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Introduction

Fixational eye movement patterns have been widely
studied in a variety of domains including reading, scene and
face perception, object localization, and visual search
(Henderson, Brockmole, Castelhano, & Mack, 2007; Land,
Mennie, & Rusted, 1999; Liversedge & Findlay, 2000;
Mannan, Ruddock, & Wooding, 1997; Rayner, 1995;
Renninger, Verghese, & Coughlan, 2007; Underwood,
Foulsham, van Loon, Humphreys, & Bloyce, 2006).
Surprisingly, beyond two-dimensional (2D) pattern recog-
nition (e.g., Renninger, Coughlan, & Verghese, 2005;
Renninger et al., 2007), there have been no detailed analyses
of eye movement patterns during three-dimensional (3D)

visual object recognition. The ability of the human visual
system to rapidly categorize 3D objects across variation in
viewing conditions caused by changes in scale, lighting and
viewpoint, is a truly remarkable accomplishment for a
biological system that far surpasses, in adaptability and
robustness, the most advanced computer vision systems.
Although everyday object recognition can be accomplished
quickly, and often within a single fixation for a distal
stimulus, previous studies, using 2D stimuli, have shown
that fixation patterns can be highly informative about shape
processing during perception (e.g., Melcher & Kowler,
1999; Renninger et al., 2005, 2007; Vergilino-Perez &
Findlay, 2004). For example, Melcher and Kowler (1999)
have shown that initial landing position during saccadic
localization is driven by a representation of target shape that
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determines center-of-gravity (COG) landing sites. Recent
evidence also suggests that the perception of information
about object presence and identity in a scene may be largely
restricted to a relatively small region around the current
fixation point (Henderson, Williams, Castelhano, & Falk,
2003), although the nature of the shape information
processed during fixations and the role of this information
in object recognition remain unclear.
In this context, a variety of different object recognition

theories have been proposed, which make different claims
about how shape is represented. For example, some
accounts propose that shape classification is based on
class-specific appearance or image-based feature hierar-
chies computed across multiple spatial scales (e.g., Ullman,
2006; Ullman & Bart, 2004; Ullman, Vidal-Naquet, &
Sali, 2002). Other image-based models have hypothesized
the use of 2D views, or aspects, that conjointly encode
information about shape and the spatial locations of image
features (e.g., Edelman & Weinshall, 1991; Ullman &
Basri, 1991). In contrast, geometric accounts like struc-
tural description theories propose that shape perception
depends on the decomposition of object shape into generic
primitives (e.g., generalized cylinders, geons, or surfaces)
and that recognition is mediated by representations that
independently encode information about these primitives
and their spatial configuration (Biederman, 1987; Hummel
& Stankiewicz, 1996; Leek, Reppa, & Arguin, 2005; Leek,
Reppa, Rodriguez, & Arguin, 2009; Marr & Nishihara,
1978). These approaches are not mutually exclusive. Some
recent hybrid models have suggested that both image-based
and structural description approaches can be accommo-
dated within the same framework (Foster & Gilson, 2002;
Hummel & Stankiewicz, 1996).
However, regardless of whether an image-based, struc-

tural description or some other form of representation is
proposed, there remains considerable debate about the
specific kinds of shape information, and shape analysis
algorithms, that underlie object recognition. In principle,
there are several different kinds of information from low-
level image contrasts (e.g., simple edges derived from
luminance boundaries) to intermediate or higher level
features derived from combinations of lower level image
properties (e.g., vertices, curvature discontinuities, volu-
metric parts) that may be used during shape perception.
Furthermore, the availability of specific kinds of shape
information is dependent on the spatial scale of perceptual
analysis. For example, some kinds of image features that
may be useful in recognition are likely to be detected only
at a relatively coarse spatial scale. These include edge
co-linearity (parallelism), elongation, symmetry, aspect
ratio, and global outline (e.g., Biederman, 1987; Hayward,
1998; Hayward, Tarr, & Corderoy, 1999). A good case in
point is shape elongation. Determining elongation requires
access to a relatively complete perceptual representation
of object shape, but it can be computed from relatively
low spatial frequency information. In contrast, other
potentially useful shape features may (and in some cases,

must) be computed locally at a relatively finer spatial
scale. These include the presence of edge boundaries,
corners, vertices, surface depth, and curvature. Other
object properties including, for example, color and texture
can also be computed locally. In some situations,
relatively coarse global image features may be sufficient
for shape classification in specific contextsVsuch as
distinguishing between a banana (curved axis) and a
cucumber (straight axis) on a kitchen table. However,
real-world scenes are often cluttered, containing objects
that partially occlude each other, making it difficult to
reliably recover global shape descriptions all of the time.
This is one reason why many current approaches to
pattern classification in computer vision use algorithms
based on the detection and matching (or indexing) of
local image features, appearance-based feature hierar-
chies, or interest point operators (e.g., Lowe, 2004;
Mikolajczyk & Schmid, 2005; Ullman, 2006; Ullman et al.,
2002).
The aim of the current study was not to characterize eye

movement patterns during everyday object recognition.
Rather, like numerous studies of eye movements in other
domains, our goal was to use fixation patterns as an index
of information processing during shape perceptionV
where the assumption is that observers fixate locations of
high information content (e.g., Renninger et al., 2005).
More specifically, our goal was to examine whether
fixation patterns can be used to elucidate local shape
analysis processes beyond those driven by low-level
image statistics (e.g., simple contrasts in luminance,
orientation, and color) in order to provide insights into
the kinds of higher level shape information that supports
shape perception. Some previous evidence using other
tasks suggests that eye movement patterns are sensitive to
3D shape. In one study, initial localization saccades were
compared when viewing 3D targets rendered with lighting
and shadows or simple flat unicolor silhouettes (Vishwa-
nath & Kowler, 2004). The results showed that saccades
are sensitive to the 3D structure of an object: Although the
2D projection of the target to the retina in both conditions
was the same, participants showed a bias toward the 2D
COG when viewing silhouettes and the 3D COG when
perceiving the target as a volume. In another study,
Wexler and Ouarti (2008) have shown that saccadic eye
movements during the spontaneous exploration of visual
images follow surface depth gradients. Here, a key finding
was that surface orientation alone has a large effect on eye
movements independent of the task when looking at
stimuli in 3D.
In the present study, eye movement patterns were

recorded while observers either actively memorized
subsets of 3D novel objects or passively viewed them in
a pre-test phase, and then performed a recognition
memory task. The observed fixation patterns were com-
pared to the predicted distributions derived from different
models of shape information content. Since our interest
was to examine whether fixation patterns can be driven by
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higher level shape features, beyond low-level image
statistics alone, we used visual saliency as a baseline
contrast (Itti, Koch, & Niebur, 1998; Koch & Ullman,
1985; Walther & Koch, 2006). The visual saliency model
generates saliency maps based on weighted contrasts in
luminance, orientation, and color. This model has been
widely applied to eye movement studies of scene
perception although its efficiency in predicting fixation
patterns remains the subject of on-going debate (e.g.,
Baddeley & Tatler, 2006; Cristino & Baddeley, 2009;
Henderson et al., 2007). The question of interest was
whether specific models of shape analysis could account
for fixation patterns beyond that explicable by visual
saliency. Three different models were evaluated. Model 1
was based on external global shape features defined by
bounding contour. This hypothesis derives from recent
work showing that outline shape influences object recog-
nition (e.g., Hayward, 1998; Hayward et al., 1999; Lloyd-
Jones & Luckhurst, 2002). Model 2 and Model 3 were
derived from the large body of work highlighting the
importance of curvature in shape perception (e.g., Attneave,
1954; Barenholtz, Cohen, Feldman, & Singh, 2003;
Bertamini, 2008; Biederman, 1987; Cate & Behrmann,
2010; Cohen, Barenholtz, Singh, & Feldman, 2005; Cohen
& Singh, 2007; De Winter & Wagemans, 2006; Feldman
& Singh, 2005; Hoffman & Richards, 1984; Hoffman &
Singh, 1997; Lim & Leek, in press). This work has shown
highly robust perceptual sensitivity to curvature extrema,
where negative minima define concave image regions
(relative to the figure) and positive maxima define
convexitiesVa phenomenon that has also recently been
demonstrated in infants as young as 5 months old (Bhatt,
Hayden, Reed, Bertin, & Joseph, 2006). Empirically,
previous studies have largely examined curvature in the
context of contour-defined 2D images such as polygons
and line drawings (Cohen et al., 2005; Cohen & Singh,
2007; De Winter & Wagemans, 2006) in which curvature
minima and maxima are defined along the occluding
contour boundary. In contrast, there is relatively little data
examining the role of curvature discontinuities defined by
changes in the surface (rather than contour) curvature
polarity of 3D objects. We examined two models of
internal surface curvature defined by local internal convex
curvature maxima (Model 2) and local internal concave
minima (Model 3).

