

A Fairness Algorithm for High-speed Networks based on
a Resilient Packet Ring Architecture

Stein Gjessing and Arne Maus

Simula Research Laboratory and Department of Informatics

University of Oslo, POB 1080 Blindern, Oslo, Norway

Email: steing@simula.no, arnem@ifi.uio.no

Abstract. IEEE is currently standardizing a spatial reuse ring
topology network called the Resilient Packet Ring (RPR, IEEE
P802.17). The goal of the RPR development is to make a
LAN/MAN standard, but also WANs are discussed. A fairness
algorithm will regulate each stations access to the ring. The RPR
fairness algorithm is being developed with mostly long distances
between stations in mind. In this paper we discuss the feedback
aspects of this algorithm and how it needs to be changed to give
good performance if and when RPR is used for high-speed
networks and LANs with shorter distances between stations. We
suggest the use of triggers instead of timers to meet the response
requirements of high-speed networks. We have developed a
discrete event simulator in the programming language Java. The
proposed improvements are evaluated using a ring network model
that we have built using our simulator.

Keywords. High Speed Communication, Communication
Networks and Protocols, Discrete Event Simulation,
Resilient Packet Rings, Flow control, Fairness algorithm.

I. INTRODUCTION

The IEEE Resilient Packet Ring (RPR) standardization group
works under the LAN/MAN umbrella, and is designated IEEE
P802.17. Its goal is to define a standard

that can be used for high-speed LANs and MANs, but many
companies also sees it as a WAN technology. Another goal is
to be able to use physical layers of different kinds, e.g. high-
speed point-to-point Ethernet.

RPR will define a full duplex ring topology. The nodes on the
ring are called stations. A subnet that connects all the stations
and moves traffic in one direction around the ring is called a
ringlet. RPR will spatially reuse the ring bandwidth by letting
the destinations strip the packets. Hence one packet may flow
on one segment of a ringlet while another packet flows on
another part of the same ringlet at the same time. Figure 1
shows a ring with 16 stations where spatial reuse is illustrated
on the inner ringlet. Notice that each station is connected to
two ringlets, and has a full duplex connection to the outside.
Figure 2 shows one ringlet interface with ingress, egress and
passthru buffers. Packets on their way into the ring are stored
in the ingress buffer, while packets that are stripped from the
ring are stored in the egress buffer. Packets that are traveling
by a station on the ring, while this station sends out a packet
from its ingress buffer, will have to wait in the stations passthru
buffer.

Figure 1. A ring built from two ringlets with spatial reuse shown on the inner ringlet where station 5 sends to station 0 at the same
time as station 13 sends to station 9.

Ring networks have been designed and built for a long time,
and are also extensively studied in the literature[18] [10] [21].
The first ring networks used a token to regulate the access to
the communication medium. Later destination stripping with
spatial reuse was exploited in systems like SRP [23],
MetaRing[6], DQDB [11], ATMR [13], CRMA-II [15] and SCI
[12]. Access to the ring must be controlled by a fairness or
media access control (MAC) algorithm, and several have been
proposed and evaluated [2,5,9,16,17,20].

The rest of this paper is organized as follows: In the next
section we discuss the RPR fairness algorithm and some factors
that could make RPR more suitable for high-speed networks
and LANs. We also outline a new version of our fairness
algorithm that we believe is better for high-speed networks.
Then in section 3 we describe our experimental platform (the
RPR discrete event simulator written in Java), and in section 4
we discuss and evaluate our proposals for improvements using
this platform. In section 5 we conclude and point out further
work.

0 1 2 3 4 5 6 7

15 14 13 12 11 10 9 8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30828262?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 2. Single ringlet network interface

II. PROBLEM STATEMENT

A naïve algorithm for access to the ring is that a station is
allowed to send whenever the passthru buffer is empty, or at
least almost empty. However, a station that is sending a lot can
effectively starve a downstream station if this simple access
principle is used. A control system with feedback to upstream
stations is used in order to avoid starvation and achieve fair
access to the ring. The basis for such a control mechanism is
flow control packets that a station sends upstream when it does
not get its fair share of the bandwidth (it is about to be starved).
Such a packet contains the starving stations current send rate.
When the upstream stations receive flow control packets they
adjust their sending rates to the value advertised in the flow
control packets. When a station does not receive any more
flow packets, it gradually increases its send rate again.

