whole dataset may be 

available initially. However, if the dataset is huge, batches are formed by sampling, and clustering is 

performed incrementally [43]. IncrementalDBSCAN can handle emerging and disappearing clusters, 

but does not handle data items that change in time [43]. One common approach for incremental 

clustering is to repeatedly apply a classical clustering algorithm every time more data arrives or 

change in data occurs, in which case a high computational cost may be incurred. Additionally, such 

an approach does not differentiate new data from existing data. In another algorithm, called leader­

follower clustering (LFC), a K-means type clustering is used [42]. In another approach, clusters are 

generated according to the initially available data batch and as the new data arrives, new data is 

assigned to existing clusters [32]. Ant colony-based swarm intelligence algorithms are some of the 

most common approaches for solving incremental clustering in SI [122, 79, 32]. 

The next paradigm is the stream clustering paradigm, where a stream of data is modeled 

preferably in one-pass, i.e. by reading each data item only once [9, 96], and the aging or disappearing 

clusters may be handled via a forgetting mechanism. Data may be stored partially for a window 

frame. Stream clustering methods can be used for clustering datasets with concept drift, but they 

generally do not store the whole dataset and thus cannot handle dynamic data items. 

Table 21 gives a comparison of different paradigms and Table 22 gives sample approaches 

from these different paradigms. To sum up, many clustering algorithms are unable to handle dynamic 

data items. Moreover, most approaches are unable to perform clustering and visualization on a 

continuous basis or to have new data-items self-organize into the existing clusters (or into new 

clusters if necessary), unless a new and additional processing and analysis phase is applied. This 

disadvantage is also present in more recent approaches using Self-Organizing Maps, as in Kohonen 

maps [122]. Therefore, while a benchmark comparison of the above cited methods with Dynamic-
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FClust should be interesting to explore, any serious comparison will be complicated by the ability 

of the dynamic FClust algorithm to a) handle dynamic data items, b) perform continuous mappings 

with simultaneous continuous visualization compared to the inability of the remaining techniques to 
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Paradigm 
Paradigm 
Static 
Incremental 
Stream 
Dynamic 

Requires Stores 
All Data Data 
Yes Yes 
No Yes 
No No 
No Yes 

- - - -
TABLE 21. Comparison of different clustering paradigms 

Emerging Disappearing Evolution Dynamic Sample 
Clusters Clusters Tracking Record Dataset 
No No No No Iris Dataset[5] 
Maybe No No No Birch Dataset[150] 
Yes Possible (via forgetting) Possible No KDD Cup 1999 Dataset[3] 
Yes Yes Yes Yes Movielens Dataset[4] 



>-' 
>-' 
00 

Algorithm 

KMeans [85] 
IncrementalD BSCAN [43] 
Incremental Ant 
Clustering [122] 
LFC [42] 
SOM [88, 87, 67] 
Incremental SOM [21] 
CluStream [9] 
FClust[117] 
Dynamic-FClust 

- - -TABLE 22. Comparison of different clustering and visualization algorithms 
>=1 >=1 Incremental Emerging/ Changing Cluster No Typically Paradigm .s u .s 

Clustering Disappearing Data Extraction +> ·8 +> Compared Ct\ Ct\ 

Clusters Items 
N Ct\ N 

to ~ >=1 ~ 
;:j >, ;:j 
00 Q 00 

;> ;> 

No No No No No No All Static 
Yes Yes No Yes No No DBSCAN Incremental 
Yes Yes No No No No Static Ant Incremental 

Clustering 
Yes Only Emerging No Yes No No K-Means Incremental 
No No No Yes Yes No NA Static 
Yes Only Emerging No Yes No No SOM Incremental 
Yes Yes No Yes No No STREAM Stream 
No No No Yes Yes No K-Means Static 
Yes Yes Yes Yes Yes Yes FClust Dynamic 



accomplish them both. 

5.3 Swarm-based Dynamic Clustering Algorithm 

The clustering goals defined in Section 5.2 are specialized for dynamic clustering [60, 122]. 

Additionally, any flock-based clustering approach has the simultaneous clustering and visualization 

goal, which makes dynamic-FClust naturally suitable for cluster evolution tracking. 

Although "dynamic items" were studied in different problem domains such as classification, 

information retrieval, and recommender systems, (ex: Rocchio Classification [86]), to the best of 

our knowledge, there have been no studies on dynamic clustering with "dynamic items", i.e. data 

items changing in time. Thus, although there are applications capable of handling some of the above 

expectations of dynamic data clustering given in Section 5.2, to the best of our knowledge, there are 

no existing algorithms that can satisfy all the above expectations. 

In the original FClust algorithm, it was assumed that the dataset was fully available and 

static, whereas in the proposed Dynamic-FClust algorithm, data entries are observed one at a time. 

Moreover, information regarding a data item may be updated in different time steps. After a small 

number of iterations, the initial clusters are formed, then the clusters continue to be updated with 

each new coming record or update to a record. 

Algorithm 17 gives a detailed explanation of Dynamic-FClust. At each iteration, if data 

removal is expected in the problem domain, we start by removing the agents that represent data 

records that have been removed. Then, we assume that one new data entry is read per iteration. 

If the data is related to a data item, which is not represented by an agent on the system, a new 

agent is created and initialized in Line 15 to Line 17. In the next step, the ideal distances of the 

modified agents are updated. Note that in the Algorithm, the velocity vector V, is a unit vector, 

(i.e. Ilvll = 1), representing the direction of an agent. Later, for each agent i, the neighboring agents 

that are close enough to i on the visualization panel, are extracted in Line 25, where d(i,j) is the 2D 

Euclidean distance between agents i and j. Then, in line 27, the velocity effect on i due to neighbor 

j is computed where vcap(i,j) is the unit vector pointing from i to j and the coefficient (3(i,j) is 

computed using Algorithm 18. For each neighbor, three cases arise as shown in Algorithm 18. 

Case 1: If the distance between the agents i and j is equal to the ideal distance between them (Line 

1), there is no attempt to change i's velocity due to j (Line 2). 

Case 2: If the distance between the agents i and j is greater than the ideal distance between them 

(Line 3), an attraction force will move i closer to j, with a more similar velocity to j (Line 4). 
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Algorithm 17 The Flocks of Agent-based Dynamic Clustering Algorithm Dynamic-FClust 

Input: Dataset; datad:Expired data; dataa:added data 
Output: Dynamic visualization of interaction between the data items. Agents corresponding to more 
similar items are located closer in the 2D visualization panel. Extracted clusters (on request). 

