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Abstract.   IEEE is currently standardizing a spatial reuse ring 
topology network called the Resilient Packet Ring (RPR, IEEE 
P802.17). The goal of the RPR development is to make a 
LAN/MAN standard, but also WANs are discussed. A fairness 
algorithm will regulate each stations access to the ring.  The RPR 
fairness algorithm is being developed with mostly long distances 
between stations in mind. In this paper we discuss the feedback 
aspects of this algorithm and how it needs to be changed to give 
good performance if and when RPR is used for high-speed 
networks and LANs with shorter distances between stations. We 
suggest the use of triggers instead of timers to meet the response 
requirements of high-speed networks.  We have developed a 
discrete event simulator in the programming language Java. The 
proposed improvements are evaluated using a ring network model 
that we have built using our simulator. 
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I. INTRODUCTION 

The IEEE Resilient Packet Ring (RPR) standardization group 
works under the LAN/MAN umbrella, and is designated IEEE 
P802.17.  Its goal is to define a standard  

that can be used for high-speed LANs and MANs, but many 
companies also sees it as a WAN technology. Another goal is 
to be able to use physical layers of different kinds, e.g. high-
speed point-to-point Ethernet. 
 
RPR will define a full duplex ring topology.  The nodes on the 
ring are called stations.  A subnet that connects all the stations 
and moves traffic in one direction around the ring is called a 
ringlet. RPR will spatially reuse the ring bandwidth by letting 
the destinations strip the packets.  Hence one packet may flow 
on one segment of a ringlet while another packet flows on 
another part of the same ringlet at the same time.  Figure 1 
shows a ring with 16 stations where spatial reuse is illustrated 
on the inner ringlet.  Notice that each station is connected to 
two ringlets, and has a full duplex connection to the outside. 
Figure 2 shows one ringlet interface with ingress, egress and 
passthru buffers.  Packets on their way into the ring are stored 
in the ingress buffer, while packets that are stripped from the 
ring are stored in the egress buffer.  Packets that are traveling 
by a station on the ring, while this station sends out a packet 
from its ingress buffer, will have to wait in the stations passthru 
buffer. 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 1.  A ring built from two ringlets with spatial reuse shown on the inner ringlet where station 5 sends to station 0 at the same 
time as station 13 sends to station 9. 

 
 

Ring networks have been designed and built for a long time, 
and are also extensively studied in the literature[18] [10] [21].  
The first ring networks used a token to regulate the access to 
the communication medium.  Later destination stripping with 
spatial reuse was exploited in systems like SRP [23], 
MetaRing[6], DQDB [11], ATMR [13], CRMA-II [15] and SCI 
[12].  Access to the ring must be controlled by a fairness or 
media access control (MAC) algorithm, and several have been 
proposed and evaluated [2,5,9,16,17,20].   
 

The rest of this paper is organized as follows: In the next 
section we discuss the RPR fairness algorithm and some factors 
that could make RPR more suitable for high-speed networks 
and LANs.  We also outline a new version of our fairness 
algorithm that we believe is better for high-speed networks.  
Then in section 3 we describe our experimental platform (the 
RPR discrete event simulator written in Java), and in section 4 
we discuss and evaluate our proposals for improvements using 
this platform.  In section 5 we conclude and point out further 
work. 
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Figure 2. Single ringlet network interface 
 

 

II.  PROBLEM STATEMENT 

A naïve algorithm for access to the ring is that a station is 
allowed to send whenever the passthru buffer is empty, or at 
least almost empty. However, a station that is sending a lot can 
effectively starve a downstream station if this simple access 
principle is used.  A control system with feedback to upstream 
stations is used in order to avoid starvation and achieve fair 
access to the ring. The basis for such a control mechanism is 
flow control packets that a station sends upstream when it does 
not get its fair share of the bandwidth (it is about to be starved). 
Such a packet contains the starving stations current send rate. 
When the upstream stations receive flow control packets they 
adjust their sending rates to the value advertised in the flow 
control packets.  When a station does not receive any more 
flow packets, it gradually increases its send rate again.   
 
