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ABSTRACT 

Artificial grammar learning (AGL) has been probed with forced-choice behavioral tests 

(active tests). Recent attempts to probe the outcomes of learning (implicitly acquired 

knowledge) with eye-movement responses (passive tests) have shown null results. However, 

these latter studies have not tested for sensitivity effects, for example, increased eye 

movements on a printed violation. In this study, we tested for sensitivity effects in AGL tests 

with (Experiment 1) and without (Experiment 2) concurrent active tests (preference- and 
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grammaticality classification) in an eye-tracking experiment. Eye movements discriminated 

between sequence types in passive tests and more so in active tests. The eye-movement profile 

did not differ between preference and grammaticality classification, and it resembled sensitivity 

effects commonly observed in natural syntax processing. Our findings show that the outcomes 

of implicit structured sequence learning can be characterized in eye tracking. More specifically, 

whole trial measures (dwell time, number of fixations) showed robust AGL effects, whereas first-

pass measures (first-fixation duration) did not. Furthermore, our findings strengthen the link 

between artificial and natural syntax processing, and they shed light on the factors that 

determine performance differences in preference and grammaticality classification tests. 

Keywords: Eye-tracking, implicit learning, artificial grammar learning, syntactic 

processing, preference classification 

 

INTRODUCTION 

The artificial grammar learning (AGL) paradigm probes implicit sequence learning 

(Forkstam & Petersson, 2005; Reber, 1967; Seger, 1994; Stadler & Frensch, 1998; van den Bos & 

Poletiek, 2008) and models aspects of the acquisition of structural knowledge such as linguistic 

syntax (Christiansen, Conway, & Onnis, 2012; Christiansen, Louise Kelly, Shillcock, & Greenfield, 

2010; Conway, Karpicke, & Pisoni, 2007; Lelekov-Boissard & Dominey, 2002; Silva, Folia, 

Hagoort, & Petersson, 2016; Tabullo, Sevilla, Segura, Zanutto, & Wainselboim, 2013; Zimmerer, 

Cowell, & Varley, 2014). The paradigm involves exposure and test phases. In the exposure phase, 

participants are given positive examples of a grammar, often letter sequences. In implicit 

versions of AGL, participants are kept unaware that the sequences are constructed according to 

rules (Figure 1) and may thus be referred to as grammatical sequences. In the test phase, novel 

grammatical sequences are presented together with sequences containing at least one violation 

of grammar rules (i.e., non-grammatical sequences). Participants are asked to make 

grammaticality judgments under forced-choice conditions, and any implicitly acquired 

knowledge is inferred from the accuracy of those judgments—that is, from behavioral 

discrimination between grammatical and non-grammatical sequences. 

 



 

 

 The importance of keeping participants unaware of the learning targets has generated 

some discussion on grammaticality judgment tasks because the test-instructions highlight the 

existence of rules and might therefore lead to explicit processing (Buchner, 1994; Manza & 

Bornstein, 1995). Indirect accuracy-free judgments, such as preference classification 

(like/dislike), have been proposed as an alternative (Forkstam, Elwér, Ingvar, & Petersson, 2008; 

Gordon & Holyoak, 1983; Manza & Bornstein, 1995), with the advantage of allowing for a 

baseline (pre-exposure) measure of accuracy underlying a proper-learning design (Petersson, 

Elfgren, & Ingvar, 1999b, 1999a). Even though preference judgments are sensitive (Folia et al., 

2008; Folia & Petersson, 2014; Forkstam et al., 2008; Silva et al., 2016; Uddén, Ingvar, Hagoort, 

& Petersson, 2012), an involuntary index of learning would be even more akin to the implicit 

character of the process, and it would afford expanding AGL research to populations such as 

infants and animals. Eye movements are not always involuntary (Hayhoe & Ballard, 2011), but 

the probability of being so is high, in the context of viewing AGL test sequences. In addition, eye-

tracking measures reflect acquired knowledge when learning is implicit (Giesbrecht, Sy, & 

Guerin, 2013; Jiang, Won, & Swallow, 2014, but see Coomans, Deroost, Vandenbossche, Van 

Den Bussche, & Soetens, 2012, for the potential role of covert attention). In this study, we 

investigate the suitability of eye-tracking measures in characterizing the outcomes of AGL 

(implicitly acquired knowledge), focusing on the possibility that some form of ocular 

discrimination of sequence types parallels the behavioral discrimination that is observed in 

successful implicit AGL. 

FIGURE 1. The artificial grammar used in this study. Grammatical sequences are generated by 

traversing the transition graph along the indicated directions (e.g., MSVRXVS). An example of a non-

grammatical counterpart would be MSXRXVS, with X being the violating target letter and V a legal 

target letter. 



 Eye-tracking measures have been extensively used in spatial implicit learning, where 

space is the learning target. Paradigms measuring the anticipation of the spatial position of a 

target have relied on saccade latency (Amso & Davidow, 2012) and saccade length (Jiang et al., 

2014). Visual search paradigms relating to contextual cuing effects (implicit learning of spatial 

context) have measured the number of saccades (Hout & Goldinger, 2012) or fixations (Manelis, 

& Reder, 2012) required to scan a scene before the target is found. Scan-path measures, defining 

the exploration overlap of scenes, have been used to index implicit memory (Ryals, Wang, 

Polnaszek, & Voss, 2015). 

 In AGL there are no spatial targets and different approaches are required. To our 

knowledge, only three studies have probed the outcomes of AGL with eye-tracking 

methodologies. Heaver (2012) tested participants for pupillary responses to grammatical and 

non-grammatical sequences at the test phase, and found no discrimination of sequence types 

based on pupil size. Wilson and colleagues (Wilson et al., 2013; Wilson, Smith, & Petkov, 2015) 

delivered auditory stimuli through speakers and analyzed the time participants gazed at the 

speaker area as a function of the grammatical status of the sequence. The paradigm worked for 

primates (Wilson et al., 2013, 2015), who showed longer gaze times for non-grammatical 

sequences, but it did not show any effects in humans (Wilson et al., 2015). However, a behavioral 

forced-choice (grammaticality classification) did work in humans, and it was suggested that this 

might be due to increased levels of attention in the active (forced-choice) compared with the 

passive (eye-tracking only) task. A slightly different, yet related explanation for why eye-tracking 

measures alone might fail to capture AG knowledge relates to the processes that may or may 

not be recruited depending on the behavioral task (e.g., Leeser, Brandl, & Weissglass, 2011). 

Given that AGL involves syntax-like processing (e.g., Christiansen et al., 2010) - and hence a focus 

on dependencies between sequence elements—the required type of analysis may not be 

recruited unless there is an active and suitably syntax-oriented task. The results on implicit AGL 

with preference classification— apparently a nonsyntax-oriented task—contribute to argue 

against this possibility (Folia et al., 2008; Folia & Petersson, 2014; Forkstam et al., 2008; Silva et 

al., 2016; Uddén et al., 2012), but it may nevertheless be considered. 

