53 research outputs found

    CSMA/RN: A universal protocol for gigabit networks

    Get PDF
    Networks must provide intelligent access for nodes to share the communications resources. In the range of 100 Mbps to 1 Gbps, the demand access class of protocols were studied extensively. Many use some form of slot or reservation system and many the concept of attempt and defer to determine the presence or absence of incoming information. The random access class of protocols like shared channel systems (Ethernet), also use the concept of attempt and defer in the form of carrier sensing to alleviate the damaging effects of collisions. In CSMA/CD, the sensing of interference is on a global basis. All systems discussed above have one aspect in common, they examine activity on the network either locally or globally and react in an attempt and whatever mechanism. Of the attempt + mechanisms discussed, one is obviously missing; that is attempt and truncate. Attempt and truncate was studied in a ring configuration called the Carrier Sensed Multiple Access Ring Network (CSMA/RN). The system features of CSMA/RN are described including a discussion of the node operations for inserting and removing messages and for handling integrated traffic. The performance and operational features based on analytical and simulation studies which indicate that CSMA/RN is a useful and adaptable protocol over a wide range of network conditions are discussed. Finally, the research and development activities necessary to demonstrate and realize the potential of CSMA/RN as a universal, gigabit network protocol is outlined

    Extremely high data-rate, reliable network systems research

    Get PDF
    Significant progress was made over the year in the four focus areas of this research group: gigabit protocols, extensions of metropolitan protocols, parallel protocols, and distributed simulations. Two activities, a network management tool and the Carrier Sensed Multiple Access Collision Detection (CSMA/CD) protocol, have developed to the point that a patent is being applied for in the next year; a tool set for distributed simulation using the language SIMSCRIPT also has commercial potential and is to be further refined. The year's results for each of these areas are summarized and next year's activities are described

    Multilevel Parallel Communications

    Get PDF
    The research reported in this thesis investigates the use of parallelism at multiple levels to realize high-speed networks that offer advantages in throughput, cost, reliability, and flexibility over alternative approaches. This research specifically considers use of parallelism at two levels: the upper level and the lower level. At the upper level, N protocol processors perform functions included in the transport and network layers. At the lower level, M channels provide data and physical layer functions. The resulting system provides very high bandwidth to an application. A key concept of this research is the use of replicated channels to provide a single, high bandwidth channel to a single application. The parallelism provided by the network is transparent to communicating applications, thus differentiating this strategy from schemes that provide a collection of disjoint channels between applications on different nodes. Another innovative aspect of this research is that parallelism is exploited at multiple layers of the network to provide high throughput not only at the physical layer, but also at upper protocol layers. Schedulers are used to distribute data from a single stream to multiple channels and to merge data from multiple channels to reconstruct a single coherent stream. High throughput is possible by providing the combined bandwidth of multiple channels to a single source and destination through use of parallelism at multiple protocol layers. This strategy is cost effective since systems can be built using standard technologies that benefit from the economies of a broad applications base. The exotic and revolutionary components needed in non-parallel approaches to build high speed networks are not required. The replicated channels can be used to achieve high reliability as well. Multilevel parallelism is flexible since the degree of parallelism provided at any level can be matched to protocol processing demands and application requirements

    Performance Improvements for FDDI and CSMA/CD Protocols

    Get PDF
    The High-Performance Computing Initiative from the White House Office of Science and Technology Policy has defined 20 major challenges in science and engineering which are dependent on the solutions to a number of high-performance computing problems. One of the major areas of focus of this initiative is the development of gigabit rate networks to be used in environments such as the space station or a National Research and Educational Network (NREN). The strategy here is to use existing network designs as building blocks for achieving higher rates, with the ultimate goal being a gigabit rate network. Two strategies which contribute to achieving this goal are examined in detail.1 FDDI2 is a token ring network based on fiber optics capable of a 100 Mbps rate. Both media access (MAC) and physical layer modifications are considered. A method is presented which allows one to determine maximum utilization based on the token-holding timer settings. Simulation results show that employing the second counter-rotating ring in combination with destination removal has a multiplicative effect greater than the effect which either of the factors have individually on performance. Two 100 Mbps rings can handle loads in the range of 400 to 500 Mbps for traffic with a uniform distribution and fixed packet size. Performance is dependent on the number of nodes, improving as the number increases. A wide range of environments are examined to illustrate robustness, and a method of implementation is discussed

    Design Related Investigations for Media Access Control Protocol Service Schemes in Wavelength Division Multiplexed All Optical Networks

