7 research outputs found

    Flexible jobshop scheduling problem with resource recovery constraints.

    Get PDF
    Objectives and methods of study: The general objective of this research is to study a scheduling problem found in a local brewery. The main problem can be seen as a parallel machine batch scheduling problem with sequence-dependent setup times, resource constraints, precedence relationships, and capacity constraints. In the first part of this research, the problem is characterized as a Flexible Job-shop Scheduling Problem with Resource Recovery Constraints. A mixed integer linear formulation is proposed and a large set of instances adapted from the literatura of the Flexible Job-shop Scheduling Problem is used to validate the model. A solution procedure based on a General Variable Neighborhood Search metaheuristic is proposed, the performance of the procedure is evaluated by using a set of instances adapted from the literature. In the second part, the real problem is addressed. All the assumptions and constraints faced by the decision maker in the brewery are taken into account. Due to the complexity of the problem, no mathematical formulation is presented, instead, a solution method based on a Greedy Randomize Adaptive Search Procedure is proposed. Several real instances are solved by this algorithm and a comparison is carried out between the solutions reported by our GRASP and the ones found through the procedure followed by the decision maker. The computational results reveal the efficiency of our method, considering both the processing time and the completion time of the scheduling. Our algorithm requires less time to generate the production scheduling (few seconds) while the decision maker takes a full day to do it. Moreover, the completion time of the production scheduling generated by our algorithm is shorter than the one generated through the process followed by the decision maker. This time saving leads to an increase of the production capacity of the company. Contributions: The main contributions of this thesis can be summarized as follows: i) the introduction of a variant of the Flexible Job-shop Scheduling Problem, named as the Flexible Job-shop Scheduling Problem with Resource Recovery Constraints (FRRC); ii) a mixed integer linear formulation and a General Variable Neighborhood Search for the FRRC; and iii) a case study for which a Greedy Randomize Adaptive Search Procedure has been proposed and tested on real and artificial instances. The main scientific products generated by this research are: i) an article already published: Sáenz-Alanís, César A., V. D. Jobish, M. Angélica Salazar-Aguilar, and Vincent Boyer. “A parallel machine batch scheduling problem in a brewing company”. The International Journal of Advanced Manufacturing Technology 87, no. 1-4 (2016): 65-75. ii) another article submitted to the International Journal of Production Research for its possible publication; and iii) Scientific presentations and seminars

    Optimizing the selection of architecture for component-based system

    Get PDF
    Redundant components are commonly used for solving Redundancy Allocation Problems (RAP) and improving the reliability of complex systems. However, the use of such a strategy to minimize development costs while maintaining high quality attributes for building software architecture is a research challenge. The selection for an optimal architecture to meet this challenge is an inherently complex task due to the high volume of possible architectural candidates and the fundamental conflict between quality attributes. Current software evaluation methods focus on predicting the quality attributes and selecting Commercial-Off-the Shelf (COTS) components for COTS-Based applications rather than utilizing additional architectural evaluation methods that could increase the opportunity for obtaining a cost-effective solution for RAP. In this thesis, an architecture-based approach called Cost-Discount and Build-or-Buy for RAP (CD/BoB-RAP) is introduced to support the decision making for selecting the architecture with optimal components and level of redundancy that satisfies the technical and financial preferences. This approach consists of an optimization model that includes two architectural evaluation methods (CD-RAP and BoB-RAP) and applies three variants of Particle Swarm Optimization (PSO) algorithms. Statistical results showed a 74% reduction on the development cost using CD-RAP on an embedded system case study. Moreover, the application of a maximum possible improvement on the algorithms showed that Penalty Guided PSO (PG-PSO) had enhanced the quality of obtained solutions by 70% to 84% in comparison to other algorithms. The results of the CD-RAP and BoB-RAP were superior when compared to the results obtained from similar approaches. The overall results of this research have proven the potential benefits of the CD/BoB-RAP approach for software architecture evaluation, particularly, in selecting software architecture for minimizing the development cost maintaining a highly reliable system

