73,250 research outputs found

    Visual, Motor and Attentional Influences on Proprioceptive Contributions to Perception of Hand Path Rectilinearity during Reaching

    Get PDF
    We examined how proprioceptive contributions to perception of hand path straightness are influenced by visual, motor and attentional sources of performance variability during horizontal planar reaching. Subjects held the handle of a robot that constrained goal-directed movements of the hand to the paths of controlled curvature. Subjects attempted to detect the presence of hand path curvature during both active (subject driven) and passive (robot driven) movements that either required active muscle force production or not. Subjects were less able to discriminate curved from straight paths when actively reaching for a target versus when the robot moved their hand through the same curved paths. This effect was especially evident during robot-driven movements requiring concurrent activation of lengthening but not shortening muscles. Subjects were less likely to report curvature and were more variable in reporting when movements appeared straight in a novel “visual channel” condition previously shown to block adaptive updating of motor commands in response to deviations from a straight-line hand path. Similarly, compromised performance was obtained when subjects simultaneously performed a distracting secondary task (key pressing with the contralateral hand). The effects compounded when these last two treatments were combined. It is concluded that environmental, intrinsic and attentional factors all impact the ability to detect deviations from a rectilinear hand path during goal-directed movement by decreasing proprioceptive contributions to limb state estimation. In contrast, response variability increased only in experimental conditions thought to impose additional attentional demands on the observer. Implications of these results for perception and other sensorimotor behaviors are discussed

    The positional-specificity effect reveals a passive-trace contribution to visual short-term memory.

    Get PDF
    The positional-specificity effect refers to enhanced performance in visual short-term memory (VSTM) when the recognition probe is presented at the same location as had been the sample, even though location is irrelevant to the match/nonmatch decision. We investigated the mechanisms underlying this effect with behavioral and fMRI studies of object change-detection performance. To test whether the positional-specificity effect is a direct consequence of active storage in VSTM, we varied memory load, reasoning that it should be observed for all objects presented in a sub-span array of items. The results, however, indicated that although robust with a memory load of 1, the positional-specificity effect was restricted to the second of two sequentially presented sample stimuli in a load-of-2 experiment. An additional behavioral experiment showed that this disruption wasn't due to the increased load per se, because actively processing a second object--in the absence of a storage requirement--also eliminated the effect. These behavioral findings suggest that, during tests of object memory, position-related information is not actively stored in VSTM, but may be retained in a passive tag that marks the most recent site of selection. The fMRI data were consistent with this interpretation, failing to find location-specific bias in sustained delay-period activity, but revealing an enhanced response to recognition probes that matched the location of that trial's sample stimulus

    Eye-movements in implicit artificial grammar learning

    Get PDF
    Artificial grammar learning (AGL) has been probed with forced-choice behavioral tests (active tests). Recent attempts to probe the outcomes of learning (implicitly acquired knowledge) with eye-movement responses (passive tests) have shown null results. However, these latter studies have not tested for sensitivity effects, for example, increased eye movements on a printed violation. In this study, we tested for sensitivity effects in AGL tests with (Experiment 1) and without (Experiment 2) concurrent active tests (preference- and grammaticality classification) in an eye-tracking experiment. Eye movements discriminated between sequence types in passive tests and more so in active tests. The eye-movement profile did not differ between preference and grammaticality classification, and it resembled sensitivity effects commonly observed in natural syntax processing. Our findings show that the outcomes of implicit structured sequence learning can be characterized in eye tracking. More specifically, whole trial measures (dwell time, number of fixations) showed robust AGL effects, whereas first-pass measures (first-fixation duration) did not. Furthermore, our findings strengthen the link between artificial and natural syntax processing, and they shed light on the factors that determine performance differences in preference and grammaticality classification tests.Max Planck Institute for PsycholinguisticsDonders Institute for Brain, Cognition and BehaviorVetenskapsradetSwedish Dyslexia Foundatio

    Eye movement patterns during the recognition of three-dimensional objects: Preferential fixation of concave surface curvature minima

    Get PDF
    This study used eye movement patterns to examine how high-level shape information is used during 3D object recognition. Eye movements were recorded while observers either actively memorized or passively viewed sets of novel objects, and then during a subsequent recognition memory task. Fixation data were contrasted against different algorithmically generated models of shape analysis based on: (1) regions of internal concave or (2) convex surface curvature discontinuity or (3) external bounding contour. The results showed a preference for fixation at regions of internal local features during both active memorization and passive viewing but also for regions of concave surface curvature during the recognition task. These findings provide new evidence supporting the special functional status of local concave discontinuities in recognition and show how studies of eye movement patterns can elucidate shape information processing in human vision

    The implications of embodiment for behavior and cognition: animal and robotic case studies

    Full text link
    In this paper, we will argue that if we want to understand the function of the brain (or the control in the case of robots), we must understand how the brain is embedded into the physical system, and how the organism interacts with the real world. While embodiment has often been used in its trivial meaning, i.e. 'intelligence requires a body', the concept has deeper and more important implications, concerned with the relation between physical and information (neural, control) processes. A number of case studies are presented to illustrate the concept. These involve animals and robots and are concentrated around locomotion, grasping, and visual perception. A theoretical scheme that can be used to embed the diverse case studies will be presented. Finally, we will establish a link between the low-level sensory-motor processes and cognition. We will present an embodied view on categorization, and propose the concepts of 'body schema' and 'forward models' as a natural extension of the embodied approach toward first representations.Comment: Book chapter in W. Tschacher & C. Bergomi, ed., 'The Implications of Embodiment: Cognition and Communication', Exeter: Imprint Academic, pp. 31-5