    Get PDF
    All-optical networks (AON) are emerging through the technological advancement of various optical components, and promise to provide almost unlimited bandwidth. To realise true network utilisation, software solutions are required. An active area of research is media access control (MAC) protocol. This protocol should address the multiple channels by wavelength division mutiplexing (WDM) and bandwidth management. Token-passing (TP) is one such protocol, and is adopted due to its simplicity and collisionless nature. Previously, this protocol has been analysed for a single traffic type. However, such a study may not substantiate the protocol's acceptance in the AON design. As multiple traffic types hog the network through the introduction multimedia services and Internet, the MAC protocol should support this traffic. Four different priority schemes are proposed for TP protocol extension, and classified as static and dynamic schemes. Priority assignments are a priori in static scheme, whereas in the other scheme, priority reassignments are carried out dynamically. Three different versions of dynamic schemes are proposed. The schemes are investigated for performance through analytical modelling and simulations. The semi-Markov process (SMP) modelling approach is extended for the analyses of these cases. In this technique, the behaviour of a typical access node needs to be considered. The analytical results are compared with the simulation results. The deviations of the results are within the acceptable limits, indicating the applicability ofthe model in all-optical environment. It is seen that the static scheme offers higher priority traffic better delay and packet loss performance. Thus, this scheme can be used beneficially in hard real-time systems, where knowledge of priority is a priori. The dynamic priority scheme-l is more suitable for the environments where the lower priority traffic is near real-time traffic and loss sensitive too. For such a scheme, a larger buffer with smaller threshold limits resulted in improved performance. The dynamic scheme-2 and 3 can be employed to offer equal treatment for the different traffic types, and more beneficial in future AONs. These schemes are also compared in their performance to offer constant QoS level. New parameters to facilitate the comparison are proposed. It is observed that the dynamic scheme-l outperforms the other schemes, and these QoS parameters can be used for such QoS analysis. It is concluded that the research can benefit the design of the protocol and its service schemes needed in AON system and its applications

    High speed protocols for dual bus and dual ring network architectures

    Get PDF
    In this dissertation, two channel access mechanisms providing fair and bandwidth efficient transmission on dual bus and dual ring networks with high bandwidth-latency product are proposed. In addition, two effective priority mechanisms are introduced to meet the throughput and delay requirements of the diverse arrays of applications that future high speed networks must support. For dual bus architectures, the Buffer Insertion Bandwidth Balancing (BI_BWB) mechanism and the Preemptive priority Bandwidth Balancing (P_BI_BWB) mechanism are proposed. BI_BWB can significantly improve the delay performance of remote stations. It achieves that by providing each station with a shift register into which the station can temporarily store the upstream stations\u27 transmitted packets and replace these packets with its own transmissions. P_BI_BWB, an enhancement of BI_BWB, is designed to introduce effective preemptive priorities. This mechanism eliminates the effect of low priority on high priority by buffering the low priority traffic into a shift register until the transmission of the high priority traffic is complete. For dual ring architectures, the Fair Bandwidth Allocation Mechanism (FBAM) and the Effective Priority Bandwidth Balancing (EP_BWB) mechanism are introduced. FBAM allows stations to reserve channel bandwidth on a continuous basis rather than wait until bandwidth starvation is observed. Consequently, FBAM does not have to deal with the difficult issue of identifying starvation, a serious drawback of other access mechanisms such as the Local and Global Fairness Algorithms (LFA and GFA, respectively). In addition, its operation requires a significantly smaller number of control bits in the access control field of the slot and its performance is less sensitive to system parameters. Moreover, FBAM demonstrates Max-Min flow control properties with respect to the allocation of bandwidth among competing traffic streams, which is a significant advantage of FBAM over all the previously proposed channel access mechanisms. EP_BWB, an enhancement of FBAM to support preemptive priorities, minimizes the effect of low priority on high priority and supports delay-sensitive traffic by enabling higher priority classes to preempt the transmissions of lower priority classes. Finally, the great potential of EP_BWB to support the interconnection of base stations on a distributed control wireless PCN carrying voice and data traffic is demonstrated

    Future benefits and applications of intelligent on-board processing to VSAT services

    Get PDF
    The trends and roles of VSAT services in the year 2010 time frame are examined based on an overall network and service model for that period. An estimate of the VSAT traffic is then made and the service and general network requirements are identified. In order to accommodate these traffic needs, four satellite VSAT architectures based on the use of fixed or scanning multibeam antennas in conjunction with IF switching or onboard regeneration and baseband processing are suggested. The performance of each of these architectures is assessed and the key enabling technologies are identified

    A Fairness Algorithm for High-speed Networks based on a Resilient Packet Ring Architecture

    Get PDF
    IEEE is currently standardizing a spatial reuse ring topology network called the Resilient Packet Ring (RPR, IEEE P802.17). The goal of the RPR development is to make a LAN/MAN standard, but also WANs are discussed. A ring network needs a fairness algorithm that regulates each stations access to the ring. The RPR fairness algorithm is currently being developed with mostly long distances between stations in mind. In this paper we discuss the feedback aspects of this algorithm and how it needs to be changed in order to give good performance if and when RPR is used for high-speed networks and LANs with shorter distances between stations. We discuss different architectural parameters including buffers sizes and distances between stations. We suggest the use of triggers instead of timers to meet the response requirements of high-speed networks. We have developed a discrete event simulator in the programming language Java. The proposed improvements are compared and evaluated using a ring network model that we have built using our simulator. (c) 2002 IEEE. Personal use of this material is permitted
    corecore