1: repeat 
2: repeat 
3: if A data record datad has expired then 
4: Remove the agent d corresponding to datad from the visualization panel. 
5: Delete datad from the dataset. 
6: end if 
7: 

8: 

9: 

10: 
11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

20: 

21: 

22: 

23: 

24: 

25: 

26: 

27: 

28: 

29: 

30: 

31: 

32: 

33: 
34: 

35: 

36: 

37: 

38: 

39: 

40: 

41: 

42: 

43: 

44: 
45: 

46: 

47: 

48: 

until There is no expired data record 
repeat 

Read data entry related to data record dataa 
if dataa does not exist in the existing data then 

if Maximum number of agents is reached then 
Choose an agent to discard. 
Remove the data record corresponding to this agent. 

end if 
Create a new agent and map dataa to agent a. 
Place agent a on the visualization panel (e.g. randomly or based on domain knowledge). 
Initialize the velocity of agent a (e.g. randomly or based on domain knowledge). 

else / / Data record exists and will be updated 
Update the data record with the new data entry. 
Find agent a that represents dataa. 

end if 
Update the ideal distances, dideal, between a and the rest of the agents based on their associated 
data in the original data space. 

until There is no new data entry 
for each agent i do 

for all j such that d(j, i) :s; dth and i i= j do 
Call Algorithm 18 (compute (3). 
Vresulting(i,j) f- v(j) + (3(i,j) x vcap(i,j) 

end for 
if :J j such that d(j, i) :s; dth and i i= j then 

w( i) = normalize ( L Vresulting (i, j)) 
jld(j,i)$,dth&i#j 

if The angle between v(i) and w(i) is less than or equal to 90 degrees then 
vnext (i) f- w( i) 

else 
vnext (i) f- v( i) 

end if 
else 

vnext (i) f- v( i) 
end if 
amp (I') f- amp + d1 deql tb next de! 20x(neighbor_no(i)+1) 

end for 
for each agent i do 

compute new position Pnext(i) f- Pcurrent(i) + ampnext(i) x Vnext(i) 
end for 
Move all agents to the updated positions and update current velocities. 
Update visualization screen with the updated positions and updated velocities. 
if Clustering results are requested then 

Extract Clusters using Algorithm 9. 
end if 

49: until System is stopped. 
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Algorithm 18 Compute Beta 
Input: Agents i and j. 
Output: (3( i, j) E R . 

1: if d( i, j) = dideal (i, j) then 
2: (3(i,j) <- 0 
3: else if d( i, j) > dideal (i, j) then / / attraction 
4: (3(i,j) <- 4 X (d(i,j)-d.,deal(i:J»)2 

dth -d,deal (t,)) 

5: else / / repulsion 
6: (3(i,j) <- -4 x (1- d(i,j».)2 

dtdeal (t,]) 

7: end if 
8: return (3( i, j) 

Case 3: If the distance between the agents i and j is smaller than the ideal distance between them 

(Algorithm 18, Line 5), a repelling force will move i away from j, with a less similar velocity to 

j (Line 6). Next is the computation of the updated velocity of agent i, Vnext(i) , between lines 29 

and 38. First, if i has neighbors, then their resulting velocities on i are added and normalized. 

If the total, normalized velocity ill, does not change the agent's current direction more than 90 

degrees, then the updated velocity is set to w. Otherwise, the velocity is kept unchanged for the 

next iteration. Similarly, if agent i does not have any neighbors -note that an agent is not a neighbor 

of itself- then the velocity will be kept the same. 

In the algorithm, ampdej is the default minimum amplitude which is empirically set to 

~ X dideaUh and the computation of the coefficient (3( i, j) in Algorithm 18 is from the existing 

literature [117]. 

Below, we present our analysis of the design constraints and provide guidelines that need to 

be considered. 

Design guidelines and constraints: 

• Number of agents on visualization panel: Computational and main memory constraints 

impose a limitation on the number of agents. In addition, too many agents may cause cluttering 

in the visualization panel. 

• Amount of data that is represented in the visualization panel: Not only do computa-

tional and main memory constraints impose a limitation on the number of agents, but a limit 

on the age of the data that should be visualized may be required (e.g. visualizing only data 

that arrived during the last 24 hours). 

In order to observe the above guidelines, we observe that we may replace some data items 

when the upper bound on the number of agents is reached. This opens three possibilities that need to 

121 



be weighed very carefully in light of the specific context and goals of the clustering and visualization. 

The three options, which may be applied exclusively of one another, using a priority rule, or even 

mixed together in a stochastic strategy, are: 

1. Always replace the oldest data item. 

2. Always replace the least interesting (e.g. redundant) data item. The notion of interesting 

data is crucial here, since it is not always associated with unique or non-redundant data. For 

example in the case of a query dataset, the interesting data items may be the sessions with 

more profitable queries, the sessions including the keywords with the highest bid values, the 

sessions related to e-commerce search or to emergency situations, etc. 

3. Always replace one of the outlying data items. 

5.3.1 The Main Computational Constraint 

In dynamic clustering algorithms, it is expected that the clustering of existing data items is 

done by the time new data arrives. Let Tct , be the time needed to cluster existing data items at 

time ti, the next data batch arrive at time ti+l and fJ.t i = ti+l - t i . 

TCtj :::; fJ.ti =? There is no problem with the above timing constraint. 

TCtj > fJ.t i =? This violates the above timing constraint. 

In the case where the clustering of existing items can be finalized by the time a new data 

batch arrives, there is no problem. Otherwise, some alternative options should be considered to 

handle this problem: 

• Sampling: Instead of comparing all neighboring agents, a subset of neighbors can be compared 

to update the velocity and amplitude. How many agents are going to be sampled depends on 

the problem and requires further study. The selection of agents can be done randomly or 

k-nearest neighbors can be selected . 

• Improved initialization: Initial location of the agents affects the convergence time [117]. 

Some heuristics for initialization of location and velocity can be developed. When a 2 dimen­

sional visualization panel is considered: 

- If the data is 2 dimensional and has numerical attributes: 
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TABLE 23 

Comparison of alternative solutions to satisfy computational constraints. 

Solution Advantage Disadvantage 
Sampling Decreases the May decrease 

computational cost. the accuracy. 
Improved May increase Increases the 
initialization the accuracy. computational cost. 
Delayed input Easy implementation. Does not guarantee 

a solution. 

* Data can be normalized to be of unit length and agent location can be assigned to 

be the normalized data record. 

* The data can be linearly normalized to [0,1] and agent locations can be assigned to 

be the normalized data record. 

* Data can be normalized to be of unit length and agent velocities can be assigned to 

be the normalized data record. 

* The data can be linearly normalized to [0, 1] and agent locations can be assigned to 

be a unit vector computed from the normalized data record. 

- If the data has more than 2 dimensions, 2 dimensions can be selected by 

* Expert knowledge 

* Data analysis techniques such as principal component analysis and multiple corre-

spondence analysis. 

- The agent velocities can be oriented in a centrifugal way with respect to the center of the 

2D environment [117] . 

• Delayed input: Instead of adding every new batch as it arrives, the addition of a new batch 

may be delayed for 8t iterations, where ° ::; 8t ::; the time between the current new data batch 

and next new data batch. 