In this way all stations get to send the same amount after a 
while. In a WAN the control loop is long because of the long 
links between stations.  Then it will take some time for the 
stations to converge to the same send value. In a high-speed 
network convergence should be much faster. In the sequel we 
discuss this convergence and the latency of the packets 
involved.  In the SRP algorithm it is suggested to run the 
starving stations own send rate thru a low pass filter before the 
value is sent upstream.  In the sequel we discuss the values used 
in this low pass filter. 
  
Obviously a high-speed network has tighter latency constraints 
than a MAN or a WAN that has long distances between 
stations. In the SRP, the stations check their states about every 
100 microseconds in order to see if a flow control notification 
has arrived or should be sent. In this paper we propose that in a 
high-speed network it is important to discover these two 
situations as early as possible.  We propose the use of triggers 
so that the correct actions can be taken immediately and we 
discuss and evaluate how this improves the behavior of the 
network. 
 

III.  THE EXPERIMENTAL PLATFORM 

We have developed a discrete event simulator in the 
programming language Java. This simulator includes an event 
queue that is served based on the service time of the  
queued events.  Eg. when a packet is sent on a link, the arrival 
time of the packet on the receiving end of the link will be the 
time at which the packet should be taken out of the event queue 
and serviced. 
 

We have also developed a model of RPR in Java .  The model 
is built on top of our Java simulation kernel. Hence we can run 
the model and see how it behaves under different architectural 
parameters and different traffic patterns. The model is flexible; 
we can change it or extend it using the Java language.  
 
In MANs and in WANs the distance between stations are 
measured in kilometers.  In LANs and high-speed networks the 
distance is measured in meters. The difference in propagation 
delay and the expected packet latency is a key difference 
between these kinds of networks. This report focuses on high-
speed networks and we will hence use a relatively short 
distance, mostly about 25 meters, between the stations.  
 
The link speed used is one Gbyte/sec.  We use data packets that 
are low priority and 500 bytes long, while the flow control 
packets are 32 bytes high priority packets.  In some of the 
experiments we vary the passthru buffer size, but the size is 
mostly 5000 bytes, with a threshold (starvation) value of 1500 
bytes.   

IV.  THE EXPERIMENT 

We illustrate and discuss our suggested improvements, 
including the proposed triggers in the fairness algorithm, with 
an experiment, pictured in figure 4. Station 0 sends at full speed 
(2 packets per microsecond) to station 6 for the duration of the 
experiment (22 milliseconds).   Station 2 starts a full speed flow 
to station 4 at time 2 milliseconds, and terminates this flow 
after 16 milliseconds, i.e. at time 18 milliseconds.  
 
When station 2 starts to send (after 2 milliseconds), both the 
passthru buffer and the ingress buffer starts to fill up. When the 
size of the passthru buffer reaches the threshold, the station is 
congested and sends a flow control notification packet 
upstream (upstream links are not showing in figure 4).  In the 
SRP algorithm, the size of the passthru buffer is checked at 
regular intervals.  In a MAN/WAN network, this can typically 
be done every 100 microseconds [23].  The plot marked “Timer 
100 microsec” in figure 5 shows that in a high-speed network, 
this is not a good idea. We first explain the nature of figure 5. 
 
Figure 5 shows what happens in the first 125 microseconds 
after station 2 has started to send. We have run the experiment 
with four different versions of the fairness algorithm; hence 
there are four plots in this figure. The latency that packets 
experience from the moment they are  ready to be put onto the 
ring by station 2, until they reach  station 4, are plotted on the 
y-axis

 

Egress buffer                     Ingress buffer 

Passthru buffer 



 

 
 
 
 
 

 
 

Figure 4.  A ringlet segment with two competing flows. 
 

