27,634 research outputs found

    Reconfigurable antennas and radio wave propagation at millimeter-wave frequencies

    Get PDF
    For the last decades we have been witnessing the evolution of wireless radio networks. Since new devices appear and the mobile traffic, as well as the number of users, grows rapidly, there is a great demand in high capacity communications with better coverage, high transmission quality, and more efficient use of the radio spectrum. In this thesis, reconfigurable antennas at micro- and millimeter-wave frequencies and peculiar properties of radio wave propagation at mm-wave frequencies are studied. Reconfigurable antennas can improve radio link performance. Recently, many different concepts have been developed in the reconfigurable antenna design to control the antenna bandwidth, resonant frequency, polarization, and radiation properties. In the first part of the thesis, we investigate mechanically tunable antennas operating at microwave frequencies with the ability to change the shape of the conductor element and, consequently, to control the radiation properties of the antenna. Also in the first part, we study conformal antenna arraysfor 60 GHz applications based on cylindrical structures. Beam switching technology is implemented by realizing several antenna arrays around the cylinder with a switching network.Scanning angles of +34˚/-32˚ are achieved. Moreover, it is vital to study radio wave propagation peculiarities at mm-wave frequencies in indoor and outdoor environments to be able to deploy wireless networks effectively. The propagation part of the thesis focuses on several aspects. First, we investigate how the estimation of optimum antenna configurations in indoor environment can be done usingrealistic propagation models at 60 GHz. Ray tracing simulations are performed and realistic human blockage models are considered. Second, we present the results from a measurement campaign where reflection and scattering properties of two different built surfaces are studied in the millimeter-wave E-band (71-76 and 81-86 GHz). Next, we present a geometry based channel model for a street canyon scenario, using angular-domain measurement results to calculate realistic power angular spectra in the azimuth and elevation planes. Then, we evaluate propagation effects on the radio channel on the rooftop of the buildings bymeasurements and simulations. We have used unmanned aerial vehicles and photogrammetrytechnique to create a highly accurate 3D model of the environment. Based on a comparison of the measured and simulated power delay profiles, we show that the highly accurate 3D modelsare beneficial in radio wave propagation planning at mm-wave frequencies instead of using simple geometrical models

    Indoor wireless communications and applications

    Get PDF
    Chapter 3 addresses challenges in radio link and system design in indoor scenarios. Given the fact that most human activities take place in indoor environments, the need for supporting ubiquitous indoor data connectivity and location/tracking service becomes even more important than in the previous decades. Specific technical challenges addressed in this section are(i), modelling complex indoor radio channels for effective antenna deployment, (ii), potential of millimeter-wave (mm-wave) radios for supporting higher data rates, and (iii), feasible indoor localisation and tracking techniques, which are summarised in three dedicated sections of this chapter

    The impact of propagation environment and traffic load on the performance of routing protocols in ad hoc networks

    Full text link
    Wireless networks are characterized by a dynamic topology triggered by the nodes mobility. Thus, the wireless multi-hops connection and the channel do not have a determinist behaviour such as: interference or multiple paths. Moreover, the nodes' invisibility makes the wireless channel difficult to detect. This wireless networks' behaviour should be scrutinized. In our study, we mainly focus on radio propagation models by observing the evolution of the routing layer's performances in terms of the characteristics of the physical layer. For this purpose, we first examine and then display the simulation findings of the impact of different radio propagation models on the performance of ad hoc networks. To fully understand how these various radio models influence the networks performance, we have compared the performances of several routing protocols (DSR, AODV, and DSDV) for each propagation model. To complete our study, a comparison of energy performance based routing protocols and propagation models are presented. In order to reach credible results, we focused on the notion of nodes' speed and the number of connections by using the well known network simulator NS-2.Comment: 13 pages, 5 figures, International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.1, January 201

    Performance evaluation of 5G millimeter-wave cellular access networks using a capacity-based network deployment tool

    Get PDF
    The next fifth generation (5G) of wireless communication networks comes with a set of new features to satisfy the demand of data-intensive applications: millimeter-wave frequencies, massive antenna arrays, beamforming, dense cells, and so forth. In this paper, we investigate the use of beamforming techniques through various architectures and evaluate the performance of 5G wireless access networks, using a capacity-based network deployment tool. This tool is proposed and applied to a realistic area in Ghent, Belgium, to simulate realistic 5G networks that respond to the instantaneous bit rate required by the active users. The results show that, with beamforming, 5G networks require almost 15% more base stations and 4 times less power to provide more capacity to the users and the same coverage performances, in comparison with the 4G reference network. Moreover, they are 3 times more energy efficient than the 4G network and the hybrid beamforming architecture appears to be a suitable architecture for beamforming to be considered when designing a 5G cellular network

    Preliminary Results on 3D Channel Modeling: From Theory to Standardization

    Full text link
    Three dimensional beamforming (3D) (also elevation beamforming) is now gaining a growing interest among researchers in wireless communication. The reason can be attributed to its potential to enable a variety of strategies like sector or user specific elevation beamforming and cell-splitting. Since these techniques cannot be directly supported by current LTE releases, the 3GPP is now working on defining the required technical specifications. In particular, a large effort is currently made to get accurate 3D channel models that support the elevation dimension. This step is necessary as it will evaluate the potential of 3D and FD(Full Dimensional) beamforming techniques to benefit from the richness of real channels. This work aims at presenting the on-going 3GPP study item "Study on 3D-channel model for Elevation Beamforming and FD-MIMO studies for LTE", and positioning it with respect to previous standardization works
    corecore