Table 23 gives a comparison of different options if the clustering of existing items is not 

finalized by the time a new data batch arrives. Different solution or hybrid-solutions may be applied 

depending on the dataset. 

5.3.2 Main Memory Constraints 

Main memory constraints impose a limitation on the number of agents. Let Na be the 

number of agents and N amax be the maximum number of agents that can be loaded, predetermined 
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based on the available memory space to be allocated. This opens three possibilities that need to be 

weighed very carefully in light of the specific context and goals of the clustering and visualization. 

The three options, which may be applied either exclusively of one another, or using a priority rule, 

or even mixed together in a stochastic strategy, are: 

1. Always replace the agent that is mapped to the oldest data item. 

2. Always replace the least interesting (e.g. redundant) data item. The notion of interesting data 

is crucial here, since it is not always associated with unique or non-redundant data. For a web 

search query log dataset, the interesting data items may be the sessions with more profitable 

queries, the sessions including the keywords with the highest bid values, the sessions related 

to e-commerce search, etc. 

3. Always replace one of the outlying data items. An outlying data item can be determined as 

the data item which is mapped to the agent with the minimum number of neighboring agents. 

If removing the outlying items is adopted, this would increase the computational time re­

quired to determine these outlying agents. The definition of "interesting" deeply affects the efficiency 

of removing the least interesting item. 

5.3.3 Setting the Parameters for Dynamic-FClust 

The selection of parameters has a big impact on the convergence of the Dynamic-FClust 

algorithm. The first parameter is dth , the distance threshold, which defines the neighborhood size 

(see line 25 in Algorithm 17). When dth is too small, the agents cannot affect each other, and 

when it is too high, the algorithm may not converge. Another parameter dideaUh affects the ideal 

distance via Equation (28) and the amplitude of the velocity (see line 39 in Algorithm 17). When 

dideaLth is too small, the agents position themselves too close to each other on the visualization 

panel, visualization of clusters may be harder, and the clustering process may require too many 

iterations since the amplitude of the motion is not high enough. On the other hand, when dideaUh is 

too high, even similar agents may have big ideal distances, agents do not attract each other, and thus 

the algorithm does not converge. One method to compute the ideal distance between two agents, 

dideaZ, is given in Equation (28). If the ideal distances are overestimated, then the clusters cannot 

be observed on the visualization panel. 

The similarity threshold, simth, in (28) may be updated incrementally via Equation (26), 

which is a flexible way to tune the similarity threshold, by a tuning factor D, where 1 ::::: D ::::: 
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Max{Sim(i,j)} , when sim is the average of sim(i,j). Or, the Simth can first be given as an input 
stm 

to the clustering algorithm based on the average in the initial batch of data, and then updated 

periodically. If the similarity threshold is too large, then the algorithm will fail to converge, whereas 

if it is too small, then different clusters risk being combined into one cluster. 

5.3.4 Cluster Formation in Dynamic-FClust 

Cluster formation can be determined via different methods such as human experts, as well as 

entropy and ideal distance error calculations [129, 128, 117]. This is because when Dynamic-FClust 

is performed, flocks of agents are visually observable. However, the clusters are not explicitly formed 

and the data is not yet assigned to clusters. One method of forming clusters is using Human experts. 

The person marks the clusters and assigns agents to the clusters. Since there is a 1-to-1 mapping 

between agents and data records, the data will also end up being clustered. In addition to this, an 

automated procedure was presented in [117], which is given in Algorithm 9. Basically, a new cluster 

is created for an unlabeled agent. Then the neighboring agents of this cluster are explored, and all 

the agents which are similar to at least one of the agents in the cluster are inserted into this cluster. 

New agents are inserted to the cluster until no more agents can be inserted. Then the procedure 

restarts by creating another new cluster, and stops when all the agents are labeled. After cluster 

formation, a post processing phase is needed to cluster the original (input) data, to validate the 

results, and if possible to interpret the clusters. 

5.3.5 Teleportation in FClust and Effect on Cluster Formation 

In previous research using FClust, the 2D Euclidean distance between agents on the vi-

sualization panel has been used to determine the distance in Algorithm 9, step 5. However, this 

computation may split clusters at the borders of the panel: When an agent is traveling on the 

visualization panel, it reaches the borders of the visualization panel from time to time. In that 

condition, the agent passes the border and continues to move from the other side which brings into 

our mind the concept of teleportation. The word teleportation is defined as a hypothetical mode of 

instantaneous transportation in the dictionary 1. Thus we define teleportation in FClust as follows: 

Definition 2 Teleportation in FClust is the mode of instantaneous transportation that occurs when 

an agent crosses the border of the visualization panel and continues from the opposite side of the 

visualization panel. 

1 Webster's online dictionary 
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Figure 32. Teleportation illustrated by one agent (red arrow showing direction of movement) tele­
ported from the left border to the right border. 

Figure 32 illustrates an agent teleporting from the left border to the right border of the 

panel. Due to teleportation, a part of the cluster may pass the border and continue from the other 
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side, in which case, the 2D Euclidean distance would become too big to consider the two separated 

parts as one cluster and the cluster gets split. To solve this problem, we first define a modified 

2D wrap-around distance in Equation (38) and then use a modified wrap-around cluster formation, 

which uses this 2D wrap-around distance, instead of the 2D Euclidean distance, thus compensating 

for the agent teleportation effect. 

Given that each agent ai's location, in the 2 dimensional real number space R2, is represented 

by a vector Xi, Yi, where 0 ~ Xi ~ 1, 0 ~ Yi ~ 1, the 2D wrap-around distance between two agents 

ai and aj is given by Equation (38). 

no wrap-arround 

J(l -IXi - Xjl)2 + (Yi - .Yj)2, vertical borders connected 

J(Xi - Xj)2 + (1 -IYi - .Yjl)2, horizontal borders connected 

J(l-lxi - Xjl)2 + (l-IYi - 'Yjl)2, both borders connected 

(38) 

The modified wrap-around cluster formation algorithm, which uses the wrap-around distance 

to define the neighborhood, is given in Algorithm 19. 

Algorithm 19 Wrap-around Cluster Formation Algorithm 
Input: Agents' coordinates. 
Output: Clusters of agents. 