Methods

Participants

Sixty students from Bangor University (36 females,
mean age = 20.83 years, SD = 4.33, 53 right-handed)
participated in the study for course credit. All participants
had normal or corrected-to-normal visual acuity. Informed

consent was obtained from each participant prior to testing
in line with local ethics committee and BPS guidelines
and the Declaration of Helsinki.

Stimuli

There were 12 novel objects (see Figure 1a) each
consisting of a unique spatial configuration of four
volumetric parts. The parts were uniquely defined by
variation among non-accidental properties (NAPs) com-
prising: edges (straight vs. curved), symmetry of the
cross section, tapering (co-linearity), and aspect ratio
(Biederman, 1987).
The object models were produced using Strata 3D CX

software (Strata, USA) and rendered in Matlab using a
single light source (top left) with anti-aliasing and scaled
to fit within an 800 � 800 pixel frame (normalized in size
across objects). All stimuli were uniformly colored in
mustard yellow: R = 227, G = 190, B = 43. Stimuli
subtended 18 degrees of visual angle horizontally with
participants seated 60 cm from the display. This scale was
chosen to induce saccadic exploration over the stimuli.
Each stimulus was rendered depicting the object from six
different viewpoints at successive 60-degree rotations in
depth around a vertical axis perpendicular to the line of
sight. The zero-degree viewpoint was a “canonical” three-
quarter view (see Figure 1b). The 0-, 120-, and 240-degree
versions served as familiar (pre-test) viewpoints, and the
60-, 180-, and 300-degree versions as novel viewpoints.

Apparatus

Eye movement data were recorded on a Tobii 1750
(Tobii Technology, AB, Sweden) binocular corneal reflection
(CR)-based remote eye tracking system (G0.5-degree accu-
racy, 0.25-degree spatial resolution, and drift G 1 degree).
Stimuli were presented on a TFT monitor running at a
resolution of 1280 � 1024 pixels and 60-Hz refresh rate.
Mean surround luminance was 114.7 cd/m2 (SD = 0.25 cd/m2)
measured with a Minolta CS-100 photometer. A chin rest
was used to stabilize the participants’ head at a 60-cm
viewing distance and a standard USB keyboard was used
for response collection.

Design and procedure

Each participant initially completed a nine-point eye
tracking calibration procedure. This required the participants
to view a static blue dot that appeared, randomly, in each
of 9 possible screen locations. Noisy calibration points were
resampled algorithmically to ensure accuracy and validity.
The study comprised two phases: pre-test and test

phases. All subjects completed both phases. There were
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two versions of the pre-test: Active learning and passive
viewingwith participants assigned randomly to one of the two
groups. For both pre-test groups, the trial structure was the
same comprising 18 trials (6 targets� 3 viewpoints). On each
trial, participants initially fixated a square (1- � 1- visual
angle) for 2000 ms presented in the center of the display
vertically and 9 degrees to either the left or to the right of the
object. In the pre-test phase, following a 2000-ms blank ISI, a
single stimulus was presented in the center of the monitor for
10 s. In the active learning group, participants were instructed
to study the shape of each stimulus and to try to memorize it
for a subsequent recognition memory task. They were told
that they would see three different views of six objects. In the
passive viewing group, participants were instructed only to
visually inspect each stimulus. They were not told to
memorize the objects, nor forewarned about the subsequent
recognition memory task. For each pre-test group, half of the
participants viewed Objects 1–6, and half viewed Objects 7–
12. The objects viewed in the pre-test phase were assigned as
targets. Thus, all 12 stimuli were used both as targets and
distracters across groups. In the test phase (N trials = 72),
targets (N = 6, depending on the set shown in pre-test) and
distracters (N = 6) were presented in random order each at
six viewpoints (3 familiar and 3 novel). Across groups there
were 12 targets and 12 distracters (each shown from six
viewpoints). The trial structure was the same as in the pre-
test phases, except that the stimuli were presented until the
participants made a keyboard response. Both pre-test groups
were given the same instructions in the test phase. They
were asked to determine and respond via a key press

(kV“yes”/dV“no”) whether the presented stimulus was one
of the objects viewed during the pre-test phase regardless of
the viewpoint shown. Eye movement data, response time
(RT), and accuracy were recorded as dependent measures.
The experiment lasted approximately 30 min (including
calibration).

Analyses of eye movement data

Fixations were defined as eye movements that remain
within the same circular region of diameter 60 pixels
(2- visual angle given a viewing distance of 60 cm, a screen
resolution of 1280 � 1024 pixels, and a horizontal screen
size of 34 cm) for at least 100 ms (e.g., Manor & Gordon,
2003). In addition, for each trial, the first fixation
following stimulus onset was discarded in order to
eliminate early object localization fixations associated
with COG effects that have been shown to be sensitive to
global object shape (e.g., Denisova, Singh, & Kowler,
2006; He & Kowler, 1989; Melcher & Kowler, 1999).
The aims of the analysis of eye movement data were

twofold: First, rather than attempting to pre-define local
areas of interest (AOIs) as is often done in other domains
of eye movement research (e.g., van Gompel, Fischer,
Murray, & Hill, 2007), our goal was to use the observed
distributions of fixations themselves to empirically define
AOIs for each stimulus (Johnston & Leek, 2009). These
empirically defined AOIs naturally incorporate measures of
error (e.g., noise arising from eye tracker accuracy, drift, and
spatial resolution), as well as within- and between-subject

Figure 1. (a) The 12 novel object stimuli used in the current study. (b) An illustration of the three trained and three novel viewpoints used.
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variability. Second, the empirically defined AOIs were
then subjected to an analysis for shape information content
by assessing the degree of fit between the observed
distributions of AOIs and the distributions predicted by
different algorithmically generated models of local shape
information (see below).
The empirical derivation of the AOIs (or AOI region

