3,724 research outputs found

    Quantitative estimation of TV white space in Southwest Nigeria

    Get PDF
    The demand for bandwidth has increased in recent years with the advent of new technologies in the wireless systems which have resulted into spectrum crunch. Utilizing the free ultra high frequency (UHF), television (TV) channels also known as TV white space (TVWS) has been proposed as a strategy for increasing spectral efficiency. Deploying TVWS requires the knowledge of the estimate of the available TVWS. In this paper, a quantitative estimation of the available TVWS in South West, Nigeria is computed using the protection view point approach, the pollution viewpoint approach and the Federal Communication Commission (FCC) rule. Results from the estimation shows that the pollution view point approach will guarantee enough protection from the primary users and hence prevent interference from the secondary users. The findings also reveal that there are abundant TVWS in the considered states for the deployment of TVWS devices

    TV white space and LTE network optimization toward energy efficiency in suburban and rural scenarios

    Get PDF
    The radio spectrum is a limited resource. Demand for wireless communication services is increasing exponentially, stressing the availability of radio spectrum to accommodate new services. TV white space (TVWS) technologies allow a dynamic usage of the spectrum. These technologies provide wireless connectivity, in the channels of the very high frequency and ultra high frequency television broadcasting bands. In this paper, we investigate and compare the coverage range, network capacity, and network energy efficiency for TVWS technologies and LTE. We consider Ghent, Belgium, and Boyeros, Havana, Cuba, to evaluate a realistic outdoor suburban and rural area, respectively. The comparison shows that TVWS networks have an energy efficiency 9-12 times higher than LTE networks

    Feasibility, Architecture and Cost Considerations of Using TVWS for Rural Internet Access in 5G

    Get PDF
    The cellular technology is mostly an urban technology that has been unable to serve rural areas well. This is because the traditional cellular models are not economical for areas with low user density and lesser revenues. In 5G cellular networks, the coverage dilemma is likely to remain the same, thus widening the rural-urban digital divide further. It is about time to identify the root cause that has hindered the rural technology growth and analyse the possible options in 5G architecture to address this issue. We advocate that it can only be accomplished in two phases by sequentially addressing economic viability followed by performance progression. We deliberate how various works in literature focus on the later stage of this ‘two-phase’ problem and are not feasible to implement in the first place. We propose the concept of TV band white space (TVWS) dovetailed with 5G infrastructure for rural coverage and show that it can yield cost-effectiveness from a service provider’s perspective

    IoT-based management platform for real-time spectrum and energy optimization of broadcasting networks

    Get PDF
    We investigate the feasibility of Internet of Things (IoT) technology to monitor and improve the energy efficiency and spectrum usage efficiency of broadcasting networks in the Ultra-High Frequency (UHF) band. Traditional broadcasting networks are designed with a fixed radiated power to guarantee a certain service availability. However, excessive fading margins often lead to inefficient spectrum usage, higher interference, and power consumption. We present an IoT-based management platform capable of dynamically adjusting the broadcasting network radiated power according to the current propagation conditions. We assess the performance and benchmark two IoT solutions (i.e., LoRa and NB-IoT). By means of the IoT management platform the broadcasting network with adaptive radiated power reduces the power consumption by 15% to 16.3% and increases the spectrum usage efficiency by 32% to 35% (depending on the IoT platform). The IoT feedback loop power consumption represents less than 2% of the system power consumption. In addition, white space spectrum availability for secondary wireless telecommunications services is increased by 34% during 90% of the time

    Multi-objective optimization of cognitive radio networks

    Get PDF
    New generation networks, based on Cognitive Radio technology, allow dynamic allocation of the spectrum, alleviating spectrum scarcity. These networks also have a resilient potential for dynamic operation for energy saving. In this paper, we present a novel wireless network optimization algorithm for cognitive radio networks based on a cloud sharing-decision mechanism. Three Key Performance Indicators (KPIs) were optimized: spectrum usage, power consumption, and exposure. For a realistic suburban scenario in Ghent city, Belgium, we determine the optimal trade-off between the KPIs. Compared to a traditional Cognitive Radio network design, our optimization algorithm for the cloud-based architecture reduced the network power consumption by 27.5%, the average global exposure by 34.3%, and spectrum usage by 34.5% at the same time. Even for the worst-case optimization (worst achieved result of a single KPI), our solution performs better than the traditional architecture by 4.8% in terms of network power consumption, 7.3% in terms of spectrum usage, and 4.3% in terms of global exposure

    Communication Subsystems for Emerging Wireless Technologies

    Get PDF
    The paper describes a multi-disciplinary design of modern communication systems. The design starts with the analysis of a system in order to define requirements on its individual components. The design exploits proper models of communication channels to adapt the systems to expected transmission conditions. Input filtering of signals both in the frequency domain and in the spatial domain is ensured by a properly designed antenna. Further signal processing (amplification and further filtering) is done by electronics circuits. Finally, signal processing techniques are applied to yield information about current properties of frequency spectrum and to distribute the transmission over free subcarrier channels
    corecore