. Only packets from station 2 to station 4 are shown. Each point 
in the plot represents one packet. The time the packet is 
accepted by station 4 is shown on the x-axis. Only those 
packets arriving during the first 125 microseconds after time 2 
ms. are shown on the figure.   When the passthru buffer in 
station 2 has reached the threshold value (1500 bytes), only 
packets from the passthru buffer are forwarded downstream.  
For each run the top latency value is the latency of the packet 

sitting at the head of the ingress buffer in station 2 when the 
passthru buffer reaches the threshold, and station 2 is not 
allowed to send any more.  This packet has to wait for the flow 
control notification signal to reach station 0, and also wait for 
station 0 to send less traffic.  Then the passthru buffer will 
shrink below the threshold, and the packet that has waited can 
finally be transmitted 
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Figure 5.  The latency of the first packets in the new flow from station 2 to station 4. The new flow starts at time 2000 us, and  the 

figure shows the latency of the packets arriving during the first 125 us thereafter. 
 
The slower the system reacts to the starvation, the longer the 
packet at the head of the ingress queue in station 2 has to wait.  
We have tried with 100 microsecond timers, 20 microsecond 
timers and 10 microsecond timers.  In all these cases we see 
that the latency might get unacceptably high (between 14 and 
115 microseconds).   
 
The latency values shown for the timers in figure 5 might be 
acceptable for a MAN/WAN, but not for a high speed network. 
In order to discover the possible upcoming starvation as soon as 
possible, we suggest the use of triggers.  We have implemented 
the fairness algorithm so that whenever there is a line of 
packets in the bypass fifo, and a new packet arrives, we test for 
a possible starvation. If the passthru buffer is filled above a 
certain value, the station immediately sends out a flow control 
packet.   
 
When a flow control notification arrives at an upstream station, 
the send value in the packet is remembered, but in the timer 
scheme it is not reacted upon until the timer goes off.  Hence it 
may take a while until the station starts sending less traffic.  

Again this might be acceptable in a MAN or a WAN, but not 
when packet latency should be minimized. Our trigger scheme 
will act upon the received flow control notification 
immediately, and adjust the stations send rate to the received 
value at once.  The latency of the packets from the run with the 
trigger scheme is almost not visible in figure 5.  The trigger 
scheme latency is, however, also shown in figure 6 (250ns links 
– 1500B threshold). 
 
Figure 6 shows three results using the trigger scheme.  Only 
packets traveling from station 2 to station 4 during the first 20 
microseconds after the flow has started, are plotted.  The axes 
mean the same as in the previous figure.  Notice however that 
the scales are different. The bottom curve shows the same 
trigger result as in figure 5.  The figure also illustrates what 
happens if the links between the stations increase in length so 
that the one way link latency goes up to 400 and 500 ns. It not 
only takes longer for the packets to travel from station 2 to 
station 4, but it also takes longer for the flow notification 
packet from station 2 to reach the source (station 0).  
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Figure 6.    The latency of the first packets in the new flow from station 2 to station 4.  The trigger scheme is used for all three runs. 

The new flow starts at time 2000 us, and the figure shows the latency of the packets arriving during the first 20  us thereafter. 
 

 
In the bottom and the top plots the flow control notification is 
sent immediately when the passthru buffer size reaches 1500 
bytes.  Being emptied at half speed, six more 500 byte packets 
can then arrive before the station is congested.  During this time 
the flow control packet has had enough time to reach station 0, 
order it to stop transmitting and for the stop effect to be noticed 
at station 2, i.e. a full round trip time between stations 2 and 0.  
 
In the middle plot, however, we have decreased the threshold 
value to 1000 bytes, and then the passthru buffer more than fills 
up to the threshold while the flow notification packet takes 
effect.  In order for the plots not to come on top of each other, 
we ran that experiment with a link latency of 400ns. In this 
middle plot we see that the passthru buffer threshold is so small 
that before the flow control notification has had any effect, 
station 2 must serve the passthru buffer only, giving the first 
packet in the ingress buffer a really long latency (about 2.4 
microseconds).   
 
