1,965 research outputs found

    An iterative approach to optimize loudspeaker placement for multi-zone sound field reproduction.

    Full text link
    Various array patterns, such as circular, linear, and arc-shaped arrays, have been used in multi-zone sound field reproduction, but most of them are based on empirical rather than judicious selection. This article proposes an iterative optimization method to select the loudspeaker positions from a large set of candidate locations. Both the number and locations of the loudspeakers can be designed with superior performance. Both single-frequency and broadband simulations based on the acoustic contrast control method are performed to validate the proposed scheme, and the performance of the optimized array is compared with that of an arc-shaped array and that of an array optimized with an existing method

    2D to 3D ambience upmixing based on perceptual band allocation

    Get PDF
    3D multichannel audio systems employ additional elevated loudspeakers in order to provide listeners with a vertical dimension to their auditory experience. Listening tests were conducted to evaluate the feasibility of a novel vertical upmixing technique called “perceptual band allocation (PBA),” which is based on a psychoacoustic principle of vertical sound localization, the “pitch height” effect. The practical feasibility of the method was investigated using 4-channel ambience signals recorded in a reverberant concert hall using the Hamasaki-Square microphone technique. Results showed that the PBA-upmixed 3D stimuli were significantly stronger than or similar to 9-channel 3D stimuli in 3D listener-envelopment (LEV), depending on the sound source and the crossover frequency of PBA. They also significantly produced greater 3D LEV than the 7-channel 3D stimuli. For the preference tests, the PBA stimuli were significantly preferred over the original 9-channel stimuli

    Robust Personal Audio Geometry Optimization in the SVD-Based Modal Domain

    Get PDF
    © 2014 IEEE. Personal audio generates sound zones in a shared space to provide private and personalized listening experiences with minimized interference between consumers. Regularization has been commonly used to increase the robustness of such systems against potential perturbations in the sound reproduction. However, the performance is limited by the system geometry such as the number and location of the loudspeakers and controlled zones. This paper proposes a geometry optimization method to find the most geometrically robust approach for personal audio amongst all available candidate system placements. The proposed method aims to approach the most 'natural' sound reproduction so that the solo control of the listening zone coincidently accompanies the preferred quiet zone. Being formulated in the SVD-based modal domain, the method is demonstrated by applications in three typical personal audio optimizations, i.e., the acoustic contrast control, the pressure matching, and the planarity control. Simulation results show that the proposed method can obtain the system geometry with better avoidance of 'occlusion,' improved robustness to regularization, and improved broadband equalization

    An auralisation method for real time subjective testing of modal parameters.

    Get PDF
    Subjective testing is necessary when attempting to determine the human response to audio quality. Small rooms, such as recording studio control rooms themselves have an effect upon the quality of the perceived audio reproduction. Of particular interest is the low frequency region where resonances, or ‘room modes’, occur. It is necessary to test a number of modal parameters individually and be able to alter them instantly during testing in response to listener perception. An auralisation method has been developed which is used to compare musical samples within modelled rooms. Methods are discussed in the context of providing a practical system, where real time testing is feasible. The formation of the room’s transfer function is discussed, as are a number of issues relating to the generation of audio samples. This work is then placed in context with a brief explanation of how the system is to be used in a real subjective test

    Perceptual Optimization of Room-In-Room Reproduction with Spatially Distributed Loudspeakers