In this way all stations get to send the same amount after a
while. In a WAN the control loop is long because of the long
links between stations. Then it will take some time for the
stations to converge to the same send value. In a high-speed
network convergence should be much faster. In the sequel we
discuss this convergence and the latency of the packets
involved. In the SRP algorithm it is suggested to run the
starving stations own send rate thru a low pass filter before the
value is sent upstream. In the sequel we discuss the values used
in this low pass filter.

Obviously a high-speed network has tighter latency constraints
than a MAN or a WAN that has long distances between
stations. In the SRP, the stations check their states about every
100 microseconds in order to see if a flow control notification
has arrived or should be sent. In this paper we propose that in a
high-speed network it is important to discover these two
situations as early as possible. We propose the use of triggers
so that the correct actions can be taken immediately and we
discuss and evaluate how this improves the behavior of the
network.

III. THE EXPERIMENTAL PLATFORM

We have developed a discrete event simulator in the
programming language Java. This simulator includes an event
queue that is served based on the service time of the
queued events. Eg. when a packet is sent on a link, the arrival
time of the packet on the receiving end of the link will be the
time at which the packet should be taken out of the event queue
and serviced.

We have also developed a model of RPR in Java . The model
is built on top of our Java simulation kernel. Hence we can run
the model and see how it behaves under different architectural
parameters and different traffic patterns. The model is flexible;
we can change it or extend it using the Java language.

In MANs and in WANs the distance between stations are
measured in kilometers. In LANs and high-speed networks the
distance is measured in meters. The difference in propagation
delay and the expected packet latency is a key difference
between these kinds of networks. This report focuses on high-
speed networks and we will hence use a relatively short
distance, mostly about 25 meters, between the stations.

The link speed used is one Gbyte/sec. We use data packets that
are low priority and 500 bytes long, while the flow control
packets are 32 bytes high priority packets. In some of the
experiments we vary the passthru buffer size, but the size is
mostly 5000 bytes, with a threshold (starvation) value of 1500
bytes.

IV. THE EXPERIMENT

We illustrate and discuss our suggested improvements,
including the proposed triggers in the fairness algorithm, with
an experiment, pictured in figure 4. Station 0 sends at full speed
(2 packets per microsecond) to station 6 for the duration of the
experiment (22 milliseconds). Station 2 starts a full speed flow
to station 4 at time 2 milliseconds, and terminates this flow
after 16 milliseconds, i.e. at time 18 milliseconds.

When station 2 starts to send (after 2 milliseconds), both the
passthru buffer and the ingress buffer starts to fill up. When the
size of the passthru buffer reaches the threshold, the station is
congested and sends a flow control notification packet
upstream (upstream links are not showing in figure 4). In the
SRP algorithm, the size of the passthru buffer is checked at
regular intervals. In a MAN/WAN network, this can typically
be done every 100 microseconds [23]. The plot marked “Timer
100 microsec” in figure 5 shows that in a high-speed network,
this is not a good idea. We first explain the nature of figure 5.

Figure 5 shows what happens in the first 125 microseconds
after station 2 has started to send. We have run the experiment
with four different versions of the fairness algorithm; hence
there are four plots in this figure. The latency that packets
experience from the moment they are ready to be put onto the
ring by station 2, until they reach station 4, are plotted on the
y-axis

Egress buffer Ingress buffer

Passthru buffer

Figure 4. A ringlet segment with two competing flows.

. Only packets from station 2 to station 4 are shown. Each point
in the plot represents one packet. The time the packet is
accepted by station 4 is shown on the x-axis. Only those
packets arriving during the first 125 microseconds after time 2
ms. are shown on the figure. When the passthru buffer in
station 2 has reached the threshold value (1500 bytes), only
packets from the passthru buffer are forwarded downstream.
For each run the top latency value is the latency of the packet

sitting at the head of the ingress buffer in station 2 when the
passthru buffer reaches the threshold, and station 2 is not
allowed to send any more. This packet has to wait for the flow
control notification signal to reach station 0, and also wait for
station 0 to send less traffic. Then the passthru buffer will
shrink below the threshold, and the packet that has waited can
finally be transmitted

.