1: for each agent i do 
2: if i's cluster is not assigned then 
3: Form a new cluster c 
4: Assign i to c 
5: for all agent j such that there exists an agent k E c and d_wrap-around(k,j)~ dth and 

sim(k,j) > Simth do 
6: Assign j to c 
7: end for 
8: end if 
9: end for 

5.3.6 Complexity Analysis of Dynamic-FClust 

The Dynamic-FClust algorithm, given in Algorithm 17, compares a new agent to every other 

agent to update the ideal distance, which is O(n), with n being the number of agents in use. Later, 

it compares every agent to every other agent to update the agent's velocity based on its neighboring 

agents. Although some suggestions for reducing the complexity such as using a neighborhood matrix, 

were given [117], the worst case time complexity remains O(n2 ), where n is the number of agents 
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TABLE 24 Datasets 
Dataset Number Number of Number of Maximum Average 

ID of Items Attributes Clusters Similarity Similarity 
I 1600 2 2 0.999948 0.814345 
II 811 2 3 0.997500 0.732619 

Iris 150 4 3 1.0 0.709334 
Movielens 10,000 ratings 1682 movies NA 1.00 0.23 

943 users 

in use. Similarly, the memory complexity is also O(n2 ) to keep the ideal distances, in addition to 

O(n) memory needed for keeping the agent locations, velocities and amplitudes. 

5.4 Experiments in Dynamic Clustering 

In this section, we describe our datasets, experiments, and evaluation metrics; and discuss 

our results. 

5.4.1 Datasets 

Table 24 presents the datasets used in Dynamic-FClust experiments. Dataset I and Iris are 

the same datasets that were used in the previous chapters. As a reminder, dataset I 2 is a synthetic 

dataset, whereas Iris is a real life dataset from the DCI machine learning repository 3. 

The third dataset used in the experiments is the MovieLens dataset4 , which is also a real 

life data. 

Datasets I has 2 attributes and is thus suitable to show the emerging and disappearing clus-

tering results visually. In the literature, FClust has been compared to other algorithms and one of the 

datasets used was the Iris dataset. Thus, to compare the Dynamic-FClust Algorithm with the orig-

inal FClust algorithm, the Iris dataset is also used. Finally, the Movielens dataset is a dataset with 

dynamic data items. At each time step, one rating in the format of < userid, movieid, rating, time> 

is provided to the dynamic-FClust system. 

In the experiments, the Manhattan based similarity, given in Equation (4) is used for dataset 

I and for the linearly normalized Iris dataset. For the MovieLens, the Pearson correlation, in 

Equation (13), is used. 

2http://webmining.spd.louisville.edu/NSF_Career/datasets.htm 
3http://archive.ics.uci.edu/ml/ 
4http://www.grouplens.org/node/73 
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5.4.2 Clustering Evaluation 

To evaluate and compare the quality of clustering results the average inter-cluster and intra­

cluster similarities are computed. The inter-cluster similarity is the similarity between clusters 

and the intra-cluster similarity is the similarity between data points within a cluster. A higher 

intra-cluster similarity and lower inter-cluster similarity represent better clustering quality. More 

information is presented in Section 2.1.4. 

Additionally, when there are class labels available, a cluster error may be computed by 

comparing the cluster and class labels. The procedure given in Algorithm 3 checks whether each 

item pair has the same class label if they have the same cluster labels or not. 

5.4.3 Results 

Our experimental results show that Dynamic-FClust is capable of handling emerging and 

disappearing clusters, as well as dynamic data items, while producing similar clustering and visu­

alization results to FClust in terms of the number of clusters extracted, cluster error, inter-, and 

intra-cluster similarity. 

In the figures, N _M I N represents the minimum cardinality, which is the minimum number 

of data records required for a cluster to be considered valid. 

Figure 33 shows the process of clustering a dataset with two clusters using Dynamic-FClust 

vs. FClust. This experiment also illustrates the ability to capture emerging clusters using Dynamic­

FClust. Initially, the dataset consisted of only one cluster. Figure 33(a) shows that, before con­

vergence, Dynamic-FClust extracted 3 data clusters. Around 2000 iterations, Dynamic-FClust con­

verged as shown in Figure 33(b). Around 2500 iterations, new data items from a new cluster emerged. 

Without re-starting the clustering process, Dynamic-FClust captured the emerging cluster success­

fully, as shown in Figure 33(d). Figures 33(e) and 33(f) visually show that Dynamic-FClust produced 

similar clustering and visualization results to FClust, although initially, the dataset was not fully 

available for dynamic clustering. Additionally, in some cases, FClust may take longer to converge 

than Dynamic-FClust. 
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Figure 33. Clustering a dataset with two clusters using FClust vs. Dynamic-FClust where dth 

dideaLth = 0.04, Simth = 0.91, NMIN = 40. 
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Figure 34 shows the 3 cluster dataset that was also used in experiments in Chapter 3. 
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(b) Data clusters visualized to illustrate the wrap­
around cluster formation result. 

Figure 35. Wrap-around cluster formation illustrated, the 3-cluster dataset is being clustered using 
Dynamic-FClust, where d th = dideaLth = 0.04, Simth = 0.91 , N MIN = 20. 

Figure 35 illustrates the wrap-around cluster formation on the agent visualization panel 

while clustering the 3-cluster dataset using Dynamic-FClust. Having the same color on Figure 35(a) 

means that the agents are in the same cluster. Additionally, cluster colors for the agent domain 

represent the same clusters in the data domain, on Figure 35(b). 

One of the capabilities of dynamic clustering is the ability to delete clusters and data records 
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Figure 36. Illustrating cluster deletion and keeping the newest 500 data records. The 3-cluster 
dataset is being clustered using Dynamic-FClust, where d th = d ideaLth = 0.04, Simth = 0.91, 
N_MIN = 20. 

with time if desired. The data record may be expired and removed from the dataset, given in the 

Dynamic-FClust Algorithm, Algorithm 17, line 5, or there may be an upper bound for the number of 

agents due to memory or computational limitations, as presented in line 13 of Algorithm 17. Figure 
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36 illustrates that Dynamic-FClust is capable of handling data removal, and is able to update the 

clustering results during data removal. Unlike other static clustering algorithms, Dynamic-FClust 

does not require a re-start. In the experiments, it is assumed that the most recent (up to 500) records 

are wanted while the older or expired data records are to be deleted. Thus, at most 500 agents were 

used. It is assumed that, at each time step, one record was available. Thus, Dynamic-FClust keeps 

inserting the new agents in the first 500 time steps. Staring from the 501st time step, Dynamic 

FClust keeps the most recent 500 data records and deletes the previous data records. Figure 36(c) 

shows the original data colored by the cluster label assigned by Dynamic-FClust. This explains that, 

in the first 500 time steps, data records were from the 2 clusters of the original dataset located on 

the lower left corner and they are clustered into 4 clusters by Dynamic-FClust. Dynamic-FClust 

would need more time to achieve the final clustering results. In the mean time, until time step 812, 

input data feeds to the Dynamic-FClust. With the addition of each new arriving data record, the 

oldest data records gets removed from the dataset, accompanied by the removal of the representing 

agent from the visualization panel. Dynamic-FClust keeps iterating and updating the clustering 

results. At time step 1000, Figure 36(d) shows that the remaining data records are from the upper 

right cluster. With the removal of the data records from the lower left corner, the clusters that 

they belong to are also removed and the newest 500 data records are clustered into 3 clusters by 

Dynamic-FClust. As the time to improve clustering results is given to Dynamic-FClust, results 

continue improving and the remaining data gets clustered into 2 clusters, as shown in Figure 36(e) 

and Figure 36(f). Additionally, looking at the visualization panel given in Figure 36(e), we observe 

that the two clusters extracted are very similar and may get merged after more iterations. To sum 

up, Dynamic-FClust is capable of handling both data addition and data removal in time, all the 

while updating clusters accordingly, including deleting data clusters if needed. 