maps) and their quantitative comparison to the predicted
distributions were achieved using a modified version of the
Fixation Region Overlap Analysis (FROA) methodology
(see Johnston & Leek, 2009, for a full description and Matlab
implementation of the FROA method). In brief, pre-processed
filtered gaze data were used to compute global fixation
frequency maps for each target and trained viewpoint in the
pre-test phases (N = 36, 12 stimuli � 3 viewpoints) and for
both targets and non-targets at familiar and test viewpoints in
the test phase (N = 144, 12 targets � 6 viewpoints + 12 non-
targets � 6 viewpoints). The maps for each stimulus were
created by summing the convolution of each fixation map
(summed across subjects) with a 2D Gaussian kernel (SD =
0.5 deg). Since fixation frequency varies across subjects and
conditions, the maps were normalized using z scores. The
AOI region maps were derived by binary thresholding the
fixation frequency distributions using a fixed parameter across
all conditions. Here, the threshold was set to z = 1.2 in order
to ensure that thresholded region maps for the fixation data
were approximately equivalent in size to those derived from
the models.1 These binary AOI region maps formed the basis
for the subsequent analysis of the pre-test and test phase
fixation data. The primary dependent measure in FROA is
spatial (i.e., area) overlap percentage (e.g., the amount of area
overlap in the binary region maps for each stimulus and the
predicted distribution of AOI regions for each theoretical
model of shape information normalized by the size of the
binary region maps for each stimulusVsee Johnston & Leek,
2009). Overlap is determined by calculating the number of
suprathreshold pixels that occur at the same spatial locations
in the binary fixation region maps of each contrasted
(observed versus modeled) image set. The statistical signifi-
cance of the observed overlap percentage between data sets
is then determined with reference to bootstrapped proba-
bility distributions derived from Monte Carlo simulations.
These are used to generate the expected random frequency
distribution of area overlap percentage for a given
observed, and modeled, fixation region. This technique
provides a method for estimating the random distribution of
overlap that would be expected for fixation regions of the
observed shape and size (area) and that is constrained to fall
within locations bounded by the perimeter (occluding
contour) of the original stimulus. It is important to note
that this method thus controls for differences in the area of
the respective region maps (and specific threshold param-
eters) in any set of contrasted images. Statistical analyses
were conducted across objects (items) and across subjects.
The statistical significance of the fit between the observed
fixation data and each model prediction was calculated as
follows:

Step 1: We compute the “Actual Overlap Percentage”
(AOP) between the binary images of the observed thresh-
olded region maps and a given model is calculated for
each stimulus. This is computed as a percentage of the
total region area in observed thresholded region map (i.e.,
0% if the model did not overlap at all with the observed
fixation map or 100% if the model overlaps completely
with the observed fixation map).
Step 2: For each stimulus, we calculate the “Chance

Overlap Percentage” (COP) that corresponds to the
percentage overlap we would expect at the 95% CI of a
random distribution of observed fixation data–model
overlap. The random distribution is computed using a
Monte Carlo procedure that is run separately for each
stimulus and data–model contrast. This is done by taking
the thresholded AOIs corresponding to the observed eye
movement data and randomly relocating them within the
boundary of the stimulus. Following each random reloca-
tion, overlap between the (random) fixation AOIs and
model (predicted) regions is computed. This process is
repeated 1000 times per item to generate individual
distributions of random overlap that are specific to each
stimulus and data–model contrast.
Step 3: In order to then compare the degree of observed

fixation data–model correspondence, we compute a
measure called “Model Matching Correspondence”
(MMC): MMCMx = AOPMx j COPMx (where Mx is a
given model). As COP and AOP are expressed in
percentages of the total region area per item, the distance
measure is normalized for variation in thresholded region
size across items. Higher values of MMCMx indicate
better correspondence between the tested model and the
observed fixation data.
As noted earlier, an important goal in assessing the

relative differences in fixation data–model corresponden-
ces was to factor out fixations that could potentially be
driven solely by low-level image statistics. To this end,
we computed a model based on visual saliency that served
as a baseline contrast. To generate the visual saliency
maps for the baseline contrast, we used the visual saliency
algorithm (Itti et al., 1998) to compute a baseline model.
The visual saliency baseline was computed using the
Matlab Saliency Toolbox implementation (Walther &
Koch, 2006). The model was run on each of the 72 stimulus
images (12 objects � 6 viewpoints) used in the recog-
nition task to generate a saliency map for each stimulus.
The output of the toolbox is a list of saliency values for
each pixel, which are grouped into a saliency region map
using a shape estimation function (see Walther & Koch,
2006). The default model parameters were used. The
number of saliency regions generated was constrained to
approximate the area and number of thresholded regions
generated for the other models. The saliency maps were
thresholded and binarized using FROA (see Figure 2).
These maps represent the thresholded distributions of
fixation regions we would expect if eye movements were
determined solely by low-level image statistics, that is, by
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the most visually salient image regions defined by
intensity contrast, orientation, and color.
Step 4: These saliency maps are used to compute the

baseline measure MMCVS for each item: MMCVS =
AOPVS j COPVS (where VS = visual saliency). COPVS
is estimated using the same Monte Carlo procedure
described above. This shows the extent to which observed
overlap is greater or less than the 95% CI of the random
distribution of the saliency algorithm.
Step 5: Finally, for each model we subtract out the

baseline overlap attributable to visual saliency as follows:
MMCMx j MMCVS. This shows the difference in
overlap between the fixation data and a given model
relative to the visual saliency baseline. A positive value
here indicates a higher fixation data–model correspon-
dence than that accounted for by visual saliency. In
contrast, a negative value would indicate a lower fixation
data–model correspondence than that accounted for by
visual saliency.

The resulting MMC statistics are then subjected to
analyses of variance (ANOVA) across models. In addi-
tion, we also examined the generality and robustness of
the observed patterns across subjects. The subject analysis
was done by contrasting the mean normalized fixation
frequency (fm) for thresholded and subthresholded object
regions across subjects. Here, thresholded regions corre-
sponded to the AOIs defined by FROA. Subthresholded
regions were defined by subtracting the thresholded AOIs
from the remaining area of each stimulus image (within
the bounding contour). We refer to these regions as
subthreshold AOIs. The fixation frequency distributions
per subject were normalized for mean region area (across
items) and converted to units of visual angle (30 pixels is
equal to 1 degree of visual angle, given a viewing distance
of 60 cm, a screen resolution of 1280 � 1024 pixels, and
screen size of 34 cm). Thus, this measure takes account of
differences in pixel area between thresholded and non-
thresholded regions. Subject analyses of mean fixation

Figure 2. An illustration of the predicted thresholded fixation region maps for the tested models. All of these predicted distributions were
generated algorithmically.
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durations for thresholded versus subthreshold AOIs using
the same normalized measures are also reported.
Statistical significance is assessed relative to the two-

tailed a priori alpha level (p = 0.05), unless where
otherwise stated. Exact probability values are reported
(p = x) except where p G 0.0001.

Generating model predictions

The predicted distributions for each model of image
information content were algorithmically computed from
the 3D object models using Matlab.

Model 1: External (bounding) contour

Model 1 examined the extent to which fixation patterns
focus on external global shape features defined by
bounding contour. This hypothesis derives from previous
work showing that outline shape influences object recog-
nition (e.g., Hayward, 1998; Hayward et al., 1999; Lloyd-
Jones & Luckhurst, 2002). The bounding contour was
computed using an edge detector on the image silhouette
of the stimuli. It was then replotted using lines of 0.66-
degree width (see Figure 2). This value was used as it
produced models of a similar size as the binarized eye
movement data.

Model 2: Internal convex surface discontinuity

Model 2 generated predicted fixation regions based on
the locations of local features defined by convex surface
curvature maxima. These were generated by applying a
curvature estimation algorithm derived from Taubin
(1995) to the object mesh models using the Peyre Matlab
toolbox. From this, we extracted edges along convex
curvature maxima (see Figure 2). The convex features
were replotted using lines of 0.66-degree width. Edges on
the exterior bounding contour were deleted. Due to the
nature of our stimuli, convexities can occur both inside
and on the bounding contour of an object, but concavities
are more likely to occur on the internal contour (see
Figure 2). By keeping internal features only, we are able
to compute a bias-free measure of the preference for
convex or concave image features.

Model 3: Internal concave surface discontinuity

Model 3 generated predicted fixation regions based on
the locations of local features defined by concave surface
curvature minima (see Figure 2). The same curvature
estimation method was used as for Model 2, except that
here we extracted edges along concave curvature minima.
As with Model 2, edges falling on external bounding
contour were removed.