 Whether passive tests fail in facilitating attention in general, or in eliciting syntactic 

analysis in particular, one may expect that the eye-tracking signatures of AGL resemble the so-

called sensitivity effects. Sensitivity effects have been described in the literature on natural 

syntax processing, and they refer to the fact that readers fixate longer or regress more 

frequently from a violating word compared with its syntactically correct counterpart (Godfroid 

et al., 2015; Keating, 2009; Lim & Christianson, 2014; Sagarra & Ellis, 2013). The reason why 



sensitivity effects may be expected is not that AGL materials resemble written words: AGL 

sequences are meaningless and unpronounceable, and they are presented one at a time, so 

interword regressions do not exist. Instead, sensitivity effects may be expected on the grounds 

that AGL models the acquisition and the processing of natural syntax (Christiansen et al., 2012, 

2010; Conway et al., 2007; Lelekov-Boissard & Dominey, 2002; Silva et al., 2016; Tabullo et al., 

2013; Zimmerer et al., 2014), and so the processing of dependencies among sequence items 

(letters, in this case) is likely to mirror the processing of dependencies among words (sentence 

subunits) in natural language. Moreover, sensitivity effects have been obtained in natural 

language without readers being specifically asked to do syntactic judgments, so it is possible that 

they emerge in passive eye-tracking tests, when no additional task is requested. However, 

natural language is different in one fundamental aspect. Unlike AGL stimuli, natural language 

sentences have both lexical and sentence-level meaning. The presence of semantic content may 

be sufficient to increase the levels of attention or to drive syntactic analysis. From this viewpoint, 

it is less certain that sensitivity effects emerge in AGL, which is semantic-free. As already noted 

above, Wilson and colleagues (2015) suggested that AGL effects do not show up in eye-tracking 

measures. However, Wilson and colleagues (2015) did not probe sensitivity effects (increased 

eye movements on the target letter or event, the one violating the grammar) and so the 

possibility of observing sensitivity effects in implicit AGL remains untested. 

 The first objective of our study was to test for sensitivity effects in a proper-learning 

implicit AGL paradigm (pretest-posttest design, with pre-exposure and post-exposure measures 

of knowledge) with and without a concurrent forced-choice, active test. In the first experiment 

(see Table 1), we used active tests and participants were also tested in a baseline (pre-exposure) 

preference classification task. We compared this with a final (post-exposure) preference 

classification as well as with a grammaticality classification test. In Experiment 2, we started with 

passive tests and added a final active test (grammaticality classification) for within-subject 

comparisons. We predicted that sensitivity effects would be weaker with passive, eye-tracking 

only tests (Experiment 2) than with active ones (Experiment 1), and that the introduction of an 

active test would boost ocular discrimination in Experiment 2. An issue of interest was the 

comparison between ocular discrimination in final preference versus grammaticality 

classification in Experiment 1. Several AGL studies have shown quantitative differences in 

behavioral performance for final preference versus grammaticality classification (Folia et al., 

2008; Folia & Petersson, 2014; Forkstam et al., 2008; Silva et al., 2016; Uddén et al., 2012). 

Behavioral tests completely depend on offline (final) decision processes, which are highly 

susceptible to the self-monitoring of performance (e.g., ‘Should I say I like it?’ in preference, vs. 



‘Should I say it is correct?’ in grammaticality). Differences between preference and 

grammaticality decisions concerning the processes engaged may be responsible for the 

quantitative differences observed so far in behavioral tests. In contrast, eye-tracking measures 

are online measures that capture the whole judgment process. This may include final decision 

processes and influences of self-monitoring, but it also includes the whole processing time 

before a specific response is planned, making eye-tracking measures less susceptible to decision-

related influences than behavioral ones. Thus, if differences between preference and 

grammaticality classification show up in behavioral tests but not in concurrent eye-tracking 

measures, this would suggest that final decision processes are critically involved in behavioral 

differences.  

Table 1 

Design of the Two Experiments 

Phase Day 1 Day 2 Day 3 Day 4 Day 5 

Experiment 1      

      Exposure (G) Yes Yes Yes Yes Yes 

      Active test 

(G-NG) 

Baseline 

preference 

   Final 

preference 

     Grammaticality 

Experiment 2      

      Exposure (G) Yes Yes Yes Yes Yes 

      Passive test 

(G-NG) 

Passive 

baseline 

Passive 

Test 2 

Passive 

Test 3 

Passive 

Test 4 

Passive Test 5 

 Passive Test 1a     

      Active test 

(G-NG) 

    Grammaticality 

Note. G and NG refer to sequence types (G = grammatical; NG = non-grammatical). Text in 

bold indicates eye-tracking recordings. 

a Passive 1 was run after exposure on Day 1. 

 

 The second objective of this study was to determine the type of sensitivity effect 

associated with implicitly acquired knowledge. Despite claims that there is no one-to-one 

mapping between eye movements and awareness (Godfroid & Schmidtke, 2013) and that 

triangulation with verbal data is required to determine whether learning was implicit or not 

(Godfroid & Winke, 2015), it has been proposed that regressions (movements from right to left) 



are associated with explicit knowledge (Godfroid et al., 2015). This claim was based on the 

assumptions that regressions are controlled processes (Reichle, Warren, & McConnell, 2009), 

and that implicit knowledge is accessed by automatic rather than controlled processing. In our 

study, we tested for the more general concept of second-pass reading, including regressions 

(right to left movements) as well as progressions (left to right) to the violating (target) letter 

after the first-fixation on it. For this reason, we used measures related to whole-trial time (dwell 

time, number of fixations), considering first-pass (first-fixation duration) and second pass 

measures (dwell-to-first-fixation ratio) separately. 

 In the two experiments, we controlled for the effects of local subsequence familiarity, 

measured as associative chunk strength (ACS, Knowlton & Squire, 1996; Meulemans & Linden, 

1997), to rule out the possibility that learning is based on overt, surface features of the 

sequences (Shanks & John, 1994) instead of structural features of the underlying grammar (Folia 

et al., 2008; Folia & Petersson, 2014; Forkstam et al., 2008; Silva et al., 2016; Uddén et al., 2012). 

As in our previous studies, we used a multiday paradigm to allow abstraction and consolidation 

processes to take place (e.g., Nieuwenhuis, Folia, Forkstam, Jensen, & Petersson, 2013). 

 

 EXPERIMENT 1: EYE MOVEMENTS IN ACTIVE TESTS 

In the first experiment, we tested whether eye movements concurrent with active, 

forced-choice classification tests reveal artificial grammar learning (AGL). We used a proper-

learning paradigm (Folia et al., 2008; Folia & Petersson, 2014; Petersson et al., 1999b, 1999a), 

where the focus is on changes in discrimination between sequence types (grammatical vs. non-

grammatical) after exposure. 