If desired, different approaches such as freezing and modified neighborhood definition can 

be tested to see the effects on clustering. In freezing, when there is a new data entry, all the 

agents except the active agent, which represents the new data entry, stops moving. The active agent 

updates its position and velocity using the feedback (a.k.a attractive and repelling forces) from its 

neighborhood, thus becoming closer to other similar agents. Another option is to have a bigger 

neighborhood for the active agent to provide more feedback from the neighbors. The benefits of 
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(a) Visualization panel before a new rating is read and after all 
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(b) Visualization panel when t he new rating is read at time 
step=147. All other agents are frozen and the newly updated 
agent uses a bigger neighborhood and amplitude. 
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(c) Visualization panel showing that the newly updated agent 
keeps updating it's position and velocity while a ll other agents 
are frozen. 

Figure 37. Illustrating freezing and an expanded neighborhood around a new agent. The 3-cluster 
dataset is being clustered using Dynamic-FClust, where d th = dideaLth = 0.04, Simth = 0.91. During 
freezing, dth = dideaLth = 0.4 for the modified/ unfrozen/ active agent. 
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using an adaptive neighborhood threshold, which gets smaller in time, were presented for static 

clustering, as part of the FClust-Annealing algorithm in Section 3.1.2. Thus, Figure 37 illustrates 

the freezing and modified neighborhood for a newly updated agent. In Figure 37(a), all the agents 

update their positions and velocities. Later, new data arrives. All agents except the active agent 

froze. The blue arrow in Figure 37(b) and Figure 37(c) represents the active agent. While all the 

other agents are frozen , the active agent keeps moving on the visualization screen. Additionally, 

to provide a wider observation opportunity, the distance threshold is increased to 0.4, dth = 0.4 

for only the active agent. The arrow lengths on the visualization panel represent the amplitude 

of the velocity of the agents, and the amplitude of the velocity of the active agent is increased by 

setting dideaUh = 0.4. During freezing, the worst case computational complexity is O(n). After 

the active agent is done with updating its position and velocity, the freezing stops, Dynamic-FClust 

continues normally, and thus, all agents update their velocities and positions. Since our results of 

Dynamic-FClust are already superior to static FClust, we will not go into the details of improving 

the results by freezing and/or adaptive thresholding in Dynamic-FClust. 
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Figure 38. Average results (and standard deviations) of 10 different runs of clustering the Iris 
data using FClust vs. Dynamic-FClust, compared via extracted cluster number and cluster error 
computed using Algorithm 3 , where dth = dideaUh = 0.04, Simth = 0.85, N_MIN = 7. 
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Figure 39. (Average results (and standard deviations) of 10 different runs of clustering the Iris data 
using FClust vs. Dynamic-FClust, compared via inter- and intra-cluster similarity metrics , where 
d th = dideaLth = 0.04, Simth = 0.85, N_MIN = 7. 

Figure 38 and Figure 39 compare the results of 10 different runs of clustering the Iris data 

using FClust and using Dynamic-FClust. The horizontal lines show the average values whereas the 

vertical lines represent the standard deviations. Figure 38(a) shows that Dynamic-FClust extracts 

a similar number of clusters as FClust, and clusters keep getting updated as long as the algorithm 

runs. Figure 38(b) shows that the cluster error has a similar range in both Dynamic-FClust and 

FClust. Due to the data availability difference, Dynamic-FClust and FClust may find similar results 
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(b) Dynamic data input style example. 

Figure 40. Visualization of incremental vs. dynamic data reading. (a) shows incremental and (b) 
shows dynamic. Note that in dynamic data, the same entry can be re-rated multiple times by the 
same user in any order, thus changes to the same user and item are possible over time. 

in different iteration numbers. Figure 39 compares the two clustering approaches in terms of the 

inter- and intra-cluster similarity. In Figure 39(c), Dynamic-FClust creates better clusters initially, 

although the whole data was only available to Dynamic-FClust after 150 iterations. T his may be 

because fewer data items result in a lower number of constraints. Dynamic-FClust satisfies some 

of the constraints better, before accepting more constraints to satisfy. Although both FClust and 

Dynamic-FClust act similarly in the long term, with its lower number of iterations, Dynamic-FClust 

may be preferred over FClust for clustering the Iris dataset. To summarize the results, Figure 38 

and F igure 39 confirm the fact that Dynamic-FClust and FClust extract clusters with similar quality 

and that they may require a different number of iterations to find an optimal solution. 

Clustering M ovie lens : Dataset w ith dynamic data records 

Figure 40 presents the difference between data reading in incremental vs. dynamic reading. 

In dynamic data, the same entry can be re-rated multiple times by the same user in any order, thus 

changes to the same data record and data item are possible over time. 

Figure 41 shows the number of users joining the dataset vs . the time step, where one rating 

is available at each iteration. All 943 users become available at iteration 99, 940 whereas the whole 

dataset becomes available after 100,000 iterations. 

Figure 42 presents the similarity histogram and log-log plot similarities for the MovieLens 

dataset. Figure fig:movielensDIdealHist presents the ideal distances measured using the similarities 
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Figure 41. Number of users vs. time step vs. where dynamic-FClust reads one rating per time step. 

TABLE 25 

Comparison of Dynamic-FClust vs. FClust , when the whole Movielens dataset has just been 
read. A sample run results after post-processing, using wrap-around cluster formation, where 
dth = dideaUh = 0.04, Simth = 0.22, N MIN = 10. 

Algorithm Cluster No Outlier No Inter-Sim Intra-Sim Inter/Intra 
FClust 22 485 0.24 0.25 0.93 
Dynamic-FClust 7 33 0.23 0.26 0.90 

in Figure 42. 

Figure 44 shows the results of clustering the Movielens dataset using Dynamic-FClust and 

using FClust. In the experiments, the Movilens data is sorted by rating time and at each iteration, 

one line of information, which is in the form of < user id, movie id, rating, rating time> is supplied to 

the Dynamic-FClust. It is observed that, Dynamic-FClust is capable of handling dynamic clusters 

and dynamic data items. At time t, when the whole dataset is available, as a static clustering 

algorithm, FClust has no information coming from the time step t' where t' < t. Whereas in 

Dynamic-FClust, at time t, some cluster information is already available from the previous time step 

t'. This example clearly shows the advantage of Dynarnic-FClust over static clustering algorithms, 

such as of FClust. 