Results

Analyses of behavioral data (test phase)

Analyses were conducted on the mean median test
phase RTs (correct responses only) and accuracy data.
Only RTs for correct responses were included. Mean
median RTs and accuracy rates are shown in Table 1
(targets only) for both the active learning and passive
viewing pre-test groups.

RTs

A 2 (pre-test task: active learning vs. passive view) � 2
(viewpoint: familiar vs. novel) � 2 (stimulus type: target
versus non-target) mixed factor ANOVA showed a
significant main effect of pre-test task, F(1, 35) = 13.65,
p = 0.001, )2 = 0.281, and a significant interaction
between viewpoint and stimulus type, F(1, 35) = 6.86, p =
0.013, )2 = 0.164. There were no interactions involving
the factor of pre-test group. As seen in Table 1, these
results indicate that RTs were faster overall in the test
phase for the active learning than the passive viewing pre-
test group. Post hoc planned comparisons showed that
target RTs were faster for familiar than novel viewpoints
in both the active learning, t(71) = j2.485, p = 0.018, and
passive viewing pre-test groups, t(71) = j3.119, p =
0.003. In contrast, there was no difference in mean median
RTs between familiar (M = 1653.56 ms; SE = 66.47 ms)
and novel views (M = 1570.56 ms; SE = 60.15 ms) for
non-targets (t(71) = j1.37, p = 0.17, ns).

Pre-test group

Active learning Passive viewing

RTs (ms) % Correct RTs (ms) % Correct

Familiar views 1323.76 (51.34) 93 (1.4) 1499.08 (63.66) 74 (0.3)
Novel views 1501.22 (102.78) 87 (1.8) 1695.28 (112.98) 69 (0.3)

Table 1. The mean median RTs and accuracy rates (targets) for familiar and novel viewpoints in the test phase. Standard error of the
mean is shown in parentheses.
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Accuracy rates

Accuracy data were analyzed using non-parametric
significance tests for either related groups (Wilcoxon)
unless otherwise stated. For the active learning pre-test
group, there was no significant difference between
accuracy rates for targets (M = 90%; SE = 0.012) versus
non-targets (M = 90%; SE = 0.013), z = 0.226, p = 0.821,
ns. For test phase target trials, accuracy was significantly
higher for trained views (M = 93%; SE = 0.014) than for
novel views (M = 87%; SE = 0.018), z = j2.93, p = 0.003.
There was no significant difference in accuracy for non-
targets across viewpoints (z = j1.47, p = 0.141, ns). For
the passive viewing pre-test group, overall response
accuracy was higher for non-targets (M = 81.5%; SE =
0.015) than targets (M = 72%; SE = 0.021), z = 3.21, p =
0.001. In the test phase, there was no difference in
accuracy for targets between familiar (M = 74%; SE =
0.031) and novel viewpoints (M = 69%; SE = 0.029), z =
j1.77, p = 0.77, ns, or for non-targets: familiar, M = 84%;
SE = 0.016; novel, M = 87%; SE = 0.014 (z = j1.75, p =
0.79, ns). Overall accuracy rates for the active learning
group (M = 90%, SE = 0.01) and passive viewing group
(M = 82%, SE = 0.01) were significantly different (Mann–
Whitney: z = j4.37, p G 0.0001).

Analyses of eye movement data
Pre-test phase: Active learning group

A subject analysis was first performed to test the
generality and reliability of the thresholded fixation region
distributions across participants. This was done by con-
trasting the frequency of fixations between thresholded
and subthreshold AOIs (see Methods section). Separate
subject analyses were performed on the pre-test (targets)
and test phase (targets and non-targets) data. Table 2
shows the mean normalized frequencies for the thresh-
olded and subthreshold AOIs across participants. These
data show that the mean normalized fixation frequency for
thresholded AOIs is higher than for subthreshold AOIs in
both the active learning and test phases for targets and in
the test phase for targets and non-targets.
For the active learning phase, there was a significant

difference between the mean normalized fixation frequen-
cies across participants for the thresholded vs. subthreshold

AOIs, t(29) = 16.95, p G 0.0001. For the test phase, a 2
(AOI: thresholded vs. subthreshold) � 2 (stimulus: target
vs. non-target) repeated measures ANOVA showed a
significant main effect of AOI, F(1, 29) = 109.22, p G
0.0001, )2 = 0.790, but no other main effects or
interactions. These analyses show that the fixation regions
identified using FROA were robust across subjects for the
active learning group.

Analyses of the local shape feature analysis
patterns (pre-test, active learning task)

The remaining analyses of the fixation data for the
active learning group were computed across items. For the
pre-test phase, the distributions of fixation regions to
targets presented at trained viewpoints (N = 36) were
initially analyzed across 3 epochs allowing us to compare
the spatial distributions of fixations occurring at different
time periods following stimulus onset. To do this,
fixations were divided subject by subject and trial by trial
into bins containing the first third, middle third, and final
third (e.g., for a particular subject making 9 fixations on a
given item, fixations 1–3 would be allocated to the first
bin, 4–6 to the second bin, and 7–9 to the third bin). The
respective bins were then pooled across subjects for each
stimulus. A 3 (epoch) � 4 (Models 1–3, plus the baseline
saliency model) repeated measures ANOVA on the MMC
distance measure across targets showed a significant main
effect of model, F(3, 105) = 13.33, p G 0.0001, )2 = 0.276,
but no main effect of epoch (F = (6, 210) = 0.737, p =
0.621) and no significant interaction. In the absence of an
interaction, the MMC distance statistics were collapsed
across epoch. A one-way ANOVA across models on the
MMC measure was significant, F(3, 140) = 10.08, p G
0.0001. Subsequent post hoc analyses using the Bonferroni
test showed that the pairwise contrasts between models
were significantly different for internal features concave vs.
visual saliency, p G 0.0001; internal features convex vs.
visual saliency, p G 0.0001; external features vs. visual
saliency, p = 0.029. There were no other significant
differences. These analyses show that the fixation data–
model correspondence is greater for all three models of
shape analysis than the baseline saliency model. However,
there were no differences in the degree of the data–model

Pre-test phase Test phase

Targets Targets Non-targets

Thresholded AOIs 0.52 (0.03) 0.38 (0.04) 0.39 (0.03)
Subthreshold AOIs 0.001 (0.0001) 0.03 (0.002) 0.03 (0.003)

Table 2. The mean normalized fixation frequencies (mean fixation per degree of visual angle) for thresholded and subthreshold AOIs for
the active learning group in both the pre-test and test phases. Standard error of the mean is shown in parentheses.

Journal of Vision (2012) 12(1):7, 1–15 Leek et al. 8

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/933488/ on 05/14/2015 Terms of Use: 



correspondence between the models of shape analysis in
the pre-test phase (Figure 3).

Pre-test phase: Passive viewing group

An initial analysis by subjects was undertaken contrast-
ing the frequency of fixations between thresholded and
subthreshold AOIs using normalized frequency statistics.
Table 3 shows the mean normalized frequencies for the
thresholded and subthreshold AOIs across participants.
These data show that the mean normalized fixation
frequency for thresholded AOIs is higher than for
subthreshold AOIs in both the passive viewing and test
phases for targets and for targets and non-targets in the
test phase.
There was a significant difference between the mean

normalized fixation frequencies across participants for the
thresholded versus subthreshold AOIs, t(29) = 15.63, p G
0.0001. For the test phase, a 2 (AOI: thresholded vs.
subthreshold) � 2 (stimulus: target vs. non-target)
repeated measures ANOVA showed a significant main
effect of AOI, F(1, 29) = 103.89, p G 0.0001, )2 = 0.782,
but no other main effects or interactions.