    Get PDF
    It is often desirable to reproduce a specific room-acoustic scene, e.g. a concert hall in a playback room, in such a way that the listener has a plausible and authentic spatial impression of the original sound source including the room acoustical properties. In this study a perceptually motivated approach for spatial audio reproduction is developed. This approach optimizes the spatial and monaural cues of the direct and reverberant sound separately. More specifically, the (monaural) spectral cues responsible for the timbre and the (binaural) interaural cross correlation (IACC) cues, responsible for the listener envelopment, were optimized in the playback room to restore the auditory impression of the recording room. The direct sound recorded close to the source is processed with an auditory motivated gammatone filterbank such that the spectral cues, ITD’s and ILD’s are comparable to the direct sound in the recording room. Additionally, the reverberant sound, which was recorded at two distant locations from the source, is played back via dipole loudspeakers. Due to the arrangement of the two dipole loudspeakers, only the diffuse sound field in the playback room is excited, therefore the spectral cues and the IACC of the reverberant sound field can be controlled independently to match the cues that were present in the recording room. As indicated by a preliminary listening test the applied optimization is perceptually similar to the reference signal and is generally preferred when compared to a conventional room-in-room reproduction.DFG, FOR 1732, Individualisierte Hörakustik: Modelle, Algorithmen und Systeme für die Sicherstellung der akustischen Wahrnehmung für alle in allen Situatione

    Directional acoustic measurements by laser Doppler velocimeters

    Get PDF
    Laser Doppler velocimeters (LDVs) were used as velocity microphones to measure sound pressure level in the range of 90-130 db, spectral components, and two-point cross correlation functions for acoustic noise source identification. Close agreement between LDV and microphone data is observed. It was concluded that directional sensitivity and the ability to measure remotely make LDVs useful tools for acoustic measurement where placement of any physical probe is difficult or undesirable, as in the diagnosis of jet aircraft noise

    Optimizing Source and Sensor Placement for Sound Field Control: An Overview

    Get PDF
    International audienceIn order to control an acoustic field inside a target region, it is important to choose suitable positions of secondary sources (loudspeakers) and sensors (control points/microphones). This paper provides an overview of state-of-the-art source and sensor placement methods in sound field control. Although the placement of both sources and sensors greatly affects control accuracy and filter stability, their joint optimization has not been thoroughly investigated in the acoustics literature. In this context, we reformulate five general source and/or sensor placement methods that can be applied for sound field control. We compare the performance of these methods through extensive numerical simulations in both narrowband and broadband scenarios. Index Terms-source and sensor placement, sound field control , sound field reproduction, subset selection, interpolation

    Spatial Noise-Field Control With Online Secondary Path Modeling: A Wave-Domain Approach

    Get PDF
    Due to strong interchannel interference in multichannel active noise control (ANC), there are fundamental problems associated with the filter adaptation and online secondary path modeling remains a major challenge. This paper proposes a wave-domain adaptation algorithm for multichannel ANC with online secondary path modelling to cancel tonal noise over an extended region of two-dimensional plane in a reverberant room. The design is based on exploiting the diagonal-dominance property of the secondary path in the wave domain. The proposed wave-domain secondary path model is applicable to both concentric and nonconcentric circular loudspeakers and microphone array placement, and is also robust against array positioning errors. Normalized least mean squares-type algorithms are adopted for adaptive feedback control. Computational complexity is analyzed and compared with the conventional time-domain and frequency-domain multichannel ANCs. Through simulation-based verification in comparison with existing methods, the proposed algorithm demonstrates more efficient adaptation with low-level auxiliary noise.DP14010341

    An experimental study on transfer function estimation using acoustic modelling and singular value decomposition.

    Full text link
    Transfer functions relating sound source strengths and the sound pressure at field points are important for sound field control. Recently, two modal domain methods for transfer function estimation have been compared using numerical simulations. One is the spatial harmonic decomposition (SHD) method, which models a sound field with a series of cylindrical waves; while the other is the singular value decomposition (SVD) method, which uses prior sound source location information to build an acoustic model and obtain basis functions for sound field modelling. In this paper, the feasibility of the SVD method using limited measurements to estimate transfer functions over densely spaced field samples within a target region is demonstrated experimentally. Experimental results with various microphone placements and system configurations are reported to demonstrate the geometric flexibility of the SVD method compared to the SHD method. It is shown that the SVD method can estimate broadband transfer functions up to 3099 Hz for a target region with a radius of 0.083 m using three microphones, and allow flexibility in system geometry. Furthermore, an application example of acoustic contrast control is presented, showing that the proposed method is a promising approach to facilitating broadband sound zone control with limited microphones
    corecore