Table 25 compares the results of Dynamic-FClust vs. FClust, when the whole Movielens 

dataset has just been read. This table exemplifies the advantage of Dynamic-FClust over FClust. 

When the whole dataset becomes available at time step 100,000, Dynamic-FClust uses the infor-

mation from previous time steps, whereas as a static clustering algorithm, FClust starts with no 

previous information. Clearly, results of Dynamic-FClust are better than FClust. The difference is 

mostly observable via the number of users that were marked as outliers. Such a big difference in 
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Figure 42. Pearson similarity was computed for 444,153 user pairs for the Movielens dataset , which 
has 943 users. The data shows power law properties. The average similarity is 0.23.(a) Similarity 
histogram, (b) Log-log plot of similarities exhibiting power law properties. 

outlier no shows that FClust has not converged yet. 

Table 26 shows same sample profiles extracted just when the whole dataset became available. 

Movies with average ratings 2.00 or above are listed in the table. Looking at the profiles, we observe 
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Figure 43. Ideal distances histogram for the Movielens dataset . Ideal distances are computed using 
Equation (28). (a) Ideal distance histogram, (b) Log-log plot of ideal distances exhibiting power law 
properties (linearity). 

that users in cluster 5 rate more frequently and give higher ratings. It looks like Star Wars (1977) 

is a favorite of all profiles but some groups of people like it more than others. 

Figure 45 presents the total number of movies rated by at least one user until the corre-
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Figure 44 . Clustering the Movielens dataset using Dynamic-FClust vs. FClust , visualization panel 
with clustered agents where d th = d ideaUh = 0.04, Simth = 0.22 , N _MIN = 10. 

sponding time step for the first 10, 000 ratings. In a dynamic dataset, same movie may be rated by 

different users as well as it can be re-rated by the same user. 
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TABLE 26 
Several examples from the profiles of MovieLens data extracted using Dynamic-FClust where 
N_MIN = 10, timestep = 100,000. Movies with average ratings 2.00 or above are listed in the 
table. 

Average 
M ovie M ovie 
Rating 

P rofile 1 (includes 310 users) 
2.58 Star Wars (1977) 
2.35 Fargo (1996) 
2.15 English Patient, The (1996) 
2.06 Return of the Jedi (1983) 
2.00 Raiders of the Lost Ark (1981) 

Profile 2 (Includes 43 users) 
2.71 Star Wars (1977) 
2.22 Return of the Jedi (1983) 
2.09 Contact (1997) 
2.00 Fargo (1996) 

P rofile 3 (Includes 40 users) 
2.45 English Patient, The (1996) 
2.30 Star Wars (1977) 
2.08 Contact (1997) 
2.03 Scream (1996) 
2.00 Fargo (1996) 

Profile 5 (Includes 42 users) 
3.93 Star Wars (1977) 
3.40 Return of the Jedi (1983) 
2.71 Fargo (1996) 
2.48 Raiders of the Lost Ark (1981) 
2.45 Godfather , The (1972) 
2.33 Independence Day (ID4) (1996) 
2.33 Contact (1997) 
2.26 Toy Story (1995) 
2.17 Mr. Holland's Opus (1995) 
2.12 Empire Strikes Back, The (1980) 
2.12 Star Trek: First Contact (1996) 
2.02 Monty Python and the Holy Grail (1974) 

Figure 46 presents the average number of movies rated per user vs. the time step. The user 

may submit ratings in consecutive time steps or there may be a time gap between ratings from the 

same user. The addition of new users cause vertical drops in the plot. In the MovieLens dataset, 

the number of movies represents the dimensionality. In high dimensional datasets, the more the user 

rates movies, the better. When a user rates a relatively small number of movies, the data becomes 

sparse. Comparing the number of movies in Figure 45 and the average number of rated movies per 

user in Figure 46 , we observe that the MovieLens dataset is a sparse dataset, which makes clustering 

more challenging. 
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Figure 45. Total number of movies rated vs. the time step for the 10 percent of the ratings in the 
Movielens data set. 
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Figure 46 . The average number of movies rated per user vs. the time step for the first 10 percent of 
the MovieLens ratings. 

Figure 47 presents the average rating per user vs. the time step. In the MovieLens dataset, a 

higher rating means user liked the movie. Addit ionally, a high rating average may imply an optimist 

user. 

Figure 48 presents the average rating per movie vs. time step. Some movies may be rated 

higher when they are newer and more popular. Thus, the average of ratings may decrease in time. 

When the movies become old and/ or no longer popular , they may be considered as uninteresting by 

the users and they may not be rated as often. 

Figure 49 presents the average results of 10 different runs of clustering 10 percent of the 
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Figure 47. The average rating per user vs. the time step for the first 10 percent of the MovieLens 
ratings. 
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Figure 48. The average rating per movie vs. the t ime step for the first 10 percent of the MovieLens 
ratings. 

MovieLens dataset using Dynamic-FClust. In the experiments, one rating becomes available to 

Dynamic-FClust , at each time step, for the first 10, 000 time steps. Thus, the whole dataset is 

available to Dynamic-FClust starting from time step 10, 000. The horizontal lines show the average 

values whereas the vertical lines represent the standard deviations. Figure 49(a) show that after 

some iterations, the clustering results stabilize. 

Figure 50 illustrates the advantage of dynamic clustering over static clustering by comparing 

the results of Dynamic-FClust to FClust. The results are average (and standard deviations) of 3 

different runs of clustering the MovieLens dataset using FClust and Dynamic-FClust after post-

processing, using the wrap-around cluster formation, where dth = dideaLth = 0.04 , Simth = 0.345, 

and N .-AI I N = 10. Vertical interval marks represent standard deviation. The results are compared 

via inter-similarity, intra-similarity, inter-similarity over int ra-similarity, and extracted cluster num-
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(a) Inter-cluster and intra-cl uster similarities. Vertical interval marks represent standard deviation. 
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(b) Number of clusters extracted. Interva l marks represent standard deviation. 

Figure 49. Average results (and standard deviations) of 10 different runs of clustering the first 
10 percent of the MovieLens dataset using Dynamic-FClust after post-processing, where dth = 
d ideaLth = 0.04, Simth = 0.345 , N _MIN = 2. 

ber. The plots show the results starting from the first t ime step where the entire dataset becomes 

available, and goes 100, 000 more time steps. Clusters were evaluated as soon as the whole dataset 

became available and both Dynamic-FClust and FClust updated the agents ' properties, such as 

position and amplitude, for one iteration. There is no more data input to any of the algorithms 

after that time step, thus both algorithms cont inue updating their agent properties, i.e. improving 

their clustering results . Meanwhile, cluster evaluations are repeated at every 10 ,000th time step. 