0

20

40

60

80

100

120

2000 2025 2050 2075 2100 2125
Time (microsec)

L
at

en
cy

 (
m

ic
ro

se
c)

Timer 100 microsec.

Timer 20 microsec

Timer 10 microsec

Triggered

Figure 5. The latency of the first packets in the new flow from station 2 to station 4. The new flow starts at time 2000 us, and the

figure shows the latency of the packets arriving during the first 125 us thereafter.

The slower the system reacts to the starvation, the longer the
packet at the head of the ingress queue in station 2 has to wait.
We have tried with 100 microsecond timers, 20 microsecond
timers and 10 microsecond timers. In all these cases we see
that the latency might get unacceptably high (between 14 and
115 microseconds).

The latency values shown for the timers in figure 5 might be
acceptable for a MAN/WAN, but not for a high speed network.
In order to discover the possible upcoming starvation as soon as
possible, we suggest the use of triggers. We have implemented
the fairness algorithm so that whenever there is a line of
packets in the bypass fifo, and a new packet arrives, we test for
a possible starvation. If the passthru buffer is filled above a
certain value, the station immediately sends out a flow control
packet.

When a flow control notification arrives at an upstream station,
the send value in the packet is remembered, but in the timer
scheme it is not reacted upon until the timer goes off. Hence it
may take a while until the station starts sending less traffic.

Again this might be acceptable in a MAN or a WAN, but not
when packet latency should be minimized. Our trigger scheme
will act upon the received flow control notification
immediately, and adjust the stations send rate to the received
value at once. The latency of the packets from the run with the
trigger scheme is almost not visible in figure 5. The trigger
scheme latency is, however, also shown in figure 6 (250ns links
– 1500B threshold).

Figure 6 shows three results using the trigger scheme. Only
packets traveling from station 2 to station 4 during the first 20
microseconds after the flow has started, are plotted. The axes
mean the same as in the previous figure. Notice however that
the scales are different. The bottom curve shows the same
trigger result as in figure 5. The figure also illustrates what
happens if the links between the stations increase in length so
that the one way link latency goes up to 400 and 500 ns. It not
only takes longer for the packets to travel from station 2 to
station 4, but it also takes longer for the flow notification
packet from station 2 to reach the source (station 0).

0 1 2 3 4 5 6

0

0,5

1

1,5

2

2,5

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Time (microsec)

L
at

en
cy

 (
m

ic
ro

se
c)

500ns links - 1500B threshold

400ns links - 1000B threshold

250ns links - 1500B threshold

Figure 6. The latency of the first packets in the new flow from station 2 to station 4. The trigger scheme is used for all three runs.

The new flow starts at time 2000 us, and the figure shows the latency of the packets arriving during the first 20 us thereafter.

In the bottom and the top plots the flow control notification is
sent immediately when the passthru buffer size reaches 1500
bytes. Being emptied at half speed, six more 500 byte packets
can then arrive before the station is congested. During this time
the flow control packet has had enough time to reach station 0,
order it to stop transmitting and for the stop effect to be noticed
at station 2, i.e. a full round trip time between stations 2 and 0.

In the middle plot, however, we have decreased the threshold
value to 1000 bytes, and then the passthru buffer more than fills
up to the threshold while the flow notification packet takes
effect. In order for the plots not to come on top of each other,
we ran that experiment with a link latency of 400ns. In this
middle plot we see that the passthru buffer threshold is so small
that before the flow control notification has had any effect,
station 2 must serve the passthru buffer only, giving the first
packet in the ingress buffer a really long latency (about 2.4
microseconds).

We now turn to a more holistic view of the experiment. In
figures 7 and 8 we see the stability and the adaptation to
changing traffic load of the timer and the trigger scheme.
Results (the y axis) are the number of packets received at the
destination every 100 ms, shown both for the flow from station
0 to station 6 and for the flow from to station 2 to station 4. The
complete experiment takes 26 ms (x axis).