We now turn to a more holistic view of the experiment. In 
figures 7 and 8 we see the stability and the adaptation to 
changing traffic load of the timer and the trigger scheme. 
Results (the y axis) are the number of packets received at the 
destination every 100 ms, shown both for the flow from station 
0 to station 6 and for the flow from to station 2 to station 4. The 
complete experiment takes 26 ms (x axis). 
 
Figure 7 shows the algorithm with a 100 microseconds timer 
and the original low pass filter.  Figure 8 shows the trigger 
scheme and a filter that accepts 16 times faster oscillations. 
Because station 0 has been sending for some time when station 
2 starts sending, the fairness algorithm at first gives priority to 
station 2.  In figure 7, station 2 gets to send alone for the 
longest time. Figure 7 also shows that the run with the timer 

scheme has fluctuations as long as both flows are active. This 
scheme is designed for MANs and WANs and will not stabilize 
so quickly.  However we see that the “waves” are getting 
shorter with time, indication that would smooth out if the two 
flows had kept on competing. 
Figure 8 show great instabilities the first two milliseconds after 
the point where the two flows start competing.  Then the run 
flattens out with almost an exactly 50-50 division of the 
bandwidth for a while. Then there are some temporary 
instability, before the bandwidth is divided equally again.  
 
When the flow from station 2 to station 4 terminates, the speed 
at which station 0 is increasing its send rate is quite different in 
the two figures. Here it is easy to see the effect of the low pass 
filter.  The lowest filter explains the very slow rise of the 
sending rate after time 18 milliseconds in figure 7.  Because of 
the higher frequency filter, in figure 8 it seems like station 0 
starts to send at full speed almost immediately after time 18 
milliseconds.   
 
In order to investigate long-term stability, we changed the 
experiment and let the two flows continue to compete also after 
18 milliseconds. With the timer and the original filter, the flow 
from 0 to 6 had taken a total of 47 % of the bandwidth after 100 
ms., 49 % after 150 ms. and 50%  after 200 ms. We ran this 
experiment with the trigger version of the algorithm and the 
higher frequency filter. Then the flow from 0 to 6 had taken 
48% of the bandwidth after 30 ms, 49% of the bandwidth after 
50 ms, and 50 % of the bandwidth after 100ms. Hence, both 
schemes converge; but the trigger scheme with aggressive 
aging values does so much quicker. 

 



 

0

50

100

150

200

250

0 5000 10000 15000 20000 25000

From 0 to 6 From 2 to 4

 
 

Figure 7. Packets received during the duration of the experiment with two competing  flows 
 – Timer scheme with original aging values 

V.  CONCLUSIONS AND FURTHER WORK 

We have analyzed and discussed aspects of the flow control or 
fairness algorithm of the Resilient Packet Ring architecture.  
Included in this work is an implementation of an RPR model in 
our discrete event simulator . 
 
We have shown how a revised version of the RPR fairness 
algorithm can be tuned so that it is suitable for a high speed 
network. In particular our implementation of triggers to handle 
fairness seems to be very promising.  Also the use of a higher 
frequence filter seems to be necessary in order to handle quick 
flow changes in high-speed networks with short links.  The 
triggers and the new filter introduce some instability.  The 
duration of these instabilities are short, and have no 
significance in the long run.  They however deserve further 
study, because they could result in unexpected long 
communication delays between processes on different parts of 
the network. 

  
We have investigated and explained the relation between 
passthru buffer threshold values and station-to-station latency. 
In particular we have seen that in LANs and high-speed 
networks with short distances between stations, passthru 
buffers that hold eight to twelve packets are large enough.  
 
The total latency that a packet experience is the propagation 
delay on the links and the combined latency of waiting in the 
ingress buffer and all the passthru buffers under way. We 
would like to understand the trade off between the sizes of 
these buffers.  We will also look at the smoothing effect of 
passthru buffers.  
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Figure 8. Packets received during the duration of the experiment with two competing  flows 
 – Trigger scheme with one sixteenth of the original aging values 
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