Dynamic-FClust receives one-rating at a time, then updates its clustering results, and stores the 

information it was able to extract. When the 100, 000th rating was available, Dynamic-FClust up-

dated its agent population and continued improving its cluster formation. On the other hand, FClust 

started clustering from scratch when the whole dataset became available, thus, it took approximately 

20, 000 time steps for FClust to produce similar results to Dynamic-FClust. These results illustrate 

t he effectiveness of using the information from the past and advantages of Dynamic-FClust over 
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FClust. 

5.5 Conclusions 

Our previous studies on various synthetic and real life datasets showed that algorithms that 

are based on flocks of agents can cluster and visualize the data simultaneously [128, 129J. In this 

chapter, we developed an algorithm for dynamic clustering and visualization, which is capable of 

handling dynamic data items as well. We observed that, similar to FClust, in Dynamic-FClust 

parameter setting plays a crucial role in convergence. FClust has quadratic complexity. Our experi­

mental results showed that Dynamic-FClust can cluster and visualize dynamic data simultaneously, 

while capturing emerging clusters and producing clustering and visualization results that are com­

parable to FClust. 
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Figure 50 . Average results of clustering the MovieLens dataset using FClust and Dynamic-FClust. 
Vertical interval marks represent standard deviation. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE DIRECTIONS 

The natural analogy between Swarm Intelligence (SI) systems and social behavior have been 

the main motivation for the topic of investigation in this dissertation, with a focus on Flock based 

systems which are a particularly attractive SI systems that possess unique properties for modeling 

dynamic online social activity, and yet have not been well investigated for this purpose. More 

specifically, we investigate the use of flock-based swarm intelligence for two related and challenging 

problems that form critical building blocks of intelligent personalized web servers, specifically 

(i) the problem of understanding the online activities of online users by discovering groups 

or clusters of similar users, and 

(ii) the problem of predicting the interests of online users in anticipation of further decision 

making goals, in particular focusing on collaborative filtering or social recommender systems. 

The most popular SI clustering techniques are Particle swarm clustering and Ant-based 

clustering. More recently, clustering using flocks of agents proved to be promising as well. Since in 

this approach, each agent represents a data item, and the distance between agents on the visualization 

panel depends on the similarity between the data records represented by these agents, the flocks­

of-agents approach, known as FClust, offers a solution not only for clustering but also for data 

visualization. Additionally, FClust possesses a dynamic structure. Agents keep moving on the 

visualization panel until the algorithm is forced to stop. After a sufficient number of iterations, 

every state of the visualization panel may provide a clustering alternative for the dataset. This 

makes FClust suitable for clustering and visualization of dynamic datasets. Although the initial 

experimental results with FClust were acceptable, it suffered from several limitations, namely lack 

of scalability, and inadequacy to for clustering high dimensional sparse dataset, in particular dynamic 

transactional data. 

To overcome some of the observed limitations , we have proposed some improvements in­

cluding FClust-annealing, the (K-means+FClust) Hybrid, and the (SPKM+ FClust) Hybrid algo­

rithms. Annealing decreased the number of iterations to convergence and improved the quality of 
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the clusters. The effect of different cooling functions should be studied further. In addition to these 

improvements, the proposed (K-means+FClust) hybrid algorithm reduces the quadratic complexity 

of FClust to linear complexity and performs similarly to FClust with fewer iterations during the 

experiments. 

Our work on Web server access log data, a special case of high-dimensional and sparse 

data, showed that algorithms that are based on flocks of agents can cluster and visualize the data 

simultaneously [128, 129]. Our (SPKM+FClust) hybrid approach reduces the quadratic complexity 

of FClust to linear complexity, and performs similarly to FClust, but has the advantage of fewer 

iterations for clustering large, high-dimensional data such as web usage data. For Web usage data, 

our experiments confirmed the superiority of the proposed hybrid approach, both in terms of quality 

of the final results and computational cost. 

We have also developed a new recommender system approach called the flocks-of-agents 

based recommender system (FlockRecom). This new approach is based on swarm intelligence, 

specifically, the dynamic collaboration between bird flocks in nature. The results were compared to 

the traditional user-based nearest neighbor collaborative filtering and FlockRecom was more success­

ful at providing variety in the recommendations without losing recommendation quality (in terms 

of precision and recall). One problem suffered by some recommender systems is over-specialization. 

When the recommendations are limited to the user's behavior or user's profile, the user can be 

restricted to seeing only similar items, and there will be no randomness. In artificial intelligence, 

this problem is known as the exploration/exploitation dilemma. Although collaborative filtering 

can counteract over-specialization by suggesting different items, the dynamic structure of the Flock­

Recom algorithm makes it more successful at solving the exploration/exploitation dilemma, which 

is also practically observed in the experimental results. This and the dynamic nature of the algo­

rithm suggests that the proposed nature inspired recommendation system looks very promising for 

dynamic environments, characterized by change in the data and its underlying concepts. 

Finally, we introduced a new clustering paradigm: Dynamic Data Clustering (or dynamic 

clustering in short) and proposed a flocks-of-agents based dynamic clustering algorithm, Dynamic­

FClust. In this new approach, not only clusters but data records themselves may change in time. 

For example, if the data records are users from a movie rental website, user records change as users 

update their reviews for the movies. In Dynamic-FClust, clusters are updated as more information 

becomes available. Unlike static clustering algorithms, the clustering process is not started from 

scratch. Rather, at time t, Dynamic-FClust uses the information coming from time t - 1 to update 
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its knowledge base. Our experiments on synthetic and real life datasets have presented Dynamic­

FClust's advantages over static FClust. 

6.1 Summary of Contributions 

Our main contributions can be summarized as follows: 

• New (K-means+FClust) and (SPKM+FClust) hybrid algorithms were developed. Our hybrid 

approach reduces the quadratic complexity of FClust to linear complexity, and performs simi­

larly to FClust, but has the advantage of fewer iterations for clustering large, high-dimensional 

data such as web usage data. Hybrid algorithms were tested on several datasets including syn­

thetic data, real data from UCI machine learning repository, and real Web server logs and 

our experiments confirmed their superiority, both in terms of quality of the final results and 

computational costs [128, 129]. 

• A dynamic clustering and visualization approach that can perform dynamic clustering was 

developed and tested. This approach can handle the arrival of not only one data record at a 

time, but also "part" of a data record, such as one attribute at a time, in any order for one 

data record. It can also handle the modification or updating of an individual attribute (such 

as one item's rating) from a record and even the removal of a data record. To our knowledge, 

no existing clustering technique handles "partial" data addition, modification, or removal in 

one record. 

• A new recommender system approach called the flocks-of-agents based recommender system 

(FlockRecom) was developed. The results were compared to the traditional user-based nearest 

neighbor collaborative filtering and FlockRecom was more successful at providing variety in 

the recommendations without losing recommendation quality [130]. 