Analyses of the local shape feature patterns
(pre-test, passive viewing task)

As previously, the distributions of fixation regions to
targets presented at trained viewpoints (N = 36) were
analyzed across 3 epochs following stimulus onset. At
each epoch, FROA was used to compute the observed
overlap between the gaze data and each model prediction
relative to the random Monte Carlo distribution. A 3
(epoch) � 4 (Models 1–3, plus the baseline saliency
model) repeated measures ANOVA on the MMC distance
measure across targets showed a significant main effect of
model, F(3, 105) = 25.66, p G 0.0001, )2 = 0.423, but no
effect of epoch (F = (2, 70) = 1.47, p = 0.235 ns) and no
interaction. In the absence of any interaction, normalized
distance was collapsed across epoch. A one-way ANOVA
on mean MMC values across models (visual saliency,
internal features convex, internal features concave, exter-
nal features) was significant, F(3, 140) = 15.72, p G
0.0001. Post hoc analyses showed that the pairwise
contrasts between models were significantly different for
internal features concave vs. visual saliency, p G 0.0001;
internal features convex vs. visual saliency p G 0.0001;
external features vs. visual saliency p = 0.007. In addition,
unlike for the active learning group, there was also a
significant difference between internal features concave
vs. external features, p = 0.020. There were no other
significant contrasts (Figure 4).

Test phase: Active learning and passive viewing
groups

These analyses were run on the MMC data from the test
phase. Figure 5 shows the mean MMCMx j MMCVS

contrasts across models. A 2 (group: active learning vs.
passive viewing)� 2 (stimulus type: target vs. non-target)�
4 (model: Models 1–3, plus the baseline saliency model)
mixed design ANOVA showed a significant main effect of
model, F(3, 138) = 39.08, p G 0.0001, )2 = 0.459. There
were no other significant main effects or interactions. Post
hoc analyses showed that the pairwise contrasts (Bonfer-
roni) between models were significantly different for all
model–visual saliency baseline contrasts: external features
vs. visual saliency, p G 0.0001; internal features concave vs.
visual saliency, p G 0.0001; internal features convex vs.
visual saliency, p G 0.0001. In addition, mean fixation data–
model correspondence was higher for the internal concave

Figure 3. Illustrative visualization of the primary steps used to
derive the binary region maps underlying FROA. (a) Z-scored
heat map made with a Gaussian kernel of 4 degrees from the
fixation frequencies overlaid on the object. (b) Thresholded map
(z = 1.2) overlaid on the object. (c) Binary thresholded region map
computed by FROA.

Pre-test phase Test phase

Targets Targets Non-targets

Thresholded AOIs 0.49 (0.03) 0.42 (0.05) 0.43 (0.04)
Subthreshold AOIs 0.0014 (.001) 0.03 (0.002) 0.03 (0.002)

Table 3. The mean normalized fixation frequencies (mean fixation per degree of visual angle) for thresholded and subthreshold AOIs for
the passive viewing group in both the pre-test and test phases. Standard error of the mean is shown in parentheses.
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vs. internal convex contrast, p = 0.024; internal features
concave vs. external features, p = 0.001; and internal
features convex vs. external features, p = 0.030.

Analysis of fixation duration

We also conducted analyses of fixation duration,
contrasting mean durations for fixations falling within
the FROA-defined thresholded regions versus duration for
fixations falling outside of the thresholded regions (sub-
threshold AOI). Separate analyses were conducted for the
active learning and passive viewing groups and for the
pre-test and test phases.

Active learning group

For the pre-test, mean fixation durations were longer for
fixations within thresholded AOIs (M = 295.59 ms, SE =
19.76 ms) than for those within subthreshold AOIs (M =
266.58 ms, SE = 16.16 ms). This difference was

significant, t(29) = 3.35, p = 0.002. For the test phase
target, mean fixation duration was also longer for thresh-
olded (M = 259.19 ms, SE = 15.88 ms) than subthreshold
AOI fixations (M = 223.25 ms, SE = 10.77 ms). The same
pattern was found for non-targets: thresholded AOI
fixations (M = 252.95 ms, SE = 14.30 ms) and subthres-
hold AOI fixations (M = 226.26 ms, SE = 10.86 ms). A 2
(AOI: threshold vs. subthreshold) � 2 (stimulus: target vs.
non-target) repeated measures ANOVA on the test phase
mean fixation duration data showed a significant main
effect of AOI, F(1, 29) = 22.52, p G 0.0001, )2 = 0.437,
but no other main effects or interactions.

Passive viewing group

Analyses of the pre-test phase fixation duration data
showed longer mean durations for the thresholded AOI
fixations (M = 313.76 ms, SE = 31.67 ms) than for
subthreshold AOI fixations (M = 275.87 ms, SE = 23.03 ms).
This difference was significant, t(29) = 3.17, p = 0.004.
For the test phase target, mean fixation duration was also
longer for thresholded AOI fixations (M = 266.39 ms,
SE = 23.30 ms) than for subthreshold AOI fixations (M =
239.75 ms, SE = 16.48 ms). The same pattern was found for
non-targets: thresholded (M = 265.01 ms, SE = 22.97 ms)
and subthreshold fixations (M = 236.03 ms, SE = 16.54 ms).
A 2 (AOI: threshold vs. subthreshold) � 2 (stimulus: target
vs. non-target) repeated measures ANOVA on the test
phase duration data showed a significant main effect of
AOI, F(1, 29) = 10.77, p = 0.003, )2 = 0.271, but no other
main effects or interactions. These analyses show that for
both the active learning and passive viewing groups mean
fixation durations were longer for fixations falling within
thresholded regions than for those outside of those regions in
both the pre-test and test phases of the study.

Figure 5. Mean MMC (MMCMx j MMCVS) measure of data–model
correspondences between models (relative to the visual saliency
baseline) for the recognition memory test phase (collapsed across
pre-test groups). Bars show standard error of the mean (% overlap).

Figure 4. Mean MMC (MMCMx j MMCVS) measure of data–model
correspondences between models (relative to the visual saliency
baseline) for (a) pre-test active learning group and (b) pre-test
passive viewing group. Bars show standard error of the mean
(% overlap).
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Active viewing vs. passive learning

Finally, we also contrasted mean fixation durations for
thresholded and subthreshold fixations across task groups
on the pre-test phase data. A 2 (task: active vs. passive) �
2 (AOI: threshold vs. subthreshold) mixed ANOVA
showed a significant main effect of AOI, F(1, 58) =
20.54, p G 0.0001, )2 = 0.262, but no other main effects or
interactions. This suggests that mean durations were not
significantly different between pre-test task groups.

General discussion

This study provides some of the first evidence from
measures of fixation patterns regarding the acquisition of
higher level shape information during the perception and
recognition of 3D objects. In a pre-test phase, observers
either actively memorized or passively viewed sets of
visually similar novel objects prior to performing a
recognition memory test. The main empirical results were
given as follows: First, the analyses of the RT and
accuracy data showed that while observers performed the
recognition memory task more accurately following the
active learning than passive viewing pre-test, the patterns
of test phase RTs for both groups showed faster responses
for targets presented at familiar (pre-test) viewpoints than
at novel viewpoints. This suggests that: (1) participants in
the active learning and passive viewing pre-test groups
performed the recognition memory task in a similar way
and (2) that recognition in both groups was viewpoint-
dependentVconsistent with other reports in the literature
that recognition is mediated by viewpoint-dependent
representations of object shape (e.g., Bülthoff & Edelman,
1992; Edelman&Weinshall, 1991; Riesenhuber & Poggio,
1999; Tarr&Bülthoff, 1998; Ullman, 1998). Second, analyses
of the fixation data showed a strikingly consistent pattern of
data–model correspondences across tasks. In particular,
during both active learning and passive viewing pre-test
phases, and during the recognition memory task, we found
evidence that fixation patterns are not driven solely by
regions of visual saliency defined by contrast in low-level
image properties but rather that observers fixate regions
containing higher level shape information defined either by
external bounding contour or by internal regions of convex
or concave surface discontinuity. Third, despite the
similarity of the patterns of data–model correspondences
between the active learning and passive viewing groups, the
distributions of fixations across object shape features
differed between the study and test phases: Notably, during
the recognition task, we found a preference for fixation at
internal regions of surface concavity.
These findings are consistent with previous studies dem-