 

METHOD 

PARTICIPANTS 

Thirty-three healthy adults with normal or corrected-to-normal vision volunteered to 

take part in the experiment. Due to excessive eye-tracking artifacts, three participants were 

excluded from further analysis. From the remaining 30 participants, 13 were female (M age ± SD 

= 26 ± 5). All participants were prescreened for medication use, history of drug abuse, head 

trauma, neurological or psychiatric illness, and family history of neurological or psychiatric 



illness. Written informed consent was obtained from all according to the protocol of the 

Declaration of Helsinki. 

 

STIMULUS MATERIAL 

Sequences were generated from the Reber grammar represented in Figure 1 (5 to 12 

consonants long, from the alphabet [M, S, V, R, X], see the Appendix 1). For a detailed description 

of the procedure to generate the stimulus material, see Forkstam, Hagoort, Fernandez, Ingvar, 

& Petersson, 2006). For the exposure phase (see Table 1), we generated one acquisition set with 

100 grammatical sequences (G). To engage participants in same/different judgments (cf. 

Procedure section), we paired 50 of these sequences with themselves (“same”) and the 

remaining 50 with another string from the set (“different”). We created five different pairings 

for presentation in each of the 5 days of exposure, using the same 50/50 proportion. For the 

test phase, we generated three additional classification sets, each with 60 novel grammatical 

(G) and 60 non-grammatical (NG) sequence pairs that were matched for associative chunk 

strength (ACS). In sum, each classification set consisted of 30 sequences of each sequence type: 

high ACS grammatical (HG), low ACS grammatical (LG), high ACS non-grammatical (HNG), and 

low ACS non-grammatical (LNG). HG sequences were paired with HNG, and LG with LNG, such 

that each pair differed in one letter, named the target letter (legal in G vs. violating in NG). The 

target letter appeared in random, nonterminal positions. 

 

PROCEDURE 

Participants were exposed to implicit acquisition sessions over 5 days (see Table 1). The 

sessions were constructed as short-term memory tasks of visually presented grammatical 

sequences. Each sequence from the 100-sequence set was presented during 4 s on a computer 

screen, followed by a fixation cross for 1 s. After the cross, either the same or a different 

sequence was presented for 4s. The participant responded whether the sequences were either 

the same or different, in a self-paced manner and without performance feedback. Each session 

lasted approximately 30 min. In the test sessions, participants performed a forced-choice 

classification task. On the first day, before the first acquisition session, participants classified 120 

sequences according to whether they liked it or not, based on their immediate intuitive 

impression, or “gut feeling” (i.e., baseline preference classification). They did the same with 

novel sequences on the fifth day, after the last acquisition session (i.e., final preference 



classification). Then we informed participants about the existence of an underlying complex set 

of rules generating the acquisition sequences, and they performed the third and last 

classification session. They classified sequences in the new set as grammatical or not 

(grammaticality classification) on the basis of their immediate intuitive impression (“gut 

feeling”). The three classification sets were disjoint (no overlap) and balanced across 

participants. Each sequence was presented for four seconds, after which the participant 

responded with a button press. At the end of the experimental procedure, participants filled in 

a questionnaire to assess potential explicit knowledge of the grammar. They were asked 

whether they had noticed any regularity in the stimuli. They were also asked about any 

technique they might have used for classification, including any combination of letters and/or 

the location or pattern of letters within the sequences. Finally, they were invited to generate 10 

grammatical sequences. 

 

EYE –TRACKING DATA RECORDING AND PREPROCESSING 

Eye movements from test sessions were recorded with an EyeLink 1000 eye-tracking 

system (http://sr-research.com). Sequences were presented centrally on the computer screen, 

and they were preceded by fixation crosses aligned with the first (left-most) letter. The monitor, 

55.8 cm wide, was placed 70 cm away from the participant. At this distance, each letter (font 

size 36) encompassed approximately 1° of the horizontal visual angle. Before each classification 

session, a five-point calibration procedure was implemented, and calibration was repeated after 

tracking errors larger than 0.5°. Participants placed their head on a chin rest. They were asked 

to stand still, relax, and blink as little as possible during sequence presentation. The raw signal 

was inspected, such that participants with high levels of artifacts (blinks and signal loss) were 

excluded from the analysis (n = 3). The analysis was based on the number and duration of events 

(fixations and saccades). Each letter sequence and target letter was surrounded by rectangular 

areas of interest, such that four target-letter-related eye-movement features would be 

computed: the dwell-time proportion (fixation and saccade times on the letter, relative to dwell 

time on the whole sequence), the proportion of fixations (number of fixations on letter relative 

to those on sequence), the (absolute) duration of the first-fixation, and the ratio between dwell 

time on the target letter and the first-fixation on it (dwell/first-fixation). The first two features 

provide an overall picture of the processing of the target letter. First-fixation duration indicates 

the first-pass response to the violation, whereas the ratio between dwell and first-fixation 

signals the amount of second-pass responses in relation to first-fixation duration, which may 



vary across participants/trials and thus becomes normalized. We preferred this relative measure 

of second-pass over an absolute one because it seemed to better capture how much the 

participant needed to expand her/his first (variable) contact with the target. Data were 

inspected for outliers (±3 SD > M), and outlier trials were removed from the analysis. Null values 

for first-fixation duration and dwell-to-first-fixation ratio were classified as missing values (no 

fixation on the critical letter). The data points that entered the analysis (out of 7200 potential 

data points—30 participants x 120 items x 2 tests) are quantified in Tables 2 and 3. 

 

STATISTICAL ANALYSIS 

Behavioral and eye-tracking data were analyzed with linear mixed-effects models as 

implemented in the lme4 package (Bates, 2010; Bates, Maechler, Bolker, & Walker, 2014) for R 

(http://www.R-project.org/). We focused on changes in the effects of grammatical status (gram, 

G vs. NG) and/or ACS (high vs. low) across tests. We compared baseline preference with final 

preference to check for learning (increased discrimination between G and NG), and then we 

compared the two active tests (final preference and grammaticality). The primary interaction of 

interest was Test x Gram, defining grammar-based learning. Conversely, Test x ACS tested for 

learning based on the knowledge of surface features. The Test x Gram x ACS interaction defined 

the extent to which grammaticality or ACS effects depended on each other. 