    Modelling and Optimizing Supply Chain Integrated Production Scheduling Problems

    Full text link
    Globalization and advanced information technologies (e.g., Internet of Things) have considerably impacted supply chains (SCs) by persistently forcing original equipment manufacturers (OEMs) to switch production strategies from make-to-stock (MTS) to make-to-order (MTO) to survive in competition. Generally, an OEM follows the MTS strategy for products with steady demand. In contrast, the MTO strategy exists under a pull system with irregular demand in which the received customer orders are scheduled and launched into production. In comparison to MTS, MTO has the primary challenges of ensuring timely delivery at the lowest possible cost, satisfying the demands of high customization and guaranteeing the accessibility of raw materials throughout the production process. These challenges are increasing substantially since industrial productions are becoming more flexible, diversified, and customized. Besides, independently making the production scheduling decisions from other stages of these SCs often find sub-optimal results, creating substantial challenges to fulfilling demands timely and cost-effectively. Since adequately managing these challenges asynchronously are difficult, constructing optimization models by integrating SC decisions, such as customer requirements, supply portfolio (supplier selection and order allocation), delivery batching decisions, and inventory portfolio (inventory replenishment, consumption, and availability), with shop floor scheduling under a deterministic and dynamic environment is essential to fulfilling customer expectations at the least possible cost. These optimization models are computationally intractable. Consequently, designing algorithms to schedule or reschedule promptly is also highly challenging for these time-sensitive, operationally integrated optimization models. Thus, this thesis focuses on modelling and optimizing SC-integrated production scheduling problems, named SC scheduling problems (SCSPs). The objective of optimizing job shop scheduling problems (JSSPs) is to ensure that the requisite resources are accessible when required and that their utilization is maximally efficient. Although numerous algorithms have been devised, they can sometimes become computationally exorbitant and yield sub-optimal outcomes, rendering production systems inefficient. These could be due to a variety of causes, such as an imbalance in population quality over generations, recurrent generation and evaluation of identical schedules, and permitting an under-performing method to conduct the evolutionary process. Consequently, this study designs two methods, a sequential approach (Chapter 2) and a multi-method approach (Chapter 3), to address the aforementioned issues and to acquire competitive results in finding optimal or near-optimal solutions for JSSPs in a single objective setting. The devised algorithms for JSSPs optimize workflows for each job by accurate mapping between/among related resources, generating more optimal results than existing algorithms. Production scheduling can not be accomplished precisely without considering supply and delivery decisions and customer requirements simultaneously. Thus, a few recent studies have operationally integrated SCs to accurately predict process insights for executing, monitoring, and controlling the planned production. However, these studies are limited to simple shop-floor configurations and can provide the least flexibility to address the MTO-based SC challenges. Thus, this study formulates a bi-objective optimization model that integrates the supply portfolio into a flexible job shop scheduling environment with a customer-imposed delivery window to cost-effectively meet customized and on-time delivery requirements (Chapter 4). Compared to the job shop that is limited to sequence flexibility only, the flexible job shop has been deemed advantageous due to its capacity to provide increased scheduling flexibility (both process and sequence flexibility). To optimize the model, the performance of the multi-objective particle swarm optimization algorithm has been enhanced, with the results providing decision-makers with an increased degree of flexibility, offering a larger number of Pareto solutions, more varied and consistent frontiers, and a reasonable time for MTO-based SCs. Environmental sustainability is spotlighted for increasing environmental awareness and follow-up regulations. Consequently, the related factors strongly regulate the supply portfolio for sustainable development, which remained unexplored in the SCSP as those criteria are primarily qualitative (e.g., green production, green product design, corporate social responsibility, and waste disposal system). These absences may lead to an unacceptable supply portfolio. Thus, this study overcomes the problem by integrating VIKORSORT into the proposed solution methodology of the extended SCSP. In addition, forming delivery batches of heterogeneous customer orders is challenging, as one order can lead to another being delayed. Therefore, the previous optimization model is extended by integrating supply, manufacturing, and delivery batching decisions and concurrently optimizing them in response to heterogeneous customer requirements with time window constraints, considering both economic and environmental sustainability for the supply portfolio (Chapter 5). Since the proposed optimization model is an extension of the flexible job shop, it can be classified as a non-deterministic polynomial-time (NP)-hard problem, which cannot be solved by conventional optimization techniques, particularly in the case of larger instances. Therefore, a reinforcement learning-based hyper-heuristic (HH) has been designed, where four solution-updating heuristics are intelligently guided to deliver the best possible results compared to existing algorithms. The optimization model furnishes a set of comprehensive schedules that integrate the supply portfolio, production portfolio (work-center/machine assignment and customer orders sequencing), and batching decisions. This provides numerous meaningful managerial insights and operational flexibility prior to the execution phase. Recently, SCs have been experiencing unprecedented and massive disruptions caused by an abrupt outbreak, resulting in difficulties for OEMs to recover from disruptive demand-supply equilibrium. Hence, this study proposes a multi-portfolio (supply, production, and inventory portfolios) approach for a proactive-reactive scheme, which concerns the SCSP with complex multi-level products, simultaneously including unpredictably dynamic supply, demand, and shop floor disruptions (Chapter 6). This study considers fabrication and assembly in a multi-level product structure. To effectively address this time-sensitive model based on real-time data, a Q-learning-based multi-operator differential evolution algorithm in a HH has been designed to address disruptive events and generate a timely rescheduling plan. The numerical results and analyses demonstrate the proposed model's capability to effectively address single and multiple disruptions, thus providing significant managerial insights and ensuring SC resilience

    Algorithms and Methods for Designing and Scheduling Smart Manufacturing Systems

    Get PDF
    This book, as a Special Issue, is a collection of some of the latest advancements in designing and scheduling smart manufacturing systems. The smart manufacturing concept is undoubtedly considered a paradigm shift in manufacturing technology. This conception is part of the Industry 4.0 strategy, or equivalent national policies, and brings new challenges and opportunities for the companies that are facing tough global competition. Industry 4.0 should not only be perceived as one of many possible strategies for manufacturing companies, but also as an important practice within organizations. The main focus of Industry 4.0 implementation is to combine production, information technology, and the internet. The presented Special Issue consists of ten research papers presenting the latest works in the field. The papers include various topics, which can be divided into three categories—(i) designing and scheduling manufacturing systems (seven articles), (ii) machining process optimization (two articles), (iii) digital insurance platforms (one article). Most of the mentioned research problems are solved in these articles by using genetic algorithms, the harmony search algorithm, the hybrid bat algorithm, the combined whale optimization algorithm, and other optimization and decision-making methods. The above-mentioned groups of articles are briefly described in this order in this book

    Planning and Scheduling Optimization

    Get PDF
    Although planning and scheduling optimization have been explored in the literature for many years now, it still remains a hot topic in the current scientific research. The changing market trends, globalization, technical and technological progress, and sustainability considerations make it necessary to deal with new optimization challenges in modern manufacturing, engineering, and healthcare systems. This book provides an overview of the recent advances in different areas connected with operations research models and other applications of intelligent computing techniques used for planning and scheduling optimization. The wide range of theoretical and practical research findings reported in this book confirms that the planning and scheduling problem is a complex issue that is present in different industrial sectors and organizations and opens promising and dynamic perspectives of research and development

    The International Conference on Industrial Engineeering and Business Management (ICIEBM)

    Get PDF
    corecore