Figure 7 shows the algorithm with a 100 microseconds timer
and the original low pass filter. Figure 8 shows the trigger
scheme and a filter that accepts 16 times faster oscillations.
Because station 0 has been sending for some time when station
2 starts sending, the fairness algorithm at first gives priority to
station 2. In figure 7, station 2 gets to send alone for the
longest time. Figure 7 also shows that the run with the timer

scheme has fluctuations as long as both flows are active. This
scheme is designed for MANs and WANs and will not stabilize
so quickly. However we see that the “waves” are getting
shorter with time, indication that would smooth out if the two
flows had kept on competing.
Figure 8 show great instabilities the first two milliseconds after
the point where the two flows start competing. Then the run
flattens out with almost an exactly 50-50 division of the
bandwidth for a while. Then there are some temporary
instability, before the bandwidth is divided equally again.

When the flow from station 2 to station 4 terminates, the speed
at which station 0 is increasing its send rate is quite different in
the two figures. Here it is easy to see the effect of the low pass
filter. The lowest filter explains the very slow rise of the
sending rate after time 18 milliseconds in figure 7. Because of
the higher frequency filter, in figure 8 it seems like station 0
starts to send at full speed almost immediately after time 18
milliseconds.

In order to investigate long-term stability, we changed the
experiment and let the two flows continue to compete also after
18 milliseconds. With the timer and the original filter, the flow
from 0 to 6 had taken a total of 47 % of the bandwidth after 100
ms., 49 % after 150 ms. and 50% after 200 ms. We ran this
experiment with the trigger version of the algorithm and the
higher frequency filter. Then the flow from 0 to 6 had taken
48% of the bandwidth after 30 ms, 49% of the bandwidth after
50 ms, and 50 % of the bandwidth after 100ms. Hence, both
schemes converge; but the trigger scheme with aggressive
aging values does so much quicker.

0

50

100

150

200

250

0 5000 10000 15000 20000 25000

From 0 to 6 From 2 to 4

Figure 7. Packets received during the duration of the experiment with two competing flows
 – Timer scheme with original aging values

V. CONCLUSIONS AND FURTHER WORK

We have analyzed and discussed aspects of the flow control or
fairness algorithm of the Resilient Packet Ring architecture.
Included in this work is an implementation of an RPR model in
our discrete event simulator .

We have shown how a revised version of the RPR fairness
algorithm can be tuned so that it is suitable for a high speed
network. In particular our implementation of triggers to handle
fairness seems to be very promising. Also the use of a higher
frequence filter seems to be necessary in order to handle quick
flow changes in high-speed networks with short links. The
triggers and the new filter introduce some instability. The
duration of these instabilities are short, and have no
significance in the long run. They however deserve further
study, because they could result in unexpected long
communication delays between processes on different parts of
the network.

We have investigated and explained the relation between
passthru buffer threshold values and station-to-station latency.
In particular we have seen that in LANs and high-speed
networks with short distances between stations, passthru
buffers that hold eight to twelve packets are large enough.

The total latency that a packet experience is the propagation
delay on the links and the combined latency of waiting in the
ingress buffer and all the passthru buffers under way. We
would like to understand the trade off between the sizes of
these buffers. We will also look at the smoothing effect of
passthru buffers.

ACKNOWLEDGEMENT

The authors thanks Olav Lysne for making the initial
simulation kernel and for help in building the discrete event
simulator.

0

50

100

150

200

250

0 5000 10000 15000 20000

0 to 6 2 to 4

Figure 8. Packets received during the duration of the experiment with two competing flows
 – Trigger scheme with one sixteenth of the original aging values

N
um

be
r

of
 p

ac
ke

ts
 p

er
 1

00
 m

ic
ro

se
co

nd
s

Time in microseconds

N
um

be
r

of
 p

ac
ke

ts
 p

er
 1

00
 m

ic
ro

se
co

nd
s

Time in microseconds

REFERENCES

1. ANSI T1.105.01-2000: Synchronous Optical Network (SONET) -
Automatic Protection.

2. H.R. van As: Major Performance Characteristics of the DQDB
MAC Protocol. Telecommunications Symposium, 1990. ITS’90
Symposium Record, SBT/IEEE 1990

3. S. Breuer, T.Meuser: Enhanced Throughput in Slotted Rings
Employing Spatial Slot Reuse. INFOCOM '94. Networking for
Global Communications. IEEE. 1994

4. I. Cidon, L. Georgiadis, R. Guerin, Y. Shavitt: Improved fairness
algorithms for rings with spatial reuse. INFOCOM '94.
Networking for Global Communications. IEEE, 1994

5. I. Cidon, Y. Ofek: Distributed Fairness Algorithms for Local Area
Networks with Concurrent Transmissions. In: Lecture Notes in
Comp. Sci., Vol. 392, Springer, 1988

6. I. Cidon, Y.Ofek: MetaRing - A Full-Duplex Ring with Fairness
and Spatial Reuse.
IEEE Trans on Communications, Vol. 41, No. 1, January 1993.