The full model had test (baseline preference vs. final preference or final preference vs. 

grammaticality), grammatical status (gram, G vs. NG), and ACS (high vs. Low) as fixed factors, 

together with random intercepts for participants. The model was fitted using the ML criterion 

so as to allow significance testing, which was achieved by comparing the full model with models 

without the interactions whose significance was being tested. Namely, we first tested the Test x 

Gram x ACS interaction by comparing the full model with a second one (Model 2, without the 

third-order interaction), testing for (Test x Gram) + (Test x ACS). Then we tested Test x Gram and 

Test x ACS by respectively comparing Model 2 with Model 3a (without Test x Gram), defined by 

(Test x ACS) + Gram, and Model 2 with Model 3b (without Test x ACS), defined by (Test x Gram) 

+ ACS. Additionally, and given the large sample size, absolute t values larger than 2 were taken 

as indicators that the fixed-effects parameters were significant at the 5% level (Baayen, 

Davidson, & Bates, 2008). When significant, Test x Gram x ACS interactions were broken down 

(Test x Gram in high ACS vs. low ACS). For significant Test x Gram interactions, we ran post hoc 

tests of grammatical status effects on pre-exposure and post-exposure tests separately. Ideally, 

there should be no pre-exposure grammatical effects (no grammar knowledge), but these do 



not contradict learning evidence as long as significant Test x Gram interactions exist, and this is 

why a proper-learning design is important. Concerning post-exposure grammatical effects, these 

should be observed as evidence that effective sensitivity to grammatical status resulted from 

exposure. 

We used a similar approach to analyze behavioral data. Here, the dependent variable 

was the participant’s endorsement rate, defining the proportion of items that were classified as 

grammatical (endorsed G items are correct responses, whereas endorsed NG items are 

incorrect). We complemented the analysis of behavioral data with estimates of accuracy and d’ 

against chance levels by means of one-sample t tests. 

Post-experimental data (questionnaires) were analyzed for indices of structural explicit 

knowledge: Verbal reports concerning awareness of rules were checked for consistency with the 

grammar (full consistence would indicate awareness), and the accuracy in generating 

grammatical sequences was computed (proportion of valid sequences, among the 10 sequences 

requested). Valid (grammatical) sequences were then analyzed one-by-one, so as to exclude 

generated sequences that had been presented during the acquisition or classification tasks. Our 

assumption was that the generation (recall) of sequences that were previously seen by 

participants is not a valid expression of structural knowledge because it may simply reflect 

participants’ memory for concrete exemplars (see, e.g., Pothos, 2007). Memory for concrete 

exemplars is highly unlikely to account for eye-tracking sensitivity effects (response to violation 

letters) and is thus irrelevant for understanding our results. After excluding non-novel 

sequences, we were left with generator participants (those generating novel grammatical 

sequences) and nongenerators (generated none). Generators may be considered potential 

explicit learners but it may also not be the case: a small number of novel grammatical sequences 

may result from chunk memory (i.e., memory of frequent fragments, which may be 

concatenated as legal sequences by chance; see Pothos, 2007), and chunk memory is also 

irrelevant for understanding ocular responses to a violating letter. Still, we wanted to grant that 

the whole group’s pattern of results did not reflect the influence of generators (potential explicit 

learners). To that end, we did a control analysis in which we considered the behavioral and eye-

tracking data of nongenerators (strict implicit learners) separately. If nongenerators replicated 

the pattern of the whole group and survive the exclusion of potential explicit learners, this would 

be evidence that our pattern of findings reflects implicitly acquired knowledge. 

 

 



RESULTS 

BEHAVIORAL RESULTS 

Accuracy was at chance levels in baseline preference (M = 49%), t(29) = -0.539, p > .59, 

and above chance levels after exposure (final preference: M = 59%, t[29] = 4.32, p < .001; 

grammaticality: M = 63%, t[29] = 4.85, p < .001). Discrimination between G and NG sequences 

(difference between endorsement rates) increased after exposure (see Figure 2), as shown by a 

significant Test x Gram interaction for baseline preference against final preference (see Table 2). 

The non-significant Test x Gram x ACS interaction indicated that increased discrimination did not 

depend on ACS. The Test x ACS interaction was non-significant, ruling out ACS-based learning. 

Comparisons between final preference and grammaticality classification showed increased 

discrimination in the latter (see Table 3), and again there were no significant effects involving 

ACS. In line with this, d’ did not differ significantly from zero in baseline preference (M = -0.045), 

t(29) = -0.56, p > .57, but it did so in final preference (M = 0.544), t[29] = 3.99, p < .001, and 

grammaticality (M = 0.878), t(29) = 4.75, p < .001. In summary, the results showed that the 

exposure to grammatical examples induced the acquisition of knowledge based on grammatical 

status and not on ACS, entirely consistent with previous findings (Folia et al., 2008; Folia & 

Petersson, 2014; Forkstam et al., 2008; Silva et al., 2016; Uddén et al., 2008). 

 

FIGURE 2. Mean endorsement rates (classification as grammatical) in Experiment 1 as a function of 

test, grammatical status (G = grammatical; NG = non-grammatical) and associative chunk strength 

(ACS). Error bars indicate the standard error of the mean. 



 

Table 2 

Experiment 1: Comparison between Baseline Preference and Final Preference 

 Behavioral 

(endorsement 

rates) 

Eye-tracking 

Effect 

First-fixation 

duration 

Dwell time 

(proportion) 

Fixation 

(proportion) 

Dwell/first-

fixation 

Fixed effect      

      Test x Gram x 

ACS 
𝑋2(2) = 1.63, 𝑝

=  .44 

𝑋2(2)

= 1.17, 𝑝

=  .56 

𝑋2(2)

= 7.46, 𝑝

<  .05 

𝑋2(2)

= 14.0, 𝑝

<  .001 

𝑋2(2) = 0.48, 𝑝

=  .78 

      Test x Gram 
𝑋2(1) = 33.4, 𝑝

<  .001 

𝑋2(1)

= 1.18, 𝑝

=  .28 

𝑋2(1)

= 18.7, 𝑝

<  .001 

𝑋2(1)

= 19.1, 𝑝

<  .001 

𝑋2(1) = 15.8, 𝑝

<  .001 

      Test x ACS 
𝑋2(1) = 0.58, 𝑝

=  .44 

𝑋2(1)

= 0.03, 𝑝

=  .87 

𝑋2(1)

= 0.14, 𝑝

=  .70 

𝑋2(1)

= 0.14, 𝑝

=  .71 

𝑋2(1) = 1.89, 𝑝

=  .17 

      

Random effect Var (SD) Var (SD) Var (SD) Var (SD) Var (SD) 

      Participant 

(intercept) 
77.2 (8.79) 651.8 (25.5) 0.0003 (0.0173) 0.0002 (0.0159) 0.0240 (0.1551) 

      Residual 
326.6 (18.1) 12060 (109.8) 0.0044 (0.0662) 

0.0056 

(0.07514) 
1.0529 (1.0261) 

      Number of 

observations 
480 4188 6095 6240 4246 

Note. N = 30. Test = Baseline Preference vs. Final Preference; Gram = Grammatical status (grammatical vs. non-

grammatical); ACS = Associative Chunk Strength (high vs. low); Var = variance. 