onstrating the importance of curvature singularities in the

visual perception of shape (e.g., Attneave, 1954; Barenholtz
et al., 2003; De Winter & Wagemans, 2006; Feldman &
Singh, 2005; Hoffman & Richards, 1984; Hoffman & Singh,
1997)Valthough they are, to our knowledge, the first data
from 3D object perception and recognition showing a
preference for fixation at these regions in both active and
passive viewing tasks. Further, the finding of a preference
for fixation at regions of concave surface discontinuity
during the recognition task provides new evidence for a
direct link between the encoding of information about
surface concavity and object recognition. There are two
important issues raised here. The first concerns the apparent
preference for fixation at regions of surface concavity
during the recognition task. The second concerns our
observation of similar fixation distributions and, by
hypothesis, similar perceptual strategies for the acquisition
of shape information, across active and passive viewing
tasks. We discuss both of these issues in turn.

Eye movements, surface curvature,
and recognition

In other domains, such as scene perception, there is on-
going debate about the relative influence of bottom-up,
stimulus-driven factors and top-down, conceptually driven
factors in determining eye movement behavior (e.g.,
Foulsham & Underwood, 2007; Henderson et al., 2007;
Itti et al., 1998). Our data show that fixation patterns
during the perception and recognition of object shapes
cannot be solely accounted for by low-level visual
saliency.2 Moreover, the data further showed a fixation
preference for concave regions over convex regions
during recognition. This concave preference did not
interact with pre-test group. That is, regardless of whether
observers actively memorized or passively viewed objects
in the pre-test, they showed a preference for fixation at
regions of internal concave minima in the recognition
task. How can this pattern of results be accounted for?
One possibility is that observers specifically fixate those

particular internal regions because they are the optimal
locations for extracting global (e.g., outline) shape proper-
ties rather than because of their status as regions containing
perceptually relevant shape curvature. However, such an
account would not provide an obvious explanation for the
apparent preference for fixation at regions of concave
surface discontinuity in the recognition task but not in the
pre-test phase. Additionally, it is more likely that the
optimum location for extracting global shape attributes
(e.g., elongation, orientation, or symmetry) would be close
to the center of massVbut this is clearly not the case as
early COG fixations were removed from the data.
Rather, our finding of a preference for fixation at regions

of concavity during the recognition task is consistent with
hypotheses that outline a special functional status for
concave minima in shape recognition (e.g., Feldman &
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Singh, 2005; Hoffman & Richards, 1984; Lim & Leek, in
press). One influential hypothesis is that concave regions
play an important role as segmentation points allowing
for the computation of parts-based structural descriptions
(e.g., Hoffman & Richards, 1984; Marr & Nishihara,
1978). In this context, one interesting aspect of the data
stems from the concurrent observation of a fixation
preference for concave surface minima along with view-
point-dependent performance in the recognition task. The
former finding is consistent with the claim that negative
curvature minima play a functional role in part segmenta-
tion during the derivation of a structural description represen-
tation (e.g., Biederman, 1987; Hoffman & Richards, 1984;
Marr & Nishihara, 1978), while the latter finding, accord-
ing to some interpretations of viewpoint-dependent
effects, is consistent with image-based view interpolation
models (e.g., Bülthoff & Edelman, 1992; Edelman &
Weinshall, 1991; Riesenhuber & Poggio, 1999; Tarr &
Bülthoff, 1998; Ullman, 1998).
How might these two findings be reconciled? One

possibility is that they reflect different stages of object
processing within the context of more recent hybrid models
of object recognition, which propose the use of both
structural description and image-based representations
(e.g., Foster & Gilson, 2002; Hummel & Stankiewicz,
1996). Alternatively, within an exclusively image-based
approach, one could suppose that the apparent preference
for fixation at regions of surface curvature concavity
reflects the encoding of local depth information in image-
based object representations. Some supporting evidence
comes from the recent demonstration by Wexler and
Ouarti (2008) showing that saccadic eye movements
during the spontaneous exploration of visual images
follow surface depth gradients. Thus, these findings
present a challenge to image-based models that are based
solely on the use of 2D image properties (e.g., Bülthoff &
Edelman, 1992) and appear to necessitate, within this
theoretical framework, the encoding and use of image
features that specify local surface depth information.

Task generality of shape analysis patterns

A further aspect of the results that is of theoretical
interest is the consistency of the patterns of data–model
correspondences across the active learning and passive
viewing tasks. This is perhaps surprising given that one
might expect task requirements to affect the perceptual
analysis of shape. Here, despite the fact that one group of
observers were explicitly told to memorize shape for a
subsequent recognition task, the perceptual analysis
strategies of the two groups, as evidenced by the patterns
of data–model correspondences, were similar. One impli-
cation of this finding is that local shape analysis strategies
during perception are “hard-wired” in the sense of being
invariant to task requirementsVat least across the range of
tasks tested here. This hypothesis is intuitively appealing

in that during everyday recognition observers cannot
entirely predict when unfamiliar objects might become
relevant to their immediate or future goals and intentions.
However, it remains to be determined whether the
observed patterns of shape analyses found here will
generalize across other tasks, including, for example,
those related to the computation of shape representations
for reaching and grasping (e.g., Land et al., 1999).

Caveats and future directions

The findings reported in this study demonstrate the
considerable potential for quantitative analyses of fixation
patterns to elucidate local shape feature processing during
object shape perception and recognition. It is also important
to note that the results are limited in several ways.We do not
claim that these fixation patterns necessarily characterize the
role of eye movements during object recognition in natural
environments (e.g., Land et al., 1999; Tatler, Gilchrist, &
Rusted, 2003). Indeed, objects may often be identified
rapidly within a single fixation depending on their scale
(e.g., Schendan & Kutas, 2003), and this most certainly
involves sensory input from both foveal and parafoveal
vision (Henderson et al., 2003; van Gompel et al., 2007).
Rather, our goal was to use fixation patterns as a way to
infer information acquisition during shape perception and
to see whether eye movements can be used to elucidate
object recognition mechanisms in this way. In future
studies, it will be important to establish the robustness of
these patterns under different conditions, through variation
in stimuli (e.g., similarity, complexity, configuration, and
part structure), display (e.g., stereo versus mono presenta-
tion), and tasks (subordinate vs. basic-level classification).

Conclusion

In summary, the current study used fixational eye move-
ment patterns to examine local shape analysis processes
during the perception and recognition of object shape. The
key finding was a preference for fixation at regions of
concavity surface intersection during the recognition task.
This pattern was found regardless of whether observers had
actively learned or passively viewed stimuli in the pre-test
phase. This finding is consistent with other evidence high-
lighting the special functional status of concave regions in
shape recognition.
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Footnotes

1
While the chosen threshold level will determine region

size, this is also accounted for in the Monte Carlo
procedure that is used in FROA to compute the random
distribution of fixation region overlap (see below). It
should be noted further that while the specific threshold
level used in FROA cannot be rigorously defined a priori,
it is set at a level that allows both for spatial precision and
reduces the likelihood of missing theoretically relevant
“subthreshold” image regionsVsimilar to the issues
surrounding the adoption of a given alpha level in
statistical testing (see also Johnston & Leek, 2009).