    Neuronal activation for semantically reversible sentences

    Get PDF
    Semantically reversible sentences are prone to misinterpretation and take longer for typically developing children and adults to comprehend; they are also particularly problematic for those with language difficulties such as aphasia or Specific Language Impairment. In our study, we used fMRI to compare the processing of semantically reversible and nonreversible sentences in 41 healthy participants to identify how semantic reversibility influences neuronal activation. By including several linguistic and nonlinguistic conditions within our paradigm, we were also able to test whether the processing of semantically reversible sentences places additional load on sentence-specific processing, such as syntactic processing and syntactic-semantic integration, or on phonological working memory. Our results identified increased activation for reversible sentences in a region on the left temporal–parietal boundary, which was also activated when the same group of participants carried out an articulation task which involved saying “one, three” repeatedly. We conclude that the processing of semantically reversible sentences places additional demands on the subarticulation component of phonological working memory

    On Neuromechanical Approaches for the Study of Biological Grasp and Manipulation

    Full text link
    Biological and robotic grasp and manipulation are undeniably similar at the level of mechanical task performance. However, their underlying fundamental biological vs. engineering mechanisms are, by definition, dramatically different and can even be antithetical. Even our approach to each is diametrically opposite: inductive science for the study of biological systems vs. engineering synthesis for the design and construction of robotic systems. The past 20 years have seen several conceptual advances in both fields and the quest to unify them. Chief among them is the reluctant recognition that their underlying fundamental mechanisms may actually share limited common ground, while exhibiting many fundamental differences. This recognition is particularly liberating because it allows us to resolve and move beyond multiple paradoxes and contradictions that arose from the initial reasonable assumption of a large common ground. Here, we begin by introducing the perspective of neuromechanics, which emphasizes that real-world behavior emerges from the intimate interactions among the physical structure of the system, the mechanical requirements of a task, the feasible neural control actions to produce it, and the ability of the neuromuscular system to adapt through interactions with the environment. This allows us to articulate a succinct overview of a few salient conceptual paradoxes and contradictions regarding under-determined vs. over-determined mechanics, under- vs. over-actuated control, prescribed vs. emergent function, learning vs. implementation vs. adaptation, prescriptive vs. descriptive synergies, and optimal vs. habitual performance. We conclude by presenting open questions and suggesting directions for future research. We hope this frank assessment of the state-of-the-art will encourage and guide these communities to continue to interact and make progress in these important areas

    Motor (but not auditory) attention affects syntactic choice

    Get PDF
    Understanding the determinants of syntactic choice in sentence production is a salient topic in psycholinguistics. Existing evidence suggests that syntactic choice results from an interplay between linguistic and non-linguistic factors, and a speaker’s attention to the elements of a described event represents one such factor. Whereas multimodal accounts of attention suggest a role for different modalities in this process, existing studies examining attention effects in syntactic choice are primarily based on visual cueing paradigms. Hence, it remains unclear whether attentional effects on syntactic choice are limited to the visual modality or are indeed more general. This issue is addressed by the current study. Native English participants viewed and described line drawings of simple transitive events while their attention was directed to the location of the agent or the patient of the depicted event by means of either an auditory (monaural beep) or a motor (unilateral key press) lateral cue. Our results show an effect of cue location, with participants producing more passive-voice descriptions in the patient-cued conditions. Crucially, this cue location effect emerged in the motor-cue but not (or substantially less so) in the auditory-cue condition, as confirmed by a reliable interaction between cue location (agent vs. patient) and cue type (auditory vs. motor). Our data suggest that attentional effects on the speaker’s syntactic choices are modality-specific and limited to the visual and motor, but not the auditory, domain

    Preserving neural function under extreme scaling

    Get PDF
    Important brain functions need to be conserved throughout organisms of extremely varying sizes. Here we study the scaling properties of an essential component of computation in the brain: the single neuron. We compare morphology and signal propagation of a uniquely identifiable interneuron, the HS cell, in the blowfly (Calliphora) with its exact counterpart in the fruit fly (Drosophila) which is about four times smaller in each dimension. Anatomical features of the HS cell scale isometrically and minimise wiring costs but, by themselves, do not scale to preserve the electrotonic behaviour. However, the membrane properties are set to conserve dendritic as well as axonal delays and attenuation as well as dendritic integration of visual information. In conclusion, the electrotonic structure of a neuron, the HS cell in this case, is surprisingly stable over a wide range of morphological scales

    Acetylcholine neuromodulation in normal and abnormal learning and memory: vigilance control in waking, sleep, autism, amnesia, and Alzheimer's disease

    Get PDF
    This article provides a unified mechanistic neural explanation of how learning, recognition, and cognition break down during Alzheimer's disease, medial temporal amnesia, and autism. It also clarifies whey there are often sleep disturbances during these disorders. A key mechanism is how acetylcholine modules vigilance control in cortical layer
    • …
    corecore