 

Post-experimental verbal reports showed no evidence of explicit learning or awareness 

of the underlying grammar. Some participants reported decision criteria other than gut-feeling 

(e.g., terminal letters), but these were never fully consistent with the grammar. In the sequence 

generation task, some participants generated valid (grammatical) sequences. However, only a 

few of these were novel relative to the acquisition and classification sets, suggesting that most 

sequences were memorized exemplars. Novel sequences were generated by 13 participants (17 

generated none), and the mean accuracy level for the whole group was 7%. A closer inspection 



showed that the structure of the successfully generated novel sequences (as well as that of 

unsuccessfully generated ones) was based on the concatenation of frequent chunks (e.g., MS + 

VRX), indicating that the generation of novel sequences was based on memory for chunks rather 

than structural knowledge. Altogether, these facts strongly suggest that structural explicit 

knowledge did not take place. Nevertheless, we analyzed the behavioral accuracy levels for the 

nongenerators (17 participants with successful generation = 0) separately, so as to make sure 

that the global indices of knowledge were not expressing the performance of generators 

(generation > 0), who might be considered potential explicit learners under utmost skepticism. 

In line with our expectations, the accuracy of nongenerators (strict implicit learners) was at 

chance levels in baseline preference (M = 51%), t(16) = .298, p > .76, and above chance levels 

after exposure (final preference: M = 59%, t[16] = 4.07, p = .001; grammaticality: M = 62%, t[16] 

= 3.94, p = .001). Therefore, the grammar-based learning pattern observed in the whole group 

did not result from the influence of potential explicit learners. We repeated this control analysis 

for eye-tracking data, as shown subsequently.  

EYE-TRACKING RESULTS 

The comparison between baseline preference and final preference showed increased 

post-exposure discrimination (significant Test x Gram interactions; see Figure 3 and Table 2) in 

all eye-tracking measures but first-fixation duration. Consistent with this, post hoc comparisons 

revealed significant differences between G and NG sequences in final preference for dwell time, 

𝑋2(1) = 77.8, p < .001, fixations, 𝑋2(1) = 72.1, p < .001, and dwell/first-fixation, 𝑋2(1) = 51.1, p < 

.001, but not for first-fixation duration (p > .14). At baseline preference, there were grammatical 

effects on dwell, 𝑋2(1) = 10.8, p < .001, and fixations, 𝑋2(1) = 7.33, p < .01, but not on dwell/first-

fixation (p > .18) or first-fixation (p > .91). Comparisons between final preference and 

grammaticality (see Table 3) showed no changes. In both comparisons (baseline preference vs. 

final preference, final preference vs. grammaticality), there were significant Test x Gram x ACS 

interactions, but they were merely quantitative and did not affect the learning pattern. From 

baseline preference to final preference, discrimination increased for both High ACS (dwell: 𝑋2[1] 

= 16.7, p < .001; fixations: 𝑋2[1] = 14.9, p < .001) and Low ACS sequences (dwell: 𝑋2[1] = 5.06 p 

< .05; fixations: 𝑋2[1] = 6.43, p < .05), and from final preference to grammaticality it remained 

constant in both ACS levels (High ACS: dwell: 𝑋2[1] = 0.84, p = .36; fixations: 𝑋2[1] = 0.16, p = 

.69; Low ACS: dwell: 𝑋2[1] = 0.12, p = .73; fixations: 𝑋2[1] = 0.42, p = .51). There was no evidence 

of ACS-based change (Test x ACS) in eye movements. 



The ocular patterns of nongenerators (participants generating no valid sequences, n = 

17) were similar to those of the whole group (see Figure 4). In the comparison between baseline 

preference and final preference, there were significant Test x Gram interactions for dwell time, 

𝑋2 (1) = 4.37, p = .036, number of fixations, 𝑋2(1) = 4.92, p = .026, a marginal interaction for 

dwell/first fixation, 𝑋2(1) = 2.81, p = .093, and no interaction for first fixation duration, 𝑋2(1) = 

1.73, p = .18. Interactions among test, grammaticality, and ACS were non-significant (all ps > 

.13), and so were Test x ACS interactions (all ps > .30). Comparisons between final preference 

and grammaticality classification showed non-significant effects. 

 

FIGURE 3. Mean eye-tracking measures for the target letter in Experiment 1 as a function of test, 

grammatical status (G = grammatical; NG = non-grammatical) and associative chunk strength (ACS). 

Error bars indicate the standard error of the mean. 



Table 3 

Experiment 1: Comparison between Final Preference and Grammaticality Classification 

 Behavioral 

(endorsement 

rates) 

Eye-tracking 

Effect 

First-fixation 

duration 

Dwell time 

(proportion) 

Fixation 

(proportion) 

Dwell/first-

fixation 

Fixed effect      

      Test x Gram x 

ACS 

𝑋2(2)

= 1.26, 𝑝

=  .53 

𝑋2(2)

= 1.17, 𝑝

=  .56 

𝑋2(2) = 7.46, 𝑝

<  .05 

𝑋2(2)

= 12.6, 𝑝

<  .01 

𝑋2(2) = 0.48, 𝑝

=  .78 

      Test x Gram 𝑋2(1)

= 4.45, 𝑝

<  .05 

𝑋2(1)

= 1.20, 𝑝

=  .27 

𝑋2(1) = 0.13, 𝑝

=  .72 

𝑋2(1)

= 0.06, 𝑝

=  .81 

𝑋2(1) = 2.78, 𝑝

=  .10 

      Test x ACS 𝑋2(1)

= 2.32, 𝑝

=  .13 

𝑋2(1)

= 0.58, 𝑝

=  .45 

𝑋2(1) = 0.14, 𝑝

=  .70 

𝑋2(1)

= 1.11, 𝑝

=  .29 

𝑋2(1) = 3.80, 𝑝

=  .05 

Random effect Var (SD) Var (SD) Var (SD) Var (SD) Var (SD) 

      Participant 

(intercept) 
70.2 (8.38) 580.7 (24.1) 0.0003 (0.0183) 0.0003 (0.0172) 0.0278 (0.1666) 

      Residual 428.6 (20.7) 12023 (110) 0.0048 (0.0649) 0.0059 (0.0769) 1.1184 (1.057) 

      Number of 

observations 
480 4425 6098 6264 4246 

Note. N = 30. Test = Final Preference vs. Grammaticality Classification; Gram = Grammatical status 

(grammatical vs. non-grammatical); ACS = Associative Chunk Strength (high vs. low); Var = variance. 

 

DISCUSSION 

With the exception of first-fixation duration, all eye-tracking measures paralleled 

behavioral findings and showed increased discrimination between grammatical and non-

grammatical sequences after exposure. Thus, eye-tracking measures showed sensitivity effects 

in our active forced-choice test. First-fixation duration did not show any significant sensitivity 

effects, an issue we return to in the General Discussion. Unlike behavioral measures, eye 

movements revealed no differences between preference and grammaticality classification, 

suggesting that previous evidence of quantitative differences in the sensitivity of both tests (e.g., 

Folia et al., 2008) may reflect decision-related processes (see General Discussion). Neither 

behavioral nor eye-tracking results indicated learning based on surface features (ACS). The 



observed pattern of eye-tracking results remained after the exclusion of potential explicit 

learners. In summary, this experiment showed that eye movements capture the outcomes of 

implicit AGL when participants are engaged in an active, forced choice task. In Experiment 2, we 

test whether this is or is not the case during passive testing, where no instruction is provided. 