2
It is important to note that the goal of this study was

not to evaluate the saliency algorithm but rather to
examine to extent to which fixation patterns are predicted
by a restricted set of shape feature models over and above
what can be accounted for by low-level image saliency.
Hence, we used saliency as the baseline contrast only. One
might argue that the parameters of the saliency algorithm
ought to be tuned to a given task. However, a key issue is
to what parameter settings? In addition, how can this be
determined a priori? It is an important issue for future
work to consider whether saliency models need to
incorporate other kinds of image features (such as depth
or curvature) beyond the low-level image features that are
implemented in Itti et al.’s (1998) model.

References

Attneave, F. (1954). Some informational aspects of visual
perception. Psychological Review, 61, 183–193.
[PubMed]

Baddeley, R. J., & Tatler, B. W. (2006). High frequency
edges (but not contrast) predict where we fixate: A
Bayesian system identification analysis. Vision
Research, 46, 2824–2833. [PubMed]

Barenholtz, E., Cohen, E. H., Feldman, J., & Singh, M.
(2003). Detection of change in shape: An advantage
for concavities. Cognition, 89, 1–9. [PubMed]

Bertamini, M. (2008). Detection of convexity and con-
cavity in context. Journal of Experimental Psychology:
Human Perception and Performance, 34, 775–789.
[PubMed]

Bhatt, R. S., Hayden, A., Reed, A., Bertin, E. & Joseph, J.
(2006). Infants’ perception of information along
object boundaries: Concavities versus convexities.
Journal of Experimental Child Psychology, 94, 91–113.
[PubMed]

Biederman, I. (1987). Recognition-by-components: A
theory of human image understanding. Psychological
Review, 94, 115–147. [PubMed]

Bülthoff, H. H., & Edelman, S. (1992). Psychophysical
support for a two-dimensional view interpolation
theory of object recognition. Proceedings of the
National Academy of Sciences of the United States
of America, 89, 60–64. [PubMed] [Article]

Cate, D., & Behrmann, M. (2010). Perceiving parts and
shapes from concave surfaces. Attention, Perception
and Psychophysics, 72, 153–167. [PubMed] [Article]

Cohen, E. H., Barenholtz, E., Singh, M., & Feldman, J.
(2005). What change detection tells us about the visual
representation of shape. Journal of Vision, 5(4):3,
313–321, http://www.journalofvision.org/content/5/4/3,
doi:10.1167/5.4.3. [PubMed] [Article]

Cohen, E. H., & Singh, M. (2007). Geometric determi-
nants of shape segmentation: Tests using segment
identification. Vision Research, 47, 2825–2840.
[PubMed]

Cristino, F., & Baddeley, R. (2009). The nature of the
visual representations involved in eye movements
when walking down the street. Visual Cognition, 17,
880–903.

Denisova, K., Singh, M., & Kowler, E. (2006). The role of
part structure in the perceptual localization of shape.
Perception, 35, 1073–1087. [PubMed]

De Winter, J., & Wagemans, J. (2006). Segmentation of
object outlines into parts: A large-scale integrative
study. Cognition, 99, 275–325. [PubMed]

Edelman, S., & Weinshall, D. (1991). A self-organizing
multiple-view representation of 3-D objects. Biolog-
ical Cybernetics, 64, 209–219. [PubMed]

Feldman, J., & Singh, M. (2005). Information along
contours and object boundaries. Psychological
Review, 112, 243–252. [PubMed]

Foster, D. H., & Gilson, S. J. (2002). Recognizing novel
three-dimensional objects by summing signals from
parts and views. Proceedings of the Royal Society of

Journal of Vision (2012) 12(1):7, 1–15 Leek et al. 13

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/933488/ on 05/14/2015 Terms of Use: 

http://www.ncbi.nlm.nih.gov/pubmed/13167245
http://www.ncbi.nlm.nih.gov/pubmed/16647742
http://www.ncbi.nlm.nih.gov/pubmed/12893121
http://www.ncbi.nlm.nih.gov/pubmed/18665725
http://www.ncbi.nlm.nih.gov/pubmed/16516223
http://www.ncbi.nlm.nih.gov/pubmed/3575582
http://www.ncbi.nlm.nih.gov/pubmed/1729718/
http://www.pnas.org/content/89/1/60.long
http://www.ncbi.nlm.nih.gov/pubmed/20045886
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2805109/?tool=pubmed
http://www.ncbi.nlm.nih.gov/pubmed/15929654
http://www.journalofvision.org/content/5/4/3
http://www.ncbi.nlm.nih.gov/pubmed/17868766
http://www.ncbi.nlm.nih.gov/pubmed/17076067
http://www.ncbi.nlm.nih.gov/pubmed/16043166
http://www.ncbi.nlm.nih.gov/pubmed/2004131
http://www.ncbi.nlm.nih.gov/pubmed/15631595


London B: Biological Sciences, 269, 1939–1947.
[PubMed] [Article]

Foulsham, T., & Underwood, G. (2007). How does the
purpose of inspection influence the potency of visual
saliency in scene perception? Perception, 36, 1123–1138.
[PubMed]

Hayward, W. G. (1998). Effects of outline shape in object
recognition. Journal of Experimental Psychology:
Human Perception and Performance, 24, 427–440.

Hayward, W. G., Tarr, M. J., & Corderoy, A. K. (1999).
Recognizing silhouettes and shaded images across
depth rotation. Perception, 28, 1197–1215. [PubMed]

He, P., & Kowler, E. (1989). The role of location
probability in the programming of saccades: Implica-
tions for “center-of-gravity” tendencies. Vision
Research, 29, 1165–1181. [PubMed]

Henderson, J. M., Brockmole, J. R., Castelhano, M. S., &
Mack, M. (2007). Visual saliency does not account
for eye movements during visual search in real-world
scenes. In R. van Gompel, M. Fischer, W. Murray, &
R. Hill (Eds.), Eye movements: A window on mind
and brain (pp. 537–562). Oxford, UK: Elsevier.

Henderson, J. M., Williams, C. C., Castelhano, M. S., &
Falk, R. J. (2003). Eye movements and picture process-
ing during recognition. Perception & Psychophysics,
65, 725–734. [PubMed]

Hoffman, D. D., & Richards, W. A. (1984). Parts of
recognition. Cognition, 18, 65–96.

Hoffman, D. D., & Singh, M. (1997). Salience of visual
parts. Cognition, 63, 29–78.

Hummel, J. E., & Stankiewicz, B. J. (1996). An
architecture for rapid, hierarchical structural description.
In T. Inui & J. McCelland (Eds.), Attention and
performance XVI: On information integration in per-
ception and communication (pp. 93–121). Cambridge,
MA: MIT Press.

Itti, L., Koch, C., & Niebur, E. (1998). A model of
saliency-based visual attention for rapid scene anal-
ysis. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 20, 1254–1259.

Johnston, S., & Leek, E. C. (2009). Fixation region
overlap: A quantitative method for the analysis of
fixational eye movement patterns. Journal of Eye
Movement Research, 1, 1–12.

Koch, C., & Ullman, S. (1985). Shifts in selective visual
attention: Towards the underlying neural circuitry.
Human Neurobiology, 4, 219–227. [PubMed]

Land, M., Mennie, N., & Rusted, J. (1999). The roles of
vision and eye movements in the control of activities
of daily living. Perception, 28, 1311–1328. [PubMed]

Leek, E. C., Reppa, I., & Arguin, M. (2005). The structure
of three-dimensional object shape representations:

Evidence from part-whole matching. Journal of
Experimental Psychology: Human Perception and
Performance, 31, 668–684. [PubMed] [Article]

Leek, E. C., Reppa, I., Rodiguez, E., & Arguin, M. (2009).
Surface but not volumetric part structure mediates three-
dimensional shape representation. Quarterly Journal of
Experimental Psychology, 62, 814–829. [PubMed]

Lim, I.-S., & Leek, E. C. (in press). Curvature and the
visual perception of shape: Theory on information
along object boundaries and the minima rule revis-
ited. Psychological Review. [PubMed]

Liversedge, S. P., & Findlay, J. M. (2000). Saccadic eye
movements and cognition. Trends in Cognitive
Sciences, 4, 6–14.