• Under special simplifications we formulate the flocking behavior as a Gradient Descent opti­

mization that minimizes a criterion that agrees with the observed behavior in flocking in the 

case of attraction, namely grouping (agents getting closer to each other) and alignment. In 

addition it is minimizing the error between ideal and agent distance values, therefore seeking 

a visualization of the original data onto the 2D panel that is as faithful as possible. The 

mathematical derivations are included under the Future Visions in the Conclusions Chapter. 

According to our knowledge, this a mathematical interpretation of flocking behavior that has 

not been accomplished so far. And we plan to pursue it further in the future. 
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6.2 Limitations of This Work 

• As is common with all clustering techniques, our algorithms require fixing several parameters 

before being applied, and finding the best parameter configuration often requires trial and 

error for each new dataset. 

• Our hybrid approach approximates the entire agent population by using a smaller population 

extracted by fast partitional clustering of the agent population in a preliminary phase. This 

allows an agent to represent more than one data record, thus increases scalability. However, 

the quality of this preliminary clustering is expected to depend on the number of clusters and 

the parameters. Also, it would be challenging to adapt the hybrid approach to a dynamic 

setting because the preliminary phases of partitional clustering would have to be adapted to a 

dynamic setting, which would make it part of the dynamic clustering and no longer a separate 

preliminary phase. 

• The requirement to compute all pairwise similarities remains a heavy burden on the non-hybrid 

approaches, due to the quadratic computational and memory complexity involved. 

6.3 Vision for the Future 

Unlike ant-based and particle-swarm based web mining methods, flocks-of-agents based solu­

tions are less studied. Our research should open the doors for more studies based on flocks-of-agents 

based methods. In particular, our research can be expanded along the following directions: 

1. Visualization: In the dissertation, the visualization part of FClust was implemented using 

C, C++, and Gnuplot. However, using Gnuplot did not provide enough interaction with the 

user. We have started improving the visualization using C++, OpenGL, and QT and initial 

results are promising in that we can produce a video of the agent movement in time, with 

different colors assigned to the agents depending on their clusters. 

2. Cluster Evolution Tracking: The Dynamic-FClust presents a suitable platform for tracking 

cluster evolution. This can be done qualitatively by observing cluster behavior on the visu­

alization panel, and quantitatively by defining new metrics that measure changes in clusters, 

such as increase in size, merging between two clusters, or a split of one cluster into several 

clusters. 
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3. Dynamic Recommender System: We proposed a recommender system using an idea sim-

ilar to static FClust. In the future, we plan to work on implementing a dynamic recommender 

system using an approach similar to Dynamic-FClust. In the experiments, the KDD Cup 2011 

dataset will be considered. The challenge will be recommending Music Items based on the 

Yahoo! Music Dataset1 . 

4. Convergence Proof: Previous research shows that flock-of-agents-based clustering converges 

given suitable parameters and enough iterations. One desired goal would be to mathematically 

prove the convergence of the agent population to a stable state. One way to accomplish this 

is to rewrite and combine the agent i's movement steps from our algorithms into one position 

update equation. In fact, it is possible to show that the change in the previous position X~-l 

of agent ai at time step t is given by: 

L (v~-l+f(~Dtjl,dth))(X~-l-X~-l) 
~xt = [K + dideaUh ] .,.,.....a_j E_N_, ________________ ..,,-

~ (o-lNil + 1) 
L (v~-l+f(~Dtjl,dth))(X~-l-X~-l) 

ajEN, 

where K, n, dideaUh, and dth are constants that depend on the algorithm parameters, Ni is 

the set of neighboring agents to agent ai, v;-l and X~-l are the velocity and position of agent 

aj at the previous time step, respectively, and f is either an attraction or repulsion function 

depending on the sign of ~Dt/ = dt-1(i,j) - dideal(i,j). 

5. Formulating Flocking as an Optimization Problem: 

Given that the position of the ith agent of the flock is 

(39) 

where 

adejault + 20 x (neighbor_no(i) + 1) (40) 

dth 
(41) 

and Ni = {j I d(j, i) :s: dth & i;;f j} 

1 http://kddcup.yahoo.com/datasets.php (Accessed April 27, 2011) 
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Let A = K + Qx(I~:I+l) 

Then taking into account only the attraction effects from agent i's neighbors, we can write the 

change in the position of this agent as 

~t ~t-l 
Xi -Xi 

"" (o-!t ( D.Dfj )2 =ff; =ff;) 6 Vj + 4 x d _ d (i .) x (xj - xi) 
. Nt th tdeal, J 

Ax _JE __ ~, ______________ ~ __ ..-______________ ___ 

IIFatt II 
(42) 

where 

~ ( (D.Dt . ) 2 ) D.Dfj = ~(i,j) - dideal(i,j) and Fatt = L ~ + 4 x d _ d tJ C .) x (X] - i1) 
JEN; th tdeal Z, J 

If we assume that IIFatt II is close to 1 or does not change much from one iteration to the 

next (i.e. it is approximately constant), then we can rewrite the position change as an update 

equation corresponding to one iteration of Gradient Descent for a cost function, as follows 

r500st 
r5xt t 

r500st 
-'rJ-­

r5X1 
(43) 

(44) 

It can be verified that one cost function that can result in the above gradient is the one 

minimized in the following optimization problem: 

(45) 

In other words, the update equations, when taking only the attraction effects in account, 

amount to minimizing the total errors between the visualization panel distance values between 

agent i and its neighbors j and the ideal distance between the original data points, i.e., D.Dij 

as well as minimizing the distances between the ith agent and its neighbors on the visualization 

panel IIXj - X1112, while also maximizing ~jEN; vj • X1, which is the dot product between the 

153 



ith agent's position :q and the mean of all its neighbors' velocities LjENf Vj. Maximization 

of the dot product between two vectors is equivalent to maximizing the cosine of the angle 

between two vectors, therefore resulting in minimizing the angle between those two vectors, in 

other words, seeking the best alignment. This optimization criterion agrees with the observed 

behavior in flocking in the case of attraction, namely grouping (agents getting closer to each 

other) and alignment. In addition it is minimizing the error between ideal and agent distance 

values, therefore seeking a visualization of the original data onto the 2D panel that is as faithful 

as possible. Reformulation for the case of repulsion can follow similar steps, generally leading 

to dispersing the agents away from each other (because of the negation in the velocity). 

6. Distributed Computing: Although complexity was not the main goal of this work, the 

distributed nature of the swarm intelligence paradigm holds obvious potential for scalability 

and robustness with cloud-based implementations. One way to achieve this goal is to distribute 

the data on multiple nodes, perform swarm intelligence based clustering locally, and then 

combine the results. This would require a judicious partitioning of the dataset. Another 

direction would be to distribute the operations of the flock-based clustering even if it is only for 

a limited number of iterations on multiple processors. The main challenge would be managing 

the communication between nodes in such a way as to limit communication overhead. 
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