 

 

 

 

FIGURE 4. Mean eye-tracking measures for the target letter in Experiment 1 as a function of test, 

grammatical status (G = grammatical; NG = non-grammatical) and performance in the sequence 

generation task (between-subjects factor: nongenerators [generation = 0, n = 17] vs. generators 

[generation = 0, n = 13]). Error bars indicate the standard error of the mean. 



EXPERIMENT 2: EYE MOVEMENT IN PASSIVE TESTS 

As in Experiment 1, we approached AGL with a proper-learning paradigm using passive 

tests (see Table 1). A group of participants different from that of Experiment 1 was exposed to 

the artificial grammar, and eye movements were recorded before and after exposure, under no 

instruction other than to look at the sequences. To reach a within-subjects comparison of test 

effects (passive vs. active), we added an active test upon completion of the experiment (see 

Table 1). If discriminative eye movements are facilitated by active tests, ocular discrimination 

should be less apparent in the present experiment compared with the previous one, and the 

introduction of an active test in the present experiment should boost discrimination. 

METHOD 

PARTICIPANTS 

Twenty-nine participants took part in the experiment, and 1 was excluded for excess of 

artifacts. The remaining 28 (M age ± SD = 25 ± 8; 23 female) complied with the selection criteria 

of Experiment 1. 

STIMULUS MATERIALS 

The grammar from Experiment 1 was used to generate one acquisition set (64 items) 

and seven test sets (16 x 4 = 64 items each). The structure of the stimulus material was identical 

to Experiment 1. 

PROCEDURE 

Participants were exposed to five acquisition sessions (see Table 1), on five different 

days. Sessions were approximately 20 min long. As in Experiment 1, they did same/different 

judgments on paired sequences (32 same/32 different, five different pairings across the five 

sessions). Before the first session, they underwent a passive baseline test, where eye-tracking 

measures were collected in response to 32 G and 32 NG sequences (16 high and 16 low ACS in 

each group). At the end of each acquisition session, a passive test was run (Passive Tests 1 

through 5). In all passive tests, participants were instructed to look at the sequences. On Day 5, 

the passive test was followed by a grammaticality classification (active) test similar to 

Experiment 1. 

 

 



EYE-TRACKING DATA RECORDING AND PREPROCESSING 

Data recording and preprocessing followed the steps described for Experiment 1. 

Artifact inspection led to the exclusion of 1 participant. The data points that entered the analyses 

(out of 10752 potential data points—28 participants x 64 items x 6 tests, for the first comparison; 

out of 3584 data points—28 participants x 64 items x 2 tests, for the other comparison) are 

quantified in Table 4 and Table 5, respectively. 

 

STATISTICAL ANALYSIS 

The analysis was similar to that in Experiment 1. We focused on two different 

comparisons: across all passive tests (six levels for test factor), and between the last passive test 

and the active grammaticality test (two levels). In this experiment, behavioral data could not be 

analyzed with a proper learning approach because no active baseline was included. Therefore, 

we analyzed endorsement rates, accuracy and d’ in the (single) active test of this experiment. 

 

RESULTS 

BEHAVIORAL RESULTS  

Accuracy was significantly above chance levels (M = 65%), t(27) = 4.99, p < .001. 

Participants discriminated between grammatical and non-grammatical sequences in 

grammaticality classification (see Figure 5; gram: 𝑋2[2] = 48.1, p < .001), and this was 

independent from ACS (Gram x ACS: 𝑋2[1] = 66.2, p = .18). The d’ was significantly different from 

zero (M = 0.90), t(29) = 4.92, p < .001. 

Post-experimental data paralleled that of Experiment 1. Participants showed no 

evidence of explicit knowledge of the artificial grammar in their verbal reports, although some 

participants generated valid sequences. As in Experiment 1, only a few sequences were novel 

(M = 7% novel, correct sequences provided by 11 participants), and these were made up of 

frequent chunks. The accuracy level of nongenerators (n = 17) in the grammaticality 

classification task was above chance (M = 59%), t(16) = 2.52, p = .023. As in Experiment 1, we 

analyzed separately the ocular patterns of these 17 nongenerators for control (see subsequent 

text). 

 



 

EYE-TRACKING RESULTS 

Discrimination based on grammatical status increased across passive tests (baseline plus 

five subsequent tests) for the proportion of dwell time and dwell-to-first-fixation ratio (see 

Figure 6 and Table 4). There were also marginal changes for the proportion of fixations. 

Nevertheless, individual comparisons between baseline and each subsequent test indicated 

significant differences in only one case, namely for dwell time on Day 4 against baseline (b = 

0.0105, SE = 0.00519, t = 2.02). 

Nongenerators alone (participants generating zero valid sequences, n = 17) were not 

able to fully provide the pattern of Test x Gram interactions seen for the whole group (see Figure 

7): The interaction was marginal for dwell time, 𝑋2(1) = 10.33, p = .066, and non-significant for 

fixations (p > .14) as well as dwell/first-fixation time (p > .46). For dwell time and number of 

fixations, this seemed to be due to loss of statistical power because the group of generators 

(participants generating valid sequences, n = 11) showed even fewer significant interactions 

(dwell: p > .50; fixations: p > .61). Thus, the ocular pattern of generators (potential explicit 

learners) does not seem to have been responsible for the results of the whole group. A different 

scenario showed up for dwell/first-fixation, where the Test x Gram interaction was significant 

for generators, 𝑋2(1) = 13.38, p = .023, and non-significant for nongenerators (p > .46). Still, the 

FIGURE 5. Mean endorsement rates (classification as grammatical) in Experiment 2 as a function of 

test, grammatical status (G = grammatical; NG = non-grammatical) and associative chunk strength 

(ACS). Error bars indicate the standard error of the mean. 



interaction among test, grammaticality, and generation (generators vs. nongenerators) was non-

significant, 𝑋2(1) = 6.38, p > .38. For nongenerators, the interaction among test, grammaticality, 

and ACS was never significant (all ps > .40), and so was the interaction between test and ACS (all 

ps > .09). 