Lloyd-Jones, T. J., & Luckhurst, L. (2002). Outline shape
is a mediator of object recognition that is particularly
important for living things. Memory & Cognition, 30,
489–498. [PubMed]

Lowe, D. G. (2004). Distinctive image features from
scale-invariant keypoints. International Journal of
Computer Vision, 60, 91–110.

Mannan, S. K., Ruddock, K. H., & Wooding, D. S. (1997).
Fixation patterns made during brief examination of
two-dimensional images. Perception, 26, 1059–1072.
[PubMed]

Manor, B. R., & Gordon, E. (2003). Defining the temporal
threshold for ocular fixation in free-viewing visuo-
cognitive tasks. Journal of Neuroscience Methods,
128, 85–93. [PubMed]

Marr, D., & Nishihara, H. K. (1978). Representation and
recognition of the spatial organization of three-
dimensional shapes. Proceedings of the Royal Society
of London B, 200, 269–294. [PubMed]

Melcher, D., & Kowler, E. (1999). Shapes, surfaces and
saccades. Vision Research, 39, 2929–2946. [PubMed]

Mikolajczyk, K., & Schmid, C. (2005). A performance
evaluation of local descriptors. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 10,
1615–1630. [PubMed]

Rayner, K. (1995). Eye movements and cognitive pro-
cesses in reading, visual search and scene perception.
In J. M. Findlay, R. Walker, & R. W. Kentridge
(Eds.), Eye movement research: Mechanisms, pro-
cesses and applications (pp. 3–22). Amsterdam,
Netherlands: Elsevier.

Renninger, L. W., Coughlan, J., & Verghese, P. (2005).
An information maximization model of eye move-
ments. In L. K. Saul, Y. Weiss, & L. Bottou (Eds.),
Advances in neural information processing systems
(vol. 17). Cambridge, MA: MIT Press. [PubMed]

Renninger, L. W., Verghese, P., & Coughlan, J. (2007).
Where to look next? Eye movements reduce local

Journal of Vision (2012) 12(1):7, 1–15 Leek et al. 14

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/933488/ on 05/14/2015 Terms of Use: 

http://www.ncbi.nlm.nih.gov/pubmed/12350257
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1691113/?tool=pubmed
http://www.ncbi.nlm.nih.gov/pubmed/17972478
http://www.ncbi.nlm.nih.gov/pubmed/10694968
http://www.ncbi.nlm.nih.gov/pubmed/2617863
http://www.ncbi.nlm.nih.gov/pubmed/12956580
http://www.ncbi.nlm.nih.gov/pubmed/3836989
http://www.ncbi.nlm.nih.gov/pubmed/10755142
http://www.ncbi.nlm.nih.gov/pubmed/16131241
http://psycnet.apa.org/journals/xhp/31/4/668/
http://www.ncbi.nlm.nih.gov/pubmed/18720293
http://www.ncbi.nlm.nih.gov/pubmed/22059900
http://www.ncbi.nlm.nih.gov/pubmed/12184550
http://www.ncbi.nlm.nih.gov/pubmed/9509164
http://www.ncbi.nlm.nih.gov/pubmed/12948551
http://www.ncbi.nlm.nih.gov/pubmed/24223
http://www.ncbi.nlm.nih.gov/pubmed/10492819
http://www.ncbi.nlm.nih.gov/pubmed/16237996
http://www.ncbi.nlm.nih.gov/pubmed/16175670


uncertainty. Journal of Vision, 7(3):6, 1–17, http://
www.journalofvision.org/content/7/3/6, doi:10.1167/
7.3.6. [PubMed] [Article]

Riesenhuber, M., & Poggio, T. (1999). Hierarchical
models of object recognition in cortex. Nature Neuro-
science, 2, 1019–1025. [PubMed]

Schendan, H. E., & Kutas, M. (2003). Time course of
processes and representations supporting visual object
identification and memory. Journal of Cognitive
Neuroscience, 15, 111–135. [PubMed]

Tarr, M. J., & Bülthoff, H. H. (Eds.) (1998). Object
recognition in man, monkey and machine. Cambridge,
MA: MIT Press.

Tatler, B. W., Gilchrist, I. D., & Rusted, J. (2003). The
time course of abstract visual representation. Percep-
tion, 32, 579–592. [PubMed]

Taubin, G. (1995). Estimating the tensor of curvature of a
surface from a polyhedral approximation. IEEE
Computer Society, 902.

Ullman, S. (1998) Three-dimensional object recognition
based on the combination of views. In M. J. Tarr &
H. H. Bülthoff (Eds.), Object recognition in man,
monkey and machine (pp. 21–44). Cambridge, MA:
MIT Press. [PubMed]

Ullman, S. (2006). Object recognition and segmentation
by a fragment-based hierarchy. Trends in Cognitive
Science, 11, 58–64. [PubMed]

Ullman, S., & Bart, E. (2004). Recognition invariance
obtained by extended and invariant features. Neural
Networks, 17, 833–848. [PubMed]

Ullman, S., & Basri, R. (1991). Recognition by linear
combinations of models. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 13, 992–1006.

Ullman, S., Vidal-Naquet, M., & Sali, E. (2002). Visual
features of intermediate complexity and their use in
classification. Nature Neuroscience, 5, 682–687.
[PubMed]

Underwood, G., Foulsham, T., van Loon, E., Humphreys, L.,
& Bloyce, J. (2006). Eye movements during scene
inspection: A test of the saliency hypothesis. European
Journal of Cognitive Psychology, 18, 321–342.

van Gompel, R. P. G., Fischer, M. H., Murray, W. S., &
Hill, R. L. (2007). Eye movements: A window on mind
and brain. Oxford, UK: Elsevier.

Vergilino-Perez, D., & Findlay, J. (2004). Object structure
and saccade planning. Cognitive Brain Research, 20,
525–528. [PubMed]

Vishwanath, D., & Kowler, E. (2004). Saccadic local-
ization in the presence of cues to three-dimensional
shape. Journal of Vision, 4(6):4, 445–458, http://
www.journalofvision.org/content/4/6/4, doi:10.1167/
4.6.4. [PubMed] [Article]

Walther, D., & Koch, C. (2006). Modeling attention to
salient proto-objects. Neural Networks, 19, 1395–1407.
[PubMed]

Wexler, M., & Ouarti, N. (2008). Depth affects where we
look. Current Biology, 18, 1872–1876. [PubMed]

Journal of Vision (2012) 12(1):7, 1–15 Leek et al. 15

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/933488/ on 05/14/2015 Terms of Use: 

http://www.ncbi.nlm.nih.gov/pubmed/17461684
http://www.journalofvision.org/content/7/3/6
http://www.ncbi.nlm.nih.gov/pubmed/10526343
http://www.ncbi.nlm.nih.gov/pubmed/12590847
http://www.ncbi.nlm.nih.gov/pubmed/12854644
http://www.ncbi.nlm.nih.gov/pubmed/9735535
http://www.ncbi.nlm.nih.gov/pubmed/17188555
http://www.ncbi.nlm.nih.gov/pubmed/15288901
http://www.ncbi.nlm.nih.gov/pubmed/12055634
http://www.ncbi.nlm.nih.gov/pubmed/15268929
http://www.ncbi.nlm.nih.gov/pubmed/15330712
http://www.journalofvision.org/content/4/6/4
http://www.ncbi.nlm.nih.gov/pubmed/17098563
http://www.ncbi.nlm.nih.gov/pubmed/19062283