7. K.C. Claffy: Internet measurements: State of DeUnion.
http://www.caida.org/outreach/presentations/Soa9911

8. M.W. Garrett, S.-Q. Li: A study of slot reuse in dual bus multiple
access networks.
IEEE Journal on Selected Areas in Communications, Vol. 9 Issue
2, Feb. 1991

9. A. Grebe, C. Bach: Performance comparison of ATMR and
CRMA-II in Gbit/s-LANs. SUPERCOMM/ICC '94, IEEE Int.
Conf. on Serving Humanity Through Communications, 1994

10. IEEE Standard 802.5–1989, IEEE standard for token ring
11. IEEE Standard 802.6–1990, IEEE standard for distributed queue

dual bus (DQDB) subnetwork
12. IEEE Standard 1596–1990, IEEE standard for a Scalable Coherent

Interface (SCI)
13. ISO/IECJTC1SC6 N7873: Specification of the ATMR Protocol

(V. 2.0), January 1993
14. I. Kessler, A. Krishna: On the cost of fairness in ring networks.

IEEE/ACM Trans. on Networking, Vol. 1 No. 3, June 1993
15. W.W. Lemppenau, H.R.van As, H.R.Schindler: Prototyping a 2.4

Gbit/s CRMA-II Dual-Ring ATM LAN and MAN.
Proceedings of the 6th IEEE Workshop on Local and
Metropolitan Area Networks, 1993.

16. M.J. Marsan et al.: Slot Reuse in MAC Protocols for MANs. IEEE
J. on Selected Areas in Communications. Vol. 11, No. 8, October
1993.

17. H.R. Muller et al: DQMA and CRMA: New Access Schemes for
Gbit/s LANs and MANs. INFOCOM '90, Ninth Annual Joint
Conference of the IEEE Computer and Communication Societies.
IEEE , 1990

18. R.M. Needham, A.J. Herbert: The Cambridge Distributed
Computing System.
Addison-Wesley, London, 1982.

19. T. Okada, H. Ohnishi, N. Morita: Traffic control in asynchronous
transfer mode.
IEEE Communications Magazine , Vol. 29 Issue 9, Sept. 1991

20. D. Picker, R.D. Fellman: Enhancing SCI’s fairness protocol for
increased throughput.
IEEE Int. Conf. On Network Protocols. October, 1993.

21. F.E. Ross: Overview of FDDI: The Fiber Distributed Data
Interface.
IEEE J. on Selected Areas in Communications, Vol. 7, No. 7,
September 1989.

22. I. Rubin, H.-T. Wu: Performance Analysis and Design of CQBT
Algorithm for a Ring Network with Spatial Reuse. IEEE/ACM
Trans on Networking, Vol. 4, No. 4, Aug. 1996.

23. D. Tsiang, G. Suwala: The Cisco SRP MAC Layer Protocol.
IETF Networking Group, RFC 2892, Aug. 2000

24. S. Gjessing and B.F. Davik: Avoiding Head of Line Blocking
using an Enhanced Fairness Algorithm in a Resilient Packet Ring.
Proceedings 2002 International Conference on
Telecommunications (ICT 2002).

25. Gjessing, S.; Maus, A.; Strøm, T.; Huse, L.P.: Running the
Synthetic Aperture Radar (SAR) Application on a switched SCI
cluster -- Gustavson, D.B.; Li, Q. (ed.): Proceedings The SCIzzL-
12 Low-Cost High-Performance Computing Workshop Santa
Clara University , CA. 1999-08-21.

26. Strøm, T.; Maus, A.; Halfen, B.; Gjessing, S.: A HIC Based SCI

switch - implementation and performance -- Gustavson, D.; Li, Q.
(ed.): SCIzzL-10/11 Workshop Proceedings The SCIzzL-11 Low-
Cost High-Performance Computing Workshop Santa Clara
University , CA. 1999-03-23.