Table 4 

Experiment 2: Comparison across Passive Tests (Passive Baseline and Passive Tests 1 Through 

5) 

Effect 

First-fixation 

duration 

Fixation 

(proportion) 

Dwell time 

(proportion) 

Dwell/first-

fixation 

Fixed effect     

      Test x Gram x 

ACS 

𝑋2(6)

= 2.41, 𝑝

=  .88 

𝑋2(6) = 3.73, 𝑝

=  .71 

𝑋2(6)

= 4.05, 𝑝

=  .67 

𝑋2(6) = 3.53, 𝑝

=  .74 

      Test x Gram 𝑋2(5)

= 5.72, 𝑝

=  .33 

𝑋2(5) = 9.35, 𝑝

=  .10 

𝑋2(5)

= 14.1, 𝑝

<  .05 

𝑋2(5) = 11.2, 𝑝

<  .05 

      Test x ACS 𝑋2(5)

= 4.07, 𝑝

=  .54 

𝑋2(5) = 5.89, 𝑝

=  .32 

𝑋2(5)

= 6.19, 𝑝

=  .29 

𝑋2(5) = 3.24, 𝑝

=  .66 

Random effect Var (SD) Var (SD) Var (SD) Var (SD) 

      Participant 

(intercept) 
1245 (35.3) 

0.00016 

(0.01246) 

0.00012 

(0.01082) 
22020 (0.04849) 

      Residual 
11597 (107.7) 

0.00382 

(0.06180) 

0.00260 

(0.05095) 

1.45024 

(1.20430) 

      Number of 

observations 
7034 9032 8820 6869 

Note. N = 28. Test = Passive Baseline vs. Passive Tests 1 through 5; Gram = Grammatical 

status (grammatical vs. non-grammatical); ACS = Associative Chunk Strength (high vs. low); 

Var = variance. 

 

Comparisons between Passive Test 5 and the active grammaticality test that was 

performed immediately after (see Table 5) revealed significant increases in discrimination for 

first-fixation duration and proportion of dwell time. There was a marginal increase for 

proportion of fixations. Consistent with the learning profile signaled by interactions, passive 



baseline did not show any grammaticality effects (ps > .31), Passive Tests 1 through 5 (collapsed) 

showed significant grammaticality effects on dwell time, 𝑋2(1) = 24.9, p < .001, fixations, 𝑋2(1) 

= 34.9, p < .001, and dwell/first-fixation, 𝑋2(1) = 24.8, p < .001, but not on first-fixation duration 

(p > .44), and the active grammaticality test showed significant grammaticality effects on all 

measures (first-fixation: 𝑋2[1] = 14.4, p < .001; dwell: 𝑋2[1] = 24.4, p < .001; fixations: 𝑋2[1] = 

21.2, p < .001; dwell/first-fixation: 𝑋2[1] = 7.82, p < .001). 

 

 

 

FIGURE 6. Mean eye-tracking measures for the target letter in Experiment 2 as a function of test 

(Passive bl = passive baseline; Passive 1–5 = Passive Tests 1 through 5; Active gr = active grammaticality 

classification), grammatical status (G = grammatical; NG = non-grammatical) and associative chunk 

strength (ACS). Error bars indicate the standard error of the mean. 



Nongenerators alone did not show the grammaticality-related changes of the whole 

group (dwell: p > .22; fixations: p > .16; first-fixation: p > .12), but generators alone did not show 

it either (dwell: p > .11; fixations: p > .33; first-fixation: p > .16). So, once again, the global pattern 

of results was not due to the influence of generators. Nongenerators showed no Test x Gram x 

ACS interactions (p > .05), and they showed a significant Test x ACS interaction for first-fixation 

duration (p > .05). 

 

Table 5 

Experiment 2: Comparison between Passive Test 5 and Grammaticality Classification 

Effect 

First-fixation 

duration 

Fixation 

(proportion) 

Dwell time 

(proportion) 

Dwell/first-

fixation 

Fixed effect     

      Test x Gram x 

ACS 

𝑋2(2)

= 0.59, 𝑝

=  .74 

𝑋2(2) = 2.56, 𝑝

=  .28 

𝑋2(2)

= 4.86, 𝑝

=  .09 

𝑋2(2) = 2.27, 𝑝

=  .32 

      Test x Gram 𝑋2(1)

= 4.30, 𝑝

<  .50 

𝑋2(1) = 2.81, 𝑝

=  .09 

𝑋2(1)

= 5.07, 𝑝

<  .05 

𝑋2(1) = 0.77, 𝑝

=  .38 

      Test x ACS 𝑋2(1)

= 5.45, 𝑝

<  .05 

𝑋2(1) = 5.22, 𝑝

<  .05 

𝑋2(1)

= 1.87, 𝑝

=  .17 

𝑋2(1) = 0.99, 𝑝

=  .32 

Random effect Var (SD) Var (SD) Var (SD) Var (SD) 

      Participant 

(intercept) 
1502 (38.8) 

0.00020 

(0.01421) 

0.00019 

(0.01380) 

0.03600 

(0.18970) 

      Residual 
11462 (107.1) 

0.00443 

(0.06657) 

0.00344 

(0.05864) 

1.57400 

(1.25440) 

      Number of 

observations 
2368 3020 2892 2329 

Note. N = 28. Test = Passive Test 5 vs. Grammaticality; Gram = Grammatical status 

(grammatical vs. non-grammatical); ACS = Associative Chunk Strength (high vs. low); Var = 

variance. 

 

 



DISCUSSION 

As predicted, the absence of an active test weakened ocular discrimination. Compared 

with Experiment 1 (eye-tracking coupled with an active task), the Test x Grammatical status 

interactions— which once again excluded first-pass measures—were less significant for the 

passive tests in Experiment 2. For proportion of fixations, the effect went from significant to 

marginally significant. Critically, introducing an active test immediately after the last passive test 

boosted ocular discrimination in three of the four measures (first-fixation duration, proportion 

of dwell time, and proportion of fixations). Therefore, an active test seems to facilitate the ocular 

expression of artificial grammar learning. Similar to Experiment 1, the eye-tracking pattern 

observed in the whole group did not result from the influence of potential explicit learners, with 

a possible exception from dwell/first-fixation. We return to this issue in the General Discussion. 

 

GENERAL DISCUSSION 

In this study, we wanted to determine whether eye-tracking captures the implicitly 

acquired knowledge of an artificial grammar and shed light on some restrictions to this 

possibility. Our first goal was to test the hypothesis that an eye-tracking AGL test shows more 

robust discrimination between grammatical and non-grammatical sequences when it is coupled 

to an active test than when this is not the case. In line with our hypothesis, eye movements were 

significantly sensitive to the outcomes of implicit AGL during both the active final preference 

classification (Experiment 1) and the active grammaticality classification (Experiments 1 and 2), 

but less during passive tests, when no instructions were provided other than looking at the 

sequences (Experiment 2). In addition, eye movements reflected the knowledge of participants 

who showed no awareness of the grammar by all standards (verbal reports, sequence 

generation, performance in preference, implicit tests). Thus, we showed that eye-tracking 

measures alone are able to capture the outcomes of implicit artificial grammar learning and that 

the sensitivity of eye-tracking measures to implicit knowledge is boosted in the presence of an 

active forced-choice task. 

The most important contribution of our study was to show that implicitly acquired AG 

knowledge may be captured with eye-tracking. Capturing implicit AGL outcomes in humans with 

eye-tracking measures has failed in previous studies. Wilson and colleagues (2015) found null 

results when using an auditory paradigm probing ocular responses to the whole sequence, and 

it was suggested that eye-tracking-only, passive tests are unable to capture AG knowledge in 

humans. In line with this, Heaver (2012) probed pupillary responses to visual (whole) AG 



sequences and also found null results. In both studies, behavioral discrimination was observed 

after exposure, suggesting that knowledge had been acquired but it was not being properly 

captured by eye-tracking measures. Drawing on sensitivity effects, which rely on responses to 

the violating event rather than the whole sequence, we captured eye-tracking signatures of 

implicitly acquired AG knowledge. 

 

 

 

FIGURE 7. Mean eye-tracking measures for the target letter in Experiment 2 as a function of test, 

grammatical status (G = grammatical; NG = non-grammatical), and performance in the sequence 

generation task (between-subjects factor: nongenerators [generation = 0, n = 17] vs. generators 

[generation = 0, n = 11]). Error bars indicate the standard error of the mean. 



The sensitivity of eye-tracking measures to implicit artificial grammar learning occurred 

in the expected direction, that is, as post-exposure increases in proportion of dwell time, 

proportion of fixations and dwell-to-first fixation ratio for non-grammatical target letters. The 

presence of sensitivity effects in AGL tests, paralleling the ones observed in tests of natural 

syntax knowledge, is consistent with the idea that the outcome of AGL is structural, syntax-like 

knowledge (Christiansen et al., 2012, 2010; Conway et al., 2007; Lelekov-Boissard & Dominey, 

2002; Silva et al., 2016; Tabullo et al., 2013; Zimmerer et al., 2014). 

Eye-tracking measures were not sensitive to the learning of subsequences (ACS). ACS 

effects on eye movements were not expected from the behavioral results of Experiment 1 

because these showed no ACS-based learning (no Test x ACS interactions), in line with previous 

studies of ours (Folia et al., 2008; Folia & Petersson, 2014; Forkstam et al., 2008; Silva et al., 

2016; Uddén et al., 2012). However, even if behavioral ACS effects on endorsement rates had 

been observed, it is unclear whether ocular effects on a single violating letter would also be 

observed. The ACS of a letter sequence presented at the final test phase quantifies how often 

the bigrams and trigrams of that sequence appeared at the exposure phase, and thus it concerns 

units larger than one single letter. Therefore, there might be a lack of sensitivity in this respect. 

Nevertheless, this lack of local subsequence familiarity (ACS) effect is consistent with previous 

and current behavioral results. 

Our second goal was to determine specific eye-tracking signatures of implicitly acquired 

knowledge. Previous literature has suggested that implicit knowledge on structured sequences, 

including natural syntax, is better expressed in first-pass eye-tracking measures compared with 

second-pass measures. Going against this expectation, whole-trial measures (dwell time and 

number of fixations) revealed AG knowledge in both the active and passive conditions 

(Experiment 1 and 2) of our study, whereas first-pass measures (first-fixation duration) did not. 

Critically, we ruled out the possibility that this eye-tracking pattern resulted from explicit 

learning. Concerning dwell/first-fixation (second-pass measure), we saw sensitivity to acquired 

knowledge, but our results were not clear as to whether it reflected knowledge that may be 

considered implicit beyond any doubt: In Experiment 2, unsuccessful generators (strict implicit 

learners) did not show learning effects on dwell/first fixation, whereas successful generators 

(potential explicit learners) did so. Moreover, in Experiment 1, the significant interaction for the 

whole group became marginal after the exclusion of potential explicit learners. Therefore, for 

second-pass measures (dwell/first-fixation), two different scenarios seem possible: Either our 

potential explicit learners were effectively explicit and dwell/first-fixation reflects mostly explicit 

knowledge as suggested in the literature, or these learners were actually implicit and second-



pass measures may express implicitly acquired knowledge. As we stressed throughout this 

article, the first scenario is unlikely: Potential explicit learners performed above chance levels in 

the preference classification test (an implicit behavioral test), they did not show awareness of 

the grammar in their verbal reports, they generated only a small amount of novel grammatical 

sequences, and these novel sequences could be explained by memory for chunks rather than 

structural knowledge. Therefore, the most likely scenario is that all participants— even those 

who generated new strings—acquired implicit knowledge, that dwell/first-fixation patterns 

reflect implicit knowledge, and some reason other than explicit learning made successful 

generators more responsive in terms of second-pass eye signatures. In this view, the assumption 

of a strong association between implicit knowledge and first-pass reading (Godfroid et al., 2015) 

may be premature, either because second-pass reading is not always a reflection of controlled 

(vs. automatic) processing or because cognitive control is not incompatible with access to 

implicitly acquired knowledge (Schott et al., 2005). 

Finally, concerning the reasons why an active test boosts ocular discrimination, these 

remain unspecified. One could think that repeated testing throughout the learning phase 

(alternate learn-test design, Experiment 2) would introduce noise by forcing participants to 

process a repeated proportion of non-grammatical sequences, thus leading to weaker learning 

outcomes. Alternate designs have been shown to elicit weaker learning results when compared 

with continuous learning designs (Citron, Oberecker, Friederici, & Mueller, 2011) as the one we 

used in Experiment 1 (but see Forkstam et al., 2006). However, the behavioral and the eye-

tracking results of the active test (immediately following passive tests in Experiment 2) provided 

evidence that knowledge was being concealed - rather than impeded - by passive tests. Earlier 

in this article, we raised two possible explanations for why passive tests may conceal acquired 

knowledge: either passive, eye-tracking-only tests are generally unable to provide optimal levels 

of attention because there is no goal other than looking at the sequences, or passive tests do 

not specifically elicit the syntactic (structure-related) analysis of AGL sequences needed for 

expressing knowledge. Further work on this issue should compare eye-tracking sensitivity to AGL 

classification instructions that activate syntactic analysis to different degrees (e.g., instructions 

focusing on the visual properties of letters may weaken syntactic analysis). 

CONCLUSION 

Our results are novel in showing that eye-tracking measures alone are able to express 

the implicit knowledge resulting from learning an artificial grammar, even though adding an 

active, forced-choice test boosts ocular discrimination. The possibility of using instruction-free 



settings such as eye-tracking to measure the outcomes of implicit structured sequence learning 

opens new avenues in research. When using eye-tracking concurrently with two different 

forced-choice active tests, preference and grammaticality classification, we also found highly 

similar eye-movement profiles. This overcomes behavioral differences observed so far and 

indicates that differences observed in behavioral testing may result from processes related to 

final decisions, namely participants’ self-monitoring of response direction. Finally, our findings 

suggest that whole-trial measures may be relevant, and even crucial, to capture the outcomes 

of implicit structured sequence learning. 
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